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Abstract

We study the stability and breakup of liquid bridges with a free
contact line on surfaces with contact-angle hysteresis (CAH) under
zero-gravity conditions. Non-ideal surfaces exhibit CAH because of
surface imperfections, by which the constraints on three-phase contact
lines are influenced. Given that interfacial instabilities are constraint-
sensitive, understanding how CAH affects the stability and breakup
of liquid bridges is crucial for predicting the drop size in contact-drop
dispensing. Unlike ideal surfaces on which contact lines are always free
irrespective of surface wettability, contact lines may undergo transi-
tions from pinned to free and vice-versa during drop deposition on
non-ideal surfaces. Here, we experimentally and theoretically exam-
ine how stability and breakup are affected by CAH, highlighting cases
where stability is lost during a transition from a pinned-pinned (more
constrained) to pinned-free (less constrained) interface—rather than
a critical state. This provides a practical means of expediting or de-
laying stability loss. We also demonstrate how the dynamic contact
angle can control the contact-line radius following stability loss.
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1 Introduction

Studying the stability and dynamics of liquid bridges is motivated by a broad
range of applications, including crystal growth in microgravity1, surface pat-
terning, nano-printing, and nano-lithography2–4, aggregation and coalescence
of flexible fibres5–8, and capillary induced collapse of elastic structures9–14.
Quantifying liquid-bridge and jet breakup upon stability loss dates to the
works of Plateau 15 and Rayleigh 16,17 . While early investigations of crystal
growth and purification focused on determining the minimum liquid volume
that can be held between circular discs18,19, the drop-size distribution follow-
ing breakup is of prime interest in contact-drop dispensing and liquid-transfer
applications20–22. Minimizing the dispensed-drop size relative to the needle
diameter is central to surface patterning based on direct-write lithographic
techniques3,23.

Recent studies of contact-drop dispensing have shown that the deposited
drop size is influenced by the needle retraction speed, needle-tip size, surface
characteristics, and dispensing control parameters24,25. Interestingly, the de-
posited drop volume in pressure-controlled and volume-controlled dispensing
behave differently with the needle retraction speed. Faster retraction re-
duces the drop size to a minimum, and monotonically increases the drop size
in pressure-controlled and volume-controlled dispensing, respectively. Three
regimes were experimentally identified with respect to the retraction speed
Un for the pressure-controlled case. In the first two, Un ≪ uw, where uw is the
capillary-wave speed; the contact line advances in the first and is stationary
in the second with the drop size scaling as U−1/2

n ; the third corresponds to
fast retraction speeds, Un/uw ∼ O(10−2), where the dynamics dramatically
change, and the drop size does not scale with Un as a simple power law.
Here, the drop size is almost two orders of magnitude smaller than in the
first two regimes, which Qian et al. 24 attributed to a fast receding contact
line with a speed approaching uw. However, in volume-controlled deposition,
the dispensed-drop size did not exhibit the same sensitivity to the needle re-
traction speed in the parameter range studied by Qian and Breuer 25 . Thus,
our study is motivated, in part, by seeking to answer whether it is possible
to influence—by purely geometric means—the dynamics in volume-controlled
deposition, so that one may achieve comparable sensitivity as in the pressure-
controlled case, to achieve small-drop deposition.

Experimental studies of static liquid bridges between equal circular discs
are extensive. Using neutral-buoyancy experiments, Sanz and Martinez 26

2



ascertained the minimum-volume stability limit1 in the slenderness range
0 < Λ < 6. Russo and Steen 27 determined the maximum-volume stabil-
ity limit in a similar set-up, showing that axisymmetric liquid bridges non-
axisymmetrically bulge when their interface is tangent to the discs. The
experiments of Slobozhanin et al. 28 provided further insights on this sta-
bility limit. They showed that above (below) the slenderness Λ ≃ 0.4946,
liquid bridges continuously (abruptly) bulge into a non-axisymmetric shape.
Other studies considered the effect of gravity on the stability limits of ax-
isymmetric29 and non-axisymmetric liquid bridges30 between equal discs.
Emphasizing the destabilizing effect of gravity on nearly cylindrical liquid
bridges, Lowry and Steen 31 experimentally demonstrated that subjecting liq-
uid bridges to an external laminar flow suppresses interfacial disturbances,
thereby stretching the stability limit beyond that of static bridges.

Surface imperfections (e.g., heterogeneity and roughness) complicate the
equilibrium of gas-liquid-solid contact lines on non-ideal surfaces25,32,33. Con-
tact lines remain pinned on non-ideal surfaces as long as the equilibrium
contact angle is between the receding and advancing contact angles, and are
mobile otherwise34. The receding contact angle particularly plays a key role
in contact-drop dispensing when the contact line is free25,35. Chen et al. 33,36

experimentally and numerically studied the effect of contact-angle hystere-
sis (CAH) on the evolution and adhesion force of liquid bridges with two
free contact lines. Similarly to Qian and Breuer 25 , experiments were con-
ducted in a liquid-gas system where the gravity effect is alleviated by small
bridge dimensions. Using similar experiments, Chen et al. 22 examined bridge
breakup, showing that the liquid transfer ratio is correlated with the differ-
ence between the receding contact angles on the plates.

Dynamic effects, manifesting in the capillary number Ca and Reynolds
number Re, are not negligible at large Un, and should be examined in liquid-
transfer applications. Dodds et al. 20 , Chen et al. 37 and Chen et al. 38 have
studied the breakup of liquid bridges with free contact lines between two sup-
ports with respect to Un. Depending on the magnitude of Un, two distinct
regimes were identified: (i) Ca ! O(1), Re ≪ 1 and (ii) Ca,Re ! O(1). In
the first, liquid bridges asymptotically tended to more evenly break between
the supports with increasing Un, almost irrespective of the support wetta-

1The maximum-volume stability limit at fixed slenderness, referred to as the ‘rotund
limit’, is equivalent to the minimum-slenderness stability limit at fixed volume. Similarly,
the minimum-volume stability limit at fixed slenderness, referred to as the ‘slender limit’,
is equivalent to the maximum-slenderness stability limit at fixed volume.
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bility. This restriction limits the minimum dispensed-drop size that can be
achieved by increasing the retraction speed. In contrast, the dispensed-drop
size monotonically decreased with increasing Un in the range of Ca and Re
studied by Chen et al. 38 . Nevertheless, CAH effects on the stability and
dynamics of liquid bridges in contact-drop dispensing have not been fully
understood in the literature.

The advancing and receding contact angles reflect surface characteris-
tics and differences between non-ideal and ideal surfaces. However, they are
not constant thermodynamic quantities and may vary on heterogeneous sur-
faces according to the contact-line position. Variable contact angles are also
observed when dispensing a liquid onto a surface where there is strong ad-
hesion. Here, a moving contact line can deposit material on the surface as
it recedes, changing interfacial tensions and the receding contact angle. This
‘surface contamination’ effect must be accounted for in conventional contact-
angle-hysteresis experiments where liquid bridges are squeezed and stretched
sequentially on the same substrate.

Depending on the surface wettability and drop volume, the contact angle
may be equal to or between receding and advancing contact angles when
stretching liquid bridges. Hence, a bridge can undergo transitions from
pinned-pinned to pinned-free contact lines (and vice versa) during stretching.
These complications raise new, non-trivial questions as to how the stability
limits and dispensed-drop volume are influenced by CAH, and which stability
limit (with respect to pinned-pinned or pinned-free disturbances) determines
the breakup height.

In this paper, we address the forgoing questions by studying pinned-
pinned to pinned-free transitions and their respective stability limits during
drop deposition on surfaces with CAH. In particular, we show that, contrary
to the common notion, there are cases where liquid bridges do not break
at a critical state (i.e., the pinned-pinned or pinned-free stability limit).
To the best of our knowledge, this has not been previously reported in the
literature. Moreover, we experimentally verify the theoretical predictions of
the maximum- and minimum-slenderness stability limits35 when the contact
line is free at breakup. The stability limits of liquid bridges with pinned and
free contact lines are compared to demonstrate the destabilizing effect of free
contact lines. To simulate zero gravity using the density matching technique,
liquid bridges of silicon oil are formed in a water-methanol solution. The
contact-angle effect is then examined by adding surfactant to the aqueous
phase.
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Disc

Plate 

Figure 1: Weightless liquid bridge; (a) schematic and (b) coordinate system
with meridian curve parametrization.

2 Theory

Consider a liquid of volume v bridging a circular disk with radius R0 and a
large plate. The disc and plate are separated by a distance h, as shown in
Fig. 1. The bridge is pinned to the disc and is free to slide horizontally on
the plate. A small Bond number (Bo ≪ 1) is achieved by density matching,
so the gravity force is negligible. Consequently, there is a constant pressure
differential between the non-hydrostatic pressure of the bridge pl and the
surrounding fluid pg. Here, the surface tension between the phases i and j is
denoted γij with Γij the corresponding interfacial surface area. The contact
and dihedral angles that the interface Γgl forms with the plate and disc are
denoted θc and θd, respectively. The cylindrical volume V = v/(πR2

0h),
scaled volume v∗ = v/(4πR3

0/3), scaled pressure (mean curvature) Q = qR0,
and slenderness Λ = h/R0 are the dimensionless parameters with which the
liquid bridges are specified. Note that q = (pg − pl)/γgl measures the non-
hydrostatic pressure differential39.

We adopt θc to denote the angle between the tangent to the bridge surface
at the contact line ℓ and plate. This assumes the following values: (i) a
constant when the surface is ideal, (ii) the advancing or receding contact
angle when the surface is non-ideal, or (ii) a geometric parameter (similarly
to θd) when the contact line is pinned. The receding and advancing contact
angles are specifically identified by θa and θr, respectively; on heterogeneous
surfaces, these vary with the contact-line position. Note that these angles, as
defined in Fig. 1, are supplementary to their conventional definition40 where
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they are measured through the liquid bridge. According to our definition,
θa < θr, implying that θr and θa are, respectively, the upper and lower bounds
on θc for which the contact line remains pinned.

Stable equilibria of the system in Fig. 1 are determined by minimizing
the total potential energy

E = γslΓsl + γglΓgl + γsgΓsg, (1)

with volume v = const. Parametrizing axisymmetric meridian curves by t,
which varies in the fixed interval [t0, t1] in equilibrium and perturbed states
such that t0 and t1, respectively, correspond to the contact lines ℓ̄ and ℓ (see
Fig. 1), E is given by the functional

E[r(t), z(t)] = γgl

∫ t1

t0

Φ(r, z, r′, z′)dt+
R1

2
(γsl − γsg), (2)

where r(t) = r(t)er + z(t)ez specifies the meridian curves, Φ(r, z, r′, z′) =
r
√
r′2 + z′2 + λr2z′, and λ is the Lagrange multiplier associated with the

volume constraint v = π
∫ t1
t0

r2z′dt = const. General axisymmetric variations
of a meridian curve with respect its equilibrium state r̂(t) = r̂(t)er + ẑ(t)ez
can be written

z(t) = ẑ(t) + η1(t)ϵ+ η2(t)ϵ
2 + · · · , (3)

r(t) = r̂(t) + ψ1(t)ϵ+ ψ2(t)ϵ
2 + · · · (4)

with
η1(t0), η2(t0) = 0 η1(t1), η2(t1) = 0, (5)

ψ1(t0),ψ2(t0) = 0 ψ1(t1),ψ2(t1) = finite, (6)

which upon substitution in Eq. (2) furnish the first variation

δE

ϵ
= γgl

∫ t1

t0

[
Φr +

d

dt
Φr′

]
ψ1dt+ γgl

∫ t1

t0

[
Φz +

d

dt
Φz′

]
η1dt

+ [γglΦr′ |t1 + R1(γsl − γsg)]ψ1(t1).

(7)

Since the contact line ℓ is free, Γgl admits all perturbations satisfying Eqs. (5)
and (6), including those with ψ1(t1) = 0 and ψ1(t1) ̸= 0. Equilibrium states
are those for which δE = 0 with respect to admissible perturbations η1(t) and
ψ1(t). Hence, all the expressions enclosed by square brackets in Eq. (7) must
vanish. Since z(t) and r(t) represent a single planar curve, Φr +dΦr′/dt = 0
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and Φz + dΦz′/dt = 0 are not independent41, and both lead to the same
equilibrium condition

r′′z′ − r′z′′

(r′2 + z′2)3/2
− z′

r(r′2 + z′2)1/2
= 2λ. (8)

Comparing the potential energy in Eq. (1) with the total grand canonical
potential, the Lagrange multiplier is determined λ = (pl − pg)/2γgl = −q/2
(see Akbari et al. 14 and Neumann et al. 42). In general, ψ1(t1) ̸= 0, so
equilibrium requires γglΦr′ |t1 +R1(γsl − γsg) = 0, furnishing the contact-line
constraint

γgl cos θc = γsg − γsl with cos θc = n · np. (9)

If ℓ were a pinned contact line, admissible perturbations would have to satisfy
ψ1(t1) = 0, so the forgoing boundary term could take any arbitrary value
without affecting the first variation; this explains why equilibrium imposes
no restriction on θc at pinned contact lines. Parametrizing meridian curves
by their arclength (i.e., t = s) and introducing the scaled lengths

ρ = |q|r, ξ = qz, τ = |q|s (10)

reduces Eq. (8) to

ρ′ξ′′ − ρ′′ξ′ = 1− ξ′

ρ
. (11)

Using ρ′2 + ξ′2 = 1 with its equivalent representation ρ′ρ′′ + ξ′ξ′′ = 0, and
solving Eq. (11) for ρ′′ and ξ′′ furnishes the parametric, axisymmetric form
of the Young-Laplace equation

{
ρ′′ = −ξ′(1− ξ′/ρ)
ξ′′ = ρ′(1− ξ′/ρ)

(′≡ d/dτ), (12)

which can be found elsewhere35,39.
We apply the variational method of Myshkis et al. 39 to determine the

stability of equilibrium surfaces with respect to arbitrary volume-preserving
perturbations. This method associates the second variation of the potential
energy with the eigenvalues of the corresponding Sturm-Liouville problem
where critical states satisfy

⎧
⎨

⎩

Lϕ0 + µ = 0
ϕ0(τ0) = 0, ϕ′

0(τ1) + χ̃ϕ0(τ1) = 0∫ τ1
τ0
ρϕ0dτ = 0

(13)
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for axisymmetric perturbations and
{

(L − 1/ρ2)ϕ1 = 0
ϕ1(τ0) = 0, ϕ′

1(τ1) + χ̃ϕ1(τ1) = 0
(14)

for non-axisymmetric perturbations. Here,

χ =
k1ℓ cos θc − kpℓ

sin θc
at ℓ, (15)

and

L ≡ d2

dτ 2
+
ρ′

ρ

d

dτ
+

[(
1− ξ′

ρ

)2

+

(
ξ′

ρ

)2
]

(16)

with χ̃ = χ/|q|; the first principal curvatures of the interface and plate at ℓ
are denoted k1ℓ and kpℓ, respectively. Here, ϕ0(τ) and ϕ1(τ) represent ax-
isymmetric and non-axisymmetric perturbations. The solutions of Eqs. (13)
and (14) can be written

ϕ0(τ) = C1w1(τ) + C2w2(τ) + µw3(τ), (17)

ϕ1(τ) = C4w4(τ) + C5w5(τ). (18)

An equilibrium state is critical if ϕ0 or ϕ1 has a non-trivial solution. It can
be shown (see chapter 3 of Myshkis et al. 39) that a non-trivial solution for
ϕ0 (ϕ1) exists provided χ̃ = χ̃0 (χ̃ = χ̃1), where

χ̃0 = −

∣∣∣∣∣∣

w1(τ0) w2(τ0) w3(τ0)
w′

1(τ1) w′
2(τ1) w′

3(τ1)∫ τ1
τ0
ρw1dτ

∫ τ1
τ0
ρw2dτ

∫ τ1
τ0
ρw3dτ

∣∣∣∣∣∣
∣∣∣∣∣∣

w1(τ0) w2(τ0) w3(τ0)
w1(τ1) w2(τ1) w3(τ1)∫ τ1
τ0
ρw1dτ

∫ τ1
τ0
ρw2dτ

∫ τ1
τ0
ρw3dτ

∣∣∣∣∣∣

, (19)

χ̃1 = −

∣∣∣∣
w4(τ0) w5(τ0)
w′

4(τ1) w′
5(τ1)

∣∣∣∣
∣∣∣∣
w4(τ0) w5(τ0)
w4(τ1) w5(τ1)

∣∣∣∣
(20)

with χ̃0 and χ̃1 the critical χ̃, which, respectively, correspond to axisymmetric
and non-axisymmetric perturbations. From the properties of the spectral
problem, one can deduce the stability criterion

χ̃ > max{χ̃0, χ̃1}. (21)
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Solving the Young-Laplace equation furnishes the equilibrium meridian
curve {

ρ(τ) =
√
1 + a2 + 2a cos τ

ξ(τ) =
∫ τ

0
1+a cos t

ρ(t) dt
, (22)

giving35

|Q| =
√

1 + a2 + 2a cos τ0, (23)

Λ = − 1

Q

∫ τ1

τ0

1 + a cos t

ρ(t)
dt, (24)

tan θc = −sign(Q)
1 + a cos τ1
a sin τ1

, (25)

v∗ = − 3

4Q

∫ τ1

τ0

(1 + a cos t)ρ(t)dt, (26)

where a = ρ(0)− 1 is a shape parameter. We solve Eqs. (23)-(26) to obtain
(τ0, τ1, a,Λ) at fixed v∗ and θc with respect to Q as the branching parame-
ter using Keller’s arclength continuation method43. Stability along equilib-
rium branches are determined by calculating χ̃0 and χ̃1 from Eqs. (19) and
(20), and examining the stability criterion Eq. (21). Note that pinned-free
and pinned-pinned liquid bridges are, respectively, specified by (Λ, V, θc) and
(Λ, V,K), where K = R1/R0 is the ratio of the lower to upper contact-line
radii. When stretching the bridge, K varies at fixed θc in pinned-free bridges,
and θc varies at fixed K in pinned-pinned bridges.

Akbari et al. 35 showed that critical surfaces at the minimum-slenderness
stability limit, corresponding to the upper boundary of the stability region,
are nodoids with θd = 0, the volume of which is well approximated by

V = 1 +
1

4
sec4(θc/2)(π − θc + cos θc sin θc)Λ

− 1

384
sec8(θc/2)[−97 + 24(π − θc)

2 − 136 cos θc − 32 cos(2θc)

+ 8 cos(3θc) + cos(4θc) + 24(π − θc) sin(2θc)]Λ
2 +O(Λ3)

(27)

in V versus Λ stability diagrams.
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Figure 2: Schematic of the experimental setup.

3 Materials and methods

3.1 Experimental set-up

Experiments were performed in a cubic Plateau tank under neutrally buoy-
ant conditions (Fig. 2). This mimicked micro-gravity conditions for larger
menisci and, thus, enhanced the accuracy and resolution of image process-
ing. Silicon oil (5 cSt, Sigma Aldrich) with specific gravity 0.92 was used
as the bridge in a 100 ml water-methanol solution (volumetric mixing ratio
42:58) bath. The composition of the bath solution was adjusted so that its
density matched that of silicon oil at the experiment temperature (≈ 20◦C),
whereby an average density difference ∆ρ ≈ 5 × 10−3 g cm−3 was achieved.
Using a microsyringe, a drop with a prescribed volume in the range 5–50 µl
was deposited onto a plastic coverslip (Fischer Scientific), which had been
soaked in a 0.1 M hydrochloric acid solution, rinsed with DI water, and
placed in the tank. A bridge was produced by gently pressing a needle with
tip diameter 0.15 cm into the drop. Thus, given γgl ≈ 15 dyne cm−1 for
water-methanol-silicon oil system and R0 ≈ 0.075 cm, the Bond number was
Bo = ∆ρgR2

0/γgl ≈ 0.002. The needle was mounted on a one-dimensional
vertical translation stage to control the bridge height, and the tank was
placed on a two-dimensional positioning stage to align the drop and needle
centers before contact, ensuring that the bridge is axisymmetric. The max-
imum (minimum) slenderness stability limit was ascertained by stretching
(squeezing) the bridge until the bridge ruptured (bulged asymmetrically).
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A CCD camera (Prosilica GX1050, Allied Vision) with a 5× lens (Nikon
GMicro-NIKKOR) was used to record the bridge dynamics. Images were
analyzed using an in-house Matlab script. The bridge contact angle with
the coverslip was adjusted by changing the interfacial tensions in the system
using the anionic surfactant sodium dodecyl sulfate (SDS) (Sigma Aldrich)
at concentrations in the range 0–10 g l−1. Once deposited on a coverslip,
silicon-oil drops were maintained in the bath for an hour before performing
experiments to ensure a uniform equilibrium concentration on the interface
and throughout the bath. Thus, the concentration gradient (driving force
for Marangoni convection) is not expected to significantly affect the stability
limits.

3.2 Procedure

Since the needle was hollow with a sharp-edged tip, bridges were always
pinned to the needle. After a drop was deposited onto a coverslip, it was
squeezed in 0.01 inch steps to reach the minimum-slenderness stability limit,
at which it bulged asymmetrically; bridges were imaged at each step. The
maximum-slenderness stability limit was similarly measured by stretching
bridges until rupture. In the slender limit, the bridge broke into two primary
drops, leaving several satellite drops suspended in the bath. Without SDS,
the contact line was free at breakup only for small drop volumes (less than
10 µl), and was otherwise pinned at larger volumes. Since the emphasis in
this work is on the role of moving contact lines, SDS was added to the bath to
reduce the receding contact angle (see Fig. 1) of the bridge on the coverslip.

3.3 Feature extraction

The bridge interface with the bath solution was ascertained using a gradient-
based edge detection method with a Gaussian optimal smoothing filter44. In
this method, pixels on an interface are identified by finding maxima in the
first directional derivative of intensity; or, equivalently, seeking zero-crossings
in the second directional derivative. Derivatives were taken along normals to
interfaces using high-order (8-10 points) central schemes. Then, the analyt-
ical solution of the bridge meridian curve, given by Eq. (22), was fitted to
the extracted interfaces. The unknown parameters (Q, τ0, τ1, a) were deter-
mined by minimizing the root-mean-squared normal distances between the
extracted interface pixels and the theoretical meridian curve. Figure 3 shows
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Figure 3: Fitting theoretical meridian curves to bridges boundaries in stretch-
ing (bottom) and squeezing (top) sequences (20 µl drop).

typical results of the image-processing script for stretching and squeezing
experiments.

4 Stability-constraint relationship: Overview

Contact-line and bulk constraints stabilize capillary surfaces by restricting
the class of disturbances that can induce instability. This can be deduced
for systems with a variational structure2 by representing the potential en-
ergy with respect to all dynamically accessible configurations: There are
more possible configurations with less potential energy for less-constrained
equilibrium states and, therefore, more possible modes of instability41,45,46.
Applications of these concepts to contact-line constraints, which are of inter-
est to contact-drop dispensing, have been discussed in recent reviews47–49.

By definition, CAH is a relationship between the surface wettability and
contact-line constraint on non-ideal surfaces and, thus, is expected to influ-

2A system with dynamics that are describable by a potential energy functional (e.g.,
conservative systems).
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(Λ,V,K) ϵ  PPSR (Λ,V,θ ) ϵ  PFSR- =
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+

i=

(Λ,V,θ ) ϵ  PFSR (Λ,V,K) ϵ  PPSR

(Λ,V,θ ) ϵ  PFSR

(Λ,V,θ ) ϵ  PFSR

(Λ,V,K) ϵ  PPSR
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perturbations 
cannot exist.

(Λ,V,K) ϵ  PPSR
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+

-

i=

=

(i)

(ii)

(iii)
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Figure 4: Pinned-to-free contact-line transition scenarios to be examined for
stability loss of liquid bridges on surfaces with CAH. Pinned-to-free transition
arises when θc reaches θr as the bridge is stretched (θc → θ−r ), whereas free-to-
pinned transition occurs when a receding contact line is trapped by a circular
indentation of radius Ri centered on the symmetry axis (R1 → R+

i ). The
meridian curve, Λ, V , R1, and θc are identical before (left) and after (right)
the transition. The stability region with respect to pinned-pinned (PPSR)
and pinned-free (PFSR) perturbations are defined in (Λ, V,K) and (Λ, V, θc)
spaces. Filled circles, solid lines, short-dashed lines, and long-dashed lines,
respectively, represent pinned contact lines, equilibrium meridian curves, safe
perturbations, and dangerous perturbations. The dashed-dotted line shows
a hypothetically dangerous, but physically impossible, perturbation.
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ence the stability of liquid bridges. It refers to a range of contact angles for
which the contact line remains pinned. The contact line recedes (advances)
if the contact angle approaches the receding (advancing) contact angle from
below (above). Therefore, for a given drop volume and contact angle, one
naturally expects that stability is lost at the stability limits of either pinned-
pinned or pinned-free bridges, depending on the value of θc relative to θr and
θa. By contrast, the contact line is always free on ideal surfaces3, where only
the stability limits of pinned-free bridges are relevant.

To better understand how CAH can complicate contact-drop dispensing,
consider stretching a liquid bridge spanning a needle and a non-ideal, homo-
geneous surface4, such as that shown in Fig. 2, where we seek to predict the
breakup height hb for a given v and θr (R1) when the contact line on the
surface is free (pinned). Suppose that the upper contact line (ℓ̄ in Fig. 1)
remains pinned to the needle edge at all times, while the lower contact line
(ℓ in Fig. 1) can be pinned or free depending on the contact-line position
and contact angle. The contact line ℓ may also undergo pinned-to-free or
free-to-pinned transitions during stretching. If θc < θr at the beginning,
the contact line remains pinned at the initial radius R1,0, while θc increases
(approaching θr from below) as the bridge is stretched from its initial state.
Here, the bridge may reach its stability limit before θc reaches θr, in which
case R1 = R1,0 and hb is estimated by the slender limit with respect to
pinned-pinned perturbations. On the other hand, θc could reach θr from be-
low (θc → θ−r ) before the stability limit is reached, in which case the bridge
undergoes a pinned-to-free contact-line transition.

A transition in the reversed direction is also possible, for example if θr be-
comes larger than θc as a free contact line recedes on a heterogeneous surface
during stretching. However, on a homogeneous surface (our assumption in
this section), a free-to-pinned contact-line transition can only arise when ℓ is
trapped by a sharp-edged circular indentation of radius Ri < R1,0 with a cen-
ter on the bridge symmetry axis. If θc = θr at the beginning, the contact line
recedes from its initial position at R1,0 (approaching Ri from above), while
θc remains fixed at θr. If a critical state is not reached as R1 approaches
Ri, then the bridge undergoes a free-to-pinned contact-line transition when
R1 → R+

i .
Identifying the forgoing transitions alone is not always sufficient to predict

3An ideal surface is defined as a surface without CAH.
4A surface with constant receding contact angle θr = const.
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hb, because the state after the transition is not guaranteed to be experimen-
tally realizable. One also needs to consider the interface stability after the
transition, which, given that the interface must be stable before the transi-
tion for it to be of practical relevance, leads to four transition scenarios (see
Fig. 4): (i) stable-pinned to stable-free, (ii) stable-free to stable-pinned, (iii)
stable-pinned to unstable-free, and (iv) stable-free to unstable-pinned. The
first two are trivial: the contact-line constraint in the slender limit deter-
mines hb, irrespective of the history of the contact-line position. In the first,
the bridge is stable before the transition, so (Λ, V,K) belongs to the stability
region with respect to pinned-pinned perturbations (PPSR) where K corre-
sponds to R1 when θc → θ−r . The bridge after the transition is also stable, so
(Λ, V, θr) belongs to the stability region with respect to pinned-free perturba-
tions (PFSR). In the second, (Λ, V, θr) belong to PFSR before the transition,
and (Λ, V,K) belongs to PPSR after the transition with K = Ri/R0.

The third is a constraint-relaxing, destabilizing transition with nontrivial
consequences, which we elaborate on in section 5.3. This scenario occurs
for (Λ, V,K) corresponding to states where the constraint at ℓ prevents dan-
gerous pinned-free perturbations (those lowering E) from destabilizing the
bridge. Once θc → θ−r , this constraint is relaxed and the dangerous pinned-
free perturbations become admissible, causing stability loss. The fourth is
a constraint-imposing, stabilizing transition. However, it is irrelevant to our
study, because it cannot occur in practice. To clarify this point, suppose
that there exist a dangerous pinned-pinned perturbation with a smaller E
than the equilibrium state. If such a perturbation existed, it would also be
an admissible pinned-free perturbation for the state before the transition.
Thus, there would be a perturbed state for the bridge before the transition
with a smaller E than in the equilibrium state, which would contradict the
assumption that the state before the transition is stable.

5 Results and discussion

Results in this section are presented as follows: Section 5.1 demonstrates
that, in a water-methanol-silicon oil system, adding SDS to the bath simu-
lates drop dispensing on a hydrophobic surface and, thus, promotes mobility
of the bridge-plate contact line. Section 5.2 experimentally validates the
theoretical predictions of the stability limits with respect to pinned-free per-
turbations35. To avoid complications arising from the third scenario, high
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concentrations of SDS (10 g l−1) are used to promote the pinned- to free-
contact-line transition, such that the first scenario above always applies.
Section 5.3 specifically focuses on the consequences of the third transition
scenario on the slender limit and ensuing breakup dynamics.

5.1 Surfactant effect

As previously stated, for large drops, the contact angle θc remains smaller
than the receding contact angle θr during stretching. Thus, the contact
line is pinned to the coverslip at breakup. To assess the stability limits of
liquid bridges with a free contact line over a wider range of drop volumes,
the contact angle was reduced by adding SDS to the bath solution. The
critical micelle concentration (CMC) of SDS in pure water at 25◦C is ≈
2.36 g l−1 50. Note that equilibrium contact angles can vary on heterogeneous
surfaces depending on the contact-line position. Consequently, the receding
and advancing contact angles for the sessile drop can be sensitive to the
drop volume. Therefore, we examine how the contact angle varies with the
SDS concentration (within an order of magnitude of CMC) at various drop
volumes to determine the surfactant concentration at which the contact angle
is a minimum for all volumes. The contact angle was measured using the
sessile-drop method51.

Figure 5 shows the surfactant effect on the contact angle. The contact
angle decreases almost linearly around the CMC and below ∼ 6 g l−1 for all
drop volumes. At higher concentrations, the relationship is nonlinear. Never-
theless, the smallest value of the contact angle in the range 2–10 g l−1occurs
at 10 g l−1 for all volumes, except 5 µl. Moreover, the contact angle for larger
drops is affected more by the surfactant at this concentration. Since larger
drops tend to have a pinned contact line at breakup more often than smaller
drops, only the stability-limit results for experiments where the SDS concen-
tration is 10 g l−1 are reported for all drop volumes. At this concentration,
the bridge contact line with the coverslip was free at all drop volumes.

5.2 Stability limits

In this section, the theoretical predictions of the stability limits35 are tested
experimentally. Since this paper only concerns the statics of stability loss
and breakup, stability limits were ascertained through stepwise, quasi-static
stretching and squeezing experiments. Thus, the Capillary, Weber, and
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Figure 5: The surfactant-concentration effect on the sessile-drop contact an-
gle θsd for drop volumes 5 µl (⃝), 10 µl (△), 15 µl (✷), 20 µl (×). Dashed line
identifies the critical micelle concentration for the surfactant in pure water
at 25◦C50.

Reynolds numbers are expected to be negligible. Stretching and squeez-
ing experiments were performed on separate coverslips to eliminate contact-
line distortion when the rotund limit is reached and contact-angle variations
due to surface contamination (arising from bridge squeezing) (see section 1).
Therefore, position-dependent receding and advancing contact angles could
be attributed solely to surface intrinsic heterogeneities. In all experiments,
the contact line was either pinned or receding when stretching, and always
advancing when squeezing. Therefore, when the contact line is free, the re-
ceding contact angle θr is the relevant contact angle in stretching, and the
advancing contact angle θa is the relevant contact angle in squeezing. This
implies that the slender limit must be calculated for θr at which the bridge
loses stability and compared with the corresponding bridge height from ex-
periments. Similarly, the rotund limit must be calculated for θa at which the
bridge bulges non-axisymmetrically and compared with the corresponding
bridge height from experiments.

Figure 6 shows an image sequence during stretching and squeezing of a
5 µl drop. Here, no surfactant was added to the bath, and the contact line
was free during stretching and squeezing. The receding contact angle at the
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Figure 6: (left) An image sequence of the bridge evolution corresponding
to the data points. (right) Comparison of the theoretical prediction and
experimental measurement of the stability limits with drop volume vi ≈ 5 µl,
receding contact angle θr ≈ 110◦, advancing contact angle θa ≈ 70◦, and
without surfactant. Dashed blue and black lines respectively indicate the
constant-v isocontour at v = 5 µl and the maximum-volume stability limit
estimated by Eq. (27) at θc = 70◦. Labels denote the contact angle in degrees.

slender limit was measured θr ≈ 110◦; thus, the corresponding data point (far
right) in the stability diagram is expected to fall between the lower boundary
of the stability region35 for θc = 90◦ and 120◦, as demonstrated in Fig. 6.
The advancing contact angle at the rotund limit was measured θa ≈ 70◦;
here, the minimum-slenderness stability limit is estimated by Eq. (27) and
is then compared to the measured value. As shown in Fig. 6, experimental
measurements of the stability limits are in good agreement with the theo-
retical predictions of Akbari et al. 35 . Note that the data points in Fig. 6,
indicating the volume v of the liquid between the planes z = z(s1) and
z = z(s0) (see Fig. 1) as measured by image analysis5, generally deviate
more from the constant-v isocontour (dashed line) corresponding to the ini-
tial deposited-drop volume vi when the bridge is more squeezed because of
the hollow needle: The more the bridge is squeezed, the more liquid is driven
into the needle, so v underestimates vi more at smaller Λ. Note also that

5Theoretically, at fixed bridge volume v, the scaled volume v∗ remains fixed, while the
cylindrical volume varies with the slenderness as V = 4v∗/(3Λ) (see the definitions of v∗

and V in section 2). Accordingly, the dashed line in Fig. 6 corresponds to V = 4v∗i /(3Λ).
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Figure 7: Same as Fig. 6, but with SDS concentration 10 g l−1 at drop
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squeezing and stretching experiments were stepwise and quasi-static. Thus,
although the volume obtained from image analysis differs from the initial
volume for each data point, the bridge is in equilibrium with a fixed volume
at each step; consequently, it is subject to volume preserving perturbations
and stability is lost at the constant-volume slender limit upon stretching.

Stretching and squeezing experiments were conducted in the range v = 10–
17.5 µl with SDS added to the bath. At 10 g l−1 SDS, the advancing and
receding contact angles decreased to θa ≈ 0–5◦ and θr ≈ 75–95◦. Reason-
able agreement was observed between the experimental measurements of the
stability limits and theoretical predictions of Akbari et al. 35 (see Fig. 7).

We conclude this section by emphasizing practical challenges that free
contact lines may pose for measuring stability limits, especially on non-ideal
surfaces where imperfections can cause uncertainty in the contact-line po-
sition and contact angle. When the contact lines are free, measuring the
breakup height hb, for example, at fixed v and θr is of interest. Here, one
needs to control surface wettability6 such that the bridge breaks while main-
taining the desired θr and a free contact line. However, this is challenging to
accomplish on highly heterogeneous surfaces, since θr varies during stretching
according to the contact-line position, which, as discussed in section 4, can
cause transitions in the contact-line constraint. Thus, ensuring a consistent
breakup on heterogeneous surfaces at a fixed θr by controlling SDS concen-
tration and bridge volume through repetitive measurements is difficult. In
particular, this complicates the interpretation of error bars (normally re-
garded as uncertainty bounds in measurements that are only affected by
random errors), because averages and variances of multiple measurements of
the breakup height on heterogeneous surfaces represent a mixed effect of ran-
dom errors and variations in local surface characteristics. Thus, the average
breakup height h̄b at the average receding contact angle θ̄r cannot necessarily
be regarded as a valid measure of hb at θr and, consequently, is not compa-
rable with theoretical values. Since the surfaces of the plastic coverslips in
our experiments were highly heterogeneous, the purpose of this section was
not to report the stability limits and associated variances for a given bridge

6Note that θr cannot be directly controlled. In practice, it can be altered by adjusting
interfacial tensions (changing SDS concentration in our experiments) or using coverslips
with different surface characteristics. This indirect control of θr is the primary complicat-
ing factor for free contact lines. In contrast, liquid bridges with pinned contact lines can
be experimentally realized by squeezing and stretching a drop between two sharp-edged
discs, where the contact line position is directly controlled by the diameter of the discs.
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Figure 8: Contact-line effect on the breakup height of liquid bridges. Stretch-
ing a 20 µl drop with 10 g l−1 SDS in the bath, producing a pinned contact
line with θc ≈ 84◦ (left) and a free contact line with θc ≈ 81◦ (right) at the
slender limit.

volume and SDS concentration. Rather, we reported the slender limit for a
given volume and a receding contact angle obtained from the bridge image
before stability loss.

5.3 Contact-angle hysteresis effect

Liquid bridges with a free contact line lose stability at a shorter height than
they would if the contact line was pinned because of the destabilizing ef-
fect of free contact lines35. In this section, we first demonstrate this effect,
which is a central aspect of liquid-bridge breakup on surfaces with CAH, in
a qualitative experiment. Then, we study this experiment in more detail
and examine possible consequences of stability loss according to the third
scenario discussed in section 4.

Figure 8 shows the effect of the contact-line constraint on the slender
limit. Here, experiments were conducted on two coverslips using a 20 µl
drop with 10 g l−1 SDS. Stretching and squeezing experiments were per-
formed on separate coverslips for the left bridge, similarly to the procedure
in section 5.2, so there was no sharp variation in the contact-line radius
between squeezing and stretching since the contact line expanded and con-
tracted, respectively, from an initial radius that was almost the same on both
coverslips. However, squeezing and stretching were consecutively performed
on the same coverslip for the right bridge. Here, upon stretching, the contact
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line retreated on a surface that had been covered by the silicon oil during
squeezing, which affected γsg and θr compared to the left bridge. This change
of procedure allowed to control the contact-line constraint at breakup and to
realize stability loss with respect to pinned-pinned and pinned-free perturba-
tions for the same bridge volume and surfactant concentration. The contact
line was pinned on both coverslips during the initial phase of stretching where
θc increased with Λ at fixed K. While the bridges were approaching breakup,
θc remained below θr, and the contact line remained pinned until breakup
on one (Fig. 8, left panel), whereas θc reached θr before breakup on the
other (Fig. 8, right panel) whereupon the contact line started receding; con-
sequently, the contact line was pinned on the former and free on the latter
when stability was lost. The slendernesses at the slender limit were measured
Λb ≈ 5.99 and Λb ≈ 4.94, respectively. This ≈ 20% decrease in the breakup
height reflects the destabilizing effect of a free contact line, which is con-
sistent with the predictions of Akbari et al. 52 for catenoidal and cylindrical
liquid bridges. Chen et al. 53 also reported experimental observations where
constraint relaxation at the contact lines resulted in stability loss at shorter
heights for liquid bridges of the same volume spanning two supports with
close wettabilities.

Figure 9 quantitatively compares the contact-line constraint at breakup
between the two liquid bridges in Fig. 8 by showing variations of the contact-
line radius R1 with the bridge height. Clearly, as breakup is approached, the
contact-line motion of the right bridge in Fig. 8 is more appreciable than
the left bridge, indicating that the contact line on the left coverslip is more
constrained than that on the right.

Hereafter, we focus on the data for the bridge with a free contact line at
breakup (circles) in Fig. 9 and examine how breakup is affected when stability
loss coincides with change in the contact-line constraint (i.e., during a pinned-
to free-contact-line transition). Figure 10 shows the bridge-evolution images,
comparing the theoretical prediction of the contact-line radius and measured
values. Reasonable agreement is observed between the measurements and
theoretical predictions. The last image H was acquired after stability loss
and before breakup, so it does not correspond to a stable equilibrium state.
At this point, the bridge has already started accelerating towards rupture
with the dynamic contact angle increasing from θr ≈ 75◦ at P5 to θr ≈ 81◦ at
H. This point is still away from breakup and, therefore, expected to follow an
unstable solution of the Young-Laplace equation on an unstable equilibrium
branch (see H in the branching diagram of Fig. 12).
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Figure 9: Squeezing (filled symbols) and stretching (open symbols) of a 20 µl
drop with 10 g l−1 SDS, corresponding to the experiments shown in Fig. 8.
The radius of the meniscus contact line R1 versus slenderness are plotted
when the bridge contact-line on the coverslip at breakup is free (⃝, right
panel in Fig. 8) and pinned (△, left panel in Fig. 8).

Note that the coverslip in this experiment exhibited an advancing contact
angle θa ≈ 3◦ and two distinct receding contact angles θr1 ≈ 30◦ and θr2 ≈
75◦. This can be attributed to changes in the surface tensions associated
with the coverslip (γsg and γsl) when the contact line retreated on a surface
that had already been covered by silicon oil.

The contact line was free during the entire squeezing experiment, and the
contact angle remained almost fixed at θc = θa. However, during stretching,
the contact line was pinned (K ≈ 0.7699) when θa < θc < θr1, free while
the contact angle was almost fixed at θc = θr1, and pinned (K ≈ 0.5271)
when θr1 < θc < θr2. The trajectory P1P2 indicates the equilibrium solution
corresponding to the squeezing, whereas P2P3, P3P4, and P4P5 correspond to
the foregoing pinned-pinned, pinned-free, and pinned-pinned regimes of the
stretching experiment. The point P5 corresponds to a state where θc = θr2,
indicating a transition from pinned-pinned bridges at K = 0.5271 to pinned-
free bridges at θc = 75◦. Pinned-free bridges along P3P4 are not stretched
beyond their stability limit (thin dashed-dotted line), neither are pinned-
pinned bridges along P4P5 beyond their stability limits (thin dashed line).
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Figure 10: Comparison of experimental measurements (open circles) and the-
oretical predictions (solid lines) of the contact-line radius during the stretch-
ing and squeezing of a 20 µl drop (v∗i ≈ 7.171) on a substrate with an ad-
vancing (θa ≈ 3◦) and two receding (θr1 ≈ 30◦, θr2 ≈ 75◦) contact angle(s).
Vertical lines indicate the minimum-high stability limit at θc = 3◦ (thick
dashed-dotted) and maximum-high stability limits at θc = 30◦ (thin dashed-
dotted), θc = 75◦ (thick dashed), and K = 0.5271 (thin dashed), where the
contact line is free for the first three and pinned for the last. Equilibrium
states are computed at fixed contact angle along P1P2 (θc = 5◦) and P3P4

(θc = 30◦), and at fixed contact-line radius along P2P3 (K = 0.7699) and
P4P5 (K = 0.5271).

Note that the slenderness at P5 is also well below the pinned-free stability
limit (thick dashed line) where the foregoing transition occurs. Therefore,
stability is lost upon stretching at a state that is neither the pinned-pinned
nor pinned-free stability limit.

To understand why stability is not lost at a critical state, we locate the
stretching and squeezing trajectories of Fig. 10 on equilibrium branches in
Figs. 11 and 12. Here, the bridge follows stable equilibrium branches along
the entire P1P5 trajectory and before the transition at P5. We note that
the bridge lies on a stable branch with respect to pinned-pinned disturbance
(see Fig. 12b) before the turning point. When θc reaches θr2 at P5 (see
Fig. 11c), the bridge is subjected to pinned-free disturbances. Although
the slenderness is smaller than the maximum-slenderness stability limit, this
state lies on an unstable branch, where the bridge loses stability to pinned-
free perturbations. Thus, in systems with CAH, it is possible for liquid
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Figure 11: Free-contact line equilibrium branches of a fixed-volume (v∗ =
7.171) liquid bridge, indicating stable (solid) and unstable (dashed) states at
(a) θc = 3◦, (b) θc = 30◦, and (c) θc = 75◦. The terminal points P1−5 are
shown to identify the stability of equilibrium trajectories in Fig. 10.

bridges to break during a pinned-pinned to pinned-free transition rather than
at a critical state. Accordingly, stability loss can be expedited by modulating
CAH to induce breakup at a smaller height than an identical bridge would
break if the contact line was perfectly free or perfectly pinned. This is a unique
feature of surfaces with CAH, because when the contact line is perfectly free
or perfectly pinned, stability is always lost at a critical state. Conversely,
stability loss can be delayed by adjusting CAH so that the contact line remains
pinned during stretching, and the bridge breaks at a larger height than an
identical bridge with a perfectly free contact line.

These observations could also have significant implications for the breakup
dynamics and dispensed-drop volume. Recall, pinned-pinned liquid bridges
are more stable than pinned-free ones. Consequently, the foregoing transi-
tion provides access to unstable states of pinned-free bridges that are far
from critical sates. Before the transition, the contact line is pinned, and,
depending on the bridge volume and receding contact angle, the bridge can
be stretched to a state that is highly unstable to pinned-free perturbations.
Once the receding contact angle is reached, the constraint at the contact line
is relaxed, and the interface is exposed to a larger set of perturbations. This
leads to a dramatic stability loss at a point that is not a critical state (P5 in
Figs. 12b and 11c). Note that the energy barrier (potential well) disappears
at critical states, and the instability margin7 generally grows as an unstable

7The notion of the instability margin in this paper is the stability-margin counterpart
of Slobozhanin et al. 54 for unstable bridges. Note that liquid bridges break into several
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Figure 12: Pinned-contact line equilibrium branches of a fixed-volume (v∗ =
7.171) liquid bridge, indicating stable (solid) and unstable (dashed) states at
(a) K = 0.7699 and (b) K = 0.5271. The terminal points P2−5 are shown to
identify the stability of equilibrium trajectories in Fig. 10.

state moves farther away from its critical state along the respective equi-
librium branch54,55. The potential energy of the instability margin can be
transformed to kinetic energy upon stability loss, driving the near-singularity
dynamics56.

An appreciable difference between the breakup dynamics upon stability
loss at a critical state and at an unstable state away from its critical state is
expected. At a critical state (e.g., turning point), the energy barrier disap-
pears in the direction of the critical perturbation, so the interface accelerates
in the same direction with a kinetic energy that is proportional to the distur-
bance magnitude. However, at an unstable state away from its critical state,
the instability margin amplifies the critical perturbation, leading to more
dramatic dynamics, which could impact the dispensed-drop size. As previ-
ously stated, Qian et al. 24 reported small drop sizes in a pressure-controlled
deposition due to fast dynamics near the contact line. Here, achieving a
fast-receding contact line is assisted by the withdrawal of the liquid near

primary and satellite drops upon stability loss at the maximum-height stability limit19.
Thus, the chain of drops arising upon breakup is the most stable (having the deepest
potential well) state that is dynamically accessible to unstable bridges. Accordingly, the
instability margin is defined as the potential-energy difference between the most stable
and unstable states.
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the plate, which is less significant in the volume-controlled case25. However,
breakup at an unstable state with a large instability margin could greatly
influence the dynamics in volume-controlled deposition, potentially favour-
ing smaller deposited drops. Further studies are required to examine the
possibility of stability loss at unstable states with large instability margins,
and their ensuing dynamics.

We further elaborate on the behaviour of the contact-line radius after
stability loss by constructing the equilibrium branches at contact angles near
θr2. The scaled form of the slender-jet approximation, commonly used in
the literature to simplify near-pinchoff dynamics57–59, suggests that, except
very close to the singularity where the capillary number Ca ∼ O(1), the
bridge profile can be reasonably approximated by the Young-Laplace equa-
tion. This approximation is expected—also experimentally shown by Qian
and Breuer 25—to be accurate for volume-controlled stretching, since the liq-
uid velocity inside the bridge is restricted by the volume constraint. There-
fore, the bridge must evolve along unstable equilibrium branches at fixed
volume after stability is lost. We apply this approximation as a guide to in-
vestigate the bridge evolution after stability loss and away from the pinch-off
(e.g., bridge H in Fig. 10) to provide a better understanding of the relation-
ship between the receding contact angle and dispensed-drop volume.

Akbari et al. 35 showed that, at fixed θc, liquid bridges with a free contact
line exhibit a transcritical bifurcation at a point along the lower bound-
ary of the stability region. Transcritical bifurcations were represented by
equilibrium branches at fixed θc and Λ in pressure versus volume diagrams.
Figure 13 shows equilibrium branches in the vicinity of a transcritical bifur-
cation in an R1/R0 versus Λ diagram at fixed v∗ and θc. As discussed for
Figs. 12b and 11c, the bridge after the pinned-pinned to pinned free transi-
tion at P5 lies on an unstable segment of the primary branch at θc = 75◦.
Upon stability loss, the dynamic contact angle8 increases from ≈ 75 to 81◦

when the bridge moves from the primary branch of θc = 75◦ at P5 to the
secondary branch of θc = 81◦ at H. Here, the opposite behaviour of R1

with Λ along stable and unstable branches is notable: the contact-line ra-
dius decreases (increases) during stretching along stable (unstable) branches,
favouring small (large) drops. This implies that evolution upon stability loss
at a fixed-contact-angle leads to larger drops; thus, to achieve smaller drops,

8A speed-dependent contact angle that deviates from the static receding contact angle
after stability loss and before pinch-off due to high contact-line speeds.
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Figure 13: Free-contact line equilibrium branches of a fixed-volume (v∗ =
7.171) liquid bridge in the vicinity of the transcritical bifurcation, indicating
stable (solid) and unstable (dashed) states. Numeric labels denote the con-
tact angle θc in degrees. Circles indicate the states at G, H, and P5 as the
bridge approaches breakup in Fig. 10.

the dynamic contact angle must increase following stability loss. Therefore,
there are cases where a dynamic contact angle that deviates from the receding
contact angle plays a key role in determining whether the contact line expands
or contracts.

6 Concluding remarks

We have experimentally and theoretically studied the stability and breakup
of weightless liquid bridges on surfaces with CAH. Experiments were per-
formed in a Plateau tank where the effect of gravity was alleviated by den-
sity matching. To achieve free and pinned contact lines, the contact angle
was adjusted by adding SDS to the bath. For liquid bridges with a free con-
tact line, experimental measurements validated the theoretical predictions
of the stability limits. At fixed volume, liquid bridges with a free contact
line exhibit a smaller breakup height than those with a pinned contact line,
demonstrating the destabilizing effect of a free contact line, as theoretically
predicted by Akbari et al. 35 .

We examined the effect of CAH on the maximum-height stability limit,
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showing that the breakup height can not always be associated with the static
stability limit. Depending on the drop volume and receding contact angle,
liquid bridges may lose stability during the pinned-pinned to pinned-free tran-
sition at an unstable state away from its critical state. This has significant
implications for the dynamics following stability loss. Unstable states that
are far from critical states generally have large instability margins, which can
transform to kinetic energy upon stability loss, having a significant impact
on the breakup dynamics and dispensed-drop size. For example, the drop
size in volume-controlled dispensing, which is not significantly affected by
wettability, could be reduced if the advancing and receding contact angles
are adjusted so that the bridge breaks during the pinned-to-free contact-line
transition with faster dynamics. Constructing equilibrium branches in the
vicinity of the receding contact angle revealed that a complex interplay be-
tween the dynamic contact angle (determined by its speed), receding contact
angle when losing stability, and bridge volume determine whether the contact
line is expanding or contracting following a loss of stability. Furthermore, we
showed (by one example) that the contact-line motion upon stability loss at
fixed contact angle can be advancing, thus disfavouring small-drop deposi-
tion.

More comprehensive computational investigations of the stability and
breakup of liquid bridges will hopefully provide deeper insights into the re-
lationship between the CAH and dispensed-drop size, and on the effective-
ness of surface hydrophobization (to modulate the contact angle) for micro-
deposition.
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