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WITH A QUASICONVEX HIERARCHY

DANIEL T. WISE

Abstract. Let G be a word-hyperbolic group with a quasiconvex hierarchy.

We show that G has a finite index subgroup G′ that embeds as a quasiconvex
subgroup of a right-angled Artin group. It follows that every quasiconvex

subgroup of G is a virtual retract, and is hence separable. The results are

applied to certain 3-manifold and one-relator groups.

1. Introduction and main results

This announcement concerns a growing body of work much of which is joint with
Frédéric Haglund, Chris Hruska, Tim Hsu, and Michah Sageev.

Many groups that arise naturally in topology and combinatorial group theory
(e.g. a one-relator group, or 3-manifold group, or HNN extension of a free group
along a cyclic subgroup) are associated with small low-dimensional objects. The
overall picture presented here suggests that it can be very fruitful to sacrifice the
small initial “presentation” in favor of a higher-dimensional but much more orga-
nized structure, since this can reveal many hidden properties of the group.

1.1. Main theorem.

Definition 1.1 (Quasiconvex hierarchy). A trivial group has a length 0 quasiconvex
hierarchy. For h ≥ 1, a group G has a length h quasiconvex hierarchy if G ∼= A∗C B
or G ∼= A∗Ct=C′ where A,B have quasiconvex hierarchies of length ≤ (h− 1), and
C is a finitely generated group such that the map C → G is a quasi-isometry with
respect to word metrics.

The main result is the following [47]:

Theorem 1.2. If G is word-hyperbolic and has a quasiconvex hierarchy then G is
the fundamental group of a compact nonpositively curved cube complex X that is
virtually special.

A similar result holds for many groups that are hyperbolic relative to virtually
abelian subgroups, and I expect that it holds in general for such groups. However,
hyperbolicity cannot be relaxed too much here: For instance, the Baumslag-Solitar
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group 〈a, t | (a2)t = a3〉 is an example of a one-relator group with a (nonquasicon-
vex) hierarchy, and there are torsion-free irreducible lattices in Aut(T × T ) that
have quasiconvex hierarchies [7, 51], but none of these groups is virtually special.

1.2. Application to one-relator groups. A one-relator group is a group having
a presentation 〈a, b, · · · | Wn〉 with a single defining relation. Assuming that W
is reduced and cyclically reduced and is not a proper power, the one-relator group
has torsion if and only if n ≥ 2. In this case, all torsion is conjugate into 〈W 〉 ∼= Zn

and the group is virtually torsion-free. We refer to [32] for more information on
one-relator groups. A significant feature of one-relator groups with torsion is that
they are word-hyperbolic, since the Newman Spelling Theorem provides very strong
small-cancellation behavior. It became clear in the 60’s that one-relator groups with
torsion are better behaved than general one-relator groups, and to test this Gilbert
Baumslag made the following:

Conjecture 1.3 ([4]). Every one-relator group with torsion is residually finite.

The main tool for studying one-relator groups is the Magnus hierarchy. Roughly
speaking, every one-relator group G is an HNN extension H∗Mt=M ′ of a simpler
one-relator group H where M and M ′ are free subgroups generated by subsets of
the generators of the presentation of G. The hierarchy terminates at a virtually
free group of the form Zn ∗ F . For one-relator groups with torsion, we show that
the subgroups M,M ′ are quasiconvex at each level of the hierarchy in [47]. This
result depends upon a variant of the Newman spelling theorem [24, 31]. When G
is a one-relator group with torsion, and G′ is a torsion-free finite index subgroup,
the induced hierarchy for G′ is a quasiconvex hierarchy that terminates at trivial
groups (instead of finite groups) and is thus covered by Theorem 1.2.

Theorem 1.4. Every one-relator group with torsion is virtually special.

As discussed in Section 3, a virtually special word-hyperbolic group has very
strong properties, and in particular it is residually finite, so Conjecture 1.3 follows
from Theorem 1.4.

1.3. Application to 3-manifolds. Prior to Thurston’s work, the main tool used
to study 3-manifolds was a hierarchy which is a sequence of splittings along incom-
pressible surfaces until only 3-balls remain. (An incompressible surface is a 2-sided
π1-injective surface along which the fundamental group splits as either an HNN
extension or an amalgamated free product.)

It is well-known that every irreducible 3-manifold with an incompressible surface
has a hierarchy and every irreducible 3-manifold with boundary has an incompress-
ible surface. It is a deeper result that for a finite volume 3-manifold with cusps,
there is always an incompressible geometrically finite surface [10]. In general, an
incompressible surface in a hyperbolic 3-manifold is either geometrically finite or
virtually corresponds to a fiber (see [6]). A fundamental result of Thurston’s about
subgroups of fundamental groups of infinite volume hyperbolic manifolds ensures
that if the initial incompressible surface is geometrically finite, then the further
incompressible surfaces in (any) hierarchy are geometrically finite (see the survey
in [8]). Finally, we note that the geometrical finiteness of an incompressible surface
where the 3-manifold splits, corresponds precisely to the quasi-isometric embedding
of the corresponding subgroup along which the fundamental group splits. Thus, if
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M has an incompressible surface then π1M has a quasiconvex hierarchy and we
have:

Theorem 1.5. If M is a hyperbolic 3-manifold with an incompressible geometrically
finite surface then π1M is virtually special.

We expect that all hyperbolic fibered 3-manifolds have finite covers with incom-
pressible geometrically finite surfaces, so that all Haken hyperbolic 3-manifolds are
virtually special.

Corollary 1.6. If M is a hyperbolic 3-manifold with an incompressible geometri-
cally finite surface then π1M is subgroup separable.

In the 80’s Thurston suggested that perhaps every hyperbolic 3-manifold is vir-
tually fibered. The key to proving the virtual fibering problem is the following
beautiful result which weaves together several important ideas from 3-manifold
topology [2]:

Proposition 1.7 (Agol’s fibering criterion). Let M be a compact 3-manifold, and
suppose that π1M is residually finite Q-solvable. (This holds when π1M is residually
torsion-free nilpotent). Then M has a finite cover that fibers.

For a Haken hyperbolic 3-manifold M , either it virtually fibers, or the first
incompressible surface is geometrically finite. In this case the virtual specialness
implies that M has a finite cover with π1M̂ contained in a graph group which is
residually torsion-free nilpotent, so we have:

Corollary 1.8. Every hyperbolic Haken 3-manifold is virtually fibered.

1.4. Application to limit groups. Fully residually free groups or limit groups
have been a recent focal point of geometric group theory. These are groups G with
the property that for every finite set g1, . . . , gk of nontrivial elements, there is a free
quotient G → Ḡ such that ḡ1, . . . , ḡk are nontrivial. Among the many wonderful
properties proved for these groups is that they have a rather simple cyclic hierarchy
terminating at free groups.

(1) A ∗Z B where Z is cyclic and malnormal in A, and A,B have such hierar-
chies.

(2) A∗Zt=Z′ where Z is cyclic and malnormal in A and Z,Z ′ do not have
nontrivially intersecting conjugates.

(3) A ∗Z B where Z is cyclic and malnormal in A and B ∼= Z ×Zn for some n.

This hierarchy was obtained in [30], and is also implicit in Sela’s retractive tower
description of limit groups [45]. This hierarchy allows one to prove that limit groups
are hyperbolic relative to free abelian subgroups [11, 3]. Using this cyclic hierarchy
and the relative hyperbolicity we are able to see that:

Corollary 1.9. Every limit group is virtually special.

Combined with subgroup separability results for virtually special groups that
are hyperbolic relative to abelian subgroups we are able to recover Wilton’s result
that limit groups are subgroup separable [46].
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2. Cubulating groups

2.1. Nonpositively curved cube complexes. Gromov introduced nonpositively
curved cube complexes as a source of simple examples, but they have turned out
to play an unexpectedly wide role. An n-cube is a copy of [−1, 1]n and a 0-cube
is a single point. We regard the boundary of an n-cube as consisting of the union
of lower dimensional cubes. A cube complex is a cell complex formed from cubes,
such that the attaching map of each cube is combinatorial in the sense that it sends
cubes homeomorphically to cubes by a map modelled on a combinatorial isometry
of n-cubes. The link of a 0-cube v is the complex whose 0-simplices correspond to
ends of 1-cubes adjacent to v, and these 0-simplices are joined up by n-simplices
for each corner of an (n + 1)-cube adjacent to v.

A flag complex is a simplicial complex with the property that any finite pairwise-
adjacent collection of vertices spans a simplex. A cube complex C is nonpositively
curved if link(v) is a flag complex for each 0-cube v ∈ C0. A map φ : Y → X
between nonpositively curved cube complex is a local-isometry if for each y ∈ Y 0

the induced map link(y) → link(φ(y)) is an adjacency preserving embedding.

2.2. CAT(0) cube complexes and hyperplanes. Simply-connected nonposi-
tively curved cube complexes are called CAT(0) cube complexes because they ad-
mit a CAT(0) metric where each n-cube is isometric to [−1, 1]n ⊂ Rn however
we rarely use this metric. Instead, the crucial characteristic properties of CAT(0)
cube complexes are the separative qualities of their hyperplanes: A midcube is the
codimension-1 subspace of the n-cube [−1, 1]n obtained by restricting exactly one
coordinate to 0. A hyperplane is a connected nonempty subspace of C whose in-
tersection with each cube is either empty or consists of one of its midcubes. The
1-cells intersected by a hyperplane are dual to it.

Remark 2.1. Hyperplanes have several important properties [42]:
(1) If D is a hyperplane of C then C −D has exactly two components.
(2) Each midcube of a cube of C lies in a unique hyperplane.
(3) A hyperplane is itself a CAT(0) cube complex.
(4) The union of all cubes that D passes through is a convex subcomplex of C

(with respect to both the combinatorial and path metrics).

2.3. Hulls. The smallest subcomplex containing one of the two components of
X̃ −D is a halfspace of X̃. Each such halfspace is a convex subcomplex of X̃. The
combinatorial convex hull of a subspace S ⊂ X̃ is the intersection of all halfspaces
containing S. We showed in [17, 43] that:

Lemma 2.2 (Cocompact Convex Hulls). Let G be a word-hyperbolic group acting
properly and cocompactly on a CAT(0) cube complex X̃. Let H be a quasiconvex
subgroup. For each compact set C, the subcomplex Ỹ = Hull(HC) is H-cocompact.

A similar result holds in the relatively hyperbolic case, but Ỹ is H-cosparse in
the sense that H\Ỹ is quasi-isometric to the wedge of finitely many euclidean flats
and half-flats.

Such cores have proven invaluable for the study of subgroups of free groups, and
began to appear in higher dimensions with the work in [44].

The immediate purpose of Lemma 2.2 is to provide a compact local-isometry
Y → X representing a quasiconvex subgroup H of G. For instance, Theorem 3.6
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holds by combining Theorem 3.3 with Lemma 2.2. However, Lemma 2.2 plays a
larger role in facilitating the small-cancellation theory we discuss in Section 5.

2.4. Cubulating groups and spaces. H is a codimension-1 subgroup of the
finitely generated group G if for some r, the complement of its r-thickening Nr(H)
in the cayley graph Γ(G) has at least two deep components, where a component D
is deep if D 6⊂ Ns(H) for any s > 0. Examples of codimension-1 subgroups include
edge groups of nontrivial splittings, closed surface subgroups of 3-manifold groups,
and any copy of Zn inside Zn+1.

For a separating subspace A ⊂ B, its full preimage Ã ⊂ B̃ consists of various
components each of which separates B̃. There is a tree dual to this data whose
vertices correspond to components of Ã − B̃, and whose edge correspond to com-
ponents of B̃. In analogy with this, for a collection of codimension-1 subgroups Hi

with ri-thickenings N i = Nri
(Hi), the translates gN i form a collection of “walls”

in Γ(G) and Sageev defined a CAT(0) cube complex C that is dual to this system
of walls, as well as an action of G on C [42] (see also [15, 41]). We note that the
hyperplanes of C correspond to the walls of G. This situation has been abstracted
to groups acting on the wallspaces of Haglund and Paulin [9, 35].

Sageev proved that G acts cocompactly on C when the Hi are quasiconvex
and G is word-hyperbolic. We have investigated finiteness properties focusing on
properness and relative cocompactness when G is relatively hyperbolic in [22, 23].
A quick summary is that the action is proper when there are sufficiently many
codimension-1 subgroups, and the action is relatively cocompact when the sub-
groups are quasi-isometrically embedded and G is relatively hyperbolic. Following
the structure that arose in [49], when G is hyperbolic relative to virtually abelian
subgroups, we found that the action is cosparse in the sense that the quotient G\C
is quasi-isometric to the union of finitely many euclidean flats and half-flats, in a
sense vaguely reminiscent of a cusped hyperbolic manifold (but with thicker cusps).

Some further work along these lines is: Cubulation of Coxeter groups [34], of
certain small-cancellation groups [49], of Gromov’s random groups at density < 1

6
[37], and of rhombus groups related to Penrose tilings [29].

2.5. Cubulating malnormal amalgams. A subgroup M ⊂ G is (almost) mal-
normal if M ∩Mg is trivial (finite) unless g ∈ M . In [26] we prove the following:

Theorem 2.3 (Cubulating Malnormal Amalgams). Let G = A ∗C B split as an
amalgamated product with the following properties. Then G acts properly and co-
compactly on a CAT(0) cube complex.

(1) C is quasiconvex in G.
(2) C is almost malnormal in G.
(3) A and B act properly and cocompactly on a CAT(0) cube complex.
(4) Every quasiconvex codimension-1 subgroup of C extends to a quasiconvex

codimension-1 subgroup of A and B.

A special case of this was described in [25] where we cubulated graphs of free
groups with cyclic edge groups provided they do not contain Baumslag-Solitar sub-
groups 〈a, t | (am)t = an〉 with m 6= ±n both nonzero. There is a similar statement
for groups that are hyperbolic relative to virtually abelian subgroups, and also sim-
ilar statement that hold for general graphs of groups. Note that for a subgroup
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H ⊂ G, we say that a quasiconvex codimension-1 subgroup U ⊂ H extends to a
quasiconvex codimension-1 subgroup V ⊂ G provided that U = V ∩H.

3. Special cube complexes

3.1. Graph groups. Let Γ be a simplicial graph. The right-angled Artin group or
graph group G(Γ) associated to Γ is presented by:

〈 v : v ∈ vertices(Γ) | [u, v] : (u, v) ∈ edges(Γ) 〉

A fundamental example of a nonpositively curved cube complex arises from a
graph group. This is the cube complex C(Γ) containing a torus Tn for each copy
of the complete graph K(n) appearing in Γ. Note that the torus Tn is isomorphic
to the usual product (S1)n obtained by identifying opposite faces of an n-cube. We
note that π1C(Γ) ∼= G(Γ) since the 2-skeleton of C(Γ) is the standard 2-complex of
the presentation above.

Proposition 3.1 (Properties). Graph groups have the following properties:
(1) They are residually torsion-free nilpotent [14].
(2) They are linear [28].
(3) They embed in right-angled Coxeter groups and hence in SLn(Z) [27, 12].

3.2. Special cube complexes. In [21] we defined “special cube complexes” and
examined some of their properties. We first defined them in terms of illegal hy-
perplane pathologies, and subsequently found a simple characterization in terms of
local isometries to the cube complex of a graph group. The hyperplane pathology
definition of special cube complexes arose from our desire to define canonical com-
pletion and retraction above dimension one. In this sense, special cube complexes
are “generalized graphs”. The theory successfully generalizes to arbitrary dimen-
sions the notion of “clean VH-complex” which was studied in [50] and [48]. While
a CAT(0) cube complex is a faithful generalization of a tree, it turns out that non-
positively curved cube complexes are less transparent. Special cube complexes are
an effective and flexible high-dimensional generalization of a graph, and faithfully
capture many of the properties of a graph that lead to the tractable study of free
groups. The class of groups that are fundamental groups of special cube complexes
is surprisingly rich.

3.3. Hyperplane definition of special cube complex. Let C be a cube com-
plex and let M denote the disjoint union of the collection of midcubes of cubes
of C. Let D denote the quotient space of M induced by identifying faces of mid-
cubes under the inclusion map. The connected components of D are the immersed
hyperplanes of C.

We shall define a special cube complex as a cube complex which does not have
certain pathologies related to its immersed hyperplanes.

An immersed hyperplane D crosses itself if it contains two different midcubes
from the same cube of C.

An immersed hyperplane D is 2-sided if the map D → C extends to a map
D × I → C which is a combinatorial map of cube complexes.

A 1-cube of C is dual to D if its midcube is a 0-cube of D. When D is 2-sided,
it is possible to consistently orient its dual 1-cubes so that any two dual 1-cubes
lying (opposite each other) in the same 2-cube are oriented in the same direction.
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Figure 1. Immersed Hyperplane Pathologies

An immersed 2-sided hyperplane D self-osculates if for one of the two choices of
induced orientations on its dual 1-cells, some 0-cube v of C is the initial 0-cube of
two distinct dual 1-cells of D.

A pair of distinct immersed hyperplanes D,E cross if they contain midcubes
lying in the same cube of C. We say D,E osculate, if they have dual 1-cubes
which contain a common 0-cube, but do not lie in a common 2-cube. Finally, a
pair of distinct immersed hyperplanes D,E inter-osculate if they both cross and
osculate, meaning that they have dual 1-cubes which share a 0-cube but do not lie
in a common 2-cube.

A cube complex is special if all the following hold:
(1) No immersed hyperplane crosses itself.
(2) Each immersed hyperplane is 2-sided.
(3) No immersed hyperplane self-osculates.
(4) No two immersed hyperplanes inter-osculate.

Example 3.2. (1) Any graph is special.
(2) Any CAT(0) cube complex is special.
(3) The cube complex associated to a right-angled Artin group is special.

Special cube complexes were fashioned to admit the following property:

Theorem 3.3 (Canonical Completion and Retraction). Let φ : Y → X be a
local-isometry of nonpositively curved cube complexes where Y is compact and X is
special. There exists a finite cover X̂ → X so that φ : Y → X lifts to an embedding
φ̂ : Y ↪→ X̂ and there is a retraction map X̂ → φ̂(Y ).

3.4. Right-angled Artin group characterization: We gave the following char-
acterization of special cube complexes in [21]:

Proposition 3.4. A cube complex is special if and only if it admits a combinatorial
local isometry to the cube complex of a right angled Artin group.

A quick explanation of Proposition 3.4 is that for a local isometry B → C, the
prohibited hyperplane pathologies on C induce the same prohibited pathologies in
B. On the other hand, if C is special, then we define a graph Γ whose vertices
are the immersed hyperplanes of C, and whose edges correspond to intersecting
hyperplanes. Then there is a natural map C → C(Γ) which is a local isometry.

3.5. Virtual specialness. We refer the reader to [21] and especially [20] where a
version of the following criterion is given that works in the presence of torsion.

Proposition 3.5 (Double Coset Criterion). Let X be a nonpositively curved cube
complex with finitely many immersed hyperplanes. Then X is virtually special if
and only if for each pair of immersed hyperplanes A,B and choice of basepoint
x ∈ A ∩B, the double coset π1Aπ1B is separable in π1X.
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Using the double coset criterion we specialized Coxeter groups [20] and simple
hyperbolic arithmetic groups [5, 18]. This generalizes the results of [1].

Theorem 3.6 (Separability). If G is word-hyperbolic and virtually special then
every quasiconvex subgroup is separable.

In [19] we prove the following result which is considerably deeper than the virtual
specialness criterion of Proposition 3.5:

Theorem 3.7 (Special Malnormal Combination). Let Q be a compact nonpositively
curved cube complex with an embedded 2-sided hyperplane H. Suppose that π1Q is
word-hyperbolic. Suppose that π1H ⊂ π1X is malnormal. Let N(H) denote the
open cubical neighborhood of H. Suppose that each component of Q − N(H) is
virtually special. Then Q is virtually special.

4. Working under the LERF assumption

If we assume that a word-hyperbolic group G has separable quasiconvex sub-
groups, and that G has a quasiconvex hierarchy, then it is substantially easier to
prove that G is virtually special, and indeed, much of our introduced technology
can be sidestepped. One first finds a collection of sufficiently many codimension-1
quasiconvex subgroups in G so that the action on the dual cube complex given by
Sageev’s construction is proper and cocompact. One then applies Proposition 3.5
to the resulting cube complex in order to pass to a finite cover. It is easy to imagine
approaches to do this for many groups (such as generic hyperbolic Haken 3-manifold
groups).

One very specific way to implement this is as follows: Using separability we can
pass to a finite index subgroup so that each edge group arising in the splittings
of the hierarchy is malnormal [22]. We can then utilize Theorem 2.3 to obtain
the desired cubulation as we proceed up the hierarchy, and at each stage obtain
virtually specialness by Proposition 3.5.

Theorem 2.3 and Theorem 3.7 taken together can prove the virtual specialness
of a malnormal quasiconvex hierarchy, which we reckon is the generic situation. It
appears to require more elaborate methods to prove the theorem for an arbitrary
quasiconvex hierarchy.

5. Small-cancellation theory over cube complexes

The third ingredient in the proof of Theorem 1.2 is a “small-cancellation theory
over cube complexes”.

This work joins a variety of generalizations of small-cancellation theory includ-
ing works of [38, 33, 39, 16]. One difference is that our theory doesn’t require a
hyperbolic or even relatively hyperbolic base, but is certainly facilitated by it. It is
also a bit more combinatorial than geometric among the spectrum of theories, and
I hope lends itself more easily to explicit production of examples. We note that
related small-cancellation theories were developed recently in [13].

A cubical relative presentation 〈X | Y1, . . . , Yr〉 has “generators” consisting of
a nonpositively curved cube complex X, together with “relators” consisting of a
collection of local-isometries Yi → X. In the classical case, X is a bouquet of circles
and each Yi is a closed immersed path. Letting X∗ denote the space obtained by
attaching a cone C(Yi) along its base Yi → X, we define the group of the cubical
relative presentation to be π1X

∗.
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A case of interest is the graphical small-cancellation theory [40] which reappeared
more recently as a special case of a theory of Gromov’s [36]. This is where X is
1-dimensional and each Yi → X is a combinatorial immersion of graphs.

The “pieces” in the presentation are overlaps between relators and relators or
hyperplanes (the latter pieces don’t appear in dimension one). When the pieces
in each relator Yi are small relative to the systole of Yi, then we obtain a small-
cancellation theory equipped with a Greendlinger’s lemma.

When each relator Yi has a certain additional wallspace structure generalizing
the B(6) condition in [49], then the universal cover of X∗ contains a natural system
of walls. Under sufficiently stringent small-cancellation conditions we are able to
verify that the walls are quasiconvex, and to obtain a proper action on a CAT(0)
cube complex. Under further conditions, we are able to obtain splittings along
walls, and a quasiconvex hierarchy for π1X

∗.
It is hard to say what the main result is since the definitions are more important

than the theorems. The following sample result gives some idea of the scope here.
In ordinary small-cancellation theory, when W1, . . . ,Wr represent distinct conju-
gacy classes, the presentation 〈a, b, . . . | Wn1

1 , . . . ,Wnr
r 〉 is “small-cancellation” for

sufficiently large ni. In analogy with this we have the following:

Theorem 5.1. Let X be a nonpositively curved cube complex. Let Yi → X be
a compact local isometry for 1 ≤ i ≤ r such that each π1Yi is malnormal, and
π1Yi, π1Yj do not share any nontrivial conjugacy classes. Then 〈X | Ŷ1, . . . , Ŷr〉
is a “small-cancellation” cubical relative presentation for sufficiently large “girth”
finite covers Ŷi → Yi.

Moreover, if X is compact and each of its immersed hyperplanes has separable
fundamental group, then we can choose the Ŷi such that 〈X | Ŷ1, . . . , Ŷr〉 has a
hierarchy (and so π1X

∗ has a quasiconvex hierarchy).

The following theorem is already nontrivial in the case where G is free and
each Hi is cyclic (although there is a simplified proof in that case). This plays a
fundamental role in proving Theorem 1.2.

Theorem 5.2 (Special Quotient Theorem). Let G be a word-hyperbolic group that
is virtually π1X where X is compact and special. Let H1, . . . ,Hk be quasiconvex
subgroups. There exist finite index subgroups H ′

1, . . . ,H
′
k such that G/〈〈H ′

1, . . . ,H
′
k〉〉

is virtually special.

6. Conclusion: A scheme for understanding groups

A “grand plan” for understanding many groups can be outlined by:
(1) “Find” codimension-1 subgroups in a group G.
(2) Use Sageev’s construction to produce a CAT(0) cube complex C upon which

G acts.
(3) Verify that G acts properly and relatively cocompactly on C by examining

the extrinsic nature of the codimension-1 subgroups.
(4) Consequently G is the fundamental group of a nonpositively curved cube

complex. D = G\C (note that D is an orbihedron if G has torsion).
(5) Find a finite covering space E of D, such that E is special.
(6) Conclude that G is linear - indeed it is contained in SLn(Z), and that the

geometrically best behaved subgroups of G are separable
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A general principle that one hopes to demonstrate by way of many classes of
examples, and perhaps in the context of Gromov’s theory of random groups is the
following:

Contention: Most groups presented with relatively few relations compared to the
number of generators, have a finite index subgroup that is the fundamental group
of a special cube complex.

6.1. The virtual Haken problem for cube complexes. Resolution of the fol-
lowing problem would shed light on all aspects of this work:

Problem 6.1. Let X be a compact nonpositively curved cube complex such that
π1X is word-hyperbolic. Does X have a finite cover in which some immersed
hyperplane embeds?

There are counterexamples when π1X is not word-hyperbolic [47].
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