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Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting 

millions of people worldwide and ranking as a leading cause of disability for almost three 

decades. Past molecular studies of MDD employed bulk homogenates of post-mortem brain 

tissue, obscuring gene expression changes within individual cell types. Here, we used single-

nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of 

male individuals with MDD (n=17) and healthy controls (n=17). We identified 26 cellular clusters, 

and over 60% of these showed differential gene expression between groups. We found the 

greatest dysregulation in deep layer excitatory neurons and immature oligodendrocyte 

precursor cells (OPCs), contributing almost half (47%) of all changes in gene expression. These 

results highlight the importance of dissecting cell-type specific contributions to the disease, and 

offer opportunities to identify new avenues of research and novel targets for treatment.   
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Major depressive disorder (MDD) is a complex and heterogeneous disorder that affects an 

estimated 300 million people worldwide1. Genetic factors underlying the risk for MDD have 

been investigated using including genome-wide association studies, among other approaches2. 

Although some genetic associations have been detected, it remains a challenge to extract causal 

disease mechanisms from these findings 3. It has been positing that MDD results from 

dysregulation of monoaminergic transmission, largely implicating the serotonergic and 

noradrenergic systems, has dominated the field for several decades. More recently, other 

factors have been associated with MDD, including glutamatergic and GABAergic transmission4, 5, 

glial cell function, including astrocytic and oligodendrocytic contributions6-8, blood-brain barrier 

integrity6, and inflammation9. Given the wide variety of cell types in the brain and their complex 

interactions, investigative approaches with cell-type specificity are especially needed to gain 

insight into psychiatric phenotypes including MDD. 

The interpretation of differential gene expression in bulk brain tissue homogenates is 

complicated by the heterogeneous cellular composition of the sample. Single-cell sequencing 

approaches have revealed that gene expression patterns in the brain are cell type specific, not 

only differentiating major classes of cells such as neuronal and glial cells, but even 

differentiating subtypes of glial cells and neurons10, 11. Therefore, it is difficult to verify whether 

subtle molecular differences observed from tissue homogenates are explained by the disease 

state or by differences in cell type composition between samples12 Recently developed 

techniques for high-throughput single-cell and single-nucleus RNA-sequencing provide a 

solution for addressing this inherent drawback to bulk tissue experiments11, 13. 

High-throughput droplet-based single-nucleus RNA-sequencing (snRNA-seq) allows the profiling 

of thousands of nuclear transcriptomes, by utilizing nucleus-specific barcodes and unique 



4 
 

molecular identifiers (UMI) to tag individual RNA molecules. snRNA-seq yields comparable, 

albeit distinct, information14 from single-cell RNA-seq (scRNA-seq), while facilitating the analysis 

of frozen tissues, which are not amenable to the isolation of intact cells. While there has been 

considerable interest in using scRNA-seq and snRNA-seq datasets to gain insight into the 

processes underlying complex brain disorders15-17, very few direct comparisons of single-nucleus 

human brain gene expression has yet been performed in a psychiatric phenotype using high-

throughput technologies. 

Here, we sequenced ~80,000 nuclear transcriptomes from the prefrontal cortex of MDD cases 

and psychiatrically healthy controls and identified cell type specific differentially expressed 

genes. These results point to gene expression changes in predominantly two cell types, 

oligodendrocyte precursor cells and deep layer excitatory neurons. The relationships between 

and functions of the differentially expressed genes from these two cell clusters suggest 

impairments to FGF signalling, steroid hormone receptor cycling, immune function, and altered 

cytoskeletal regulation (related to changes in synaptic plasticity). This approach to snRNA-seq 

can effectively interrogate subtle phenotypes with improved resolution in archived brain tissue, 

and provide novel directions for follow-up studies. 

Results 

To assess the involvement of individual cell types in the pathophysiology of MDD, we examined 

nuclei from the dorsolateral prefrontal cortex (dlPFC), a region implicated in the pathology of 

major depressive disorder18. We used a droplet-based single-nucleus method optimized for use 

with postmortem brain tissue to assess a large number of nuclei. We measured 78,886 nuclei 

from 34 brain samples, half from patients who died during an episode of MDD, and the other 
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half from matched psychiatrically healthy individuals (Table 1, Supplementary Tables 1-3). The 

experimental design is depicted in Fig. 1. On average, we sequenced to a depth of almost 200 

million reads per sample (Supplementary Table 1). Given that glial cells have consistently been 

found to have fewer transcripts than neuronal cells10, 11, we used custom filtering criteria based 

on the distribution of UMIs per nucleus detected to recover a substantial number of glial cells 

(see Methods, Supplementary Fig. 1a-e, Supplementary Table 4). In an initial subset of 20 

subjects, applying our custom filtering increased the total number of cells 1.8–fold but increased 

the number of non-neuronal cells by almost 6-fold (data not shown). More than 90% of the 

nuclei passing these filtering criteria had less than 5% reads from mitochondrially encoded 

genes (Supplementary Fig. 1f). The average gene count across nuclei ranged from 2144 in 

neurons to 1144 genes in glia (Supplementary Table 5). UMI counts were approximately twice 

the gene count for all cell types, as expected for this level of sequencing depth (Supplementary 

Table 5). Between sample groups, there were no significant differences between cases and 

controls in the median gene count per nucleus (t test p=0.12), median UMI count per nucleus (t 

test p=0.14), and number of cells detected per individual (t test=0.07) (Supplementary Table 1). 

Identification of 26 distinct cell types in the dlPFC 

In order to identify different cell types present in the brain samples, we applied unsupervised 

graph-based clustering19 using the first 50 principal components derived from the 2135 most 

variable genes across individual nuclei (Methods, Supplementary Fig. 2a-b). After stringent 

quality control (Methods), we identified 26 distinct clusters (Fig. 2a). Each cluster was annotated 

using a combination of known cell type markers for excitatory and inhibitory neurons, and non-

neuronal cells, including astrocytes, oligodendrocytes, oligodendrocyte precursor cells (OPCs), 

endothelial cells, and microglia (see Methods for full list of markers, Supplementary Table 6, 
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Supplementary Fig. 3a-p). Gene expression patterns specific to cell type clusters were visualised 

using a DotPlot (Fig. 2b), average and median gene expression heatmaps (Supplementary Fig. 

4a-b), and violin plots (Fig. 2c-e) to form a consensus for annotation. 

Refined cell subtypes reflect cortical cellular architecture  

The clusters generated from our data are consistent with those previously reported in snRNA-

seq of human PFC (Supplementary Fig. 5)11. Gene expression patterns previously linked to 

specific cortical layers (see Methods) coincide with our clustering of excitatory cells. In Fig. 2c, 

the genes are arranged from top to bottom in order of their expression across the cortical layers 

(first 17 rows, from the layer I/II to layer VI). There is a gradient of expression of these genes 

across the excitatory clusters. For example, clusters Ex1, Ex4, and Ex7-9 had high expression of 

TLE4 (layer VI specific). Ex1, Ex8, and Ex9 showed concurrent expression of layer V/VI markers 

such as TOX. Ex6 and Ex7 additionally showed expression of the layer IV specific gene RORB. 

HTR2C, which is specific to a subset of layer V neurons, was prominent in Ex1 alone. PCP4, which 

is also layer V specific, was present in Ex1-3, Ex7, and Ex9. Superficial layer (I-III) markers such as 

CUX2 and RASGRF2 were mainly seen in the large cluster, Ex10. Likewise, inhibitory cell types 

demonstrated subtype specific gene expression patterns. For example, In7 was classified as 

inhibitory-parvalbumin because it expressed GAD1 and PVALB, and lacked VIP and SST (Fig. 2d). 

Multiple astrocytic clusters were also identified, and while the typical sub-classification of 

astrocytes is based on their morphology within grey or white matter20, we used only grey matter 

for these samples. As such, based on the higher percentage of GFAP expression in Astros_3 

(38%) compared to Astros_2 (21%), we suspect that Astros_3 is more likely to represent reactive 

astrocytes21 (Supplementary Table 6). 

Reconstruction of oligodendrocyte developmental trajectory  



7 
 

We identified five distinct cell type clusters that fell into the oligodendrocyte lineage (OL), 

including two that we classified as OPCs (Fig 2e). OPCs express a characteristic set of markers 

such as PDGFRA and PCDH15, which decline as these cells mature into oligodendrocytes, 

whereas other lineage markers like, OLIG2 or SOX10, are present in both mature and immature 

cells. Given these developmental stage specific markers it was possible to plot a pseudotime 

trajectory22 using gene expression for OPC1, OPC2, Oligos1, Oligos2 and Oligos3. Our result 

indicated that OPC2 were the youngest cells within the dataset followed by OPC1, then Oligos2 

and Oligos3, with Oligos1 being the most mature (Fig.2e, top). The expression of thousands of 

genes varied according to pseudotime (q<0.01). Approximately half of the genes associated with 

pseudotime overlapped in cases and controls (Supplementary Fig. 6a). However, among the 

genes exclusively associated with pseudotime in cases, there was a 2.7–fold enrichment of 

apoptosis signalling in PANTHER23 pathway analysis (FDR p<9.01x10-3), while no enrichment was 

observed in controls. Given that certain stages of oligodendrocyte differentiation are associated 

with heightened susceptibility to apoptosis, this may indicate differences in OL development 

between cases and controls24. To assess the individual profiles of important developmental gene 

markers, we plotted their expression across pseudotime (Supplementary Fig. 6b-i), revealing 

their expected pattern of expression. 

To compare our oligodendrocyte lineage (OL) cells with previously described OL cell types, we 

performed bioinformatic deconvolution (Fig. 2e, bottom). Our OPC2 gene expression profile was 

entirely represented by the “OPCs” gene expression profile from Jäkel et al. (2019)25. The OPC1 

profile also primarily corresponded to the OPCs, but consistent with this cluster being further 

along the pseudotime trajectory, it showed a small correspondence to the COPs (committed 

oligodendrocyte precursors). Our oligodendrocyte clusters showed varying degrees of 

correspondence to the published data, with decreasing overlap to the published “OPCs” 
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expression profile with increasing maturity of the cell type (ranging from 70-11% 

correspondence). Interestingly, among our oligodendrocytes, Oligos3 showed the highest 

correspondence to the ImOlGs (immune oligodendroglia), as defined by Jäkel et al25. The 

“immune gene expression” feature of Oligos3 is highlighted in our hierarchical clustering 

dendrogram (Fig. 1b), in which Oligos3 is located closer to the Micro/Macro cluster compared to 

the other OL clusters.  

Cell type-specific patterns of altered gene expression in MDD 

We set out to assess gene expression differences between cases and controls within each 

cluster. However, one limitation of droplet based single-nucleus technology is the possibility of 

capturing doublet or multiplet nuclei, which we have estimated to be minimal in our case, as 

only 5.2% of captured nuclei were doublets or multiplets, based on a species mixing experiment 

(Supplementary Fig. 1g). This, however, represented a potential confounding factor when 

assessing differential gene expression between groups. We therefore eliminated doublets and 

multiplets from the dataset by calculating the correlation of each cell to the median expression 

value of its assigned cluster (Methods, Supplementary Fig. 7) and cells with low correlation were 

removed (Supplementary Table 7a-b). We also excluded any genes expressed in less than 10% of 

the cells in that cluster. Using only these purified clusters and filtered genes (median 5212 per 

cluster), we performed a differential gene expression analysis (Supplementary Tables 8-31).  

A total of 96 genes (FDR <0.10) were differentially expressed in 16 of the 25 clusters analyzed 

(Fig. 3a) and 45 of those remained significant at FDR<0.05 (12 of 25 clusters). FDR correction 

considering all clusters together yields 41 significant genes (FDR < 0.10) in 16 clusters 

(Supplementary Table 32). This further supports that our statistical analyses are in fact able to 

detect differences in gene expression between the groups. To retain a larger set of genes in 
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order to better capture functional enrichments within individual cell types, we considered all 

genes which passed FDR < 0.10, corrected per cluster. The majority, 83% (80 genes), were 

downregulated in line with findings from previous transcriptomic studies in MDD3, 4. Differential 

expression analysis treated each cell as a sample (Supplementary Fig. 8a-f), but per subject 

contributions were visualized using heatmaps of average gene expression to assess biases in 

subject contributions. Patterns of gene expression averaged by subject reflected the expected 

differences between cases and controls (Supplementary Fig. 9a-p). Thirty-nine of the 96 

differentially expressed genes were found in excitatory cell clusters and, of those, 34 were 

downregulated (Fig. 3a, insert). Some neuronal clusters contained both upregulated and 

downregulated genes, but it was more common for affected neuronal clusters to contain only 

downregulated genes (8/12, 67%). All but one inhibitory cluster showed altered gene expression 

and non-neuronal clusters tended to have both up- and downregulated genes (Fig. 3b).  

Of particular interest, two clusters – one composed of immature oligodendrocyte precursor cells 

(OPC2) and one composed of deep layer excitatory neurons (Ex7) – accounted for almost half 

(47%) of the dysregulated genes (Fig. 3c). Finally, two genes were differentially expressed in 

more than one cluster: PRKAR1B showed decreased expression in excitatory clusters Ex7 

(FDR=0.087, FC=0.87) and Ex2 (FDR=0.047, FC=0.82) and TUBB4B in excitatory clusters Ex7 

(FDR=0.079, FC=0.87) and Ex6 (FDR=0.073, FC=0.86).  

Cell type specific DEGs recapitulate published MDD findings 

Three of our DEGs (FADS2, CKB and KAZN) have previously been identified in GWAS of MDD2, 

26.To further compare our DEGs with previously reported findings in MDD we took advantage of 

publically available databases PsyGeNET27 and DisGeNET28. Using PsyGeNET we found that 26 of 

our DEGs have previously been linked to mental illness in the literature. The highest number of 
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associations (22/54 associations) were for depressive disorders, followed by associations for 

schizophrenia spectrum and other psychotic disorders (20/54; Fig. 3d). Using DisGeNET we 

found 15 genes associated with MDD related terms (hypergeometric test, p-value = 0.00029; Fig. 

3e). Hypergeometric tests for overlap between DEGs in individual clusters and genes related to 

depression in DisGeNet revealed a specific enrichment in OPC2 DEGs (p=5.7x10-4, Fig. 3e). 

Interestingly, we found that 67% of these genes were contributed by the OPC2 and Ex7 clusters 

(Fig. 3e). Complete results from PsyGeNET and DisGeNET are presented in Supplementary Table 

33-35. 

Functional implications of cell type specific DEGs 

We used Gene Ontology and Reactome Pathway enrichment analysis to identify the relationship 

of our 96 DEGs to biological functions. There were strong enrichments of Gene Ontology terms 

for neuron projection maintenance (84-fold enrichment; FDR=0.011) and negative regulation of 

long-term synaptic potentiation (75-fold enrichment; FDR=0.012). Both of these terms are 

hierarchically related with the more general term regulation of synaptic plasticity, also enriched 

in the set of 96 genes (9-fold enrichment, FDR=0.012). Reactome Pathways enrichments 

included Kinesins (21.74-fold enrichment; FDR = 6.24x10-4), HSP90 chaperone cycle for steroid 

hormone receptors (15.79-fold enrichment; FDR = 3.4x10-2), and Innate Immune System (3.01-

fold enrichment, FDR=3.29x10-2). A full list of all enrichment analyses performed is provided in 

Supplementary Table 36-41.  

The majority (excluding three: AC133680.1, MEG3, FAM66C) of the DEGs were protein-coding. 

We used STRING network analysis 29 to plot the interactions between these proteins coding 

DEGs. This enabled us to identify common pathways and systems, within which these proteins, 

contributed by different cell types, functionally interact. The overall connectivity between 
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proteins encoded by our DEGs was significantly higher than that expected for a random subset 

of genes (p-value = 3.64x10-4). While distinct genes were dysregulated in different clusters, 

common pathways and biological processes dysregulated across clusters included cytoskeletal 

function, immune system function, and SHR chaperone cycling (Fig. 4a), all of which have been 

previously implicated in MDD 9, 30. 

Interestingly, certain genes were present in multiple pathways and processes, for example 

HSP90AA1 (OPC2) links SHR chaperone cycling, immune system functioning and cytoskeletal 

function (Fig. 4b). Likewise, KIF16B from lower layer neurons (Ex7) and KIF26B and KLC2 in two 

inhibitory cells types (In2 VIP and In3 SST respectively), belong to both the kinesin pathway and 

cytoskeletal function (Fig. 4c). Of note, KAZN, a gene previously associated with MDD26, interacts 

with the KIF16B (Ex7), both of which represent some of the few upregulated genes in the 

dataset. 

Weighted gene co-expression network analysis 

In addition to directly measuring gene expression changes between groups, we performed 

weighted gene co-expression network analysis (WGCNA). To circumvent the challenges posed by 

the sparsity of snRNA-seq data, we performed WGCNA on the average gene expression profile 

for each subject across all cell types and included the percentage contribution of different cell 

types as a correlate. Our results indicated that 5 modules were significantly associated with 

MDD (Supplementary Table 42). 

Four of the 5 modules were also strongly associated with Ex7, representing the highest cluster-

phenotype overlap. We chose to focus on the largest module (blue), which included 2699 genes 

and significantly overlapped with our identified DEGs (Fig. 5a, 44%, p-value = 6.04x10-19, 
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hypergeometric test for overlap). To identify the most connected genes within the blue module, 

we performed a hub gene analysis resulting in 285 hub genes (Fig.5b, see Methods) and plotted 

the top 50, which included 10 DEGs (Fig. 5c). The top term for a Gene Ontology analysis of the 

hub gene list was “neurotransmitter secretion” (8.69-fold enrichment, FDR=7.21 x10-3), 

suggesting a disruption of intercellular communication between neural cells. Furthermore, we 

found that 26 of the 41 DEGs that overlapped with the blue module were also hub genes (p-

value = 4.95 x 10-31, hypergeometric test for overlap). 

Validation of gene expression changes 

We preformed validation of our DEGs using fluorescence-assisted nuclei sorting (FANS) to 

separate broad cell types followed by high-throughput qPCR. As expected, given that the FANS 

fractions are much broader than the single cell clusters, with the 26 clusters combined into 4 

sorted populations, levels of validation varied in part as a function of the relative representation 

of the cluster in the sorted fraction (Supplementary Fig. 10-11, Supplementary Tables 43-46). 

Figure 5 (d) highlights validated genes that overlap with the WGCNA results. 

Intercommunication between lower layer excitatory neurons and oligodendrocyte precursor 

cells 

Next, in order to better understand how cells are interacting, we applied a predictive tool to 

explore the relationship of ligands of one cluster to the receptors expressed in another cluster. 

We focused our analysis on Ex7 and OPC2, the two clusters showing the most DEGs, and with 

the greatest overlap of genes associated with phenotype from the literature and from our 

WGCNA. We found a total of 90 significantly changed ligand-receptor combinations between 

Ex7 and OPC2 after random permutations (p<0.01). Fifty-eight Ex7 ligand to OPC2 receptor (Fig. 
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6a left, Supplementary Table 47a) and 32 OPC2 ligand to Ex7 receptor interactions were altered 

between cases and controls (Fig. 6a right, Supplementary Table 47b). We found significant 

changes to FGF signalling originating from both cell types. Although these results are exploratory 

and need to be interpreted with caution, they are consistent with previous literature implicating 

the FGF system in MDD, and particularly, changes in FGF signalling in OPCs 31, 32 leading to 

depressive phenotypes, and provide an intriguing avenue for future experiments.  

Based on the DEGs found in Ex7 and OPC2, we modeled the potential interaction indicating the 

class of protein and change in expression of the gene (Fig. 6b). To add support to the model we 

selected genes to further study with RNAScope® fluorescence in situ hybridization. Given the 

important change in FGF signalling we chose to investigate FIBP (FGF1 intercellular binding 

protein), KAZN a potential junction protein and HPS90AA1 a co-chaperone involved in stress 

hormone receptor cycling. We found FIBP was downregulated, as expected, in deep layer 

excitatory neurons (Fig. 6c, Unpaired t test, t217=2.5, p=0.013, n= 95 nuclei for cases and 

controls) while KAZN was upregulated in OPCs (Fig. 6d, Unpaired t test, t188=2.7, p=0.007, n=100 

nuclei for controls, n=119 nuclei for cases) and HSP90AA1 was downregulated, also in OPCs (Fig. 

6e, Unpaired t test, t192=2.0, p=0.026, n= 107 nuclei for controls, n= 87 nuclei for cases).  

Discussion 

Our examination of single-nucleus transcriptomes from the dlPFC in MDD revealed 

dysregulation of gene expression in almost 60% of the cell types identified, with a total of 96 

differentially expressed genes. There were prominent gene expression changes in immature 

oligodendrocyte precursor cells (OPC2) and in deep layer excitatory neurons (Ex7), and a large 

percentage of their DEGs overlapped with genes previously implicated in MDD. 
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Given the complexity of psychiatric disorders such as MDD, disentangling the role of each cell 

type in the brain is important and requires single cell resolution. For example, the ability to 

distinguish glial subtypes – including multiple astrocytic, oligodendrocytic, and OPC clusters – 

enabled us to pinpoint changes specific to OPCs, but not oligodendrocytes, and changes 

selective to only one subset of astrocytic cells.  

In recent years, the target cell types in MDD pathophysiology have expanded from excitatory 

neurons to include inhibitory interneurons18 and non-neuronal cells4-9. Here we found 16 unique 

cell types showing evidence of differential gene expression in depression, including 4 non-

neuronal clusters and 6 clusters of interneurons supporting the complex interplay between 

multiple cell types in MDD. Previous studies have shown that SST and PVALB interneurons are 

dysregulated in MDD patients18, and here we report several DEGs in 3 interneuron clusters that 

are defined by the expression of these GABAergic markers (Inhib_3_SST, Inhib_6_SST, and 

Inhib_8_PVALB). Interestingly, a separate cluster of PVALB interneurons (Inhib_7_PVALB) did 

not show differential expression, which may indicate that not all PVALB interneurons are equally 

affected. However, we find differentially expressed genes in non-SST, non-PVALB interneuron 

clusters (Inhib_2_VIP, Inhib_1, and Inhib_5), which suggests that additional interneuron 

subtypes could have a role in depression, and should be examined in future research.  

We found 10 different excitatory cell types which were annotated to specific cortical layers 

based on known markers. Ex10 represented a large cluster of superficial cortical layer cells, 

whereas there were numerous clusters representing different excitatory cell types from deeper 

cortical layers. The neuronal cluster with the most change was Ex7, a deep layer cluster 

characterized primarily by DPP10 expression. DPP10 encodes a dipeptidyl peptidase-related 

protein that regulates neuronal excitability and has previously been associated with a human-
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specific, neuron-based regulatory network. Structural variants of this gene have been implicated 

in neuropsychiatric diseases, including autism, schizophrenia and bipolar disorder33.  

OPC2 also showed extensive gene expression changes between cases and controls. OPC2 was 

the youngest cell type in the OL pseudotime trajectory. The use of cellular deconvolution 

techniques indicated that OPC1 have some similarity to committed OPCs whereas OPC2 showed 

no such correspondence, supporting the idea of functional heterogeneity among OPCs 34. 

Furthermore, compared to OPC1, OPC2 expressed higher levels of certain glutamate and sodium 

receptors, which are typically lost as the cells mature 34. 

Evidence suggests that half of the OPCs (NG2+) in the brain do not give rise to any other cell 

type35, and exhibit synaptic contact with neurons 36. As such, OPCs are now thought to be a 

distinct glial cell type implicated in brain plasticity through roles such as integration of synaptic 

activity37 and mediation of long term potentiation38. Additionally, there is evidence directly 

implicating the loss of this cell type with emergence of depressive-like behaviour31. The data 

from this study support a role for OPCS in MDD independent from their role as precursor cells 

for oligodendrocytes. 

STRING DB protein network analysis highlighted a number of links including connections 

between three differentially expressed genes encoding kinesin-related proteins: KIF26B, KLC2 

and KIF16B. KIF16B (increased in Ex7) is involved in recycling receptors including the fibroblast 

growth factor receptor (FGFR). Interestingly, FIBP, encoding acidic FGF1 intracellular-binding 

protein, was decreased in Ex7. FGFR transport relies, in part, on the interaction between 

kinesins and Rab GTPases 39. Notably, we found RAB11B (encoding a Rab GTPase) and KLC2 to be 

downregulated in In3. Taken together, these finding could point to a disruption of FGFR 
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recycling by kinesins and Rab GTPases, as well as disrupted modulation FGF intercellular 

signalling by FIBP in neurons in MDD.  

Based on animal models and in cell culture, FGFs (specifically FGF2) and FGFRs seem to be 

affected by stress and the glucocorticoids40. The glucocorticoid receptor (GR) has consistently 

been implicated in MDD 41. HSP90AA1 (decreased in OPC2) and FKBP4 (decreased in Ex7), along 

with its homolog FKPB5, encode cochaperones for the GR and regulate intracellular signalling 

functions of this receptor30. HSP90AA1 codes for the stress inducible isoform HSP90α and 

interestingly, is known to be secreted in certain stress contexts 42. These changes may point to a 

fundamental disruption in GR signaling in deep layer excitatory cells and OPCs, which could 

further interact with the above described changes in FGF signalling.  

The genes related to chaperone mediated steroid hormone receptor cycling overlapped with 

genes involved in innate immune function. This is unsurprising given the role of glucocorticoids 

in modulating inflammation, one of the primary responses of the immune system. Both OPC2 

and Ex7 were enriched for the common genes between these pathways. Finally both the FGF 

and GR system have implications in the plastic properties of excitatory neurons such as 

projection outgrowth and stability 43, 44.  

Additionally, genes such as PRNP (the prion protein gene) and KAZN (a gene involved in 

desmosome assembly), were strongly altered in the OPC2 cluster and are associated with 

mediating synaptic plasticity and cellular communication45, 46 . The absence of Prnp has been 

associated with an increased number of undifferentiated oligodendrocytes and the delayed 

expression of differentiation markers47. which is intriguing given the evidence implicating a lack 

of mature adult oligodendrocytes in animal models of depression and anxiety48. On the other 

hand, overexpression of kazrin in keratinocytes profoundly changed cell shape, reduced 
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filamentous actin, and impaired assembly of intercellular junctions 46. Interestingly, decreased 

desmosome length has been described in Prnp−/− mice49 suggesting an interplay between these 

proteins. Further, a SNP in KAZN showed one of the strongest associations in individuals with 

treatment resistant depression 26.  

Based on the information we derived from various bioinformatics strategies we have proposed a 

putative model for the bidirectional interactions between lower layer excitatory neurons and 

immature oligodendrocytes. We used RNAScope® to validate some of the key transcriptional 

changes highlighted by the model. Though these results are interesting, functional follow up 

studies will be required to determine the role of molecules like FGF, HSP90α and Kazrin in the 

communication between these two cell types.  

Our study is not without limitations. All individuals included in our study were male, so our 

results are not necessarily generalizable to women, particularly as previous studies have 

suggested that brain transcriptomic changes associated with MDD are different in females50. 

Nonetheless, this first screen provides important information that may help inform subsequent 

studies exploring both men and women with MDD. Technical limitations with droplet-based 

snRNA-seq of human brain have been previously described. We, like others10, 11, found a much 

greater proportion of neurons compared to glial cells than would be expected based on 

histologically determined estimates, pointing to a potential limitation of the methodology for 

capturing non-neuronal cells. Although droplet-based snRNA-seq does not capture lowly 

expressed genes, nevertheless, we were able to perform differential gene expression for 

thousands of genes in precisely defined cell types. 

Lastly, we believe the consistency across dissections was not sufficient for estimating cell type 

proportions. For example, even a small over-representation of one cortical layer versus another 
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during dissection, can give misleading results regarding the proportion of cell-types. Other 

groups have attempted to extract nuclei from cryo-sectioned samples to address these 

inconsistencies 10. 

Our study has elucidated gene expression changes specific to numerous independent cell types 

in MDD. We have identified a potentially important link between OPCs and deep layer excitatory 

neurons, which implicates fundamental pathways including FGF signalling, glucocorticoid 

receptor regulation and synaptic plasticity in the brains of depressed individuals. The 

generalizability of these data will rely on independent validation in other MDD cohorts; 

nonetheless, this work provides an exciting start point for understanding the complex interplay 

of cells in the brain and a platform for future functional research to assess these potential 

interactions. Future single-cell studies of MDD should aim to relate cell types with 

symptomology and severity as has been done in recent papers 16, 17 . 
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Figure Legends 

Figure 1: Experimental Flow. Schematic representation of experimental procedures. Nuclei 

were extracted from Brodmann area 9 (BA9) in the dlPFC of 17 cases and 17 controls, single 

nuclei were captured in droplets for RNA-seq. Unsupervised clustering and cell type annotation 

were followed by differential expression analysis between cases and controls within each 

cluster. Bioinformatic analyses were performed to link the changes to the phenotype. Two 

validation approaches: FANS-high-throughput qPCR and FISH, were applied for validating 

differential expression results.  

Figure 2: Identification of cell types a) TSNE plot depicting the ~73,000 cells in 26 clusters 

identified after strict quality control of initial clusters.b) Cell type annotation was performed 

based on expression of well-established marker genes. (Left) Dendrogram representing 

relationship between identified cell type clusters based on gene expression. (Middle) DotPlot 

depicting expression of known marker genes in the 26 clusters of interest. Marker genes are 

colour coded according to the cell type in which they should be detected. The size of the dots 

represents the proportion of cells expressing the gene whereas the colour intensity represents 

the average expression level. (Right) Columns listing the number of cells per group and the bar 

plot depicting the mean number of UMIs per cell in each cluster. c) Cortical layer specific 

markers varied in expression within the excitatory neuronal clusters. The violin plots depict the 

expression per cluster of layer specific marker genes going from the more superficial layers (I/II) 

on the left to the deeper layers (V/VI) on the right. d) Known classes of inhibitory neurons are 

identifiable based on the expression pattern of peptide genes (VIP, SST, CCK) and calcium 

binding protein genes (PVALB). e) (Left, violin plots) Cells belonging to the oligodendrocyte 

lineage expressed the expected markers. (Top) The oligodendrocyte lineage cells from 5 clusters 

were analysed to produce a pseudotime trajectory to gauge their developmental stages. . (Right) 
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The location of these clusters along the trajectory was consistent with deconvolution (Jäkel et 

al., 2019). The numbers represent the percentage contribution of each of the previously 

published cluster signatures to the corresponding clusters in our dataset.  For violin plots in 

figures 2c-e values extend from minimum to maximum, the median value is indicated by a dot 

and the n-value per cluster corresponds to the total “No. of cells”for cases and controls 

combined listed in 2b. Nuclei were derived from 34 subjects. 

Figure 3: Differentially expressed genes. a) For each cluster the percentage change in 

expression between cases and controls of all detected genes are plotted with decreased 

expression to the bottom of the midline and increased expression to the top. Ninety-six 

significantly changed genes (16 were up-and 80 down-regulated) are marked in colour, based on 

their corrected FDRs as shown in the legend. The numbers of nuclei from cases and controls per 

cluster (n) are available in Supplementary Tables 8-31. p-values were obtained using a mixed 

linear model (see Methods). Nuclei were derived from 34 subjects. Sixteen out of the 26 clusters 

contained significantly differentially expressed genes. (Insert) Stacked bar-graph shows 

contribution of different cell type clusters to differentially expressed genes. b) Number of 

clusters in each broad category showing up and downregulated genes in MDD cases. c) The 

scatter plots represent the number of DEGs and the average percentage change in expression 

for each cluster. The cluster size is depicted by the size of the circle. Upper graph depicts 

upregulated genes, lower graph depicts downregulated genes. OPC2 and Ex7 show the highest 

level of both up and down regulated genes. d-e) The number of genes with known relationship 

to psychiatric phenotypes using available databases PsyGeNET and DisGeNET. d) 26 of the 96 

dysregulated genes were found in PsyGeNET  
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and showed an enrichment for MDD (Total, all the genes which overlap database for a given 

disorder; 100% association, the genes positively associated with the disease; 100% no 

association, the genes negatively associated with the disease; both, mixed findings (positive and 

negative) for a given gene related to the disease. e) (Left) 15 genes were found to be associated 

with depression related terms in DisGeNET.  (Right) The percentage of genes per cluster 

associated with MDD from DisGeNET, along with cluster specific enrichment of DisGeNET MDD 

associated genes. For hypergeometric tests, the number of depression-associated genes in 

DisGeNET was 1199 and the number of unique genes in DisGeNET was 17545 for all tests. The 

number of DEGs in DisGeNET (k) and the number of depression-associated DEGs (x) are listed:  

All clusters: k=85, x=15; OPC2: k=24, x=7; Ex7: k=19, x=3; Endo: k=2, x=1; Astro3: k=6, x=1; Ex3:  

k=2, x=1; In2:  k=11, x=1; In5: k=2, x=1.  

Figure 4: Differential expression and biological associations. a) String DB network for all DEGs 

with nodes corresponding to a set of biological processes and pathways highlighted (legend on 

right). b) Subset of genes shared between the immune function related terms and the steroid 

hormone receptor cycling pathway. c) Subset of genes involved in cytoskeletal function and 

kinesin activity. Colour strips beneath networks give a proportional representation of the 

contributing clusters.  

Figure 5: Weighted gene co-expression network analysis. a) Venn diagram of overlap between 

blue module genes and DEGs (hypergeometric test, p-value = 6.037692e-19). b) Venn diagram 

for overlap between blue module hub genes and DEGs (hypergeometric test, p-value = 

4.954172e-31). c) Visualization of the top 50 hub genes assessed for the blue module. DEG 

nodes and all edges connected to them are colored teal. d) Boxplots represent expression levels 

of DEGs validated with high-throughput qPCR in FAN sorted populations which were also hub 
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genes in the blue module. Mann-Whitney U tests (two-sided) were performed for PRAF2 as the 

values were not normally distributed based on the Shapiro Wilk’s test for normality. All other 

genes were tested with unpaired two-sided t-tests as their values were normally distributed. P-

values: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001. Whiskers on box plot represent 

maximum and minimum values.  Box extends from the 25th percentile to 75th percentile, the 

center line represents the median, and dots represent all values in the dataset. ATP6V0B: n=15 

cases, 11 controls, t=3.10, df=12.62, p-value=0.0087; CKB: n=9 cases, 7 controls, t= 2.48, 

df=16.85 p-value= 0.023 ; PRAF2: n=14 cases, 10 controls, U= 8, p-value=6.8 x 10-5; TKT: n= 16 

cases, 14 controls, t= 2.25, df=19.83, p-value=0.036; PLD3: n=15 cases, 14 controls, t= 3.06, df= 

15.83, p-value=0.0075; OTUB1: n=16 cases, 14 controls, t= 2.39, df=20.92, p-value=0.026; ACTB: 

n=14 cases, 15 controls, t=3.14, df= 19.98, p-value=0.0052; HNRNPK: n= 14 cases, 13 controls, 

t=2.41, df=16.07, p-value=0.028.  

Figure 6: Contributions of OPC2 and Ex7.  a) CCInx receptor ligand based cell-cell interaction 

network analysis for communication between Ex7 and OPC2. Given the large number of 

connections (Supplementary Tables 47a,b), a subset are shown. b) Our data points to a change 

in the communication between deep layer excitatory neurons (Ex7) and immature OPCs (OPC2). 

Altered FGF bidirectional signalling was identified via CCInx. We propose that immature OPCs 

have a very important role in regulating plastic properties of deep layer excitatory cells, such as 

neuron projection outgrowth and maintenance. Lines between cell types are labeled with 

secreted or junction proteins found to be dysregulated in the given cell type for example 

HPS90AA1 codes for the stress inducible isoform HSP90α, known to be secreted in certain 

contexts, KAZN is an upregulated junction protein in OPCs and ATP6V0B could represent altered 

ATP signaling. Arrows beside gene names indicate up or downregulation. Beside each cell type 

are the genes in given functional categories and their direction of change in the disease state. c) 
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Decreased expression of the gene encoding FGF1 intercellular Binding Protein (FIBP) was 

validated in deep layer neurons using RNAScope®. SLC17A7 (encoding VGLUT) was used as a 

marker for excitatory cells and RXFP1 was used to identify deep layer neurons. SLC17A7
+
, RXFP1

+
 

cells were imaged and FIPB expression was counted (Cases: n=119 nuclei, controls: n=100 nuclei, 

unpaired two-sided t-test, t = 2.49, df= 217, p = 0.013). d) Increased KAZN (cases: n=95 nuclei, 

controls: n=95 nuclei, unpaired two-sided t-test, t = -2.69, df= 188, p = 0.008) and e) decreased 

HSP90AA1 (cases: n = 87 nuclei, controls: n = 107 nuclei, unpaired two-sided t-test, t = 2.23, df= 

186, p= 0.027 expression were validated in OPCs using PDGFRA as a marker for oligodendrocyte 

precursor cells.  Whiskers on box plot represent the 5th and 95th percentile. Box extends from 

the 25th percentile to 75th percentile and the center line represents the median. Dots represent 

points beyond the 5th or 95th percentile. Scale bar represents 5µm. 
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Tables 

Table 1: Sample information 

 
Controls (n=17)  Cases (n=17) p value 

Age (years) 38.71 ± 4.32 41.06 ± 4.66 p=0.714 

Gender 17M 17M - 

PMI (hrs) 34.01 ± 4.94 41.69 ± 4.76 ᵻp=0.190 

pH 6.49 ± 0.06 6.60 ± 0.07 p=0.212 

Storage Time (years) 14.71± 1.44 12.47± 1.46 ᵻp=0.543 

Cause of death 
Accident (6),  
Natural (11) 

Suicide (17)  

Substance 
dependence 

None None  

Comorbid diagnoses None None  

Toxicology 
EtOH (2), 

Cannabinoids (1),  

EtOH (6), BZ (1), AD 
(2), Cannabinoids (1), 

Cocaine (1),  

 
 

Antidepressant 
Treatment 

None 3  

Mean ± SEM 
ᵻMann Whitney test 
NA – not applicable, EtOH – ethanol, BZ – benzodiazepines, AD – antidepressants, AC – 
anticonvulsants  
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Materials and Methods 

Subjects: Postmortem brain samples 

This study was approved by the Douglas Hospital Research Ethics Board, and written informed 

consent from next-of-kin was obtained for each subject. Postmortem brain samples were 

provided by the Douglas-Bell Canada Brain Bank (www.douglasbrainbank.ca). Frozen grey 

matter samples were dissected from Brodmann Area 9 (dlPFC). Brains were dissected by trained 

neuroanatomists and stored at -80 C. For each individual, the cause of death was determined 

by the Quebec Coroner’s office, and psychological autopsies were performed by proxy-based 

interviews, as described previously51. Cases met criteria for MDD and died by suicide whereas 

controls were individuals who died suddenly and did not have evidence of any axis I disorders 

(Table 1). Post mortem interval (PMI) represents the delay between a subject’s death and 

collection and processing of the brain.  To assess RNA quality, we measured the RIN obtained for 

our samples using tissue homogenates. An unpaired, two-tailed, Student’s t-test revealed no 

significant difference (p=0.15) in RIN between cases (mean RIN of 6.74) and controls (mean RIN 

of 6.16). 17 cases and 17 controls were included in the snRNA-seq experiment and the full 

cohort of subjects (except 25) was used for follow-up validation of DEGs by FANS and high 

throughput qPCR. RNAScope experiments were performed on representative subsets of samples 

using 5 cases and 5 matched controls. Detailed information on experimental design and 

reagents can also be found in the Life Sciences Reporting Summary. 

Nuclei isolation and capture 

50 mg of frozen tissue was dounced in 3 mL of lysis buffer, 10 times with a loose pestle and an 

additional 5 times with the tight pestle. The lysis buffer contained 10 mM Tris (pH 7.4), 10 mM 

NaCl, 3 mM MgCl2, and 0.05% (v/v) NP-40 detergent. The sample was left to lyse in a total of 5 

http://www.douglasbrainbank.ca/
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mL of buffer for 5 min, after which 5 mL of wash buffer was added and swirled. The sample was 

passed through a 30 μm cell strainer and spun for 5 min at 500 g. This step was repeated for a 

total of two filtering steps. After pelleting, the nuclei are resuspended in 5-10 mL of wash buffer 

by pipetting up and down 8-10 times. After 3 washes, the nuclei were resuspended in 1 mL of 

wash buffer and mixed with 25 % Optiprep™ and layered on a 29 % Optiprep™ cushion and spun 

for 30 min at 10,000 g. Nuclei were resuspended in wash buffer to achieve a concentration of 

~1x106 nuclei/mL. Representative images of extracted nuclei are presented in Supplementary 

Fig. 12.   

We used the 10x Genomics® Chromium™ controller for single cell gene expression to isolate 

single nuclei for downstream bulk RNA library preparation. We strictly followed the protocol as 

outlined by the user guide (CG00052_SingleCell3_ReagentKitv2UserGuide_RevE.pdf), with the 

exception of loading concentration, which we increase by 30% as we assessed the capture of 

nuclei to be slightly less efficient than cell encapsulation. We aimed to capture ~3000 nuclei per 

sample. So, for example, if our sample concentration was 390 nuclei/μL (~ 400 nuclei/ μL) 

according to page 10 of Protocol Step 1 we are required to load 13.1 μL of the stock to capture 

3000 cells. But instead, we would recalculate our stock concentration to be 70% of 390 = 273 

nuclei/ μL and load 17.4 μL (the recommended amount for 300 nuclei/ μL) instead. This system 

only allows for a maximum of 8 samples per capture run. As such, we required multiple batches 

to collect the individual nuclei for all 34 samples (6 batches). Samples 24 and 25 performed 

poorly, we therefore, carried out the capture on two separate chips and sequenced twice 

combining the data from both runs for the final analysis.  

Sequence Alignment and UMI Counting 

https://assets.ctfassets.net/an68im79xiti/UhAMGmlaEMmYMaA4A4Uwa/d65ff7b9bb5e88c2bb9e15e58f280e18/CG00052_SingleCell3_ReagentKitv2UserGuide_RevE.pdf
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A pre-mRNA transcriptome was built using the cellranger mkref (Cellranger version 2.0.1) 

command and default parameters starting with the refdata-cellranger-GRCh38-1.2.0 

transcriptome and as per the instructions provided on the 10X Genomics website. Reads were 

demultiplexed by sample index using the cellranger mkfastq command (Cellranger v2.1.0). Fastq 

files were aligned to the custom transcriptome, cell barcodes were demultiplexed, and UMIs 

corresponding to genes were counted using the cellranger count command and default 

parameters. 

Data Transformation for Secondary Analysis 

The unfiltered gene barcode matrices for each sample were loaded into R using the Read10X 

function in the Seurat R package (version 2.2.0, 2.3.0)19. Cell names were modified such that the 

subject name, batch, and biological condition were added to them. Seurat objects were created 

corresponding to each sample using the CreateSeuratObject function with the imported 

unfiltered gene-barcode matrices provided as the raw data. Individual Seurat objects for each 

sample were combined into one object using the MergeSeurat function sequentially. No filtering 

or normalization was performed up to this step. Since this is a single nucleus dataset, all 

mitochondrial genes that are transcribed from the mitochondrial genome were removed, along 

with genes not detected in any cell. 

Barcode and Gene Filtering 

Based on the distribution of nGene (total number of genes detected in each cell) for the total 

dataset (assessed by summary and hist R52 functions), barcodes that were associated with less 

than 110 detected genes were removed. Based on the distribution of nUMI (total numbers of 

UMIs detected in each cell), the top 0.5 % of barcodes were also excluded as most likely being 
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multiplets rather than single nuclei, as there was a very sharp increase of nUMI from 16,393 at 

the 99.5th percentile to 102,583 at the maximum.  

Next, the distribution of nUMI for the remaining barcodes was fit with three normal 

distributions using the normalmixEM function from the mixtools53 package (Supplementary Fig. 

1c). The rationale was that, the filtered barcodes contain a population of low quality “noise” 

barcodes that have a very low nUMI on average, a population of non-neuronal cells that have an 

intermediate nUMI and a population of neuronal cells that have a high nUMI. Based on the 

fitting of the normal distributions, only the barcodes with a high probability (> 0.95) of belonging 

to either the putative “non-neuronal” or putative “neuronal” distributions, and a low probability 

(<0.05) of belonging to the “noise” distribution were retained for further analysis 

(Supplementary Fig. 1c-d). 78,886 cells and 30,062 genes were retained.   

Our custom filtering (Supplementary Fig. 1a-e, Supplementary Table 4) helped to increase the 

number of glial cells recovered. With an initial subset of 20 subjects, applying our custom 

filtering increased the total number of cells 1.8–fold but increased the number of non-neuronal 

cells by almost 6-fold (data not shown). After custom filtering the minimum numbers of genes 

and UMIs per nucleus were 254 and 340 respectively. 

Once nuclei were filtered, the percentages of mitochondrial reads associated with the retained 

barcodes were calculated although for quality control purposes those reads were not used 

during the filtering or downstream analysis (Supplementary Fig. 1f). Although the percentage of 

reads mapping to mitochondrially expressed genes is a more pertinent quality control 

parameter for single-cell rather than single nucleus approaches, contaminating mitochondrial 

reads often present a problem in single-nucleus protocols (pers. comm., Lake, B.B.). However, 

our optimized approach was able to minimize this technical issue.   
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Data Processing and Dimensionality Reduction  

The UMI counts were normalized to 10,000 counts per cell and converted to log scale (Seurat 

function NormalizeData). The batch, condition, and subject information was added as metadata 

to the final Seurat object; nUMI and batch were regressed out using the ScaleData function. The 

Seurat FindVariableGenes function was used with default selections and cut-offs as follows: 

x.low.cutoff = 0.003, x.high.cutoff = 2, y.cutoff = 1. This resulted in a list of 2135 highly variable 

genes, which excludes lowly expressed genes (below 25th percentile), very highly expressed 

genes, and selects only the top 10 % of genes in terms of the scaled dispersion. These highly 

variable genes were used to calculate 100 principal components. Based on the PC elbow plot of 

the standard deviation of the PCs (Supplementary Fig. 2a), the first 50 PCs were retained for use 

in downstream analysis. 

Clustering by Gene Expression 

The FindClusters function was applied with a resolution of 2.5 and produced 44 initial clusters. 

The goal of clustering is to sort nuclei by cell type so that all remaining gene expression variation 

within clusters is not related to cell differentiation processes. Prior to the advent of single nuclei 

expression profiling, cell types were identified by observing differences in cell morphology, 

behaviour, and anatomic location. It is fairly straight-forward to sort single nuclei expression 

profiles into known cell types according to the expression levels of marker genes that 

differentiate between these cell types. However, it is very unlikely that all cell types have been 

identified so we must rely on nuclei clustering to uncover as-yet unknown cell types.  

Unfortunately, the number of clusters obtained from the clustering algorithm is somewhat 

arbitrary because clustering depends on the settings of several parameters, and there is no 

consensus on how they should be set. Although clusters obtained using reasonable default 
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settings usually correspond to known biological cell types, some clusters may appear to 

potentially identify entirely new cell types or splinter existing cell types into multiple subtypes. 

Deciding if the clusters really do identify new cell types can be difficult or may even be 

impossible from available data. 

To address this issue, we used tools in the Seurat package to sequentially combine any clusters 

that were not sufficiently distinct from each other. In particular, after performing initial 

hierarchical clustering of the graph-based clusters (BuildClusterTree), we assessed the nodes of 

the dendrogram using a random forest classifier (AssessNodes) and then merged together any 

nodes which were in the bottom 25 % of the dendrogram (using the branching.times function 

from the ape R package54) and had an out-of-bag-error of more than 5 %. We then repeated this 

clustering and merging process for the nuclei within each terminal node until none of the 

remaining nodes fulfilled our cut-off criteria (Supplementary Fig. 2b). The resulting set of 30 

clusters were then characterized in terms of known markers genes of all major, well-defined 

brain cell types (Supplementary Fig. 2c-d). For refining identification of excitatory neuron types, 

we combined and re-clustered a set of excitatory clusters with highly correlated gene expression 

profiles (R > 0.95) (Supplementary Fig. 13a-c) using similar parameters for clustering as the 

whole dataset. This included 7 clusters of ~40,000 cells.  Reclustering yielded 33 final clusters for 

downstream analysis. Finally, the clusters were manually curated to eliminate potential biases; 

for example, clusters were removed if mainly one sample contributed to the cells contained 

within the cluster (Supplementary Tables 48-51, Supplementary Fig. 14a-e). 

Cluster Annotation 

Genes used as markers for major cell-types and layer-specificity are listed below. Inhibitory 

neuron subtypes were annotated based on expression of canonical inhibitory interneuron 
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markers SST, PVALB, and VIP where possible. Excitatory neuron subtypes were annotated with 

some level of layer specificity based on expression of layer specific markers11, 55, 56. We also 

characterised clusters in terms of all genes differentially expressed between clusters 

(FindAllMarkers function, bimodal test, logfc.threshold of log(2), other parameters set to 

default) (Supplementary Table 6). 

Major cell-type markers (Supplementary Fig. 3a-p) 

Macrophage/ Microglia: SPI1, MRC1, TMEM119, CX3CR1; Endothelial: CLDN5, VTN; Astrocytes: 

GLUL, SOX9, AQP4, GJA1, NDRG2, GFAP, ALDH1A1, ALDH1L1, VIM; OPCs: PTGDS, PDGFRA, 

PCDH15, OLIG2, OLIG1; Oligodendrocytes: PLP1, MAG,MOG, MOBP, MBP; Excitatory neurons: 

SATB2, SLC17A7, SLC17A6; Inhibitory neurons: GAD1,GAD2, SLC32A1; Neurons: SNAP25,STMN2, 

RBFOX3. 

Layer-specific markers:  

L2: GLRA3; L2-3: LAMP5, CARTPT; L2-4: CUX2, THSD7A; L2-6: RASGRF2, PVRL3; L3-4: PRSS12; L4-

5: RORB; L4-6: GRIK4; L5: KCNK2, SULF2, PCP4, HTR2C, FEZF2; L5-6: TOX, ETV1, RPRM, RXFP1, 

FOXP2; L6: SYT6, OPRK1, NR4A2, SYNPR, TLE, NTNG2, ADRA2A 

 

Pseudotime trajectory using Monocle 

For oligodendrocyte developmental trajectory assessment, the data for cells belonging to the 

five clusters in the oligodendrocyte lineage (Oligos_1, Oligos_2, Oligos_3, OPCs_1, OPCs_2) were 

used to create a separate Seurat object using the SubsetData function. The most variable genes 

for these clusters alone were identified using the FindVariableGenes function and the following 

parameters: x.low.cutoff = 0.003, x.high.cutoff = 3, y.cutoff = 1 (giving a total of 895). The Seurat 

object was imported into a CDS (CellDataSet) object using the Monocle22 function importCDS.  
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Estimation of size factors and dispersions was performed (using the estimateSizeFactors and 

estimateDispersions Monocle functions) on the CDS object using default parameters. 

Dimensionality reduction was then performed using reduceDimension, with reduction_method 

set to DDRTree. The 895 variable genes identified as above were used for ordering the cells into 

a trajectory with the orderCells function. The pseudotime trajectory was then plotted with 

plot_cell_trajectory (Fig. 2e), and the change in expression of genes known to be involved in 

oligodendrocyte development were plotted using plot_genes_in_pseudotime (Supplementary 

Fig. 6b-i). differentialGeneTest was applied separately to oligodendrocyte lineage cells from 

control subjects and MDD cases with fullModelFormulaStr = "~sm.ns(Pseudotime)". This allows 

us to model the expression of each gene as a function of pseudotime.  All genes detected in at 

least one cell in the respective group were compared and their changes across pseudotime were 

assessed. A q-value cut-off of < 0.01 was used to identify genes associated with pseudotime. The 

overlapping and non-overlapping genes were identified by comparing the lists obtained for the 

two groups (Supplementary Fig. 6a).  

Purification of Clusters for Differential Expression 

Our doublet removal approach comprised of calculating a median gene expression profile for all 

our clusters, calculating the correlation of the gene expression of each cell, with the median 

profile of its cluster (considering only the top 865 genes whose median expression was highly 

variable, that is had a variance of > 0.25 across the different cluster) and selecting cells with high 

correlation. This was done by fitting bimodal normal distributions to the total distribution of 

correlations in the cluster to identify low and high correlation peaks. Cells were retained only if 

they had a low probability of falling in the low correlation peak (p < 0.25) and a high probability 

(p > 0.75) of falling in the high correlation peaks (Supplementary Fig. 7).  
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Differential Gene Expression Analysis 

Differential expression analysis between the cases and controls was performed using linear 

mixed models implemented in the lme457 and lmerTest58 R packages. Mixed models were 

necessary in order to account for dependencies between nuclei obtained from the same subject. 

Biological condition and number of UMIs were included in models as fixed effects and the 

subject and batch as random effects. The inclusion of subject as a random effect should account 

for subject specific effects such as age and PMI as well as technical effects of capture and library 

preparation which was performed separately for each subject. A false discovery rate (FDR) of 0.1 

was used to detect differentially expressed genes within each cell type.  

Weighted Gene Co-expression Network Analysis (WGCNA) 

Average cell-expression for each sample across every cluster was calculated. These average 

counts were converted to log + 1 counts to reduce dispersion. WGCNA analysis was carried out 

in R with the WGCNA package (version 1.68) by Langfelder and Horvath. Genes with insufficient 

variance were excluded as well as outlier samples. After some tests, a soft-thresholding power 

of 7 and a minimum module size of 30 genes were selected for the gene network construction. 

Resulting modules were correlated with the phenotype information (MDD vs Control), as well as 

each sample's respective composition of each of the 26 single-cell type clusters they're 

composed of. 

We performed hub gene analysis on the blue module, which was the largest module (2699 

genes) which was correlated to phenotype. Potential hub genes were identified in the module of 

interest my selecting genes with a module membership larger than 0.80 and a gene significance 

larger than 0.20 with a p-value of less than 0.05. The top 50 potential hub genes were extracted 



 

38 
 

alongside any weighted interaction of more than 0.2. The resulting network was visualized in 

Cytoscape (3.7.1). 

Fluorescence-assisted nuclei sorting (FANS) 

Nuclear suspensions were prepared from 80-100 mg of post-mortem brain tissue from BA9 as 

described previously 59 with the following modifications: homogenized tissue was centrifuged on 

the sucrose layer at 800g for 20 minutes at 4oC, followed by another centrifugation in nuclei 

extraction buffer. Resuspended nuclei were stained with the following primary antibodies in 600 

μL of blocking buffer: mouse anti-CUTL2-PerCP conjugated (1:100, Novus catalog no. 

H00023316-M03, clone 2H8, conjugated to PerCP using the Novus Lightning Link Labeling kit, 

catalog no. 718-0010), goat anti-SOX10 (1:100, R&D Systems catalog no. AF2864), mouse anti-

NeuN-A700 (1:300, Novus catalog no. NBP1-92693AF700, clone- 1B7) by incubating at room 

temperature, away from light, with rotation for 2 hours. Secondary antibody (donkey anti-goat 

Alexa Fluor 488, 1:1000, JacksonImmuno 705-545-147) was added and incubated for 1 hour at 

room temperature with rotation. All antibodies were purchased from Cedarlane. Nuclei were 

washed with PBS and the DNA was stained by Hoechst 33342 (Invitrogen, H1399).  

FACSAria Fusion (BD Biosciences, San Jose, CA) was used for sorting of four populations – SOX10 

positive, SOX10 negative, CUTL2 positive and CUTL2 negative. Gating strategy for the sorts is 

shown in (Supplementary Fig. 11) and was as follows. Doublet discrimination was achieved by 

gating of Hoechst 33342 stained singlets in FSC-A vs Hoechst-A plot using 350 nm UV laser and 

450/50 filter. Subsequent SOX10 positive, SOX10 negative and NeuN positive populations were 

gated in Alexa Fluor 700-A vs Alexa Fluor 488-A plot utilizing red 640 nm laser in combination 

with 730/45 filter and blue 488 laser in combination with 530/30 filter, respectively. CUTL2 

positive and negative populations, the derivatives of NeuN positive gate, were defined in Alexa 
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488-A vs PerCP-A (blue 488 laser, 695/40 filter) plot with interval gates. CUTL2 positive 

population was identified as 30-40% of NeuN positive population with highest CUTL2-PerCP 

fluorescence. For gating of CUTL2 negative population the SOX10 negative and SOX10 positive 

populations were displayed in Alexa 488-A vs PerCP-A plot and the CULT2 negative population 

was gated within PerCP intensities of SOX10 populations. CUTL2 negative population comprised 

near 10% of NeuN positive population. 

Validation information for antibodies is as follows: Novus H00023316-M03- validated in Western 

blot and ELISA, used in one publication in human brain tissue (PMID: 29126813); R&D Systems 

AF2864- validated in Western blot against human SOX10 protein, ELISAs, immunocytochemistry, 

19 citations; Novus NBP1-92693AF700- validated in immunocytochemistry, 

immunohistochemistry, Western blot, one publication for flow cytometry in human brain tissue 

(PMID: 28750583). 

High-throughput qPCR 

RNA was extracted from FANS sorted nuclei population using the Norgen RNA/DNA Purification 

Kit (Cat. 48700). cDNA was synthesized using a modified SMART-seq procedure as described 

previously 60. The Fluidigm Biomark system was used for performing high-throughput qPCR as 

per manufacturer protocol as previously described61. Fludigim Delta Gene™ primer designs were 

used for the 93 targets (all differentially expressed transcripts excluding AC133680.1) and 3 

endogenous controls (GAPDH, POLR2A, UBC).  

Cell-cell interaction measurement 

To assess cell-cell communication, we calculated predicted ligand-receptor interactions between 

Ex7 and OPC2 using CCInx62 (https://github.com/BaderLab/CCInx), in which the connection 
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between each ligand and receptor is quantified as an edge weight. We chose a gene expression 

threshold of 2.75 and above to limit our research to relatively highly expressed ligands and 

receptors and for ease of visualization. To test if the edge weights were significantly different 

between cases and controls, we randomly permuted our subjects into two groups 100 times and 

formed normal distributions of the edge weight differences between groups for each ligand-

receptor pair. We then calculated a p-value for the case-control edge weight difference for each 

ligand-receptor pair based on its position in the distribution. Edge weight difference p-values 

<0.01 were considered significant. A sample script used for assessing the significance of edges 

has been provided. 

Cell deconvolution for all clusters 

Expression data from (dbGaP:phs000424.v8.p1)11 was used as reference signatures for 

annotated cell types. UMI counts for each cell were converted to transcripts per million (TPMs) 

in order to account for the varying sequencing depth of each cell and sample. Average 

expression levels were calculated for each cell type-specific cluster defined in the paper. 

Cluster-specific gene expression profiles were obtained by summing the UMI values of all 24301 

genes common to our dataset and the reference for each nucleus in each cluster and converting 

the sums to TPMs. R package, DeconRNASeq v1.18.063 was used to deconvolute these cluster-

specific profiles. Using the data from11as reference, we were able to estimate the cell type 

composition of our clusters. 

Cell deconvolution for oligodendrocyte lineage  

Average expression from every control samples from the Jäkel et al. dataset were calculated and 

used as cell signatures for the deconvolution of our oligodendrocytic clusters (average cell 
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expression of every cell in the cluster considered as bulk) using the R package DeconRNASeq (v 

1.26.0). 

RNA-Scope Fluorescent In Situ Hybridization 

Frozen BA9 blocks were cut serially with a cryostat (10µm thickness) on superfrost charged 

slides and kept at -80oC until further processed. In situ hybridization was performed using 

Advanced Cell Diagnostics RNAscope® probes and reagents according to the manufacturer 

instructions in 5 matched subjects per group. Briefly, sections were first fixed in chilled 10% 

neutral buffered formalin for 15 mins at 4oC, dehydrated by increasing gradient of ethanol 

bathes and left to air dry for 5 minutes. Endogenous peroxidase activity was quenched with 

hydrogen peroxide reagent for 10 minutes, followed by protease digestion for 30 minutes at 

room temperature. The following sets of probes were then hybridized for 2 hours at 40oC in a 

humidity-controlled oven (HybEZ II, ACDbio): Hs-RXFP1 (cat. no. 422821), Hs-FIBP (cat. no. 

569781-C2) and Hs-SLC17A7 (cat. no. 415611-C3) to quantify FIBP expression in excitatory 

(SLC17A7+) layer 5-6 (RXFP1+) neurons; KAZN (cat. no. 569791) and PDGFRA (cat. no. 604481-

C3), and HSP90AA1 (cat. no. 477061)  to quantify KAZN expression in OPCs (PDGFRA+). 

Successive addition of amplifiers was performed using the proprietary AMP reagents, and the 

signal visualized through probe-specific HRP-based detection by tyramide signal amplification 

with Opal dyes (Opal 520, Opal 570 and Opal 690; Perkin Elmer) diluted 1:300. Slides were then 

coverslipped with Vectashield mounting medium with DAPI for nuclear staining (Vector 

Laboratories) and kept at 4oC until imaging.  

Imaging and analysis of in situ RNA expression 

Image acquisitions was performed on a FV1200 laser scanning confocal microscope (FV1200) 

equipped with a motorized stage. For each experiment and subject, around 10 stack images 
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were taken to capture at least 20 cells of interest per subject: excitatory neurons (SLC17A7+) 

from cortical layers 5-6 (RXFP1+), and OPCs (PDGFRA+). Images were taken using a x60 objective 

(NA = 1.42) with a XY pixel width of 0.3µm and Z spacing of 0.4µm. Laser power and detection 

parameters were kept consistent between subjects for each set of experiment. Because TSA 

amplification with Opal dyes yields a high signal to noise ratio, parameters were set so that 

autofluorescence from lipofuscin and cellular debris was filtered out of the image. Positivity for 

cell defining markers was determined by bright clustered puncta-like signal present within the 

nucleus and cytoplasm of the cells. Expression of genes of interest was quantified using the 

“Analyze Particles” function in Fiji 64. Stacks were first converted to Z-projections, and for each 

image cell nuclei of cells of interests were manually contoured based on DAPI expression. Single 

labeled molecules of RNA were automatically counted in each channel using the find maxima 

function with a noise tolerance of 350 for FIBP and RXFP1, and 400 for KAZN and PDGFRA. 

Normalized FIBP and KAZN expression per cell was calculated by dividing FIBP and KAZN raw 

counts to RXFP1 and PDGFRA raw counts respectively. HSP90AA1 expression was quantified by 

manually thresholding the signal per image and measuring the percentage of area of the nucleus 

covered by the resulting mask. 

Statistical analysis 

No statistical methods were used to predetermine sample size. Sample size was determined 

based on sample sizes used in previous similar studies. Subjects were assigned to groups based 

on diagnosis and not by random assignment. All subjects were male, and groups were matched 

for age (18-87 years), post-mortem interval (12-93 hours), and brain pH (6-7.01). Clinicians were 

blinded for final psychiatry autopsy diagnosis of MDD case or control. Clustering of single nuclei 
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gene expression profiles was performed in an unbiased blinded manner. Cluster annotations 

were assigned after generation of clusters.  

Clusters were excluded from downstream analysis if they did not show even contribution from 

subjects as these clusters are likely to reflect sample specific artifacts rather than biological 

variability of interest. Single-nuclei were excluded from cell-type clusters based on their level of 

correlation to the median expression profile of the cluster (lowly correlated nuclei were 

removed) as detailed above to ensure that differential gene expression analysis was performed 

using similar nuclei populations from cases and controls. The exclusion criteria were not pre-

established and were chosen based on preliminary analysis of the data. 

Differential expression analysis between the cases and controls in the snRNA-seq data was 

performed using linear mixed models implemented in the lme457 and lmerTest58 R packages 

with biological condition and number of UMIs as fixed effects, the subject and batch as random 

effects, and a false discovery rate of 0.1 for significance. All DEGs from this analysis were also 

significantly differentially expressed between cases and controls when re-tested using two-

tailed Wilcoxon tests (Supplementary Table 52). For analysis of RNAScope results, two-tailed t-

tests were performed with a significance threshold of p < 0.05 and data distribution was 

assumed to be normal but this was not formally tested. For analysis of high-throughput qPCR 

data two-tailed t-tests or two-tailed Wilcoxon rank sum (i.e. Mann Whitney U tests) were 

performed, both at a significance threshold of p <0.05, and depending on data normality as 

measured by the Shapiro Wilk’s test. The results in Supplementary Tables 43-46 are for genes 

reliably detected in > 9 subjects per group.  

Data Availability 
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Raw sequencing data, annotated gene-barcode matrix, and lists of cells used for differential 

gene expression analysis are accessible on GEO using the accession number GSE144136 or using 

this link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136. RNAScope and high-

throughput qPCR data are available upon request.  

Code Availability 

A sample custom R script (Supplementary_R_Script_1.R) used for analyzing high-throughput 

qPCR data is provided and an R script used to test the statistical significance of CCInx 

interactions is provided (Supplementary_R_Script_2.R) along with this paper. 

  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144136
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