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., model_and related to those of previous studies with infinite ﬂ-ﬁlanes..
. k-1

. ABSTRACT - .

LY

The stability —of free and forced ‘plangtary waves in a ﬂ-.c’ﬁ?cmél is
investi'ga):qd with a bérotropic modef. Tﬂé forced waves at equilibrium

result from <a’ constant mean-zonal wind interacting with a finite-

amplitude topography‘.# o TR .

The frequercias .of 'all infinitesimal perturbations to the

~ P .

* ‘- . y

parameters. - The results‘ are interpreted using a truncéated spectral

"\

In contrast .to. some earlieT analytﬂrical studies we find that unstable

. ! . ) ] “
long waves. (LX > Ly)\exist unders:superresonant conditions. We ‘also

]

report on - the existence, ofi an in’térestiﬁg travelling topographic

instability. ’

[

v ‘
o The linear instability of‘a weakltn“omzonal flow is investigated

« v

numerically and analytically ('Via WKB the'ory‘)’. The’ theory reproduces

the qualitative nature of the numerically-determined fastesr:-growing'

. |
®

imode .
i
Nonlinear integrations, involving many degreés of freedom, reveal
.that initially-infinitesimal disturbances may — grow explosively to
— - "

finite-agplitude. The longer-term integrations are interpreted using a

statistical mechanical model. : { (
L

-

i)

equilibrium flows are determined’ numerically as a function of the flow



La stabiliténdes ondes planetaires libres et forcees -sur un canal B

est etudiee avec un modele barotrope. Les -ondes forCees a 1'equilibre

v

résultent de 1'interaction entre un vent ‘zonal constant ‘et une

@ - .

. [
topographie ayant une amplitude finie. S 4
. " T

Les f’equences de touts; les ' perturbations infinitésimales, des

\
.

courants en equilibre sont determinees numeriquement en fonctlon. des
¥ -

paramétres de 1'écoulement. L&s résultats sont interpreteés en utilisant

un modele spectral tronque .et’ ceux-ci sont compares aux études
« L ) v .

.. X - ' 1
.anterieures, faites dans un cgpal sur .un plan béta infini. Nous

trouvons,/par contraste, avec les, etudes analytiqueseanterieures, qu&

.

des ondes longues instables (L,- ﬁ%y existent. sous des  conditions

N

superresonantes. -Il est 1nteressane ‘de constater egalement 1'existence*

- e 4T . P

d’ une insfabilité/topographique qui se propage dans 1’espace.

L'instdbilite lineaire d'un ecoulement légerement nom-zonal est

étudiée numériquement et analytiquement (par 'la théorie WKB). La

théorie reproduit la nature qualitative du mode déterminé numériquement

qui .croit le plus rapidement. LT

©

Les intégrations non-linéaiyes, impliquant plusieurs degrés de

<

IRY 4 - . '
liberte revelent que les perturbations. initiales infinitesimales peuvent

croitre explosivement & une amplitude fipie. Les intégrations,_a. lbng

. ¢ .

terme sont interprétées ‘en utilisant un modele mecanique statystique.
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a parametric analysis of the linear stability of free and forced

barotropic waves where approximate-analytic and accuraté numerical

solutioms are obtained (see Section 3.1):

-
-

a demonstration of the dependence of topographic #mstability on the
meridional structure of the perturbation and the discovery of a

travelling topographic instability (see Section 3.2):

@

a study of the linear instability piopenQies of a weakly non-zonal

-

t -
forced flow where the severe truntation assumption often made in

such studies is relaxed and where the fastest-growing modes is

analyzed using local instability theory (see Section 3.3).

o

- »

an examination of- the nonlinear -instability properties of a number

N - .

of equilibrium flows using a time-dependent spectral model which

incorporates many degrees of freedom (see Chapter &).
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. These waves, which . exist as large-scale geviations from the

. ' CH}PTER 1 ) .t
INTRODUCTION . )

v

A s ]

One of the primary goals of dynamic :meteoraaogy is to explain the

,

¢ .
existence and variability of planétary scale waves in the atmosphere.
-', v _' ’ . o

L4 . A .

predominatgl.y westerly fiow found in the mid-trpposphere, can be seen

quite clearly on daily. weather maps. Moreox're'r: due to the .quasi-

.

[ 3
stationary and persistent nature of these motions they often also appear
on time-averaged maps, where- the atmosphere has been averaged for a

s —
period of, say, one month or more. Interestingly, the zonal asymmetries
. . . ’ .

observed on mean monthly or seasonal maps_tend to occur at approximately

the same location year after ye Several plausible mechanisms have

been - invoked to explgain is fact, 1including topographic forcing

(Char 'yu and Eliassen, 9), local thermal forcing (Smagorinsky, 1953),

or both (Derome and Wiin-Nielséen, 1971). Although the earth’s orograph¥

and thermal effects resulting from the continents and the oceans are
¥

probably “2he major factors in the generation of planeétary waves, the
mechanisms involved are still not fully understood. In,this study we
will focus our attention on some of the theoretical aspects of flow over

and around a large-scale topography. . ..

Early/.theoretical attempts to explain the existence of planetary
< ”Q R

[ .

scale motions include Rossby’s (1939) theory of free_ barotropic

.

plaﬁetar); waves and Charney and Eliassen’s (1949) theory of waves

forced by the diversion of a fiean zonal flow by the earth’'s large-scale_

— 2

- topography. Although these classical theories ,huave, been useful in

interpreting the seasonal average of observed planetary scale motions

»




°these events the mean "temperature of the stratosphere is dramatiéally

they are nmnot generallyoépplicable to transient shorter time, scale
p:henomena, such as, atmospheric blocking ﬂ_in the troposphere and sudden

.

watming ,in the stratosphere. Atmospheric blocking -+is a p‘r.lenolmenon

¢

wherein a large-scale quasi-stationar} flow pattern ig obs)grved to

-

amplify, occasionally to anomalousMy large amplitude, and to’ persist for
. . ,J' -

up to several weeks. The drought in the United kingdom which persisted

" from the sprmg of 1975’ to the summér . of. 1976 and the severe winter .

.
)

experiehced  in the United States in 1977 both involved this sort of

/

circulation. Sudden warmin , om” the other hand,' is a stratospheric
g . P

phenomenon, occuring during the winter in high 1atitud& regions. During

fon

° AJ .
increased and the circumpolar jet stream destroyed or even reversed. It
4' s ® . .

'should be mentioned that tropospheric blocking and stratospheric sudden

\

»
warming often occur simultaneously.

One way to s'tudy the variaBility (i.e., transient beéhaviour) of

planetary waves is to underta’kg: a linear stability analysis of one, or
more, of the th?oreticalt’ly postulated wave types, &.g.,* free Rosgby
L

waves or topog'r'a‘ph\ically fqﬁeﬁ ‘waves. In such a study t:.he basic flow,
e.,

which alone is steady (

A

infinitesimal perturbdations: If the perturbations grow without bourd

14 .

then the basic ‘fl’ow is ,deemed unstable; othegwisé' it 1is stable.
:‘Lore;nz (1972), Gill (1974),, Coaker (1977) and Meid ¢1978), for ex'an;ple,
have studied the lzneaor stability of a free,Roésby wave. _;)n the other
hand, ’ Charn;ay and Devore (1979), Charney and Flierl (1981) and
Vallis (1985) have (stud;,.ed the 'linear stablllty of a t{opographlcally
forced wave. All of the above studies share the common’ assumpt::.on that

. 1]
the large-scale flow is barotropic (i.e., the” density depeﬁds only on

AV

time-independent), is subjected to

AT
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pressure). This assumption is supported by observations which indicate

that large-scale waves in the winter are nearly equivalent barotropic in
i . | 4.

Al >

structure {(Blackmon'et al., 1979; “Wallace, 1983). Unden. this assumption

dny instability which is encountered derives its energy solely from the

kinetic energy' of the hasic flow (assuming no external. forcing or

-

internal dissipation). In order to reduce our own study of the

. =

stability of free and fqrced waves to tractable proportions we will also-
i * \ .

assume barptyopic flow. . '

.
.

After .formulating “"the mathematical model in Chapter 2, in
Section3.1 we will present our . own findings regarding the lihear
- . \ » - / N
stability*of free and topographically forced planetary waves. Besides

presenting accurate growth rate curves (obtained\v}sing more degrees of

freedom than has tsually been the case) over a wide range of parameter
- /
values we Wwill also employ suitably simplified models to help analyze

\

the variséus instabilities encountered. This section appears, with only

"

sl{ght' modifications, in Fyfia and Derome (1986). In addition, ‘the main

results have been present‘ed at the Stanstead Seminar, July 1984, and

appear in extended abstact form in Derome and Fyfe (1985).

-
-

In Section 3.2 we consider more -closely one “of the important

instabilities obtained in the previous section, namely form dra.g
’instabiiity (sometimes referred to as topographic .-dnstability). This

Instability mechanism was discovered: by thar‘ney and Devore (1979) and

v
°

~ since then numetous researchérs have used simplified models (i.e., low-

N

order spectral truncations) in an attempt to describe its essential

chare:’}:éristics (e.g., Hart, 1979; Chérngy and Flierl, 1981;
el

Pedlosky, 1981; K2wbaldi et al., 1985).. In our numerical study we will

4 ' . ’
cbeck’the extent to which these earlier analytical. studies qorrectl{

2 s




A .

treated form drag instabilify. The results of Section 3.2 appear in

.
1

published form in Fyfe and Derome (1987a). . é

One of the more interesting features of the large-scale atmospheric

»

- 4 .
flow is the presence of prefesred geographical regions of development of

transient cyclone dist\!%pances. For instance, if one considers the

observed wintertime ciréulation in the northern hemisphere two distinct
maxima in the variance of all variables at all levels in the troposphere

( : v
can be distinguished: one in the western Atlantic ocean and another in

.
B

the western to central Pacific «ocean '(}see Blackmon, 1976;

Blackmon et al., 1977;. Lau, 1978). ~ To help understand how the large-

" scale planetary waves in the atmosphere determine the preferred regions

+

.of cyclogenesis (as well as the onset of falocking for that matter) a

.Vf r
* numbey of researchers have employed linear instability theory (e.g.,

Prederiksen, 1979a,b, 1980, 1982, 1983; and .Niehaus, 1980, 1981). In

.

these studies the linear stability of idealizéjd‘wavy basic 1states was

analyzed numerically, using either two-layer models “or multi-level

models. Athough this approach has met with considerable success in

predicting, say, the geographical dist;‘ibution of synoptic scale eddy

heat flux in the atmosphere there remained a number of theoretical
A :

ques:tions regax:ding the stability calculations. A lengthy discussion

regarding these matters -can be found in Pierrehumbert (1984, her.eaftef‘

referred to as PHY.

In an attempt to ‘address some of the questions regarding the

° ) . ,
connection between instability theory and regional cyclogenesis, PH

.

invoked the concept of absolute instability (in the sense of Merkine, .

4
197%). Within the framework of a two-layer B-plane model PH used this

concept along with a WKB -analysis to differentidte "local" unstable
. ’ . - ". \/

‘

(9

-




precludes investigation of the dynamjcs underlying interactions between

)

.
4 -

B N » | ]
modes from "gldbal" unstable modes. Local modes have pé€ak amplitude

- -

downstream of the -point of maximum baroclinicity, decay to =zero-

exponentialiy away ‘from the peak and do not depend on zonal periodihity

-

for their existence. Global modes, on the other hand, require periodic

) ) ¢ s 4 ¢ .

boundary conditions and have growth rates which depend on the average
baroclinicity of the basic flow. It was argued by PH that the latter of

.thqu modes are nonphysical and as such should<hot, by themselves’, be

s \ R
used as prototypes for regional cyclogenesis. More generally, it was

+

- suggested that the locally determined absolute growth rate is a useful

diggnostic for assessing the instabi%ity properties of ;avy hasic.flqws.

In Section 3.3 6f this study the .local (lineary instability
properties of topographically forced barotropic flow on a Bféhannel are
investigated numerically using the specfral method and analyticail? via
WKB theory. The WKB theory which is employed relies on some of the
techniques deveioped by PH in connection with his baroclinic instability
problem. By comparing the numerically-determined fastest-growing mode

-

L)
with that .obtained theoretically we hope to delineate some of the

b -

factors goverming the local ‘growth of lindar disturbances. The results

of this study appear in Fyfe and Derome (1987Db).

» One of the shoftcomings of linear instabiljty theory 1is that it

s
Ve
the basic state, such as a topographically forced stationary wave, and

the superimposed disturbance with respect to which it is unstable. 1In »

an observational study of this particular interaction, Holopainen (1978)
hasﬁfhown that the horizontal convergence of momentum fluxy associated

with the small and large scale eddﬁgs, is important to the stationary

waves' long-time average vorticity balance. In an attempt to understand

r's
L 4

L—"
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1
the interaction between the séanding waves and the-transient eddies in

PR
'

the atmosphere we will study, in Chapter 4, the nonlinear evolution of

finite-aﬁplitude disturbances superimposed on stationary tcpogr;phically
/ . ;

forced waves. Unlike some previous theoretical investigations along
. -

these lines (i.e.,p Deininger, 1981; Nathan and Loesch, 1987) we will
\ —

—

mo%tlyirse a fully nonlinear spectral model which employs many degrees

of freedom. In addition, to help inte}pret the long-term behaviour of

- -

our numerical simulations+ we will use the methods of statistical
; - - [

mechanics. o - ) .

N Y 4

’

-

. The plaﬂ of the remainder of this thesis 1§ as follows. In

Chapter 2 we formulate the maéhemat;cal model while in Chapter 3 and

Chapter 4 we present our linear and nonlinear results, respectively.
\
%, o

Finally, in Chapter 5 we summarize our results and state our

e 93

conclusions. . .

r
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CHAPTER 2 v
=~ THE MODEL *
N
v . ’ ;

The model which we will use is probably the simplest one devisable
which still retains the basic physical mechanisms responsible for the

instability of free and topographically .forced planetary waves. In

\
-~ Y -

. ~ ~
Secéion 2.1 we will int;oduce the model, while in Section 2.2 we will

dertve, and thengedescribe, eparticular class of steady-state solutions

to ‘'the model equation. It is the stability of these finite-amplitude

steady-state flows ‘which will mostly interest us in this study. In

Section 2.3 we will formulate a set of tru'hca'ted spectral equations

which will enable us to exkamine certain aspects of the stability of

planetary waves which cannot be studied analytically. T -

u

- »

2.1 Basic foymulation —_

For these 1investigations we will use the -quasi-geostrophic

barotropic vorticity equation which for inviscid flow on a midlatitude
. - ]
. )

B-plane may be written .

atmp + J($,Q) =0 , Q = AYp + By + foh/H )

e
o e,
2 - R

where A and'J are the Laplacian and Jacobian opefators, respectiveiy, Y

@ . /

-

" - is the streamfunction, A the latitudinal derivative of the Coriolis
s : >~

parameter, f  a midlatitude value of the Coriolis parameter, H the mean

)

depth' of the barotropic atmospheré and h the topographic height. In -

wl.at follows we take the domain to be periodic in the zonal direction

a
Y

(15) with a fundamental length, L. We also assume that the flow is

confined to a f-plane channel bounded by rigid walls at y = 0 and y* = D
; ) ¢

implying that

IS



<

v=233y=0 at y=0 and y =D . ' : (2)

5
\

Further to this it can be demonstrated- by appl};ing (2) that no mear

- <9 .
circulation may develop on the walls if it does not exist at t = U, i.e.
A ®
- - s, 9 .
6‘tu - -.;t'(ayt,b)»- 0 at y.= 0, and y <« D , (3

where the overbar denotes a zonal average over the fundamental length L.

M - o

As we will see these boundary conditions .can represent rather strong

- v

constraints on the flow.

»

P .
2.2 Steady’flow . - ,

The Steady solutions (denoted with a i:ildé) to (1) are very easily

obtained by setting the time-derivative to zero and then noting that
\ . !

this jimplies—a must be functionally related to E,‘ i.e. ﬂa - G(x‘/:)..

" However, in this inviscid setting this functional relationship is
« ’ '
indeterminate ‘and cam only be rigorously determined by considering the

-

inviscid limit of some appropriate viscous configuration. By way of

avoidiqg the many technical difficulties associated with this approach
we will do as many _o_thers have ‘(e.g., Charmey and Flierl, l9§;

Vallis, lfB‘S; Rambaldi et al., 1985; Mukougawa and Hifota, 1986a, b)gand

specify it, a priori, to be linear, i.e.

e

2 - - . . '
e - , W

o

Q~--K

where K, is-a constant. The right-hand side of (4) may be interpretec'lﬁ

as the leading order term in the Tayler series expansion, for G¥). A

.
4 -

( further discussion on the subj‘ect of this simplifying assumption can be-

found in Derome '(1984). T , _
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. ' Equation (4) is a partial differential equation which is re&atibely

~ easily solved bnce the parameters of the problem and topographic form is

14

s

specified. In this study we will mostly consider a topography which can

.

be described by a single Fourier component, i.e., - Y

’ R
hix,y) = ha-25in(2wmax/L)s§n(wnay/D),

.

hz o . 59
f

\ i

Here o denotes the integer pair (md,na) where m, and n, are the zonal
-»

. and meridional wavenumbers, respectively -{the reason for the factor of 2

\ in (5) will become apparent shortly]. With this topography the steady

) Tlow streamfunction arising from (4) can be writtén gé‘
N ) . ' *
B(x,9) = - u_-y + $_-2sin(2nm x/L)sin(xn_y/D) : (6a)

. 04

where § - f_(h /H)/(K. - Ko) . _ (6h)

'K = (2nm s1)* + (m D)’ and KL = Bfu_ . ‘ (6¢)

¢

-
4

» -
[ ]

It should be noted ‘that an addition to (6a) of a zonal shear, comﬁbnent

s

of the form Ecos(Lsyf, Where' ¥ is arbitrary, is permissible as long as|

Lg -’Ks (Derome, 1984), i -

-

. - . g . %
If one interprets (6a) as representing a deviation, ¥, from a
& "n: .

basic mean-zonal flow, - ug -y, then it can edsily be shown that %" is a

solution of the linearized version of (1) (whére the lineari;ation is
about - u.-y). More significantly,” it is also an exact finite-amplitude
solugion and ‘for this :réason alone: should‘ merit further study.
Admittedly, the -presence of a small amount of'friction may modify this
finite-amplituée solution, as qiscus;éd by Hart (1977). Notwithstanding
this fact, we believe that the inviscid limit is a justifiable starting

point. o

N

o
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“ To gain a physical understanding of (6) we follow Smith (1979) and,

in Eq. (7a-c), consider three separate cases corréspondin‘g to when the

n ©
denominator of $a in (6b)\\is positive (i.e., superresopant), negative
(subresonant) or zero (resonant) ' .

- . . T
. " ° '
2, 2 ‘
a - > 7a
@ kx>0 , (7a)
y o

Here the amplitude of the wave i’s positive and the streamlines are
displacgd northward over mpuntains (h > 0) and Southward over valleys
(h < 0). As the potential -vc;rticity conserving particles approach the

° mountain, ‘%the increas? in h must be compens/ated by}‘a decreas%: in
absolute wvorticity, AY + By. In :thisbsuperresonant: flow the latter is
effected by a relati\‘/ely large decrease in A’E'asﬂ the particles move.

northward, ‘increasing gy. Naturally the Treverse argument can be

° .

presented for the floy over a valley This type of flow is depicted

-« ) Fig 1b, fow t:1:1e topography of Fig. la In this and rsubrgeQuenﬁ f'ﬁures
. r the basic flow plots are forl the $\opotent131\ height\ in deca eter’?, . -
! X solid 1lines are po.sitive contours and dashed ]‘aines are negative
contours. . . Q - i}
2 2 . . i
) (b) kK - K <0 L . ‘ . (D)
s . Co el a

.

In this case-the respense is reversed with a southward displacement ’

N of the streamlines over mountains and a northward displacement over
v ¢ ,

k valleys (s/ee Fig. lc). Again the ab§01ute‘ vortic"y:y is reduced
L (increased) over high (l,q;w.) éround but as the flow Has a very large
'socale anci hence 10;«7‘ r:elatilve v'oitioity,' t}}is isi a.ccomp:lishedQ by\a“ )
differe'nt mechanis;n.inv:glvin'g §outhw"ard '('northw.afrd) flow into regions of i

9\ M ° t
Y *

- /j\,’i . ., . . - L &

i

o
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smaller (larger) planetary vorticity, By. Flows of this varietj, which——

are commonly referred to as subresonant, are characterized by a°

-

v
dominance of the planetary vorticity advection over that of relative

.

vorticity. \ .
2 2 - .
Le) K - K =0 (7¢)

¢

Here the advection of relative and planetary vorticicy cancel

-
.

Y
resulting in an infinite, or in other words resonant, response to the

topographic fofcing. This singularity 1s associated with the fact that )ﬁ

, !
there exists an unﬁorced (or free) solution to (4) representing a

standing Rossby wave whose westward directed phase speed exactly

-~
°

b&%ances the eastward advection of relative vorticity by the the mean

zonal wind, ug In what follows we often consider flows for which (7¢)

L
-

is identically true and in these situations it should be understood that
we are referring to the free Rossby wave solution (6a) for which hn - 0,

& ~ e
u, = /K, and ¥, 1s arbitrary -

2.3 Spectral equations .

As a first step towards solving the model equatfon, under peneral

conditions, it will be necesgary to spatially discretize our system

With this objective in mind we expess the total streamfunction as the

sum of a (time’indepepdent) linear term and an infinite Fourier serios,

di.e., )
Y(x,y.t) = « u_ vy + E:w (e) EL{x,v) (8
5 - Q (9 4 .
! a

11
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'

~
/s N ‘ p
g ¢

where Fa(x,y) is a member of following orthgnormal basis

{./ZCos(wnay/D), 2sin(2rm_x/L)sin(mn_y/D), \
(9)

L ‘ 2cos (Zwmax/L).sin(xnay/D) }

*

The subscript a corresponds to the pair of wavenumbers (m,,n,) connected

o

with that basis function and a summation over a implies a summation over

all modes. Note that the inclusion of the linear term in y in (8)ewill a

- allow us to specify a constant zonal flow on the walls.

The set of basis functipns (9) can be shown to satféfy the

. following conditions.

axFa - 0 at y = 0 and y = D, - ‘(IOa\
1 ifa’=8 B
<FF>=§ = (10b)
a B af 0 ifa =g .

where <( )> denotes the horizontal average,

—r——

o

/ <( )> = ——j J ( )dxdy .

- and

~ -
AF = - K2.F . ~ (10c¢)
a a « . N

o

[
From here it can be readily seen that this choice of basis functions

ensures that the boundary conditions (2) and (3) are satisfied for all

5 i
»

‘

time. ) ,

Substituting (8) into (1) “and applying a.Galerkin procedure leads

°

to the follow1n;\§p of equations governing the behavieur of the set of

real spectral coefficients, (¢a(t)} e
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. 2 . 2 2 f
@ Ka'dt’/)a M Zwﬂxe"becﬁca + Us Xxﬂwﬁbﬁa ) ﬁ}:'/’ﬂbﬁa \
. Be . B B

AY

. : -’usZ(fohﬂ/H)bﬁa + Xwﬁ(fohe/ﬂ)cﬂm n
. ¢ B ) )

| ' .
i wQere ?ﬁca - <FﬂJ(F€,Fa)> and bﬁa <FﬁaxFa> . .

{ . . ‘ w
: I

N »

In (11),“cﬂ€a and bﬂa are the interaction coefficients, K, {s the two-

o diﬁensional wavenumber and (ha} is the.set of espoctn;] coefficients
correspon&ing to h(x,y).. The evaluation of “Bea uns’ bﬁ" fa
straightfor&ard but cumbersome andfzs omitted here [the reader (w
referred to Appendix A of Mitchell (1982) for the devalls]. ;

e

So far we have sihbly replaced the difficult, if not i‘mpossiblo° to ,

-

¥ solve nonlinear partial differential equation (1) by an oaunLly
i ey "

¢

intractable infinite et of nonlinear differential equatfons®  Fuithes

progress will require that we truncate the spectral series pgiven by

«

7/ (8). 1t follows that if one inc]udo§'n]l those basis  functions {1

°

which m <M and n < N then (11) represents a  systelm of N ¢ IMN

nonlinear differential equations. [We note that this truncated seg ol
. .

spectral equations has been used by many other reséarchers, fncluding

Boville (1981) ana Mukouga}a and Hirvota (1986%H).] In Chapter 3 we will

[ 4 g

consider a linearized version of this finite system of equations while

in Chapter 4 we will employ the nonlinear ecquations themselves

#

¢
N

e
- LY
v
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.,*CHAPTER 3 - -
. v LINEAR ANALYSIS

»

) /
e

This chapter consists of three sections, each of which deals with a
different theoretical aspect? of the lIinear stability of the finite-

amplitude steady-stafé flows derived in Section 2.2. The first section

is .essentially a p;rametric study of the linear stability of the

"

equilibrium flows. More specifiéally, the frequency of all possible

small-amplitude perturbations _are caléulated as a function of thé .

-

strength of the meag— zonal wiﬁh, ug, and tgf amplitude of the
L9

topography, th,. In this section a particular effort is made to

———

characterize the various instability mechanisms. Following this, in

.

Section 3.2, one of these instability mecharisms, namely form-drag
instability, is considered in more detail. 1In this study the effect of

the Reynolds stresses, which_ were absent in many earlier studies

. e

[e.g., Charney and Devore, 1979; Hart;21979; Charnéy and Flierl, 1981;
Rambaldi et al., 1985], on form-drag ingtabilify is emphasized,

Finally, in Section 3.3 the stability of a "particular weakly non-

_parallel ‘equilibrium flow is studied numerically, as in the brevioﬁs'
sections,- and énalytica%ly, using WKB theory. In this séction, part’ of
the intention is to clarify the factors governing the regional nature of

some of the instabilities found in the earlier sections. - .

K - - ‘.o -
-

F D

3.1 LINEAK STABILITY OF FREE AND FORCED TWO-DIMENSIONAL WAVES

A large part of the initial motivation for the present study arose

. . from tke earlier work ofbMitchell and Derome (1983). The latter have

" shown that rather realistic blo;kihg-like flow patterns could be

&
. . =4
I

14 -
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generated as soiutions “of the quasi-geostrophic potential wvorticity

equation. The stability of these steady state flows was tested by means

of numérical experimenés iﬁ which a time-dependeng“version of the model
equation was integrated forward in time using as initial conditions each
of the equilibrium. flows plus perturbations of various'amplitudes. It
was shown that a number of the flows were stable to small-amplitude
disturbances while others were not, but because af the complexity of the
equilibrium ‘solutions, no general statement could be made about the
s;ability of the sélutions as a funétion of tﬁe parameters of the

problem.

o

.In the present study we are congerned with the linear stability of

finite-amplitude wavy flows generated as in Mitchell and Derome, but for
hJ a
the simpler barotropic model described in Chapter 2. As discussed In

.

3 - \
Sectiod 2.2 our idealized equilibrium flows are compgsed of a constant

zonal wind plus a single planetary wave and are, therefore, too simple
to be associated with blocking patterns. 1In this study we deal not only

wffh free planetary waves as in Lorenz (1972) and Gill (1974) but also

pﬂ

with topographically forced flows as in Charney and DeVoro‘(1979). We

show here that topographic, shear (Rayleigh) and resonant Instabilities

are possible, each having preferred regions in para%eter space,
) ;

LY

3.1.1- An overview

1

Most of the 1n§tability mechanisms to be described here have been

+

studied before, but the preseﬁt model makes it possible to present them

in a unified fashion which, it i{s hoped, will be found helpful. In

addition, it reveals the existence of an {nstab{lity mechanism which, to

the authox’'s knowledge, has not been encourmered befores = Furthermore,

a
.

15°
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- f
e .model employed to obtain the growth rates uses many more degrees of
! | '
reedom to define 'the structuré.oA the perturbatipns .than in the above
studies, so that more accurate results are preseftpd. The accuracy is

L 1 R . . 3
gained at the expense of having to obtain the eigenvalues of relatively

£

.
~

large matrices, and in that sense our approach is like that used by,, for

example, —Frederiksen (1979) and " Simmons et al; (1983); - one important
\ % . E ) ;
difference - is that we allow the perturbations to interact with the

bottom orography, hence permitting topographic instability. The growth

! 4 .
rates of the disturbances are presented as functions of the amplitude.of
the single harmonic orography and of the speed of the mean zonal wind

speed., The physics 'of the instability ‘mechanisms in various parts of
¢ ! )
parameter space 1is illuminated by aﬁalyzing suitably simplified
° . -

(truncated) models. Y ) o

¢

. We show, in particular, that when the equilibrium flow is comﬁosed

’
. <

of a constant zonal wind u, plus the gravest possiblg wave, the

following is obtained: (a) the free Rossby wave is stable, whatever its

- -

) amplitude; (b) for the topographically forced wa&g, three major

»

instability regions are found in parameter space, two of which have

S - .
stationary growing perturbations. One region corresponds to topographic

instability (ug somewhat buperresonant), and the others being associated

e

with shedr or resonant triad instability (us subresonant). When the

o

zonal wavelength of the equilibrium wave is halved, the free Rossby

wave becomes unstable when its amplitude 1is ;uffféiently large. The

topographically forced wave has two major regions of instability,.

_roughly speaking, one ‘on each side of the ‘resonant ug. Again the
]

superresonant Us

.

subresonang one contains either shear or resonant triad instability.

domain contains topographic instébility—)ﬁhile the

S

- . . -

¢
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While the classical shear and resonant :Instability meghanisms are
well understood, topographic instability-.appears to be less so, presum-
ably because of its more recent history. To avo{dﬂéonfusion later in

the discussion, we wil} now p&oviae a definition of topographic in-

. stabjlity (or form.drag instaBility as it is often referred to). For

our purposes, ‘the phrase topoi::i::7 instability is meant to describe a

mechanism whereby a growing w erturbation on the same scale as the

-forciﬁg produces a substantial mean zonal flow with a nonzero meridional

average through its interaction with the topography via form drag. In

fact, such a zonal fiswyucan only be generated by form drag in a

barotrbpic model. - @

fn subsgction;3.l.2ﬂwe derive the linearizédvversiOﬂ of the model
equation wlhfile in suBsgctibn 3.1.3 ‘we deécribe the method of solution
used to obtain the growth rates and gﬁé perturbation structures. In
subs;ction 3.1.4 we_ present the n;merical results and their analysis in
terms Wf severely truncated models whiie in subsection 3.1 5 we

summarize the main results.

3.1.2 Perturbation equations ..

It is our goal here to study the stability of the steady flow ¢ as

2

a function of m,, n,, g and h /H. To this end we obtain the "linear

equation governing the evolution of a small amplitude perturbation ¢*' to

'
-

'ﬁ’ i'e'I ’ -

Y(x,y.t) = $(x,y) + ¥/ (x,y.6), |9w'] << |99] : (12)

¢ o

~

.

Suﬁ;titucing (12) into (1) and négleéting products of perturbations

'
o

yields

+ ' ) P
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° * )

3,8" + T, 84') + T, A+ By) + J(b', £ u/H) = 0. (13)

Physically, speaking, the second term in (13) represents the advection of
perturbation vorticity by the basic flow, while the third and fourth

involve the generation of vorticity by perturbation flow across lines of

’
-

constant basic-state potential vorticity. The possibility | of

interaction between the perturbation and the topography implied by. the ,

fourth term distinguishes this' study from those involving the stability.
\ L4
of a free Rossby wave [e.g., Lorehz (1972) and Gill (19%4)].

To see more clearly the effect of the topography on the perturba-

tion, it is instructive to consider the zonally averaged perturbation

.

-

momeﬁ&um equation. If we let

. «
)

b(x,y,6) = P(y,t) + ¥ (x,y.c) k (14)

¢

where the overbar represents a mean zonal average and an asterisk a » -
deviation from it, then it can easily be shoiwn that the integration of -
(13) with respect to y, with the use of the boundary condition N

v(y = 0) = 0, yields

)
. ~ )

3 =8 (v u T v E n /(15
tu - Y‘y Y u’ v ) v o /. . (15)

)

- o

This equation shows that the mean zonal pérturbation Gé@oé@iy can be
altered by two distinct processes. The first is seen to be due to the
convergence of the Reynolds stress, resulting from an interaction

between the perturbation and the equilibrium flow, while the second is

4 - -
associgted with form drag, that is, to the interaction between the per-
turbation and the topography.

5
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If we now integrate (15) from y = 0 to y = D we obtain
, . ) , \

- £ ry—;f . ‘ J
d u’ dy = — | v/ h dy N (18)
t 0 N H 0 . -

so that if a perturbation has a u’ component with a nonzero area

u

; s , :
average, the latter must be the result of an interaction with the topog-

raphy, ‘%at is, of the form drag mechanism. We will return to a discus-

sion of (15) and (16) in the interpretation of;our results,

“ Assuming solutions of the form

-

b = e dex,y) _— : Can .

and using (4) allows us to rewrite (13) as

- iwAd + 2B, AD + x:-ag -0 . L (18)

}Ultimately, of course, we will be interested in the real part of ¢’

only.) Now we need only solve (18) for w(ma'na'“s'ha/") in order to

Y
.

establish the parametric domain of inséability.

P 3

It should be noted that g in this study is considered constant, but

even if it were a free parametér it could be removed from the problem by
an appropriate nondimensionalization. It may be worthwhile to digress

to outline one such procedure, since the nondimensional parameters which

arise frequently occur in the literature. 'By introducing the
nondimensional variables (x*,y*) - Ks(x,y). c* - (ﬂ/Ks)r and

ﬁ* - (KS/U)J, where U 'is the yvelocity amplitude of the basic wave; the

¢ ”
w ma,na,us,ha/H,B) problem can be replaced by a w*(mo,na,UK;/ﬂ.Ks/Ka)

problem. The ‘nondimens{pnal, frequency W' 15" related to w by

2

W (KB,

19
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W’hen.;; = K. /Ky=1 the w0 problem then reduces to that of a free

Rossby-wave stability analysis, which have been performed by
Lorenz ¥1972) and Gill (1974) on an infinite B-plare. »Id‘agreemeﬁt-wrth
Lorenz, Gill found that such flows will be’ unstable if the wave

amplitude or wavenur;nber are sufficiently high. Moreover, Gill observed

that for \}anishi_ngly small basic-wave amplitude [i’.e. ,

M = UK;/ﬂ << 0(1), in his notation], the instability is actually of a

resonant wave interaction nature ‘while for large amplitude [i.e.,
N t

M- 0(1)] the instability is. caused by the shearing motion of the wave

-

itself. [Note that M here is different from that of Section 2.3.] Both
of these authors used severely tfuncated Fourier expaﬁsion‘s and as such
were unable to specify accurate curves of ma{rginal stability in the

parameter space. Coaker (1977), using a numerical technique based on a

third-order Floquet system, went* a step further and actually obtained

curves of marginal stability. A review of" papers degling with the

s

stability of free waves can be found in Grotjahn (1984).

In the forced case (i.e., g = 1) it ‘has been found ‘that the
L -
topography may be destabilizing either because the topographic wave is

unstable to a resonmant or a shear mechanism or because the topography

itself interacts favourably with the perturbation via form drag. This

latter instability, which will be describﬂed in detail shortly was first
&

Aiscovered by Charney and I?eVore (1979) and was later connécted with the
shear and resonant mechanisifs by Charney and Flierl (1981). . Both of
these works relied on severely truncated systems and neither presantecji
actual curves of st:abilit}f. It is part of_our ‘;Lirpose here to obtain
such curves anci, in addition, to relate our findings to those arising”

rd :’ ) -

from a severely truncated model.
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- Reﬁurning to the dimensional perturbation equation we will now'

N

outline the method of solution. _,

R
- .3.1.3 Method of solution.
. To solve the perturbation equation (18) we expand \?) using the basis
defined in‘(g), i.e. , v B
bx,y) = ) dPlxy) - ' ' 19
Yv(x,y) Zwﬂ ﬁ(x y) ‘ (19)
. . ﬂ ‘v
which after applying the Galerkin procedure to (18) leads to the
follow_ing set of algebraic equations for the coefficients Qaﬂ R

a N
B N
. o .
N 0 -

2A ~ A R A
_iw-Kﬂzpﬂ + ZAecﬂacwawe + uSZAebﬂewe -0 ‘(20)
) € € :
. where A, = K; - K: and a refers to the basic-stai:e wave. Alternatively,

we could have obtained (20) by linearizing the spectral equations given
in (11). .
To this ‘point we have transformed the perturbati'on equation (18)

into an infinite-order matrix eigenvalue problem of the form
- . * . - - )
3

(A~ ioI)-X =0 , (21)

o

f

( , .
where A is a real, and in general, nonsymmetric coefficient matrix
depending on the basic state, I 1is the identity matrix, X is che
eiger{vector containing the components wlﬂ, and w the eigenvalue We may

&

. obtain approximate solutions by truncating the spectral ‘series in (19)

" With this truncation A i{s _a

A

for‘ﬁ at mﬁ-M and nﬂ-.N

(N + 2NM) x (N + 2NM) matrix yielding N + ZNM eigenvaldes ‘and N + 2NM

21
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- corresponding eigenvectors, ghich we calculated —nwne’rically using a
/ ° i w

series of EISPACK routines (Garbow, -1974). It was found, a post:eriéri,

that a [M,N] -‘[8,2;] truncation (leading td a 68x68 matrix ’eigenvalt.}e

problem)—satisfactorily resolved '.the dominant instabilities over the

4

chosen range of parameters. .

— The fixed parameters in this analysis,:D, é;, H, L and -8, have the

A
following assignmenﬁs

S
1

6
4x10 m i
Zﬂsln(ﬁo) -

Hy
]

1x10° m . ' (22)
2nRcos (90) ) P

4 m
] L

™
]

2cos (00)/}2-

-

= . : % '
where the rotational rate of the earth, (1, the radius of the earth, R,

-1

are 7.292x10°° s

and the mid-channel latitude, i , 6.37)(106 m *and

o?

45N, respecEively. Also, by way of reducing the parameter space ., and

- L)

hence the amount of calculation, we consider topographies which have

(N

~only either a zonal-wavenumber:l or -2 strﬁcture and half an oscillation

in the meridional direction, i.e.,
: 3

m =1or?2 and n =1 . (53)
a a ,

This selection is to some extent justified by the'fact that these ‘two

.

c.ompo'nents contain the bulk of the amplitude of the earth’s topographic

- 2

spectrum, N ‘ |

In—the next subsection we present an overall picture of the

stability of zonal-wavenumber-1 and -2 basic flows. In both cases we

follow the same format, by first analyiing the stability characteristics




«

distinguish the  various instabilities ’ané to obtain instability

criteria.’

@ . 'S

3.1.4 Parametric analysis‘ g

Here we preient'a‘sCability analysis of free and topographically

forced zonal-wavenumber-1l:and -2 basic waves

"a. Zonal-wavenumber-1 basic wave
- 1) FREE ROSSBY WAVE I
i ¥ Since permitt}ng a free Rossby wave to assume a ‘nonzero phase ‘speed
— on ¢

has the soﬂe effect, fsfm the point of view of stability, of doppler

shifting the phase speed of ,its perturbation it is sufficient to take it
to be stationary. Given the channel parameters used here, the actual

’ - 4
mean zonal wind . required to balance the meridional advection of

planetary vofticity and fix the Rossby wave in space 1s approximately

—

“24.30 ms™'. We found this zonal-wavenumber-1, stationéry, free Rossby

. ,  wave to Be‘unconAitionally stable We will now argue that the stability
of this wave is a consequence of the conservation of vaéious quantities
£ in the{sys;em (i.e., energy, enstrophy and zonal ;omentum) qég;ége in-
.. ’ clusioﬁ:of lateral boundaries. )
L

Fjortoft (1953) showed' that 1if both the kinetic energy and

. enstrophy (i.e., mean square vorticity) are to be conserved, energy must

Z
i . - . )
- {
- A

2 - N

* {7
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be transferred simultaneously to both shorter and longer wavelengths.
.

This dynamic constraint, together with the fact that the geometry of our

‘model fixes a lower bound on the set of posséble wavenumbers, requi’res

-

the basic wave to interact 'with a mean Zonal flow. Specifigally, this
(1,1 free' Rossby wave must interact wit':.h a (QO,l) perturbation component

.for instability to occur sinc;:é it is ‘the ‘only mode with a smaller
; ° .

wavenumber Since,‘however, the 0,1) mode is constrained to remain

~ © . P
constant in order to maintain the conservation of zonal momentum ([see

Y

(16) with h = 0], stability of the basfc wave is guaranteed regardleSs
of its amplitude This is essentially the same reason why Baines (1976)

found that Rossby-Ha‘urwitz waves with a total wavenumber less thang are

-

unconditionally,stable. ' .

. “ 4
¥
2) TOPOGRAPHICALLY FORCED WAVE .o ' .
\ 4 o . - o .
In contrast to the free Rossby wave, the topographic wave may or

may not be stable, depending on the actual wave amplitude and the mean
;zonal wind Desf)it:e’the.complex relationship that exists between

. : PR
instabiMty and these parameters, mast two general comments can,be
made First, all the major instabilities encountered here contain at

r N P . : . . .
least some meah zonal kinetic.energy (in contradistinction to purely

*

~ - -B ,f\,.
zonal basic-state instabilities, which contain no medn 2zonal kinetic

.
ER ,

o ) ;
energy). Second, they are all on roughly the same, scale as the basic

Al A

wave (making their resolution a relatively easy task). Sy

[

‘ We beéin the analysis by presenging e-folding curves (see Fig. 23,

o

* for the fastest-growing perturbations, as .& .function of topographic

®
<

\ . . . . >
amplitude and mean ‘zonal " wind . Following this we consider
p .

o

representative eigenfunctions from the various regions of instabilit
P g g y

4

4]
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and propose an instability mechanism in eaé\h case. Finally, motivated
by the rtumerical results, we recommend a simple theorétical model useful

in analyzing these instabilities

4
I3 . -

(i) Eigenvalues From Fig. 2a we first observe that mean zonal

winds exceeding approximately 26 m s' lead to unconditionally stable

flows This is a direct consequence of the conservation of a unique

linear combination of horizontally integrated perturhation energy and

‘enstrophy (see Charney and Flierl, 1981, p 537) The exact mean zonal-

i
wind cutoff, so determined, depends only on the f-parameter and the

B

channel width, i e , .
-

uszﬂ/(g)bz% 2% m s .o ()

P

Al
The stabilizing 1nfluence of the lateral boundaries 1s evident in 24y,

which shows, that for a fixed ug, stability 1s ensured provided the
boundaries are sufficiently close topether MoIn-
o
tyre and Shepherd (1986) present a nice phvsical interpretation of this
P " ~4
result and aptly stress the tact that it applics more gegperally to

finite amplitude disturbances, as first demonstiated by Arnel'd (1964

1

On the near superresonant side and contipguous to the resonant wind

line (located at u, = 24 30 m s'l) is a major rv;',igm\ of instablilfity

1

' )
(denoted region 1) This instability {s characterized by resonantly

amplified perturbations that are fixed in spiace  These features sugpest

et rL R CUe 4 vl G Lt f e e h &S e A A S S S .

that this instability may result from a torm drag m}"chnni‘;m‘ and {ndead,

.

after considering a representative efgenfuncrion in subsection {{ there

should be no doubt that this {s trulv the case 1t should be noted that
[

3

i
due to the¢ near resonant nature of this instabiriity, the basic wave
ALEN

. » \ .
1= . "
. <
2 Ve -
%

LI
.

s
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c- o amplitudes can be exceedingly large and the quasi-géostrophic assumption ’

underlying the entire tiﬁ'é/ory often violated.
) On the subresonant side of the resonant wind line are indicated th
\ T
/

distinct regions of instability ([denoted II(a,b)]. Betwéen regidn I and

®

- region II(a) lies an area for which no growing perturbations whatsoever
were found, while to the left of region 11(b) some ,ve?y limited areas of
instability were discovered. The gro’wth';‘ates in these rc;g_ions are rel-
atively small, however, and for this reason have not been shown.

Growing perturbations from region II(b) are choaracterized by non-
zero phase speeds whereas those from re‘gion I\I(a) are fixed in space.
In general, regions II(a,b) both involve structures dominated by the
same three components, leading us to believe that they arise from the

same mechanism\ We will see in subsection ii” that this instabilicty

( arises from shear i&stability inherent in the topographic wave itself
|

rather than through any direct interaction between the perturbation and

the topography as in the case of form drag instability.

et vty

. ' (ii) Eigenfunctions Now we consider a representative eigenfunction

from each of the three regions of instability described previously.

\ N o |
(a) Superresonantl instability. The typical grov}ing perturbation

from region I has a wavy part corresponding to, yet out of phase with,
L

the topography. In addition to a dominant (1,1) component, the

perturbatictt has also a strong (0,l) component. For example, consider

. toa1a \

/ Fig. 3b, which is the growing
a .

t . 1Superrescr'zamt: with respect to this particular waven\imber.

v
H
'

perfurbation to the basic flow shown in

o
¢

26
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Fig. 3a. Since the perturbation 'amplitude is undetermined in this

©

linear theory, the jcontours are left unlabe'led. Ly

The physical megkthanism respoﬁiible for this exponential growth

involves the interacftion between the perturbation and both the ' topogra-

phy and the equilibrium wave. Referrimg again to Fig. 3b we see that

“h -

the perturbation high east of the mountain induces southerlies over the
' " » ’

mountain and northerlies over the valley, leading to vortex shrinking in

the southern half of the channel and vortex stretching in the northern

\ .

half This implies a generation of anticy?ﬁonic and cyclonic vortlcity
in the south aﬁ&'nor%h, respectively, leading to an increase in fhe
“Zonally averaged midchannel wind The strengthened westerly zonnluflow,
in turn, advects/§he basic wave ridge in such a way as to reinforce the
“perturbation high, thereby ensuging a positive feedback of the

perturbaa}on onto itself ;

[ S N

To see more clearly the role of form drag in this instability we

present Fig 4, which shows the distribution of the Reynolds stress and

A

form drag for this representative case Form drag clearly dominates the

s
overall zonal momentum tendency and, as expected, is the sole source ot -

B

the large (0,1) component The Reynolds stress, on the other hand, L&

o

much weaker but its (0,3) structure does moderate to some oxtent tha

effect of the form drag. Note that an analysis based on severe trun-

cation, such as Charney and DeVore's (1979), would miss altogether the

eff%ct of the Reynoldd stress .

* (b) Subresonant instability We reiterate that, in general, the

unstable subresonant structures from repions Il(a,b) are=sdomipated by

N L

the—same three components, namely ché zonal (0,2) and the @nvy (1,2} and
o »

¢

1
A v
e ®
— ¢
-
. s ,
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(2,1) modes. 'L‘he'vax;ious structyres themselves differ omnly, in that the
amplitudes of the three dominant ’;nodés have different.ratios.. All the

megn - zonal components in these pergzurbations [not only the dominant

(0,2) one] have an even meridional wavenumber, ‘and for this reason their
reason wheir

growth is clearly not the consequence of a form-drag mechanism‘[see
(16)]. We now present a nepresént_ative eigenfunction from each of
II(a,b) and also a description of a weak subresonant topographic in-
stability lying outside regions II(a,b).

Region II(a). Growing perturbations found in region II(a) have a
small, but- nonzero, mean zonal part and a dgminant zonal-waveﬁumb;r-Z
structure. Specifically, in increasing order’ of i’mp?)rtance, the (0,2),
(1,2) and (2,1) components dominate these structures. '?o illustrate
this, we present Figs. 5b, c, ;vhich show the growing and damped per-
turbtations, respec_t;ve}y, to t:’he basic f_l‘éy of"JFig. S5a Recall that
these perturbations have zero phase speeds so thit the structures shown
here will not change outside an overall exponential amplitude growth or
decay. N ? ' *

It is apparent that this\ instability 1is not a response to a form-
drag mechanism,_but, rather arises from a tilted ridge/trough mechanism
(acting upon shears inherent in the topographic wave) involving the wavy

0
(1+2) and (2,1) components. In simi)le terms, the tilted phase lines
seen in Figs. Sb, ¢ allow-the disturbance to carry momentum away from
(to) the jets 1in the basiucofléw, causing the latter to weaken

(strengthen) and, in turn, the disturbance to grow (dampen). It should

be mentioned that unlike classical barotropic instability on a’ purely -

zonal Dbasic fiow; the disturbances to the two-dimensional flows

considered in this study invariably exhibit some modulation of the wave

I

-
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structure along the zonal direction. As would be expected, Figs. 5b, ¢
show that the- modulation is on the scale of the equilibrium flow,

namely, zZonal wavenumber one.

»®

~

To assess their respective roles -in this instability, we present

the Reynolds-stress and form-drag distributions in Fig. 6. Noticé that
i .

the weak form drag works against the Reynolds stress in forcing the

(0,2) component. .

Region II(b) As already mentioned, the region II(b) structures

v

are dominated by the same components as in region II(a) and likely arise
from a similar if not identical mechanism. Unlike the region II(b)

structures, héﬁkver, these structures all undergo an amplitude

°

modulation in time (other than exponential grdwth) due tg the presence

of a nonzero phase speed. Figs. 7b,rc showy a growing perturbation at

. Rt
0 days and 9 days, respectively, to the basic flow depicted in Fig 7a,.

Throughout its period of oscillation, this perturbation has a pronounced

zonal-wavenumber-2 structure similiar to the typical vregion I1I(a)

€
’

per;&rbation shown in Fig. 5b.

°

The Reynolds-stress and form-drag prgfiles f?r the perturbation -at
t =0 a£; shown in Fig 8. Notice that the form drag has a greater rel-
ative importance than in the region II(a) example. This might be ex-
pected since the basic flow, which is further from linear resonance,
results in a reduced Reynolds stress contribition.

At this point we would 1like to repérc that wedged between (ana

occasionally overlapping) the two major subresonant instability regions

, . | v
.-dre some small pockets of what appears to be travelling form-drag in-

stabilities (albeit weak). To the author’'s knowledge all previous

studies of topograpﬁic"inscability have yielded stationary djisturbances.

3
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We will now present an example of a‘travellfhg,suhresénant topographic

instability.
. L4
Consider, for' instance, the travelling perturbation in Fig. 9b to

the weakly unstable, subresonant basic flow of Fig. 9a. The Reynolds-

0 .
stress and form-drag profiles for the perturbation at this and various

'

other times are shown in Fig. 10. The profiles at ¢t = 0, T/8, T/4 and

4

%T(B are simply the mirror images of those at ¢ - f/2, 5T/8, 3T/4_ and
LS ! . ’
7T/8, respectively. ) . .

”
©

The inspection of figdres corresponding to Fig. 9b but at other

! .
times (not showgg, as well as consideration of the frequency, reveals
the presence of a dominant westward-travellimng (1,1) wave, with phase

speed of approximately 10.9 m s~'. This wave ihteracts. &iih/the topog-

o

raphy to produce either a westward or eastward (O&&l/;onal flow, depend-
.
ing on its precise location in E&e channel (Fig. 10). It is interesting

that at t = 3T/4, when the effect of form drag is almost at the maximum

1
over the entire oscillation of 29.5 days, the profiles of Reynolds

'

stress and form drag are nearly identical to those of the superresonant
case of Fig. 4. To check that this instability is not merely an
artifact of the truncation, we incféase& the resolution to
[M,N] = [15,15].and found that it remained, with now an e-fol‘dingfcim

of 35 days (the additional components having increased the growth rate).

In any case, we éhould keep, in mind that this subresonant topographic

instability is still rather weak,. d
’ ' 1
Pedlosky (1981), recognizing .the limitations of severe truncation,

found in his analytical model that subresonant topographic. instability

was possible if the ,zonal wavelength of the topography was long enough
. .
(in particular if k, < n/J/3D = 0.58x/D ih our mnotation).” Our (1,1)

30
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topography certainly satisfies this condition since k, = 0.28x/D. The
subresonant instability ,encountered here, however, should not be com
fused wlth that discussed by Pedlosky. The instability here is not sta-

tionary nor is the basic state weakly forced and nearly resonant as re-
: °

quired under the assumptions of hig model. As pertains the instability

discussed by Pedlosky we will show in Section 3.2 that it is in fact an

- v

artifact of sfevere truncation. o

. %
a . ;
(1ii) Severely truncated model. Ipspitedlpy‘the numerical results,

we now consider the stability of a basic wave, denoted by a (which is

.arbitrary at this point), to a perturbatibn made up of two other waves

and a zonal component, i.e.,

. -lwlkfa T - R
v e \{w7J2cos(Dn7y) !
2 2 °
. T . e ) L v R «
+ $ﬁ231n(—zmﬁx)sm(5nﬁy) + wﬁ2cos(—zmﬂx)sin'?%71ﬂy) (25)

L d

~ A : A 2
+ wc?sin(z%mfx)sin(gney) + ¢?2cos(:%m€x)sin(gncy)}

With mo loss of generality, we assume that,the varibus wavenumbers
are such that the interacting triads are' (y, a, 8) and (B, a, ¢). The’
frequency equation arisiné from this configuration {s given by the

L4

fifth-order equation




‘;’,‘3

9 ,

/ ws,- bwa + cw =0 where | (26a)
/' - u ) i
b=t +w +24, +A- . (26b)
B € Be 7B . o
1
2 2 . £a
‘= ~+ —_— 3 N
c (wﬂw6 + Aﬂe) + (w6 + :Aﬂe)A'yﬂ . (26c)

In (26c) the positive sign is taken if m, = mg + m, and the
negative sign if othé?w;s;n;:Also, @g and'w€ are just the linear $o§sby
Yave frequencies for the B and ¢ components, while Aﬂe and A?E measure
the interaction ef}ect of the B component with the ¢ co;ponent and the v
component with the B component, re§pective1y. ’ [see Appendix A. for
definitions of the various terms iq (26).]

We now treat several special cases of (26) in‘order to permit a
simple analytic analysis of the various instabilities to thésé zonal -
wavenumber-1l basic states [e = (1,1)].

b

'

(a) Superresonant instability. Since the numerical results reveal
that ‘growing perturbations in the superresonant regime are dominated by
the (0,1) , and (1,1) components, we set g = (0,1), 8 = (1,1)

and ¢ = (0}05. The nontrivial frequencies so obtained, after putting

we = 0 and 45, = 0 in (26), are IV
2 ’1/2 . “;\"‘
o=t il o 4] - (27)
32
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In this case the necessary conditions for instability are obviously

2 .
- — 8

wﬁ < Ayﬁ , - (28a)
- . - ‘. 8

A7ﬂ <0 (28b)

Referring to Appendix A, wa see that the second inequality fixes
the range of potentially 'unstable mean zonal winds, i.e.,
ﬂ/K; < ug < ﬂ/Ki‘ (specifically, 24 30 m s7' <ug < 26.26ms’")  This
i; the B-plane chamnel analog -of a result obtained for an infinite g-
plane by Charney and Flierl (1981) Because B is poéicive and
g% -"ﬁ/K;, we can write our result as Ki < KZ < K;, which is the analog
of Fjortoft’s (1953) result regarding the scales of three modes involved
in an energy exchange. Note that here the result applies to a topo-

'

graphically forced model and that the intermediate wavenumber is not
that of the equilibrium streamfunction but that of the resonant scale

associated with the mean zonal wind ug

In short, then, the conclusion
is that the growing disturbance must possess "at least two scales, one
larger and one smaller than the resonant scale In a bounded domain
such as ours, the perturbation scale KY is bounded from below and
therefore so is K, implying an upperbound on u. for inutghiiity. The
"first inequality, on the other hand, determines the minimum basic wave
amplitqu required for instabil&ty to_occur. This conditiqn can be
physically interpreted as demanding that the dispersive effects of §
(embodied in'wﬂ) are overcome by those of wave interaction (measured by
A ).

Many of the essential features of regloh I instability (e.g.,

resonant amplification and zero plase speed) are reflected in (27), and

©
°
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- <
( . , indeed, even quantitatively this expression serves - remarkably well.

* This last point can be justified by comparing the superresonant e-

folding curves of Fig. 2a and Fig. lla, the former being obtained with

°

the full numerical model and the latter using (27). It is interesting

3

to note that (27) consistently overestimates the instability. A
. 9 - . C iq3 . s '
discussion on the topic o’f’ form-drag instability, using a simple system

similar to this, can be found 1in Buzzi et al. (1984) (see also

Revell and Hoskins, 1984).

-

1 * 3 -
~ The subresonant curves seen in Figs. lla, b were obtained using a

simple three component model, which we now describe.

v

A

(b) Subresonant instability. The numerical evidence. suggests that

: we should select a perturbation composed of v = (0,2), ,én-' (1,2) and
c £ = (2,1) in order to model the twg dominant subresonant instabilities
encountered here. For this  truncated system the conserved

energy/en§tropﬁy integral discussed earlier is useful (the reader .is.
again referred to Charney and Flierl, 198l1), since it implies that the -

potentially unstable mean zonal winds lie between, and only between,

ﬁ/K; and /3/1(:, _in other words between approximately 6,43 m s’' and

I9.89 m .s'l. Returning to (26) we fill argue that with this severely

truncated system each of regions II(a,b) may be adequately reproduced
N
and distinguished’ on the basis oi the respective signs of b, ¢ and
¢ e
b2 - 4c, To aid wus in this endeavour we recall that region II(a) f

instabilities are stationary whereas those from region II(b) are

‘travelling. .
i

Upon inspecting the frequency equation (26) it becomes apparent

; . . : v
that perturbations of this sort to basic flows for which

’ ’
.
-« -
B
‘

; 34
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b* - 4c <O : . (29)

£
o

are unstable and travelling. The neutral curve associated with these

perturbations is obtained by making (29) an eqﬂhlity, i.e.,

2

AVE + 2(wﬁ + we)[Z(wﬂ + we)Aﬂe + (wﬁ - w€)AVE] '
2 2
+ (wﬂ + we’)/ﬂ - we) -0, .

-

This, in turn, yilelds a simple relationship between the critical

topographic amplitude and the constant mean.. zonal wind speed.

Figure 11b shows the neutral curve, so determineda as well as a few e-

’+

folding curves within the region. From a comparisén of Figs. 2b and 1l1b

we corclude that this low-order system resolugﬂfﬁf:;remely well the

L3 \

region II(b) instability discussed earlier,
The fact that the curves in Fig 2b (and 11lb) are slanted towards

the u, axis at approximately 15.4 m st may be understood with the atd

of (30). When the constant mean zonal wind speed is such that
\‘ R L)
wﬁ + w, = 0 ’ _ (31)

°

(which occurs when ug =, 15.4m s") then (30) will only be satisfied for
7

a vanishing topographic amplitude. It follows that the slope of the

2 .
e-folding curves is connected to a resonant triad interaction between’
. . @

the (1,2) and (2,1) components .of the perturbation and thel(l,l) com-
ponent of the basic state, at a constant fean wind® speed of approxim-

A

ataly 15 4 ms ', ) ) \
To obtain an explicit (albelt approximate) necessary condition for

region II(a) instability, we note that if® the basic flow is unstable and

.
- [y

o . "



! b - he =0 L » C(32)

then the groaing perturbations will be stationary. Whether a’barticular

flow satisfing (32) is actually’unstaﬁle or not will depend on the signs

>

of b and ¢. For examplé, if e< 0, i.e.,

o 2
2 2 - : .
(wﬂw6 - Aﬂe) < - (we + AbE)AYE and hence (33?)
- . . : LA
2 . .
(0, + Ag )4 £~ 0 | ) . (33b)

&

the flow‘will be unstab}e} and since (32) is automatically satisfied the

© o
growing perturbations will be statiomary. In this tase the i%cond

inequality in (33) presents two possibilities, either

2 *
A=->0 and w + A <0 34a
18 “e * 4pe , (3%2)
B 4 or Then
2 ‘ )
A-=-<20 d + A > 0. 34b
B and w_, Be ) ’( )
/ ¥ d —

Fxom the definition of‘Aﬁe/and A7E’ it can be ‘seen that (34a)

- »

demands § K%< u_ < ﬂ/i(2 fer 1instabilit to appear (i.e.,
/B < Us v y

6.43ms ' < ug < 6.56.m's™'). This, therefore, is not a candidate as a
. A ,

2 4 i
necessary condition for region II(a) instability, since region II(a)
’ I P .

e [

: . . . -1 .
instability occurs at mean -zonal winds exceeding 6.56 m s~ . This range
of unstable mean zonal winds corresponds, rather, to a yery narrow

region of weak instability discovered with the highér'resolucion“modef

and ignored here because of the negligible growth rates involveg;\ The
1

second pair of inequalities [i.e., (34b)] on the other %and, imp that

[

ﬂ/K: < us\g ﬂ/Kz (6.56 m sfl <ug < 19.89am,s'1) for unstable flow.  The
neutral curve corresponding to this region is shown in Fig. lla, again

v
-
i
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with a few e-folding curves indicated. A «comparison of Figs 2a and lla

-

’ ) ) -
should leave no doubt that (33a) and (34b) are /necessary conditioens

related to region II(a) instability.f/

. The only dther candiddte for instability, within this severely

-

truncated setting, occurs when b* -~ 4c > 0 with b <0 and =T > 0: }t

happens p~  however, that b >0 for 2h,/H < 0.2 and 6.43 m st

-1 . _ g L
< ug 19.89 m s*°, so that in the range of parameters considered here

this 1is not a ‘jiable possibility. The reason that b > 0 in this

»

parameter range is due to the fact that the interaction effects embodied

in the last two terms of b are gmall when compared with the dispersive

effects of B as felt through the first two* terms of b for these

\

relatively weakly forced and linearly nonresonant flows.

*

Although ' this truncated system may have given us little physical

insight into the subresonant zonal-wavenumber-l instabilities, it could

7

yield useful information upon further{ study, especially in connection

with the relationship between the growth rates of perturbations and

their periods. T .
Now we turn to a stability analysis of zonal-wavenumber-2 basic
- .

waves, -

o ‘ B

‘
'

-

» .

b. Zonal-wavenumber-2- basic wave .

1) FREE ROSSBY WAVE /
. F i ‘ i
¢ In contrast to thg zonal-wavenumber-l case, -we found'ﬂ%hac the

zonal -wavenumber-2 free Rossby wave will be wunstable If the wave,

amplitude is large enough. Specifically, if‘ the rms wind speed

generated by the basic waye exceeds approximately 13.5 m.s"' the flow

- "

v
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o

- R .
will be unstable. On the other hand if the rms wind speed is too large,

. © v

say greater than approximately” 75.0 m s™', the instabil-ity mechanism
cut's off and stability ensues. Also, no instability with an e-foldiné
time less than 10.0 days was found. All of the above observations
are based on a [M,N] —‘[10,10] trunc-:ation. Interestingly, the
[M,N] = [8,4] truncation consistently overestimated the instability

The fastest-growing perturbation to the free Rossby wave flow of
d

Fig 12a is shown in Fig 12b (here the rms wind speed in P is

i

200 m s'l). In this _case the {M,N] = [8,4] truncation was found to
ad;quately resolve the insta%ility This travelling disturbance is
purely wavelike (i e , it contains absgluteli no nonzero mean zonal
components), and ®“the (1,2), (3,1) and (1,1) components dominate the

structure (in ascending order of  importance) Figure l2c shows the same

-

disturbance after 16 days (or, apprcximarely one-quarter of its total

period'of oscillation), with the exponential growth suppressed

1

-

The stability of the free Rossby wave at small' amplitude is con-

Vi

nected to boundedness of the domain. If this wave were unbounded in the

meridional diréction, then when M << 1 (i.e, when the nonlinear effects

y ‘.

are weak) it would be unstdble via a second-order resonant interaction
(as demonstrated.by Gill, 1974)._ Plumb (1977) has shown, however, that
a very long wave (specifically, if its longitudinal wavenumber k, is
less than 0 681lx/D) in a meridionally bounded domain will be stable in

this small amplitude limit In short, we conclude that thits long Rossby

e

wave (for which k, = 0.565n/D) is sgable in this limit because of- the

boundedness of the domain.
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2) TOPOGRAPHICALLY FORCED WAVE :
Here we follow the same format as befo{g’by considering the various

instabilities in detail, beginning with eigenvalues, then eigen-

i

functions, and finally, with a severel; truncated system,

o
v

In Fig. 13 there are two major and distinct

o

(i) Eigenvalues
regions of instability Separtgedaby the resonant wind line located at

. -1 . . s :
approximately 19 89 m s On the near superresonant side is a region

(region III) of form drag instability, which as'?efore, 1s characterized

by perturbations which are resonantly amplified and fixed in space.
o . .

Since tbis instability arises from the same mechanism and has the same

essential 7 fedtures as that from region-I, which we have already

described 1in detail, we wi1ll dispense with 1t and consider the’

t £
subresonant instability (region IV) only T

-

In general, the real part of the frequencies of the growing
Q
perturbations from region IV are nonzero, and hence the perturbations
S

have the appearance of propagating waves The fact that this region is

\ ’

contiguous/to the resonant wind line suggests that it may be in some way

[

connected ‘to the free Rossby-wave ins;gbility encountered earlier. This

N

conjecture will be strengthened wheQawe consider some typical unstable

eigenfunctions M subsection ii. Unlike the free Rossby-wave case,

. . . . . ~
however, a resonant wave interaction 1is also possible, leading to

nonzero growth rates even for vanishingly small basic wave ampljtudes,

(This occurs in the limit as h,— 0 and ug,~ 15 37 m st A severely

)

truncated system formulated in subsection iii will help 'us understand

the form this particular resonant interaction takes. et .




€

__region IV have no mean zonal part whatsoever. Obviously, then, form

. , -

-As in the case of zonal-wavenumber—lfégc flows, there are other

-

subresonant instabilities, which because of the very small growth rates
1

involved we& have chosen to ignore. Now we will consider two

eigenfulctions from region IV, corresponding to small and large basic

wave amplitude, respectively.

(ti) Eigenfunctions. As in the case of the growing perturbations ‘

to the free Rossby wave, the growing perturbations to the forced wave in ,
- N N

drag is not operative here, leaving shear and resonant interaction

©

mechanisms as the only instability candidates Let us consider the
latter first. True resonant interaction instability involving a free
°

Rossby wave exists only in the limit as the basic wave amplitude tends

to zero (see Coaker, 1977). Moreover, ot:he wavenumbers of the triad

©

4
involved in the resonant interaction must be such that a particular

s

dispersion relationship is satisfied, a fact which in a bounded domain

severely restricts the set 6f waveg in the perturbation }apable of
B X
undergoing a resonant interaction leading to instability. On the other

hand, in the case of a topographically forced basic state, the fact that

is a free parameter makes it significantly

L

the mean zonal wind, Ug,

easier for this same dispersion relationship to be satisfied for a given

5 a
12
set of waves. A case in point is this particular zonal-wavenumber-2,
* )

‘ "

topographically forced basic state, ith which, for a vanishin ly small
. »

s
7

forcing, the (1,1) and (1,2) components in the perturbation resonan;&y

interact with the (2,1) componen\}t‘of'the' basic state at ug = 15.37 ms "

(as evidenced by the zero located. at 15 37 m st in Fig. 13).
y g

9 Y
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We have chosen the topograpically forced basic flow of Fig. l4a to
illustrate the resonant-wave interaction mnechanism encountered‘ here.
(The value of M for this basic flow is apprgximately 0.03 ) The growing

‘éerturbation to this basic flow is clearly dominated by the (1,1) and
(1,2) components. (See Fig. 1l4b.) Like instabili#&y on a purely zonal
basic state this perturbation appears as a simple sinusoidal travelling
wave {in this case moving westward at the rate of approximately
8.9 m s'l) undergoing an overall exponential amplification (df
approximately O 3% per day in this case), Under closer examination,
however, it is seen that the wave also exhibits some slight meridional

propagation as well as changes in its tilt as it moves though the

channel, due to the nonzonality of the basic state (See Fig. l4c.)

As 1n ‘the free Rossby wave proglem described by Gill.(1974), as the
amplitude of the topographically forced wave :is increased (by, either
increasiﬁg the topographic beight or moving nearer linear resonynce) the

’

number of waves 1in the perturbation able to abstract energy from the
1

basic flow significantly increases With this comes a shift from a
resonang interaction mechanism to .a shear-type instability (more
characteristic of purelyﬂzonél basic flo;s) In the case at hand, the
first nonresonant interaction component to appear, as the basic wave
amplitude is increased; is the (3,1) mode. Recalling the ecarlfer free

s

Rossby-wave analysis, these components [i e , (1,1), ¢1,2) and (3,1)]}
’ ] ks

are the same dominant modes in the growing structures encountered there
This, then, gives us reason to believe that region IV instabilicy (for
mnderately forced basic,states) may in some sense simply be.an extension

[

of the free Rossby-wave instability

(41
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Consider the growing perturbation shown in Fig. ,)le to the basic

flow of Fig. 15a (now, M = 10) * The perturbation is quite localized in

space with its maximum amplitude occuring between the basic-state ridge
and trough 1lines (indicated with R’s and T's, respectively). To
illustrate the time. evolugion of this structure (with the exponential
growth suppressed) a 40-day Hovméller diagram, through the center 9f tt’le

channel, is shown in Fig. 15¢. The perturbation seems to represent a

series of highs and 1lows all simultaneously undergoing a 35-day
?\ .
oscillation. The regions of maximum intensification lie directly between

the *basic-state ridge and trough lines, where, in fact, the largest

shears are to be found. This is consistent with Frederiksen (1979), who

relafed regions of maximum perturbation growth to féatures in the basic

-~

flow. (Frederiksen considered a baroclinic model without topography

which is, of course, quite different from ours.) We mention that in

~

Section 3.3 we will attempt to delineate the factors responsible for the

%1oca1 growth of linear disturbances such as this one.

Now we will use a severely truncated model to help elucidate the
resonant interaction mechani»im responsible for the instability of the

small-amplitude region IV basic flows.

A »

(iii) Sévprely truncated model. The dominant modes in the unstable

resonant interaction structures are (1,1) and (1,2), so in (26) we

set B = (1,1), e = (1,2) and ignore the =zonal component. With

A,YF = 0 we get that

R . 1/2 /
Y
w = —{; (0g - w) * 1[- wg + )" - AAﬂe] J» ) : (35)

v -
&
v

. - A
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P . from which the following necessary conditions for instability resulct:

a

(w, + we)2 < - LA and hence, (36a)

A Be

Ay, <0 " (36b)

<

As for perturbations in region II(b),  a growing perturbation here

N

has a nonzero phase speed since

P o

w, = Re(w) = (w, - ©)/2 . (37)

B

Similarly, there is the pagsibility of instability even for vénishingly

“
small basic-wave amplitude fwis can be seen-hy setting

w, +w =0 ' 38)

(which in this case occurs
A )

in (36a) Now if (38) can'be met for some ug

at the now familiar wvalue of ug = 15 37 m s'l) then (36) is

autoﬁ;tically satisfied and the flow will be unstable for any nonzero

forcing. + This is precisely the dispersion relationship to which we
s :

alluded in subsection ii

Al

3.1.5 Discussion )

.
L

A quasi-geostrophic f-plane channel model has been wused to

-

invéstigate the linear stability of free and farced barotropic planetary

1

waves. By expanding the perturbation-wave structure in_. terms of

orthonormal basis functions, the problem was cast in the form of a

standard matrix eigenvalue problem. The calculations were made with

.- sufficient resolution to ensure the accuracy of the frequencies

©

* i
(eigenvalues) and of the wave structures (eigenfunctions), but extensive
g g .

s
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use was made of severely truncateci. models in the inteirpretation of the
results: Calculations were made for an equilibrium flow composed of a
constant zonal flow and one wave having either a zonal-wavemgmber-l or
-2 structure; in both cases the wave had the gravest possiblfa meridional

scale permitted by the channel. \)

The free Rossby wave with zonal wavenumber 1 was found to be

a

stable,"\‘:h‘atreve’ar its,gmplitude. The stability of this wave was seen to
be directly linked to the boundedness of the domain. The tapogfaphi-
cally forced zonal wavenumber 1, on the other hand, was found to be
stable or unstable, depending on the amplitude of the n%:opography and the

strength of the constant mean zonal flow ug,. Three major and distinct

regions of instability were found. One region, as expected from

) -
Charney and DeVome (1979), contained orographically unstable flows and
. \ .

occurred for u's somewhat superresonant. Two major unstable regimes were
found when ug was subresonant, but only one having appreciable growth
rates. Interestingly, the growing perturbations were found' to be
stationary for two of the three unstabls, domains of instability for this
wave. No satisfactory explanation for this result can be offered at

this time. We also reported on the existence of a weak, sub.resonant

LS

and travelling topographic instability. ‘e

As for zonal wavenumber 2, the free Rossb_;y mode was found to- be

.

unstable when its amplitude was r,le'ither too small nor too large, but

- }
thé e-folding times obtained were always greater sthan ten days. The

forced wavemumber 2 showed two contiguous regions of instability, one on

either side of the resonant u,. Naturally,” the somewhat superresonnant

u, was associated with orographic instability. In the subresonant

region, the instability mechanism was shown to be associated with a

- »
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1

resonant-triad interaction when the wave am%litude was small and to

'
a

transform into shear (Rayleigh) instability as the wave amplitude was

increased. The latter type of instability was shown to be associated
‘ 3

with somewhat more localized perturbations which change shape over a
well-defined period as they move through the equilibrium wave. Being
more localized, these perturbations require more modes for }heir'

description and hence are less well represented bv severelvy truncated

.

models than the ether main instabilities reported upon in this paper

The model wused in this study has, admittedly, a rather crude

i3

geometry but it has nevertheless been a useful tool in demonstrating the

strong constraints that the finiteness of the domain can impose on the

.

flow, Whic§(4ﬁll (197AK referred to in his work with the "intintte #3-

plane The model’s simplicity has ilso made Lt possible to obtaln a
]
reasonably coherent picture of the stabilitv propertics of hath tree and

»
forced planetary waves and to delimit in parameter space the regions of

.

instability. Finally, the investipgation revealed the eoxistence of

travelling topopgraphically unstable waves, which do not scem o have

’

been noticed before

In the next section we will diwcuss rthe form-drag instability in
>

e .

considerably more detail We will, .in particular, desceribe  the

‘

structure the perturbation must have (in both the mean zonal and oddy
' - o ~

parts) in order to describe properly this instability, .

1
4 -
Q
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3.2 Som% effects of truncation on topographic instability

The fact that zonal flows, which are otherwise stable, may be unst-

able in the presence of a sinusoidal topography was demonstrated by

Charney and DeVore (1979) in their pioneerjng paper on multiple equi-’

libria. They found topogfaphic instability to be a stationary pheno-

shes

menon associated exclusively with their near-superresonant equilibrium

solution. Hart“(l979) arrived at the same characterization of topogra-

phic instability without, however,

Hart’s description of topographic instability is sgfill less than general

though, because of his assumption of a meridionally infinite topography

Recognizing the limitations of Charney and DeVore’'s  severé

v

truncation, and Hart's highly anisotropic orography, Pedlosky (1981)

performed a multiple scaling analysis which indicated, among other

things, a sensitivity to the meridioal scale of the topography not

evident in the earlier studigs.

instability was found to exist when the ratio of the cross-stream

wavenumber -to the downstream wavenumber was large egbugh.

Using & some-

what more descriptive approach, and'jfthout Pedlosky'’s stringent scaling

assumptions,. Rambaldi et al. (1985)

stability criterion.

’

derived essentially the same in-

All of the studieg described above are identical in at least one

respect: they all describe a disturbance to the forced equilibrium flow

consisting of a single free wave,

wavenumber as the

forcing, and a mean zonal flow.

with the same zonal and meridional

Aside from the

benefit of analytic tractability,” this assumption ensures that any in-

stability that arises 1is the direct consequence of the presence,of

s

topography, rather than a shear (or resonant) mechanism connected to the

/

the constraint of severe truncation.

For instance, subresonant topographic

~

-
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2 equilibrium wave itself. With such a disturbance the only way the mean

4
z

zonal flow can change (say expgnentially) is through the interaction of

the free wave with the topography via form drag, since the Reynolds

stresses are absent.

. In this study, besides the on-scale free wave we fnclude many other

waves in the perturbation, all having the same zonal wavenumber as the
topography but different meridional wavenumbers. This necessarily
entails a numerical approach to the stabilitv analysis Following from

v
\&the previous section, our philosophy here 1s to resolve a given in-

»

stability as well as possible and then by systematic simplification

4 & ’ -

(i e , successive truncations) determine the minimum system required for

Q
1ts reasonably true-description. To circumvent the problem of disentan-

v

gling one instability mechanism from another we will exploit certain
’

symmetries inherent in the resultant matrix eigenvalue problem
*
In subsection 3 2 1 we will rewrite the perturbation equations in a
manner better suited to this particular analysis, whiluw in

' subsection 3.2 2, We will rederive the instability c¢riterion mentionaed
s
earlier so that the pitfalls of some severe truncations are made appa-

' |
. rent. In subsection 3 2 3 we present our numerical vesults and (n

'

subsection 3 2 4 summarize our findings.
3.2.1 Perturbation equations revisited

To see more clearly some of the etfects of truncation on
topographic instability it is essentlal that we rederive the ecquation

for the total perturbation, ¢', as well as separate equations governing

. - * g
its mean zonal and eddy parts, ¢’ and ¥’ , respectively.

B -

.o t .o

bl
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a. y’zequation @@
N

Using\(Q-(6) in (13) we immediately arrive at

3.0 & u_(A + K.)8_§
, 1 T (39)
# I[P, (8 + K] + [, (E /MR ] =0 , .

. . i
where Js and h, are the wavy parts of ¥ and h, respectively, i.e.

v °

; U 40y

(b_,h ) = (b .h ) 2sin(2mux/L)sin(mny/D) ,
b

with u = m, and n = n,. The third and fourth terms in (39) represent

the interaction of the perturbation with the equilibrium wave and the

topography, respectively.
®

In preparation for what is to follow, we partition the wavy part of

° i

the disturbance into a component on the same scale as the topography

(denoted by z/)é + z/zé) and a part with the éame zonal but diffé/rent: (and

v

arbitrary) meridional structure (denoted by R+ RL), 1.e., .

n#=n n#n

[

2
v = b+ ¥ + (RI+R) where X K (41)
L4 ? Vs
e Mo R .. n . n
l/’5 = ¥ Fo v ¥g=¥Fo o ke Zws FZ o RS Z¢c Fﬁ

’ -

with F;’ - 2sin(kx)sin(l y) FZ - 2cos(kx)sin(l y)

1/ P

k = 2nu/L and 1,7 = an/D. It 1is important to understand that we are

ignoring all components in the perturbation with a zonal wavenum?er
) ;

other than that of the topographic forcing. Qualitatively speaking,

the major conclusions contgined in this study are independent of this

-

assumption (as will be demonstrated). .
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+b. $™-equation

v

Using (40)-(41) in (15) leads to the following equation which

governs u’ = - 3y$’,

‘\
/

— *
du’ = -3 (i 38R -V dR") -
t y s xe¢ syec

. - gk 42)

+ (fo/H)-hsaxt,/:é + (fo/H)~hsaxRé

where (ES,FS) -‘(- ayis, axis). Integgatiﬁg (42) meridionally yields

L

d<u’> = (f /H)-<h 3 $> . ' (43)

The first term on the right-hand side of (42), involving R only,

represents the interaction between the equilibrium flow and theé

o

disturbance, through the convergence of Reynolds stresses The last two

terms involve the interaction between the topography and the
perturbation, via form drag. Note that both the on-scale (¢é) and off-

scale (Ré) parts of the perturbation are operative here. °From (43) it

. ol
can be seen that only the perturbation component on the scale of, and .
90° out of phase with, the forcing affects the tendency of the channel-

) N
averaged disturbance zonal momentum, . o

te
SN

‘e W

-equation
L]

Substitutirg (41) in (39), multiplying by FJ and integrating over

the channel yields an equation for 52¢;-

KC<F? 5y u (k- k<" 9y . (44)
n' s s' s n’ s ,ch

T>
¥
. ‘ ap

L3
2 . . . » ) o
+ lﬂ is the two-dimensional wavenumber of the topography.

A similiar procedure gives an evolution equation for a. v

2 2
where K” -k

° ¢

’{/if’< ) 49
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Kr)<FC 3 %> = u (X, Kn)<FC A.¥> .
s ‘ (45)

¢

3
w3 a2 2= n.=v
<Fc Vs(ayy + Kﬂ)u > + (fo/H)<Fc u axhs>

Finally, to close the Sszgl we need equations for d.R; and 9.R.. These
are acquired by substi¥uting (41) into (39), multiplying by F7 and FIC’,

respec?:ively, and channel-averaging, with the result that, vV n = 7,
S Ed ° :

o
’

2 ' ‘ .
K<F%8 R'> = u (K - K )<F*-3_R"> : . (462)
2 n S t s S s n . s X C o
and . ) .
K<F*.3 R'> = u (K" - K )<F?-3 R’> - -
n c tc s S n (o4 X s
(46b)

- <y (a2 +K2)F>+(f JH<FR-u’d h >
c s yy n o < X's

- N o o

[

3.2.2 An analytical solution

>

N Tp proceed analytically we.need to make some simplifying assump-

tion. An ad hgc assumption, often used in the past, is to neglect all

:
-\ . \

but the on-scale’ component in the disturbance wavy structure ™ Thi“%

facilitates analytical progress but by ignoring modes (e.g. R; and R})

&

-whichy a priori, are, not knowp to be unimportant leads to 4 rather wéak

AN

set of conclusions. Nevertheless we will cortinue here with this

<

assumption,* for the time be}ng, in order to derive explicitly the analy-

3

tic-results which we compare to our numerical ones in subsection 3.2.3.

”. Mathemat:ically's\pg;king,\‘thi; adﬁ hoc assumption allows us to ignore (46)
- and the first term on the righc-hanc} side of (42). From the iattgr we
' then get,- ,v . ’ o o '
t ’ o . . . A | .o
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T (y.E) = G(t)'-2sin2(lny) c (47)

@ 4

A - - , n
wheres dtu (.’foha/H)k ¢C

<
' 2
° - ”

Differentiating (45) wifh respect to time and then substituting (44) and

(47) givesf an equation for the out-of-phase spectral coefficient by

¢
1

itself

a’ 4 T -0 ith ° f 4T N
N9 f z/;c . wi K
2 . . 1]
where & = k-(u_ - ﬁ/Kn) . (48)
.2 . ’ ~

a 7. K [(31(2 a1’y k’ K"’)] 4

an - — :- - ' - >
2K s SRR |

-

Assuming  solutions proportioﬁal to exp(-i1wt) it follows thacj

T

‘exponentially growing perturbations [i e , w, = Im{w) > O] are only

1

¢

possible if I is negative. This instability criterion presents two
pessibilities.” If the flow’ is superresonant (K. < Kn). instability is

] -
possible only “if ln-< Jlk. On the other hand, {if the -flow {is

’ - , ] -
subresonant (K. > K;’).growing perturbatidns exist only if 1'7 >3k In

other words, ip .this model wunstable wide \;(aves exist only i{n a

4

superresonant regime while unstahle narrow waves exist in subresonant

regimés = Note also that growing perturbations are necessarily

——
-

_stationary (i e., a@- Re\(w) - 0] S =

These instabiii,cy conditions for -form drag instability have pre-

‘viousl'y been obtained by Rambaldi et a@l (1985). Also, in his study on

“

_nearly resonant capogriaphi‘c waves Pedlosky (1981) derived the'se‘dcondi-

- B e

tions under the assumption of weak forcing. ' .

51 ' Lo




f ~ . :

The problem with this approach is that there is no proper rationale

'

for neglectiné * the components we did Substituting (47) into (46b)

shows that the second and third _terms on the right-hand side of the

4
latter are non-zero if n = 3n, and as such"?%%ee’tﬁéfzaa§ﬁzomponent
which has a meridional wavenumber of 37%. TLis mode, which has been

&

ignored in Fhe analysis up till now, has a non-zero pfojec;ioﬁ on d.u’
[see (42)], implying that u’ defined by (47) should be‘cbrrected before
we embrace wholeheartedly the conclusions of éhe piévious paragraphs.
For this, aﬂd other reasons, we now turn to a numerical approach which

treats the case for which R/ (and R/) are in general non-zero

1

32 3 Numerical results ) ‘

To begin we will briefly outline the numerical techniques we have

employed to solve the disturbance equations Consider expanding u’ in
- } B

an infinite sine-series, 1.e

u(y,£) = Zu: F’Z’ where FZ - /2sin(1_y) (49) o
-1 ¢

.
3y
Y

Equations for the (time-dependent) spectral coefficients in (49) can be
obtainmed by multiplying (42) by Fg, and then averaging with respect to
y  On the other hand, the spectral equatiins for the eddy coefficients
are given by (44)-(46), afger direct subsEitdkion of the wvariocus
spectral series

Assuming solutions proportional to exp(-iwt) the problem becomes
one of solviﬁg an infinite-order matrix eigenvalue system for which’ we ‘
may obtain approximate solutions by truncating the sPectral series. 1In

¢ o
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L
this connection we need ta define two new truncation numbers, NZ and MV,

.

both of which will be considered variable. These are the number of mean

'

zonal and wavy components kept in (49) and (41), réspectively. This

¢ 3

tru_ncatio?\ leads to NZ + 2NW eigenvaluesd and NZ + 2NMW corresponding

-

eigenvectors, which we calculated numerically as before. '

o
4 3

In this particular study we choose (u,n) = (1,1) so that the
3

topography has one oscillation in ‘the zonal direction and half an

/oscillat;ion in the meridional direction. Recall that, parametrically

speaking, the stability of the s't:eady flow associated with this forcing
p I

was studied in detail in subsection 3 l.4a For the channel
* s

parameters considered here we have that I =3 S5k (> J3k), which
according to the analytic solution suggests that only subresonant unst-
x

able perturbations exist Our numerical analysis will make 1t posdsible

to check this analytical result J

t 1

One minor complication that the Q{\lgition of the off-scale com-
ponents in the perturbation structures ®ntails is that instabilities may
exist which are non-to%;raphic, in the-sense that they do not crucially

depend on a form drag mechanism, This is not to say that the topdgra-
%

¢

phy does not inte;a&:t with the perturbation, it simply means that it
does not force, through the action of'form drag, a perturbation zonal

: ’ ,
flow with a non-zero channel average [see (43)]. These instabilities,
which are not of interest here, will only serve to clutter the analysis.

°

Con\ienientiy, though, the stability matrix A can be split into two

i'ydependent matrices, denoted Ap and Ar, which can be associated with

non-topographic' and topographic perturbations, respectively. To see
A

- . 4 . . .

this we note that in this channel model an interaction between the basic

-
@

state wave, (u,7n), a perturbation mean ’zonal component, (0,p), and a



.

perturbation eddy component, (p,q),'is only possible if n + p +q 1is
odd. [Where (m,n) denotes the zonal and meridional wavenumbers, m and
n, respectively.] ° This implies: since 7 ;.1, that'the stability matrix
A éecouples into two submatrices, Ay and Ap: the first involving per-
turbations with mean zonal and eddy components that are both odd [i.e.,
(0,n) and (u,n), with n odd for both], and the second involves perturba-
tions with mean zonal and eddy components that are both even-(n even in

both). This decogpling of the matrix A into two submatrices can also be

-

deduced from a consideration of the y-symmetries contained in the per-

turbation equations, as done in Appendix B. Since the structures
{

related to AT have, in general, a mean zonal part with a non-zero

meridional average [i e., since they have mean zonal components, (0,n),

’

with n odd] their existence, is crucially dependent on form drag. In
contrast, the perturbation structures associated with Ap do not depend

on a form drag méchanism (i.eo, since they have no mean zonal components

with n odd) but can arise, rather, from the convergence of Reynolds

1

stresses. Hereafter we will be concerned with A; only.

We will now present a numerical analysis wherein we emphasize the
- {
effects of truncation on topographic instability. We will consider.

separately the instabilities residing near and far away, in parameter

4 | |

.space, from linear resdnance o

- '

4

PRI ° . ]
a. Instability close to linear resonance
¥

All the growing near-resonant perturbations encountered here were

°

stationary.z In addition, one and only one unstable mode-was ever found
s ' + .t
for any given parameter setting. In Fig. 16, the e-folding time is

plotted against the mean zonal wind for various combinations of trun-

»
~
- o
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cation numbers NZ and qW (from here on, we will use the notation

TR = [NZ,NW] to indicate the truncation). The tobpographic amplitude is

" fixed at a value of 2h /H = 0.2. Note also that linear resonance occurs

£

when usz24,3ms'1. -

In Fig. l6as NZ is fixed at a value’ of 41 and MV is allowed to vary

from 1\to 41. The left-most curve (TR = [41,1]) is that which would be
. ;
obtained if omer used the analytic solution from subsection 3.2.2. In

N .
this case, as expected, instability is confined to the subresonant side

of the resonant wind line However, as the number of meridional
. ~ I
wavenumbers in the eddy eﬁpansion is increased the instability moves to

the superresqnant side. Curves corresponding to M/ "> 41 have not been

dreafted. since they are wvirtually coincTdent with the N/ = 41 curve.

¢ -

These results indicate that the components ignored in the analytical

a
-

model are crucial, at least from the point of view of determining where

topographic instability lies in parameter space: 4

Using the right-most curve in Fig. l6a (TR = [41,41])) as our

.

control curve we would like to determine the least number of modes (mean

-

zonal and eddy) required to accurately reproduce it. In Fig. 16b, NZ is
set to a‘ value of 9 and, as before, NW is a\llowecf to varyn. Againrqhe
e-folding curves move to the superresonant side as MW is increased
(inCeresti'ngly,‘ whén TR = [9,7] the instability disappears altogether).

Further, when TR = [9,9] there is no appreciable difference fron} ‘thfa

control curve. In fact, when TR = [1,1] the control curve is still

®

extremely well represented, as can be seen by comparing the latter and.

the dashed curve adjacent to it in Fig 16a. We conclude, in short, that

i »

‘to get a reasonably true picture of this near-resonant topographic in

. \ : .
stability we need only include the (0,1) and (14,1) components in the

-2

v ’

’
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perfurﬁation structure., In .addition, if more .waves are included care
should be taken to include as many meridional wavenumbers in the eddy
expansion as in the mean zonal one (i.e., NW = NZ).

- .

To conclude this subsection we bring to the attention of the reader

the dashed curve in Fig. 16b. This curve was obtained using pérturba-

tions composed of 9 meridional wavenumbers in the mean zonal and eddy

expansions (i.e. TR = [9,9]) and 9.zonal wavenumbers. The additional

I3 !

zonal wavenumbers are seen to have a slight stabilizing effect on the

instability, which becomes mofe prongdnced away from linear resonance.

-

b Instability away from linear resonance

¥
In addition to the instabilities described above the numerical

’

analysis revealed growing perturbations to basic flows far removed from

line?r resonance. Unlike the previous instabilitieslthese, in ggneral,
require more components to be resolved and have smaller growth rates

Moreover, they are travelling (i.e., w,. O)'rather than stationary. We
will see that tgese growiné\disturbances have the interesting property
of drawing energy from ‘the basic state through the form drag mecﬁanism

and/or the convergence of Reynolds stresses, depending on their phase-

relationship with the equilibrium wave. s

o .
_Fig. 17a presgéts e-folding curves as a .function of the orographic

amplitude and constant mean zonal wind for TR = [41,41]5 On the super-

resonant side we find the region of stationary ﬁ%i;;resonant instability

3
, .

discussed earlier., New here are the two adjacent "regions of” in-

stability lyiné between approximately 10 m s™'and 14 m s™'. The

growing perturbations in these regions are dominated by the (0,1) aq&,
(0,3) mean zonal componénts and the-(1,1) and (1,3) -eddy modes Motiv-

. . “ ’s

» i

]
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-
ated b}‘r this fact we now consider a trunca;t;ed’ system involving these‘
modes alomne.

Fig. 17b shows the e-f:olding curves when TR = [3,3]. Notice that
the superresonant curves are virtually identical to the corresponding
ones of Fig. 17a. On the other hand, the subresonant curves of Fig.‘ 17a
are lesg well represented in this low-order system. In parcicular‘, the
two subresonant regions have be%n ~replaced by a single smaller one.
Nevertheless,. the agreement is ‘close enough to warrant further inves-

tigation with this severely truncated model.

1Y THE FREQUENCY %‘
For this low-order system it is a relatively simple matter to

. .
obtain an _explicit expression for the frequency w. Denoting the com-

ponents of the system as. § = (0,1), ¢ = (0,3), B = (1,1) and ¢ = (1,3),

’

the frequency equation can be written

4 b 2 0 N O
W -be +c- (50)
‘A, A AN A A ALA
. \
whefe b = wg + o, t l‘g SR S f ¢l + f <.t
‘ A Pl UL o LA < UL o G
! ¢ 0 € ¢ ¢ € .
’ ALA "OAA A A A A
2 2 2 2 2 {2 2 2
and&c=ww +M-C w2+—-—g€Cw+f -C w2+¢6-02w
. € glx? Fe PP e Byt dBe g2yt de B
- § 8¢ $"B ¢
Bgh 4B g0
+ (cC,C. -C,C..)
K;K;KzK: 66 °¢e  “0e ¢p .

Given p = (mp,np) and q = (mq,nq) the wvarjous qhantities in (50) ;re

.defined as follows: —
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K - —=m + =~ P A - K = K ’

VP )t 5y p s P -

(31)

! 3
| w_ - (gIm ):f;fB and C__ = C P - - ¢ ‘(f h /H)/A

p L'p™ p%%? Pg P9 @ P "o« B

sp .

<

where 6pq is the interaction coefficient associated with the p and:q
components (see Appendix C) and ia is the amblitude of the Sasic-wave.
Before discussing the subresonant instability we will consider the
behaviour of w near line;r resonance. ~ Under near resonant conditions:
6g %0, 89 >0, 84<0 and &, < 0. If the flow is subresonant, Ag > 0,

and if it is superresonant, A5 < 0 It is shown in Appendix C that

under these ¢onditions the frequency can be approximated by

a

2. AgAg L2 2
0 ==y (CyiCy. ~ CpCug) /Oy (52)
K.K
88 -
which, in turn, can be written more simply a§
. AA ; . . - .
w = (128/135)" —%—énc;ﬂ.~ o (53)
KeKﬂ -

Tt
o

As expected we find that the near resonant'instability is dominated by
the 8§ = (0,1) and 8 = (1,1) components, and is equusively.éuperresonanf

©

(since AgAﬁ < 0 in that case). The ¢ = (0,3) and ¢ = (1,3) components

are found to‘haﬁe a slight stabilizing effect [as measuréd~by' the

~ N ?

numerical factor in (53)]:

©

It is useful to compare (533) with the equation one obtains by

*ignoring the ¢ component altogether (és in Rambaldi et al., "1985). Re-

turning to (50) and setting w, = Cée - C¢€ = 0 we find that under ' near

N ¢

’

resonant conditions

58 ,
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0. _ . (54)

} - .
In Appendix C™it is shown that |A¢|C$ﬂK(;2 >> IAHIC;ﬂKéz (see C.10) so

t}mat (54) can be further simplified, i.e.

' L}
A
o= 2L (55)
¢8 '
KX

In this case we get the errone0)>s results that near resonant instability
is dominated by the ¢ = (0,3) and B8 = (1,1) components, and that it 'is
exclusively subre_sonant (i e. A¢Aﬂ < 0). ‘

Returning to the subresonant instability we will now use (50) to

obtain an expression for the neutral curve, valid at low basic-wave

-y
.“,,, amplitude. To begin, we observe that the curve defined by b? < 4c =0
. separates, in parameter space, unstable travellPing perturbations from
growing-stationary or neﬁcral-travelling perturbations In the small
amplitude limit (i.e., .z/-)a—* 0) this curve can be approximated by
AN, A A A A A
A2 2 a2 a2 ~2
(02 - w) +2. |2 Lg  EBp B S B S
2,2 748 2.2 “¢8 2.2 fe 2.2 e a
KGK,B K¢K 1{5-’( K¢K
€ € (56)
This equation was used to obtain the dashed curve shown in Fig. 17b.
- Noti\ce, in particular, that the neutral curve intersécts the ug axis
when
wﬂ tw = 0, ) (57)
@3*‘ which in the case at hand occurs at u, = 13.6 m s'l
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Before describing, more precisely, thé nature of this subresonant

- *°

‘o

instability we refer the reader to Vallis (1985) for a very complete

analysis of a truncated system similiar to this, but defined on a_doubly

periodic domain.
2) THE STRUCTURE
To help understand the nature of the mechanism(s) *pderlying'the
subresonant insfability'we present a typical structure in Fig. 18 The
four panéls show the structure at various Ytimes during its period of
oscillagion (the exponential growth has been suppressed and the dashed

*

1ines inéicate negative values). The arrow at the bottom of each per-
turb;Eion structure indicates the location of the basic state troqgh
(which also corresponds to the position of the topographic peak) Also
shown are the profiles of form drag, Reynolds stress and mean zonal mo-
mentum at each of the presentation times [the firs£ two quantities are
defined in (42)]. | /

This sequence can be interpreted Es representing a wave on the
scale of the forcing [i.e., (1,1)] which is travelling westward and, dug
to the presence' of a weak (1,3) mode, méandering meridionally. In
Fig. 18b the (1,1) wave is nearly 90° out of phase with the topography.
At this particular time we would expect a -form drag mechanism to be

largely responsible for tﬁe exponential growth of the structure.

(Notice that the form drag profile is at a maximum over the sequepce.)

In contrast, in Fig. 18d this wave is almost in phase with thentopogra:’”

¥ !

phy implying  that the form drag mechanism is no longer operative (the
form drag profile on’ the right verifies this). At this time the (1,3)

< .
component dominates the tendency of the mean zonal flow through the con-.
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3

vergence of Reynolds stresses. (Notice the significant phase line tilt
in Fig. 18d.) It is appérent that the growth of this distur£anc? is
dependent not only on form drag but alse on the Reynolds stresses, which
help maintain the exponential growth despite the traveélling nature of
the perturbatioé’ ‘ « i
The perEurbation just described arose out of a trungated system.
When more wavenumbers, in both the-meridionalland zonal directions, are
used to define the structure this instabili;y remains but is stabilized
sbméwhat by the presence of higher harmonics. Consider Fig. 19- which
shows the perturbation when 13 zonal wavenumbers and 13 meridional
wavenumbers are used to define the sgructure (for a ‘total of 351
compoments) Comparing Fig. 18 and Fig l; we conclude that although
the latter contains more detail it is qualitatively very‘similiar to the
structure obtained using the severely truncated system.
T

3.2.4 Discussion

.A quafilgeostropbic B-plane channel model with sinusodal topogréphy
has been used to investigate topSgraphic instability. The equilibrium
fiow was composed of a constant zonal flow fplus one forced wave having

the gravest possible zonal and meridional scales permitted by the

channel [i.e. (#,7) = (1,1), where p and 5 are the zonal and meridional
s o0

° - a, -
wavenumbers, respectjvely]. Linear perturbations to the equilibrium
. peiny

’

flow were chosen having a single zonal wavenumber, that of the forcing

but many harmonics in y, including that of the topography. The mean

zonal part of the perturbation structure contained as many components as

o

&
the wavy part. A numerical stability analysis, involving the solution

of a standard matrix eigenvalue problem, was then performed.

c 3
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( It was found that topographically: unstable flows reside in
parémeter space both near and far from linear resomnance. In the former

region the flows were superresonant and the instability was stationary.

’

4
-

In contrast, the flows far from linear resonance were subresonant and
the instability was travelling. The travelling instability was éoun;l to
depend crucially on the combined effects of form drag _and Reynolds
stresses The stationary instability, on the other hand,‘ persisted

/

N !
without the presence of Reynolds stresses.
" !

‘

One of the Io}?jectifres of this invéstigation was to study the
effects of truncation on topographic inétabilfﬁy. In particular, we
wgre interested in obtaining the .minimum systems (i1 e., the least number
of comﬁb\re-ﬁés ein t.he disturbance expansions) required to reasonably re-
solve the various instabilities In this conhection \t was discovered

(; thatr the near-superresonant instability could be resolved adequately
with only two components in the pe;:tuertion structure. Specifically,

only the mean zonal (0,1) and eddy (1,1) modes were required. The

'
-

subresonant instability needed the (0,3) and (1,3) m'odes., ilL’l addition
to, the (0,1) and (1,1) components to be resolved. Finally, it was also
four}d, in bo;:h cases, that when more components were used to dc;fine the -
disturbance structure that care had to be taken to allow as much
meridional structure i% the mean zonal part as in:the wavy paft‘f.

As a complete deéparture from the present discussion we now turn to

the next .section ‘wherein we consider the local instability of a

u
\

particular weakly non-parallel  equilibrium flow. To " help put the

A . . . .
upcoming , discussion into some, context we return to Fig. 15. The
. — .

disturbance illustrated in this figure was interpreted in Sedtion 3.1 as

2

!

( . tepresenting a westward propagating structure which um‘lergo?s periods of
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enhanced growth &5 1t passes through fg.\;ourable regions associated With

the basic flow. A similiar, but much more complex sort of behaViour has

been described and analyzed by Frederiksen, who in a series ,of papers-

(see Frederiksen, 1983 and’ references therein) has attempted to shed

some light, on the problem of regional cyclogenesis in the atmosphere.

o

Although " our model is much too simple to explain the geograpl';ical

rl

v LI
distribution of cyclone occurence in the atmosphere (i.e., storm tracks)

it may be useful 1in helping to resolve some- of the thedretical issues

°

one encounters whef‘fr?:tng to understand the results of stability

«

calculations such as _t:hose described in Fredetriksen (1983)1

I

»

.
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3.3 Local instébility of weakly non-parallel flow

To datef there have béen égveral papers published dealing with the
barotrepic instability of weakly non-parallel atmésphe%ic flow. .

Tupaz et al. (1978), for instance, used the barotropic vorticity requa-

»

tion with Rayleigh friction and forcing to examine the effects of the *

downstream variation of a sloyly varying Bickley jet on its instability
: A, :
N 9

properties. The linear instability characteristics of the jet were
. . /

obtained through long-term integrations oh an open B-plane channel.

L

‘ A
More recently, Merkine agd Balgowind (1983) used the barotropic

\

vorticity equation with a localized vorticity source and Rayleigh fric-
,tion’ to study the lindar instability of a weakly non-parallel zonal

flow. The basic flow was obtained analytically assgming'weak localized

s forcing, weak frictional effects and that certain resonance conditions

»

* ., were met. Numerical integrations, performed on an infinite pJ-plane

channel, revealed the existence of unstable localized wavepackets whose.
. y, - X L )

2

characteristics depend on the maximim shear and the zonal length-scale

b ” +

7
of the basic floww
In the present study we will utilize our simpler model (than the

aforementioned) tg address the question‘of the local growth of linear -

o .

perturbations. As discussed in Chapﬁe;'Z our basic¢ flow represents an

exact finite-amplitude solution to the barotropic vérticity equation

s

without dissipation or inhomogeneous forcing. In what follows th?
numerically determined fastest-growing eigenmode to a slowly varying
4 *

basic flow, of this sort, is analyzed and then compared with the corre-

: ) . . : ; . .
sponding approximate *solution acquired using the WKB approximation., In
. Aot . : 7 .
t i ' .
this way we hope to shed some light on certain aspects of the local
‘ A3

instability of two-dimensional flow. -
b
{

H
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- By way of review we recall that im Section 3.1 a detailed stability
ana;ﬁsfs was ' performed on ¥ [see (6)] ‘for two different cases, denoted
Ell and E21. [These cases correspond to (m,,n,) = (1,1) and (2,1), re-

spectively.] 1In both cases, ¥ was stable or unstable depending on the

particular values “of ha and p. When ¥ was unstable then either a res-

“onant interactionj, shear or topographic mechanism .was responsible. For
¢

’

. . 2 ° ~
example, in a region of parameter space near superresonance P was found:
A .

’

. t
to be unstable to perturbations of the topographic variety. In this
© - S ) 5 .
- cage the disturbances were stationary and resonantly amplified. The

o .
structures themselves Qhad a large eddy component on the scale of the

topography and a substagtial meanazonéiacomponent, generated ﬁh:ough an

interaction between the free-wave and the topography via,form drag.

Mukougawa and Hifota (1986a) (héreinafter referred to as MH) con-
B e o’

>

sidered the cases El11l, E31 and E12. By compéring the three cases they

-
a

concluded that the instability properties of topographically forced
- - % ‘

waves ave completely different according to whether the méridional

—

wavenumber (n,) of ‘the topography is even or odd. fn particular, they

came to the conclusion that when n, is even topographic instability does

v

not exist. _In the next subsection we will demonstrate, by considering

o -

. all the growing modes, not just the fastest-growing A;es as in MH, that
'

.topographic instability does indeed ‘exist when the meridii?alnwavenum er
T i ’

.

v - - » - . K3 4 . I3 . I
is even..’” Following this brief discussion we will consider in detail the

r -
o

behaviour of a strongly modulated growirg eigenmode with the aim of con-
R
tributing to our understanding of " the local instability charatteristics

. . 2 . ’ .

of inhomogeneous flow. .
° ¢ . B
4 )
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3.3.1 Topographic instability E

In this and the following subsection we will consider the linear
stability of the steady-statg, ¥, when (ma,na) = (1,2) (i.e. E12). 1In
this casé the topography, and hence the forced steady wave, has one com-

plete oscillation in both the zonal and meridional diYections. The
‘ W

fiked parameters in thts study are as before except that D = 5 56x10°.m

and H = 8 43x10° m (corresponding to MH) For these channel dimensions
' ?

the ratio of the basic-state x and y wa\;elength‘s (ie Ly=L/m, and
~ 4 : o

v 1

Ly = 2D/na\ respecti@]:y) is

S =L L =0.2. . - (58)

The smallness of %‘his parameter will enable us.wto develop, in

Y .
subsection 3.3 2, a locally-parallel model with which to interpret some

sof our results.

’ “In MH, curves of constant growth rate as a funétion of u, and h,

(in our notation) for the fdstest-growing perturbations to ¥ are
presented The' curves were obtained using 820 degrees of freedom

(TR = [M,N] = [20,20]) and as such can be regarded as B‘eiﬁg very reli-

v

able. Their numerical results, togethér with a discussion based on a
severely truncated model, led MH to conclude that topographi‘c in-
stability does not exist whén the meridioqal wavenumber of the topogra-
phy is even. However, by considéring 1 the growing modes, not just

the fastest-growing ones as in MH, we have found that tobographic in-

-
"

]
stability does in fact fexist_in this case. . .

v «

a Copsider Fig. 20 which is a plot 'of. the growth. rate curves for the

slowest grgwing perturbation to ¥ as a function of u, and h, = 2-h_.

The growth rates in Fig. 20 have been nondimensionalized as in MH,

s -
A ‘
i ” \

specifiecally, ‘ .

£

¢

%

¢
Lo
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L] s .
6, = (L00/f ) -w, - (59)
© g ~ 5\
In this case a nondimensional growth rate (given by‘&i)eof 1.0 corre-

sponds to an e-folding time of 11.2 aays. For the sake of economy a

lower truncation (i.e. TR = [10,10]) than in MH was used to obtainjthese
. I

-~ h -

curves [We will consider the effects of truncation shortly.] By con-

sidering the frequencies and structures of these modes we have found
o

that: (1) they are stat%onary (i.e. W,

= Re(w) = 0) and occur only for
near superresonant basic flow and (2) the u’ compenent’ of the structures

¥
have a non-zero channel average. As discussed earlier, ‘the latter can

£ -

oniy_be the result of an interaction with the topography, that is, of a

-

R ]
form drag mechanism.

©

The equilibrium’ flow and. the growing perturbation associated with.,

the point ug, = 13 m s”! and hy,=0.5km in Fig 20 are shown in

Figs 2la, b, respectively. 'Tbis strucfure is characteristic of all the

v

other unstable structures copnected with Fig. 20 Notice that the eddy
0 1 “ - ¢

©

’

part of the structure is on the scale‘bf, and out [f‘phasg with, the
'’ ‘- * ° . ‘\ -

topdgraphy and that there is a substantial mean zonal component, From
thesé, and previous considerations we conclude that these modes depend

crucially on a form drag mechanism and, as such,'represent topographic
) -
instability. More to "the point, we hav% found topographic instability

v
]

to exist even though the feridional wavenumber of the topography' is

- .

even.

To convince the reader that this instability is not an artifact of
v

v

the truncation we present Table 1. This table shows the growth rate of
the mode just /described' as a function of trunéation_ (N =M and

NL =N + 2.N-M, is the number of degrees of freedom). Asiéan be seen

) .
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4 .
‘ ~ i the instability persists despite the stabilizing influence of the addi-
. “ o .
a !

b
tional components. Admittedly,, it is not clear from Table 1 that
- ! [ ,4 -

convergence in’ °t_he frequency has been gchieved but unfortunately
further tests at higher resolutions were not possible because of
computer memory constraints. It is somewhat consoling, however, that at
» these truncations t.he ei'genfunctiqn; were found to be .well resolved

Note that the dashed curve An Fig. 20 1is the neutral curve obtained

using a severe truncation involving the (0,1) and (1,2) components
. - 1)

alone. The accuracy at this truncation is of course poor, but the

results are qualitatively correct. .

‘ « Lt should be understood that the topographically unstable modes to

a °

) / .
this basic-state are in fact the least unstabPfe of a number of unstablé

-

N

modes. For ins tangze , the topdgraphic mode to the basic-state of
i - . .
g Fig. 2la has an e-folding time of approxirﬁately 4.8 days while the
féstest-growir}g mode (which is non-topographic in origin) -has an e-
- ) 4 * -

folding time of af;proximately 0.7 days. In the next subsection we will .

=

j consider in

il one of, these fastest-growing modes.

i

region of .parameter space near .linear resonance where a stfong feedback
to the zonal flow is obtained. However, unlike the topographic in-
- stabilities ‘previously discussed, involving a meridionally symmetric

topography, it happens to be, for a given parameter setting, just ome

v - B /\ \

‘ t ' of several growing modes, most of which have much larger growth rates.

[N
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]

These other growing modes are non-tépographic in origin, have relative}y
large growth rates and cover an extensive area of paramet:er space (see
Fig. <12 of MH). Fo'r obvious reasons, then, an ins[fecstion of at least
.one of these other growing modes is in order. In pa@t (a)rwe consider a
Fepresentative growing mode of this type, both from 'a syno{:tic and ;n

energetics, point of view. In part (b) we use an analytical technique,

based on WKB theory, to help 'interpret our results.

5

-

‘a. Structure and energetics ‘ - )

1) STRUCTURE
In MH the fastest-growing mode to a basic flow generated by a zonal
fwind of 17 m s! over a .topography with an amplitude of 2 km 1is
presented (Fig. 132 of MH). .This mode has an e-folding time of
approximately :1.5 days and, although it is ot stz;ted in. MBH, is
stationary.  In this‘ study we will consider the fastest-growing mode
when ug, =17 m s”' anc fr, = 1 km sjnce the wind speeds associated with

the equilibrium wave are mcreé realistic. The basic-staté streamfunction

)
and zonal flow, in this case, are shown in Figs. 22a, b.” The fastest-

growing mode has a e-folding time of approximately 3.6 days, 1is sta-
tionary and has a structure as shown.in Fig. 22c. We should mention

that due to the symmetry of the basic flow the structure of the mode

Meonsists only of those =zonal components, (0,n), where n is even, and

s

eddy 'components, (m,n), where n is odd. We see .thac t:hisl mode has a

+

. . qs . . o . . ¥
very simple meridional structure, with most of its amplitude centered.

(A

- ¥ : ) . - ‘
about x = L/2, with a bias towards the downstream side (i.e. eastward).

~ R - ; ’ H

I3

]
!
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As can be segg, the fastest-growing,perturbation on this non-zonal
basic-state exhibits a structure  whose dmplitude is strongly modulated
in the zonal direction. This is ;n caontrast to the sit;ation involving
a zonally-uniform basic-staﬁq whose growing perturbations take —the *form

of a single harmonic wave in x (multiplying some structure in y). Re-

‘“turning to-Fig. 22c we note the presence of a zonal-wavenumber-1l modula-

tion pattern which is roughly in phase with, the u field (see Fig. 22b).°

The peak in the envelope, near x = L/2, appears to be associated with
’ |

the weak basic-state easteriy jet situated at-the center of the channel:
As we will shortly see the Instability mechanism respons%gle for the
3

overall exponential growth of this modé is especially efficient arsund
4 °© t !
e L

this easterly jet,

‘

The zonal and meridional eneréy ‘spectra, E<(m) and E’'(n),

respectively, corresponding to this growing mode are shown in Fig. 23.

-

These normalized energy spectra are defined as follows -

/ «
. N M. ,
E' (m) zk"’ 32 “and  E'(n) ZKZ 32 ’ (60)
m g¥g an n sV .
‘n~=1 m=0 f
‘ ( ¥ [ “G
2 2 2
where Kﬁ = (2¢m/L)s + (nn/D) .
s 5 % ' ,

: & . . ,
As Before the subscript g is a shorthand notation for the ordered pair

i
. ) t . -
g = (m,n). .We note that the zonal' energy spectrum peaks at m = 3. For
. o ‘ ’ ‘ ¥

. R % )
'zonal wavenumbers ‘greater than three £’(m) falls off rapidly indicating

I3

that the mode is well resolved, at least in the zonal direction. The

+

meridional energy spectrum is a maxi%pm at n ="1 and falls off

. . ! . 7
significantly for meridional wavenumbers greater than five. Ly
g : R

. .
' .

— ) AN
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Qqﬁ&~totaf-of 210 components (i.e. TR = [10,10]) were used td@definé .
. : ; b

the structure presented in Fig. 22c. The perturbation can, however, be

} ) -
accurately represented with a much\smaller number of components. Con-

sider, for example, Table 2 which shows the growtﬁ rate and frequency of

’ 2 ’

:
'this mode as a function of truncation. Table 2 reveals that! (1) the

-

instability is very accuratelf resolved (at least in terms of &) when

[}

M 2.3 and N 2 5, and (2) when M 2 3 and N = 3 the real part of & is non-
zero (albeit very small) and the growth rate is reduced (by about 25%).
. w , , .
* The only growing mode when TR = (5,3) 1is shown in Fig. 24 (at t = 0).

We have seen, throughout this discussion, that the active region

- = 1 -
associated with this instability, 'is 1located- near _ and - somewhat

% downsﬁreém of x'= Ly2. In the next part we will attéﬁpt to identify the

instability mechanism(s) responsiblé for this region of preferred E

-

growth.

7.

/“B

1
The energy source for this expenentially growing disturbance is of

2) ENERGETICS -

course the basic-state, To see, explicitly the conversian chanism(s)

\ g ’
behind the instability' we need to obtain the perturbation energy equa-

tion. In a manper similiar to Simmons et‘al. (1983) we will write the .
i

perturbation energy equation for this system in the form «
4 - N ¢ L] . *
- .
t ‘ ~ -
) B
! )
R
" w \\
’ ' N P
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2 .
, |7y -
ch dt< 2 > = Cx + Cy + Cxy

where “Cx = - <u’v'~3x§>‘, Cy = - <u’v'-ayﬁ> < a (61)

5 A} -

) 2w 2
( and Cxy = - <(u’ - v’ )-6xﬁ> . -

<

\Here E’ is the horizontally-integrated perturbation kinetic energy and

Cx, ¢y and Cxy are distinctively different conversion terms.

o

- ' Written in this fashion (61) Jan,be readily interpreted as a
generalized form of the energy equation for a gpidimensiqnal basic-
state. “For unidimensional unstable flow, Cxy = 0 and either? (1) Cx = 0

i

Yif the basic flow. is 'zonaily-uniform or (2) ¢y =0 1if it is-
meridionally-uniform. In either of these cases, pe;;urﬁaticn energ;
growth is implied:when the eddy momentum flux, ;’v;,~is}n;éverag; in a
directiqgn opposite to the gradient of the gasic-state vé&ocity. When
the basic flow is two-dimensional there is an additional, and less

familiar conversion mechanism, expressed by Cxy. This term implies that

there- will, be perturbation energy growth when the disturbance is mainly

-

zonal (u'2 > v’2) ;inv fegions of diffluence (8xﬁ < 05, and mainly

AeriAional (u’2 < V,z) in regions o} conflﬁencé (axd > 0).
‘\ Byo considering fthe, local contributions -to each of the conversion ,
N terms  a good idea of the mechanism(s) behindoghe local’ growth of° a
B particular perturbation can be obtaineq. fhis sort of'analysis was pér-
b ’ formed, for example, by Simmons et ;l. (1983) in their consideration of
the linear ;fabilipy ofhthe 300 mb climétological mean January’flow. In
' the following discussion the structure of ;ée pasic-s;ate (see
(‘ X . Figs. 22a, b)"should be kept in mind. - ! l

“
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In the top and bottom panels of Fig. 25 we have plotted the local
contributions to Cx + Cy éﬁd Cxy, rgspeccively. With regards to Cx we
point  out. th;t since the basic} flow is nearlx' zonal (i.e.,

layﬁbi>> |6x7|) this conversion is relatively unimportant and can be
N
ignored. Notice, first, that the local contribution to Cx + Cy is a

maximum near x = L/2. This reflects the fact that the large negative

perturbation center near x = L/2 is tilted’in a manner which will lead

-

to a weakening of the basic-state easterly jet and so, by energy con-

¢

servation, encourage its own growth.
)
&
The local contribution to Cxy is a maximum further downstream from

'
| [

x =1L/2, The three positive areas centered along y = D/2 arise from

'

meridional perturbation flow where the basic-state is confluent. On the
other hand, those near the walls are connected with the zonal perturba-

tion flow where the basic-state is diffluent. Comparing the two conver-

sion fields we find that the Cx + Cy field has a larger maximum but

since this field is.also more con§ined in space,its integrated value, at
' . - . .

this time, is actually smaller than Cxy [i e. (Cx + Cy)/Cxy = 0.8].

Figures 25a, b demonstrate that the Cx +'Cy convérsioﬁ, priqcipally

a N

w~, 10Volving  the transfer of basic-state zonal pomentum (since

|cx|] << |cy|), 1is correlated with the perturbation amplitude maximum,

.

centered at x = L/2 (see Fiif?Zc). The Cxy conversion, on the other

hand, 1is associated with the considerable perturbation amplitude found
downstream from x = L/2, As we have seeg this " conversion depends

crucially on %héfgg;;tence of regions-of confluence and diffluence i

N
.

the basic-state. ' - ' - .
= In this subsection we have considered, in a somewhat descriptive

manner, the structure and energetics of the fastést-growing linear per-

:
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v

turbation to a largSNamplitude, nearly-zonal steady state. We found, in

a
«

-particular, that the instability was in a large part maintained by , the

transfer of zonal momentum into an easterly jet, through the action of

Reynolds stresses (i.e. u’v’). Downstream from the 1o¥ation where this
’ Iy
transfer 1is largest the distyrbance 1is found to wundergo further

enhancement of, its local growrh due the transfer of energy out of

regions where the basic-state is either conflygnt of diffluent.

-

The fastest-growing mode to the basic flow of Fig. 22a’ was obtain-
- [

ed numerically by solving a matrix eigenvalue problem. In the next part

we wild use WKB theory to obtain an approximate analytic solution which

we compare with the numerical one. Jhis method is ‘based on the assump-

.

tions’ that the basic-state is slowly varying in x (i.e. § << 1) and that
- -t
thege exists a spatial scale separation between the basic-state and “the

perturbation. Although neither of these conditions are very strongly

satisfied in this case (recall that § = 0.2) we will show that it is

(RS

still possible to get qualitative ;Eﬁnement between the analytical and

<
. I3

numerical solutions.

'
! "

4

b. WKB analysis ) . —
. Iﬁ this part we will exploit the fact that the pbasic flow 1is

nearly zonal (i.e., § = Ly/Lx = b.2) to find an approximate analytic
representation for its fastest-growing perturbation. In (1) we use WKB
s
Fﬁeory to derive a simplified perturbation equation for oﬁm system. In
(2)‘ we solve ;ﬁis equation after making some suitable simplggying
assumptions. In this analysis we make extensive use of some techniques

developed by Piefrehumbert (1984) to study the stability of sloWly

varying flows.

1
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1) WKB THEORY ] B

To begin we will rewrite the linearized perturbation equation as

) — ’ 2 - ’
[at - (ay¢)-ax]-A¢ - Ks~(6y¢)'6x¢
! ' (62) .
-~ -~ 2 ’
- - ‘axw)-ay(a tKY ‘

s

LY

Here the various wvariables and constants haxi\ been nondimensionalized

according to* t -.(U/D)'t*, (x,y) = (X,Y)*/D, (b,p’) = ($,¢')*/DU and

* s . . :
Ky = D-K;, where U is some characteristic velocity, D is the channel
width and an asterisk denotes a dimensional quantity. To express the

fact that the basic flow is a °s,lowly varying function of x Mwill

introduce the slow x-scale, X = §x/ where § is some small parameter,

say 6 = Ly/Lx' In terms of X, gnd expanded in powers of the small
parameter §, the coefficients of (62) can be written N
* . .

* |
9 - - ~ ~
- ayw = u(X,y) = uO(X,y) + S‘ul(X,y) + ...

) (63)

and 8¥¢ -4 wa =-§-v(X,y) + ...

.
Since the coefficients of (62) are slowly varying in x we will, in

the spirit of the WKB approximation, assume a solution of the form

*

-

Y = (X, y)-exp(ib (x,t)) . ‘ C o (64)

-

where the, frequency® w and wavenumber k are defined to be the derivatives

6f the phase function 6(x,t): [ ,

’

‘ata(x;c) - -w and 9

0(x.6) = k(X) . - f. (66
’? ® - . y

>

75



The frequency and wavenumber are relaéed@by a local dispersion rela#

tionship, yet to determined. It is important ﬁoor%alize that the phase

°

function #(x,t) (which is in general complex) desﬁribes the fast varia-

tion while 1its x-derivative is assumed to be slowly varying [i.e.
axﬁ(x,t) - k(X)]. TFor a solution of this form the x-derivatives in (62)

becomé /
T g = (1k® + 53,8)-exp(if) (65a)
o2 2 ) 2 . <
By = [ K3+ 18(23,k + 23 ) + O(6 )]-expcw) (65b)
da 8>y e - 36k(30 .k + k3. ) ocs’ 9 ' 65
anc I’ = |- k@ - (@3 k + k3, @) + O(6 )|-exp(if) .  (65¢c).

The equation upoﬁ,yhich the remainder of this discussion. is based is

-
obtained by substituting (63)-(65) along with* . I
. {
- ! 8 -zw—-g‘.l
B(X,y) =8, (X,y) + 63 (X,7) + ... *(66)
. : N
into (62) and collecting all the O(l): terms, i.e, s
9‘ B - »
g (x © a2~ Fawle +xa xty)e =0 (67
A ET) k@ Gy K F %t K G Koy) iR = 0 (67)

3 )
.
4

-
.

With the appropriate boﬁndary coqdition§ ‘(67) éonétitutes a
eigenvalue probiem which for a given w det;;mines the, eigenvalue k(X)
“atid the eigenfunct;on QO(X,;). The latter can be written as the product
A(X)-%(y;X) whérg ¢(y;X) comes directly out of (67) and depends only-

’

parametrically on X. The aﬁplitude function, .A(X), is determined by the

. Y - - * .
amplitude equation which results at the -next level of: approximation

after the imposition of a solvability condition on the O(§) perturbation

‘equatjion. As demonstfated by Sari¢ and Nayfeh (1975), in their study of

4 ”o- > N % *
B 76
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q

weakly non-parallel boundary lqyér flows, A(X)\repreéents an O(§) corre-
ction to.the’eigenvalue k(X). pUsing this fact,) and (64), the perturba-

tion, to first approximation, can be explicitly written in the form

- v

: X &
P’ = ¢(y;X)-exp[i-J (k + 6k1)dx]-exp(-iwuc) ’, (68)
% .
0

-

where the 0(§) correction to k containg the effects of the x-derivatives

of the basic flew and x, is a ,constant of integration. For parallel

flow, ¢ is strictly a function.of y, k; =0 and k is a constant. On the

other hand, when weak non-parallelism is allowed ¢ and k become func-

~ ’
‘

‘tions of X and there develops an 0(6) correction to the latter. From

here on we will ignore the presence of ék,. and foeus our attention

instead on the 'x-variation of k induced by the non-pafallelism.

At this time we will determine the O(1) zonal flow, u,. This can

be done eastly by recalling that by definition, Q = - Kzi$, from which

it follows tMat ) ) ) ) .
YR Gi-8.0 B -3 G+ 6% % +4ah | (69)
) U = - - - u ', v . . [ -
sy Y ¥y Xy y ’ .
In B = (DZ/U)-ﬂ* is the nondimensional B-parameter and
h = h_-26s(2xX)sin(2ny) is the nondimensional topography whose amplitude

~

hondimensionalized according to h, = (foDyUH)-hZ. Substituting (63)

inte (69) and retéining only the O(l) terms leads immediately to the

r

equation governing u,, i.e.,

¥ ‘
/
K G. =230 2 G . ' 70
s-ud - yQO e 'B - a\%yuo + ay . . (‘ )
¥ i '
) R )
' oy
\ \ A




h %-0 is that the northward gradient of potential vorticity must vanish”’

(i.e., u = 0) is often ,satisfied in this case.

_ . . )
Solving this equation for 4, yields the result ' ‘

N f .
- -
.

- . 2
go(X,_y), -u_ - u‘W(X)-cos(nzy) where n, = 2 , u_ = ﬂ/Ks -

S
. . : . . n -h v ’ (71)
. . . . L 2 "o '
and uw(X) - uo-cos (2nX) with u = |7 ——>
n - KS t

P ’

-

To see the connection between the perturbation equation (67) and

N

the more familiar Rayleigh-Kuo equation we note that the coefficient of

°

the second term, given e’xplig:,itly in (70), is equivalent to the corre-
sponding one in the Rayleigh-Kuo equation if one sets h = 0. By analogy

x
with -barotropic instability, a necessary condition for' instability when

o

-for some y within the channel. In other words, G, must be equal to zerd

- I ' ’ﬂ
somewhere in the domain [from the left most relation in (70)]. 1t
V - .

follows fx;dm (71) that this necessary  condition for instability Wwill

only be satisfied when Iuwl > ug. - . . .

For the sake of convenience we will replace 4, in (71) with'd. It

has been found a posteriori that, qualititively speaking, this, substitu-

tion has little effect on our final conclusions. The =zonal wvelocity,

u, is given by (71) with n, replaced " with 112-(62 + 1)1/2 in the
. .

denominator of u,. This can be verified by wusing ' the - identity

y
that the condition for instability discussed in the previous paragraph

.

8,V = - dyu in (69). -The actual T flow is shown in Fig. 22b. We see.

We will now attempt to solve the eigenvalue prablem posed in (67).
r ’ ' ~ K
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2) THE WKB SOLUTION ) ’ Co
‘ t . > w0
Equation (67) can not, in general, be solved explictly unless some
further approximagion is made. For this reason we willaapproximaté the

N 1
meridional " styucture of 6 the disturbance  with just °three meridional

components, i e.} “s

$(y;X) = ¢,(X)-sin(wxy) + $3(X)-Sin(3ﬂy)'+ ¢ (X) -sin(5ny) (72)

1

.Recall that the numerically-determined fJLtest-growing mode describ%d

- previously was dominated by these three y-components.; In part (a) we

will use (67) to obtain a dispersion relationship .<n the form:
, s . \

F(k,u,,w) = 0. ‘'Thereafter, in part (b), we will find the particular w
for which there exists a solution, k(X), which éiﬁultgheously satisfies

Y * <}

"the dispersion relationship and the boundary conditions whieh we have

&

yet to define o ’ :
b, »

(a) The 'dispersion reldtionship. Substituting (71) and (72) into

(67) and collecting like terms leads to three homogeneous equations for
the.coefficients ¢,, ¢, and ¢4 fsée (D.1). in"Appendik dl. éetting the
’ r N ' . *

determinant of the coefficients to zero leads to the following,

3 2 . . .
w B(k,uw)~w + F(k,uw)-w + D(k,uw) =0 . ] (73)

- N , 0
- '
B
' 4

The pdefﬁicieﬁ;s of this gubic equation, which are rather complicated

B
I3

functions of k and uw,vcan be found in Appendix D. . -
s

f —

o For the moment, we will simplify the ' present ZanaIysis by

considering the dispersion, relation obtained on the basis of retaining

ohly the first two terms in (72) (i.e.'using a two-term truncation). In
¥
i

.
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this\special case the dispersiom relation can be written very simply in

R (S

- el " b
the form . .

. 2 2 2 2 Y
© Q(K1 - K3) uw(Ks - ‘{(1) . )
- = u_ - - ’ A(74)
k s. 2 2 N 2 - \

2K1K3 4K1
. ) . 172,

74 é_ 2 2 2 2 2 2 2 2 2 2 2
x [,2(u )(Ky - Ky) + K (K - Kl)} + 4K K (K - K )(K_ ) Ky)
w

o -
’

-
3
t
t

n_ = 3x

2 2 2 2 2 2
where K1=k +n1,K3-k +n, , n == and 3

1

-

i
1
This -is an algebraic equation which relates frequeljlcy and wavenumber at
each particular X (recall that u, is a function of L) On the basis of

(74) we make the following remarks: i

v

‘0 When k 1is real, complex w will  only be ™ possible if

'Kl < K. < K;. This implies that for unstable flow

S
[} .

2 2 2 2 :
k = (2rém) < Ks -n . (75)

. . \

If u: - 17.0m s~ then K, = 5.43 and, from (75), we must have m < 3.58

‘for ipstability to occur. This’shortwave cutoff; is consistent with

LR ‘* rd e.

our numerical results whereéinfzenal wavenumbers four and pgreater were
i - P IR

:

A J

stahlé" (judging by their relatively small amplitudesw, $ee Fig-,.23).
» a [

]
' O, Waves are more unstable in an eastefly jet than in an westerly
jet.” This can be seen in (74) by noticing that w depends not only on
the magnitude but' also the sign of B/u,. This vasymm_etr'y isgguch that 8

. — o .
(which is positive here) has a stabilizing influence on Wwaves in wester-

¥
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(, lies and a des}:abilizing influence on waves in easterlies (Kuo, 1973).°

. * 4 . X
For the basic zonal flow under consideration our .theoretical calcula-

L . tions [i.e., based on (74)] have shpwn that it appears to. be iocally-
stable for all x lying beﬁwegn - Lf4 and L/4, where f/u, = 0, and ug-

'stgiable through much of the rest of the domain, where g/u, < 0. Again,

this is qualitatively consistent with thé' numerical results. ,
)
- \

. .
< \ R e .
- — B v ‘

O \By.analogy with paralllel flow instability 'we can, at each X in

+ the domain, find the real wavenumber (%f one exists), designated k ,
o M
for which the imaginary part of w is maximized, i.e. )

! .

. [y

\\ - L4 ’ ®
e Jw, =0 at k, . NN ¢

" 0 Tt i
An equation for ky, in terms of the parameters of™ s problem, can be
= .

’

( found in Appendix D (part b) For each ky we can also calculate a

. ) growth rate, wi{kM) and a phase speed, cr(l'cu) - “’r(kM)/kM' Consider

- Fig. 26 which is'a plot of my = (276) ' -ky, w;(ky) and cy(ky) as a fun-
~ 3 I'_ ” ; '

ction of X (we remind the reader that these curves'pertéin to the two-

term system). The growth rate has been nondimensionalized according to
(59). ‘ As expected these curveg are symmetric about X = 0.5 where uw(X)
’ .. -

has its largest negative value. At X— 0.5 the most-unstable and the
shortest-unstable wave; (not shown),'haség wavenumbers ;pproximétely equal

! - ~

) ) \i’;f; 2 and 3.2, respectively. Moving away from X = 0.5 the most-unstable

” * and the shortest-unstable aaves lengthen\.\ At any value of X for which -
. (Y N ~

av

instability is found there is no long wave cutoff.,

We will now return to the dispersien relation (73) %hich is based

t‘ on the three-term system given by (72). Consider Fig. 27 which is a

~
. -




a
i

i..
A

N ' ’ A X4
". plot of mﬁ/: wj_(k'H) and c;(kM) as a function of X.  Compared with Fig. ZQ &

-we mnote that the growth rates and phase . speeds are significantly
. %“ﬁ .

reduced. We also .ndté that the most unstabl\e wavenumbers are slightly »

* 5

larger than before and are now only a weak f‘unctlon of f. It appears

then that the range  of unstable wavenumbers growth rates an phase
T

speeds determined using (73) are compatlble with those arising from the

‘ numerical model. More precisely speaking, when we compare the
' . . A

.

-

numerically-determined frequency (i.e., w ='3.6-1) with the local -

i

- N fr\eqv..tency,r say at . X = 0.5 (i.e., ws 0.7 # 4.7-i), we £ind a reasonable
) i .

[ . —
0

agreement. Notice, that in contrast to¥'the numerical mode, swhich is

.
El

stationary, ‘the fastest-grewing local modg has a non-zero phase speed.

The local mode however is travelling so slowly“t:hat. after one e-folding

. AN * -
time 1its fastest ‘zo?al component traverses only one-fiftieth of its

bl Ly

st - wavelength, and for this reason could be considered ag approximately
o o .
stationary. N .
- * N .% - Il .

As it is presently written, (73) is not well suited to our purposes

N

- , ] -
. since we are interested in spe,c1fy1ng an X- lndependent w in order to
, ¢ - .
fmd k(X). To remedy the su:uatlon we Smely invert (73) to get k as a’

v
* ~

polynomial with X-dependent coefficient *
B 14

v

. ’ s 8 . 2.7 3. 6
’ _ [a9]~k + [agw] -k + [a,, + b.w ]k + [aew + bw ]k .
3 ‘ﬁ - ) .
2 5 3 4 2 3
+[ag + bw ]k + [aw+ bw ]k + [a, +Dw ]k (77)
4 o ° . . ) « o . $
. 3 > v 2 3’ S -
N +[a2w+b2w]-k + [alw]-k+[a°w] =0 ° N
o . i . .
R P ’
where the a,’s and b s are junctlons of . u, ancl cdn be found in .
@ ’ Appendix D. Thls m.nt'h degree equatlon clearly ylelds for a fixed W,
»~ . - ji [N + 4.) 4
, SV ) a
1 v
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( K ) nine roots or branches of k(X).-~Our final' solution therefore should be A ’
N ‘ written as the sum of nine independént solutions each corresponding to T

y ' :
one of these branches. The particular w to be used in (77) will be

' —
.

« . determined next, after we set the boundary conditions.
L] 'a v
3 N
ad L,/ - . > )
! " (b) Boundary conditions. To set the boundary.conditions ft will
) . g -

= ' «

be useful to have in mind"the nature of. the unstable modé which we are
Lo Vo . y B L

trying to represent. Recallihg Figs. 22b, c .we obsfﬁve that ~“the
’ - g ' . it

’ envelope of the mode peaks near °x = L/2 (X = 0.55, where the basic-

‘ state easterly jet is centered. Away from the peak the ampﬁi&gde decdys
[ -~ % ‘ I
rapidly,, especially in the upstream direction. Notice also, that™ipng
. I 1 . 1
4 ’ -

waves (in x) seem to prevaid upstreamasof t:he'.'{f)'eak and short waves
‘ | downstream. This perturbation beafs many of.tHe identifing marks of a

N so-called ﬁnstaglé local mode as defined by PierrehumbertA(1984, herein-

2

‘g?ter referred to as PH) in his study of baroclimic instability. of

slowly varying:flows. o -

In PH it was established, numefically; that flows with localized

L " baroclinicity can support two distinct‘types of unstable modes,, referted
. ' o

' ¢ to as local and global. Local modes have peak amplitude downstream of

the point of maximum ‘baroclinicity, decay to zero exponentially, both .

[}

upstreaﬁ ‘and downstr?am from. the peak, and do not require periodic boun- «

’ o
el

dary conditions for their existenée. Global modés,‘on the other han&,
- « ’ . . . . . ~

- . require periodic boundary conditions for their existence and have growth ; .

- ' - ' N

rates which depend on thJ average baroclinicity of the basic flow.

. -~ o = <

©

& . .
These characterizations were put on _a firmjanalytical basis via‘a WKB
. i )

analysis. Due the generality of the =techniques (developad in "PH, to

study these two classes of unstable modes, they can be applied to many®

"

) other *instabilities, including tHe one under .consideration here.

1] » R

F24




. ¥
3 . ~

14

»

I

5 N

Bt
“w

e
v ’ M
> < . . =

Following PH we Will assume that the unstable mode of Fig. 22¢ is a

local mode and as such does™nqt depend on the periodic boundary condi-

A
'

L - e IR
tions for its existence, The correctness of this assumption can be

] r
judged a posteriori. -On this basis, we will take the domain tp be

zonally-infinite [i.e., x € (- », + »)]. Consequently, as boundary con-

ditions we will require that the perturbation vahish at plus and, minus

- ~

.
» -
— - .

. 4

infinity, i.e.

' = 0 as ‘“lxl—»w . S (78)

t
’

In addition, in ordér te isolate the- locally-unstable easterlx;jet‘for

. T . 3 x
furtber~gpn51deratlon, we will set

.

. uomcos[Zn(X + 0.5)] ,when IXI <0.25 -
- u ) =4 ° ' (79)
0 . ‘ elsewhere.’ .

.

3

o
-

€

Notice thatqin (79) we have translated the X-axis so that the easterly

jét is centered about X = 0 rather”than X.= 0.5. Suﬁjecc to: (78) and
(79) we wiii now solye“%77), using the techniques develoﬁed in PH. fn.

- .

this regard, the reader is referred to PH, for any details whdich ' have

.
~ v N

been omitted hereé. y

¢

For what follows we will need to consider under what circumstances

o L,

‘ the perturbation expansion given by (66) E;n break down. A solution for

q

which this expansion becomes unordered would be .invalid and should

-~

' : :
therefore be discarded. As discussed in PH, an approximation such as
. N ]

4
¥

this can break «down in one of two ways: (l). if k— 0 at some X then the -

.leading term in (65b) can become cgmparable to(the b(&) term and (2) if
- v \ \ . " . v
dk/dX — m'gy some® X while k remains finite. Only the latter type of -




4 -

s . . J ..
breakdown can occur in this problem since the former corrésponds to a Y
c.lassical turning point, and cannot happen for unstable modes in this
s 3 . . h B

xoblem as k = 0 in (77) implies that w = 0.

'Raturning to (77), we ‘note that since & depehds on X through u,,

-

any particular branch of k is- such that k(- ) = k(+ =). Because of .

.

’ Y
this the only way the boundary condition (78) tan be satisfied is if the
¢ c K-
solution switches branches for some X(within the domain. M Branch.switch- ‘
¢ o - v . Y Y o L.
- ~ - ~ B

: v
ing, in turn, implies the existence of a point, Msay X_, where two,

Blljanche%' é’;?].esce.' Howeveg, as shown in "PH,” a coalesgence poir;t is,
< N Ssiui
in ,‘_gei?é'rial%, also a hreakdown point‘ because dk/dX - (cik/duw) (du,/dX)

and dk}’c{uyﬁ = there, [The i)ehaviou.x' of k in ,th“e ‘vlicinity‘ of a *
. . cgalésceﬁcq;ppént is obtained by'considelring a Taylor series expansiq.n

L

of the dispersion relation.] For’ this reason some sﬁgcial technique
~ L. 1 ' .

must be employed in order to conmnue the solution across. the coales-

.\ - o
o

*  cence point.’ Fortunately, in* the" spec1a1 case where duw/dX = 0 at the

coalescence point, this difficulty is circumvented and the axpansmn

S : . ]
remains ordered through the ,coalescence point. Consequently, in- our"
' ' ) N . ' . J'/’
problem, we will demand that the'coalescence‘point occurs at X = 0 since
X a . . . *
, ) , du,,/dX = 0 t}{et_e_. ) . . . . v-'w)
: It remains now to find the particular w = (gp (it exiég)—éfor
s - . L. _ e . Ao
A » - vghi'ch two branches of k(X) merge atsi "X = 0. In this regard it can be
; B . shown ‘that . i o c
3 ( * - s ' - ! )
. @i »
{ = 0 . - 80
; 9, | . . (80)
s - - at coalescence (where w and 'k are considerqd complex). This*is equiv- . /
; alent to the co‘nd’ition- that w(k) have a saddle point at coglescence. To
i . E « .
g ’ +
f CoL ~ find the saddle point in _our problem we will perform a complete con-

formal mapping of the function w(k). ConsiQer Fig.' 28° which is a plo/

..\ . . “ . 85 .v: . , | /

+ o 3 /

¢« v . /
> * . F
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_of lines of anstaﬁt‘ w, and w@; as ‘ @7 function )of' m,. . and ]
[m = (Zu&j'l-k]. A saddle point % clearly ' exists ' eat °

1

m = m} =2.06 +0.21-4. At m, we find that o, = 0.66 + 4.60-i " It

c c
- ) . o .
should be pointed out that the'imaigin?ry part dof w, is the so-called
e _ " . < ~ .

absolute .growth rate at X = 0. For a discussion of the ‘concept of

.

‘\‘ I/ / -
absolute instability we refer the rpader to Merkine (1977).°
’ * 3 -

The complex frequency Wa c;m nov be u‘sed in (77) to determine kfX).

Given k(X) we must ensure that the two branches. which merge at X = O,

. . Y

call them kf"[uW(X),wc] and k¥ [u_(X),0.], are such that )

-

& )

L . -
ki[uw(m),wc] > 0. and k‘i[flw(-w)'wc‘] <0 y (81) )

" in order that the -boundary conditions be satisfied. If- this, is the .
case, then our final solution is g}ven.ﬁy (68), witl:i the exponeneﬁm-‘
volving the integral‘over x written as

. ° . - 3 °"
’ L7 , ( X + . . ’
S | 'Lkﬁ!& for . x 20 .
L{ kdx = x ’ « (82)
o J kdx for -x<0 .
w 0 ) - R . S
3 - . ' .
‘andw-wc.- J ) . *
Consider Fig. 29 which is plot of two branghes of .m = (Z;rb')’l-k,
designatéd m" and”m;, _as a functio'n-\of’ the zonal flow u, (X) [normalized
so that uw(O) = -17. Notice that .indeed A\the brancifes coalesce at
uW(O) = - 1 as required if the solution is”to be “a vali o‘ne.‘. Note also
L 4 - ‘
that m;-: crosses the u, axis just slightly upstream of wu, = - 1. This i
v \ ¢ . .

‘reflects g:he“fact that the medulation pattern "'peaks ,just upstream of

X =.0. Downstream of this point the mode idepays to zero as required by

- .
.

© - . - ' . - 2
the boundary conditions. Referring to’m}, we see that it is negative
) ' ' X . c




. \ ' v
) ’ A 1 "

for alm;ﬁt all u, -and ‘decreases very rapidly near u, =jj- 1. This last

~ v

observdtion indicates that the mode decays rapidly in the upstream di-
i e ¢ ! .

rection. A consideration of m; and m, shows that therode,lengthens
| - 4. - b

dpstream and shortens downstream of the point where u, =1t 1.

Comparing the adhlytical solution with the.numerical’solufion we

. . ’h ~‘
. (.
conclude. that the agreement, at least qualitatively, is syite good. In
pértgcular, yhe analytical solution has correctly reprod’réd the sharp

upstream‘decay, the slower downstream decay and the loéﬁtion.of the

’ . »
.

? l ’
peak. In addition, the presence of long waves upstream and short waves

1 . - w .
downstream of the” peak in the numerical solution is also seen in the

analytical one. Quantitati@ely Speaking; the agreement is also quite

- 8 , [
reasonable as can be seen when one compares, for instance, the numeri-

cally obtained frequency and the analytic omne, w'= 3.61.i ahd

w, = 0.66 + 4.60-1, respectively. Admittedly, 1in contrast to the

Y v

numerical mode, the analytic’ mode has a small but non-zero real

3

v

frequency. Using a similiar argument as before one could make the case

that when one compares the period of oscillation of this mode with its

-

e-folding time the mode is for all intents and purposes stationary.

.

We believe that the major reason for the 6iscr§pqncy between the

]
o

numefically and ana}ytichily_determined ffequencies~is that the basic

asé&mptinn’that-& = Ly/Lx is small is oniy\manginally satisfied for the

basic flow studied here (recall ,that § = 0,2). ' Presumably, had we
Fia 3 .

1
.

chegen the rchannel pafameters so that § were much smaller we would®have

found a better agreement between w and w,. In fact, we have carried out

o .

.t Y ) . .
a few calculations using smaller -values fbér §; 'it was found, however
Ii N «
that in these cases the numerical mode could not be resolved using only

] s '

three y-components. To make a compdrison between ‘the numerical and"

’

1.
)
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analy€ic modes would therefore reaquire more y-components in the theory

and e a considerably more involved algebraic task, which we did not”’

°

undertake. o - -
For the sake of comparision, we inclu&% ng.,BQ,whicH is the two-

term counterpart (i.e., based on the two-term system) of Fig. 29. 1In

contrast to the previous case, this mode grows just downstream of X = 0
e~ [ "

" and peaks at the point where u, = -.0.97. For the two-term syétem the
absolute frequency is w, = 2.82 + 5.39-4. . i
. . o

b,

-

- 3.3.3 Discussion ' - “

In this section we have considered the linear stability of a topo-
§ . .

-

graphically forced steady-state consisting of a constant mean zonal part

and a wave with a ¢ingle oscillation in both the zonal and meridiohal
. ’ 3
directions [i.e. (ma,na) = (1,2)]. Growth rate curves, as a function

2 : .
of the 2zonal wind Kus) 9nd the topographic amplitude (ho)' for one of

"the unstable modes. were obtained numerically. From an analysis of the

a

frequencies and structures of'these growing modes it was determined that

- whiles topographic instébility is not the’ dominant instability, it does

indeed exist forfﬁh@s topographic structure.

. L)

A major portion of this study was dedicated. to a detailed analysis

of the fastest-growing perturbation to a particular superresonant, .

te v

e lgrge-amplitude steady-state flow (us =17 m st én§ ho = 1 km), This

,mode -is characteristic of the.fastest-growing perturbation”to a wide
. . :
range of steady-states, making our results more general than they-might

i

at ‘first appear. The fastest-growing perturbations to these steady-

*

. states are, in general, non-tbpographic insofar as they do not involve

o .
the'direct ieggraction of the perturbation with the topography through a
%

- - 4

form drag mechanism,

88
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We considered the structure and energetics of the fastest-growing

0
-

perturbation. The mode was found to have a relatively simple meridional
. -

structur® and a high - degree of localization in the zonal’di}ection.
u \ ,

Most of the amplitude of, the stru¥ture is located near and somewhat

downstream from an easterly jet in the basic flaw. A look at the

energetics of the'mode revealed that its overall exponential growth is
‘ v

A -

" strongly maintained by.a transfer of easterly zonal momentum out of the

basic-state, near the center of the channel. A smaller, but still im-

portant, energy exchange 1s found further downstream, in a region where
Y
the mode is meridionally-oriented when the basic flow is ’confluent and

‘zqﬁally-oriented,when it is diffluent, A similiar behaviour was found

by “‘Simmons et .al. (1983) in -their study.of the stability properties of

the 300 mb climatolégical’mean Jaguary- £low.

- .An analytic approximation to the fastest-growing mode was obtained

~

using the WKB appfoximation’coupled with some techniques developed by

.
g

Pierrehumbért (1984) to study baroclinic instability. The approximate

. ' : . S R
analytic solution correctly predicted the location and the shape of the

*
'

unstable wavepacket but overestimated thé frequency. More specifi-

-

3

)

cally, the analytic solution reproduced :.the amplitudé ﬁeaF Jjust |

2 N v

downstream of the easterly jet and the rapid decay of the envelope, both
upstream and downstream fromnthe beak ¢(especially upstream) A better
agre%ment between the numerically determined and the analytic frequency
vould have certainly been found had the basic flow been more slowly
varying in the zon;l direction, aé required by WKB theory.

We believe that this study has been useful from the point of view

of highlighting the role downstréam variations play in the linear

i

i

. instability pf inhomogeneous baroifopic flow. In additiom, this study

o
. /4
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has confirmed the utility of local instability analyses‘in assessing

Y

regions of maximum eigenmode growth. Although this sort of analysis is

" too simple to be directly applied to the behaviour of any real fluid, it

'

can assist in the physical understanding of the connection between
4 . \

spatial inhomengenities in a basic flow and preferred regions eddy
» - '

activity. !

~

In this chapter we have considered the Iinear instability of a

particular <class of non-zonal basic states which exist ‘as exact

“

*— ) s 3 e ¢ » ° I3 > 3
solutions to the inviscid barotropic vorticity' equation. Although

linear theory can be useful in describing the initial growth of an

-
s

infinitesimal perturbation to .a giveh unstable basic flow, it is

seriously 1limited by the fact: that the 1latter remains formally
unchanging with time* No matter h;wﬂs;all the ;erturbation is initiali&
it will, given the constant supply of basic state energy, grow so large
that HOﬁiEES?r effects cannot be ignored. In the next chapter we-will
consider “the nonlinear evoluti&h of initially small “(as oppysed to
infinitesimal) perturbations to a number of unstable basic flows.
Amongst the questions we will be askingvare' (1) in what way(s) do the
effects of nonlinearity halt the growth of the perturbation (as they
must if energy is .to be conserved)?, (2) how large, in amplitude, does
the perturbation become before it is stabilized?; (3) does the
perturbation maintain this maximum amplitude or does it begin some sort

decay stage?, (4) how does the basic flow alter with time as the

perturbation evolves? .
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% ) - CHAPTER 4 .

NONLINEAR ANALYSIS

4,1 Some hackground
. ¢

In Chapter 3 the linear stability of free and topographically

forced waves on a B-plane channel was investigated. In the case of

topographically forced waves it -was found that topographic (form drag),

shear (Rayleigh) and resonant instabilities were present. For a giyen

unstable equilibrium flow the str’ength, as well as the nature,. of the

instability d‘epended on the-particular parameters o\ﬁ the problem (such

ey

as the amplitude of the sinusoidal topography and the mean zonal wind)

For example, near linear resonance (as determined by the channel width,
. g

D, the p-parameter and the mean zonal wind, ug) the equilibrium flows

¥ [ S,

were found to be unstable to infinitesimal perturbations of the form
W

drag variety. . .

In the present investigation we will attempt to extend some our

earlier. linear results into the nonlinear domain. As before, the

equilibrium flows are the result of the interaction of a &sterly mean

zonal wind over a two.dimensional topography. The nonlinear stability
o
properties ‘of these flows will be determined by means of numerical

integration of the spectral equations [see (11)] using as initial
conditions each of the equilibrium flows plus its fastest-growing linear
disturbance. (The fastest-growing linear \dlsturbances are obtained,
mumerically, as in %hapter 3.) Unlike “som;a similiar studies, involving
va;rious ad hoc spectral t\runcations (e.g., Charney and DeVore,® 1979;
Fischer, 1980 and Egger and Metz, 1981), our integrations will be

]

performed wusing sufficient resolution to ensure theﬁ\gac‘curacy of the

o

solutions.

91 " )
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In some ways the' ébjectives’ and methodélogy of the present
investigation are similiar to those of Mukougéwa and Hirota (1986b).
The latter also studied the nonlinear temporal evolution of forced waves
in order to understand the phenomenon of wave amplification during

blocking episodes in the troposphere. -In contrast to our study,

however, the bulk of their investigations involved the analytical

’

treatment of near-resonant flows using a low-order spectral model, as in

t B

Charney and DeVore (1979). It was found that the evolution of the

forced wave amplitude depends on the sign of the initial zonal flow

- -

. perturbation: "if the zonal flow is decelerated initially, the wave

P : > - s . . -
amplifies in%®a nonlinear oscillationy otherwise the wave amplitude

. r
v

decreases. In eitlfer case, theperiod of the oscillation decreases with

an increase of the amplitude of the initial forced wave. [The use “of

the low-order model for these near-resonant flows was justified in a

fukly nonlinear spectral model with many degrees of freedom.] In the

present study we will be considering off-resonant flows where many

LS
° w4
*

degrees of freedom are required to capture the nonlinear evolution (as

will be demonstrated).

Direct numerical integation is by no means the only way.to test the
nonlinear stability of an equilibrium flow subject to a finite-amplitude
disturbance. Instead, one miéﬁt employ variational methods to determine
criteria for, nonlinear stability. 1In Arnol’d\(l966)} for instarce, two
powerful stability theorems were\so obtained.\ (A thorough discussion
on the subject of Arnol’ds nonlinear stability theorems can be found in
McIntyre and Shepherd, 1986.)° As discussed in Section 3.1, when the

second theorem of Arnol’d is applied to our particular equilibium

solutions the following is obtained: if ug = ﬂ/(1r/D)2 the equilibrium
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A
flow is nonligﬁirly- stable (i.e., stable” in the Liapunov sense).

v s L)
(Liapunov stability means that if the disturbance is small initia}ly“the

perturbed flow will remain "near" the unperturbed flow for all time.)

Since. the ,equilibrium flows which we will be considering in this study

are all such that u < ﬂ/(w/D)2 this\stability criterion is not ‘very

' ; °

)
+

useful. . .

-Another means: of studying the nonlinear behaviour of saﬁll-

° i F |
amplitude disturbances is to use the methods of weakly nonlinear theory.

In fact, weakly nonlinear theory comprises a large proportion of the
y

entire nonlinear theory noy known. Deininger (1981), for example,

o

exploited weakly nonlinear/ theory to obtain the finite-amplitude

stability characteristics of a topographically forced wave on an

infinite B-plane  Deininger found that a nonlinear feedback between the
k ~
- © q
topographic wave and the disturbance produces an oscillation for

~ .

topographically subresonant zonal flow .and an explosive. nonlinear

iﬁs%ability‘_for topographically‘Jsuperresonant zonal flow. It 1is

“

important to bear in mind, however, that these results are restricted to

N
>

a time period in which the disturbance is small, albeit finite. 1In‘the
. N [ .
case of -explosive instability nothing can be "said about the behaviour

I

of the disturbance beyornd the  time it achieves -any significant

amplitude.” Y{Another weakness. in this gﬁproach lies in the fact that the

Ye

spectral ,expansion for the disturbance ‘is. severely truncated.) In our

.~ + ] : -
study we prefer not to make any a priori assumption- regarding the

» -

4 « -
amplitude or spatial characteristics of the‘gisturbance and for this

.
Y

. vt 4 » o e . .
reason .have opted for direct numerical integration (despite the heavy

3

3

computer load)’ . . et ,
Still another way to "study the nonlinear stability of inviscid

equilibrium flows’ is to utilize the methods of statis&iqél mechanics.,

1

~ . “
» . . v
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Frederiksen and Carnevale (1986), .for instance, used these methods to

study the nonlinear stability properties of flow over topography in

s spherical geometry. In that study, climatic states were obtained using

- each of the equilibrium flows plus a finite-amplitude disturbance as

initial conditions. The nonlinear stability properties of a given
j?

equilibrium flow was thén obtained by comparing the initial condition’

with its corresponding climate If the climate was the same as the
. ) .

initial condition, then the equilibrium. flow was deemed. stable;

]
otherwise it was unstable. It was found, for example, that equilibrium \
flows for which the solid body rotation component of the zonal wind, uj,

is eastward were unstable due to the generation of —large amplitude

%

» transient waves. In contrast, for flows with westward uj, the

equilibrium flow and the climate were virtually identical. Since in our

study we are more interested in the time-dependence of the disturbances

’

the methods of statistical mechanics have only 1limited wutility

§o4

°Notwithstanding this fact, in Section 4.4 we will obtain statistical

~ I .
' . equilibria in order to help interpret the asymptotic behaviour’ of our °

simulations.

Having set the stage we #11 now describe our own investigations.

v .
v

\ To begin, in Section 4.2 we discuss some of the technical aspects of our

numerical model. In this section we pay particular attention to the

.
- fact that the “truncated spectral equations do not identically conserve

A -
1y

- energy and potential enstrophy, as does the model equation. In
. B -
Section 4.3 we discuss in detail ea¢h of the experiments, while in
\ B «
W~ ¥ N o
Saction 4.4 we incorporate equil\&brium statistical 'mechanics. to

3 - & ~
' rationalize the long term behaviour seen in our numerical simulations.

Finally, in Section 4,53 we summarize our rgsults.

.
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4,2 Some preliminaries ’ o >

As>stated; in this study wé ¥ntend to describe thé results of a

number of fully nonlinear integrations of theé truncated spectral
equations. In gach case the initial condition represents an equilibrium

flow plus its fastest-growing' linear disturbante (hereinafter denoted

FGLD). To this end we set as the initial condition for ‘our monlinear

v

simulations to come

B(x,y,c=0) = F(x,y) + 68 _(x7) SN CEY

<

w———ubare ¥ is the real part of the eigenfunction corresponding to the FGLD

3
to $. [The underscore indicates that v, has been normalized so that it

N

© e _—

is of the same drder as 17:“,’, ie., ¥, = (MaxIJ*I/Maxl\Pi])\I;r.] The §-

parameter in (83) simply fixes the initial -.ampl‘ituvd:a of the disturbance

relative to the “equilibriim flow. [Note that §.hege is different from

that® of Section 3.3.] In what follows, 6§ will range from between

approximately 0.02 to 0.3. \ . ' /

« © i \ ‘

It is well known that fluid motions governed by the model equation

[see (1)]+are—highly constrained due to the conservation of various

quadratic invariants. Perhaps®the most obvious time-invariant quantity
-

—_— .

4 .

associated with (1) is the channel averaged potent'iai voréicity, <Q>.
N .

¥ + (Recall that angle brackets denote horizontal,averaging.5 In addition
' - [

N

4

to the fact that d.<@> = 0, we also have

2 2 ? .
, [v%] ot Q. .
dE =d<—5>=0 and dZ =d<5> =0 (84)
' : . o~ .

Besides £ and Z conservatich, in the absence of topogtaphy, the channel

B -~

"where E and Z axe the energy and pot"entia'l er{strophy, -respectively.,

.

’




.ﬁ . = .
averaged zonal flow is also conserwed, i.e., d,<u> = 0. On the other
@/ hand, in the presence of a two-dimensional topography, we get instead
that, ° .
dt:<u> - fo<v(b/H)> . . N (85)
- . , .

This is a form of the so-called form drag. equatioh which implies that

the clannel averaged zonal flow can only change when, on average, there

N -

is a nohzero merididnal flow across isolines of the two-dimensional

topography, h(x,y). ) g .

Sy . -
Returning ‘to .the spectral equations (11) we reiterate t‘Aat these

equations have been used by many ©obther researchers, © including

Lorenz (196\3_), Boville (31981), Mitchell and Derome (1983) and

-
.

Mukougawa and Hirota (1986b). Although they are relaéively . easy

/ A
equations to formulate and implement they do havé at least one (often
3 . -

¢
€3
S

J;.gno'red) drawback, as \Pertains .the spectral forms of énergy énd

LT ’ z .
‘potential enstrophy. It would be desirable if the finite set of

»

spectral nequations conserved E and Z as'i'lpes the original. model

equation. However, as *we wjll .see, this .system conserves these

quantities' only in the limit of infinite meridional resolution (i.e., as

N— ), The orfgin of this problém*' can be .seen, perhaps most

fundémentally; in the- special case when h = 0. In this case, we know

« <
-

b analytically that d.<u> = 0, however numericallly we' get .

¢ = 5
s .

. - 2 2 C
} 4 =) [F,0m0) - £, -0 /e,

(86)
. s fea o .

. .
. - .

where F, denotes a mean zonal basi'% function of the form J2cos (ﬁnay/D)‘

@ A detailed analysis (presented in Appendix, E) of the triple sum on the

- . N ° * [l

~

3
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- . .
’ '

right-hand side of (86) reveals that it vanishes, nontrivially, only in

the limit of infinite meridional resolution. In the general case where

v N N

~ h» 0 we find the situation to be similiar in terms of. tfle numerical

. - . iR .
treatment of E and Z (as shown in Append;ix F). Happily though, E and Z

—

[and <u> when h = 0] are nearly conserved at moderate meridional

LY

resolution, say at N 215 (as. will be.ide.monstrated through direct

13

numerical integratfon). The fact that E and Z are not identically

conserved, numerically, cari actually be turned to our advantage in the

senge that their non-conservation “signals that the meridional resolution
o . \

-~ .

may not be entirely adeduate, - ' .

Except where otherwise stated, in- this study we set M = N = 15,

- -

leading to a set of 465 nonlinear differential equations. At this point-

&

it should be mentioned that for this resolution it was more.,efficdent to

use a transform method to solve  the model’ equation rather than the

—_ -

interaction coefificient method implied by (11). Although the two

- ¢

*  methods yield the same results, for large resolution studies: such as

-

this the transform method is considefabiy more efficjent. ,[For detailed
L @ o

account of -the ‘spectral transforfn method we refer the reade; to
Appendix B of Mi(tohell, 1982.] The time-stepping was performed using a
centere:q scheme with time problem of time-decoupling %ontrolled with a
weak Robert time filter (v <0.01). This time -filte;‘ was designed by:
Robert (1966) and was later anelyzed by Asselin (1972). Also, the

original computer code was vectorized in order .to take full advantage of
Y . h

.a high speged CRAY X-MP supercomputer.
The -linear distdrbances used to perturb the initial steady flows,

were obtained humérically ‘L}Sing standard matrix eigenvalue techniqhéts” of

the sort described in Chapter 3. . Except where otherwise statéd, we used

- o e

the channel parameters set in Section 3.1 [see (22)].
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@ ‘< : 4.3 {v?merical sSimulations . . ‘ ’ Fl e
) . We fhow describe a number of num:a‘ricél simulations, each started = - -
¢ with a steady flow plu its fastest-growing linear disi:urbance. In all,
v I . . e
. three basic eiperiments‘ will be described. 1In the. first expérimérit’,
\ N .
\’ N , involving an/ sinitial weak instability [r = 0(50) days], we ‘will “
investigate how the 1:’Lnear:=’distu1:b§mce behéves at fminite-an;plitude.
. . Since th; initial disturbance cannot grow e;ponentially\ for an \

< -

N indefinite period of_ time, certain nonlinear. corrections must be

<

affected in order to stabilize the sysE'em (albeit,, maybe* just .

~

.o temporarily). In the second experiment, involving "a much st:.ronger
" ’ = 1
*~ T instability ~[r = O(5) days), particular interest will be pajd to the

longer term béhaviour of the systen. The’ first" two experiments
' incorporate a é{mple sinusiodal topography of the type "used in
Chapter 3. The third e)'cperiment, on the other hand, involves a less

L ’ idealized topography, 1tke that used by Kasahara (1966) in his study of

.

the dynamical influence of mountain barriers upon atmospheric flow-

. ,
patterns. This latter simulation is performed in order to check the4

v
- >

extent to which the behaviour seen in the previous simulations is a °
consequence of the highly idealized single-wave orography.
¥

“ o

-

- As stated, the first two experimeni:s involve a topography which is

a simple sinusoidal function, more specifically,

Ul «

h = hq-251n‘(21r1£1gx/L)nséin(1may/l.).) , {87)

v where m, = 2 and n, = 1 [i.e., a= (2,1)]. With this topography the

steady flow streamfunction arising from (4) can be written ) .

N




I3

T
o ]
Y o= - u -y + ¢a'2.§in(2wmax/L)9in6nnay/D) - (88)'
o . - ’ N - .
h 3= F (e - k) and K )
where ¢a- o( a/ /T o s)‘ an K ﬂ/us c

L4
- .

“ o - ' s -
We notice that the steady flow streﬁmquCtion comprises a mean “zonal

. . "
component. (i.e., - ug: y) plus a forced statiopary wave which has
- 3 !

.precisely the same form as the topography. With regards to the latter
. .S
we mention that in -both of ‘the experiments fnvolving (87), h, > 0 and
2 2 X . . : . o
K, < Kg, which lmplles—that the foregd/statlonary wave is exactly half a

wavelength out of phase with the topography (since ¥ (< 0). A full
A & . g Y o

lihear stability analysis of this“particular“speaﬁf flow, in terms of h,

and u_, can be found in Sectionm 3.1 (see, for example, region IV of

-
v, .
.~

Figure 13). . .

Before _ continuing we note .thdt we will frequently |wuse

-~

nondimensionalized quantities. In this réﬁarﬁ it should be understood

* : . . . . L1
that we have nondimensionalized the space coordinates' and time with D

and uS/D,>respecti¥ely. . ] .
- ’ g . )
N

. - -

4.3.1 ‘Experiment 1: Initial weak instability

S

a. Initial condition

; . -1 .
In this  experiment we set u,=10ms (or u, =1, in

nondimensional terms) and 2h /H = 0.095. The steady flow resulting from
: . R

this parameter setting is shown in Fig. 3la. Since the steady fl&w is
symmetric about x = L4g we have plotted the streamfunction over only
half the domzin. (The position of the topographic ridge .is Indicatéd

~

with an arrow in Fig. 3la.) The structure of the FGLD [i.e., Wr(x,y)]

R

»




“~ .
" corresponding ‘to this floWw is shown in Fig. 31b. To resolve the

N,
disturbance we have used 15 zonal and 15 meridional wavenumbers (i.e.,

.

I{v- N = 15). We find that the disturbance has absolutely no mean zonal

.

energy and,- due to the symmetric nature of the basic flow, contains only

odd zonal wavenumbers. -

A .
+ The disturbance of F:fg. 31b has an e-fo&diwng time (r -,ll/wil) of ’

approximately 47 days and a period of oscillation (T = [21r/wr|) of

about 33 days. Part of the moti‘vation for” studying the t‘;ime;dependent

. behaviou% of 'this slowly amplifying disturbance lies in the fact that
s . " \ ' 3

much of the analytical theory used to study the finite-amplitude

stab'ilityﬁ of planetary maves (e.g., Loesch, 1978 and -
: i . -

-

Deininger, 198]; 1982)’pivots around the assumptioﬁr of weak instability.

In this way, then, we will be able to compafe our n\merical results with

S

the analytical ones. We  stress, however, that in contrast to the

- .. ‘
analytical approach, in our numerfcal treatment we make absglutely no

.

a priori assumptions regarding the disturbance amplitude; that is, the
initially small-amplitude disturbance is not required to remain small.
To understand the subsequent time-dependent behaviour of this

pérturbed steady flow, it is imperative that we understand the initial
A .

.'instability mechanigm itself. So, to aid us in this endeavor we form

the energy equatior{ 1governing the initial linear disturbance, i.e’

t

LIS R

, dE' = - <u'V%8xG + 8 > <<t - v'2)axa> . (89)

b

This equation has been discussed in detail in subpecti;m 3.3.2. As
concerns the disturbance at hand, we find that ‘the second term on the
right-hand side of (89) is ,by far the largest (over the disturbance’s
em;ire period of oscillation), indicating that this inétability relies
mainly on the existence .of zonal s;nears in a. Mc;re “spe;:ifically, this

' 100
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‘ instability depends on regions of confluence (6xﬁ > 0) and diffluence
(3,u < 0) in the steadi; flow. To see this' mechanism more cleai‘lyé we
. ‘ h?\'re plotted,ﬂ in Fig. 3lc, positive contours of - (u"z_- v"’)axﬁ.

Notice that the major cont2iBution to the channel average of this
* -y -

- . ’

. ' .
" quantity oomes from a aegion near the southern boundary, where the
L4

4

s steady flow is difflueﬁ? and the disturbance is zgr{al.

? . It is interesting to consider the effect of truncation on this

>

disturbance. Referring to Table 3 we notice that the instability first

appears at M = N = 3 but does not begin to converge till around
A .

' M =N =15. Given that such a relatively large number of waves is

required to resolve V¥,.(x,y) it is natural to question the role the small

’
-

scales play. To partially answer this question, we present Fig. 32a,

,which shows the zonal and meridional energy spectra of V. (Fote that ¥,

N ’
( " has ho energy in even m). We see that V. is dominated in the zonal

L4

3

direction by m = 1 and in the meridional direction by n=1%ndn=2.

In fact, a.detailed analysis reveals that most of .the structure can be
- > .

?

ascribed to just, two wave components, namely, B = (1,1) and € = (1’2)}.

Comparing E’(m) and E’(n) we also concigée that most of the small scale
» structure in ¥, lies in the meridional dil:ecti?n.

! Further to Fig. 32a we present Fig. 32b which is a plot of AV,

with the B and ¢ waves remdved in order to, highlight the small scales.

. Particularly striking ‘here is the gocalized band of large vorticity

-~
"~

gradient in the northern half of the channel. The fact that this
3
structure exhibits a_ strong =zonal-wavenumber-2 modulation pattern,

corresponding to the zonal structure of the basic wave, may suggest the

presence of ‘a nonparallel critical layer. (The existence of such a

3
-

t i critical layer, for a neutral wave, was demonstrated by Merkine, 1982.)'
’ . ' . “ .\ .
: \ . . : ‘ 2

.
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Since the subject of nonparallel critical layers is well ontside of the

Y

scope of the present study we will not purslde this interesting subject
- . .

.
)

~any fprfher. To conclude our description of the FGLD we point out that

.

since the initial disturbance requires, such a fine, structure in order

to be resolved, &4 usual multiple scaling approach based on severe

u

truncation (e.g., Deininger, 1981) would‘nst be applicable.

.

s

o

. 3 A . 3 .
Now we turn to an examination of the dynamical interactions between

the forced stationary wave and the superimposed @isturbanée with respect

ot .
.,

to which it is unstable. In so doing, we hope to address the following,

questions: (1) by what means will the 1initially small-amplitude

disturbance be stabilized and how large will it grow before

stabilization? (2) what role will topographic form drag play? (3) after
the initial stabilization, will. the instability redevelop, thereby

restarting the wholé process or will the system move into a new regime

o

with little, or no, memory of its initial condition? (4) will the
+ 4
smaller scale waves remain at their initial low-energy level or will

they 'play an increasingly significant role as time passes?

-

b. Time-dependent behaviour .

In this experiment we set § = 0.02 so that the amplitude of the

disturbanee is initially very small compared with the steady wave. The

time 4integration will -extend ovér ‘about eight e-folding times of the

initial, slowly amplifying, disturbancé. To determine the right time
.oa
step, At, we note that the highest frequency eigenmode obtained from the

linear analysis has 1/w,. = 4.2 hours. Therefore, ‘we, choose At = 1 hour
- 2

to en;;re that this high frequency mode is resolved, as f@qqired by the

Courant-Friedrichs-Lewy (CFL) convergence condition for computational

stability (i.e., w AL < 1.

" 102 ) ..
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( ' Before describing the simulation itself we will define two terms to
i be often used in the éequel. The basic wave,\dbnoted ¢b, is simply the ©
\ o -
. wgbé\\if the spectral expansion with ~the same wavenumber as the
. 2 - - -
topography, i.e. ' ) o
r / b . . -
r/ 1 . ’ ' ‘ , ®
b e ‘
. ¥ o~ po(£)-F (x,y)+ ¥ () -F (x,y)  where . ) (90)
. » AN . -

; ’ F; - 251n(2wmax/L)sln(ﬁnay/D)1 & Fq - ZCos(Zrmag/L)sin(wnay/D). f
| " ' ’ . . o
Recalling (87) we see that ¢5-Fé is that part of the basic wave that, is -

-

a quarter of a wavelength out of phase with the topography. On the

other hand, ;he.disturbéhce, denoted wd, is defined to include all the
waves except for the basic wave. According to thé§e definitio;s, at
t =0 we ha#e that ¢b - @a-f; and w? =-5-¥,.. In' other words, initially
. ( ; the basic wave correspOnﬁs to the forced stationary wave c;mponent of

the steady flow while the disturbance corresponds to the superimposed

FGLD. :

!
‘ An informative overview of the simulation is afforded through

a 3 -
Fig. 33a which shows the total energy, £, and the mean zonal energy, £,

over 9600 timesteps. We see, as hoped, that E remains nearly constant,

~

l . |i.e:, to within 0.05 % of its initial value. The potential enstrophy
(not shown) is also conserved to within 0.05 % of its initial wvalue. -&
. The mean zonal energy, on the other hand, goes through some rather

dramatic changes over the integration period. The evolution of E begins

@ : with a monotonic decr®ase till about day 200 (or about four e-folding

-

times) at which point an amplifying oscillation with a period of

approximately 15 days appears. To quantify the relative importance of

.

( i the changes in £ we note that at t = 394 days E comprises less than 40 %

o
of the total energy, as compared with more than 75 % at ¢ = 0. Needless

103 .
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to say, an appreciation of the dynamics underlying the behaviour of the

mean zonal energy will be prerequisite to a firm understanding of the

dynamical interactions between the basic wave and the disturbance.
S

The evolution of the basic wave energy, Eb, and the disturbance

d

energy, £, is shown in Fig 33b Comparing these ecurves with E from

Fig. 33a we find that, perhq%s surprisingly, in the first half of the
I
integration the disturbanceeappears to derive “mbsq»of its energy from

- v

the mean zonal part of the flow rather than the basic wave. However,

.
v

L]
despite 1its relative passivffy during this time, we will see 'Fhat the

basic wave is crucial, both from the point of view 6f the evolution of

-

the mean flow and the disturbance. More precisely, we find that the

1
basic wave: (i) allows for the mo¥ification of the mean flow via

t

topographic fo;m drag and (ii) provides\ the zonal shearf upon which the
disturbance initially %eéds (as described 'in part a). Before discussing
certain aspects of (i) and (ii) we point out that this behaviour is in
stark contrast -to the nonlinear equilibrating mechanism described -in
Deininger (1981). In Deininger's weakly nonlinear study the mean =zonal
fléw was unchanged due to the fact the basic wave (or "topographic"
wave, using his terminology) remained fixed relative to the topography,
thereby disenabling topographic form drag

To appreciate the important role thg basic wave plays 1in this
simulation and, in particular, to understand its effe;t on the mean flow
we recall the form drag equation (85) For this special case of a
single-wave topography, the form drag equation can be rewritten as

d <u> = - (27r'mafO/HL)ha¢&(c) (91a)

a
‘
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Recall, that zﬁa(t) is the spectral coefficient of the component of the

»

basic wave that is a quarter of a wavelengt}; out of phase with the

topography (recall also that h, > 0). This equation is a mathematical
: |

statement of the fact that’ low pressure (i.e., 1/»5 > 0) to the east of a
. 9 .
mountain causes a deceleration of the mean-flow (i.e., de<u> < 0).

Conversely, high pressure toward the east (#»a < 0) of a mountain
. g

implies an Yacceleration of the - mean flow (de<u> > 0). (In

Deininger (1981), wa(t) = 0 so that this mechanism was inoperative.)

Bearing in mind these ideas, consider Figs. 34a, b which show the

evolution, ovexE the first 240 days, of z/:b = 1/)b(z/)a - Ja, 1/»5) and  <ux,

respectively. As expected, we find that <u> %reases when ¥z > 0

(i.e., 0<t 5200 days) and increases vhen %5 <0 (i.e.,

L
’

200 3t =240 days). -

Given that. the basic wave 1is directly responsible for changes in

the channel-averaged flowy we now ask to what e%(tent this can account

-

for the behaviour—of E seen in Fig. 33a. To see the link between the

)

— . _ _ 2 . .
basic wave and E consider that 2F = <G> = <[us + f(y,t)] >, which in

turn, implies . -

' 1 .2
dﬁz:bf,us-dt<u> + é-dt<u > . (92)

Using (91a) in (91b) reveals that the basic wave, through its influence

’

on <u>, systematically* affects the tendency of E. In fact, in this
simulation most of the changes in E seen in Fig. 33a can be accounted
for by this dynamical arrangement. Now, putting these observations
together, we concludg that despite the apparent passivity of the basic
wave (see EP in Fig. 33b during the first half of the simulation) small

changes in its phase relative to the topography result in significant

. 105 .
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changes in the mean zonal energy. From the point of view of the

L
disturbance this is impertant since energy which is lost or gained by

L

the mean flow then becomgs available.for its own growth or decay.

Returning to Fig. 34a we notice that this wave behaves fairly

. "

erratically for the first 200 days. Howgver,.after day 200 the wave
¢ '
begins to show a fairly .systematic westward phase propagation (as

. ~

evidenced by the clockwise rotation of the trajectory). This westward

propagation can be seen very cleaily in Fig. 3é4c, which extends the
4

;rajectorzy;p day 400." The evolution of <u> over the same time period

is shown in Fig. 34d. Whe approximate 15-day vacillation seen in <u>

can be uﬂderétood as the consequence of ‘the interference of the free-
trévelling‘wave\of Fig. 34c [i'e"-(¢a'$a)'?a + ¢E-FE], and the initial

forced-stationary wave [i.e., Ja-Fa]. That such a wvacillation 1is

1}

possible has been nicely demonstrated by Lindzen et al. (1982), in their,
study of vacillations in Zonally-averaged flows. In that study the
authors used a linearized wave equation [obtained by substituting, in

our -notation, Y = -,u§Tyl+ wb into (1)] to demonstrate that the

s

approximate period of this vacillation is determined by the period of

-

the free-travelling Rossby wave with the same horizontal wavenumber as

the topography, i.e , \

. 2 2
T = 2n/lo_|o “where o = —;-ma(us - BK) - (92)

For the case at hand Ta' as determined by (92); is approximately equal

to 16 days which compares very well with the 15 day period of

oscillation we find numerically.

> -

We now turn our attention to the behaviour of the disturbance in

this simulation (see Ed in Fig. 33b). To begin we remark on the
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exceedingly large amplitude the disturbance attains. (For instance,

' '
* 2

E9/EP = 0.47 at t = 200 days as compared with E9/EP = 0.00037 at t = 0.)

.Clearly, no analytical method which is based on the assumption that the

[
- .

disturbance forever remains small could capture the finite-amplitude .

behaviour of this 'disturbance. Next, -we point outwsthat Eiuring the

_ent{ii\simulat@on the disturbance is dominated by the 8 and ¢ waves“{see

v

the dashed curve in Fig. 33b). ,(We remind the reader that; these were
P o
the: dpminént: waves in t,bd initially ) In"order to follow the bghaviour

of Ibd it will suffice, therefore, o consider -the behaviour of these
' ~ . . e

waves alone The amplitude of these primary waves, over, the first

+240 days is shown in Fig. 35a (where [AE, Ai] = [’/’;3 + z[:%, 1,b: + t,b%]).
Notice that the amplitude of .both ‘ waves cl’fanges smoothly from a, )

1 ' . _\J

period of quasi-exponential growth to decay. As pertains the respectivé

’

phases of the primary waves we find that they propagate‘zonally at |
. . , , : , )
nearly the same phase Vspeed, but in the opposite direction Tonsider,

- \ !
- for example, the westward propagation of the p-wave as shown in -
< ’

'

Fig 35b ;

¢®

Looking more carefully at the primary waves we find that, due to .

- 3 . . ' 3 .
small changes in their time-dependent” phase speeds, the sum of their

- Iy

phases evolves as 1in Fig. 35c. We note that 36 = ﬂﬂ + 6, + 8,
o v 3

.’ ineludes a small contributi'on from the basic wave (¢ g., Iﬁal < 0.59).

Notice that for about the first 120 days the primai‘y waves behave almost .

. i’ K .
4 linearly, ‘insofar as “their phase sum bargly changes at' all (gﬂ

decreasing and 0‘6 incfeasing). It turns,h out that during this initial \

,
~ © -

quasi-linear stage the disturbance is always positiofed  to .extract

energy from the basic wave, through the instability mechhnism described |,

. . /

in part a. Eventually, however, "the phase sum of the primary waves
- 6 N - . 4

P
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begins to‘ éhgnge and, in‘\ﬁarticular, ‘to ;pproach a value of 90?.
Comparing Fig. 35¢ wi;h Fig. 35a—we >no;ipe that the growth cé' the
&iSturbance halts precisely when 5§ = 90% At this‘time the ﬁnst;ble
phase relationship which initially existed between the p?imary waves and
the gasic wé;glhas be;n adjusted in fuch ; way as to ";urnJoff" the

T Jérowth mechaﬂism, thereby leading ©d the decay (albeit short-lived) of

- o -
; {the "disturbance. . _u ’ i@

.59

<

Following the behaviodur of the disturbance past the initial
: . A

i

secong stabilization' (following a peak iB'Ed at t = 320 days) . After
3 ' :

L4 \
this second stabilization the disturbance explodes in ampliitude From

o

what we have seen so far it is absolutely clear that regardless of the

criteria one might select, thefsteaﬁy flow of Fig 3la is noﬁlinearl&
unstable Despitée the fact' that the initial distufbance possessed_ such
a large e-fold}ng time (i ; , o= 47 days) and such a small nmpli;uda,
the sy;tem is found departing Yery“rabldly from its initial condition

after only six e-foldin imes Further to this consider Fips 36a-c
Y, E § i

_which show the total streamfunction at t = 100, 200 and 300 days,

t

respectively In addition, consider .Figs 16d-f  which show the
e vorticity of the disturbance at the same times Take note that In

. Figs. 36d-f the contour interval at ¢ = 200 and 300 days is five times
. 8
) N S

’ ' greater than at t = 100 days. Although the small scale waves have norv

. -

. played a significant role up till now it fis apparent from this sequence
! | ' .
’ ' that they are becoming increasingly energetic and as such will
- 1

. ‘ , 4
hd presumably play a grgater pirt in the future.
’ i . By way of summarizing our results we will briefly raspon&\{S 8Ot
@’ N . of the queries posed at the onset- (1) the inftially 3mall-a'mpl£tu'de
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disturbance did not remain small but, rather, eventually became as large

’
R Y
l © v <

as the basic wave itself; (2) an interaction between the basic wave and

— t

the topography, via form drag, led to an-amplifying 15-day vacillation
in the mean flow which came to dominate the overall picture; (3) the

small scale waves pemained relatively passive, howeve?’ indications were

that they would become- increasing significant (this will be considered

further, shortly), One of° the more interesting features of this

<4

simulation was the mean flow vacillation, which arose from,the periodic

interference between a forced stationary wave omr the scale of? the

©

topography and a free travelling Rossby wave (with the same wavenumber).

Lindzen et al. (1982) argue that such an interference effect is a

-~

plausible explanation for some vacillations found in® both rotating
annulus  experiments (Pfeffer et al., i980a,b) and the. atmosphere
(Winston and Krueger, 1961). The authors point out, however, that £heir
theory cannot,. in itself, exﬁiain how the travelling Rossby waves are

generated Possibly these waves are geng&ated as in our simulation,

that 1s, through a finite-amplitude interaction between the forced
Y T

.

stationary wave and a superimposed disturbance with respect to which it

. L
?

is unstable.

i . o
' .

Now, rather than take this simulation any further we have decided
to perform a new experiment initialized witﬁ a steady flow wﬁich is much
more unstable to linear disturbances [e.g., 7 = 0(5) days] }ﬁ this
more ”pHysical}y relevant experiment we hope tq ;ee the lgng term \

behaviour of the system earlier in the integration. With regards to the
' ‘ -~

long term beHlaviour of this,! as well as the .previous, 4imulation we

! 3

should bear in mind that our model is quite unrealistic. Clearly, the

inclusion of friction and forcing would change the picture, since these

~
-
f
- < - .
. ~
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processes operate” at time scales of -a few days to some weeks,.

Notwithstanding this fact, we believe that a solid understanding of the

inviscid limit is’ requisite to understanding more complicated systems.

4 . ' —

{

1

~

4.3.2 Experimﬁpt 27 Initial strong instability . o .

) ' A5

a Initial condition

- *

As in the previous experimént we will ‘dse the sinusoidal topography

given in (87). In this experiment, however, we choose uc, = 16 m/s and

2

2h /H = 0.12. For these parameter values one should expect the steady
J "3

flow to be more unstable than'before synce ug is closer to [ts resonance

@ -

-value (of approximately 19.89 m/s) ‘and the topographic amplitude {s

®
Iy ! 3

higher. This expectation is confirmed by a numerical analysis which

N ! b
yields a FGLD for which (r,T) = (9.72,28.37) days (when M = N = 1¥)

>

Since the initial disturbance is still well resodved yﬁqﬁ'h - N = 9 (sve
- . \ ? .

» -
Table 3) we will, for convienence, use this lower resolution initial
—~ . 2 °

disturbance for 1;his Simulation {(We . nore rbat in the actual

.

integration the model i{s run, at the higher M = N = 1% rruncation
level ) The diéturbance «defined by M=N<-9 |5 "such that

(r,T) = (4 70,28 41) days Consider Figs 37a, b which <hows ¥ and Wr
Y . -

-~

in this case

[ 4

b Time-dependent behaviour

¢

.

Here we will mainly discuss our results for § = /0. 07, howgver some

mention will be made of a simulation stwrting with a larger amplitude
* ’ N « «
inftial disturbance (i.e , 6 = 2,/0 02).  On the bysis of the {nit{al

linear analvsis we have chosen a timestep of of At - 1% minutes for this
.

e
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( LI simulation. Consider Fig. 37c which shows E and E over the integration
o LR 1
i 0 period. We feel that, on the basis of the good energy conservation seen

- . - L . -
¢ . in,-Fig. 37c, our solution is reasomably accurate (£ stays within 0.5 %

—~—

,
'y

v .. 7" . .of its initial value). Further to this, we refer the reader to Table &

o
.

“which compares a few important quantities ‘at t = 60 days obtained after.

.rtmning the model at a lower resolution (M = N = 13) and with a smaller

» .
‘s <o . ® LY

. timestep (At = 5 minutes). Also, as: a quick assessment of the
treatment of the smaller scale waves in the numericalgggodel, we note
that at t = 60 days the potential enstrophy, Z, 1is within 3 & of its

. - initial value. The fact that the potential enstrophy is not as y(ell
conse?v;d asﬁ‘the eneréy indicates that, by t = 60 days, the small scale
’ part of the ffow.is not being treated quite as well as the larger scale
parts (this will be pursued further shortly).

( . aReturning to Fig. 37c we notice that E behaves‘ quite inter.es;:ingly
’ ° over the integration period. As can be seen, E"' monotonically decreases
till ¢ = 14.5 days and thereafter remains relatively co;xstant til]:
t = 25 days. xNoticeﬁ that by t = 25 da;ys the mean zonal energy ﬁa§
decreased to{a‘i)proximately 25 % of its initial walue. Following day 25,
’ ‘ E shows a shharp increasing‘ trend which. is marked by a large, but
diminishing,’ vacillation (with a period of approximaot:ely 15 ciays).
In the last half of the .simu]:ation E oscillates around a’ .m.ean value
which represents about; 75,% of the total energy. (Initially, .E
comprises only *25 % of thegto;:al .,energy.) Bj;' way of summarizing the
| oveiall{ behaviour.of the mean zorfal energy we simpl@y state that in the
- E first 25 day;s there is an energy transfer from the mean zonal to t;he
wavy part of the flow:(i.e., E— E*) while ip. the la‘stg 75 days there is

» . a much mere significant reverse i:rarlsf'er (i.e. ,.E —-E%).

~
“ @
~
* . - .
B B .
1 B
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.Turning to the hehaviour of <u>, shown in Fig. 38a, we notice that,

after only four or so e-folding times (recall that r = 5 daysf. the mean
wind reverses direction, going from westerly to eastéFly. Following
- K this dramatic reversal, <u> ?ontinues to decrease %or about another 30
days at which point it settles down to a period of relative calm as it

? 6scillates_gently ) around an average value of approximatgly‘
2 1.3 (or - 21 m s~} in dimensional units). [Recall that initially

. <u> =+ 1.0 (or 16 m s™').] Since we know that dy<u> & - h-¥z(f)

we should expect corresponding changes in the basic wave. To see these

changes, consider Fig. 38b which shows that the basic wave initially

propagates eastward but reverses completel-y towards the west at around

‘the .time of the mean wind reversal. Over the last fifty days the hasic

-

wave exhibits an oscillatory beh;'aviour, which 1s the combination_ of a

-

westward propagating transient ,component and, a much stronger,

83

statignary component [The stationary . component represents high (low)
B 3
‘ pressure situated directly over the mountain (valley).]

- 1 &

As concerns the streamfunction, consider Figs 39a, b which sh_qw ]

andvﬁ at t = 25 days At this time the flow is dominated by .x‘wavy

structure on the scale of, but slightly out of phase with, the

N topography. A sequence of subsequent steamfurplctior} plots ¢nat shown)
reveals that.the transient componer{:uof the basic :ﬂ.VG decays and the

easterly mean-wind increases ‘For example, consider Figs, 39c¢, d which

shows ¥ and U at ¢t = 60 d{;ys. Notice. the strong easterly tlow which

departs southward ov:ar the mountain and northward r;w-r the vallay

"é Alrhough the wavy part of the f'low fs largely dominated by the wave on

the scale of the topography, other scales are also evident. To see the

ﬁ contribution of the non-topographic scales constder Fig 3%e which shows




‘the gonal and meridional energy spectra, with the basic wave removed.

Notice the rather flat appearance of both spectra at large wavenumbers,
W

which suggests that the small scales may be beginning to equilibrate, in
the statistical mechanical sense. [Whether a statistical gquilibrium

can qctuall§ be supported by this finite system is questionable since it

.

identically conserves neither of the 'quadratic invariants (this will be

.
)

taken up further in Section 4.4).]} - Furthag.&o Firg. 39e wer point out,

»

that the sum of the individual energies of the non-topographic modes is

only about one half that of the basic wave itself.

3
)

To assess the sensitivity of the sysfem to a ‘'change in the

magnitude of the initial disturbance we reran the model with § = 2/0.02‘

“

(twice the previous disturbance amplitude). Outside of a faster initial
deyelopment, the behaviqur of this simulation is in all ‘essential
» e

respects identical to the 6§ = J0:02 case. This can be seén, for

~ ' i

¢ " .
instance, by comparing the dashed and solid curves of Fig. 38a. Notice

that although the mean wind «reversal occurs earlier than before,” <u>

ultimately settles down to approximately the same value. The fact that

v * e p

these two cases behave so similarly is not that. surprising since their

»

initial E and Z values are so close [i.e., (£,,Z,) = %(2.078,74.184) when

9

§ = J0.02 and (E,,Z,) ~ (2.152,75.375) when™N =~ 2/0.02]. In Section 4.4

we will offer an explanation, based on the theory of statistical

mechanics, for the similarity between these simulations. Finally, we

v

L4 ?
present Fig. 40 which shows the evolution of the total and mean zonal
4 -

-

-~y
potential enstrophies. Notice that shortly aftey the mean wind reversal

(at t = 25 days) the total potential enstrophy begins to show a slow but
moticeable decreasing trend. This behaviour is indicative o6f increasing

activity around the truncation wavenumber.

o - .

»
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A similar mean wind reversal as we have observed here was also seen

by Edelmann (£972). The latter obtained an approximate stétionary

" solution of the shallow water equations, {initialdzed with’ uniform

°
]

westerlies, by performing successive time-averaging of the simulation.

o

However, as pointed out by Fischer (19805, Edelmanns’ solution may have

) * P :
converged to a stationar} solution with easterly winds as a consequence

of the method of integration. Egger‘and Metz (1980) also found, through

N

simulation of the barotropic vorticity equation, that <u> can decrease
Hramatically when it is initially positive ({.e., westerly). However,’
Egger and Metz's conclusions were limited by the sevére truncation used
(Sawford and Frederlksen,.1983).

I - o ‘
* . The fact that uniform westerly flow over topography can generate

strong transients leading to its ultimate demise has been known for some

L4

time now. In contrast, it is known that an initial uniform easterly
-

- flow will not necessarily generate any strong transient behaviour

Kasahara (1966), for'éxample, through direct numerical simulation of the

» .
shallow water equations, found that westerly flow over topography could

.

©

produce a train of long waves on the lee side of an obstacle On the
- v ¢
other ™ hand, rnmo such long waves  ,were seen to appear in the case of

N

initial easterlies. To see whether our model behaves similarly or not

: -
we performed two simulations starting with g = + 16 m' s and
>

.
.

u_ = - 16 ms '

s (Corre;ponding to initial wuniform westerlles and

-

easterlies, Tespectively (i e , ¥ =% u .y at ¢ = 0).] Referring- to
1 4 '

Figs. 4la, b, we indeed find their behaviour to be verv different,

with the easterly case remaining stable and the westerly case leading to

large oscillations (with <u> tending tbo decrease), We note that the’

qualitative differences between inftial westerly and easterly flow over

+
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topography can be understood using conservation of potential vorticity

arguments. Rather than review these arguments we simply refer the

1Y
reader to Holton <1979r pg. 89-91). “

Returning to Fig. 41b we find that in the stable easterly ca;e the
vacillation period obtained by linear interfer:ennce theory [see (92)] and
that by integration are almost identical (i.e., T, = 4.6 days). (We
note that the circular shape of the trajeetory is also consisteng with
the theory.‘) Boy contrast, in, the unstable westerly case we find that:
(1) the theoretical period (of' approximately 42 days) is much longer
than the nwnerica£ period (of approximately 15 daysi and (2) the
trajectory- is quasi-elliptical rather than ciréular. The failure of
the theory in this case lies in the fact that, strictly speaking, the

v’

theory only works in situations wherein the variation of the mean zonal
wind is small enough for the 1ir‘1eariza,tion to apply. As a figal remark
we point out tt;at the elliptical shape uof the _latter orbit 1is
reminiscent of Yoden '(1987) who described a new class of statospheroic
vacillations using a highly ' truncated spectral model. These
vacillations were interpreted as a ponlinear interference between a
stationary wav; and a topographically modified Rossby ,6wave where
variations of the mean zonal wind are important to the wave behaviour.
(In linear interference theory it is assumed a prio'rj. tpe;t the
fluctuation of the mean zonal w'i&nd has no effect on the wave struci:urg.)

In the nextpexperiment: we will cht;ck the extent "t;o ';vfhich the
qualitative.behaviour we have found in this ex'periment is a function of

our choice of a highly idealized sinusiodal topography.
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@ 4.3.3 Exper\imem: 3: Localized t;o"pography —_—

a. Initial condition ' - ’ ) .

-

%
In contrast to the previous ones this ,experiment will involve a

topography: which 1s 1localized 1in s%ace. More. specifically, the
topography will be Gaussfan in the zonal direction and sinusoidal in the

meridior‘l direction, i.e., =

., .

h(x,y) = h(x)-sin(=y/D) (93)
- S(2x-Ly2r)” - -(ry2e)’
. h -[ e - e - ] for 0 s x =< L
where h(x) = g °
; 0 otherwise

- Note that h(x) has a maximum, at x = L/2 of ho - h_-{1 - exp[-(L/?r)Qj)

g

- and decays to .zero at x = 0 and x = L. In the sequel, we take

‘

'hé7H = 0.1  and r ~ D/2. Ultimatelyz this topography will be projected

5
J;Q
i

+.

¢

onto our basis functions given i1 (9) We note that the spectrally

expanded topography will differ from (93) by a ¢onstant, owing  to the

. o

fact that the spectral expansibn has no channel average However, since
h(x,y) only”“appears as a differentiated quantity in (1), this disparity
*is inconsequential.. Consider Fig. 42a which is a plot of h*(x.y)

Giwen the localized topogréphy of Fig 42a the corresponding steady

applying the Galerkin procedure, with the result that
-" - . ‘ﬁ\

- -

D o - Yoo o - , [/
. »-\,{ ‘us Yo+ Zwa‘z"a(x,y) . " ) ‘ ‘ (:);)
B'A! a M ‘

. - 11 —

flow is obtained Hy substituting the spectral form of (93) finto (4) “and -




[The 1,—50"5 are defined in (88).] Recal]:ing (88) we see that-rather than
one res‘c;nance point, as ;n the case of the single-waye topography, we
,Qow,have linear resonance whenever u, = ﬂ/K;. For iqstance, u, = 17.m/s
i\s sandwiched be;“tween resonances at approximately 19.9 and 15.3 m/s.
{These resonant wind speeds are associated with the
a = (2,1) and a = (3,1) waves]. In this case. the flow defined by (93)-
(94) is dominated by a ;:ombined zonal-wavenumber-2 and -3 structure.
The actual steady flow is shown in Fig. 42b.

A stability analysis reveals_ that the FGI.;D to the steady flow of

Fig. 42b is such that (r,T) ~ (13.3,35.6) days (when M = N =~ 15)., ’i‘he

structure of the FGLD is shown in Fig. 42c.

b. Time-dependent behaviour .
In this simulation we chose '§ = 2/0.02 and Ate= 0.25 hour. .,
. N

Consider Fig. 43a which shows the evolution of E and E for this

simulation. We note immediately the éualitgtive similiarity in E, in
this simulation, and E seen previously (see e.g., Fig. 37¢c). As before,
E initially decreases as <u> (r;ot shown) tends to zero. - [As “yegar-'ds
<u>, we note that <u> = 1.000, - 0.014 and‘ - 0.760 at £ = 0, 100 and 400
days, respectively.] Following the mean wind reversal (at about t = 100
days) E increases to, and remains at, a much higher val®e than at t = 0.

n

. Consider Fig. 43b which shows the evolfxt:ion of the energy in zonal
wavenumber-1 and -2. As can be seen, rr;ost of the energy that)is lost by
the mean flow in the first 100 days 1is transferred ' into zonal®
wavenumber-1. However, follc;wing t = 100 days the energy in zonal

wavenumber-1 is gradually returned to the mean flow. As .in the previous

simuiations this latter trend’ is characterized by aJj mean flow
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o

i

~

0 " : vacillation arising from the periodic interference between two waves
with the same horizontal wavenumber but different phase speeds.

. The -eddy streamfunction an;i mean zonal flow‘ at ¢t = 100 and
t = 400 days are sh/own in Figs. 43c, d. {[Take note that the contour‘
interval in Fig. 43c 1s three _times' that &f Fig. 43d.] By compar:‘ing'
these plots (and bearing in mind Figs. 43a, g) we find tﬁ;c after around
day 100 the eddy part of the flow becomes substantfally decreased-while

~ .the mean zonal part bgcomes more negative, &n Fig. 43d (i.e., Y* at

t = 400 days) we note, for future reference, the preseﬁce of a high
pressure system overlying the mountain.
On the basis of this experiment we “conclude that the qualitative
" - - .
behaviour we saw in the previous‘simuiation is not merely an artifaét of
the sinusiodal topography. Piaving ‘s‘aid this we will now turn our

*

A attention to rationalizing the asymptotic behavibur of these simulations

-

using the methods of equilibrium statistical mechanics.
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( - 4.4 Statistical mechanical equ%librium _

- In the last two subsections it was found that the numerical

'simul“ations consistently evolved towards relatively stable states with

strong easterlies, on the one hand, and high pressures overlying high

ground, on the other. Along with this tendency there was, in each case,
a” slow decrease 1in the potential enstrophy. The mnature of these
. 5 . . . B . :
Y asymprotic states, together with the increasing activity around the
truncation wavenumber (as measured by the slight lack of conservation of
potential enstrophy), suggested to us that the simulations were relaxing
1 Y -~ .
towards classical statistical equilibria. In this section we will ’

pursue this matter further.

To check to what extent the asymptotic behaviour of our numerical

. )
‘ simulations can be understood as *a relaxation towards statistical

- ‘ N
(’ N mechanical equilibrium is problematic, since these methods relycon the

conservation of E and Z in the truncated system. [Recéli the £ and Z

*

are not exactly conserved in our particular, but widely used, system.]

By way of circum\'renting‘ this problem “we propose to: (1) adjust -the

i numerical model in such a way that £ and Z are identically conserved;

(2) perform a new simulation initialized as close as possible to

experiment 2 and final:ly; (3) compare the asymptotic behaviour of this

[
’ . simulation with the corresponding equilibrium derived using the methods
statistical mechanics. In this way, we hope to shed some light, sglbeit
\'“ indirectly, on the long term behaviour of our previous simulations.

In subsection 4.4,1 we write down the equations governing

. -statistical equilibrium and outline the numerlfical method used to solve

them. We note that this will comprise only a brief review of thg
v - *

t methods of classical statistical®mechanics since the details can be




" . )
found elsewhere (e.g., Sakmon et al., 1976). In subsection 4.4.2 we

descéribe the results of the new numerical simalation, while in
&

- subsection 4.4.3, we compare the long term behaviour of the new

.

- simulation with the corresponding statistical equiliyrium. .

- . -
-

4.4.1 Methods of statistical mechanics: a brief review
Jo. N

- : The tacit objective of statistical mechanics is to obtain time-mean
solutions <to a finite set of nonlinear equations, without having to

actually solve the initial-value problem itself. In practice, this

[o . 9

involves replacing the finite set of deterministic equations [involving,

v - .
. (i@y’ the real spectral coefficients (¢ﬂ(t))] by a time-independent set
o ‘ governing some st;tistic;l property of %1ow. The solutions to this
. -
latter set of equaﬁions represent an ensemble average over a large
:z number of realizations of the system (all with the same initial E and"
N . . -

Z). The prerequistes for the previous step are that Liouville'’s
R R

theorem be satisfied (i.e., 2 aﬁﬂ/awﬂ = 0) and that the truncated
: - 2
- verSions of energy and potential enstrophy be conserved. Furthermore,

to ensure that the system remains .Jn statistical equilibrium, it is

usual to assume equal a priori probability for all accessible (i.e.,

v allowed by the 'initial E and Z) points in phase space. [This is the so-
. . ‘o,

called ergodic. hypothesis.] Under this assumption it can be shown that

the equilibrium solutions, which represent ensemble averages, are
3

. r

: equivalen;—to long time averages over a single realization.

*

2 - Returning toe our particular set of spectral equations (1l1) we note

that Liouville's theorem {is satisgied since there are no self-
. *  interactions (i.e., ?bea = 0, whenever ény two indices are equal).

However, as we already know, this system of equations does not
. L N

3
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.

identically conserve the truncated versions of energy and potential

enstrophy. To rectify this situation will require the following
' * -
_corrective measures: (1) setting ug = 0, to ensure energy conservation

and (2) projecting f-y onto our orthonormal bfsis ‘[give'h in (9)], to

Y

ensure potential enstrophy conservation (see Appendix F). With regards
»

to (2) we will, for the time being, simply absorb the projected B:y into

, &

h .(see Appendix G).

- ]

Now, if we write X; = Ki-l,bi, Hl: F fo'hJ./H and ﬂijl = - cijl the
A % .
resulting spectral equations - can be expressed as in

©

Salmon et al. (1976, equation 1.6),.1i.e.

K\ ) .

1 1
dx, = Z[——]ﬂ X X, - Z[—},B ..X . H . (95)
t7i / Kin 1j17 j71 KiK_j ij17j ~l T

iT - I

In this case the energy and potential enstrophy are given by

2 2 2 2
Zx = 2E and ZK.X. - ZZK.H.X, + ZH. = 2Z , (96a,b)
1 ivi Livi i

3

respectively,. Under the *various éssumptiot"xsaoutlined earlier, it can be
- - — .
shown that _ the,expectation values (denoted with bold angle brackets)

N

of x; and E; = x> at statistical equilibrium are
1z P ] .
* &
Cx > K. (a + ) 'n 27
77 P, A : (97a)

7 ! ' ’ -

K2)-1 2K2 K2 -2H2 97Ib

Nt 4=

2
and <Xi> =

~
o

9 -

2 ’ Y .y ;
where a, + B,K; 1s necessarily positive for every i. The parameters a,

and B, in (97) are determined byhsolving the two coupled eguations which
arise after equating the expectations for the total engrgy and potential
enstrophy to the invariant values, E and Z, i.e.
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3

srz<£'i> =- 2E and Zdl) - 27 . (98a,b)

Equations 98a, b will be solved using the Newtorr-Raphson method at the
L
M = N = 15 truncation level, corresponding to eur numerical simulations.

A few interpretational comments regarding (97a,b) are in order.

First, we note that since ensemble averages are equivalent to long-time

averages, the right-hand side of (97a) represents the stationary part of
*

. -

!
the streamfunction (Sawford and Frederiksen, 1983) Furthermore, given
- , :

higg enough resolution B, > 0 (since o, + [?ok’f > 0% 1) so that the

o
v 3 -
streamfunction and topography are positively correlated In other
words, 1if the flow contains small enough scales the equilibrium

- -
streamfunction 1s such that we will find high pressuye over mountains,

-

[A
and low pressure ox%r valleys Referrihg to (97b) we notice that while

\

o “
the expected transient part of the streamfunction {s zerp, the cnerpy of

<

rd -
the transient flow is not (as evidenced ﬁy the presence of  the  first

term). More to the point, the first and second terms on the right hand

g
side represent the emargy in the transient and the stationamy parts of

> | °

the flow, respectively .

4.4 2 Numerical simulation: experiment

At this stage we repind the reader that in order to ensure  the

]

conservation of £ and 2 we have set u, = 0 and projected gy onto_ th
orthonormal basis (9), 1l e , - fv = Z,G‘./Zcos(hv/[)) (where 4, 1s given in
Appendix G) Assuiing a linear rplationsihip' between ¢ and 0 as well  as

a sinusiodal topoegraphy, we.get for steadv f{low,

¢ 122 - .
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( ° 17; - Zw,'ﬂiJZcos(wiy/D) + Ja'ZSin(Zrmax/L)sin(may/D) (99)
i

“7X yhere ;Zi'- B,/(K; - K) and ¥ - £_(h /H)/(K. - Ko) S f

-

This equation is meant to be compared with (88) which gives ¥ for the

»

case when u_ % 0 and the planetary vorticity is a linear function in y.

S

We emphasize that in order to relate the findings in this section to

those of ,the previous one we intend to adjust B so that ¥, as defined by

a

(99), isfas close as possible to %, as defined by (88‘)
’

. As shown in f&ppendix F ‘if B = 0.7885x10" 1 m?l s'}, and K; has the
same value as in experiment, 2, then <u> = - <3y$> ~16ms .

! Obviously we have chosen the 6-pa§rameter so that we get the same initial

) westerly mean-wind as in experiment 2. Further to this, if we take
('f 2hy /H = 0.12 then the wavy part ;)f ¥ is also identical to that of
experiment = 2. The FGLD to this steady flow  has

(r,T) = (4.78,29.59) days. This compares ver;r favourably with the FGLD
of experﬂip:ent 2, for which (z,T) = (4.72,28.37) days. As before, we
) will inti‘:alize the integration using this st:eady‘ flOprll'lS 1ts FGLD,
with § = 2/0.02. The initial streamfu'nction in this case is shownw in
Fig. 44a, while a scatter diwgram.of p>versus @ ﬁshqwn in Fig. 44b.
We emphasize tl3e fact that initially the relationship between Q and ¢ is
very nearly linear. |
L4 ' [} .
? Consider Figs. 44c, d which show the evolution of the mean wind and
the trajectory'of the basic wave., respectively. Comparing Fig. 44c with
N the dashed curve of Fig. 38a [showing. the evolution of <u> in

experiment 2 (§ = 2/0.02)] we notice immediately the strong resemblance.

r
‘. Although in this simulation <u> tends towards a slightly larger negative

value than before, the qualitative behaviour is nearly the same, The
: 123 )
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‘basic wave trajectory coyresponding to experiment 2 (not shown) is also

quite similiar to that given in Fig. 44d. On the Dbasis of these

I =

comparisions we can quite safely say that the~dynamics governing the
“long term behaviour of these two simulations afre for all intents and
pt.?ﬁfoses the same. We will now show tHht the long term behaviour of.ex-
periment 4 1is connected with the tendenc°y of the truncated dynamlcal

system to evolve towards a stafpistical equilibrium

4.4.3 Approach to equilibium of the numerical simulation
' <o

To .compare the long-term behaviour of the numerical simulation with

0

statistical equilibrium it “would perhaps be most appropriate to consider

o

a time-average of say the last 50 days of the numerical simulation

Given that the simulation varies little over the last 50 days we will,
- )

instead, simply compare eghe simulation at ¢ = 100 davs with the
corresponding statistical equilibrium, as done in Figs 4%, b,
respectively As can be seen, the equilibrium and  simulated

steamfunctions are quite similiar. More specifically, both solutions

P
are characterized by a strong easterly flow which departs southward over

T

the mountain and northward over the valley

As further evidence that the simulation Is evolving towards
] A .
sfatistical equilibrium we present the energy spectra for the simulation

(t = 100) and the statistical equilibrium in Fig 45¢  The peak In the
R

equilibrium zonal spectrum, at my= 2 is related to the fact the encrpy is

efhanced on the topographic scale [spe the second term on the right of

’b)]. Comparing the two sets of curves we {ind the closest agreement

o .
at cthe largest scales (i e , for m n < 2), which suggests that the

‘ <5

, large sfales are 'the first to.equilibrate. The apgreement xha.)‘}ufmller
. .

o
o
-
14.’&" . \D \
.
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.‘ b
.scales is not nearly as good but close enough, to ‘suggest that the -

simulatisn is indeed approaching equilibrium energy spectrum throughout.

? Finally, we present Table 5 which comﬁéres a few quantities taken from

Note that a

Q

the® simulation and the equilibrium solution, respectively.

comparison is also made between the ;qﬁilibrium solutions for § = 2/0.02

// ) and /0 02. In this connection, we comment that the similarity between

. [

these  two solutions is consistent with our findings in experiment 2,

where we considered both § = 2/0.02 and 6§ = /0.02.

L :

+
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4.5 Discussion e B

In this chapter we have considered the inviscid nonlinear stability
of topographically forced planetary flows consisting of a constant
westerly mean ‘zonal flow and a wave on the scale of™the sinusiodal
topography. The basic flows exist as finite-amplitude steady state
solutions of the barotropic vorticity equation (defined on a midlatqitud_e
f-plane ch;mnel). The nonlinear stability c;f these flows was tested by
means of numerical integi‘ation of a spectral analogue of the medel
equation where the initial conditions consisted of each steady solution
plus a small amplit\.f,de disturbance. In each case the small amplitude
disturbance represented the equilibrium flow's fastest-growing Llinear

/

X o
disturbance. Caﬁculations were made using sufficient ‘resolution to

ensure the accuracy of the initial linear eigenmodes as¥ well as the

o
time-dependent solutions.

As alluded to already, each of the eguilibrium flows tested was

" found to be lineax}ly unstable. In the first experiment, involving a

weaklyﬁunstable steady flow, the. linear analysis revealed that  the
instaB’iflity was of the Rayleigh type, which relied on zonal shears in
‘the basic fulow (as opposed to a form drag or ‘resonant interaction
-mechar;ism)A In addition, it was discovered that the fastest-growing
linear disturbance was dominated by two wave components whose relative‘
phase relationship' was the key to the 1in°ear, instability In t:he'
subsequlent simulation it was revbaled that nonlinear interééti;ns

between the mean zonal flow, the basic wave-and the disturbance resul@ed
in changes in this unsta\lzie phase relationship leading to a temporary
hatt in the disturbance' growth. At the time of this temporary

stabilization the energy of the initially small ‘amplitude disturbance

¢ : : .
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was found to comprise a significant fraction of the total energy. The

. ' 7
fact that the disturbance was able to achieve such a large amplitude (at
the expense of the mean zonal flow) indicates that weakly nomlinear
theory, such as that used by Deininger (1981), would not be capable of

explaining the behaviour of this simulation.
One of the more interesting features of the simulation just

8
described was the appearance, shortly after the initial stabilization of
N hY

"~

the linear disturbance, of a 15-day 'mean flow vacillation. This
vacillation, which eventually came to dominate the overall picture, was
rationalized wusing a simpléﬁ linear interference theory 1like that

proposed by 'Lindg;n et al. (1933). More vspecifically, it was argued
| . :

that the vacillation arose from the periodic interference between a

forced stationaryrwave on the{ scale of the topography and a free

-

travelling Rgssby wave (with the same horizontal wavenumber). The
vacillation seen in our model is Mteresting since similiar vacillations

have been found to exist in rotating annulus exgiﬁiments as well as in

the atmosphere (Lindzen et al:, 1982) . Another interesting feature bf

the model simulation was the.overall tendency of initial westerly mean
l

.2 e

zonal flow to‘decrease.

’,

The second simulation described in this chapter involved‘ﬂan
¢

.

qquilfbrfhm flow which was much more unstable than the first. (The

fastest-growing linear disturbance’ had an _ e-folding time  of

approximately five' dayss) As 1in the previous experiment, ' in this

simulation the mean zonal flow was-found to decrease as time passed. In

! -

fact, after only four e-folding times of the initial disturbance the

channel averaged zonal flow changed direction entirely (going from

westerly to easterly). Following this dramatic reversal the flow
A

~ o ) o
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c.

N -

eventually- settled down to a quasi-stable state representing a strong

easterly zonal flow being diverted southward over mountains and

¢

» v
northward over valleys. We note that additional experiments involving

@

a larger amplitude initial disturbance and a Gaussian topography

confirmed the generality of this sort of behaviour. [A similiar
behaviour as we encountered here was found .by Edelmann (1972) who

computed stationary solutions of the shallow water equations by means of
- .

so-called iterated time-averaging.]
In many*™ ways the asymptotic behaviour of the simulation just

described was found to be reminiscent of the statistical equilibria

derived by Salmon et al. (1976). 1In order to check the extent to which

the behaviour of this simulation can be understood as an approach

towards Statistical equilibrium, the latter was explicitly determined
' \

using the same initial conditio? and resolution as that used in the

integration.' Following a comparision of the simulation and the,
corresponding statistical equilibrium it-was discovered that indeed many
aspects of the numerical simulation could be interpreted as a
manifestation of the system evolving towards statistical equilibrium.
We believe that this result strengthens the case for utilizing the

o

methods of statistical mechanics when testing the stability of

-

equilibrium solutidns involvirg flow over topography.

g

Y
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CHAPTER 5

/ SUMMARY AND CONCLUSIOAS
This study has been concerned with the stability of free, and
topographically forced planetary waves. Instability theory has long

°

been central to our understanding of the fluctuations in the large-scale
circulation of the atmosphere, but it was only relatively recently that
these methods have bgen applied to flows which vary in both horizontal

(-}

directions, Although'ir').'e,tability studies involving parallel flows are
of J':nt:erest (as evidenced by the plethora of suc’h studies contained £n
the literature) their relevance to naturally occur"ing flows, such as the’
atmosphere, is somewhat questionable.' [As discussed in Chapter 1 the
time-averaged state of the atmosphere is <characterized by a
longitudinally varing flow as a consequence of topographic and local
thermal forcing.] Investigations dealing with the stability of parallel
flows are woefully inadequate, for example, when it comes to describing
1 .
the dynamirc; involved in regional cyclogenesis. 1In this investigation,
by way of coming a little closer to realit:.y“, we considered the stability
of ba;ic flows which véry in two horizontal directions. /
In Chapter 2, after formulating our mathematical model, we derived
afparticular class of exact steady-state solutions to the model equation
(i.e'. . the barotropic vorticity equation). Thes;‘ solutions involved the
diversion of a westerly mean zonal flow (i.e., where the average is
around latitude circles) by an idealized sinusiodal topegraphy. It has\
been shown in Derome (1984) that these particular finite-amplitude

solutions are, in the absence of dissipation, the same as those of

Charney ahd Eliassen (1949) except that the latter were .obtained as

- : )
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solutions to a corresponding linear problem. Finally, in the last_ -
section of Chapter 2 we derived a set of spectrai equations which would
enable us to study certain aspects of the linear and nonlinear stability’

of these solutions which could not be studied analytically.

In Chapter 3 we investigated the linear stability properties of the

equilibrium flows derived in the previous éhapter Here the equilibrium

flows were perturbed by infinitesimal perturbations and their stability

®

_ judged on the basis of whether or not the perturbations had nonzero

growth rates. Section 3.1 consti;uted a full parameéric analysis of the
linear stability of both free and“forced equilibrium flows of this sort

Iﬁ this section equilibrium flows w;re studied having the pgravest
possible meridional scale allowed by the pg-plane channel and a zo;al
wavenumber of either 1 or 2. The forced zonal-wavenumber-l flow was
found to have three major regions of instability in parameter space,
two of which had stationary growing perturbations The free Rossbhby wave
of that scale was stable for all amplitudes_ The forced zonal
wavenumber two wave ‘had two adjgcent instability domains, one on ‘sach
side of the resonant mean zonal wind The free wave became unstable for
sufficiently large amplitudes The results of this section were inter-

preted through the use of a severely truncated spectral model and were

related to those of previous studies with infinite ﬂ-planesi In" this

-

section we also reported the existence of a travelling subresonant tepo-

-

graphic instability which seems to have gone unnoticed in previous

'studies. .

It was revealed in the stability analysis of Section 3,1 that the
equilibrium flows were unstable to shear (Rayleigh), resonant

interaction and topographic (form drag) instabilities. Following chié.

L_.__-«-/
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in Section 3.2 the dependencé of the meridional structure of growing

e

c ' . perturbations on topographic instability was studied in more detail. In

this analysis perturbations were taken consisting of an arbitrary mean

i v - .
! zonal part and a wavy part which had the same zonal wavenumber as the

°

forcing but arbitrary meridional structure. This configuration allowed

us to: (1) isolate thoge instabilities which depended crucially on form

drag and (2)- investigate non-t_opog::'aphic effects on topographic

instability such as those arising from the convergence of Reynolds

stresses. (Parfurbations involving an arbitréry zonal structure were

also stfidied and it was found that, qualitatively speaking, the results

were unchanged.) Following a numerical analysis it wa; discovered, in

particutar, that unstable long waves (i.e., those with zonal wavelength

longer thakr\x\ their meridional wavelength) exist only under superresonant

. * conditions. This was found to contradict some previous res;ults, based
L on various ad hoc assumptions, whiclr} suggest that long waves are
unstable only when the flow 1s subresonant. Further, this modei

>

¥evealed the existence of some interesting t,rave}l.ling instabilities

which were shown to (depend bbthxon form drag and Reynolds stresses.
(In that these two mechanisms t;emporally alterﬁate in‘.supplying the
perturbation, the energy required to maintain its exponent}hj{‘growth.)

In Section 3.3 the linear instability.of a Weakly non-zonal basic
fl\_ﬁg was investi'g#ateﬁ numerically\ using. the spe;:tral method and
analytically via WKB theory. ‘Part of the motivation for this study lay
in the recent success of Frederiksen (1983) in studying the stability

properties of the time-averaged Northern Hemisphere flows for the imonth?

4
'of January and July 1978. Frederiksen found a good agreement betwee

the observed geographical &lstribution of synoptic scale eddy heat flux

« -
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“properties of free and forced
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and the distribution predicted by his numerically-de?ermined fa;tesf-
growing mode. Due, however, to--the complexity of his model he was not
able to fully comment on the basic dynamical meéhﬁnism& responsible for
the the local growth of his idealized zbnally‘varyiﬁg flows. - Our
barotropfic A-channel model, on the other hand, i; simple enough that a
WKB analysis, in ,conjunction with some techniques developed by
Pierrehumbegt (1984), could be used to shed some light on this problem,
Our numerical.analysislrevealed that the slowe;t-growing eigenmode
to a particular weak non-zonal basic flé% was stationary, on the scale
o% the topography &epended crucially on a form drag mechanism (of
the sort illuminated in Section 3.2). The fastest-growin& eigenmode, an

1

the other hand, did not involve a form drag mechanism but depended, .
rather, on the presence of .local shears inhere?:’qégyﬁihe basic flow

itself. A closer 1ook«ﬂat this mode revealed ; simple meridional
str&cture which was strongly modulated in the zonal direction.\ The peak
in the modulation pattern was associated with an easterly jet in the
basic flow which was particularly unstable as a result. of the beta
effect. A sgcondary maximum in the modulation pattern was assoclated
with regions of basic flow confluence and diffluence. The corresponding
analytic solution, acquired wusing the WKB apprbximation,. correctly
reproduced the 1location ;nd shape of the unstable wavepacket but
overestimated the frequency. lIn was suggested that hgdlthe basic flow
been more slowly varying in the zonal direction alb%tter agreement in

the frequency would also have been obtained.

v

Till Chapter 4 we hij/}fnly copsidered gthe linear instability

aves. Athough linear theory is useful in

A
predicting the initial behaviour of a smalladigturbance superimposed on

%

[y
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an unstable basic flow it is of little use once the former achieves any
appreciable amplitude. In Chapter 4, on the other hand, we used a fully
nonlinear spectral numerical model to study the evolution of a number of

disturbances past’ the point where the linearization procedure failed.
R

- W

Three basic experiments weke performed,‘\fhe first of which involved a

basic flow which was only weajly unstable. In tRe latter it was found

that -the basic flow was nonlinearly unstable in the sense that “the

initially very small amplitude ,disturbance grew nearly as large as the

.basi% wave itself. In this connection, and in centrast to the nonlinear .

equilibration mechanism proposed by Deininger (1981), it was discovered

.

that the growth expgrienced by the disturbance in the early stages of

the simulation was largely "at the expense of the energy-of the mean .

zonal part of the basic flow rather than the basic wave itself.. The
crucial role of the topography in this redistribution of energy between

the mean zonal flow and the eddies was noted. One of the more

. >
b

interesting features of this simulation was a mean flow vacillation’

B

which appeared half way into the simulation and which came to dominate

S
-

the flow thereafter. This vacillation was found to be the consequence

a

of the periodic interference between two waves with the same horizontal

'

wavenumber (that of the topography) but differremt' phase \speeds.

~

;
The second experiment described in Chapter’ 4 involved a basic flow

+*

which was initially much more unstable to linear disturbances. Once

again, the basic flow was found to be nonlinearly unstable. Moreover,

.

as  in the previous simulation the mean zonal flow decreased dramaticaflly

with time. In fact, in this particular simulation the channel-av‘eraged

\\

flow eventually reversed direction: going from westerly to .easterly.

.

Following this®reversal, the flow_appeared to settle into a quasi-steady

\ , f
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state, characterized by an easterly mean flow which was diverted

southward over mountains and northward over valleys. A similar sort of

long-term behaviour was- found in the third experiment. of Chapter 4 and

which iﬁvoived'a mqre complicatéd topograpﬁy (i.e., nonsinusoidal). The

S

various connections between these results and those of some previous

0
—& investigators

(1 e.,
%

Kasahara,

1966,

Edelmann, 1972; Egger and

Metz, 19#1; Yoden, 1987), who used models with varying degrees of

simplification,

was{ noted.

Finally,

at the end of Chapter 4 we

1 - ‘
exploited the methods of statistical mee*mics in order to rationalize

\
the asymptotic behaviour of some of dur simulacions. From this analysis

it was concluded that the long-term behaviour ,6& the simulations was

consistent with an approach towards statistical equilibriunm.

“
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APPENDIX A /

DETAILS OF THE DISPERSION RELATIBNSHIP

o

* The wvariobus ‘terms in the dispersion relationship [Eq. (26)]
< .

associated with the severely truncated model are given explicitly below.

» ﬂ - o\
a Wave dispersion
2n 2
“p = 1(us - AR C W
2n 2 . ‘
. w, = —Zme(us - ﬁ/Ke) - . (A 1b)
b Wave 1nteraction
A, = x’ ) (% w )t ' . 2
ge = (U L B/Kp) (g = BRI cy ju) (A 2a)
A '— x Ky : ;b
Y CRRN Z ISR (A.2b)
. L]
Y
. = 135 i .
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APPENDIX B

DECOUPLING OF THE STABILITY MATRIX

”~

As mentiogfdgin subsection 3 2 3, the stability matrix bdecouﬁfﬁg

a
into two gﬂbmaqrices We will show here that this is related ™o the

v

symmetries present in the perturbation equations.

- .
The equation for u’, the mean zonal perturbatiom wind, 1s obtained
. a
by zonally averaging (39) and takes the form Y
T u-a v kX)) - 8 [(f /Hh 8 p ) = 0 B 1)
(it BT ROYT] - 3 [(F /HOh By - (

Q

while the/gquation for ¢* (deviation from the zonal average), obtained
S

-

by shbgracting (B 1) from (39), can be written as
e i C_\
8,89 +u (A + K )3 P - V(& + KJu' + u'd [(fXiDh | =0

LA :
when only one zonal harmonic is allowed in the x direction In the fol-

(B 2y~

lowing discussion, wé will call a function even (odd) if it has the sta-
ted parity with respect to the middle of the channel (v = D/2) and we
will take h,, and hence Gs [see (40)], to be even By inspection of °
(B.1) and (B.2) we see that solutiogs with thfe followirj} parities are

possible; - (a) ¢'* and u’ both even.[i.e., n odd in th® sin(anry/D) of

w’* ﬁég/;l] and (b) w’* and 4’ both odd (n even). Solutions of thﬂ

first type have a G’ with a nonzero channe¥faverage and must involve the

form drag mechanism; they .are associated with the Ay matrix. Solugions

3

of the second type have a u’ with a zero chanmel average /and may or may

not involve the form drag mechanism, they are associated with the AR
I - e i s

matrix
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APPENDIX 5‘7 ]

® TOPOGRAPHIC INSTABILITY: THE DISPERSION RELATIONSHIP

-
I4
'

a.. Interaction Coefficients g ¢
~B The interaction coefficients in (50) are defined as follows N
~ N

Cog=C/3 . ¢

0 = - C/15 , Cyp = - C S and G, = 27 /35

i (C.1)

e

Qith c = lélgﬁ (D and L are- the channel width and length, sespectively)
° o LD - .

-»

o
n Bl

b The frequency near linear resonance

T To obtain an approximate expression for w, valid near linear ce-y

sonande, we take

2 2 ) )
A, =K -K_,=10 . s c.2
g~ s K= 0 “n o,
Writing the basic state amplitude in terms of Aﬂ' ie |,
- s, (c.3)
. a [o] Q ‘.,.ﬂ /‘\ l
g
. ) »
we note that Aﬂ > 0 implies subresonant flow and Aﬂ < 0 superresonant
i, flow. The fact that Y, © as 4g = 0 will allow us to neglect a number
- ) of teﬁms in (50) leading to a simple final result. For future reference
we note also that, near linear resonance,. ¢
R
) A0>O , A <0,
: (C7&) v
Y
Poand a,<0 if 5, - D/1< )2 (8, %,0 if 5 = /2)
] M .
[

.~
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For the channel dimensions -used in this study %, = 0.14 < /2 so that

» - '
A¢ < 0 (We mention that channel widths for which 8'1 > /2 are unreal-

istically large.) . .

, The solution to (50) can be written -

) b b ,11/2
w -3k 5-[1 - 4o/b ] *- 5

where, near resonance,

~
d A w2 A0 A2 A¢ A2 Ae ~2
= b - |—= —. — N
b=bg -2 C,. * -2 c¢6 = v (¢ bady
[ ¢ €
and ¢ =~ & A3 WACS @, ¢ -¢ ¢ e (L 6b)
- 86 ¢e fe pp Ba o

8 a 2 2 2 2
K9K¢K€Kﬁ

Since ac/b2 - A(E/Bz) AB-* 0 as ;3'3—' 0 the radicand 1n (€ 9) is positive
implying that unstable. near refonant flow is necessarily stationary
(ie, "w* is real=-and negative) To choose the appropriate sipn in
(C 5) econsideX the ratio of the terms in the square b-x‘.ackvt of (C 6

and note that

.
v

-1
llm 12 2 2 2 49 ' 2 .
; . o - ) N
which 1is approximately equal to - 6 78x10°%  when 5, =0 14 Since
A8
|6,] << 1 we can write
L S
’
a4 ’
~2 P -
0= f;C b T (e, 8)
. $¢ "a B
; KK
b€ . F
<
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It follows that b > 0 (since A4, > 0), which in turn, implies that the
negative sign in (C.5) must be:%éken if w’ is to be negative. From here

it is a simple matter to show that for bg = 0

2
. w =c¢/b , .
N
which is équivalent to (52) -

The following ratio is used to obtain (55) .

. -1
_ lim A2 2 A2 2 25 2
L ®s = a0 [(Ao(caﬂ/Kﬂ)/(A¢'C¢ﬁ/K¢] - _9'[1 ] (2/51)‘] (c.10)

-
A

which is approximately equal to - 0 028 when 6§, = 0 14,

o

@
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APPENDIX D
DETAILS OF THE TWO AND THREE TERM SYSTEMS
a. Three-term system ?
+ The equations governing ¢,, ¢; and ¢, are as follows
v 3
(0 + a)«¢, - b4, -0 )
-c ¢+ (vt d)¢, - ed, = 0 ‘ (D 1)
-
- £ ¢, +‘(w+g)485 - 0
2 o2 2 2 2

where a = k-[us + (uw/2)]-(KS - Kl)/Kl e = k u, (Ks - KS)/(Z K

b 2 2 2 B * 2 2 5 12

=k ”w'”,(s - K)/(2K) £o=kou, (K - K)/(2K)

i 2 2 ) 2 ) 2 a2 ’

C = k-uw-(KS - K )/(2 K,) g = k u (KS - K /K,

2 2. 2
d = ku_-(K_ - K)/K,
2 2 2

also K_ =k +n_ and n_=~p-wr for p=-1, 3 and 5

p P p b

-

Setting the deterrtinant of the coefficients of (D 1) to zero leads to an
¥

equation for w [see also (73)]; i.e.

3

w f B-w2 + Cw+ D=0 \ . . (D 2)

where B =a + d + g, C-dg+ad+ag-te-bc

and D=adg-afe-cgh




( Inverting (D.2) leads to (77) with the a,’'s and b,'s defined as follows

- -

2 2 2
! 4y = myn.n,

‘ S22 2 2 2 2 2 2 2 2, 20
a, = [us + (uW/Q)JnSnS(KS - nl) + usnlns(Ks_- Ka) +°usn1n3(Ks - Ks)

N . . 2 2 2 2 2 2
- a, = [u(ug + (u/2)F - (u /8)ng(K_ -~ n)(K_ - n,)
’ 2 2 2 2 2 2 2 ¢
+ [us - (uW/4)]n1(Ks - “3)("(} - ns)
r 2 2, 2 2 2 S .
) + gs[us + (uw/.Z)]na(Ks - nl)(Ks - ns)

2 2 2 2 2 2 2 2
a, = {[us + (uw/2.)] [us - (uw/2)] -[usuW/l&])(Ks - ”1)°st - na)(Ks - ng)

2 2 2 2 2 2 2 2 2
a, = [us(us + (uk/3)) - (LTW/4)][(KS - nl)(Ks - na) - nS(ZKs -n, - “3)]
# [ug - (u /BN, - n)(Ke - ny) - ng (2K - ng - a2)]
1 .
( o 2 2 2 2 2 2 2 2
+ us[us + (uW/Z)][(Ks - nl)(KS - ng) - nS(ZKS - n - ns)M

2 . ) 2 2 2 2 2

2y = [(uu /4) - (u_ + (u /2)) (u_ =~ (w/2))][(K - n ) - ny)
2 2 2 2 2

+ (K, - n - ng)(K_ - ng)] )

342 2, o 2 2 2
a =--[us+usuw-(uw/)][ s-nl-ns-nsj

8
T 2 ' 2 2 2 2 2
a; = [(u_+ (u /2)) (u, - (u /2)) - (usuw/4)][3Ks -ng -n, -n.] .,
- 2
aa=3$_+usuw-(uw/2) \
Cay = (ugur/4) - fug o+, /2] [ - (us2)] :
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\ 2 2 2 2 2 2 -
b, =nn;, +nng + n;n ) %
2 2 2 2 2 2 2 -
b3o- [(us + (uw/2)][n3(Ks -n)+ ng(K_ - n - n,))] N
1]
.- 2 2 2 2 2 2 2
+ us[nl(Ks - n,) + “s(Ks -n - ”3)] Y
* &
. 2,2 * 2 2 2 2 2
. + us[nl(Ks n.) + na(Ks -n - ng)j
2 ( -

.

b 2 2 2
-n1+n3+n5

o
[}

' 2 2
[3uS + (uS/E)](KS - ng - on, - ns) . ]

b, = - [3us + (u;:zsj

!/\
b Two-term svstem

»

. 1) DISPERSION:  RELATIONSHIP When 4, = 0 then the  equations

governing ¢, and 4, are obtained from (D 1) by setting e =t =« g~ 0

Similarily the two-term dispersion equation plven in (74) results [rom
&
’

(D.2) after setting e ~ f = g = 0

\

2) DETERMINATION OF ky Assuming w =~ w. 4wy | where w; =0 we

define kM to be the wavenumber which maximizes wy To determine kH we

simply set dpw, = 0 and then search for the largest of the real

a

positive roots of the resulting equation The condition dyw, - C leads

oy

to an 8th-order algebraic equation in powers of k' (found eas®v with
: ‘oA

the aid of an algebraic manipulator) the raots aof which were determined

t

. A
using a standard method, The coefficients of this equation are (note

AY

R n .2 ¢ e
tha;}qn multiplies k7, K o« dyu and K o~ 1/u,)




c. = 5

2 2
c, = 20111 + 201’13 ' . )
) \
4 4 4 2 2 2 2 2 2 2 2 2 2 ¢
c = - 5Ks +§“Qn3 + 30n, - 4n3KS + lmaKw - 6n KS - 4n1KW + 80n n,

4 3

[~ I .

6 4 2 2 8 4.2 42 4 2 2 4

c, = 20113 - 81r13Ks + 8n Kw + .20n1 - lanKS - 8anW + 120n1n3 + lZnSKS
2 2 2 2 2

- 8nK’K. - 8a°K' + 120n°n" + 8Kk - 40n°n’kK
3w s 1"g 1_3 1"y s 173 ¢

° -

.8 6 2 6 2 4 4 4 4 4 2 2 8 6 2
c, = 5n3 - 4n3Ks + 4n3KW - 10n3155 - lZnsKW - 20n3KwKs + 5n1 - 6n1KS

6 2 6 2 4 4 4 4. 4 4 8422 4 2 2
- llew + 80111n3 - 3n1K5 - 12n1KW + 1801‘11,n3 + %leKs - 72n1n3Ks

I

8422 01?26 2 4 2 8242 2 2 4 .4224
- nlnaKw + 80 n, - 68n1n31<s + nlnsKW - lZninsKs + 2 nlns](W
. ) g N .
2 2 2 2
+ 12n nyK K v P
1 w s ~
. 6 4 6 4 6 2 2 8 2 6 4 120 8 4 0 6§ 2 2
c, = - 4n3Ks - 16r131(w - l&naKwKS + 20n1n3 - 161711(w + 12 nn, - 4 nlnsKs

- 46 4 4 2 4 2 4 4 2 4 4 2 2 2 2 8
+ 120n1n3- 120n1”3K3 + 4n1n3Ks + Z6n1n3KW + 16n1n3KwKs + 20n1n3

2 6 2 2 4 4 ¢
- 40n.n_.K + 16n.n.K
1%3% g A R R

8K4 48K4 PRI it 30'g4 4az’K'z PR 8066
¢, = - n, s T 4ngK - dng WKS - anw + 30n n,~ 'nlns.s +. nlnaKw + 80n n,

6 4 2 6 4 2 6 2 4 6 2 4 6 2 2 2 4 8
-68nnK +8nnK +4nnK - 8r.n.K -4n.n KK + 30nn
1737 ¢ 1737y 1727 g 173w 173 'w's 173

4 6 7 8462 8444 4 4 4 24422 2 8 2
- 7_2n1n31(s ‘ rzlnaKw + 1 nlnsKs + 24n1n3Kw + 1 nlnaless - 6n~1n3Ks

2 8 2 2 6 4 2 8 4 26 2 2
-4nnkK + 4nn K -8nnd - 4nnK K
173y 1"7"383"¢g 17737y 173w s

. -
.

20 8 6 8 8 4K2 8 8 4 k2 20 6 8 40 8 GKQ 8 8 ‘K‘ 8 8 4K2K?
c, = nlns - nlns s + nrna W + nlna - n1n3 s + nlns s - nlna W s

4 8 2 4 6 4 4 6 2 2
-8 n K + I2nnK + 8nr.n K K
1737y 137 ¢ 1"3"w s

\

4 8 2
- 12n1n3K
f] S

588 4861(2 4862 4844 668K2 468K2 4554
= - © - -
Co nn, n,n, s + nlnSKw + nlnsKw non, s n,n, v + “1”3K5 \

6 6 4 8 6 2 2 4 8 4 48 4 4 8 2 2
-8nnkK - 4nn KK +nnk + 4nnK +4dnn KK
1737y 178" w's 1737 173w 1""3"w' s

v

/ ' . . 143 )




:

¢

T

Appendix E ~

<u> in the numerical model (h = 0)

a

i
L]

In this appendix we will show that in the absence of topography

o

(1 e., h = 0) the channel-averaged zonal flow, <u>, is conserved only in

the 1limit of infinite meridional resolution., To begin we recall (86)

and note that
4

-
0 for n even '
o

F (y=D) - F_(y=0) -{ sE.l)

-2/ for na odd,

-

where F, denotes a mean zonal basis function of the form /2cos(nnav/D)

It follows, therefore, that in the numerical model .

d <us 2/2' lk’ x’ a2y kY Ky e E 2
t u>= - ( s/ a)wﬁwccﬁfa e ta /[ ewﬂwr(ﬁra' (£
Bea @ Be

where n, is odd We also note that “Bea is nonzero only when Fﬁ and F,

are both eddy basis functions ‘and Fﬂ " F, Concentrating on the {nner
summation ‘on the right-most side of (E 2) we obs?rve that: (1) cach
product wﬁ¢€ appears twice, ongce multiplied by Kfcﬂza and ovca by
K;Ceﬁa' (2) Cefa ™ ° pea and () Bea ™ 0 if my A om, . It follows from
(1)-(3) that \

d 2/2 e ) o ! £
t<u> - wﬂw'(nt - ”ﬂ) cﬂ(a/na) %, (E. )
B<e a

where j{: denotes summation over all pairs (3,¢) but without repetition,
B<e ) . i



-

The interaction coefficients, Cheqr €3N obtained in explécit form

from Appendix A of Mitchell (1982).

NN

Using our notation we get

) n_+ng+n n_ +n -

/2 1 © P et A |
“Bea “Npprm(n, * nﬁ) - n_ + ng +n * n_+ *,B( }\ '
;E.&)
) ( -n_+n+n n_-n_+n
€ B a e B
+ i‘2—1rm(1'1 - n |G 4 121
LD € B -n +n,+n -n +n, -n
. € B8 a € B a

- °
where m = m, = mg and the deémominatorg ‘are assumed to be nonzero. Using

the fact that‘na is odd we can rewrite (E.4) more compactly as
)

P
o n +n ‘"'n +n n +n
Cﬂeaaj—g"m[l+('l)e ﬂ];in fn +nin [_9“ -
N € B a € B a
' (E.5)
7 ) _—
- n nﬂ ) . nﬂ
R ne-nﬂ-na ne-nﬂ+na
Letting s = n, + ng and d = n, - ng it follows from (E.5) that
(i) when d = 0 4 &
7
/ _Il 'f‘II l 1
Z(pea/“)“ m{1+ (-1) ; —
P 23 .
04 - -
- . (E.6)
. [ 1 1
dln + d n -

(ii) when.d = 0

Z(ﬂea/n)=/2 [1+(1)

Z (Z/n .~ ( (E.7)




)

ST T
e : .

(

Evaluating the infinite' series in.(E.6) and (E.7) we arrive at the

2
following
0 ifn »n
Z 2 e ;
- n) = E.8
¢ ﬂéa/ a) 4)2 ) o ( )
o —L-I—)-’rrm(n /8) @f nE - nﬂ .
, - . ;
It uf;ollodrs from (E.3) and (i‘..8), therefore, that dt<u$ - 0,  since
for . D¢~ ng the factor n": - ng = 0 while for n, » ng we havé that
. -, \
E(cﬂea/n;) = 0. It is crucial to understand that this result is true
"only if we have [Enfinite meridional resolution When we truncate at
v " some meridional wavenumber <u> isdnot identically conserved to the
extent to which ECcﬁea/n;) » 0 when n) = “ﬂ'
. ) As a final remark we comment tha_g“ in the special case where we
include only one meridional mode the channel-averaged zonal flow is
- indeed conserved. The latter can be seen by using n, = ”ﬂ in (E.3).
| .-
]
[
- f
=y ‘
, t
#\ a
N , -
~ la6 .




e ) Appendix F
E'and Z in the numez;ical model
° M “

= In this appendix we discuss the behaviour ‘o_f energy and potential

o

enstrophy in the numerical model (reéall that £ and Z are analytically
conserved). In partihcular we will show that neither of these quantities .
’ is idebnticallx conserved at finite N (where N 1is the number of
meridional wavenumbers in t:b{e spectral expansion) N

a. Energy

° &s concerns the energy we note that by definition:

— 3 2 v2 | %2
E=E+E>'--r%<ﬁ>+%<uA +v?‘> . (F.1)
— ’ - F-)

Substituting u=u, + 4(y,c) in (F.1) we get for the tendency of £:

[
*2

1 A2 %2 .
th = us-dt<u‘> + i-dt<u +u + v >’ . E(F.Z)\

»

From (11) it follows that the spectral versions of the two terms on the

% .
- right-hand side of (F.2) can be written: v a
' 4
d <u> = ZD X ¢ﬁ¢€ dea - }:.pawﬂ(fohe,w)cﬁ‘m and (F.3)
. Bea ) Bea ' ¢
- . 2 *2 *2 s -
v d<h o+ Vo> .- f k_/H F.4
, .. .'t u' u ‘Y Z( ﬂ/ ) ﬂ ' ) ( )

. - . 2, - .
where D = [Fa(}:-D) - Fa(y=0)]/Ka with F = ,/2cos(7may/D)

- 4

o
a

Now, by considering the sums in. (F.3) carefully (as in Appendix‘E‘) we

* find that when, and only when, N - 50/ the first term vanishs while the
ry s . "
'second term becomes: 9 . . ’
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@

, . dc<u> - Z(fobﬂ/}{)nﬁabﬂa ) (F.5)
. Ba .

P 3

.which'is simply fo<v(h/H)>. It féilows a?ter substituting (F.5) and

S -

(F.4) into (F.2) that enérgy is conserved as N -+ « but is, in general,

1

not conserved when N is finite owing to the mistreatment of d.<u> by the

(3

5 numerical scheme (this- is true even f£f h = 0). Notice that in ‘the case

- . .
where ug, = O, energy is conserved despite this latter fact,

z
13

™~

- b. Potential enstrophy <

4 ‘ « Now we will briefly consider the behaviour of potential enstrophy

in the numerical model. _Writing the potential enstrophy as \ -

B

k] ’ ‘
20 2
-~ Z = 2<Q’s = P<(av + By + £ h/H) > . _ , (F.6)
. 2 2 “.\ o] 1 . h
il
it follows that
- -
Iy ! 1 2 ’ . ’ 0 -
. . ) d,Z = 5:d.<(84) > + f d <u>+ £_-d <ap(h/i)> 7 (F.7)
l‘ * Q ’ ¥
4 After inspecting (F 7) we conclude that just as £ was not conserved for
. ! .
finite values of N neither is 2, in part due to the second term in
. ’ - L ) !
. (F.7). 1t is found, however, that in the spe¢ial case wherc ug, = 0 and
, B =0 (or where ‘ﬁ,y is projected onto the se? of basis functions) J
. potential enstrophy is identicélly conserved in the numerical model.

Despité the fact that E and 2 are not identically conserved
numerically, we have ggund'by experience, that they are nearly conserved

at moderate meridional resolutions (say, ., N =z 195)

e " .
il .
ke o . . . c
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j APPENDIX G .
E AND Z IN THE STATLSQECAL MECHANTCAL MODEL ’

“

" \.\

~

a Projettion of B-y onto our orthonormal basis \

4

As discussed in Appendix F, given our choice of basis functions (9)

£ and Z are not, in general, 1identically conserved numerically for a
- =~
finite N However, £ and Z are conserved numerically whenm (1) usﬁ= 0

(i e the mean-wind vanishs at the walls) and (2) when B y is projected
/ .

onto our orthonor%?I basis. With regards to the latter we write-

By = Zﬁl J2cos (niy/D)
1

(6 1)
® 2
where g = J - 2/28D/m1 when 1 1is odd
1 : A
1 0 when i 1is even
b $eady channel-averaged flow, <i> \ ’ .
Given the constant of proportionality K; [in (4] then
<U> = - <6y$> can be written (assuming h = O); . .
22 2 2 N
<u> = TZ'BJ./(ki - K ) ] ) (G 2)
1 .
| 3
n .
where . k; = m1/D. As discussed in the text it is our objective to

specify <> and K, and find 8 To this end we simply substitute (G.1)

into (G.2) and solve for B, with the result that (for 1 odd)
4 v

-

-1

2
8 ~ <a>‘[ @—Z(f(ﬁ: S iyt ] with 1?; - K:/(ﬂ/D)Q. (G 3)
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Figure 4. Reynolds stress {dot), form drag (triangle) ‘and' total zenal
momentum tendency (plus) for the case of Figure 3.
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Unstable subresonant zonal-wavenumber-1 flow [region II(a)].
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Figure 7 Unstable subresonant zonal-wavenumber-1 flow [region II(b)].

(a) Basic flow: ug = 12.5 m/s, Zha/H -0 2; .
(b) growing perturbation at ¢ = 0 w =~ - 0,18 + 0.09i day ' ;
(¢) as in (b) but at ¢t = 9 days.
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Figure 16 e-folding curves for various eddy truncations, NW .

(a) " NZ = 41 (dashed curve corresponds-to TR = [1,1]

. (b) NZ =9

(dashed curve corresponds to TR =~ [9,9] with
9 zonal waveénumbers).

2h/H = 0.2.
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Fiéure 23 Zonal and meridional enmergy spectra, E’(m) and E”(n),
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Figure 31 Experiment 1l: Steady.flow and disturbance. - !
(CINT = contour interval)
c (a) Steady flow stieamfunction ..(CINT = 0.1); ‘
o (b) FGLD structure at ¢t = 0; ) , -
) o . ' (c¢) positive contours of - (u’’ - v’ )3, u. (CINT'= 0.15).
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(a) 28nal and meridional energy spectra, E’(m) and £’ (n),

5
WAVENUMBER

(m,n)

)

,respectively; . .
(b) “disturbance vorticity, A\I!r (B,and‘e¢ waves excluded).
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Figure 32 Experiment I® Small scale structure in the FGLD.
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Figure 35 Experiment 1: Behaviour of the primary disturbapce waves .

Amplitude of the primary waves and the:basic wave :

an B

¢ and A,, respectively. § =0.02);
pgase of the B-wave: ﬂﬁ = tan’ (¢E/¢ﬁ),
phase sum: I§ = 05 v 0, + 0, .
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Figure 36 Experiment 1l: Streamfunction of the total flow, ‘%, and
the®disturbance vorticity, (", at specified times.

(a) % (£ ='100); (b) $ &= 200); (e) $ (& = 300 days);

(@) ¢9 (¢ ~100)% (e) ¢9 (¢ = 200);-(£) ¢9 (¢ = 300 days) .-
(In (a),(b) and (c) CINT = 0.1; in (d) CINT = 0.2; -
in (e) and (f) CINT = 1. '
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Figure 38
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Exp eriment 2.
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Channel-averaged flow, <u>. § = /0.02. The dashed
'line corresponds to the § = 2/0.02 simulation;
basic wave .trajectory. Dots at every 10 days.
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. r " Figure 39 " Experiment 2. (§ = /0.02). o : ) ¢ S
. . @ . R ) }I .
+ (a) Total streamfuriction, %, at t = 25| days, (CINT = 0.2);
‘ T - ) (b) mean zonal flow, U(y,t), at t = 25| days; . .
- g o . (c¢) total streamfunction, ', at-t = 60 days (CINT = 0.2);
. ) o 0 - (d) mean zonal flow, U(y,t) at t = 60'days; . » -
. - N ' "+ (e) energy spectra at t = 60 days. Basic wave excluded. - ' !
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Figure 41 Behaviour of initial easterly and westeérly zonal flow.
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(a) Topography: r = DY2 and ho/H = 0.1%
{(b) steady flow eddy streamfunction;

(c) FGLD at ¢t = O days. ( )* indicates that the mean
— zonal component has been removed.
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Figure 43 Experiment 3:. § = 2/0.02.
(a) Total and mean zonal energy, £ and E, respectively;
o (b) zonal wavenumber one, E(m=l), and two energy, E(m=2);
(c¢) eddy streamfunction and mean zonal flow: t = 100 days;

(d) eddy streamfunction.arnd mean zonal flow: t = 400 days.
In (¢), CINT = 0.15 and in (d), CINT = 0.05.
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Simulation at ¢ = 100 days versus statistlcal equilibrium.

(a) Simulation streamfunction (CINT = 0 1);
(b) equilibrium streamfunction (CINT -,p 1);
(c) energy spectra for the simulation and the statistlcal

‘ equlLabrium (the latter are shown as continvous curves) .
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Table 1

Table 2

Growth rate of the ‘topographic mode as a function of
truncation® M¥*= N and NL is the to
.of freédom.

¢
M NL 5,
10 210 2.33
12 300 2.13
14 406 1.56
16. 528 2.15
18 666 1.06
20 820 1.60
22 990 1.51
4

[ Y
v l - 4 )
M N NL &, e &
PA r
10 10 210 3.61 0.0
10° 5 - 105 3.61 0
5 5 55 3.54 .0
5 '35 3,44 .0
10 . 3 63 | 2.78 0.97
5 3, 33, 2.78 | 0.82
3 3 21 2.50 1.10

Growth rate and frequency of the fastest-growing mode
corresponding to Figure 22 as a function of truncation.
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o N ¢
. | Q
- N .
\
. Experiment 1. Experiment 2 . ‘.
M i r (days) ‘T (days) “r (days) = T (days) |-
\ » - ) '
2 — —_ 2.54 Y 36.66 '
3 27.06 32.97 Y —
9 56.. 50 33.90 ool © - 28.94 i
11 57.56 ‘32,87 _ 4.78 ¥ 28.27
"13 - 49.28 " 32.83 5.07 28.86
15 46.85 33.04 7 4.70 . 28.41
17 47.02 33.29 7 4.75 28.15
19 ~48.13 33.46 4.72 2&‘37

Table 3 Experiments 1 and 2: Effect of resolution on e-folding
) time, r, and period, T, for the fastest-growing linear
disturbance M = N, where M and N are the number of
zonal and meridional wavenumbers, xrespectively.

! )
7 ’
. = to* b
At (mins) M K E E <u>
15 15 1.499 - 0.570 0.378 - 1.336
15 13 1.490 0.577 0.398 -~ 1.340
o 5 15 |, 1.541  0.531 0.347 7 - 1.358
i - ;é\;" -
- " ¥
g * b

E, = 0.500 E, =1.578 E, = 1.555 <u> = 1.000

— N B .

Table 4 - Exheriment 2: Simulation sensitivity to resolution, M,
- and timestep, At,’at & = 60 days. § = /0.02 " :
3 , .
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3

Simulation (£=100)

Statistical Equilibrium

Table 5
4

»

, for t = 0 days.
"6 = /0.02 are also provided.

5§ = 2/0.02 § = 20 02 5§ = /0 02
-~ . »

Zu> - 1.685 (1.000) - 1.655 - 1.631
E 1.777 (0.631) 1.700 . 1,652
£ " 0.477 (1.631) 0.564 0.555
£ 0.273 (1.555) 0.342 0.336
a ~ ". 15.634 - 15.688
B, : 2.613 2 646

£ 1 -
» .

Experiment 4:

I3
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a

Simulation at £ ='100 days versus
statistical equilibrium. . Ther values in parenthesis are
Note that values for equilibrium at

)
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