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PROBABILISTIC MODELS OF EXPECTATION 

Abstract (217 words)

We present the results of a study testing the often-theorized role of musical expectations 

in inducing listeners’ emotions in a live flute concert experiment with 50 participants. Using an 

audience response system developed for this purpose, we measured subjective experience and 

peripheral psychophysiological changes continuously. To confirm the existence of the link 

between expectation and emotion, we used a three-fold approach. (1) Based on an information-

theoretic cognitive model, melodic pitch expectations are predicted by analyzing the musical 

stimuli used (six pieces of solo flute music). (2) A continuous rating scale was used by half of the

audience to measure their experience of unexpectedness towards the music heard. (3) Emotional 

reactions were measured using a multi-component approach: subjective feeling (valence and 

arousal rated continuously by the other half of the audience members), expressive behavior 

(facial EMG) and peripheral arousal (the latter two being measured in all 50 participants). Results

confirmed the predicted relationship between high-information-content musical events, the 

violation of musical expectations (in corresponding ratings) and emotional reactions 

(psychologically and physiologically). Musical structures leading to expectation reactions were 

manifested in emotional reactions at different emotion component levels (subjective experience 

and autonomic nervous system activations). These results emphasize the role of musical structure

in emotion induction, leading to a further understanding of the frequently experienced emotional 

effects of music.

Keywords: Emotion, Music, Expectation, Statistical Learning, Computational Modeling, 

Psychophysiology
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PROBABILISTIC MODELS OF EXPECTATION VIOLATION PREDICT

PSYCHOPHYSIOLOGICAL EMOTIONAL RESPONSES TO LIVE CONCERT MUSIC

Music has been shown to induce emotional reactions that are accompanied by activations 

in several reaction components: subjective feelings, psychophysiological activations, and 

expressive behavior (Juslin & Västfjäll, 2008). However, most previous experimental research 

has been rather exploratory, showing that music induces emotion, but not providing theoretically 

founded explanations for the phenomena observed. More than a decade ago, Scherer and Zentner 

(2001, p.382) noted: “This is a bad omen for future research, since it is to be feared that 

additional, isolated research efforts with little or no theoretical underpinnings are more likely to 

add to the current confusion than to the insight to which the researchers aspire.” However, 

beginning with Scherer and Zenter’s paper, several theoretical attempts have been made to 

explain the underlying mental processes that are involved in creating emotional responses to 

music. Scherer and Zentner formulated “production rules” describing in detail several mental 

mechanisms that could be used to explain emotional responses to music. A few years later, Juslin 

and Västfjäll (2008) continued this idea and presented a seminal review paper, positing seven 

possible ways to explain the observed effects of music. Here, they summarized previous ideas 

about emotion induction mechanisms in general and those specific to music: cognitive appraisal 

of music and the listening situation, brain stem reflexes to acoustic characteristics, visual imagery

induced through sound, evaluative conditioning from pairing music to another emotion-inducing 

stimulus, emotional episodic memory associated with the music, emotional contagion through 

emotional expressions in the music, and musical expectation. This last mechanism will be the 

focus of the study presented here. There have been many theoretical and empirical attempts to 

link musical structures and expectations, but empirical evidence explicitly investigating the 

connection between expectation and emotion in music is limited. Therefore, we conducted an 
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experiment in which we tested whether statistical properties of composed musical structures 

violate or confirm subjective expectations, and also whether they lead to emotional reactions in 

subjective, expressive, and physiological response components. In order to maintain a naturalistic

research paradigm, we conducted the experiment in a live concert setting, using an audience 

response system developed in-house that measured participants’ reactions in real-time. 

Advancing the theory on the underlying mechanisms of musical expectation, we furthermore 

used a computational machine-learning algorithm to analyze the music presented and predict 

human expectations and emotions. 

Musical expectations

As early as the 1950s, Leonard B. Meyer (1956, 1957) began to theorize about the 

relationships between musical structures and listener’s expectations (which may be confirmed or 

violated). Emphasizing the role of cultural learning through exposure to syntactical properties of 

music, he engendered a great deal of scholarship and empirical research, describing and testing 

which musical properties create which expectations. Reviewing this work, Huron (2006) suggests

that there are four different types of expectation associated with music and created by different 

auditory memory modules. Veridical expectations are derived from episodic memory and contain

knowledge of the progression of a specific piece. Schematic expectations arise from being 

exposed to certain musical styles and contain information about general event patterns of 

different musical styles and music in general (based on semantic memory). Dynamic expectations

are built up through knowledge stored in short-term memory about a specific piece that one is 

currently listening to and are updated in real time through listening. Finally, Huron also describes

conscious expectations that contain listeners’ explicit thoughts about how the music will sound. 

4



PROBABILISTIC MODELS OF EXPECTATION 

Expectations brought up by melodic, harmonic, and rhythmic features have been studied 

and researched extensively. However, because it remains difficult to experimentally differentiate 

between the different forms of expectation (Huron, 2006), research has focused mostly on the 

role of different musical features in evoking expectations. Rhythmic periodicities of music have 

been shown to create preattentive hierarchical expectations of beat and meter in listeners 

(Ladinig, Honing, Háden & Winkler, 2009), which have psychophysiological correlates in high-

frequency gamma-band activity in the auditory cortex (Zanto, Snyder & Large, 2006). Harmonic 

expectations have been investigated by comparing responses to chords varying in harmonic 

relatedness to the context, with more distantly related chords (assumed to be less expected) 

leading to longer reaction times in priming tasks (Bharucha & Stoeckig, 1986, with chord 

distance quantified by the number of shared parent keys), delayed and lower 

completion/expectation ratings (Bigand & Pineau, 1997; Schmuckler & Bolz, 1994), and several 

specific event-related brain potentials, like the P300 (Carrion & Bly, 2008; Janata, 1995). 

Concerning melodic expectations, several theoretical models making expectation-related 

predictions have been suggested (Larson, 2004; Margulis, 2005; Ockelford, 2006) with partial 

empirical support. Music theorist Eugene Narmour (1990, 1992) was among the most popular, 

proposing several melodic principles in his implication-realization theory, which are intended to 

describe the expected melodic continuation of implicative intervals. Some of those principles, 

such as the principle of pitch proximity, have been confirmed in experimental testing (Cuddy & 

Lunney, 1995; Schellenberg, 1996, Thompson & Stainton, 1998). Unlike Meyer (1956), Narmour

conceived some of his melodic organization principles as universal, innate and bottom-up 

processes, similar to Gestalt principles of perception. However, recent theories of auditory 

statistical learning, also supported by evidence reported by Huron (2006) and Pearce and Wiggins

(2006), propose that melodic expectations do not rely on underlying patterns of universal bottom-
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up principles, but have merely been formed through exposure to syntactic relationships within 

musical structures of a given culture (Abdallah, & Plumbley, 2009; Pearce & Wiggins, 2006). 

Furthermore, computational simulations of this learning process have yielded robust 

predictions of perceptual expectations, outperforming other rule-based models like Narmour's 

(1990, 1992). For that reason, our experiment uses a computational model of auditory expectation

to specify precise, quantitative measures of structural predictability for each note in a melody 

(The Information Dynamics Of Music model, IDyOM). The model itself has been presented 

(Pearce 2005; Pearce & Wiggins, 2004; Pearce, Conklin and Wiggins, 2005) and evaluated 

(Pearce, 2005; Pearce & Wiggins, 2006; Pearce, Ruiz, Kapasi, Wiggins & Bhattacharya, 2010) 

elsewhere, so here we just provide a brief overview. 

The central feature of the model is that it learns about sequential dependencies between 

notes in an unsupervised manner through exposure to melodies. At any given point in processing 

a melody, the model generates a probability distribution governing some property of the next note

(e.g., its pitch or onset time). This probability distribution reflects the prior experience of the 

model and represents its expectations about the next note in the melody. The learning and 

generation of probabilities is achieved using a Markov or n-gram model (Manning & Schütze, 

1999), which computes the conditional probability of a note given the n – 1 preceding notes in 

the melody. The quantity n – 1 is called the order of the model. In IDyOM, basic Markov 

modeling is extended in three ways. 

First, the model is of variable order, incorporating an interpolated smoothing strategy to 

combine probabilities from models of different order. This allows the system to benefit both from

the structural specificity of longer (but relatively rare) contexts and the statistical power of more 

frequent (but less specific) low-order contexts. Second, the model is configured with two 

subcomponents: a Long-Term Model (LTM) which is exposed to an entire corpus (modeling 
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learning based on a listener’s long-term exposure to music) and a Short-Term Model (STM), 

which is exposed only to the current musical material (modeling local learning of the structure 

and statistics in the current listening episode). The full model (BOTH) generates probability 

distributions by combining those generated by the LTM and STM. 

Third, the system has the ability to use a combination of different features, or viewpoints, 

to predict the properties of notes. We do not use this aspect of the system in the present research, 

but refer the interested reader to the literature on multiple viewpoint systems (Conklin & Witten, 

1995; Pearce, Conklin & Wiggins, 2005). 

The use of this system as a cognitive model of auditory expectation is motivated by 

empirical evidence of implicit learning of statistical regularities in musical melody and other 

sequences of pitched events (Saffran, Johnson, Aslin, & Newport, 1999, Oram & Cuddy, 1995). 

Consistent with an approach based on statistical learning, melodic pitch expectations vary 

between musical styles (Krumhansl et al., 2000) and cultures (Eerola, 2004, Carlsen, 1981, 

Castellano et al., 1984, Kessler et al., 1984, Krumhansl et al., 1999), throughout development 

(Schellenberg et al., 2002) and across degrees of musical training and familiarity (Pearce et al., 

2010, Krumhansl et al., 2000). The use of long- and short-term models is motivated by evidence 

that pitch expectations are informed both by long-term exposure to music (Krumhansl, 1990) and

by the encoding of regularities in the immediate context (Oram & Cuddy, 1995). Tillmann and 

colleagues have shown that target chords are processed more accurately and quickly when they 

are related both to the local and the global harmonic context (previous chord and prior context of 

six chords, respectively; Tillmann, Bigand & Pineau, 1998) and that these effects can be 

explained by a mechanism of implicit statistical learning of sequential harmonic patterns in music

(Tillmann, Bharucha & Bigand, 2000).
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With regard to melodic expectation, the model summarized above has been tested by 

comparing its pitch expectations with those of human listeners (Pearce & Wiggins, 2006; Pearce 

et al., 2010; Omigie et al., 2012). In a series of reanalyses of existing behavioral data (Cuddy & 

Lunney, 1995; Manzara, Witten & James, 1992; Schellenberg, 1997), it was shown that this 

model predicts listener’s expectations better than existing models of melodic expectation based 

on innate principles (Narmour, 1990; Schellenberg, 1997). Using a novel visual cueing paradigm 

for eliciting auditory expectations without pausing playback, Pearce et al., (2010) confirmed that 

the model predicts listeners’ expectations in melodies without explicit rhythmic structure.  

Music and emotion

Here, the term emotion is used in the sense of the component process model presented by 

Scherer (2004, 2005). According to this model, an emotion episode consists of coordinated 

changes in three major reaction components: (a) physiological arousal, (b) motor expression, and 

(c) subjective feelings. There are two major theoretical positions concerning emotional effects of 

music. The Cognitivist position states that music is only capable of representing emotion, and not

of inducing emotions similar to those occurring in everyday life with synchronized reaction 

components and object-focus (e.g., being angry about something that presents an obstacle to 

reaching one’s personal goals; Kivy, 1990; Konečni, 2008). According to the Emotivist view, 

music does indeed induce emotions similar to those induced by other events in everyday life, 

often demonstrated by citing the research that shows emotional reactions in all components 

(Juslin & Västfjall, 2008). For example, Lundqvist, Carlsson, Hilmersson, and Juslin (2008) 

showed that music induced feelings of happiness or sadness were associated with activations of 

the autonomic nervous system (measured through skin conductance) and activations of 

expressive facial muscles. In addition, Grewe, Kopiez, and Altenmüller (2009) showed that 
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strong emotional responses to music like the chill response (experience of shivers or goose 

bumps) have been accompanied by increases in felt emotional intensity, skin conductance, and 

heart rate (HR). Finally, it has also been shown recently that those strong music-induced 

emotions are manifested neurochemically by dopamine release in the reward system in the human

brain, in a similar manner to other pleasurable stimulations like food intake, sex, or drugs 

(Salimpoor, Benovoy, Larcher, Dagher, & Zatorre, 2011). However, cognitivists often argue that 

all this empirical evidence does not demonstrate that the music itself stimulated these emotional 

responses, because external emotional objects might also have been associated with the music, 

making it appear to induce emotion (Konečni, 2008). In order to prove that music is able to 

induce emotions on its own, one would have to show that musical structures by themselves 

generate emotional responses in listeners without external reference (Cochrane, 2010). 

Linking expectation and emotion

Musical expectation is a good candidate for demonstrating this emotional induction by the

music itself without the help of any external association. Huron (2006) proposed the ITPRA 

theory of expectation giving a detailed account of five different response types (grouped into two 

pre- and three post-event responses). The imagination response (I) accounts for emotional 

reactions to imaginative processes before the occurrence of a musical event. The tension response

(T) functions as physiological preparation for an anticipated event by adjusting the needed 

arousal. After this musical event has occurred, the prediction (P) and reaction (R) responses 

happen simultaneously. Here, the accuracy of the prediction is rewarded or punished (prediction 

response) and the pleasantness of the outcome itself is evaluated in a fast and less accurate way 

(reaction response) and in a slower and more elaborated way leading to the appraisal response 

(A). Thus, there are several affective phenomena associated with expectation, that are more or 
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less related to everyday emotions. Imagination responses may be very subtle and difficult to 

separate in measurement from responses to the event itself. Tension responses to music have been

researched widely (Krumhansl, 1996, 2002) and are likely to lack a coordinated event-related 

onset. The three post-event responses described by Huron are more likely to create reactions that 

are synchronized across emotional components and measurable in an experimental research 

design. These responses might create surprise (potentially leading to strong emotions like chills), 

pleasure from making correct predictions or appraising false predictions as not harmful, and also 

displeasure from making wrong predictions (Huron, 2006). However, expectation might also 

influence musical experience in another way. It may be necessary to differentiate event-related 

emotions from the perceptual qualities that arise from statistical properties of musical structures 

like the scale degree qualia in tonality or rhythm that, according to Huron, produce feelings of 

closure, tendency, and pleasure. Those qualities may be different from emotions, at least as we 

have defined them, in being undetectable consciously (Margulis & Levine, 2006) and too weak to

measure in a real-time listening context. 

Some of the first empirical evidence for a link between expectation and emotion was 

presented by Sloboda (1991), who reported that musical structures like unexpected harmonies can

induce strong emotions. However, this finding must be viewed as merely suggestive, because it is

based only on retrospective reports in a survey. To our knowledge, there are only three published 

empirical studies explicitly linking musical expectation to emotional responses (Koelsch, Fritz, &

Schlaug, 2008; Koelsch, Kilches, Steinbeis and Schelinski, 2008; Steinbeis, Koelsch, & Sloboda, 

2006). Steinbeis et al. (2006) and Koelsch, Kilches et al. (2008) showed that harmonies that 

contravene the principles of Western tonal harmony (presumably violating listeners’ 

expectations) lead to increases in retrospective emotion ratings and continuous tension ratings, 

with corresponding increases in skin conductance but no correlated changes in continuous 
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emotion rating and heart rate. Employing a similar research paradigm, Koelsch, Fritz et al. (2008)

further demonstrated that irregular chord sequences ending on a Neapolitan sixth chord instead of

the tonic chord, thus being presumably less expected, lead to bilateral activations of the amygdala

(associated with negative emotional processing) and are also rated as being less pleasant. 

However, both of these studies are limited in their external validity, because only the effects of 

listening to intensively repeated and artificially recomposed chord progression endings were 

measured, and participants provided no ratings of subjective expectation. 

Aims of the study

While the idea that expectation confirmation and violation in musical listening can induce

affective responses has a venerable history (e.g., Meyer, 1956), quantitative empirical evidence 

for this impact has not yet been established. We aim to provide such evidence using both a 

computational model of auditory expectation (Pearce, 2005) and subjective ratings to quantify the

expectedness of events in a live performance of solo flute music, and relate these measures 

quantitatively to the psychophysiological emotional state of the audience. 

In doing so, we address the identified limitations of previous work by using real, naturally

performed compositions and by gathering subjective unexpectedness ratings during listening. In 

order to increase ecological validity, the study was conducted during a live concert using an 

audience response system developed by the research team. Previous research suggests that 

continuous subjective experience ratings in similar settings can be successfully employed to 

assess the emotional effects of large-scale music structures (McAdams, Vines, Vieillard, Smith, 

& Reynolds, 2004) or audience response to dance (Stevens, et al., 2009). However in the current 

study, additional assessment of physiological indicators of emotional experience was added. 

Furthermore, in contrast to previous research on expectation and emotion, we also predict 
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listeners’ expectations using a computational model that is theoretically grounded in statistical 

auditory learning (Pearce, 2005). We also focus in this study on expectations generated by 

complex melodic styles that have not previously been investigated in this context. 

We predicted that musical events with low conditional probability compared to those with

high probability would be experienced as unexpected and would at the same time induce 

emotions that are manifest as changes in the activity of all three response components measured: 

increased autonomic arousal, expressive facial muscle activity, and subjective feeling. By 

identifying highly unexpected and expected musical events using a computational model of 

auditory cognition, we ensure that we include events whose expectedness is based on implicit 

schematic memory and is therefore not available to conscious introspection (Huron, 2006). 

However, the cognitive model can only capture the effects of statistical learning and memory 

from the local musical context and global schematic musical context. It does not, for example, 

account for the effects of veridical knowledge or audio-visual performance cues on expectations. 

Therefore, in a second part of our analyses, we used the continuous unexpectedness ratings of 

participants to identify events in the entire performance that were highly unexpected and tested 

whether they were also accompanied by emotional reactions. 

Method

Participants

Participants were recruited via several email lists. They were screened with the help of an 

online questionnaire before taking part to ensure that they had some familiarity with and 

preference for classical music, had normal hearing, would show willingness to be filmed, and 

were willing to wear no makeup and to shave (due to facial electrode placement for females and 

males, respectively). Fifty participants were selected (21 female), with an average age of 23 years
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(SD = 6 years). With the exception of two non-musicians, all were recruited as amateur (n=32) or

professional musicians (including university music students, n=16). We made this decision 

because in general musicians were assumed to be more practiced at listening to music 

analytically and thus were presumably better at the continuous unexpectedness rating task. They 

have also been previously shown to react more emotionally to music than non-musicians (Grewe,

Kopiez, Altenmüller, 2009; Grewe, Nagel, Kopiez, Altenmüller, 2007), increasing the probability

of finding expectation-induced emotional responses. Participants were randomly assigned to two 

different continuous rating tasks. One half continuously rated their subjective feelings listening to

the music; and the other continuously rated the unexpectedness of the musical events presented. 

All were paid 10 Canadian Dollars as compensation. 

Stimuli description and analyses

The music was selected to represent different musical styles, chosen from the performing 

musician’s current repertoire. Table 1 presents all six pieces used in this concert. First, two 

recorded flute pieces were presented to participants to familiarize them with the continuous rating

task. Subsequently, a highly recommended flute performance student played the other four pieces

live on stage. 

-insert Table 1 about here-

The computational model used to analyze this music was set up as follows. Based on the 

composed MIDI representation of the music, the pitch of each note in the six pieces was 

predicted using a variable-order context and a simple pitch viewpoint (i.e., no derived viewpoints 

such as pitch interval, contour or scale degree were used in predicting pitch, cf. Pearce, Conklin 

& Wiggins, 2005). The model was configured using a combination of the long-term and short-

term models (i.e., a BOTH configuration; see description above). The long-term model is 
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intended to reflect the schematic effects of long-term exposure to music on expectations, whereas

the short-term model is intended to reflect the effects of online learning of repeated structures 

within each individual composition. The long-term model was trained on a corpus of 903 

melodies from Western folk songs and hymns as used by Pearce & Wiggins (2006); therefore, the

expectations encoded by the long-term model are for tonal music.

For each note in each melody, the model returns an estimate of the conditional probability

of the note's pitch given the pitches appearing previously in the melody. These probabilities are 

converted into Information Content (IC), the negative logarithm to the base 2 of the probability, 

which is a lower bound on the number of bits required to encode an event in context (Mackay, 

2003). The IC represents the model's estimate of how unexpected the pitch of each note is. Thus, 

for every piece, a time-series of one IC value per note was generated and used for further 

analysis. 

Measurements

All participants were equipped with an iPod Touch (Apple Inc., Cupertino, CA, 

USA) that was fixed on the thigh of the dominant leg (assessed by self-reported 

handedness) with the help of a Velcro strip. Both groups of participants were asked to 

keep their finger on the iPod surface during the presentation of each complete piece.

Continuous rating of emotion.  For one half of the participants, the iPod displayed 

an emotion space, based on the two-dimensional emotion model with vertical arousal and 

horizontal valence dimensions (Russell, 1980). The heuristic value of the two-dimensional

emotion space has been confirmed in numerous previous studies measuring emotional 

expressions and inductions through music (e.g., Egermann, Nagel, Altenmüller, & 

Kopiez, 2009b; Egermann, Grewe, Kopiez, & Altenmüller, 2009a; Nagel, Kopiez, Grewe,
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& Altenmüller, 2007; Schubert, 1999) and, as a consequence, was also adopted in the 

present study in order to capture participants’ emotional responses. By moving the index 

finger of their dominant hand from left to right participants were instructed to indicate 

how pleasant the effect of the music was (left = negative and unpleasant; right = positive 

and pleasant). We followed Russell’s original definition of valence as “pleasantness of the

induced feeling”, instead of the also commonly used “emotion valence”, where 

participants have to rate the valence of this emotion as it would occur in everyday life 

(Colombetti, 2005). By moving their finger from top to bottom participants indicated the 

degree of their emotional arousal while listening to the music (top = excited; bottom = 

calm). Participants were instructed to rate their current emotional state on both dimensions

simultaneously with the finger position at each moment reflecting their emotional 

response to the piece, as they were listening. They were also asked not to rate emotions 

recognized, but only their own emotional response. In order to help participants to scale 

their ratings, the extremes of the rating scales were defined to represent the extremes of 

participants’ emotional reactions to music in general in everyday life. 

Continuous rating of unexpectedness. For the other half of the participants, the iPod 

displayed a one-dimensional vertical unexpectedness rating scale, that was developed in a 

internal pretest (n = 9) comparing four different interface designs that could be used to 

continuously capture expectation: a) continuous assessment of the fit of the current musical event

to previous context (similar to Krumhansl, et al., 2000), b) feeling of surprise (Huron, 2006), c) 

continuous rating of unexpectedness of musical events (Pearce, et al., 2010), and d) button 

presses indicating unexpected musical events. Interface c) was finally chosen for the concert 

experiment based on participants’ evaluations concerning ease of use and comprehensibility of 

instructions. In the concert experiment, participants were instructed to rate continuously with 
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their index finger during the music presentation the unexpectedness of the musical events. Both 

rating interfaces and instructions employed are presented in Appendix A.  

Psychophysiological measurements. Physiological measurements were recorded through 

50 ProComp In�niti (Thought Technology Ltd, Montreal, Canada) units that were taped to the 

back of the participants’ seats. Each ProComp In�niti was connected with four others via an 

optical cable and an optical-to-USB converter to a functionally expanded Asus router. This 

device converted incoming signals into TCP/IP packets that were sent via network cables to 

several switches that were all connected to one Mac Pro workstation (Apple Inc., Cupertino, CA, 

USA). Here, a custom program received all data packets and stored them on an internal hard disk.

Respiration was measured using a belt with a stretch sensor attached around the chest. Blood 

volume pulse (BVP) was measured using a photoplethysmograph on the palmar side of the distal 

phalange of the middle �nger of the non-dominant hand. Skin conductance was measured using 

electrodes on the distal phalanges of the index and middle finger of the non-dominant hand. 

Expressive muscle activations were measured using two electromyography (EMG) electrodes 

(MyoScan-Pro surface EMG sensors) placed on the corrugator supercilii (associated with 

frowning) and zygomaticus major (associated with smiling) muscles (Cacioppo, Petty, Losch, & 

Kim, 1986). EMG electrodes were placed on the side of the face contralateral to the dominant 

hand (with positive and negative electrodes aligned with the respective muscles and the reference

electrodes placed on the cheek bone/forehead). 

Questionnaires. Participants completed questionnaires on a clipboard after every piece, 

including a question about their familiarity with the piece (rated on a 7-point scale from 1 = 

unfamiliar to 7 = familiar). At the end of the concert, participants also filled in a general 

questionnaire including background variables about socio-demographic characteristics, musical 

training, and music preferences. 
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Audiovisual recordings and analyses. Three different HD video cameras (Sony XDCAM)

recorded the entire experiment with synchronized timecode. One faced the performer, and the 

other two each faced a different half of the audience in order to be able to monitor participants 

behavior during the experiment. Two pairs of microphones attached to two of the three cameras 

recorded the music performed: one about 2 meters away from the flute performer (DPA 4011), 

and the other one binaurally using a dummy head placed in the middle of the concert hall 

(Neumann KU100 Kunstkopf). The signal recorded with the DPA 4011 microphones was also 

recorded in a low sample-rate version on the computer together with the physiological signals in 

order to synchronize behavioral and physiological data with the audio recording, using 

corresponding time codes and visual identification of the time lag between the two types of 

recordings. The audio signal from the two DPA 4011 microphones was also recorded in high 

quality on a MacBook Pro with an external sound card; this high-quality recording was then used 

to detect the onset times of the notes played during the concert. In this way, all MIDI versions 

created from the composed score were visually overlaid on the peak pitch display of all six audio 

recordings using Sonic Visualizer (Cannam, Landone, & Sandler, 2010). Subsequently, MIDI 

note events were manually aligned with the performed notes creating a MIDI reproduction of the 

performance, used to align analyses of event-related responses of participants. 

Procedure

The experiment was conducted in Tanna Schulich Recital Hall at McGill University 

starting at 7:00 PM. Participants were asked to come in one hour earlier to allow enough time for 

seating and sensor placement. At the entrance, they were handed written instructions with 

questionnaires and the respiration belt. They were shown how to fix it on their own and handed 

skin cleaning tissues to clean their face and finger tips. Subsequently, they were assigned a seat 
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number in the first 8 rows of seats (alternating empty rows with seated rows to allow access to 

participants). The two different rating groups were placed on alternate seats (seat 1 = emotion 

rating, seat 2 = unexpectedness rating, seat 3 = emotion rating, …) in order to reduce visibility of 

the subjective response interface between members of the same group. After sitting down, 

participants read written instructions and provided their informed consent. Then a team of 10 

assistants attached the electrodes and visually tested sensor placement on the recording 

computer’s live display of incoming signals. Afterwards, the experimenter gave a talk repeating 

every detail of the written instructions (approx. 10 minutes long), allowing participants to ask 

questions about the procedure and instructions. Subsequently, the six pieces of music were 

presented to participants in the following manner. Before every piece, we recorded 45 s of 

physiological baseline activity without any stimulation (for live performed pieces without 

performer on stage). Then, the music was presented, and after each piece, participants filled out 

the associated form. Finally, participants filled in the final form, were detached from the sensor 

cables, returned their iPods, and received their compensation. During baseline recording and 

stimulus presentation, participants were instructed not to move, so as to reduce movement 

artifacts in physiological recordings. 

Data analyses

 Physiology. Preprocessing of all continuous signals recorded with a sample rate of 256 

Hz was done in Matlab (Mathworks, Version 7.14.0.739). Due to technical malfunction, 

physiological recordings from two participants could not be used. Visual inspection of all other 

recordings revealed that there were no other significant measurement errors. However, due to 

some scattered sample loss in transmission to the recording Mac Pro workstation (in the range of 

12 to 72 dropped samples), all signals were linearly interpolated at the original sample rate first. 
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This posed no problems to the analyses, as all physiological signals recorded here are known to 

change on a much longer timescale.  Subsequently, BVP (low pass 2 Hz), respiration activity 

(low pass 1 Hz), and skin conductance (low pass .3 Hz) were filtered in order to remove 

extraneous information using a linear phase filter based on the convolution of a 4
th
-order 

Butterworth filter impulse response (also convolved with itself in reverse time in order to avoid 

phase shifting). Creating a measure for skin conductance response (SCR), the phasic component 

of the skin conductance signal (Boucsein, 2001), we performed linear detrending on the 

corresponding recording, also in order to remove any negative trends over time with breakpoints 

every 60 s (that are caused by an accumulation of charge over time between the skin and sensor, 

see Salimpor, et al., 2009). We extracted continuously interpolated HR and respiration rate 

(RespR) in beats per minute (BPM) from the BVP and respiration signals by inversing the inter-

beat period (detected by identifying adjacent minima). The MyoScan-Pro EMG sensors 

automatically converted their signal to a root mean square (RMS) signal (after an internal analog 

rectification), which was therefore not preprocessed any further (capturing EMG activity at 

frequencies up to 500 Hz). By subtracting from the filtered and extracted signals the mean 

baseline activity in the silent 40 s preceding each stimulus presentation, we finally removed any 

linear trends over the course of the concert and individual differences in baseline physiological 

activity (baseline normalization). 

Continuous iPod ratings. Due to technical malfunctioning, data were missing for one iPod

emotional rating. As only rating changes and their corresponding time points were recorded as 

iPod data, we first programmed a stepwise interpolation function to sample participants’ ratings 

at a rate of 256 Hz. We subsequently checked that all participants provided changing ratings for 

all pieces. This analysis indicated that one participant failed to use the rating device during piece 

6, leading to the removal of the corresponding data. We then removed any individual differences 
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in scale use by individual range normalization (dividing each participant’s rating by their 

individual range of ratings over the entire concert and then subtracting each participant’s 

resulting minimum rating value over the entire concert, creating a range for each participant from

0 to 1). 

Event-related statistical response analyses. In order to test for significant event-related 

changes in all continuous responses, we employed a novel linear mixed-effects modeling (LMM) 

approach (West, Welch, & Galecki, 2007), similar to a conventional linear regression analysis, 

that allowed estimation of significant coefficients of predictors controlling for random sources of 

variance and non-independent observations in the dataset (autocorrelation). Furthermore, this 

procedure also allowed for significance tests with high statistical power, as the event-related 

response data were not averaged over conditions per participant. We included crossed random 

effects for participants and two items (unexpected events within music pieces), in a way 

suggested by Baayen, Davidson, and Bates (2008). Equation 1 illustrates the general model 

formulation by these authors (with random effects for participants and one item): 

yij = Xijβ + Sisi + Wjwj + εij (1)

where, yij denotes the responses of subject i to item j. Xij is the experimental design matrix, 

consisting of an initial column of ones (representing the intercept) and followed by columns 

representing factor contrasts and covariates. This matrix is multiplied by the population 

coefficients vector β. The terms Sisi and Wjwj help to make the model’s predictions more accurate

for the subjects and items (pieces of music and nested events) used in the experiment. The Si 

matrix (the random effects structure for subject) is a full copy of the Xij matrix. It is multiplied 

with a vector specifying the adjustments required for subject i. The Wj matrix represents the 

random effect for item j and is again a copy of the design matrix Xij. The vector wj contains 

adjustments made to the population intercept for each item j. The last term is a vector of residual 
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errors εij, including one error for each combination of subject and item. As suggested by Baayen 

et al. (2008), all analyses were conducted using the software R (2.13) using the lmer function 

from the lme4 package (Bates, Maechler, & Bolker, 2011). Estimation of parameters was based 

on Restricted Maximum Likelihood (REML) and likelihood ratio tests were used to test 

significance of random effects. Significance of fixed predictors was tested using the pamer.fnc 

function (Tremblay, 2011), which outputs upper- and lower-bound p-values based on ANOVAs 

with upper and lower numbers of degrees of freedom (due to the addition of random effects to the

linear model, Baayen et al. 2008). However, due to the large sample size investigated in this 

study, p-values obtained with both degrees of freedom were never computationally different and 

only one will be reported. 

Results

Evaluation of method

As the method of conducting a live concert experiment with psychophysiological 

recordings is new and may lack some control over the experimental setting, we asked participants

to evaluate the experiment along several dimensions concerning their experience of the 

experimental setting (Table 2). Participants rated their own degree of interaction with each other 

and distraction by others to be very low. This rating was also validated through inspection of the 

video recordings of participants. No one had to be excluded for not following the instructions. 

They also indicated on average that they felt quite comfortable in the listening situation and that 

they had not been influenced by the presence of other people in the concert. Finally, they reported

that continuous iPod ratings probably did not influence their experience negatively (group mean 

was slightly lower than the middle of the rating scale), and the rating device was rather intuitive 

(group mean was higher than the middle of the rating scale). Interference of sensors with 
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listening was also rated to be low on average. There were no significant differences on any of 

those rating scales between the two groups with different continuous rating tasks (emotion vs. 

unexpectedness rating). In summary, both groups understood their rating tasks reasonably well 

and indicated that their reported results were not influenced much by the experimental aspect of 

the musical setting. 

-insert Table 2 about here-

The following section, testing the proposed hypotheses, is structured in the following 

stages. First, we identify musical events corresponding to outstanding peaks of IC and subjective 

expectation across the entire concert. Then we test whether IC at these peak events predicts 

changes in unexpectedness ratings. Next, we test whether those segments identified as IC and 

subjective unexpectedness peaks also predict changes in psychophysiological response measures 

of emotion.

Identifying unexpected and expected moments

In order to identify very unexpected or very expected events in the music, the single note 

events presented to participants were grouped into short segments to ensure that the epochs 

selected for our subsequent analyses would be long enough to elicit a response in participants. 

Therefore, a trained music theorist carried out a motivic analysis on all six music pieces 

identifying coherent melodic units segmented at a level of about 1-2 measures per unit. She 

identified 193 segments that were on average 3.7 s (SD = 2.5 s) long. These segmentations were 

compared with the independent analyses of a second music theorist and showed a high similarity.

We then calculated, for each segment, the mean IC of all notes within that segment and the mean 

of the unexpectedness ratings. In order to identify very unexpected moments in corresponding 

individual ratings, we first differentiated them (using the diff function in Matlab) and then 
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averaged across the entire group of raters (indicating segments with high increases or high 

decreases in corresponding ratings). Figure 1 illustrates the results of this segmentation for the 

third piece presented (Density 21.5 by Edgar Varese). The first row presents the IC of each note, 

and the second row contains the corresponding averaged IC per segment. Rows three and four 

present participants’ unexpectedness ratings (third row: group mean, fourth row: mean of rating 

change per segment). High rating values correspond to the experience of unexpected events, 

whereas low values correspond to expected events. 

-insert Figure 1 about here-

Subsequently, we identified peak segments in both the averaged IC and unexpectedness 

rating time series by computing percentages of corresponding distributions across the entire 

concert. We excluded segments that were too close to the beginning or the end of pieces to 

extract event-related response time windows (see below), leaving 183 segments in the dataset. As

participants already showed consensual responses in continuous ratings in the first two practice 

pieces, we also decided to include those two in these analyses. Figure 2 presents the distributions 

of all segments for mean IC and mean unexpectedness ratings for all six pieces. Segments with 

corresponding values higher than the 90
th
 percentile of their distribution were classified as high 

IC peaks (n=18)/very unexpected moments (n=19). Segments with values lower than the 10
th
 

percentile of their distribution were classified as low IC troughs (n=19)/very expected moments 

(n=18). The dashed lines in Figure 2 illustrate the corresponding percentile thresholds. Table 3 

presents a cross-tabulation of the resulting two segment variables, coding each segment as a peak,

a trough or not used for both IC and unexpectedness ratings. Several segments were identified as 

peaks or troughs in both the IC and the unexpectedness ratings. Pearson’s chi-squared test 

identified that at this level of analysis there was a significant association between IC event type 

and unexpectedness rating event type, 
(4) = 27.2, p <.001. Table 4 presents a cross-tabulation 
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of the resulting segment variables and piece. Peak and trough segments identified by 

unexpectedness ratings were evenly distributed across the six pieces of music. However, peak 

and trough segments identified by IC were not as equally distributed: half of the high IC 

segments came from the third piece (Density 21.5).  

-insert Table 3 about here-

-insert Table 4 about here-

-insert Figure 2 about here-

Figure 1 also includes labels identifying peak IC and subjective expectation segments. For

example, segment (a) was only identified as a high IC peak, whereas segments (d) and (e) were 

identified as peaks on both analyses (see also corresponding score excerpts). Segments (b) and (c)

were identified in the continuous unexpectedness ratings as very expected, presumably because 

they included repetitions of one of the main motives (sharing a similar rhythmic and pitch 

structure on the first three notes). This example piece contained no segments that were identified 

as a low IC trough. 

Testing for IC event-related changes in unexpectedness ratings

Subsequently, we tested whether the onset of the previously identified high IC peaks or 

low IC troughs led to a change in continuous unexpectedness ratings, employing the previously 

described LMM approach using only a subset of response data including the identified peak and 

trough segments. Therefore, we extracted all participants’ individual mean unexpectedness rating 

for seven 1-s windows starting 1 s before the onset of the IC peak segments tested. This window 

size was chosen because previous research had shown that button-press response times to 

unexpected notes are about 2-3 s (Pearce, et al., 2010), so a 6-s-long post-event time window was

24



PROBABILISTIC MODELS OF EXPECTATION 

assumed to be long enough to capture participants’ event-related continuous rating changes. The 

estimated model followed equation (2)

response = b0 + b1 × time + b2 × event type + b3 × time × event type + random effects (2)

Predictors were time, with values from 1 to 7, representing 1 s before the onset of the 

segments tested to 6 s after that segment onset and Event type, a dummy variable coding high IC 

events (with 1) or low IC events (with 0). The models furthermore included an intercept, an 

interaction term for both main effects, and several random effects, modeling the random 

correlation in the dataset (random intercepts and slopes for each participant). Figure 3 presents 

group averaged unexpectedness ratings as a function of time, separated by the two predictor 

variables (n = 6,475). As can be seen, in addition to a main effect of event type (in general ratings

for high IC segments were higher than ratings for low IC segments), the onset of the high IC 

event led to an increase in unexpectedness ratings compared to the low IC event peaks. LMM 

fixed-effects coefficients were estimated as: b0 =.40 (intercept), b1= –.0013 (time), b2 = .0096 

(event type), and b3 = .0093 (time×event type interaction). The significance of predictors was 

subsequently tested with F-tests, indicating that b1 and b3 were significantly different from zero, 

b1: F(1, [6328-6471])=8.70, p =.003; b2: F(1, [6328-6471])=2.07, p =.15; b3: F(1, [6328-

6471])=19.87, p <.001, where the numbers in square brackets represent the range of degrees of 

freedom due to the addition of random effects to the model. Significant random effects were 

included as random intercepts for each participant, peak segment, and piece, as well as random 

slopes for all fixed effects within participants (based on chi-squared likelihood-ratio tests). As we

were only interested in event-related changes in these analyses, we will not interpret any main 

effect of event type, because these might be due to the context of the peak segments investigated 

and not to responses caused by their onset. In summary therefore, as expected, the onset of any 

IC peak was modeled as leading to a slight decrease in unexpectedness ratings (as reflected in the
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negative b1 coefficient and possibly the onset of low IC troughs), and for high IC peaks (>90
th
 

percentile) there was a significant increase (due to the significant interaction term b3 between 

time and event type).

-insert Figure 3 about here-

Testing emotional effects of high IC peak vs. low IC trough segments 

Following this LMM specification, we subsequently ran several similar analyses, testing 

for significant change in affective psychophysiological response measures after the onset of those

previously identified IC peak moments. Response variables were all continuously recorded 

measures of emotion: arousal ratings, valence ratings, SCR, HR, RespR, and EMG from the 

corrugator and zygomaticus muscles. Predictors were again time (seven levels from 1 s before to 

6 s after onset) and event type (a dummy variable: high IC peak =1, low IC trough = 0). The 

models furthermore included an intercept, an interaction term for both main effects, and several 

random effects, modeling the random correlation in the dataset (random intercepts for 

participants, peak segments, and pieces, plus random slopes for all predictors within participants).

As can be seen in Figure 4 (upper row), there was an event-related change in subjective 

feelings after the onset of those IC peak moments. Arousal ratings significantly increased and 

valence ratings significantly decreased for high IC peak segments compared to low IC trough 

segments (indicated by corresponding significant interaction terms between time and event type 

in the LLM results, Table 5, upper row). Although there were event-related changes in recordings

of expressive facial movements (Figure 4, lower row), LLM estimates show that for both EMG 

measures (corrugator and zygomaticus activity) no predictors were estimated as significant 

(Table 5, lower row).

-insert Table 5 about here-
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-insert Figure 4 about here-

Measures of autonomous nervous system (ANS) activity did show event-related changes 

corresponding to the onset of high and low IC segments (Figure 5). In contrast to low IC events, 

high IC events were accompanied by increases in SCR and a decrease in HR. For SCR, there was

only a significant interaction term (Table 6, upper row). For HR, both event types showed a 

significant event-related decrease (Table 6). However, if only seconds 1 to 4 were evaluated, a 

significant negative interaction coefficient was found, indicating a difference in responding to 

high compared to low IC events. The initial decrease associated with high IC peaks was stronger. 

Although RespR appeared to increase after both event types (Figure 5), the corresponding 

predictors were not significant in LMM (Table 6). 

-insert Table 6 about here-

-insert Figure 5 about here-

Testing emotional effects of unexpected peak vs. expected trough segments 

We subsequently ran several LMM analyses, testing for significant change in emotional 

response measures after the onset of the previously identified peak moments in listeners’ 

continuous unexpectedness ratings. The response variables were again all continuously recorded 

psychophysiological measures presumed to be related to affective response. Predictors were 

again time, event type, and their interaction. Event type was a dummy variable coding very 

unexpected events (1) and very expected events (0). The models furthermore included intercepts 

and the same random effects used above, modeling the random correlation in the dataset. 

As can be seen in Figure 6 (upper row), there was an event-related increase in arousal 

ratings after the onset of those unexpected peak segments and a decrease in arousal after very 

expected events. This observation was also supported by a corresponding significant negative 
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effect of time and a significant positive interaction term between time and unexpected events 

(Table 7, upper row). No event-related changes in valence and EMG activity were significant 

here (Table 7, lower row). 

-insert Table 7 about here-

-insert Figure 6 about here-

Similar to peak events identified with IC analyses, markers of ANS activity also showed a

significant event-related change corresponding to the onset of very unexpected and very expected

peak moments. For both types of segments, an increase of skin conductance is indicated in Figure

7 (upper row). In the LMM, a main effect of time was significant, but not the interaction with 

event type (Table 8, upper row). HR also decreased after the onset of very unexpected segments 

(Figure 7, upper row), and the corresponding interaction between time and event type was 

significant (Table 8, upper row). Finally, for RespR a significant decrease was observed for 

expected events (indicted by a significant negative main effect of time), whereas for unexpected 

events RespR increased (Figure 5, lower row). This difference between unexpected and expected 

events was illustrated by a significant positive interaction term between time and event type 

(Table 8, lower row).

-insert Table 8 about here-

-insert Figure 7 about here-

Discussion

The experiment tested three main hypotheses. First it was proposed that information-

theoretic analyses could predict whether participants perceived particular segments of the music 

presented as expected or unexpected. Second, it was predicted that, compared to low IC, high IC 

peak segments would be associated with event-related changes in measurement of the three 
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emotion components subjective feeling, peripheral arousal, and expressive behavior. Third, it was

hypothesized that similar activations would be associated with segments that were identified as 

subjectively very unexpected compared to those identified as very expected. All three hypotheses

were partially corroborated. 

Focusing on segments with extreme IC values, IC was associated with ratings of 

subjective expectation on two levels of analysis. First a cross-tabulation of segments 

corresponding with peaks in IC and unexpectedness rating showed a significant association 

between them. Second, continuous unexpectedness ratings significantly increased after the onset 

of high IC peaks and decreased after the onset of low IC troughs. Therefore, these findings 

confirm the validity of the cognitive model used to predict listeners’ expectations, replicating 

previous studies (Pearce & Wiggins, 2006; Pearce et al. 2010; Omigie et al., 2012) and 

confirming assumptions about the role of statistical learning in creating expectations. 

The second hypothesis was partially supported, in that high as opposed to low IC 

segments were associated with changes in two components of emotion. First, arousal increased 

and valence decreased for high IC segments. Second, high IC segments were also associated with

changes in peripheral arousal as indicated by increases in SCR and decreases in HR. No event-

related changes were found in RespR or EMG measures of expressive activity in corrugator and 

zygomaticus muscles. Considering the event-related psychophysiological responses together, 

their response patterns may be understood in terms of the “defense response cascade” described 

by Lang, Bradley, and Cuthbert (1997). This reaction pattern is usually induced when highly 

arousing aversive stimuli are encountered. A general increase in arousal (also indicated by an 

increase in skin conductance), is accompanied by an initial fast decrease in HR that represents a 

freezing response, functioning to allocate attention. This orienting period is then followed by an 

increase in HR that indicates increased sympathetic dominance preparing for adaptive fight or 
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flight behavior (circa-strike period). Thus, the observed emotional effects of unexpected melodic 

events may be interpreted as being mediated by this affective response mechanism. 

The third hypothesis, concerning the induction of emotional reactions by very unexpected 

segments was also partially corroborated. Here, due to the use of continuous unexpectedness 

rating changes as an identifier of peaks, we were able to compare effects of very unexpected to 

very expected moments. Unexpected events induced a psychophysiological reaction pattern that 

was very similar to those of high IC peaks with increased arousal, SCR and decreased HR. 

However, differently from high IC peaks, there was no associated effect on valence ratings, and 

RespR also significantly increased after the onset of unexpected peak moments. Furthermore, 

even for very expected segments, SCR significantly increased after the event onset. For both 

event types, very unexpected and very expected measures of EMG showed no event-related 

responses. Thus, all analyses in this study failed to show any IC- or expectation-related responses

in EMG recordings. However, other research has elicited affective event-related facial EMG 

responses to computer gaming (Ravaja, Turpeinen, Saari, Puttonen, Keltikangas-Järvinen, 2008) 

and to pictures or sounds (Bradley et al., 2005). But to our knowledge, for music, only tonic 

effects on EMG measurements have been shown to date by averaging activation measures across 

entire stimulus sequence (Lundquvist, et al. 2008). 

In summary, these results corroborate parts of the theory proposed by Huron (2006). 

Statistical properties of melodic events and moments of strong expectation or surprise created 

prediction responses that were correlated with several emotional response components. By 

identifying expectation-related events in two ways (with the help of statistical analyses and 

subjective unexpectedness ratings), we were able to show that, independently of this 

identification mode, similar psychophysiological responses were observed for segments that were

subjectively unexpected and segments that were unpredictable according to the computational 
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model of auditory expectation (Pearce, 2005). Thus, modeled expectations based on short- and 

long-term memory generate similar responses to those that are also consciously represented in 

participants’ experiences.

These findings extend those of Steinbeis et al. (2006), Koelsch, Kilches, et al. (2008) and 

Koelsch, Fritz, et al. (2008) to melodic stimuli heard in an ecologically valid concert setting with 

quantitative measures of expectedness supplied by a cognitive model (Pearce, 2005). Violations 

and confirmations of musically induced expectations were associated with affective 

psychophysiological activations in several response components. Like Steinbeis et al. (2006), we 

found general increases of physiological arousal for very unexpected moments, and at the same 

time, Koelsch et al.’s (2008) interpretation of their fMRI data, in which unexpected moments 

induce unpleasant feelings, was corroborated because high IC segments induced a decrease in 

valence ratings. (However, the effects of unexpected events, identified by subjective 

unexpectedness ratings, on valence or pleasantness were less clear, and no event-related EMG 

activations were found for IC or unexpectedness peaks.) The negatively valenced effects of high 

IC events may also depend on the stimuli used and the population investigated. Half of the high 

IC events identified here were in the piece Density 21.5, and thus the valence effects associated 

with them were more strongly associated with this piece than with the others. Different 

participants listening to different stimuli might interpret expectancy violations differently. As 

Huron (2006) notes, violations of expectations that are originally negatively valenced may be 

evaluated positively by subsequent appraisal responses potentially based on individual evaluation

criteria, thus leading to contrastive valence. 

To summarize, the findings of this study extend previous research on physiological 

responses to musical expectations in four ways: 
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First, in contrast with previous research focusing on harmonic expectations in Western 

tonal music, we focused on expectations in melody, which is arguably a more universal aspect of 

musical structure. 

Second, we quantified predictability in our stimuli using a computational model of 

auditory expectation making probabilistic predictions based on statistical learning of music 

structure (Pearce, 2005). Our analysis of the effects of expectation on psychophysiological 

measures of emotional response using this model were compared to an analysis using subjective 

measures of expectation. There was significant overlap between these two approaches because 

some events corresponded to expectation peaks in both analyses, and there was also a significant 

increase in unexpectedness ratings after the onset of high IC events. However, the measures also 

allowed us to study expectation in two different ways. We were able to test, firstly, for the effects

of the implicit statistical structure of the music presented, and, secondly, for those expectation-

related musical structures that were not captured by the computational modeling approach. 

Third, our approach allowed us to test for emotional effects of very expected moments. 

Huron’s (2006) theory of emotion and expectation describes two outcomes of the prediction 

response: one negative, penalizing incorrect predictions, and one positive, rewarding correct 

predictions. Here, for the first time, we tested whether emotional responses were induced when 

participants were able to make correct predictions. The results indicated divergent changes in 

physiological and subjective components of arousal (increase in SCR, decrease in RespR, and 

decrease in subjective arousal). 

Finally, our experiment was conducted in a concert setting using live performance of 

actual compositions. To the best of our knowledge, this study is among the first to explicitly test 

for music-induced emotions with psychophysiological measures in a live concert situation. In 

doing so, it is unique in two ways. For the first time, emotional effects of music have been 
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investigated in a experimental field setting, employing measures of several emotion components 

in parallel: subjective feelings, expressive behavior, and peripheral arousal were continuously 

monitored throughout the concert. Additionally, the study employed performances of actual 

compositions from the repertoire of Western art music spanning several styles and historical 

periods. This allows us to generalize results from laboratory environments often using artificial 

stimuli that are pale reflections of real performed music.  Conducting research in natural listening

contexts may be important, as previous research has shown that emotional responses to music are

sensitive to the presence of other people (Egermann, Sutherland, Grewe, Nagel, Kopiez, & 

Altenmüller, 2011; Lilleström, et al. 2012). As far as we know, there is only one previous 

exploratory study taking psychophysiological measures from a very limited number of 

participants (three) to investigate emotional effects of Leitmotifs from a Wagner opera performed

in Bayreuth, Germany (Veitl, Vehrs, and Sternnagel, 1993). 

 Limitations and future research suggestions

The naturalistic and ecologically valid methodological approach employed in this 

investigation also entailed several potential weaknesses that should be considered. First, 

conducting a study within a concert context lacks some control over the participants’ actual 

behavior. Although instructed not to do so, participants might have been distracted or otherwise 

influenced by interaction with peers during the study. We took measures against this possibility 

by asking them to rate their own degree of focus and monitored them visually throughout the 

concert; no participants had to be excluded based on these criteria. Another potential weakness is 

that because we used actual complex compositions, the selected segments varying in degrees of 

expectation and IC, may actually differ in other respects related to expressive performance 
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(including performer’s gestures). However, we tried to eliminate these differences by sampling 

participants’ responses over several segments of each expectation/IC condition. 

Future research might explore complementary ways of ensuring that the emotional 

responses are related specifically to expectations based on the musical structure and not any other

underlying covarying performance feature. This could be done through more controlled, 

laboratory research where the music is recomposed to systematically vary the degree of 

expectedness of the music using IC as a quantitative indicator of expectations. One could also 

remove any features associated with the music performance (tempo, dynamics, or timbre), and 

test if findings comparing the different event types are replicable. Computational modeling could 

also be improved, as only a limited number of viewpoints representing the music were employed 

in this study. In future research, it would be interesting to investigate the effects of derived 

features such as scale-degree or timing information on the quantitative modeling of expectation-

related emotional responses.

In this study, analyses were based on a segmentation provided by two music theorists. In 

future research, segmentation might be also based on the IC content itself, as phrase boundaries 

have been shown to be perceived before notes with very high IC (Pearce, Müllensiefen, Wiggins, 

2010). Furthermore, average IC across a segment might not be representative for all notes within 

one segment. Individual unexpected notes might also be effective in inducing emotional 

responses, as was confirmed by preliminary analysis of this dataset (not presented here). 

We also tested for different lengths of response windows from segment onset and decided

that 6 s after segment onset provided optimal results, as segments were on average 3.7 s (SD = 

2.5 s) long and previous research indicated that subjective and physiological response measures 

have time lags between 2 and 3 s  (Pearce, et al., 2010, Ravaja, et al., 2008). However, if no 
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significant effects were reported for 7-s-long response windows, we also tested with 4-s-long 

windows. If the results did change, they were reported (e.g. HR analyses).   

Finally, future analyses could also test for individual differences in participants’ 

emotional responses to violations of expectations, that were beyond the scope of this study due to

space limitations. Emotional reactions to music have been shown to have a high inter-individual 

variance (Grewe, Nagel, Altenmüller, & Kopiez, 2009-2010) that may be explained by inter-

individual differences in music-related syntactical knowledge creating different expectations in 

different listeners.

Conclusions

Based on statistical modeling and on subjective measures of expectation, this study 

showed that violations of structural expectations in live music performance induced emotional 

reactions in listeners, with associated activations in two different response components: 

subjective feelings and peripheral arousal. This study extends previous research to a greater range

of psychophyisological responses to melodic expectations induced in a live concert experiment. 

There was also limited support for two additional findings. Unexpected musical moments 

induced unpleasant feelings (only in IC based analyses), and highly expected segments also 

produced physiological responses (changes in SCR and RespR). 

These results contribute evidence to discussions concerning the ability of music to induce 

fully component-synchronized emotions by itself (Cochrane, 2010). Here, musical structures and 

their performances induced varying degrees of predictability that in turn had effects on several 

levels of emotion measurement, supporting the Emotivist position described above. Finally, we 

note that we understand expectation as being only one of many mechanisms that might be 

involved in creating emotional responses to music (Juslin & Västfjäll, 2008). Therefore, we have 
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focused on analyzing events in the music that were relevant to this mechanism, corroborating the 

often-predicted link between expectation and emotion in music (Meyer, 1956, 1957). Our results 

advance research on music-induced emotion by taking it beyond exploratory studies, like those 

cited in our introduction, to the next scientific level of formulating and testing theoretical 

mechanistic models that generate falsifiable hypotheses.
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Appendix A

Continuous Emotion Ratings Continuous Unexpectedness Ratings

Rating interfaces 

Rating instructions

… By moving your finger from left to right

you can indicate how pleasant the music is

to you (left = negative and unpleasant; right

= positive and pleasant).  By moving your

finger from top to bottom you can indicate

your  degree  of  emotional  arousal  during

listening  to  the  music  (top  =  excited;

bottom = calm). You should try to rate what

your current emotional  state is along both

dimensions simultaneously. The position of

your finger should reflect at each moment

your emotional response to the piece as you

…  By  moving  your  finger  from  top  to

bottom you can indicate how unexpected the

music events you are hearing are (top= very

unexpected;  bottom =  very  expected).  The

position of your finger should reflect at each

moment the unexpectedness of the events as

you  are  listening.  You  need  to  constantly

monitor your expectations for every musical

event  in  order  to  keep  your  finger  at  the

corresponding position. ….
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are listening. …

Tables

Table 1. 

Music Stimuli Presented 

Order of

Presentation 

Title Composer Presentation

mode

Duration

(min:s)

1. Acht Stücke Für Flöte Allein:

VI. Lied, Leicht Bewegt 

Paul

Hindemith

recorded 0:38

2. Un Joueur de Flûte Berce les

Ruines

Francis

Poulenc 

recorded 1:18

3. Density 21.5 Edgar

Varèse 

live 3:30

4. Syrinx Claude

Debussy 

live 2:35

5. Solo Partitas for Flute, A-

minor: 2
nd

 Movement

“Corrente” 

Johann S.

Bach

live 1:53

6. Solo Partitas for Flute, A-

minor: 3
rd
 Movement

“Sarabande” 

Johann S.

Bach

live 2:11
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Table 2

Participants’ Evaluation of Live Concert Experiment Separated by Continuous Rating Task 

Group (n =50). 

Group

Question Emotion

rating:

Mean(SD)

Unexpectedness

rating:

Mean(SD)

1. How much did you interact with others 

during the pieces? 1.28(.67) 1.32(.69)

2. How much did you interact with others 

between the pieces? 1.48(.77) 1.5(.89)

3. Did you feel comfortable in the listening 

situation? 3.52(1.12) 3.48(1.08)

4. Were your emotional responses influenced by 

the other people in the room during music 

listening? 1.6(.96) 1.38(.64)

5. Did the other music listeners distract you 

from music listening? 1.4(.76) 1.25(.53)

6. Did the iPod rating affect your listening 

negatively? 2.33(1.01) 2.21(1.25)

7. How intuitive was the iPod rating? 3.44(.96) 3.17(1.17)

8. Indicate the degree to which the sensors 

interfered with your listening to the piece. 2.36(1.04) 2.52(1.45)

Noteso Q1-Q8o one-factorial (emotion vs. unexpectedness rating group) ANOVAo n. s.; Rating 

scales were labeled foro Q1-Q2o 0 = very little, 5 = very strongly, for Q3-Q7o 0 = very little, 5 = 

a lot, and for Q8o 0 =”No interference”, 6 =”A great deal of interference”. 
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Table 3

Cross Tabulation of Frequency of Segments in Unexpectedness Rating Event Type Separated by 

Information Content Event Type.

Mean information content

Low trough

(<10
th

percentile)

High peak

(>90
th

percentile)

Not used Total

Very expected (<10
th

percentile) 3 2 13 18

Very unexpected (>90
th

percentile) 0 8 11 19

Not used 

16 8 122 146

Total
19 18 146 183
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Table 4

Cross Tabulation of Frequency of Segments Separated by IC or Unexpectedness Rating Event 

Types and Music Pieces.

Frequency of Segments:  

Analyses based on IC

Frequency of Segments:  

Analyses based on unexpectedness

ratings

Piece

(Presen-

tation no.) 

Low

trough

(<10
th

percentile)

High peak

(>90
th

percentile)

Not used Very

expected

(<10th

percentile)

Very

unexpected

(>90
th

percentile)

Not used 

1. 0 2 14 3 2 11

2. 2 2 8 1 1 10

3. 0 9 29 5 5 28

4. 4 3 35 5 7 30

5. 5 0 41 1 1 44

6. 8 2 19 3 3 23

Total 19 18 146 18 19 146

Noteso Total n = 183. 
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Table 5

Linear Mixed Effects Modeling (LMM) Coefficient Estimates for Event-Related Change in 

Subjective Feeling and Facial EMG Predicted by IC Event Type (High vs. Low IC Segments), 

Time (Seconds 1-7) and Their Interaction.

Fixed-Effects

Coefficients

F Fixed-Effects

Coefficients

F

Subjective Feeling

Arousal Ratings Valence Ratings

b0 (intercept) .49 - .61 -

b1 (time
1
) –.001** 8.57 .002 .13

b2 (event type
2
) .01 1.49 .01 .05

b3 (time×event type
3
) .01*** 16.27 –.005* 4.88

Facial EMG

Corrugator Activity Zygomaticus Activity

b0 (intercept) 5.10 - 2.36 -

b1 (time
1
) .02 1.44 .01 .01

b2 (event type
2
) –.19 .6 –.06 .57

b3 (time×event type
3
) .001 0 –.02 .39

Noteso 1seconds 1-7;  
2Dummy variableo  1=high  IC peak,  0=low IC trough;3interaction  term;  Results  of  F-test

(Subjective  Feelingo  df1=1,  df2=6003-6142;  EMGo  df1=1,  df2=12193-12428)o  *p<.05.**p<.01.***p<.001;  the

following random effects were includedo a) random intercepts for participants, pieces and segments,  b) random

slopes for  time, event type, and time×event type (all within participants).
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Table 6 

Linear Mixed Effects Modeling (LMM) Coefficient Estimates for Event Related Change in ANS 

and Respiration Rate Measures Predicted by IC Event Type (High vs. Low IC trough segments), 

Time (Second 1-7), and Their Interaction.

Fixed Effects

Coefficients
F

Fixed Effects

Coefficients
F

Skin Conductance Heart Rate (time=1-7)

b0 (intercept) .002 - .875 -

b1 (time
1
) –.001

.09
–.052***

11.35

b2 (event type
2
) –.024

.57
–.547*

4.14

b3 (time×event 

type
3
)

.009***
9.38

–.038
.94

Respiration Rate Heart Rate (time=1-4)

b0 (intercept) –.197 - .533 -

b1 (time
1
) –.051

0
.135

.03

b2 (event type
2
) .485

2.62
–.189**

6.21

b3 (time×event 

type
3
)

.086
1.72

–.264**
8.42

Noteso  1second  1-7;  
2Dummy variableo  1=high IC peak,  0=low IC trough;  3interaction term; Results  of  F-Test

(time=1-7o df1=1, df2=12193-12428; time=1-4o df1=1, df2=6865-7100)o *p<.05.**p<.01.***p<.001; the following

random effects were includedo a) random intercepts for participants, pieces and segments,  b) random slopes for

time, event type, and time×event type (all within participants).
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Table 7

Linear Mixed Effects Modeling (LMM) Coefficient Estimates for Event Related Change in 

Subjective Feeling and Facial EMG Predicted by Event Type (Unexpected vs. Expected 

Segment), Time (Second 1-7), and Their Interaction.

Fixed Effects

Coefficients

F Fixed Effects

Coefficients

F

Subjective Feeling

Arousal Ratings Valence Ratings

b0 (intercept)
.55 - .59

b1 (time
1
)

–.0001*** 7.05 .003 .21

b2 (event type
2
)

 

–.07 2.87 .03 .32

b3 (time×event 

type
3
) .01*** 12.37 –.004 3.38

Facial EMG

Corrugator Activity Zygomaticus Activity

b0 (intercept)
5.11 - 2.33 -

b1 (time
1
)

.01 .38 .002 .02

b2 (event type
2
)

 

–.14 2.37 –.04 .27

b3 (time×event 

type
3
) –.002 .02 –.003 .02

Noteso  1second 1-7;  
2Dummy variableo 1=very unexpected, 0=very expected;  3interaction term; Results of F-Test

(Subjective  Feelingo  df1=1,  df2=5996-6135;  EMGo  df1=1,  df2=12193-12428)o  *p<.05.**p<.01.***p<.001;  the

following random effects were includedo a) random intercepts for participants, pieces and segments,  b) random

slopes for time, event type, and time×event type (all within participants).
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Table 8

Linear Mixed Effects Modeling (LMM) Coefficient Estimates for Event Related Change in ANS 

and Respiration Rate Measures Predicted by Event Type (Unexpected vs. Expected Segments), 

Time (Second 1-7), and Their Interaction.

Fixed Effects

Coefficients

F Fixed Effects

Coefficients

F

Skin Conductance Heart Rate

b0 (intercept)
–.01 - –.03 -

b1 (time
1
)

.01*** 11.61 .05 .64

b2 (event type
2
)

 

–.03* 5.59 .40 .41

b3 (time×event 

type
3
) –.003 .38 –.13** 10.57

Respiration Rate

b0 (intercept)
.15 -

b1 (time
1
)

–.03* 5.33

b2 (event type
2
)

 

–.61 .91

b3 (time×event 

type
3
) .18* 5.27

Noteso 1second 1-7; 
2Dummy variableo 1=very unexpected, 0=very expected; 3interaction term; Results of F-test 

(df1=1, df2=12193-12428)o *p<.05.**p<.01.***p<.001; the following random effects were includedo a) random 

intercepts for participants, pieces and segments,  b) random slopes for time, event type, and time×event type (all 

within participants).
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Figure Captions.

Figure 1. Plot of information content (IC) and average unexpectedness ratings for Density 21.5 

by Edgar Varèse. Vertical lines represent segment boundaries. First row: IC per note; second 

row: mean IC per segment; third row: group mean of unexpectedness ratings (n=25); fourth row: 

mean of change in group mean of unexpectedness rating per segment. H = high IC or 

unexpectedness rating peak segments, L = low IC or unexpectedness rating trough segments. (a), 

(b), (c), and (d) present musical score excerpts for the selected example peak/trough segments.

Figure 2. Histograms of mean information content or average change in unexpectedness ratings 

per segment over the entire concert (n = 183). H = high IC or unexpectedness rating peak 

segments (higher than 90% of the frequency distribution), L = low IC or expectedness rating 

trough segments (lower than 10% of the frequency distribution). Segments between L and H 

were not included in further analyses. 

Figure 3. Plot of mean unexpectedness ratings as a function of time, separated by event type 

(high IC, n = 18, vs. low IC segments, n = 19). Segment onset is between seconds 1 and 2. 

Figure 4. Plot of subjective emotion ratings and facial EMG as a function of time, separated by 

event type (high IC, n = 18, vs. low IC segments, n = 19). Segment onset is between seconds 1 

and 2. 
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Figure 5. Plot of mean SCR, HR, and RespR measurements as a function of time, separated by 

event type (high IC, n = 18, vs. low IC segments, n = 19). Segment onset is between seconds 1 

and 2. 

Figure 6. Plot of subjective feeling ratings and facial EMG measurements as a function of time, 

separated by event type (very unexpected, n = 19, vs. very expected segments, n = 18). Segment 

onset is between seconds 1 and 2. 

Figure 7. Plot of mean SCR, HR, and RespR measurements as a function of time, separated by 

event type (very unexpected, n = 19, vs. very expected segments, n = 18). Segment onset is 

between second 1 and 2.
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Figure 1.
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Figure 2.
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Figure 3.
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Figure 4. 
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Figure 5. 

Figure 
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Figure 7. 
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