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The main theorem we prove is the following:

-

/

.Suppose E = f(x,y) is a polynomial

A4

in two variables over a field

k, and-f "has one rational place at infinity".

Then the poiy-

.

nomial £ - t over k(t), t transcendental over k, has pne‘purely

inseparable place at infinity, i. e.p‘hés éeometricaily’one

]

place at infinity.

This result and its proéf help to establishrtﬂé following:
. o™,
i) .If .f has one rational place at infinity, then so does f - X,

N

for all but finitely many A fin k.

ii) of the polynomials £ - A satisfyind i), all but finitely

—_—

. ., many have multiplicity sequences at infinity identical to

that of £ - t over "k (t). ‘ 4 : ‘ -

These results generaligze certain well-known theorems (among

them the Epimofphism Theorem)

cannot be strengthened. In the

given to show that i) and-ii)

last sectipn, partial results are given towards the problem of

ﬁplassifying all lines in the plané in, positive bharactefistic.

¢ ' /

of Athankar~anthoh. Examples aée
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i) sif §6sséde une sed&e place rationelle a.1'infini, alors

Le théoréme principal du'on prouve est le suivantg s

o

- - v

.Boit £ = £(x,y) un polygﬁme en deux 'variables sur un corps Kk,
. ) ’ g

f ayanE une seule place rationelle a4 1'infini. Alors le pdly:

n6me'f - t sur k(t), t transcendante'par rapport a k, posséde .

' -
.

une seule place purement inséparable & l!infini, c'est-a-dire,

f - t a géométriquement une seule place & l'infini. e

-

-

. Ce théoréme, et sa démonstration, nous permettent de

démontrer les résultats suivants:, AN ) -
4§

-

la méme qhoéa est vrai pour £ —/k, pour tout A de k, % un

nombre fini d'exceptions pres. . , : -

ii), Parmis les polynémes f - A satisfaisants i), tous, & un

/'. 0 -~ ' . " . . . 2. -~ 3 . . T,
.nombre fini' gres, ont des suites de multiplicités a 1'infini .

K}

fdentiques & celle de f - t sut k{t). '_ ) -

Ces résultats--généralisent certains thépfémes bien connué .
/ .
d'Abhyankaé et Moh (parmis lesquels le '"Théoréme &'Epimorphisme").

On prouve par des ekxamples que i) et ii) né peuvent pas étre

‘

améliorés. Dans la section finale bn ‘donne certains résultatsd

partiels sur la clagsificaﬁion'des.droites dans le pléh en
caractéristique positiye. - ' )

v ‘ - - ' ] =

(On plane curves with one place at infinity. R ' :

’ —

’

~ - et ~ ) .
Richard A. Ganong. 'Département de Mathématiques. Ph. D.)
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2) Suppose the fibre of ¢ over some closed point has one placé ’

, “ 14 +
@ ° ‘
\ —
- ‘ , INTRODUCTION : L ) :
.o , e . ,. ; _f~ . '

- t ! B,
.
]
4 a

. This thesi$ began in an attemét'to answer the following
. . , . s PR 14
question:” " ’ . .

1) Suppose k is an_aléebraically»dlosgd field, and
/ . .

. ' s . , o )
¢ . ‘ N Ak ‘(XI'Y) : , : iy . . "
o + v " ’
. : 1 - ’

/ AL f(x,x) »
i . o , ) . - - ‘E
is an algebraic map of the affine plane onto the affine line. %

. , .- . . %

Suppose the fibre over some point is biregular to a line Are g
-then all. fibrés over closed points lines? . (The question lseems

T

s / /

first to have been. asked in print in [28], (1,2).)y -

— i ! - _/ : " ’ _ - - -
o '/ , ‘ ‘
The work.of Abhyankar and Moh ( [1], [2], [3]") within| the

[4

[}

iaét five years has, provided, as a corollary of both stronger
o ) B i - , a‘\

. a hd = - ‘ . 1 .

and- more general results, an affirmative answer to 1) in thel ‘4

. ‘
i

L .

characteristic zero cake, and. in pgsitive characteristic, in\the

-

. . B
"presence of certain ‘hypotheses of "tameness" on the polynomial -f.

(Even the'genefic fibre is a line, in these cases.l" A guestion-
- } o °
related to 1) is this: | . 1 - ' '

.
- n .

- at infinity. Do then all. fibres (over closed points)‘héve

i

.one place at infinity? ( [1], (11.18) )

Abhyankar and Moh were able to answer 2) affirmatively An the

. 3
v . &

above-mentiched cases. (Even the generic fibre has one rational

.

@ -7
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S ‘\
S place az\lnflnlty, in these cases.)
- B 3 T, . —

o ‘ " In con51der1ng these gyestions, we have been able to
| \

1
oo

+

recapture many of the. results of Abhyankar and Moh, by methbds

qultg ‘different from theirs. In partlcular, we have obtained*
.affirmative answers to l)fénd 2) (gene;%c flbrejlqcludeg) in -
’ ‘the cases c%ted,ﬁaﬁd,have rébrpved éhé'ceiebrated Ebimorphimq
= '2 Theor;m:( (31, Théorem“(l.?) ): Moréoyei,'f;'slebelo% wé o

= aﬁéwer-questionIZ) quite génerally:

-
’

iy The generic fibre of ¢ has one purely inseparable place

-

"

_ at infinity. . A L
™~ . . > : . '

ii). The genenal,fipre has pne place at infinity-

i N / L] . - ‘-" N .

iii) Thermultiplicity seguences at infinjty (relative to any

‘ | - choice of. variables x,y) of almost ailifibres”satisfying'
''ii) are identical: - , o C

e i ’ ’ l

- These resulfs are all new. Several examples in §“2 below show

e " - -
various ways in,which ii) and iii) are "best possible”. 1In the~
last section, some ﬁ%ogre&s is made”towardq aﬁswering 1ly.

/ -
. R

" & . , - . - /‘ /"

rd 4 >

ﬂﬁﬁjm—ﬁ%w&w'w o
¥
i
»

§ 0 consists almost entirely of well-known results, which .

. . ) - ) . ,
* the writér first learned from Peter Russell. ('{24] ) Maﬁ§ of"
¢ /S

. them can be found 1n [l],’w1th somewhat different proofs.. Wher?

- L4

. credlts areg not expllc1tly given in § 0, the proofs are, basﬁc—

ally‘thpse,of [24], w1th some minor tampering onthe wrjiter's

» h f
—_ .

part. " ) .
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d Lemma 1.8 is -due to Peter Russell; it has undergone some

neéastingfand embellishment for its r8le in the proofs of 1.1 -

¢ a

andl2 " S LT , /
) o ° / . B
L ’ r . ! -

Undoubtedly the "deepest" 51ng1e resulb in the the51s is

#

1,15, ow1ng to its reliance on the Connectedness Theorem of

zariskl. The ver51on oﬁ this theorem whlch we have used is
- : -
Grothendieck's. It is pOSSlble that a proof of a spec1al case

"

. o%/the theorem, shgrter than the very long proofs whlch -appear

¥ 'in "[32] and [8], and talloxed to the needs of our 1. 15 or 1-.16,

. ‘ . ’ -

. can be adduced. . A T

B

We should alsq, mentmon th\_ggne51s of the "algebralc

S Kodalra lemma" ( 1.15 ) 1tself. It% ancestor is Lemma 6. l of Y

s

[10],-in whlch essentlally the follow1ng is. proven;,

- L4
’

'Suppose V is a complex analytic surface:and &:V » A is a
, proper holomorphic map of V into a disc in_the comﬁlex
Y e - , B - .
plane: Suppose the general fibre of ¢ is connected. If

~ - 14

- ul is a "singula%® fibre" of ¢ Wlth 51mply connected -
4 4 - N ,
support, then u = 1.. _ . “ ’ 4
= < - L3 -
) ’As is’ so often the case in algebralc geometry, the modular Coc
- —

analogue gﬁ the cla551cal result - in thls fase 1,15 - requlres-
5 - : .
a con51derably more involved proof. ' .- ,

’

.

/4

2.9 is‘a7variation on a leﬁma'in [24). The 1rr§vyc1b111ty

crlterla for power series in § 2 were developeé\hy the wrlter, “

Y

- we do not know to what extent they. wen//already kndwn. Of the

examples of § 2 whose spurce is ot 1nd1&ated, all are new, and
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o “
due to the writer. . . '
' - ) ' . ,r - N b

3.11 and 3,14 arose in discussions with Peter Russell.

He

also poirnted out to usvfhé result of Samuel which,appéérs in,

and is ﬁitalrto, the proof Bf 3.9. 3.4 and the idea of study-

ing the derivation De and ﬁts ring of cénsténts'arg/dué to -the
.w;iter: Lodking hard at 3.8 has yielded sohe"resﬁits, moét of .

» -

which,do:npt appear heré.

o

<

al‘ring in n variables

over the ring A. The real advantage og this notatlon is that

’ .
#

it enables one to con51den,such rlngs 1ntr1n51cally, without
B

f o =~ < b

specifying varlables for. them. "If B ;s a given A —-algebra,

’

’ - - . M . - ’
. the statement B =al®) neans that B is, in an obvious way,
, < )

isomorphic as an A - algebra to a po%&nomialfring over A in n

/ ) . -

v

ot

‘variables.
L !

The term "place" has basically the same.meaning as.in

. ‘ U .
[6]1, lwre., valuation ring. ; ~ - \

. o

The "generic". point of an irreducible variety is the’
; \ :

A property

unhique ‘point whose closure is the whole v’ariety.'-r
o - , , Lo . .
is said to hold for the "general” point of 4 variety if it

hoids for all algebraic ({. e.,‘éloge&) points of a. nonempty .

o '
s ’ 4 R

RN
3




fagl

rd el LIPS TR e T e R TR RTINS e el UG T R TR R T

© 1
4
v

dense'Zariski-opéB subset of the variety. We refer the reader
t® the .introduction of [32] and to Zariski's address +o the

Internatioflal Cengress of 1950 for the amusing history of

¢
s

these terms and the confusion between them.,

’

Finally, we note that some of the matters we treat can
be couched in thé language of forms. ( See [21]. ) For

instance, one could replace 3.1 of § 3 with the statement

If k is any field, and f € k'?) is a line, then

for'all A€ k, £ - A is a form of a line.

~

%

We leave to the interested reader all other such translations.




0. Curves with one place at infinity -
preparatory material

v

-

Definition: Let A be an affine domain over k, with gquyotient

o -

;o ‘field K. 4 ' ‘ )

o 1) We say A has one place at infinity if there is a

unique valuation ring V of K over k such that V P A.

¥

* 2) We say A has one rational place at infinity if 1)

holds and V is rational, i. e., tﬂg residue field
- .. K(V) of V is k.
If A has one place at infinity, then A is necessarily one-
dimensional, so V is discrete rank 1. (In 2) above, we prefer
thHe term "rational" to the often-used "residually rational”

o

(as applied to V),'bécause, after all, V is the local ring of

-

a rétional’point~on the complete regular model of K.)

7

’ Warning and Remarks: In the literature, the phrase "one place"

% / has.always been used with the same meaning as our "éne rational
F Qw 4 . .

{ . ﬁiape". We are forced to make the distinction in the defini-

i tion, since we are Leg/Very early to/ work over ground fields ,

! which are neither perfect nor separably closed. we have

¢ refused to break with tradition in the title of this work, how-
g—" ’ - . * —p————

% ever, which should, to jive with 2) ‘above, really contain the

7 word "rational", since it is with such curves that we are pri-
2' ) °

~

marily concerned. ,
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We point out here-also a fadt which we use frequently 1in
the sequel: Suppose V ié a place of a function field K in one
variable over k, and let Ky be the field obtainea by eitending'
the scala%s from k to;its algebraic closure k. Suppose K is a

regular extension of k in the sense of Weil. Then:

' . o

There is a unique place V of KE/E lying above V if and
\ )

only if « (V) is purely inseparable over k.

b

( i6], Cor. 4, p. 95 )

We shall have considerable dealings with plane curves with one

purely inseparable piace at infinity, i. e., with piane curves
a e ' ) . ‘

" which, , have one place at infinity.

a

5

Definition: Let A be a domain, and let V be a rank 1 DVR of -

gt A. Then T =T(a,V) = { Vv(a) | a€ A, a$ 01} is a sub-

semigroup of Z, called the value semigroup of Vv with respect to

A. ( V(é) denotes the vallle of a under the valuation induced

/
/

by V. ) / / ’ .
" 0.1 Lemma: I' £ {0}. -If I' contains a positive [neéﬁtiye]l

.integer, then it contains all but finitely many
_ positive [negative] integers.

Proof: Let ab_a' € A be such that t = é/a' generates the

maiimal ideal of V. Let m = V(a), m' = V(a'): Then

.m~-m' =1, Suppose n€ I and n > 0. Suppose n' € 2

¢

‘
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4

a valuation ring of K over k and V' (x) = 0, then V' £ V, so

ratjonal., 2): x € A* ® xor x * €.k, so, x € k¥, 3): If B

. 3
and n' 2 n(|m| + [m'|). Write n' = gn +.xr, -n' =qg'n + r', .
g, q' € 2, 0 < r,r'd< n. ‘We have n' = n'(m - m') .= n'm + )
(-n')m"' = (gm + g'm"'")n + (rm + r'm'). Clearly gm + g'm' > O,
son' € T. The proof of the remaining claim is similar.
o .. ; ¥

{

Q
LY

0.2 Lemma: Suppose the k ~ algebra A has one rational

'place at.infinity. Then: -~

1) k is algebraically closed in K = qta.
. 2) A "has trivial units", i. e., A* = k¥*. ’
3) The value semigroup of V .with respe#t to A contains
' no positive integers.,
4) If x € A, X € k, then A is integral over kl[x].
5) If x €A, x ¢ k, then x is tranﬁcendental dver k
and’ [K:k (%)] = -V(x). ' | ]

6) K is separably generated over k.

7) Spec A is geometrically integral, i. e., A ak k-

is a domaih. . T ‘ . N

’ »
’

Proof: (For more details, see the basic properties of function

-~ !

fields in one variable,'giyen in [6]), Ch. l.i 1): V is .
-1

0+ x €A, X has‘no poles except possibly at V.o 4): If V' is

! B ’
V' D A. 5) [K k(x)] ="deg (x) = -V(x) since V is rational.
6): Let m be the Characterlstlc exponent of k. By' 0.1, there © ]
exists x € A, x & k, such that V(x) is prime to 7; by 5), x is .

a separating transcendental for %{over k. 7) follows from 1)

and 6).
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/

Lemma: Suppose A has one ratlonal place at 1nf1n1ty, and

Proof:
e

then a € k C A

A, is a k - subalgebra of A. Denote by 'y the set

0
of values { V(a) | a £+ 0, a € A, }.

If T (A;V) = I, then A = Agy:

~

v ' ”

—

- ; . A
0" Suppopse V(a) < 0, and every element of A with

value greater than V(é) is in AO. Pick ag € A, with V(ao) =

via).

¢

Since V is ‘rational, there is a unique ¢ € k* such that

Via - cao) > V(a). a - ca; € Ay = a € Aj,.

/ ¢

Convention: If f e k2] and k[2]/fk[2] has one [ratlonal] place

0.

¢

. at infinity, we say that f has one fratlonal] place at

» .
. S

infinity. C o ‘ , '

2)

rd

Lemma : 'Suppose fe k[2] has one Fational place at 1nf1n1ty

Let x,v.€ k[2] w1th kilx,y]l = k[2]'* Suppose f has.

p051t1ve x- and yfdegree. (By 0.2 5),’thi§ amounts

. to rgii:g out the trivial cases: f € k[x] or-=

¢

'f € kiyx] is linear.) Then: -

£f.is "monic" in x and y. I. e., writing -

2

s

m .
f =1 fi(y)xl € klylix], fm(y),+ 0, we have

i=Q - ) . . . .
£f.(¥) € k ~ "the term in f of highest degree in x
does not involve y", etc. - = - ' '

£ -xe k@ gs irreducible for all \» € ke

Let aE€ A, a % 0. We do induction on V(a). If V(a‘ = 0,

©
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G,

¢

Froo

we h
by 0

]

noy

x
&
A

€
24

o

‘ﬁ%dulo f. So deg g.= deqg f and (f x /g € k. —

ot
K

>

e s

f: 1):. Let ;T'denote>image modylo £. ‘If §for‘y €k

ave a trivial case. So X, y € k. X is integral over ‘kK[y]
.2 4). Let X" + T a LR 1 - 0. fhen £ divides.
. v l=1 K by

ai(y)xn_l, so £ '(y) divides,l,—etc. 2): Suppose
1 ! - ’ ,

h >3

i
1+ 2 iy — _°
k* and g divides £ - A, g nonconstant. Then.g € A*, where

[2]/fk[2}. Since A has triVial‘units, g lS aaconstant

z /
/

-

rk: Suppose f € k[x,y]'has‘one place at infinity) and let

Rema

Defi

Vv

A = k[x,y]/(f). Then in general 2) fails. But one "
sees easily that either
i) A =‘k'[1], where k' D k is finite algebrdic (and, in

general, the k-=curve A is‘geometrically“alfemily of
- ¢ ¥ ° —

(multiéie) parallel lineés), or .
ii) £ is "monic" in x and y. LN e
Thé proof is straightforwardq and is omiﬁted.
= ‘ ’ ) (

< ' - . 5 #

nitions: Let f E R ﬁ,k[zl. f 1% a 11ne (1n R) if

R/fR~~ k[ll. f is a coordlnate glne, or a variable, if .

‘R = k[f][ll, i.’e., if there ex1§ts g € R such that
T

/

k[f,g] = R. £ is a field generat%r if(there exists g € gtR
such- that k (£,9) = qtR,. e ‘

12
4
!

*
t v' 4

Reﬁarks; Clearly a coordinate liné is bpth a'llne and a field

generator. Also, a llne has one rational place at infinity.

We have eschewed the frequently used term "embedded line"



_-for a coordinate line; since if £ € R is any line, R > R/fR

‘ ' always defines an embedding of the line in the plane.’

] R . . , . _
0.5 Lemma:- 1). Suppose £ € kix,y] = R has one rational place V .
L T ‘ . . B
» =~ at infinity. If g € R, 0 ¥ g ¢ R/fR, then

st

V@) = -1 Dy

o "

3 Wheée i{(f,9) = dim, R/(fR + gR) is the

fin.
intersection index of f and g at finite distance.

2) Suppose f € R is a line. Let R » k[t] = g [1]

be a surjection, with kernel fR, which .carfies
' , /

X to u(t) and y to v(t). Then:

degxf = degtv(t) and dégyf = degiu(t);

. .
. . <y, - Y ..
@ . 3 . o . . .
. , . /

Proof:A 1): Since £ has one point at ‘infinity, rational over k,
fhe‘deéree form of £, up to a wnit in k, is a powar of a linear
! #

form in x and y. 8o, making a linéar_changg of vayiables, we LI
4 ) ! , +

may assume £ = cyn + (terms of total degree < n in x-and y),
. . © € k*. Then 1/x, y/x are local coordinates at the point P at
' infinity of £, ‘and f=f£/x" is a local equation for £ dt PR.

~ s

F-e.k[[1/x,y/x]] is irreducible’ and, sinée V is rational; there

* +is a primitive bragch_representatiOQ'(u(t).v(t)) e'(k[[t]]);
. \ B ‘ - .

_fqr £. By Bezout's.theorem, sinbe f has just one point at

-
¢ | infipity, ord.u(t) = 1(£,1/%)p, =.n-1. Now let g € R. We have
% B // O V4E) = ord g (L/ufe),vit) /ult)) . If deg g = m, then § = o/
% < _ is a local ééuation for g—at P.} Now sﬁppose g'%+ 0. _The inter-
é i; ' ; .sectionswultiplic;ty i(figyp of f and g at P equals
3 - ‘ . * )
% - : ‘ ) \l
. F. ,( ‘ |




s

i
b
L
!
%

Ve

., By Bezout, i(%,a)

' a S R ' ' Sl
ord g(u(t) ,v(t)y) = ord u(t)™g (1/uft),v(t)/u(t)). = V(g) + mn.

+ i (£, g)fln =#m, and 1) follows.

2

Zf: ‘The case degxf = 0 belng clear, we assumg degif > 0. Let

£, (2) is

irreducible in k[V(ti}[Zl, hence, by the Gauss leﬁmay irre-

fi(z) = £(zZ,v(t)). "monic" in-Z (see. 0.4.1)) and

ducible in,ktv(t))[zl, and fl(u(t)3'= 0. Since k[t] = v

? H

k[u(t),v(t)], we have deg, v (t) = ;k(é):k(v(t))a = deg,f; (2) =
degkf, e%c. u ’

o)

Suppose £ € k[x,y] is nontonstant. We shall be .concerned

with propertiee;of,the linear pencil of curves : : ‘W

AE) = { V(E-2) | N gk 1.
on'Ai. Here V (f) éenotes the_curve,Tor effective divisor,”
defined by £f. We shéll use the notation V(f) oniy a few times -

e

in the.entife sequel; there -will be no real danger of confusing

thf "V" for a Valuatlon on any of these occasxons. Suppose t .

is transcendental over k and let X, Y‘be 1ndeterm1nates over.

k(t). For f(x,/) € k[x,y] “- k the map ‘
B “k(t) [X,Y] ’ e ™
A gt td s k(£ (x,y)) [x,y]° = AN

=) TERY) - ©) ,
S , N _

-

whlch carrles t, X and Y. to f(x y), b4 and y respectlvely, 485 anw.

1somorphlsm. f (X, ¥) -t € k(t)[X Y] can be regarded as the

-

generic curve of the penc11 A(f); since B 1s:a regular domaln,

/ . . . N
-~ f 3 .
R

—
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R,
\
.

9 -

Spec A c n? is"a regular integral curve. (For ali this,f

+

k(t)
see [22}, § 1.). : s »

s

=" We collect here some facts about lines:

4 f . B -

0.6 Propogsition:

;

1) A is a regular, rational k-algebra with one rational

pldce at infinity if and only :f A = k(11

2) Suppose A has one rational’ place at 1pf1n1ty Then

A = k[ll if and only 1f -1, P(EQV)

Let £ e k[2).

3) /Suppose f' has one place at 1nf1n1ty (not necessarlly

ratlgnal over k), and supp05e there is a g € k[z]

.whose intersectiqn with £ at finite:distance is 1.
Then £ is a line, and conversely.’ -

4) If f is a line and a field generaﬁor,'then f is a

coordinate line.  More genérally, if f has ona rational

'place at infinit§ and if‘f.divides a field generator,

then f 'is a coordlnate llne.
" 5) f -t 1s a line over k(t) = £ is a coordlnate llne-

- over k = .f - t is a' coordinate line bver k(t).

a

6) (Absence/of nontrivial eepérable forms of lines .and

R}
|

'cogrdinate lines) If f is a [coordinate] 'line over - o

¢ P
[

the Eepareble closure ks,of kK, then f is.a [ceordihafe]

e " line over k. - ' ) - e ‘




Proof: 1): The "if" part is cleér. " Let gqtA. = k(t), t trans-

cendental over k. Suppose V is the rational place at infinity

of A. Thén vt - a) =
1

t-a

2 in the first case, T.= t in the second. Then k(t) =

1 for a unique a € k, or V(t) = -1. Léf

{

k(T[ and the valuation rings of kkTﬁ over k whicﬁicontain A are

the rings k[T]P, P = b(T)k[T], p(T) irreducible. A is‘normal,

- 11] ' .
s0 A = kITl, = k[T] = k'~'.
BT pKBL /

2): The "only .if" is clear.

V(;) = -1, put;AO = k[t], and ilkvoke 0.3,

2

3): Again, only in one direction

(See the "only if" of 2), and 0.5 1)%

e

f and g meet at just one point of Ai,

and simple on f. TLet A

uppose -1'€ T'. Pick t € A with

is an argument called for.
Let dim.k(x,y1/(f,9) = 1.
hich is rational over Kk,

= k[x,y1/(f),-K = gtA. Then there is a

unique: valuation ring V' of K over k such that V' D A and

o _ N .
V'{g) > 0, where g = g mod £f. V' has residue field k (so k' is

7

the field of constants of K/k) and.V'(g) =.l. The divisor of

gEKis (@ = (@ y- @),

1

infinity of £. 0 = deg (g)

V' + V(gq)V, where V_is the place 4t

-

and V(g) = -1. 3) now follows from 2).

-

4): Suppose f divides a field genérator g. By [22],

-

-Thedrem‘4.5, there exiét‘variables—x,y such that either g is

linear in x,y - in which cdse we are done - or such that g has

two ordinaty points at
done, sO suppose not.
the line L at infinity.

_one infinitely near to

- ,infinitely near points

%

infinity. 1If f is linear in %,y we are
Then by Bezout's theorem f is tangent to
‘ - !

of k[x,y]l, hence has at least two points,

/ )
thHe other, on L. So g has at least three

on L, which contradicts [22], Cor. 3.7.

/

-
v

1 + v(g)[x(V):k], so V is rational

-




. 1
.
[} o - :l 0
,
‘

—

5): Since-f = t is a fational k(t)-curve, f is a field generator

by'A*) above. As in 4), thére exist variables x,y‘such that

o+

_either f is linear in x,y or f has %wo ordinary points at infin-

ity.. In the latter case f - -t has two ordinary points at infin-

ity. (f and f -t have the samé degree form), henge at least two
/

" places at’ infinity, which cannot be. This proves'the first part

of 5), and the' second is clear.

6): The absence of hontrivial sepakrable forms of lines has been

known for a long time. If f.is a coordinate line ovér ks then
f - t is a line over ks(t)v hence over th)S, hence over k'(t),

and the second partrof 6) follows from 5)., (See [23],

< . i

Lemma 1:5, for another oroof.) z -

1
s

Undoubtedly the most'%nterestiﬁg negative result concern-’

’

' ing lines in the’plane is that not &ll such are coordinate

/ e 0T '

lines. We do not know who first found -examples of such lines.

i

Certalnly Nagata and Abhyankar knew of some by 1970. (See, e. g.,

(171, p. 154.) In the paper [31] (the sequel to~[2], a watershed

iF the/theory of plane c¢urves), the authors give, the follow1ngA

.

“«

I S~
family ‘of examples: (Actually, they give parametrtzations for«

these f.)

 Let k be of characteristic p >/O, d,n ¥ 0, T
\ - ,

a “tt, a4 € k, ad € k* if @ > 0, and o

4 noo. -
f = yp - X = ¥ a? le € k[xly:!".
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Then £ is a line, and, if p b4 dp and dp f p"

2

- f is not a coordlnate llne.

-

-

oo ' R
‘Leaving aside the question’ of historﬁcal priority, we will

e o1

0

refer to such llnes as Abhyankar - Moh lines.

7

(with p ) dp, etc.) is not a coordlnate line follows from

0.7

'
o

/

9

.

AT

I3

That such an f

)Theorem:

Suppose £ € R = k[Z] is a coordinate line,

let %,y € R be‘such that R

deg_f divides,deq, f or deq f divides deg_'f.
X ) ¥ y X

) / }

»
~

i

k[x,y]:

Then

)

) . < . , . '
~This theorem is the main ingredient in Van der Kulk's and

and

Nagata's proofs of the structure theorem for the automorphism

group of k[&lyl (Sée F30]1,

are prov1ded for 0. 7 )

[18];

in the latter work two proofs

We also.express the conclusion of 0.7

_ this way:

f-has

(with réspect to x and y).

"principal bidegree"°

-~

’

The next theorem ls ‘the main positive result cohcernlng

llnes in the plane.

i pu—

A R

FA—

’

“

‘(Abhyankar - Moh,"

(31)

€

Let k be a field of charactefistié p=>0,-f €& kix,y] a line.

hd

0.8 Epimorphism Theorem:
: ' T , —

In particular, if char k =
lines.

If p /}f g.c.d.(degxf,degyf), then £ is a coordinate Tine. .

3
s L@

] -

0, all lines are‘coofﬁinate'

The authors of 0.8 did not state it quite’ this_way, but
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/
0.8 1s equlvalent to thelr form;I;t}o?. (See 0.5 2).)

Apparently at least two false proofs of 0.8 wergﬁpuﬁiashedkw*

: .t -

before Abhyankar and Moh proved 1t. Since tben, Mlyanlshl has '

&

. glven a proof for characteristic zero. ( tl4] }  The authors of//h
L7

0.8 .had earller ( 121 ) publlshed a proof of this result:

, o

]
- - -

o

0.9 Theorem;' Let £ € klx, y] have gne rational place at

‘- N ( ' 1nf1n1ty, and suppose p { g.c- 4g. (deg £, deg £), _

where P = char k. Then - -
. v p . ) . . ] ‘ . .
AN ,';1511 f-'Xx, AE k, have one place a;;ihfinity over k, and

* the characteristic péirs'(eqﬁivalehtly,‘the multig}icity’

13

s . L, "»'L‘ v/ v .
sequences) at infinity of £ -~ A are indépendent” of A. 7 :
! {See also 1], § 11} = . ' e =

’

‘ )

Wer w1ll not attemgt to summarlze the paper (21, but w1ll just
'remark that its authors show also thatr/under the hypotheses of

0.9, all £ - X-have the séme value,semlgroup at infinity. The%

/ are. able to do this:since they work with meromorphic character-

istic pairs (aé we do n3t and because they prove that the
‘e - ¥

value semlgroup 1s determined by the meromorphlo characterlstlc ‘

-

# o

. pairs. - o '
-“7 v — -J , M . , ‘. . . B ,
0 8 and 0.9 w1ll be proven anew in § I below, as corollaries

hid ’ 4

of mdre general" results to be found there. Our approach does

not'yleld the above result on value semlgroupsbihpwever.

i, .
- . . ‘ ]
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- itself,, aﬁd whése proof isvﬁheréfore deferred:

-
’ - . I

‘g ‘8 . . !
1. orollaries o .
-~ ! 9
\ . » ) -
\ PO . . . : , .
The, principal goal of this section is to prove the
[ ! ' ' ‘ : ! ‘ ~
following:
'. . L ), o o '
\ : 4 ’. i '\: ot " -~
i

U - . N

’

" 1.1 MAIN THEOREM Let k be a field, and let £ € R = k ‘2] have
I | ) | fiel -k

,' A one rational place at infinity. Let t be-
. \ . transcendental over R and ‘cénsider ‘,
B l r ' - ' ’ / }
| f-tek(t) o R= x (¢ 121, \ y

3

N él £ —]t has one piace'ﬁ‘at infinity, which is pufelyl

“re

=
. . SN
A R R el 4

inseparable over k(t) .
4 ! ! S . ’ - o
2) If x,y'€ R'and K = k[x,y], then the résidue .field
. 5o Q ' ‘ )
: degxee,[x(&):k{t)] bk & divides q.c.d.(degxf!degyf):

4

, o
/ — . -
of 4
-
'

The proof of 1.1 isafairly lengthy, inVolving‘éeveralysteps. 4
While the details are. not themselves devoid of intérest - we call
/ . . ' - , . . e

) 1 i

attention especialiy‘to’l:g (the%"pocal Lemma") and 1.15 (the
“algeb;aic'Kodéira lemma") below # we have thought' it best to’ ’
' N v . ! L

state at pndevthe cenfrai result. (See also 1.16, wheré the !
value of the invariant [k{&):k(t)] of the curve f € R is estab-"

rd

lished.) - . o PR

In the same spirit we mention here another theorem which is

»

5 corollary;of the proof of 1.1, rather than of the main theorem

1

Ce C e N

- v - - s

.. [ 7 ~ - - .
L3 ‘ -
rLT A , , , N
u . * b LY 3 - - )
’ ’ »” -
»
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1.2 Theorem: Let k, B, £, t be as in 1.1, and let 7 be the ¢

’

characteristic exponent of k.

l) For some integer N 2 0, and some finite purely

e

&1\ " - inseparable extension k' of k, f - t € k' (s) o R =
k'(s)[zy has on€ rational place at infinity,
@ , -N
where s = tﬂ

2) For general A € k, £ - A € %121 has one place

g

at infinity

R generate R over k, and let v = (vogvl,~--)
e resulting multiplicity sequence of :the
successive infinitely mear points at infinity of f - t
over k'(s). Then fo?lggneral A E E,/2) holds and, if f

y ' v(A) is the corresponding multiplicity sequence,

then v(A) = v.
T

Following the proofs of l.lrand 1.2, we give some corollaries,
. ¥
- as wel; as new proofs of the epimorphism theorem,wand other

~

1

results, of Abhyankar and Moh.

&3

*

If k is a field, b& a variety over k we mean a reduced
(separated) scheme of finite type over k. If V is,an irre-

ducible variety over k, we may tacitly identify V with the
. : _ A4
coll?#tion of local rings {Q\IP | P €V} of the function/
N ' d

0 Ll

field of V. We begin the proof of 1.1 by recalling for the.
. N ] \

{~‘ reader some machinery which figures crucially in.it.
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'l.4.2 If D is a prime divisor, so is D'.

15

-

1.3 Suppose X is a nonsingular irreducible surface over k
»and A is an n-dimensional linéar system of curves (1. e.,

‘

effective divisors) on X. Suppose A has no fixed component.

¢

Then we have a corresponding rational map X -+ @i, regular on the
complement of a finite set of closed points of X (the ordinary

base points of A).

1.4 Now suppose k is algebraically closed, and P € X is a

closed point. Then ‘one can consider the blowing-down
(oc-process) centred at P (see [26], p. 208): One has a ndn-

singular irreducible surface X'oover k, and a birational

g .
morphism X' + X, whose fibre E over P is a projective line over

k, called the exceptional fibre. (The rational map

)

-1
lo;
X -+ X' is the blowing-up, or dilatation, of P.)

1.4.1 If X is projective, so is X'. : R

3 [

]

0 induces a map o*: Div X - Div X' of the groups of divisors on -
X and X'.” If D is a curve on X,~D* = g*(D) is & curve on X',

called the total transform of D. Let u(D,P) be the mult;plicity”

. . -7
of D at P. Then one has a curve D' = D* - u(D,P)E on X', called

il

the proper transform of D.

e

If A is a-linéar system of curves on' X, we define p(A,P) to be

P

[ 4 , .
min { u(D,P) | DE A }. P/is called a base point of ATif

W(A,P) > 0. The set A* = {{ D* | D € A } is a linear system on X',

n
z

called the total trgnsform of h: . '

The set A' = { D* - ”(ALP)E | DE A} is also a linear’ system




£y

:3

o I

on X', called the proper transform of A. If A lacks fixgd
d

components, so does A'. (Note:' A'’is not the set of proper

transforms of members of A. In general, the member D* - u(A,P)E
of A' correspending to D equals D' + a nonnegative multiple -

of'E.i

We remaék that all of the statements in 1.4, as well as the
usual formulas- relating the intersection theorié¢s on X and X',
continue to hold when k is an arbitrary field, provided P € X 1s
a ratiqna} point. (S;e the last‘paragraph“befére 1.8 below.)

1.5 Now in the situation described in 1.3, it is well-known

that there is a diagram of .varieties and rational maps

. X

-

* 14
s

where each o4 is a blowing-down (with centre Q; say), such

is regular on X

that & = googo. o0 el

7

[

1.6 Next suppose X is: as in 1.3 (k is any field), and C is an

irreducible k-curve lyiqg on X (i. e., a l1-diménsional

oir;edhcible closed k-subvariety of X). Subpose P = Po'is

(0) '

a (closed) point of C = C , and that there is just one K

/.

v
) 48
)
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‘

valuation ring of the function field of C which dominates &,

c,p’
T4 ) . .
Let Y1 + X be the blowing-down centred at P, and let C(l) be
the proper transform of C. Then there is a unlque golnt Pl € C(l)
such that TO(Pl) = P, Moreover{ u(C(l),Pl) < U{C,P). Contlnulhg

_in this fashion, one has a uniquély determined diagram

t

of surfaces and blowings-déwn, together with curves C(l) on Y.

1
and points P, € C(l) P, = centre of Tié Piy1 = unique point on
(i+1) - (i+1) (1)
C such that fi(P}+l) = P, and u(C . i+l) < p(Cy i).

It is well-known that ﬁ(c(l),Pi) = 1'for i>>0. PO’ 177 are

called the successive infinitely near points on C above P.

-

1.7 Now let feRrR = k[2] have one ratlonal place at lnflnlty.

Let X,y € R and R = k[x,y]l, A = R/fR. The ch01ce of gen-

erators X,y for R determines an embedding of 8pec A into
5 ) .

Zp fgr AN E Kk, f-AEKk[x,v] determines a-prime divisor -
¢+ V(£ - A) on Ai (by 0.4 2)), and a prime diviso;'Ax on Pﬁ, whose
sﬁpport is the closure in Pi of the .-support IV(ﬁr-_k)} ot -

: - ' ) . 2 -2
_V(f = A). We set A = dL@, where d = deg f gnd L, =P, - A
is the prime divisor at infinity of Aﬁ. (Note .that this notion

depends on the choice of x,y.) Then Aq? A(g) =

’ [ /
.

{ Ax | A € k U {»} } is a linear pencil on Pi, without fixed,
component. * By the remarks in 1.6, we. have diagram 1.6.1 (with

X = Pi). Here P, € Pi is k-rational, and L, N [Ao] = (P4l

> ’ ) / ’//

! <
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Since, for X € k, L_ ﬂslAR] is in natural bijection with the
irreducible factors of the degree form of £ -~ ), and since the

degree form is independent of R,;fo is the only base ‘point of 7
) .

Oon Pk. . , - ! . ¥ IS

We eliminate here, once and for all, a special.case:
v . Y

Suppose deg £ = 1. Then 1.1 and 1.2 become trivial ;“f - t and

all £f - A, A -€ k, are coordinate liﬂes, ghd v and Vv (A) arE:{ﬁgt

/ . .
sequences of l's, We assume henceforth that d = deg £ > 1. Then,

I3

1.7.1 CulAy/Py) < d = pur ,Py) for all X € k,

so by Bezout's theorem every:r Ay is tangent to L, at PO. /

1.7.2 The degree form of f is a power of a linear form £ in

x and y, Either x or y V £, say x [/ §. Then x' = 1/x

-and’ y' = £/x are local cpordinates:atho, x'd is aﬂlocil

-

eqﬁation for A, .and
’/// | ' ’
o - xS = erx@ 2 axd

is "a' local equation for A,, A € k.

Remark: 'Even_if the place at infiﬁity of f were not rational,
we would have 1;7.2, except that £ is then.only an irre-

" @Qucible form, and y' = £/x%89 £ -

We have U(AA’PO) = U(A,PO) a:‘uo‘f U(Aw'Po) for a}} } & k;

2

Op C
Let X, 2 Xg =Py be the blowing-down centred at Py. . Put

¢

E, =1L, El'= oal(Po),'A(o) = A’ A(l) = proper transform of A,

s

0
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8

(A(l))x = member of A(l) corresponding %o A, , Al(l) = proper /
' ) Yy . . -
/0 transform of A,. Then A (1) - (A(l)) for all x. €.k, and
o — , A A : A \
o (L), _ (1) _ (D)L 4
1.7.3 (A-' Dy = Ag77 + (d-ug)E) = dEg™ + (d=ug)E,.

-

/

< 1.7.4 1If deg f < d [xesp. degyf < d] then clearly Mg = d—degxf

[resp. d-deg§f], i. e.,

d = deg

yf, d - My = degxf“‘Presp., switch x and yl. -
-

(Proof: ‘Suppose degxf < d. - Then in the notation of 1.7.2,

£ =cy, c € k¥, sod = deéyf.' Aiso,ix' = 1/%x, y' = y/x are .

ul local coordinates at P,. Let £=1 fijxlyj. Then f':= f/xd =
z fi x‘d_l-jy':l € k[x",y']. Siﬁce deg x}dbl—Jy'J =d - 1i, if we

put e = degxfeand recall that f is "monic™ in x’(0;4 1)), we

’ -~

have-f' = feo ox'd_e + (higher order terms in x',y'). So
: ' "

- 3 ’]JO = d 1-‘ degxf.) "

s

%

. ' Consider;how/l.S, with n = 1, Xd = Pi, énd A= A(E). We

shall require several pieceé of information congerning the ¥

i+1) on X O<is<s.

céntres_Qi’of the 6i,,and'the pencils A( i+1’

(One fact we shall need is that the column in 1.5 is a subdiagram
o - /_ ) P i
of 1.6.1.) ..The igformation we heed can be extracted from a -

recent paper - ( i14],) of Miyénishi (with allowances‘for the
fact that.his base field is‘algébraically/plosed), in which only
‘global methéd§*are used. (See’aléo 1.10 below.) In that papgr,

the author develops fairly elaborate machineryfwhich allows him,

B
> -
. ’
B M
- -~ . » s,
.
,

/o e : —
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given the structure of A(l), to. determine that of’A(J), where

3 >/i is computed in terms of (or sometimes only bounded by)
/ ! ' @, —

. . i a . Y
certain numerical characters associated to A( ).' This machinery .
4 ‘ "

"

" gives considerable insight into what is goiﬂg on in 1.5 ("blow—

ing up the base points of A(f)"), and was in fact the original

inspiration for the examples that appear in § 2 below.

However, in 1.7 we were able to‘get globall data about the

pencil A(l) on Xl in terms of local equations at P0,= Qo for the
N N & - .
members of the pencil A(O) Qan Xo% This situation persists -

:
-

it turns out that local data concerning A(l).at Qi enable one to

- fl

- describe A D rhe main advantage which/fhe‘local machinery

we are about ,to introduce enjoys over Miyanishi's is simplicity -
our machinery involves only one blowing-up, whereas Miyanishi's
deals with sequence§s of blowings-up. . The main lemma 1.8 )'we

prove below alse suggests that pencils on local ringsA merit

v
-

further investigation in their own right:

#.
, ) /
Definition: Let (8 k) be a local-ring of Krull dimension 2,

L
—

and a unique ?actprizafion,domain.‘,Let £,9 €M and suppose
'f’Y‘g and §~[’f. Then A = Akf,g)'= , . )

{ ideals (uf + vg) such that , }

u,v € (¢ -m) u {0} are not both 0

v
a

=%

is the local pencil on 9-sganned by £ and g. (Note that A has

at least card k + I members - there is a surjection from A onto

the set of rational po}nts of Pi.) A is withéut fixed component

= '
- I
. /
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AU g A

"if g.c.d.(f,q) ="1.

-, clpsure A of ‘A in its quotient field is local.

- fr-module B/ (&8 + pO) -

' w1th x - E, where E = Pi is the flbre over M.

sy
.
N\

a ‘ ' 21
| b ) oo
Note: If af, & € A are distinct, tf:\ky)n
[ ] .

= Ala,f3). Alsd,’A is without fixed component < for all such

-

So the notions

a:ﬁ,,éec-d-(alﬁ) = 1. "pencil" and "pencil

without fixed component" aré independent of the choice of span-
. e . . s - ’
ning eﬁfments.’ R -
/. o
Wevhave not found these notions in the literature. At

4

Remark:

any rate, the definition seems -reasonable, .and allows us to

-5 . ! .
state and prove the results we need.
’ “ ’

We must .next recail several definitions and facts.
’ é_local domain A is called unibranch if the integral
(81, 4.3.6 ) °

If A is noetherian and l1-dimensional, this amounts to saying

. -

that there is a unique valuation ring of gtA which dominates' A

. (because A is a.noetherian ring; see [16], THEOREM _ (33.2), .

p. liS) ‘"We will call"a nonzero element f of a local ring, o

unlbranch if BVfo%s a domain and is unlbranch .
4

We also'need some_facts concerning regular local iin@s*

: . . . . 3 '

(OTﬂLk) of ‘dimension 2.  If «w,8 € O are relatively prime non-

units, they generate an ideal primary for M, .and one defines the

intersection/multiplicity «-8 to be the length of the artinian’

(See [26 bis], p. 83.) We recall also

the blowing up of M:
morphlsm X +~ spec & which gives an isomorphism of Spec € - {1

-

(See [26 bis],

The 1mmed1ate quadratlc transforms (igt's) & of' & are

‘

p. 12.)

-

M / .
Ny f -
/
.

One nas a regular scheme X and a blratlonal

s
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the rings {ﬂx , 2 €E. If x,y € B generate M, these are just
4 ¢ ! f
[ the rings D"[X/y]’, y e®, D‘[y/x]q, x €f. If e is an exceptional

parameter in & (i. e., a local eqguation for E"at g, and o €M

. ' ' " is of multiplicity u, the proper transform of @ in 6‘ is ,

a' = qe M; it 9.: well-defined up to a unit in §. The leading

form 1f(x) of a@ is the image of «- in mﬂ/mwrl C _§Omimi+l -
i=

k[x,y]l. One eas:Lly checks that the igt's 9’ of @ such that «' is_

a nonunit in & are in natural bljectlon with the dlstlnct irre-

ducible factors of 1lf(a), regarded as a form of’ degree U oin '

klx,¥l., .

Suppose N = A(¢,8) is a local pencil on &, without fixed

component. Let p = p(A,®) min { u(a), u(@) }. (This is.inde-

pendent of the choice of «,f.) If & is an igt of B and e.is an

- gcceptional'parameter-in O, we say & is a base point of A if

M, ge™H are'nonuni’t_sf in &. The proper transform A' =

A(ae_u’,ﬁ'e_“) of A on & is then a pencil on 5’, v:rithout fixed com~
ponent. By induction one defines the set.B(A) of all
i ‘ L. ("infinitély near'q base points of A. (See,’e. g., [22], § 2.)

) B(A) is“finite. .(Cf. the proof of 1.9 1) below.)

Suppose f € B is irreducible of multiplicity u, ahd f6 % x8

S Then the inclusion & + @{y/x]-induces a birational inclusion of

P

domains B/ t& ~ Ely/x)/(£x M) .

Suppose £ is unibranch. ’I‘hen’using the dbove facts, and the '
~ fact’ that a unlque valuatlon ring of qt(ﬁ’/fa') dominates &/f8,
one sees that there is a unique iqt O'Of @ in whlch £ 1s a non-

up:v.t, and that £f' 5’15 anibranch. " so If(£f) J.S a power of an

N .
» ' !
- . e
. N
’

g
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irreducible form in kl[x,y]. (If F is the degree of this form,

., we have [;{(’é&%:kj = F.) One consequence is that for unibranch £,
u(f) = min {f.x,f-y}.

.. ‘ . | ]
Finally, we recall these formulas involving intersectién -

multiplicities.in £ and intersection indices on X: For

relatively prime o,8 €1, we have ' N 1

-~

E [ @ :k] (a'-6')g = af - ule)u(B) .

5‘ igt of &
(*) , ' ’
Also, E < (f) :k ~a')o = pla),
. [k (8 ](ea_a)e, u(a)’
. & igt of &
O | /4
where °§ is an exceptional parameter in O. «
~ “ r -~

We can now state

1.8 Lemma: (Russell) Let (§fMLk) be a regular local ring of

dimension 2. Let X,y be a regular system of

, .parameters, A, B 'r}onnegati‘ve integers not both 0,
\- and g = xAyB. Let f € & be unibranch, :suppose g.c.d. (f£,g) = 1,
P . .

and let.A = A(f,g) be the corresponding pencil without fixed

corﬁponént'.a Let d = f.x, ¢ = u(f,® , and put 6 = g.c.d. (d,u)"

Suppose A = MS ; B

4

NS, where M,N are integers /and
: o
d 1),_M(52uandN20, and

2) M+ NGz d.

’
' v
- - .
. ' -
.
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Case 1: M+ N = 1. (So that M =1, N ='0, and d = u.)

Then no igt of B is a base point ‘of A. Sooe

Case 2: M-+ N > 1., Let (é,ﬁ,i): be the unique igt of o

- ” * such that the proper transform:f' of £ in 6’ is \z
not a unit., Th&en & is a base point of 7\’, ‘and is the onluy
igt of B which is. The proper transform A’ Qf A on 5’ is
wi'th‘out fixed component, and of this form:

;{M.G;WN(S) , where ;,;1 generate’ﬁ,

It

A' = A(£',g

~ - ~

either x or y is an exceptional parameter in &

(and appears with positive exponent in g),

; = u(f',®, 5 =‘f'-°;', and § = g.c.d. (5,;) divides §.
P .

/ * /
T

1) M§ 2 u and ;1 > 0, and
M ~ ~ A~ o~ ~ v
. . 2) (M + N)S 2 d.
Moreover:, if V is the valuatjion rlng of qt(e'/fa) whlch

dominates B‘/fQ’ then k C k(V). " o

-

Proof: First we dispose of Case 1. We have x ,}’ 1£(f), and -

g = x". The only igt -of & in which g/ is not a unit -is
8lx/y] (v, %/v) " and £' = fy—u’is, a unit in this ring.
14 . '

4

Next suppose d 2 2u. Since M (g,B) = (M + N)6 > (by 2));,__‘
JPE.’

the unique iqgt & of G which is 'a base point of A is &Lx/y] (x/y v) Y,

because this is the only igt of © in'which f' is a nonunlt. Put -

X ='_x/y, Yy = VY. By (*) above, and since K(B‘) = k, we have
d=f*.%x =4 - 4 and f'-§ = p. Since f' € & is unibranchy




B T

s
* -

);/G = minj{ d = U, 4 } = u, hence 5 = &. If,we”@ut M=Mand N =

~

- -d

Q’. 9

‘M+N - u/ 8 A" is as'claimed.. 1) ‘holds by 1), and'E) holds by 1)

-

.and 2).

~5 . ~

Suppose u < d < ;u. Put,; =.y, v = x/y. Then d = y,

2
it
=
=g
I
0w

i~ . ~ L ~ - ~
p=d=-ypuand § = 8. If werputM =M+ N - p/6 and

Y~ ~

as claimed. l).a d 2) each hold by 1) and 2).

Supbose(§,= u. i) f-y > Mo fut‘; = x, ; = y/x. d = u =4
(so § | 8), and I s u. If wé put M= (M+ N - 1)8/8 and

~ ~ '

N ='N&§/8, A' is as claimed. l) and 2) each hold by 1) and the
fact that M + N > 1.  ii) f: y = u.* Let'[k:k] = F. Put x = x, |
an let § be any complementary pa?ameter for §3 +d = p/ﬁ =,§/?,
so 8§ | §: y/x is a unit in §. If we put M= (M+N- 1)§/3

and N = O, A' is as clalmed. 2) holds since M + N'>'l“ana\

F21l; a foftiori} 1y holds.' (* & is of- the form dTy/x](x,po,
where p € k[y/x] is 1rredu01ble and p(O) + 0.
““The remalnlng statements in l 8 are clear, by the éﬁove

proof and the dlscusslon precedlng 1.8.

&
»

- ' . ’ . . , ’ 0 '
1.9 Corollaries: Let &= 06, g = gop/f'='f(0)r A =,A(‘), d be

14

. . -~
as in 1.8. Suppose u(g) > u(f). (Thep

’

1) The base peiqts of A form a sequence Ob <“81 <s o< 3; -Q

.0f s + 1 local rings. (s = 1)

2) Let Wy Z p(f(i?,ﬁz) and e be 'an exceptional parameter

i+l
i~ e '; 0
in 01+l' If'ﬁ(l+l) is the proper transform of A(;)
' (i1 o, S (i+1)° /
on 81+l” then A o 1s spapned by £ and 9417
H "' o
- *- »
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. . -, , , .
i where f(1+l) ( (l) 1+ll ) is the proper transform,
" ' | . ' . v
RO (olf f(i)‘ oln B' and = R
.- :“ . . l”{ n gl+l %el_‘_l . L
. oo t. ’

-3) . Consider the nonnegative integefs n, defined by'

1 | 4
n. ni+l

i . ‘ ’
e, | 9;» €3 { g5 - -
"Then“ni > 0 and Hg divides 4 and nif 1< i < S,
b H
4y A8 s spanned by'f(s) and es's.

‘Proof: 1): wu(g) > u(f) > M+ N > 1, in|the netatien of the

\

Lemma. If 9& is. the last base peint of A, stop; other-

wise, continué. ‘Note.that if e; e 8‘ is exceptlonal

L ' N |

9y = gel—M(f)} g(l) ;s the ptroper tfanefqrm of g in eluana‘F =

(1),2

(A g

[ (87) :k], then 1 = g Mg o g, (Mg u(gI-u(D),

FL) S

TIA

1=

(u(g)

SRS S
p(£)) £ ey =

[ £-g - u(H)ulg) + (g - pEHuE) 1=
o ’ .
_ foqg. _, (2 (0)y2
= [ £- g u(f) ] < £-g. We see that f.-g —u‘(A )7 >
/ | ‘ @
(A(l))2 Seed2 l, and A has s + 1 base points, where s + 1 < f£-g

'

.2) was established in the proof of 1.8. 3) follows.by induction

on the "3 divides ¢" and’ "appears w1th pos1t1ve exponent" of

1.8, and 4) follows from the fact that case 1 of 1.8 holds for

A (s),

.
° . , - )
- . , .

P
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,as§umb that f € R = k[x,y] has one rational place at infinity,

s, ,
) ,

We return now to 1.5 and 1.6.1 and use our results on. . 3

\

. local pencils: to describe the global situations there. We

.
3 * . ~ b

A= A£E), d = deg £ > 1, etc., as in 1.7. 1In the notation of

W

1.5 and 1.6, we have, by 1.9'l) and 2), and remarks in 1.7, that

———— ‘ B
xi+l = Yi+l" Piﬂ= Qi; ind o; = T for 0 < i <s, i. e., the bgge
peints of A consist of a certain, number of the successive. infin-
' (1)

]

itely near pgin#s on,AO/ébove PO.' The pencil A on X. is

< s. For 1< i1 < s, let

spanned by,(Ab)Fl) and 1A(i)3m,
Ei be thé exceptional fibre on and, for a curve D on X, and

0

i <3j <s + 1, denote by D(J){the proper transform of D on Xjf

t

Then ’ o ¥ .

1.10 (See LEMMA 2.8 Gf the cited paper [14] of ‘Miyanishi)

:

. -1 o - . s
1)y _ (1) C oo ' \
(A7) = L n,E, + niE,; ;. Ngr *t0r Oy >Q, ' )

S B¢

n, = da, ng % u(Ao(s) anq.us‘divides n;,’

IPs’t) =: USI

0 < i < s.» The divisor,

‘ : s%f ‘ S ‘
(A(S"i‘/l) )’m =:‘. (A(s))m(s"'l) = ) 2 n-E. (§+l) + il E (S+12 = u I‘
( ‘ . jdp 14 . 878 s . ‘

.
—_ a

[ ' < ‘ L
is globally u_-fold, where. T }s an;effective divisor on X_

[

and.us is.ﬁge multiplicity of ‘the last basejpoint of A.

s . e

4P;), then, in the terminology of

o

1.11 Remarks: If-uy = p(!\(i

Nagata ( [r8],1§pf 14,15 ), not oﬁ;y dgeé Ak
} ! ‘ s . ’ !
] 2 ‘ ‘ . ' " ' s

1 3
° 1
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. S ‘
"go through" I uiPyy but P "lies on" A and the "effective

i=0 A

multiplicity" u(Ax(i)

Py) of P, on A, equals u,. (0<i<s, \ € k)

A
We leave it to the interested reader to determinehwhat form 1.10,

1.11 and the ensuing results take in case the place at infinity

of f is not necessarily rational, but only, say, purely insep- [

-

arable over k.
- 2

The first consequence to be drawn now is that, by the last °

statement in 1.8,

1.12 Py, *++, P  are rational over k, hence ¢

El’ .-+, E_ are all projective lines over k, and ' |

r I
H -

el = & s (et

i

HCmnm

]Ei is a curve with s + 1 irreducible

0]

G
bomponents, each isomorphic to Pi. (Ei, being non-

(s+i). n ’

singular, i& isomorphic to'Ei ).

‘

- o
t

Lwe pdinf out a very fruitful consequence of thHe rationality

" of the place atqinfinify of £, which we shall have occasion ‘to
‘use sevéral times: " Let K be any field containing k. Suppose f =

fx,y) € klx,y], X,Y are_indeterminafes over K, and cénsider

K
If A = A(£g), then

£, = £(X,Y) € K[X,Y], .Then fx has one rational place at infinity.
-

eocounterparté of 1.10, 11 and 12 are gotten

by simply“neplacing k by K - in particular the sequence of base
- , : [ .
point/multiplici;ies dnd the structure of (Aés+l))w remain un-

changed. . In the sequel we will drop the subscripts "K". ’

- ©
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our next objective is to determine the value of “s:

\

6 . -

Let A, = ]Ei(S+l)], 0 <i < s. We need to describe
s ' /
(r] = U by topologically; in order to use the known theorems,
i=0 p

we must pass to the-algebraic closure k of k. The following fact
is no doubt very well-known; having no reference for it we giﬁe

a'proof.

1.13 Lemmd: Suppose k = k and 2 is a k-variety which is the

union of two closed subvarieties Zl’ 22 which
intersect in a single point P. , If 2{, Z, are

connected and simply connected, so is z.

-

o

Proof: Z is clearly connected. Suppose g: Y + Z is a connected
-1

/

{
étale covering. The restrictions Yi =0 (Zi) - Ziia;e
, étale coverings, so for i = 1,2, i
m ! -
i S :
Yi o ng Zi,j’ Zi,j = Zi’ and Yi > Zi is the cagon;cal map.
Since ¥ = U Zi,j and Y is connected, each Z;,j meets some Z2,j'

and vice versa. Any point of such an intersection is a preimage

of P, so % and. 2z ., Mmeet in a unique point. So m; = m, and,

1,3 2,3

relabelling if necessary, Y is the disjoint union/ of' the my

: ‘ /
5 U.ZZ,j' Som =1, Y; » 2; are 1somorphlsms,_

1

closed sets Zl
. ’

and ¢"1(p) = ¥, N Yé consists of a single point Q. So o, being

a closed bijection, is a homeomorphism, and, if Q +AQ"€ Y, . L

1
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7 c*:OZ,o(Q') -'”Y,Q' is an isomorphism. But ¥ = wZ,P + Oy, =p'

. is also an isomorphism. (See [7], I, 4.4, and use the fact that

o O is faithfully flat over ®, and that ' is a finite module over

(// ‘\\ the noetherian local ring O)
~ .
\\\13 . \‘\\ _
" 1.14° Corollarz: Let T be as in 1.12.5 (k = k) Then

1

[I'| is connected and simply connected.

/

ProSf; Actually, we remark that, starting with a projective

line over an algebraically closed field k, the variety

A gotten by blowing up, successively, s pojnts, is

connected and simply connected, (No ambient variety 1is needéed.)
s . .
This variety will be a union U Ai of closed subvarieties, each
. i=0 ‘

“a copy of Pi. Its condeqtgdness is’evident. One shows by

2

* induction on s that, combinatorially, A is a tree of’Pi ‘s
<

(there are no loops); such a configuration is Simply‘cdﬁnected,

7

Jby 1.13 and induction on's. ' /

&

o, . l.;ﬁ Proposition: Let K be algebraically closed, and let

h: W+ C be a morphism from a nonsingular

‘ 'irreducible-k-variety W to an irreducible X

: *

- curve'C. Suppose




i) h isﬂproper and surjective, .
ii) the function field k(C) of C is separably
] algebraically closeé in k(W), | )
' iii) z e'C is a simple point,
. tiv) the image h* ({2}) of the divisor {z}under
h*: Div C » Div W is uTl, Qﬁére 1 is a positive integer,
and T is an effective divisor onhW, and
v) IT| is simpiy'cdnnected.

r v

Let 7 be the characteristic exponent of k. Then

. s

1 Yis a power of .

/ ‘ , r

Proof: Let t € k(C) be a local parameter at z. Thegé is an open

~

neighbourhood U of z such that on U, t is everywhere

°

' defined and vanishes only at é, and such that U consists

only of normal points. h-l(U) + U satisfies the conditions of

<

the,propos;tion. In other words, we can agsume that t is reg-

-

- ular on C and vanishes only at z-€ C, and that Cis a non-

‘

~ singular curve.

YV WL DT e mn L

Let u = an, with ¥ 2 0 and g prime to 7.  We must show g=1.-

First noté that q(ﬁrr)fis the principal ‘diwvisor div h*(t).

: | o J

o Given any w € W, there is an open affine neighbourhood U =

' Spec A, of w, and an h, € A,, such that the restriction of the K
divisor 7T to Div U&'is the principalfdiﬁisor div hw' .(See

‘ . - [26], p- 131.). Note that hw,/hw,ls a unit on U N U_,, ‘ e

.

»

i
1
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for all'w, w'. Also, since div (h*(t)/hwq) =’0§}n Div ‘U,
] _ / ,

Yo
ok q ., . .
] uw/ h (t)/hw is é unit in Aw.

‘ , . _ “ “ q _ A R ) ) ) N
‘Let Bw = Aw[T]/(T - uw), T an 1ndet§rm}nife. Bw is a

finite étale A -algebra. If x €U r)Uw;/= Spec A, then there «-

is a canonical A-isomorphism A[T]/(Tq - uw) -+ AIT]/(Tq - uw.),
which sends T to (hw,/hw)T. Thus the Bw define é'coherent

@W-Algebra, hence a scheme W' and an étale covering p: W' - W.

N 3

Now W', whichwis reduced and nonsingular, is also irredut-
ible. To see this, reduceé the égver { U, } of W to a. finite

one - W = LJUW. Each Aw is_ a domain. Fix a w, and suppose
w ’ . . .

9 - u, is reducible in k(W) [T]. .Then (e. g. by [llj,gp..2l4"

Theorem 10. (b)), there is a V/E.k(W), and a q; divid%ng a,

“

’ ' ' ' ' [] 1
1l < g', such that u, = vd . We have h*(t) = (vhwq._/q )q . But

ﬁt is a 10cal’parameter at z, hence\@as no q'tfh rbot in k(é).
Since gq' is prime to m this cont?adicﬁé ii). _One checks now
directly that B, ~ k(W) [T1/(T9 = u ) is an injection, so W'is a
finité union of irreducible spacés which intersect’pairwise,

hgnce is irreducible. We have also established that [k(W;):k(W)I

equals g, hence k'(W') = k(W)(h*(tYl/q), and one:easily checkKs

. that W'“f; just the normalization of W in k(W'). ' Making a simi-
lar const;ﬁction on’C, one gets a ﬁafiety,C', which is the nor-

malization of.C in k(C)(tl/qS,_and a commutative picture

'
Y

/

! h. ’ L4
. Wl - Cl
o ¥ Y. . - )
W > C
‘ h /T

FE

Y
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14 ' ‘ )
X ° ' ‘ . i °
o Since C' is separated, y is. Since o is finite, hep is
proper, so h' 'is proper, and clearly dominant, hence surjective.
[w—l(z)l consists of a single point z'. (z is the unique rami-
fication point of ¥.)
We claim k(C')J is separably algebraically closed in k(W').

/ ' If not, there is a finite separable extension L of k(C') con-

v

‘tained.in k(W'), with [L:k(C')] > 1. ,(We identify k(C') with
h'*(k(C')), etc., so that all function fieidé are subfields of
kK(W').) TLet é be a primitive e}emept of L/k(C); and lep F be.
the minimal polynomial of s over k(C). 'If.F‘l € k(W) [X] is a

monic irreducible factor of F in k(W) [X], then the coeffitients

-
ES

of Fl lie in a splitting field for F over % (CJ, hence are sep-
- ‘ arable algebraic over k(C). By ii), F) =F. S0 q =,

“;‘ ,-1k(WL):k(W)1 > [k(W) (s):k(W)] = deg F > g, an absurdity.

Now by one version of the Connectedness Theotem of Zariski,.

—

lp_l(,r])i = prl(h—l(z))l‘= ]h'jl(zf)f is éonnected. -
e © 8l cor. 4137y =

- .

SN

/ ) - ‘ . .
.. Oh the other hand, p is everywhere d—po—l on closed points.

' (This is easily seen for Spec Bw'+ Spec'Aw, for all w.) ~Since

p is Finite étale, so is p L(|T]). » Ir|. Bymy), o7l(r) is a
.disjoint union I l lfl of copiﬁs of |I'|, and I l | - |T| is o

the canonical map. &o [p—l(]rl)( has g connected coméonents/

and q’

1 = 1. ~ : - i
v 1.16 Theorem: In the notation of 1.10, us?# 7%, r > 0. B /

- ’
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Proof: Blow up the base points of A(f) over K. " Denoting agaln

. by Xs+l thé:surface thus obtained, we have a morphlsm
h: W=X_.,~ P% = C. h is surjective, and h*(=) = ) /

(A(s+l)) ="u_TI has .simply connected support. 'Since Pz is pro-
© S . }S .

jective, W is projective by s + 1 applications.of 1.4.1. Sc h

is proper. If the function field of C were not separably alge-

A(s+1)‘

braically closed in that of W, no member of would be a

’

prime d1v1sor. (See‘[lZ], [311, p. 60, [33], p. 50/

(A(s+1))h = AR(S+1) is a prime divisor for all A € k. (See.

Q.4f2); with k in place of k, and apply 1.4.2.s + 1 times.)
Another way to see that K(C) is'algebréically closed in k(W) is
to’ note that £fF-te k(t 5[2] is 1rreduc1ble - 0.4 2), again -

so the functlon field of £. = t over k(t) is a regular extension

CE 2

of k(t). 1.16 now follows from 1.15. - :

b

' ' 4

Proof of 1.1: Blow up the base points of A(f) over k{t). By

1.9 4) and 1.16, we can choose local.coordinates
‘ — . e

. ) - &£,n at the last’base point 'P_ of A(E) such that
et P . ; ’ (s) :
" £ . 1s the .leading form of a local equation ¢ for Aq at P, ‘
Y . “
r ‘ ‘ B e

‘ﬁt is .a local equation for (A(S))& at Ps,.and Qt = £ - £n is
a local eguation for3Ao(S) at P.., If ﬁ'«=® , the unique
) A s" s xs’Ps

e

iqt:ﬁ",of.ﬁ’lin which the ﬁroper tfansform”ﬂt' of 2 is ﬁpt'a‘_ /
. ' r .
g T ’ Uom /T = 4
unit is 0‘[£/n](n C = E/n) — by aéd 2, 2i/n L ¥z v
. where ; € nd'. Since z,n are a regular system of parameters -

. a2

at 0", U(Qt Q') = I, and @= @' /2.'¢' is.the unique place at: ~ °| J
. 7

! ; - 3 o

[



,infinity of £ - t € th)[zll - The residue field (@) = «(§') =
-1 . -1 ' N S \ 4.
K'(O"s)(t’r ) = k(™ ) since Ps is rational over k(t).  So the

. Place O at infinity of T - t is purely inseparable of degree at

over k(t). 2) of 1.1 follows from 1.7.3, 1.7.4, and 1.10.

P

;/.

. , Proof of 1.2 1): There are "fancy" ways to prove lZZ 1); we ‘give
! a relatively elementary arggﬁént:
' s - Firs;, we note that £ - t € k(é)[z] has one -

place at’infinity by 1.1 1) and [6], Cor. 4, p. 95. Let Qt(o) =

P_ be the last base point of A(f): As in the'préof)of l’lﬂ we

have a local equation Qt(o) for £ - t at Qt(o) with leadiné férm
. . )

-r

. , Passing to k(tﬂ ) = kl’ we see that there is a

"along 2, , and that Qt(l) is

rational over kl.’ Suppose now i = 1, let ki*be a field of the

Ed

/ . ' .

. . /form Li(si)’ where Li is a finite purely inseparéble extension

) ) —Ml , ‘ .o
of k and s; = t". ~ for some M; > 0, and suppose the first i + 1

' (0) (0) . (0)

} i, n. points above Qt "along Qt form a sequence,Qt ,

Qt(l), sy, Qé(i) of points rational over L (Qt(]+l) = unique

-

s
TR PR . g,
.

"“iqe of 9,3 valong 28, Vv, 0'<j < i) £ e, %) is a 16cad
_ - , » 0) . o (1)7 . (4)
. ‘ . * equation for the proper transform of Qt at Qt and x ’
; | 4 k ,

y(l) dre local parémeters at‘Qi(l), we consider the leading form

&

i P C , .y V.. . '

£ i s+ ' . ‘. .

§ C . qlf(Qt( ?) ='(aix(i) - biy(l)) 1, wr_lere,\)s+i is the mult1p11c1ty
- i (i . .

> o, . of Qt‘ )’at Qt‘a) over k(t) = ki and aj. bi = ki' We may assume

'

. ,
{ ¢ .
. » . oy
‘
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lf(%t(i))'— pv . Where p € ki[m(l).y(l)] is an irreducible form.

°

Assuming as we may that aj; # 0, we See that the irreducible
polynomial p(%(l) 1)

(i+1)

in x(l) has only one root gi; “The unique

igt Qt of Q ( ) "along Q (l)T iévrational ov7;,ki(£i).

1+1(Sl+1) = ki+l’ where Li+l/L' is finite

R = 7T-M.+
purely inseparable and Si+1 ’t 1+l for some M i1 = 0.

The process stops when we reach a simple i.ig. point over k(t),

and then we have 1.2 1).

’

Before econsidering the rest of 1.2, we make a
Rémark: Suppose & is a regﬁlaf lpcal ring over a field K, X,y
form a system of regular pafémetérs for [y = KIQIY]C
0 and the leading form of @ is (ax - by)", v > 0, a, b eK,
m ; 3
b # 0. Then & = 01y/x]<§ = x,3 = y/x - a/b)ls,the uniqué igt of

& "along o", %,V are regular parameters for @, and the,proper /

transform ' = a/g“ € KI[%, 91 c & - ’

>

Proof of 1.2 2) and 3): Let N be as in 1.2 1) and consider .the
P . , . N , .
pencil A(f) over k(s), s = t. At the

(0) (O),

1

last-base poinE'Q(o) of A, choose local coordlnates X

Buch that for all \ € E(s), a local“gquation QR(O) for Ay at

, o
0(9) ig 20(0) A By the remark we can require that

2,9 e kix?, ‘0’], so that 2, ©) ¢ k() (x 7,y for a1l

A E E(sf. For A € k, QR(O) is the specialization of 2t<0) under

.

_N f
s - AT . Let Qt(}f,...;, Qt , "+»» be the successive points

. - a
. 3 b\\
. ' v
. ‘ . .
a .
B -

~

P
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P
!

infinitely near Q(O) "along ftfo)", and suppose the multiplicr

ity of the proper transform of £ (0) at Q (M) is 1. we fix
t t
explicitly local coordinates xt(l),yt(l) at Qt(l) and proper

. (1) . 1 . (1) (1) (0) . -
transforms Qt € K(s)[xt 'Yy ] of ?t :

put x, (0 = x(0), 5 (O - (0 g (0 _ o(0) gupince e

t w
leading form of ét(i) at Qt(i) is (a(i)xt(i)«‘ b(i)Yt(i))ui,
é(f);b(?j e K(s). If p (1) + 0, we set
~
| » ¢ (4D QtuJyxt(i)“I*,
gy GFD) oy () yt(i+iy/= g B 2 (i) (i) U

1f b)) = 0, we reverse Xt(i) and Yt(i), a®) ana b in the

above. Note that Qt(l+l) € E(s)1x£(1+l),yt(l+l)].

£

Now for 0 < i < M, let T, be the finite set of nonzero

v

coefficients ¢ ¢ k(s) of*Et(l), and let S; = . .

{ ek | for some c g T;+ ¢ has a zero or a pole at s = AT }-

at .
.
. I3

(One can get.away with a bit less than this.) Let 8 =

C M : . , _ ' -
- U S;- S 1s the complement in k of a finite set. Now for
=0 .o . ’ —

~l

| il

A € S, we claim 1.22) and 3) hold. We sketch the induction:

? '
&
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’ Fix a A € S. If c if a coefficient appearing in Qt(l),
put ¢, = ¢ -N . Now suppose 0 < i < M and the infinitely

A |s=>\7r
(0) .

_near points above Q(O) "along £, form a seqqenée. .

Q(Oy, Qx(l), v, Qx(i). ,Suppose also that u(Qx(jg) = p(Qt(j));
. : /

"0 £ j < i, and that there are local coordinates xh(l),yx(l) at

~

” B . . . . BT
Qx(l) such that if Qt(l) = @)y (1) . b(l)yt(l)) ot ;

- t
(i) v . (i) 6 T, (1)
z C_ X Y then £ 1=, .
Y+8>u, véTt t ’ A
i L -
(i) (i) _ (i) _ (1) (Mi (1) v . (i) 6 -
Ca’"\x b T Y ) TR I C R Y €

E[xk(l),yk(l)l is a local equation for Ay at Qx(l). (Note that

(1) _ (1) _

a(l) P b(l)x make sense, and that q‘ A= 0 ¢ a = 0,

¥

b(l)k= 0 e_b(l) = 0.) One sees straightforwardly that there is .

X?’ that théere are local
(l+l),'yx(l+l) at Qk(l+l) such that a local equa-

a unique igt 9&(i+l) of Qx$i) "along A
coordinates x
t -~ . )\

1 (i+1) o2 o' (i+1)
th? Ek ) for‘Ax at QR -
. . . -N
and yt(l+l),in g (A+1) by A"
) . t

r s

(i+15) : ‘ PR
t - * ! e

is gotten by replacing s{,xt(l+l)
Co o (di+1) (i+1)
r X)\ L '

‘yk , and that

u (2 (i+l)5 = pn(R

A

' |
7{\ . - . s ! j

We next mention two applications of the results in this

k) - . (3 - 13 i — L) ’
section.” The first will see use in the second, and is a

/strengthening of part of 0.6 6) (with a slight additional

] : ‘

hypothesis) .




P
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Prdof:‘ £-te E(t)[zl is a line, hence has a rational place

[

39

1.17 «Propositioh: Suppose f € k[zl‘has one rational place at

7

¥

infinity, and f € 712] 5 a coordinate line,

Then £ is a c¢oordinate line over k.

s '

4 .
at ipfigity. So the multiplicity of the last base point

of A{£f) (with respect to ang generators x,y for,k[zl{
H A S‘ - !
is 1. So the order I ui(ui - 1) of the divisor of singulari-
S i=0 :

-

ties at infinity of £ - t € k(t) ?] equals (a4 -1)(d - 2), wnére

d = deg f. Hence f =g, having genus zero ‘and a rational place
. ’ , , ™ )
—_— N
at /infinity, is rational. Since f - t is regular at finite
distahce, it is a line. Now use 9.6 5).
" L

[4 . - ’ r
The next result is already known - one proof, shown the

¥

.

writer by Peter Russell, uses Hamburgef;Noetheq expansion. We

mention that Mn [5], Question 4.7, p. 97, theé authors ask, given

-

two retracks of 'an augménted algebra which satisfy certain com-

‘ ’

patibility conditions, whether a ® - decomposition of the algebra

is.induced. They remark that the first hontrivial case is the ' .
following: ’Ji
. i

Suppose f,g € R = sz} are lines, and that flgenerates R

mod g and vice versa. (These are-precisely tﬁé hypotheses of '
1.18 below.) Do f and g generate R? Using the epimorphism

. [Y
theorem, they give an affirmative answer in characteristic 0.
AV / \

1.18'r¢moves the restriction on-char k.

P
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$i,13' Proposition: Suppose f,9 € kix;y]

s

f' ) ‘ ’ 5 - ’ - ’ . 40 ) ‘t

e

~ k[Z] each have’ one
" 3 .

rational place at infinity,”énd i(f,g)fin

equals 1.  Then kix,y] = k[f,gj. , ‘ >

Proof: By 1.2.2), f - A [resp. g - u] has:-one blace VA .

[resp. Wu]-at infinity for gemeral A [y] € k. By 0.5 1),

-

Wo(f)'ﬁ -1, where f = £f mod g.“ So for all x € k, 1 =

-WO(f - A) = i(f - A, g)fin .° If £ - XA has one pldce at'infinity,
then 1 f‘l(f - A, g)fin. - Vl(gx = - Vx(g/- u) =

i(f -~ 2 g = Wgy, for all y € kK. sSimilarly if g - u has one -

¢

" place at infinity, them i(fi- A, g = W, = 1 for all \ € k.~

Hence we have

'

I - N g- Wy =1 o ’ S
(%) . . o _o' . /
S for all but f£initely many (A,u) € k*. Lo

o

" Now the prqof'told the writer by -A. Sathaye coﬂtinues

roughly fhﬁs: “Cohclude that k(f,g) = kix,y), so that f/and g;

being lines and field generatdrs,'are coordinate lines, andVP'h”’e,

argue 1.18 from this. We give another proof.: ‘ T
. . C o .

) co .. ' - ‘ - .
Suppose k(f,g) were not separably closed in k(x,y). Then

the map X = Spec k[x,y\~+ Spec k[f,g] =¥ would factor through

Z = Spec B, B = integral] closure of kRIf,g] in L, L= éeparablé

- closure of K(f,q) in'E(qu). Z - Y is a finite separable map,

which is Eherefoné unramified over the general point of Y, and

has n > 1 points in its gépéial'fibre. One easily sees that

§ e KA

this contradicts (x). .So Efxyy)/i(f,g) is purely inseparable. -

¢ k4 . - - -
It
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F

m

Supbose x" = a(f g)/ﬁ(f g), o,B-€ k[f,g] ‘relatively prlme,

Fh et e st Y g
t

T

7w as usual the, characterlstlc eprnent of k. If ﬁ is nonconstant,

© there exist infinitely-many M\, 's k2 such thet_ﬁ(x,p) =0

a (A.g). Pick such a (A,p), such éﬁat £ - Ay g - n meet at
. - ‘ m .8

i

B
«

= b. Tben a" -0 = a(k,u)K+ 0. "So assume B(f,9) ="1.
d . )
t a(f,g) = ¢ 'ai(g)fl. We know \g geherates kl[x,y] mod f.
. : ﬂ‘m m ) - - 9
h(g) mod f. Then h(g) = a,(g) mod f. Since .g is a

_ b m
variable mod £, a,(g) € (kig])™ . Also, £f' divides .tx'- h(g))"= _

" d .
'Zl ai(g)fl. Going mod f repeatedly, one sees that @, = ces = ‘i
i= . . . S
-~ Tl'm: L
q}m l,= 0, «a m (g) € (klgl)" , etc. So.x (similarly,-y) € :
— 7r ' v

o

k[f,g]l. By ¥ll7, f is a coordinate line over k. Say k[£f,z]

-

.
)
. ‘N .

-~ k[x y] " Let g = I si(z)f@. Using the fact that (£ - X,q)

P

equals 1 fbr all x e k, one sees that 8o (z) is llnear, &4 {2)

constant, i > 0. “So kIx,v] = .kI[£f,g9]. .
Q

- L4 - -
~N - ! ¢

Findlly, we turn to the results of Abhyankar and Moh
already -mentioned (0.8, 0. 9)~ _The hypotheses of these

theorems imply that the last,base point of:A(f) is’simple

“on all members of A(£), by 1.7.3, 1.7.4,.1.10 and 1.16.

'0.9 follows at‘once.‘ To see the Epimorphism Theorem (0.8},

. . . ) R
note that the linear system of curves of .degree deg f which

" éo:through the multipie points " of f at infinity

' has dimension » 1. Now [181, Theorem 4.1, p. 32, should

N

- s

‘ s [ . ° '
y . .

fln

.
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?

give the result, but, finding both [18] and [17] somewhat

ynclear on this point, we invoke another argument - the

o

proof of 1.17.

4

-

-

o
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2. . Counterexamples

Let A be an affine k-domain of dimension 1. Following
Abhyankar ( [1] ) and other writers, we call a surjective

k~algebra map k[2]‘+ A an embeading of the curve (Spec) A in the

- affine plane. We say that two embeddings «,§ of A in the plane

are equivalent if there is a v € Autkk[2] such that @ = fev. 1If
k is of characteristic zero, the épimorphism theorem of
Abhkyankar and Mohééays precisely that all e%beddings of ghe
affine line in the plgne aré equivalent. In [4]1, the authors
prove (assuming that éhar k = 0 or that one considers only "non-

wild" embeddihgs) the

-

FINITENESS THEOREM: Suppose A has one rational place at L -
infinity. Then the number of inequivalent

embéddings of A in the plane is finite.

‘

/

We remark that if A has more than one place at infinity, the

7 ‘ 4

conclusion of thektheorem may not hold. This example appears

in [24]; : o, /
Let A = k[tyt 1] = kft,t ], n > 1. Define embeddings

n

@ : kix,y] » A by xwwat, yuwst . "The kernel of a is generated

°y. Then
[

7(fn) = cfm for some ¢ € k*. Now 7v(x), 7(y) are each of degregz

at least 1. So v(fn) has degree at least n + 1. So m 2 n.

n ! .
by_fn = x'y - 1l. Suppose v € Autkk[v,y] anq =

G

Similarly n 2 m, som = n.
e .

& s

‘

-t

.
B e e
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We have seen (1.16, end .of proof of 1.1), for char k = p >

0, that one invariant (under automorpﬁisms of klx,y]) of a curve

13

f ¢ klx,y] with one rational'place at infinity is the residué
field degree pr of the place at infinity of £ ~ t ¢ k(t) [x,y].

One can easily write down Abhyankar-Moh lines f having, for each

positive integer r, prescribed invariant pr. (Let 1 < A < pr+lﬁ‘

. 2r+l Aot :
and p f A. Then f = yP - x - x'P does the job - see 2.13

below.) So the finiteness theorem breaks down in positive

characteristic for even the most well-behaved curve with one

-

’ g
place at infinity - of course we are dealing here with "wild"

embeddings. ’ , . ' o .

We 5uppoSe, in the remainder of this éectiéﬁ, that k i;
of characteristic p > 0, and algebraically closed. 'jSincé/the
results we brove will be mainly negative in character,.this
latter aséumption is, }n most éf t;e sequel, no rest;iction. We

a;sé observe thét 2.8 through 2.14 and the proofs .of them given

here are independent of char k.)

v
-

The next example provides negative answers to the followirg
[21, -

" questions about lines/f € k e o L (l;)

AN

) / '

.o ., /
2.1 1) Suppose all f - A are lines. We have embeddings

ay s k(2] k[1] for all A € k, such that ker oy is

fgeneraped4by £f - A. 1Is @, equivalent to ai for all A?

2) 1Is every line equivalent to an AbhyankarhMph line?

P
3
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" Before this, example was found, the answers to 1) and 2) seem not
( to haéenbeenwknown. Even the version of 1), where f is only
presumed to have one plage at inf;ni£y; was ﬁét known to have a
negative answer. For instance, allrséch f exﬂibiteé in 91,
1.5.3 have the property that all @y are equivalent, and ‘
. .

Abhyankar-Moh line; alsP enjéy Q%%s,property, We thank beter
Russell for the idea of.iooking at the ring k[x,yp], and for
pointing out the Lemma below. We also thank A. Sathaye for

3 r‘kz)s - X in characteristic’ 3, in

‘showing us the line (y
response to our request fqQr a nonprincipal (cf. § 0, comment
¢

before 0.8) line neither of whose degrees is a power of p.

2.2 Example: Let a,b be integers > 1, not divisible by p.
2

Consider a: kix,y} » k[t] defined by x~?*tap '

o 'YﬂA{tabp'+»t. "Let u = yP - xb, Then a(y - uab) = t. 'Let

£ = u®P - x. Clearly f generates ker «. Also f € k[x,yp] =
k[£f,ul - A. So f and all f - X are (coordinate) ;;ﬁes in A.
‘ B ¢ . L

2.3 - Lemma: Let/h € k[x,y] and f = hP. - x & kix,yP1 be a line

/

k[k,yp]. Then £ is a line in kix,y1.

. Proof: Suppose f generates the kernel of the surjection

a: k(x,yPl » k[t?]. Let a(x) = u(t)p, a(ypjﬁF v(tl?d r (Recall
that k ié perfect.) Then a is the restrlct;on of )
B: kix,y] -~ k[t] to klx,y® 1, where f (x) = u(t)p, B ly) = v(t).
' Singe g (£) = 0, u(t)P = h(u(t)p,v(t))p, so u(t) € k[u(t)p,v(t)},
(: N " so this ring equals k[u(t) v(t)]), so B is surjectlve, since

- K

4
A
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o

t € k[u(t),v(t)]}. Suppose g generates ker . By 0.5.2),

degxg = degtv(td, and degyg = degtu(t)pﬁ also deg f = degtpV(t)p=

= deg _u(t)P = degtuﬂt), so degyf =

degtv/(t) , and deg of o
. t

Yy

I

degtu(t)p~ So f generates ker B. Q(Remérk: When we have 3.3,

0, so that

=l

2 © 8 \P _
we can conclude'from aEu(t) = 0 that gy

A 5 .

g'§ k[x,yp]. - So g divides f in kl[¥%,y], and f divides g in

e
n.

k[x,yp], etc.) ) i

<t

By the Lemma, all £ - A in example 2.2 are lines in k([x,y] ~

this can also be seen directly. Now suppose ¢ € Autkk[Q,y],

A ek, c €k* and ¢(£) = c(f - \). Since o(¥®), ¢t (D) €
k[xP,yP1 ¢ 2 and ¢(x) = ¢ @ - c(f - 1) (similarly ¢ T (x))e
A, ¢ restricts to an autohé;phiém of A: Moreover ¢(u) dgenerates
A over k[f}. So ¢(u) = du-+ h(f) for.some d € k*, h(f):e k(£f].
So ¢(x) = (du + h(£)3P - (£ - A) = o

‘ a-1 . .
. @ - o+ z (2) (@) Pre P voxr o,
- / L - i=?l - . 0 ,
? | Suppose deg h = m > 1. Then degx¢(x) = dégxh(f)ap = b(azmpz) . )

(since a > 1), and degy¢(x) = p(azmpz).' But p I'bhqnd’b / p,

: . . which contradicts the Automorphism Theorem (féf k[xhy],\th A). -
- So h(f) = h € k, and ¢ (x) = : ., iﬁg’
, ..a . i ap' a-1l a p(a—i) Ei.p
1 ge! p/_ c)u"™® + =& ( i) h (du) + cx + CcA. ) .
" 1i=0 N ! o ) ,

: ° degxulpe= ibp, degyulp = ip2 implies (repeaging'the above argu-

g ment twice, and noting that a > 1,'p f'a and 4 % 0) that a%P = ¢

5 ‘a f i

T e

4 -
. ‘ ' '
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Lo = 6P - (clx + AP so, =2 o(w

2.4 Exgggle} Let char k =17. Let £ =y =7 + x + Xy~ .

47

£= d(yp - xb)\. Buht

-bax?~ 1! =

and h-= 0. So ¢(x) = c(x + A), and ¢(u)-

b(c(x + M)P7L setting x equal to 0, we get X = 0 and 4 = >t

Also, (4 - cb)xb = dyp __¢(y)p and p / b, so 4 = cb and ¢ = 1. -

From this it follows that -

is a set of pairwise inequivalent lines, of cardinality card k.
In perticular, f is not equivalent to an Abhyankar-Moh line}f—Ehe
proof also shows that if A € k, then there is no nontrivial
automorphism of the plane Wthh fixes the curve £ - A. So

example 2.2 exhlblta_g sort of family of "totally inert" curves.

The next example .shows that 1.2 3) cannot be strengtheged
Before flndlng it, the writer had hoped that for f having one,

rational place at 1nf1n1ty, ‘those f - A havlng one place at

' . -

- infinity would have the same multiplicity sequence at infinity

A \ : - T

as does f. . .
/"

N
¥

119 _ 85 2
We leave to the reader -the verification of these’
~ “_ claims:
/

7 For all A € k, £ - A has one place at infinity. The base

gy s

points of A(f) consist of




- 2.6 Examplé: Let char k = 2, and let f = x~ + Xy + y68 .

N\ 3 points of multiplicity 34 and

37 points of multiplicity 17.

The multiplicity sequence of f at infinity continues

! [ ’ 3

) , 8 ' L
That of £ - A, A € k*, continues

17, 1.

4 /

f is a rational éurve, and £ - A has genus 12, for A € k*. ,

-

1.2 2) cannot be étrengthenéd either, as.the next example

shows. It provides a negative answer to Abﬁyankﬁr's guestion

’

~2.5 1If f£f has one place at infiﬁity, does f - A "have one place

-

at infinity for all A € k? (k = EC of course.)

]

-/

&

- (Thig is QUESTION (11.18) on p. 91 of [11.)
. / ,

. —~

6 227 2

_~ For A ¥ 1, £ - X has one place at infinity.
: f - 1 has two. (f is again a rational curve;
o . - .
£-X, N % 0,1, has genus' 340, £ - 1 has genus

‘ e 7339.) | ]

) /
Professor'Sathaye has, upon analyzing this example,

expléined/to the writer how to gonstruct mény such, and haé
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’

kindlf suggested that_the donstruction be included here. Both

to help the reader understand”Sathaye's examples and the others

of this section, then, and to remind him of the flavor of the
b '

mathematics involved in blowing up a point on a plane curve, we

"first collect a few eleﬁentary facts.— The following statements

about positive integers must appear in many textbooks (although

£

' vl

2.7 Let A,B be integers, 1 < A < ﬁ, g.c.d.(A,B) = 1. Then

there exist unique integers £, m,; ¢', m' such that

1) 0<2 <B, 0< 8" <B, 0 <m«<A, 0 <m'" < A and

2) A-mB=1=m'B-2!A. (m'=2A-m ' =B -12.)

-

Moreover, . ' ) ,

3) the above inedqualities are all(;trict if 1 < A,

.~ ~ 3

4) a) m' ~ L'm= 1,

'b) 0 <« 2 -~ m, and t

. 7 - ! v . . -~ /
c) if A < B, then? - m < B'~'A, hence -

' . ‘ - : )

I

0 < f' -m' <B - A.

v a 3

o~

1
N -~

i ;oA

. 2.8 We next describe a process for obtainihg, ‘given a .power

-

series ring G’in two Vériables x,y, and a nonunit f.c &

satlsfylng certain conditions, another power series ring 01
3

varlables x,y for &, and a nonunit f € 0

-

[y

Let f = f(x,y) =3 f x yj e k[[x yll = be of order

d, > 0.

1

el

the writer has not seen them), and are in any case easy to prove:
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3

~ a

i) Suppose that the leading form of f is cx l, c € k*, and P
that dl < do = ord £(0,y) < «. Then we put
X=2x/y, Y=y, &= kllx,y]], and
, T _ s 3 ozizd ’
£ z fijx ¥, where
. s
_ 2 =‘a fi,j—i+d1, if J +vdl > i
; A3 0, otherwise,. !
~ d, .
F = £y L. )

Note that

’

ii) Suppose x and y are interchanged in the hypotheses of 1i).

Then we put

X =x, ¥=y/x, &=k,

, 7. 5ig]

. ijx y-,- where
f' l—’; .

f.. = i-3+dy,3°

L +3 0, otherwise.

Hh
i

o]
Hh

if i ¥ 4, = j

. - ,,‘, dl
Observe that £ = f/x . ,

. /
Remarks: l)' We emphasize that here we are concernhed with set-

-
x5

ting up a precise-process (O,X,y,f)vfa(07§,§'f): defined only
under stumption'i) or ii) on £ abgv%, which provides us not only

with a new element f of a power series ring O} but 4lso with

specified variables %,y for. 0. o o

»

.. 2) We call f the proper transform of f.- Referriné to
the discussion in § 1 above Lemma 1.8, we clarify the relation-

ship be;ﬁeen what we are doing here and what was done there.
ST d ,
Assume i) above. Then the unique igt @' of { in which £/y 1 is

a nonunit is 0{x/y](x/y,y); the s'defined in i) is the completion

-
.
H +




of ¢. 1In § 1, we could have shown that ﬁnder certain conditions

I

on £ € &, we have

(%)~ : fe @ un:‘i.branch
! <«
. £' € @ unibranch, w ere

£! J.s the proper transform of £ in O'. The next lemma essentially,
establishes the counterpart of (*), where "unibranch" is replaced

by "analytically irreducible". One way to do this would be to

prove the chain of implications f analytically irreducible «

f unibranch « f' unibranch < f' analytiéally irreducible; we have

instead given a direct proof.

Given any £ = z Fi(x,y) € k[Ix,y]l], F. € k[x,y] forms

i=d
1
d‘l ~
€ kllx/y,yll =: 0

[:3

of degree i, Fgq + 0, we put f:= £/y
) 1

) (ihis notation is in force only for the next lemma.)

- , - ! 'e
d Ca 4

1

’

2.9 Lemma: 1) If 1f(f) =cx -, ¢ € k*, and f € 0‘1% irreduc-

.ible, then f € & is irreducible.’

.2) 'If ord £(0,y) > d; and £ € (r is irreducible,

I\} ~ : -
' then f € O%is irreducible.
r /
( il

i-d

Yy
]
™

Proof:
izd

£4 0 and Fy (0,1) = £(0,0)
Vl R

1
an_d‘ 1£(£f) = cx‘l, c € k*. Then 1£f(g) =‘clx“, 1f(h) o= czx\),'

c;, € k*,5 u,v > 0. g = g/y“q, h = h/y" are nonunits in {r-and

S

~ ' . &

o \ N 51

~

yo -1 Fi(x/y,i\). If £f € & is irreducible, then
A dq ’
0, so £ = fy- 0 anc}\

d, > 0, so £ 45 §*. sSuppose £ = gh, g,h € ' of positive order,
.d -

o - rnand  BAL
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<

s k[E?]]TX/yJ = § is special in %/y, and we must show £ is irre-

'f = gh. so 1) holds.

Next suppose y [ lf(f). (f is "regular in x, of order ;"

By the Weierstrass Preparation Thedrem; there is a unique u € §* -

d, - ; v

4y 1 d,-i ‘

such that uf = x = + I .a;(y)x » a;ly) € k(tyll; also,
i=1

ord a; > 0. (uf is "special in x".) f € @ is irreducible <

uf € k[[yl]l[x] is irreducible. (See, e. g., [34], p. 146,
. - : 4
COROLLARY 2.) Since uf = uf, we can assume u = 1. Suppose
’ d
1

ord £(0,y) > d £ irreducible in ("= 1f(f) = x ~, by Hensel's

l-

Lemma. (Recall that we are assuming k is élgebraically closed.)

SO a,-i
+ 1y Ta;(y) (x/y) €

Sso ord a., > i, £ = (x/y)
i = L
i=1

Hho

ducible in S. Suppose f = gh, g,h €S, g,h ¢ 5*. .Since f is

monic in x/y, g and h have positive dggreé in x/y. So £
dy L ,
y “gh, g,h-€ k((y))I[x] - k((y)), which contradicts the

3 14

Gauss Lemma.

' . -

&

As a consequence of 2.9 we.have

- [

-

2.10 For f as in 2:8, £ € 0 is irreducible » f € { is

irreducible. -

)y

’
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1
2.11 Now let £ &, lf(f) =cx ©, 0 < d; =ord £(x,0) < d,

etc., as in 2.8. - )
a , ~
[Resp. 1£(f) = ¢y T, 0. < d, < d, = ord £(x,0), etc.]

'Let // ' : ' N

d; = 94, + dj

. e » -

be the Euclidean algorithm, g = % éi‘ Let £ = fijxlyj and
sugpose £, ij = 0 for id; + jd; < d dl‘ [Resp., fij = 0 for ~

jdo + ldl < dOd Then we have a unlque sequence
- ’ . /

0 ) <"'<0' and elements £; e 0' = k[[x vyil] ‘such that

1]

f1= % 01‘= & fi+1 = fi'_°1+1 = 01' Xy =X, ¥ =¥, ‘

~
o

Xipy = X4 Yigp = yi.a Moreover, ‘ord fq = ondffq(gq,O) =
ord fq(o,yq) =,d%f e . . , ; w}f

T - .

Proof: We do induction on g. Suppose q =-2.° Then dO = 2d, and {

we are done. Suppose g > 2, and‘suppose 2.11 holds for

q' < 4q., .o,
£f=7=x (x/y)l l+j G §i§j where f.. = £ .
. cTij " S i,3-i+d,
i) d0[> gdl. Put d0 =.,d0 T dl' dl = dl' We have - |

5
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d0 = (ql - ],)dl + d2, cos, da-l = qada' and’'q' =gy - 1 +
{ ' . ’ ‘ .
' a . ’ 3 ‘ L 7 . g
i'f_?_ q; =g - 1. idy + jal <.aoal =>/1(d0 = 4y + jg, <
Kd0|_ ledl ?‘ido + {j - i+ dl)dl < dodl = fij =0, 2.11.
follows by the induction hypothesis on g'. ‘
; : : ' ii) db’< 24, - Pug EO = gl,'al =dg - d;. ; is thg tangent to
— f. jdO + idl < dOdl f jdl +"i(do - dl) < dl(dO - dl) =
idy + (- 1 +d)d; < dyd, = ;. = 0.

1j
2.12 Corollary: Suppose f is as in 2.11; qIf gﬂc.d.(do,dlf =1,

“then f is irreducible. , ,

RS SPERP N - VAP SRS S

/
/' Proof: 'fq € 0& has order 1; apply the niEn part of 2.10 g -1
. " times. ' ) -
; ) - '2.12.1 Remark: In the general case (@, 2 1), 2.11 may be
' " "7 regarded as saying that the branches of f stay
Q"‘ K " o y . together through‘theipointg 01, sy, 0&.
/ R s - R [

] 4 - P . . , ]

- 2,13 Theorem:/ Let f = I fijxlyJ e = Oi be aé_in‘z.ll.- Recall

- that succeésive’appliéatiohs,og ~ determine not

only the power series rings'ai, 1l <13 <gqg, but also generators

[4 -

1 . ,“l for them. Let x',y’ be the generators for 0; so determined,  and

'

3

" let £' =% f'ijﬁfly'J S Oa be the proper transform,of f. Let -

- pd
A=4d,/d,B=4y/d,, %A -mB="1=m'B- £'A as in 2.7 1) and 2).

~

v

,
» 7/
.
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p , .

Then

L

] -
l) f.ij - fil

jio where . ] v

i' =m'i-mj +md,, 3' = -2'i+ 05 + 2'd, hence

¥

2) £5 = £'yuju, where . R
i" = 2i +mj - mdg, 3" =R'iT+ WG - 04,
1ot ‘ - 3 ’
3) x' = Ny, oy = ny M hence . e
12,02 v ym'

x = x'"'y ;Y = X'y .

Proof: 2) follows f;dm'l) upon solving ﬁgr i,3 in terms of " -
i',j', recalling that g + @' =B, m + m' = A/'and fm' - Q'mL= 1.

- Similarly we need only prove the first part of 3).

- '
g Let d0 = qldlt+ d2,’---, d&—l = qadq, q\= I g as in 2.{1..
- N = | I ; ) i lj . = -
Suppose q ’2. Then}f "Z-fi,j-i+dl¥' y'". We have qo .Zdl'n

dl = d,, 2 = Q' = m' =1 and m = 0, sd 1) holds. - Noﬁ suppose

. q > 2. f=71f,

Q0 > <%

'1) d, > 2d Put dO = do - dl’ dl‘=,dl' A = A, B"= B 7 A,

>

By 2.7, 4) b) and c), if'f, ... aré defined as Wwere £, ...,‘then

=9 - y,’ﬁ =m 2'=¢" - m', m' = m'. We have ffii =
g fm'i—mj+mda, -(2'-m‘)i+(2;m)j+(2'-m')da = g

11) . do < 2&1. Pu‘;t do = 'dl” dl = do - dl’, A =.LB ’- A, B = A-

2=m',m=2¢'-n', ' =m m"=¢-m f=1f.xy ="
~ixj " = v eried o ! 1 % l

z §jiy xJ, £ IE'yyx y'” = I £'4;¥""x'7. Ve have

.

Mmzé_gq.mﬂ},wmmmﬁmua -




- |
£r.., = E - ' ' ' 1y < ' ' = \
ji -mi+m'j+md, , (-m)i-(2'-m")j+(2'-m )d,

. -‘\
f—mi+m'j+mda, 2i-2'j+9'da , and 1) follows. The same considera-

tion of cases gives 3).

+

2.14 Corollary: Suppose f =,z"fiixly3 is irreducible ‘in

k[Ix,y]], and d, = ord £(x,0) < a, =

ord £(0,y) < ». Then

1) flj = 0 for ido + jdl < dO 1’ and

2

2) Z £.o.xTyd =

. o ij
idg+jd,=d,d;

o ( fl/da xdl/ﬁa . fl/da d,/d ) d "
' d;,0 0,d, Y ’

[¢]

. where da = g.c.d.(do,dl).

éuppose f =1 fijxlyJ € k[x,y) has one place

at infinity, and let D = degyf, d = deggf.
Then |
i) f£;5= 0 for 4D + jd > D4, and

ii). :E:‘ £, xiyd =

iD+jd=pd *J

1/d, 4/4, ° 1748, D/4, d;

(04 ) ’
(f4,0 %  *f,p ¥ Yoo
where 4, = g.c.d.(D,d). ' -
. _ ‘ ¥
}
™ {

Ky

-
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1

Proof: Recall, that if g € kl[x,y]] is dirreducible, then 1f(g)
/ . -

is a power of a linear form, hence ord .g =

min { oxrd ¢g(x,0), ord g(0,y), }. Define q as befare. If q = 2,

d0 = 2d;. One .checks that ord £(x,0) = ord E(O,;/) = dl' By the

"only if" pa:rt of 2.10, f is irreducible. So ord f = dl,' and 1)
holds. The proof of "1) for q > 2 is the revefse of steps ig/;

ii) in the proof of 2.11, together with the cited éart of 2.10.

Nowﬁq - 1 applications of the "only if" part of 2.10,

£f' = fq € O"q is irreducible, so orxrd f' = ord f'(x',0) =

ord f'(f),y')‘= .- So f'j_j =0 fori+ j < d,r and. )
T 1/4, 1/4, d, :

2 fox'ty'd = (£ x' + £ y' o) . If f'.. =

i+j=da ij dy .0 0,4, ij

then i + j = d, i'd0 + j'dl = dodl, ~as follows from %)

f. o

lljll

and 2) of 2.13. By 2.13 3), 3 fi.xly =
id +id,=dqd, J
e e md, 2°'d : Co
5 fi'x,12+jmy.12 +Imt. o ny, 1 5 f’..x,ly,]' =
J ' . i+j=d,

(M mag/dy +L LA/ e mdg/d, 214174, Ly
da'o LT Y‘ ) - O,dq hd . y'

174, a,/a, . 1s/4, d./a, d '
axla+f @ 0 a) o To see i) and ii), first

£
( d,,0 0,a, 7 g

d. Then i) and ii)- just' amount to saying that -f has

~-suppose D

‘one point at infinity, which is the case. So ‘'we may assume

A

D > d. Then x = 1/x, 'y

y/x are lgoal parameters at the point

z fijxD~l—a§J € k[[x,yl]-is a local

at*ihfinity of £, and f

i

e
LN

<«
1
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’

»

¥

t , Iy

" equation for f there, hence is irreducible. Put fij =

-

_assumed that a,n > 1; if a or n

" M

O P
D-i-3,3 D-i-3,

i.e., £, =0for (D~ 4i=-3)D+3(-a <D - d), “which

is i). Similarly 'ii) follows from “2).

By 1), £ = 0 for iD + j(D - d) < D(D - d),

; ’
/
/

Remar}cs: 2.11 through 2.14 v;ere' discovered independently by the -
writer; some of these resuité' ma’ycF ha\{e /been known' for
some time. 2.14 i), for instance, can bhe found, stated and
p‘roved dif‘ferently, in [1], (11;19); un&er the assumptio'p that
char k does not divide g.c.d. (ﬁ,d)-. Note that the second fxalf

( i), ii) ) of 2.14 holds for f with one rational pldce at

infinity over any field k, simply by pas;sing to k.

s

1 4

'We are now ready to describe, in stages, Sathaye's family of
. . J

,examples’prgviding negative answers to 2.5. .

(

2.15 Let a, b, 'a/ﬂ B, n be positive int;e:;ers suéh that 0 <

A\

n .
chark=p,}',a,a+ﬁ'=p+pEpl,anda+b=
. i=0

. P+ PM. Iet £, ='YP\+/@+ By - P e kix vl

-

agd Ay = a®(-1)**20 D) Tpnent o ”

” RIS
‘“ i

f, is irreducible if and only if A # X,.

¥

(Note:, - In the following long computations we have tacitly

1§

1 the J;eade}:' i,invitéld to

strike out the superfluous terms.) .




!

¥ . ,

. ’ Y . J
Proof: Let F =« + 8§ + 1. Consider ther automorphism oy of

k[Ix,y]] defined by ywwy, ) . \
. — n-1 l+m, 1+m
XvpX - yo- I a ( l)a(l+l) y .l - C\Y ",
* i=0 .

- By E - 1) and ‘ |
. ckp = an( A(-1)% .
We have ﬁ/ L)
4
a, (yF + xp)k=‘;P - fgi ai(_lié(i+1) YP(1+mi> ) c)\pyp(lﬂn )
i=

S

since a and .-l are in the prime/fieid of k.

]

o ‘a-2 . -1, Lot 14m,
o Py = ¥P ( x*+ 1 (5) -1) 352 3[y+ p al (-pft (Hym
' j=1 J f i=0
(%
14m_
} | 'cky i ] J + 4 i
ﬁ L3 - . )
' a-1 n-1 ; . l+m,
Caen® iz (a.l)ya 1- 3[ P ab(opyal+l) ST
- jz1™ J « Li=0 , .
: 14m_ 7. . 1 ! -
oY “] I 4 a(—l)a‘lxya s ;
/ -1 oom
(-1)2y2 (14 1 at (- 1)a‘1+1) roy ™ ® > .
i=0 -
. i -
‘ n—l ‘m’ m .o -
Now (1. + Z ( l)a(l+l) + Cyy n) ? =1 + ac,y nog
i=0 * . —

Feg® ke

. 5,
€ - »
s
ARG T a foatt” s s By

3




n-2 m m._ /
ar al(l)a(l+l)yl+an(l)anyn 1 +
5 i=0
a n-1 . m . C
) (é) (3 at(- l)a(l+l) + oy Ty J, so, since
j=2\] i=0
- a+ b + mn_% = a‘+ g and F=a + b + mo
2y (xyP) = al-1)3 L@ 4 QP 1A 4 a1y BeyyT o+
' n-2 . ., m.+a+b
. ( l)a a+b + Z~al+ (_l)aly i + Zi . where
i=0 o
' ) Ca " n-1 L ‘m .
‘ 1= yo (D2 x (3) «: ab el i ey ) 7+
- j=2\1/ i=o0
- B a-1 n-1 oy l4m,
) a(-1)2" Yy 5 (all)ya 1~ 3[ pab(opaiHn T
©g=1 L:i=0 t
l+m_ 7 . .
] |
i ' . // g P
S a-2 / . __+ n-1 1+m, 14m .
2 1 (3) 0 Ix® T e pat (AT eyt Ty
- [ -3=1'3 i=0 .

xa>. Since p(1l + my) =a+ b, p(l +,1:nnj =0 + 8

Ei ,/and P(L¥m, ) =m+a+b f?r 0<¢is<n-2
ay (xp+yp+x y ) = %P + a(--l)a'—ll*ilf'a-'.b_1 + a(:l)acxyF e »
-1 +
( af(-1)2(m ')~ - c)\P ) y2tE 2y

".a)\(-lxayﬁ) '= -}\(--l)a yaj‘ﬁ + ,},22,""where Ly =

i
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&

' % —5 ALl i l+m, ~  Ll+#m_ L
- Ay ((—1)“_2'1(‘;‘)1/" I at 20y oyt 3y
J= i=0 , \
a-l . . ‘n-l . . l+m' l+m .
D (5) e s s ab (-2 ey T 3 ),
j=0 J i=0 ,

- -
¥

3

- -1 a+b-1 . F
So -, (£,) = fp + a(—l)f xy? + a(—l)agxy * Ly + I,

-

We make a few observations:

i) .ané F are relatively primé.
ii) x = 0 if and only if A = RO.
iii)- (1)F + (a + b - 1)p > Fp, and
(LY(P +1) + (a+ b-1)p< (F+1)p.
'iv) vaxryslis any monomial occurrifng in I, or-I,, -then.

rF + sp > Fp, and (r,s) # (1,atb-1). ) . -

r 4“ - ' / « ’
; . (Theé proofs are omitted, involving as they do arithmetic only.)

-

v

If A # A, then by i), the "only if" in ii), the first.

inequalities in iii) and iv), an& 2.12, fk°is

irreduciblé.’

W .
-

. ’ , ' l 2 4 . ;/ «
If A = A,, then by the "if" in ii), the second inequalitjies .-

0
in iii) and iv), the fact that t = oxd fk(OLYS'g-F’+ 1

(if t = +o, note that p > 1), and 2.14 1) angAZLb £y iSwreduciblg.

L2

. . . v
,
-~ N A - - V. .
. — . X
. . ¢
2 .

©2.16 Observation: Let p be a prime. Then: . '

— . ]

&




[A]

1) “There exist n > 1, and coprime integersrB,C such that

1l

‘(See*2.7.) Put

We can arrangé that

2) p

Proof
RO

there
0 < 2

. “Let B

s

integers such that 0 < £ < B, 0 <«m < A, and 2A - mB

n i n+l._ 4
<C<.Band BC = § p P~ -
=0 p ~- 1

il

Put A= B~'C. Thenl < A<B - 1. Let £,m be the unique

Il

1.

i

a=1+ (@ ~-m(~-1)B=p+ eClp- 1) . ’

v

does not divide a.

If p=2, take e. g. B=5, C=n = 3. f = 3, m = 1.)

Suppose p is odd. If p is not of the form 2T -,1, then

exist coprime B,C, 1 < C < B, such £hat BC =1 + p. Now
# e

-

<pand 0 <.C ¢ p, sop J a. Supposé now p = 2% - 1.
= P4 + Pz +1,c=p+1=2% n=5 B and C are coprime
is. odd. If p | a, then'(§ - m)B =1 émod'p), so

1 (mod p). ‘But A < B - 1 = L -m«<C, so @ —m= 1.

2

1= ( - mB= B, so p+tl | p4+p , which is false.” ;

v

ILemma: Let A, B, a, £, m, n be as in 2.16. /Put
/4

2' =B"“Q, m' i:A"I“'b=p(.]-’.'+' pn) —a,
e

a* = am' ;/bml+ pﬁ, b* = —ap' + bg'+ pg'. .Then

1) a* and b* are positive, and .,

2) a* + b*‘g'pB and a*B + b*A > ABp. .

o

‘

i

PRI

e
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»

Proof: 0 < 1 = QA ~-mB = (2 - mA - mC = > 3=

-

L _ g-m _ g-m,, _ m _n+l
S}nce ¢ ~m < C, we have a > mpn+l/A, so a* = aA -'Mpn*l > 0.

n+l _oq)p = /

2 >0 =0>-2 =¢p(1 +pM) "> ep+ (p
fp + B(Qckp - 1)) =% + B(a - p) ® b* = &p(l ¥ p") + Blp - a) -
2p > 0. Using the first expression for a in 2.16 and the fact
that -~ m < C, one ehecks thatla* + b* < pB.l The’last inequality

in 2) follows from the fact that £A - mB = 1.

We can now exhibit Sathaye's family of exaﬁples. We call a

curve f as in 2.18 a curve of Sathaye type.

9 —

2.18 Proposition: Keeping the preceding notation, put
9, '

M ="Bp - a* - b*, N = b*, and let

f = yBR + xCP 4 xMyN

a(n—l)+Bp(Q—m)~ Then

-

f € k(x,y]. Put Ay = a™ (~1)

& '

f - A has one place at infinity if and only if A # A;.

2od
Proof:' By 2.17, f € k[x,y] and ihe deéree form of £ is pr./
: Hence a loca{reéuation for £ - A at its point at infinity
.t . ' ‘, ¢ . - 2
- : - * *
is 9\ = Eﬁ% = Y'Bp + x'Ap + x'@ y'b - xx'Bp, where x' = l/xh
X

v

, 'y'(= y/%. We must show =N gﬁk[[x',y“]] is, irreducible ¢ A # Ag-

rd

- i

€~m m K

R T 1 S

N Y,
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S

By the second part of 2.17 2), and since A < B and p =

g.c.d. (Ap,Bp), this amounts to proving the same for

[
4

fA = an + xup + X"ay"b _ Axnayuﬁ € k[[X",Y"]], where R

o

¢ = Bp( - m) and § = (B - 2)Cp. (See 2.10, 2.13 1) and&@), and

2.16.) But this is just 2.15.

- Remdrks: 1) By 2.16, curves of Sathaye type exist for k of

any characteristic p > 0.

' / 2) Example 2.6 is of Sathaye type. (p = @, B = 341, "
C=3,n=29, 2 =227, m = 225, a = 683, b = 343,
Ro = 1l.) A specific example easier to check is ff% x6 + xy3 +

b (p = 2, B‘% 5, C=n = 3); as with 2.6, £ is a rational curve.

. / .
The readgr may have noticed that, in 2.4, 2.6 and remark 2)

above, the pencil A(f) has a movablé singularity, i. e., £ _ and

fy Have a common factor. When k is of characteristic  zero,
‘ ' J ’ . . -
Bertini's theorem on the variable singular points of.a linear

— #

system rules out this eventuality. In view of/ the uniform

behavior ( 0.9) .at infinity.of the members: of the pencil A(f)
when cEar k = 0, one might therefore hope that if f has one place

at infinity and theﬁpepcii A(f) has no movable singuldrity,—then

£ -2 héé“one“plaée at infinity for all A. The matter is not so.

simple:

¢ . . . -~

2.19 Let char 'k = 2, f

0
o)

PP

.

phaen 3 W ot e mew o L
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f + A has one place at infinity. f + 1 has two. All members of

o

) A(f) are nonsingular at finite distance.

-

2

2

We briefly explain a way te construct subh examples:

Suppose char k = p > 0 and p + 1 has a factor a, 1l ; A < p;

such that A + 1 and p + 1 are relatlvely prime. (We note that
5 R
for p = 5, 41, .-+, thére is no such A.) There exist unique,

C,D, 0 <C <A+ 1, 0<D«<p+1, suchthatD(A+l)—C(p+l)=

1. Put B = E%l and M =D - C. One easily seeSvthat M > 0,

; o D>1, pb > B, and g:c.d.(pD,B) = 1. There.exist ugﬁque L,m,
0'< 2 < pD, 0 < m < pD - B, such that £(pD -~ B), - mpD = 1. Let

- ¢

' (2-m) (pZD-1) ' '
"F = 2(-1) p . Using the above facts and most of the

techniques of this section) one has

: ' ‘ ’ 2 -
{
P 2.20 - Proposition: Let f —‘yp D + xpB + xyp + Fy + l. Then '

¢ - 4

f - A has one place at infinity'? AF 1. -

All £ - X\ are non51ngular*at flnlte dlstance, and the genus r

-

of £ - 1 is less than that of £ - X, for all x # 1.

N
R T L NN Ty
3

Remarks: l)/ In 2.19, we have A =‘1; B=3,C=1,D =}é,
' L =1, m = 0, F = 1. F- 1 ﬁas genus 3,.f - A,
x’+:1, has genus 4.
° ' . '2) Suppose f = pr +. xCp + xMy lé an irreducible E

curve and A (E) has no mov%ble 51ngu1ar1ty. One

e 3 TR TR TR ey e
i

< ,4' .o ; K sees that then max { M, N } =1. 'If £ is' of Sathaye

Ve
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» *

’ type, M and-N are positive. §o M and N must equal 1. So b* =1
< aQ ! , . ’

and a* = Bp - 2. Hence (p - 1)BC + 1 = p =a+b-p-=

. Ba* + Ab* - ABp = BCp - B - C, so O BC - B ~ € - 1 and

(B-1)(C-1) =2, soB=3,C=2. Since 6 = BC =1 + --+ +

n 15 10

A

( < ,
f - X has one place at infinity ® A £ 2, and A(f) has no

.

movable singularity. (f - A-is nonsingular at finite distance

if and only if A # 0.) f and £ - 2 are rational, and f - A has

genus“l for X % 0,2.
'3) The following has apparently been an open

e . question for some time: ,
E) _ - J) .

~

éﬁppose char k =0, £ € k[x,y], and f’—;x is irredﬁciblé

/
. de N v
and nonsingular at finite distance fo& all A € k.. :

Are then all f - A lines? - C ~ ) //‘\

2.20 gives counterexamples in positive characteristic. ’

,/ |

I

P, we must have p=5 n=1and £f=y ~ + 0 + xy. Then %

s S e

e
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3. Lines in the plane in positive characteristic

- . TN .

k]

(Unless otﬁerwise stated, k.will, throughout this section,

- be assumed to be of characteristic p > 0.)

13 -

Most of the results in the preceding two sections-arose in

L} 1 - ! i
the course of attempts to prove or disprove the following

o
s

statement:

’

o

Y &&ﬂ«@rm\ s

3.1 If k is algebraically closed, and f € k[Z] is a iine,'

5 . . then £ - A-is a line for all A € k. .
.J, /" - - . , ‘
(See [28], Q(1,2).) At the time of writing, the truth of 3.1

has not been estabiished./ We remark fifst that none of ‘the’
examples of § 2 disproves 3.l1l. For, by 3.4 below, if f is a

-

line,ﬂA(f) has no mowvable singularity -at finite distance. So

of the examples cited,lfnly 2.20 could possibly contradict 3.1.
Y . * . / .
. And in 2.20 no member of A(£f) has one‘piace at-infinity and

Y

genus 0, i. e., no member is a line. .

B -

<
Now we describe some of the ways one might try to-prove-«3.1l.

We begin by remarking-:that the most difficulﬁ step in the proof

ing fact: ’
’ »

7

-

3.1.17 1If £ € k[2] has one rational place a% infinity, then

?*,-'9

-

o so does £ - A, for all A\ € k.

of the epimorphism theorem in characteristic zero is the follow- '

o e
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4

: ‘ ! ) ) ) ,
_ For, suppose/th;s is granted. One sees fairly easily &Khat for/

i

general A\ € k, the geometric number of places at infinity of
£ - A eouals the degree over k(t) of the residue field of the
p%aee at infinity of £ - t, go this place must be rational.
' Since all members of Akf) "go throhgh eaoh other“, the orders‘of
»

the divisors of singularities at -infinity of £ and £ - t are’

A}

E

’

the same, so f - t is a line, etc.

b
Now in positive characteristic one has no such arguhent

(whatever is left we have used in 3.14), but one might have

<.

hoped to salvage 3.1.1. (k =\E, of course.) 2.6 shatters this

hope. 2.4 sputtles another p0351ble approach to 3.1, 1If the
hope expressed just before 2.4 were not in valn then 3.1 would
follow. (For, £ - k would then clearly be a llne for general

»

‘A € k, and one could invoke 3.14 below.)

by

‘ The, hypothesis of 3.1 concerns only one member of the
pencil A(f), the concluslon concerns every member. /if one,
perhaps not unnaturally, emphaSLZes the hypothe51s on the Een011
”that 1t have no movable 51ngular1ty at f1n1te dlstanceﬁ(agaln,

see 3.

), ‘then 2.20 is dlscouraglng.

The idea that? giveﬁla line £ and A € k, there is an auto-
/ i
of the plane which carries the curve V(f) to V(f - A),

p/

is mlst ken, by 2.2,

other possib1e~approach'to 3.1 'is to use the charaéteri-’

zation " -1 € T. " ( I' the value semigroup at dinfinity of £)
) of a lihe £. qu_problem yith this ie'th;t, while one has very
complete in;ormation'indeed on how to compute;the value semiéroup
~ SR o , /w

o { 2
f
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~those in §’2, one is led -to con51der 3.1 ab lnltlo, rather thgn

3.1 may not be appreciably easier than achieving thiS'goaliv/,A;;\\\
“ B , ==

-with the simple SLtuatlon which prevails in cheracterlstlc 0.

* i - \/. ,
undef the assumption that the characteristic does not divide

-
3

both the x~ and y degree of £ ( [2], §.7; [l], § 8 ), one seems
t6, have no hold on the semlgroup when this asstmption lS not
met, ‘as is the case with all 11nés of ipterest here (1. e., non#
coordinate lines). The writer' s‘gggss is that an invariance

theeremllike 1.2 holds for thé-value semigroups. of £ - A, for

’ »

general A € k ( £ a curve with one rational plac&_at infipity ),
and that "for general A € k" cannot be:replaCed by "for all - .

" i .
A € k such that £ - )\ ‘has one rational place'at infinity". .

‘Ih view, therefore, both of the€ limited state of knowledge

concernlng the structure of value semlgroﬁps 1n "19terest1ng"

k3

cases, and of the ex1stence of pathologlcal 51tuatlons ‘like
~

as a statement about a ‘certain kind of plane curve with one
rational place at infinity. But from this point of view, proving

r

-~ . L ‘ . -

o
¢!
1
.
N 2

3.2 Find a "recipe" for all lines in-the plane. , .

(The terminology is Abhyankar's.) : S _

P
’ 4

1
P .
. . ,. N s - )

In thls sectlon, we present some partlal results on llnes,

[}

with an eye to attacklng both ‘3.1 and 3 2. We w1ll be -guided by

the known examples of 11nes,aand by ‘the analogles/khey suggest
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3.3 Lemma: Let k any field, qo: klx,y] - klt] a surjective

0 ‘ k-algeb rying x and y to u(t) and v(t), i
with kernel f(x,y)k[x,y]. Then there exists C € k* such ‘;

1
that |

a(f,) = Cv' (), a(f,) =,-Cu’(t).
(See- [3], COROLLARY (2.6).)

Proofr Let g = g(x,y) € kix,y]l, with t = a(g) = g(u(t),v(t)).

. . / -
e We.have 0 = «a(f) -= f(u(t),v(t)), By the Chain Rule,

-

: _ . : g

' : l =« u'(t) + « v'(t and
, S . (gx) (t) (gy) (t) '
C R -0 = a(fx)u'(ty + a(fi)v'(ty . . - . -
. So u', v e kit] are relatively prime;‘ We neéd only show that
. LT ‘1) a(f ), a(f ) € k[t) are relatively prime.
’ " « Suppose d.e k[t] is a nonconstant common factor of a(f )., ‘
¢ a(f ), and let c é k be a root of d. Put a = u(c), b =v(c).

. Then f(a b) = 0, and £, ‘(a,b) = 0 = fy(a,b).' But V(f)'Ciﬂé is :

,blregular to ATé hence is noqsingular,'and we have contradicted

'gthg Jacobian crlte:ibp. So 1) holds.

i
\

. n .
o ) ' /

3:.3.1 Remark:,’Givenix, v, £ = f(x,y) as in 3.3, séndlng X to .

u = u(ctJ), y to § = v(Ct) glves a Surjectlon awk[x,y] -+
/ &

Cklt] witﬁ kernel (f). a(f ) é’:’, a(f ) = -a'. In other_
F B ’words, glven a line £, we ‘can "normallze“ the parametrl—
¢ . " zation « so that C = L-ln 3 3. ‘




prime.
o

3.4 Corollary: Let k be any field,

for general ) € K,

Vs

Proof: f‘E'E[x,yJ is a line.
irreducible for all A € K.
at P = (a,b) € k2. Then £ (B) = £

Bezout's theorem, to show that f_, f

fx’ y-

:

notation there) «(h) divides u'

So £ divides h - ¢ 4 0, hence deg,h >

nonzero.

£ . Then (we have 3.3 with k in place of k,
shen

and v'

Then’ deg f < aegxh < deg f_

f € k[x,y] a line.

f - A is nonsingular.

’

Then

By. 0.4 2), £ - X € kix,y] is

Suppose £ - A is singular

P) = 0.
Y

in k[t]. So «a(h)

dégxf and degyh/Z

" Since’ f € E[x,yllié'irIEduciblé, either £_ or f

X v’ say £/ -is
< deg#f - 1, an absurdity.

4

So it suffices, by
€ klx,y] are relatively
Suppose h € k[x,y] is a nonconstant common factor of

‘and in the

deg_f.
egyfg

in investigations about planes and lines on them.
. o M .

.they break down utterly in poéitibe characteristic.

/

¢

De of R associated tqo £. Now in zero characteristic,

- . » ‘ ; v 7 . = i
derivation of R one has a canonical way of constructing a cor-

respondiﬁé "iterative higher dekivatiod"’(i. e., Hasse-Schmidt

- if D is the derivation, o)

derivative) " is the cor-

‘i=0
In the papers [201, 1131,

( §,D
responding higher derivation. {191,
éerivations and ﬂigher derivations are used -to someiadvantage
If‘qﬁé looks
at some of’thé’progfs'inﬂ e. g., [20], however, one finds that
l Moreovef,'

it is not-even clear/that, hav1ng deflned the derivation Df, one

can construct a Hasse-Schmx&t derlvatlve whose flrst order term

o

lS»Df. NonetheleSS,'onqican get some ‘results 1Q‘p051t1ve

i
/

o Wz are about to define, given an f--¢ R = k[Z], a-derivation -

c € k.

given a ‘.

e

e

~

= i

- —

-

‘
A
i
i
3
&
%
i

ot
i
:
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characteristic by studying derivations, and this wé proceed

to do.

Definition:

/
/
/-

?

Let f € R = k[x,y]. For h € R, J(f,h) =

x y(f h) = fx?y - fyhx is the Jacobian of f and h.
. We define D;: R + R by Dg(h) = J(£,h). Clearly:
D € Dery (R,R). (Dg = £, 3/0y - £, 3/3x.)
/ B = S - o )
Remark: Suppose R = k[x',y'], and define D'f: R »- R by
[ } — a
D f(h,) = f hy fy'hx' . One sees ea51ly that '
,D‘f é’ch, where ¢ = J (x',y') € k*. So Df does depend on the

' choice. of varlables for R, but npt heav1ly. ‘Every 'statement we'

prove about Df w1ll hold for ch c € k*.

°
o

& - -

Notation: Let-'char k = Pr R’= kix,y] = k[zl. For any positive
integer n, we deflne R(p ) to be x[xP ,y p ] =

’ w1 -~ .

k[{rP | r er}l.’ rRP) g the set of p powers of elements, of.

R « k is perfect..

’

9

/

Now let ‘f € R, and.let Df»be the corresponding derivation.

We denote also bj Df the extension of'Df to a derivation on gtR.

Let A, = {h € R | D;(h) = 0} be the ring of D.-constants, K =

, : ‘ %
{h € gtR | Dg(h) = 0} the field of Dy-constants. We have the

diagram

(*!

Bpoa

Bt

. pe
-
- s L

L=5RP cne c Ke C qtR
” U U U U
rRPLcr® e cac v, g

i v = o e e a s RO .. : . . ’

'
T e Y

Y

o e e AT, R
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3.5 Af is normal,

.73

for any £ € R.

.
2

[
s

Cne of the ways to see this is to note that A = R N QtAg.
- i}

(If D € Der(B,B), B a normal domain, then the ring B' of .

’lchonsténts is normal, since B' = B N gqtB'.)

L

Now suppose f ¢'R§F)l Then L g L(f) C K¢ % gtR, so

v

3.6 Ky = L(E) = k(xP,vP, ) and [qtR:Ky] = p.

" 3.7 lLlemma: Suppose £ € R is nonconstant, and A(f) has no

movable singulaﬁity. Then the ring of - Df—constants

Bg =

Proof: Since f $

R®) (5] = k1xP,¥P,£].

\
.
. .

S

R )7 A_ and R(p)[f] are blratlonal by 3.6

£
and/(*). Let £ = £(x,y) = I £ 5% igd. e ‘have RP) gy =~
' k[xP,yP £] = kIX,¥, 21/ (2P - f‘P)(x Y)), Where f‘P)(x vy = .

»~

—~ f..pxlyj. Now if the irreducible hypersurface ZP = f‘P)(x,¥)

r

1nwA§ has a 51ngular1ty at (a, b c) € k7, 'with c = f(a

then’ (f(P)) (a,b) = (f‘P’) (a,b) = o. But (f‘p)) = (£, r‘p),é£c.,‘

(

4

éb the condition on a,b is that (al'lp bl/p) be a pplnt cdmmon to

&

1]

. fx and‘fy.H;81nce

v
2

there are Qn;y finitely many such, R (p)[f] has

.

iéolatéd singularities; bBy 129], Proéosition 9, p. III-13,

R(pllﬁl is normal.

t o

(It is Cohen~Macaulay, belng a hypersurface ...

3 e i ;.

ek e

< gkt
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Since A; is integral over R{p)[f], 3.7 follows.

3.7.1 Remark: . Under the hypotheses of 3.7, the proof shows
‘n
’ -that R(P )[fl is normal for all n > 0.

’

= k[x,y] is a line, and let D .= D%.. Pick

Now suppose f € R
a surjection «a:

ized, in the sense of 3.3.1. Then

. ) ‘ R » K[t]
3.8 D} -+ d/dt
R ~ k[t]
. a

/ v . u s
relating it as_ir does -to the very magégeable d/dt.” As one

" illustration of its usefulness,'we prove the following

'
[l
@ —
e

3.9 ‘Propoéition:

e

)
1 . *®
%

Proof: All the condltlons of [27], Theorem 2.1(a), p. 62, are
’met-, If 3 is the map from the lelsor class group of

' f (Wthh eguals R(p)[f] by 3 4, 3. 7) “£0 that of R, and

s

C . ! @\ .
- . » . «
&= { 1ogar1thm1c derlvatlves Déq) | Déq) €,R, 0§ g€ qtR },.
- then we have a canonlcal lnjectlon of ker 1 lnto-c ‘Letfq =
. a/b a b e R re%iiﬁvelx,prlme, and suppose D(q)/q ’ ' ;

(bD(a) - aD(b))/ab h € R. Then a leldes Dia) and b leldes

L3
’

.0
¢

R -+ ﬁ[t] wiﬁh.kefnel fR, such that « is normal- .’

, . , ,
"3.8 seems to bé the key to studying the derivation D,

If £ ¢ R is a line, then R(p)[f] is factorial.
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D(a'). But D(a') = f i'y - f
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D(b) in R. Suppose a = ffat, m >0, £ f a'. Then D(a) =
me(a'), so a' givides D(a') in R. By 3.8,.af(a') divides

«(D(a')) = a/at («(a')). So a(D(a')) = d/dt (a(a')) =0, and

f divides D{a'). Since f,a' are relatively prime, fa' divides

X if nonzero, has degree . x

L
, ¥ =
/deg f + deg a' - 2. Since fa' divides D{(a'), ‘'we have D(a) =

D(a') = 0. similarly D(b) = 0. Hence £ = {0}. Since the
. c ,
divisor class group of R is {0}, we have 3.9.

r

. -It seems certain t at, given 'a line £ € R, the ring R(p)[f]

’

is a very important object of study. (Note that RP)[f] is just
the Frobenius of the k[f]-algebra R; see e. g. [2%}, p. 529.)
We next formulate alstagemént involving this subring, due to.

. 1
Peter Russell. - Lo

2

- —

.3.10 Suppose k ig any field of characteristic p > 0, and

£er~%?! is a line. Then R‘P)[£] is a plane.

¥
“y +

We do not know if this is®true. However, something.

o

‘apparently sE}onger is Erue{of all known lines f: f is a -

B

EOOrdinate line plus a pth power in R. (One sees éégily that

.then R(P)jf] is a plane.) Also, 3.9 is a'step'inethe right -

direction if one tries to brove'B.lOf,.If‘3.lQ,isutrue, it

should bé of considerable assistance in findipng a recipe for all

r - o » '
lines in the.plane. In thig connection we ask ahother question:

)

¥
s
N
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If ACR = k[2] is a plane and R is/purely inseparable

! of degree p over A, is R just the result of adjoining.

th root of a variable in A?

-

to A the p

. 3.11 Proposition: 3.10 implies 3.1.

¢ —

Before proving 3.11, we note first that by 1.2 1) we: have

e b
TR R e 2
-

- 3. 12 If £ k[2] has one rational place at 1nf1n1ty, theﬁ'fo;

some N > 0, f - t € (k(tTTpf (2] has .one ration

L T MR,
A

at infinity.

e

A
* ' . //‘ o
B

¢ . —We point out the following more intrinsic version of 3.12, which

is an, lmmedlate consequence of the 1somorphlsm {(*) mentioned just

before 0.6:

¢

"' ) ‘ 3.12.1 _Suppose fe k{x,y] has, one ratlonal place at 1nf1n1ty.

-N
Let K = k(£f). ?hen for some N 2 0, the kP - " curve
- ’ -N : S . / o
i C, KP [x,¥] has one rational place at infinity.
FE . /, ’ ' " Ve ‘ , 4
. - : ) -n n’ n ,
E We note that for any n 2 0, the map 33 [x,y] -+ K[xp ,yp ]
. ‘ ( =z V\-bzp ) is-an isomorphism, and restricts to an isomorphism

of the base fields. Thus ) "

v

¢

3.12.2 Under the condltlons of 3.12.1, the'k(f)—curve o,

(3 o L
k(f)[x q,yp ] has one ratlonal place at 1nf1n1ty,

4

(} ' ' ’ ’ srﬁor,some N > 0. o /r

MR [ e ——r - S 1 e - . B
FF VT S L @;-‘3’;:3‘ i - A T * N , = )
0w . L - . - . o Y . . - . . . . o o . . o . ¥
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3.13 Lemma: 1) Suppose f € R = k[2] is a line. Then for any

Eocs g - ' ) n
ns0, fis a line in R® J[£1.7 - (1. e., :

n, _ n
r(P )[f]/fR(p )[f] N k[l].)

’ ' ‘ 2) Conversely, suppoSe f € R = 3[2] is irreducible

=T Py 4
in kK 12}, anda £ is & 1ine in R® )[£]. Then

\
[ T

-

x
L3

&

-n ) '
R fe kP [2) 35 4 1ine. ' n

- ' .- . ;
- v

.Proof: Suppose R + k[t] is a sur]ectlon w1th kernel £R. Then'

2

WD TR P ¢ 4 A e,

one easily checks that its restriction to R(p )[f] has

N

e © . image k'[tP ] and kernel fR(p )[f]. Conversely, given a sur-

o ' (pn)I pn ' n pn
jection R*Y¥ ‘[f] =+ k[t¥ | .which carries xp to u(ts .},

.n n o ' n ,
yp to v‘(tp ), and has kernel fR(p'é[f], one sees easily that

~n l=n
kP [x,y] -+ kp [t],)x V\-)u(p )'(t), sz-yv(p )(t), is a suyr-

jection with kernel generated by £ (under the assumption that f
. -
Ed -1 .
is irreducible in kP [x,yl). ) / B

p— o N

o

1.

Proof of 3.11: Suppose f € R0 kix,v] is a llne. "Letting N be

i1 ) . s

-

2 as in 3.12.2, we have, by N appllcatlons each of

1 3.10 and 3. 13 1) (with n =- 1), that £ € Ry = R(P )£y =

P B : 2] ‘
k[f,x ,y5 1 = ijN,xN] = k is a 1line, and the k(f)—curve /'

k(f)[xN,yN] has one rational place at.infinity. By the argument
‘in the proof of 1.17, if follows ;hatif € RN is .a coordinate

line.: S0 for all'A € k, £ - A € Ry-is a line. By 0.4 2),




B T

’ n
_for all n >> 0. TI. e., the k(f)—curve>k(f)[x ,yp 1 is a line.

| DS R AN AU [P
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£f - A e kilx,y] is irreducible’over kP . By 3.13 2)° (and since
,“( N) -N ‘ ’

RN'= R'P [f - Al), £ - A € kP [x,y] is a line for all A € k.

In particular, if k is algebraically ‘closed, we have 3.1.

In closing this section, we prove the

» e , > e

= k[2] is a line, and

3.14 Proposition: Suppose f € klx,y]
assume for 51mp11c1ty that k 1s algebraic-

ally closed Then ' e

< '

the following three sfatements are eguivalent: o,

2

! ’ Il ~ ’ /e
1) f - A E k[x yl is a line for all A € k.
2) f -:A € klx,yl] 1s a 11ne for 1nf1ﬁ1tely many A€ k.\

7 3) FOr all n >> 0, kI[f, xp ,yP ] is a plane.
Moreover, . . ' : -

. .n _n
4) £ is then also a variable in'k[£f,%FP ,yP 1

for a;1 n > 0.

-, o —_ L,
t

Prodt: 2) = 3) and 4): By 1.2 l) and 3), and a by now familiar
¢ - ‘ -n ' {
argumenf 1nvolv1ng genus, f - t e k(tp ) [x y] is a line

-

We refer now -to Theorem 2.3.1 of [25], and replace the S, k K A
. / n »
there by our k[f] {OV, k{f7, k[f], k[f xp ,yp ) respectlvely.

We have just verlfled condltlon (i) of_ the theorem.,/Of the other

v

BTN RIS 3

" gteam
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By 0.4 2), £ - A is irreducible in’' k([x,y].

hB C B n hk[x,y], and one checks the reverse ificlusion by

(six or so) conditions, we ‘check only the one requiring that
‘ ' n _n
f - A generate a prime.ideal in k[f,xP ,yP,], for all A € k:

But if h € k[x,y] is

‘ - n n .
irreducihle and B = k[h,xP ,yp ],!then-hB,C B is prime. For,

¢ ‘

direct computation. )

Since all the conditions.of the cited theorem are séEisfied,

n n
we cgnclude that }g[f,xp ,yp ] = k[f][l], and 3) and 4) follow.

P
' N
3) = 1): Take N big enough so that kI[f,xP
’ N N . )
ﬂﬂyp ] "Thas a rational: place at

N N |
’YP ]'l .and -

N
,yp ] is a plane

and the k(f)—gurVe k(f)[#?
infinity. By 3.13 1), f is-a variable in k[f,x

1

‘we pﬁoéeed as in the proof of 3.11.

v 1 forule
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