
<-

:,C 

c 

• 1) 

F. 

c 

r 

" o 

0 

:=: 

, ' 
• 1 -' 11 

-~ 
r , 

• 0 

" 
" , 

-.-.\ ' 

... \ 
u 

..... 
A BAROTROPIC STABILITY STUDY, OF FREE AND FORCED PLANETARY W'AVES ' 

"tl 

• BY 

JOHN FYFE 

----- - - ---- -1 

A thesis submitted to the Faculty of Graduate Studies and Resear-ch in 

partial fulfilme,nt of the requir~ments(for the. aegree of ·Doctor o-f, 
\ 

Philosophy . 

.. 
) 1 

\ 

Department of Meteorology 

McGi11 University Ju1y' 19~7 
'-----

Montréal, Canada 

• 
© Jofm Fyfe 

-\. 
1987 

, . 
• > 

/'" • 
ft ~.~~.~ .. ~,~~ ____ ~ __________________ ~~~~ __ ~1t .. it~~. __ .. ~ ___________ ___ 



•• ~ 

". 

, , 

-. 

• 

, ,. . ' 
0,' 

, 

.~ 

ÀBSTRACT 

The s'tâbility -of frae ,and forced 'plan~tary wa'Ves in a ,8-.chann~1 is 

l' 

investiga~~d with a b~rotropic model. Thè forced waves at èquilibrium , 

result from -a' constant mean-zonal wind interacting with a fin~te-., 
amplitude topography. 

The frequenoias, of . aU infinftesimal pe.rturbations to the 
, . 

. equilibrülIll flows are determined' nÜlllerically as a function of the flow 

pa:t;'ameters. ,The l!esults' are interpreted u;>ing a trunëated .spectral 

. 
modeLand related to those of previous studie,s with Infinite fJ-planes .. 

'" 
In <!ontrast _to, sorne earlie'r analY~i!lcal studies we find that unstable 

, ,- 1 . -
long waves. (Lx:;' Ly) ,exist und~rO'~superresonant conditions. Ue 'also 

. , 
report on ,the exis~enc~ o~ an interesting travelling topo&raphic 

instabil.ity. 

t 
() The l.inear i,nstability of, a weakl"t: ~Q~"zonal flow is investigated 

numericaUy and analyticaUy (via WKB théory)'. . . Theo theory reproduces 

the qU<1litative nature of the numerically-èletermined f~ste~t- growing 

mode. 

Nonlinear Integrations, 
l, \ 

involving many degreés of freedom, rev.eal 

,that initially-infinitesimal di~turbànces mar grow exp~osi'Vely to -
finite-a~plitude. The longer~erm ,integrations are interpreted ~sing a 

statis~ical mechanical model. f 
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La stabilité des ondes planétaires libres et forcées-sur un canal p 
,. .0 

es t ét~(:liée avec un m~dèle barotrope. Les ~ on~es f~r~ées à' l' èquÙibre 

~ ré::;ul t~nt de l'interaction entre un vent 'zonal constant et une .. 
" 

topographie ayAnt une amplitude fini~. 
• Q.'~ .. 

,. 
0' 

l\ '." 
Les fféquences "de toutw: les' pert~rbations infinitésimales. des 

courants en équilibre ,sont déte~minées numériquement e~ fonct'ipn des 
# -

par~mè~res de l'écoulement: Lès résultats sont int~rprét~s en utilisant 

un modèle spectrai tronqué .et' ceux-ci sont co~pares aux études 

b&ta .a~térieu~l's. faites dans un canal sur .u~_.~lan 

trouvons, 1 pa; contraste, avec les, études analytiques antérieures, . i . <> 

infini. 

, ..... 

J 
qué 

'des ondes long~es instabl.es (Lx~;i.!~~), existen~. ,sous d.es conditions 
. "~~~.,(,17( 1 • 

, f!' ~.. ~';(1,111.-" , 

. superresonantes .• Il est intexesS'I;\rl,t·, de constater egalement 
~ • • • t ' ,;- ~;_ ;- 1 \ 

l'existence' 

d'une instabilité.topograpbique qui sé propage dans l'espace. 
/ \ ~ ~ 

L'instabilité linéaire d'un ècoulement légèrement non-zonal est 

étudiée numériquement et' an~lytictûement (par' la théorie WKB). La 

théorie reproduit la nature" qualitative du mode dé'terminé numériquement 
" 

qui .croît le plus rapi?ement. 

Les inté~ration~ non-linéai+es, impliquant plusieurs degrés de 

libetté ~évèîent que les perturbations. ini~iRles i~finitésimaies peuvent 

croître explosivement ,à une amplitude fipie. 

terme sont interprétées ~nutilisant un modèle , ' 

. ' 

..... '.~ 
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Les intégrations_ à. .. lbng 

m~'~anique' stat~t~~ue' ... 
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(a) Regions l and II(a); 
(b) , reglon n(b)'-

Unst~~le s~perresonant z?nal-wa~enumber-l flow (region"I). 

(a) 
(b) 

Basic flow: Us - 25 mis, 2ha./H - 0",02; . 
gr.owing" .' perturbation: w - O. 02i day-l. , . 

l ' .. 

152 

Reynolds stress (dot), form drag.(triangle).and total 153 
zonal momentum tendency (plus) for the case oflFigure 3. 

Ùnstable sub~esonant ~onal~wavenum~er~l flOW' [J gion U(.) 1. 154 
~ " 

(a) Basic flow: ,us - 18 rn/s, 2h~/H - 0.1; \ 
(b) growing perturbation:. w - O.li day-l; 

(c) d~m~ing pertur~atiO~: w - ". O. ~i claY"''-.. \ 

As in Figure 4 but for the case of Tigure 5. 155 

Unstable subresonant zonal-wavej:lumber-l fIO~' [regijn II (b) J. 156" 
1 

-
(a) Basic flow: Us - 12.5 rn/s, 2h IH - 0.2; \ 

(b) growing mode at t - 0: w - - a.~8 ... 0,09i day .1,'" 

(c) as in (b) but at t - 9 days, l' 
" 

~~-, 

As in Figure 4 but for the case of Figure 7 (M,'. 'O):'~ 157 
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Subresonant zonal-wavenumber-1 topographi~ instability. 

. (a) -Basic f1ow,: Us - 16.3 mis, 
(b) growing perturbation at t -

w - - 0.21 + 0.009i day_l 

~ 

2ho./H - 0.1; 
7T/8 ~ 25.8~ys: 

As in Figure 4 but for the case of Figure 9 at various 
times. The period T of the oscillation 1s129.5 days. 

As in Figure 2 but for the severe truncation. c ,_ 

\ 
Unstable zonal-'Wa'Venwnber-2 free Rossby wave flow. 

(a) Basic flow: U - 20 mis; ," 
'-~----. (bf" growing niode at t ·"0: w~·':O.Uf +-O.~6T-day+;--

(c) as in (b) but at t - 16 days. C 
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15 

16 

, 

(r' 

<j) 
As in ~igure 2 but for zonal-wavenumber-2 flows. 

l ' 

Unstab.1e zonal-wavenwnber-'2 flow (reson§lnt interaction). 

Cl (a) 
(b) 
(é) 

Basic flow: Us - 15.4 rn/s, 2ho./H - 0.001; 
growï~g mode (t - 0): w - -0.17 + 0.003i day·l; 
as in, (b) but at t - 9 days. 

<v 
Unstab1e subresonant zona1-wavenumber-2 flow 
(shear instability). 

(a) Ba~ic flow: Us - 15.4 rn/s, 2ho./H ~0.05; 
(b) growing mode (t - O):G w - - 0.18 + O.l1i day-l; 
(c) 40-day Hovmoller diagram at y - D/2. 

--. 
e-folding curves fpt various eddy tr':incations, NW. 

(a) NZ = 41 (dashed curve corresponds to Ti? - [l,l.J) ; 
(b) . NZ - 9 (1-ashed curve corresponds to TR - {9,9] with 

9 zonal wavenumbers) . 2ho./H - 0.2. 

Contours of e-folding time in days. • 
1 

Ca) TR [41,41] ; , 
. (b) TR ... [3.3] (dashed curve wap obtained analytically) . 
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Figure '. 
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23 

24 

25. 

. 
Subresonant travelling instability. 

Basie flow: - Us - \1.0 m/s,2hQ /H - 0.2; 
perturbation: w z - 0.4 + 0.04i day-1. Reynolds stress. 
(dot), form drag (triangle) and li' i'Plus). T <::: 16 days. 

Sub~esonant travelling instability; high resolution . . 
B.:rs:Î.e 'flow: Us - 13.0 rn/s, .2~Q/H -_?2; 
perturbation: w z - 0.3 + 0.02~ day . T z 20 days. 

Contours o'f nondimensional growth rate for the topographie 
mode. Dashed line i~he severe truneation neutra1 eurve. 

Topographie instâbi1ity (TR - [10,10]). 

Basic f1ow: Us ~ 13 rn/s, ho - 1 km; 
slowest-growing perturbation: wi ~ 2.33 

Non-topographic instability (TR ~ [10,10]). 

(a) 
(b) 

_ (e) 

Basie flow' u- - lrm/s h - 1 km' . s '0 ' 
basie flow zonal component, ü (in unit? of m s-l); 
fastest- growing perturbaÙon: wi z 3. 6} , ,wr - 0 

~ 

Zonal and meridional energy spectra, E'(m) and E'~), 
respeetively, eorresponding to the mode in Figure 22c. 

\ 
V 

Fastest-growing mode ~o basic flow o( Figure ?2a when 
'TR ~ [5,3]. Structure at't O' wi z 2.78 , ~r z-0.82 

, 
'. 

Local energy contributions from the fastes-t- growing mode. 
" 

(a) Local contribution to Gx + Gy energy conversion. 
(b) Local contribution to Gxy energy conversion. 

<:> 

26, Stability curves obtained using the two-term system. Q 

Ca) Most-unstable zonal wavenurnber, mM - (2rro)-1. kM , 
and growth rate, wi; 

Cb) phase speeds evaluated at mM ~ 
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31 
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ts in Figure. 26 but for the three-term system. 

Mapping of w(k) in the complex m - (2~6)-1.k 
Full lines corrpspond to constant wr lines. 
lines correspond to constant wi lines. 

plane. 
Dashed 

Complex wavehumber, m, versus zonal flow, 
branches of the dispersion relationsaip. 
are denoted m+ and m-. Dashed lLne with 
~olid line with circles. m~'; dashed line 
sol id 1ine with crosses, mi. 

uw(X) , for two 
The tworbrancRes 
. 1 + CLrc es, mr ; 

with crosses, ~r; 

As in Fi~~re 29 but for the two-term system. 

Experiment 1: Steady flow and ,disturbance. 
(CINT ~ contour interval) 

, (a) 

\. (b) 

Steady f10w streamfunction (GINT ~ 0.1); 
FGLD -'structure at t - O. (Amplitude is arbitrary in 
1inear theory 50 the contours are 1eft unlabeled.); 
positive contours of - (u,2 - v,2)a

x
ü. (GINT --0.15). 

.. 

34 

,Cc) 

(a) 
(b) 

Total and mean zonal energy, E and Ëb respectively; 
basic wave and disturbance energy, E and E d , ; 
respectively. (Note that the pQot of i b has been 
terminated early so that it would not obscure Ed) The 
dashed curve is the contributiorl to Ed from the P aHd e 
waves alone 

Experiment 1: Basic wave traJectory and the channel 
a:Veraged flow. .' 

(a) 1/Jb for 0 :5 t ~ 240 days (dots at every 40 days) ;-' 
(b) <g> for 0 ~ t ~ 240 days; 
(c) for 240 400 days; 1/J :5 t ~ 
(d) <u> for 240 ~ t ~ 400 days; 
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Figure 'fage 

35 Experiment 1: Behav'iour of the primary waves in the 
disturbance. 

(a) 

Cb) 
(c) 

Amplit~de of the primary waves and the ,basic wave; 
48' A€ and AQ , respectively. 15 - 0.02),; 
phase of the p-wave:' 8n - tan- (~/~p); 
phase sum: L8~- 8p + 8e + 8Q' , 

184 

• 36 0 Experiment 1 Streamfunction of the totaq flow, ~, and 185 
the disturbance vor~city, rd, at specified times 

37 

38 

39 

40 

41 

(a) ~ (t - 100); (b) ~ (t .. 200); (c) tP (t .. 300' days); p. 

(d) rd (t - 100); (e) rd (t - 200); (f) rd (t - 300 days). 
[In (a),(b) and (c) GINT - 0.1; in {d) GINT - 0.2; 
in (e) and Cf) GINT - 1.1 

,1.. 

Experiment 2 

(a) Steady flow streamfunction (GINT - 0.2); 
(b) FGLD structure at t - 0," 

'(c) total, E, and mean'zonal energy, E 5 -)002 

Experiment 2 

(a) Ghanne1-averaged f1ow, <u>. 5 - JO.02. The dashed 
1ine corresponds to the 5 - 2)0.02 simulation; 

(b) basic wave trajectory. Dots at every tO days. 

Experiment 2~ (5 - )0.02). 

186 

187 

188 

(a) Total streamfunction, ~, _at t - 25 day~ (GINT .. Q_2 J-:-------
(b) mean zonal flow, u(y"t), at t -,25 days; 
(c) total streamfunction, ~, a-t t - 60 days (GINT - a 2); 
( d) mean zonal flow, u(y, t) at t - 60 days; 
(e) energy spectra at t .. 60 day!; . Basic wave 

Q Experiment 2' Total, Z, and mean zonal pôtentia1 
enstrophy, ï. 5 - 2)0.92. , 

" . 

excluded. 

189 

Behaviour of initial easterl~ and w~st~r1y zonal flow. 190 

(a) ~U>; (b) ~b. us: ~ 16 mis in dimensional units. 
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Experiment 3: Localize~ topography. , 191 

-" 
(a) Topography: r - D/2 and hoiR - 0.1; 
(b) steady flow eddy streamfunction; 
(c) FGLD at t - 0 days. ( )* indicates that the mean 

~onal component has been removed. 

Experiment 3: 5 = 2)0.02. 

(a) Total and rnean zonal energy, E and E, respectively; 

192 

(b) zonal wavenumber one, E(m-l) , and,two energy, E(m=2); 6 

(c) eddy streamfunction and mean zonal flow: t = 100 days; 
(d) eddy stl7eamfunction and mean z'onal flow: 1: = 400 days., 

In (c), CINT - 0.15 and in Cd), CI~T = 0.05. 

Experimene 4: 5 = 2)0 02. 

(a) Total streamfunction at t = 0 days CCINT = 0.2), 
(b) potential vgrticity versus streamfunction at t = 0 days; 
( c ) <u> ; ( d) l/J . 

Simulation at t = 100 days versus statistical equilibrium. 

(a) 
(b) 
(ç) 

Simulation atreamfunction (eINT = 0.1); 
equilibrium streamfunction (eINT = 0.1); 
energy spectra·for the simulation and the statistical 
equilibrium (the latter are shown as continuous.curvesr. 
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3 Experime~ts 1 and 2: Efféct of reso1ution on e-fo1ding 196 
time, r, and period, T, ~or the fastest-growing 1inear 

-==aisturbanee. H - N, $here H and N are the number·of 
,:--~ zonal and meridional wavenurnbers, respeetye1y. 
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Experiment 2. Simulation sensitivity to resolution, H, 
and 'timestep, D.t, at t ~ 60 'pays. 6 - jO. 02,' 
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Experiment 4:· Simulation at-C ~ ioo days versus 
statistieal equi1ibrium. 'The values in parenthesis are 
for c - 0 days. Note that values for equilibrium at 
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STATEMENT OF ORIGINALITY 

... 
The original work contained in this study includes: 

~parametric analysis of the linear stability of free and forced 
\-

barotropic waves where approximate'analytic and accuraté numerical 

solutions are obtained (s~e Section 3.1): 

2) a d'emonstration of tne depe,nd.ence of topographie mstability on the 

meridional structure of the perturbation and the discovery of a 

travelLing topographiè instability ,(see Secti.on 3.2): 

. 
3) a study of the linear in~tability p(opep~ies of, a weakly non-zonal 

1 
forced fl,?w, where the severe truntation assumption often made in . '. 

such studies is relaxecl and whe.re the fastes.t.- growing mode-- is 

?nalyzed using local instability theo~y (s~e Section 3.3), 

4) an examination of· the nonl,inear --instability prop,erties of a nurnber 

-

of equilibrium flow: using a time-dependent spe.ctr.al model whicp 

încorporates many degrees of freedom (see Chap~er 4), 

." . 
\ 

lt should be known that the results of (1), (2) and (3) also 
, , 

'appear,' in a sligh.tly modified form''- in Fyfe .and Derome 1986 «J. Acmos., 

·Sei'., _43: 2162-2182), Fyfe a I1d Derome.1987a (ACmo:, and °Oceans, .25: 159-

• 1 

, 17'5) and Fyfe~and Derome 19t7b (Geophys. Ascrophys. ~luid Dyn., in" 

press) , < resp,ectively" The second author in each of these puolications 
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,author, in an .editorial capacity, ensured that the standard of English, 

and' ~f the presentation OF ,mathematics, figures and tables was • 
, sufficiently high for ~he purposes Qf publication. 
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CHAPTER l , 
INTRODUCTION 

One of the primary goals of dynamic meteorojogy is to exp1ain the 
,: \ 

~ 
existence and varîabil~ty of planétary sca1e waves in the 

. r,' .' '.'Co 
atmosphere . 

These waves, which _ exist as large-sca1e 9-eviations from the 

predominat~y westerly flow found in the mi~-troposphere, can be seen 
" . ' . 

quite c1ear1y on daily, weather maps, Moreove'r ~ due _ to the quasi-. , 
stationary,and persistent nature of these motions they oftèn a1so. c!ippeat: 

o~ time-averaged maps, where- the atmosphere has been averaged for a 

period of, say, one month or more. 
v -

Interestingly, the zonal a~ymmetries 
1 

observed on mean month1y or s~asonal maps tend to occ~r at approximately 

the same location lear ,after Severai plausible mechanisms have 

bee ·invoked to fact, inc1uding topographic forcing 

(Char y and E1iasse~, • local thermal forcing (Smagorinsky, 1953), 

. or both (Derome a~d Wiin-Nie1sèn, 1971). Although the earth's orographY 

. 
and thermal effects resulting from the continents anèl the oceans are 

p:robably 'the maj or factors in the, generation . of p1anétary waves, the 
, 
mechanisms 'involved are sti11 not fu11y understoQd. In: this study ~e 

will focus our attention on sorne of the theoretica1 aspects of f10w over 

and around a 1arge-sca1e topography. 
," 

Early' .theoretica1 attempts to explain the existence of p1anetary , ~ -, . 
sca1e motions inc1ude Rossby' s (1939) theory oI fre~ barotropic ~ 

planetary waves and Charney and E1iassen; s (1949) theory of waves 

forcad by the diversion of a mean zonal Jlow by the earth' s large-scale . 

" topog:::-aphy. A1though these c1assical theories .have. been us~ful in 

inte~preting the seasonal av~rage of ob.served planetary soale mo-tians 

1 

. " . 

.' 
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the y are not generally applicable to . - . trarisient snorter time, scale 
, . " 

p~epomena, such as, atmospheric blocking ,in the troposphere and sudden 
, 

~tming in the stratosphere. Atmospheric blocking ~is a pheno,menon 

wherein a large-scale quasi-stationary flow pa~tern i~ obsjrved to 
, 

amplify, occasionally to anomalousYy laxge amplitüde, and to'persist for 
• ,J' 

up to severai weeks. The drought in the Unitea Kingdom which persisted 
, . 

from the spring of 1975' to the ·sununèr . of. ):976 and the severe winter . , . : ... 
eXFeriehced ,in the Uni,ted States in 1977 both involved this sort of 

circulation. otller .hand: is a stratospheric 

in hig!). latitud~ regions. During 
. 

phenomenon, occuring during the winter 

o t~ese events the mean 'temperature' of the' ;'t'rat~sphere is dramati~ally 
, . 

increased and the circumpolar jet streap destroyed or even reversed. 
0'"' , ~ to •• 

It 

\~hou1d be mentioned that tropospheric blocking and stratospheric sudden 

warming often ~ccur simultaneous1Y . 

. 
One way to study the varia1Jility (i. e" transient bëhavoiour) of 

. . 
p1anetary waves is to undertak~ a linear. §tability analysis of one, or 

more, of the theoretically postu1ated ~ave types, , ., ~,g,,'- free Ros~by 

waves 
. 

or topogr.at>h~cal1y fo.~ 'waves, In _ s,uch, a study the basic flow, 

alone is steady (L~., time-independent), ls subjected to . -which 

lnfinite~ima1 perturbations'I If the perturbations grow without bourid . . 
th en the basic flo~ is 9deemed unstable; otherwis~' it is stable, 

.Lorenz (1972), Gill (1974), Coaker (1977) and Meid' (.1978), for example, 

• 'have ~tudied the line~r stability of li free. Rossby wave. o.on the other 

hand, Charney and~evore (19Î9~, 
\­

Charney and F1ieri (1981) 
{' 

and 

Vallis (1985). have ~s'tud~d the 'linear stability o'f a tQPograph~cal1y 
'loo . . 

- .. ',~ '" ' 
forced wave. Ali of the abOYA studies ~hare the commo~ assurnpt~on that 

() , . 
the large-scale flow is barotropic (i.e., the" density dep/nds only on 

• t 

. " 
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dt • •. . . 
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pressure) , This assumptiori ts supported by observations which indicate , 
th~t large~~cale waves in the winter ~re nearly equivalent barotropic in . ,~ 

. 
structure <Blackmon·et al" 1979; Wallace, 1983). Unde~ this assumption 

any instability which is encountered derives its energy solely from the 

kinetic energy' of the Qasic flow (as~\lming no externaL forcing or 

internai dJs~ipation). In order to reduce our own st:udy of the 

" stability of f~ee and f~rced waves to tractable proportions we will also-

assum~ bar~tfopic flow . .. 
Aft~J: . formu.lating "the mathematical model in Chapter 2, in 

Section.3.l we will present our, own findings regarding the I1hear 
~ J 

stabili ty- of free and topo'graphically forced planetary waves, Besidss 

presenti,ng ac~ura~e growt~ rate curve~ (obtained "Jsi,ng ~~r~ "degr~:~ of 

f~eedom than has ûsually been the case) over a w~de range of parameter , 
1 

v-alues ~e ~ill also employ suitably simplified models to help. analyze 
T, • 

the vari6us instabilities encountered . This section app~ars, wit~ only 
. ... 

• 
sÜght- modifications, in Fyfe and Derome (1986). In addition, the m9J.n . ' . 
results have been presented at the Stanstead Seminar, July 1984, and 

qppear in extend~d abstact form in Derome and Fyfe (1985), 

In Section 3.2 we cons ider more'. closely one""''''of the important 
.' , 

instabilities obtained in the previous sec~~n, n~mely form drag 
, 

'instability (someti11les referred to as topographie. ·instabil,ity) . This , . 
:'nstability mechanism was discoveredl by Chainey and Devore (1979) and . . 
since then numetous researchers have used simplified models (i.e_, Idw~ 

'-.... 
order spectral truncations) in an attemp.t to describe its essential 

chare~'teristics Hart, 1979; Charney and Flierl, 1981;' - / 

(e .g., 

Pedlos!:y, 1981; ~baldi et al., 1985).,:, In our numerica1 study we will 

, ~ . 
check the extent to which these earlier analytical. studies <:orrectl~ 

f 
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treated form d!ag instabiUey. 
,-

The r~sults of Section 3.2 appear in 

published form i~ Fyfe and Derome (1987a). 

One of the more intere~ting featurës of the large-scale atmospheri~ 

• <1 
-flow is the presence of ~refe.red geographical'regions of development of . -
transient éycl,one dist1.!~~ances. For instance, if one considers the 

" 
observed wintertime cir~ulation in the northern hemisphere two distinct" 

maxima in the variance of aIl variables at aIl levels in the troposphere 

, ' 

can be distinguished: one in the western Atlantic ocean and another in 

the western to central Pacific ~cean '(see 
1 

Blackmon, 197.6; 

Blackmon et al., 1977;. Lau,' 197&) .. To help understand how the large-

, scale planetary waves in the atmosphere determine the preferred reg,ions 

,of cyclogenesis (as weIl as the onset of blocking for that matter) a 
" , 

• r-
numbe:ç of, researchers have emp10yed linear instability theory (e. g. , 

PreQ.e~iksen, '1979a,b, 1980, 1982, t983; and .Niehaus, 1980, 1981). In 
" 

these stuçlies the linear stability of idealized, -wavy basic \ta~es was 

analyzed numerically, using either two-layer models" or tnulti-level 
, 

models. Athougp this approach has IJlet with considerable 
... 

success l.n 
o 

predicting, say, the geographicill distribt!-tion of synoptic scale eddy 
, , 

heat flux in the atmosphere there remaitled 
o 

a number of theoretical , 

questions rega~ding the stability 'calculations'. A lengthy discussion 

regarding these matters-can be found in Pierrehumbert (1984, hereafter 

referred to as PH,. 

In an attempt to 'addres-s sorne of the questi?ns regarding. the 

connection between instabilitj theory and r,egional cyClo~nesis, PH 

invoked the ~oncE;lpt of absolute instability (fh the sense of Merkine, .' 
3 

19779 . Within the framework of a two-1ayer p-plane model PH used this 

concept along with a WKB -ana1ysis to differentiate "local" unstable 

( 
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modes from "glôbal'" unstable modes . Local modes have péak amplitude 

downstream of the 'point of maximum baroclinicit~, decay ta zero· 

exponentially away 'from the peak and do not depend on zonal peri~dicity' , 

for their existence. Global modes, on the other hand, require periodic 
1 

boundary conditions and have growth rates which depend on the average 
- #., 

baroclinicity of the basic flow. It was argued by PB that the latter of 

• thesoe modes are nonphysical and as such should -not, by themsel'y'8s': be 
. \ 

used as prototypes for, reg~onal cyclogenesis. More generally, it was 

, suggested that the locally determined absolu~e growtp rate is a useful 

di~gnostic for assessing the instabi~ity properties of ~avy qasic flows . 
~ 

In Section 3.3 of this study the ,local (linearj instability 

properties of topographically forced barotropic flow on a ,B-"channel are 

investigated numerically using th~ spec~al method and analytically via 

WKB theory. 
. ~ 

The WKB theory which is employed relies on sorne of the 

techniques developed by PH in connection with~his baroclinic ins~ability , 

problem. By comparing the numerically-determined fastest- growing mode 

• with that ,obtained theoretica1ly we hope ta de1ineate sorne of the 

factors gover.ning the local'growth of 1inëar disturbances, The results 

of this study appear in Fyfe and ~erome (1987b). 
, 

One of the shortcomings of linear instability theory is that it 

prec1udes investigation of the dynam~cs underlying interactions between • 
/ 

$ , 

the basic state, such as a topographically forced stationary wave, and 

the superimposed disturbance with respect to which it: is unstable. In. 

a~ observationa1 study of this particular inte!ac~ion, Holopainen (1978) 

has ..=hown ,that the horizontal convergence of momentum fluX.,l associated 

w{tb the small and large scale edd~S" .is important to the stationary 

waves' long-time ~veFa$e, vorticity<balance. In an atùempt to understand 

5 
" 
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th~ interaction between the standing waves and the-transient eddies in 
'. -

the atmosphere wa-will study, in Chapter 4, the nonlinear evolution of 
. 

~ fini te-amplitude disturba~ces superimposed o~ stationary topographical1y 

fo'rced waves_ 

these 1inés 

mostly i"se a 

of freedom. 

/ 

Unlike sorne previous theoretica1. investigations a10ng 
\ 

(i.e., Deininger, 1981; Nathan and Loesch, 1987) we will 
- \. \.. 

fully nonlinea~ spectral model which employs many' degrees 
, . 

In addition, to help inte~pret the long-term béhaviour of 

our numerica1 simulations- we will use the methods of statistica1 . 
mechanics. 

. 
. The plan of the remainder of this thesis is as fo11ows: In 

. Ghapter 2 we 

Ghapter 4 we 

Fina1~y, in 

conclusions. 

'\ 
\ 

forlÎlulate the mathematical model while in Ghapter 3 and 
1 

present our linear and notl1inear results ,- respectively: 

'" 
\.. .. 

C.hapter 5, we summarize our resu1ts and state our 
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CHAPTER 2 
, . 

THE MODEL " 
o 

o 

The model which we will use is prob~bly the simplest one devis able 

which still retains the basic physical mech~is'ms responsible for the' 

instabili ty of fre.e and topographically, forced planetary waves, In 

section 2.1 

der~ve, and 

, r 
we will introduce the model, whi1e, in Section 2,2 we will 

\ ~ 

then.describe, a particular class of steady-state solutions 
\ ' 

r 

to ,the model equation. lt is the stability of these fini te-ampli tude 

steady-state flows 'which will mostly interest us in this study. In 

Section 2.3 we will formulate a set of trunca,ted spectral ~quations 

which will enable us to examine certain aspects of the stability. of 

which cannot be studied analytically. ' . 

2.1 Basic 

For these investigations we will use the oquasi-geostrophic 

barotropic vort~city equation which for inviscid flow 'on a midlatitude 
• 

~-plane may be written 

Q - ~~ + ~y + f h/H o 
( 1) 

, ' , 
where t.. and"J are the Lapla~ian and Jacobian operators, respectively, l/J 

is the s t!eamfunct ion , ~ the latitudinal derivative of the Coriolis 

parameter, fo a mfdlatitude value of the Coriolis parameter, H the mean 

depth of the barotropic atmosphere and h the topographie height. In-
• 

wLat follows we take the domain to be periodic in the zonal direction 

(x) with a fundamental length, L. We also assume that the flow is •• 
confined to a ~-plane channel bounde~ by rigid walls at y - 0 and r - D 

implying that 
• 

7. 
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v - â 't/J - 0 a t y - 0 and, y - D x (2) 

t 

F,,?-rther to this it can be demonstrated- by applying (2) that no meart 

• circulation may develop on tl)e walls if it does not exist at t - U-,. i. e. 
4> 

- 8 (8 ~).- 0 
. t Y 
fi' 

a 
a t y. . ..; 0 and y "" D . (3) 

where the overbar denotes a zonal average over'the fundamental length L. 

As we will see these boundary ~conditions .can~ represent rather strong, 

constralnts on the flow . 
./ 

1-

2.2 Steady'flo~ 

• 

'0 

o " 

The jteady solutions (denoted wi~h a tilde) to (1) are very easily 
. . , 

obtairied by sett~ng the time~derivative to zero a.nd -t:hen noting that " . ' . ' 

this implies-- Ci must be functional,ly related to ~,,, 1. e. Ci - G(~). 

However, in this inviscid setting this functional relationsh~p is 

indeterminate 'and CaR only be rigorously âetermined by considering the 
... 

inviscid limit of sonle ~ppropriatè viscous configuration. By way of 

avoidr the many technicÇll' difficulties associated with' this approach 

we will do as many others have '(e.g., CharJJQy'and Flierl, 1911\; 

Vallis, lpS5; Rarnbaldi et,al., 198~; Mukougawa and Hirota, 1986a, b) and 

specify it, a priori, to be Ifnear, i.e. 

2 _ ., 
K '1/J s 

( 4-) 

where Ks iS'a constant. The right-hand side of (4) may be interpreted~ 

as the leading order term in the Taylor series expansion. for G(~). A . 
further discussion ori the subject of this simplifying assurnption can be' 

found in Derome (1984) . 

. ' 
8 
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Equation (4) 1s a partial differential equation which is re\ati~ely .. 
- easily solvea bnee the parameters of the prob~em and topographie form is 

. , 

.. 

.­
• 

specified. In this study we will mostly eonsider a topography which can 

be described by a single Fourier component, i.e., 

h ·2sin(2~m x/L)sin(~n y/D) , 
a. a , a 

h(x.y) h ~ 0 . 
a r 

(5) 

1 

Here a denotes the" integer pair (ma.na) where ma and na are ~he zonal 

and meriqional wavenumoers, respeetively -[th~ reason fer the factor of 2 

in (5) will become apparent shortly]. With this topography the steady 

Ilow streamfunction arising from~) can be written as 

, 
~(x.y) U .y + ~ ·2sin(2~m x/L)s5n(~n y/DY s a a Cl 

(6a) 

" . , 

where (6~) 

• 2 
K' 

a 
2 

(2~m /L) 
Cl 

2 
+ (~n /D) 

a 
and (6c) 

It'should be noted 'that art addi~ion to (6a~of a zonal shea~ component 
~ 

of the form ~cos (LsY)" where' ~ ls arbitrary, is' permissible as long aSI 

Ls -'Ks ~Derome, 1984). 

If one interprets (6a) as representl.ng a deviation, from a .. 
basi~ mean-zonal flow, - us'y, then it can eàsily be shawn that ~* t5 a 

solutio.n of the linearized version of (1) (where the lineari,zation is 

abo,ut - Us -y). More signific~ntly " it is also an exact finite-amplitude 
" 

1 

solution and for this 'reason alone, should merit further st~dy. 

Admittedly, the'presénce of a small amount of friction may modify this 

finite-amplitude solution, as ~iscussed by Hart (1977). Notwithstanding 
~ 

this fact, we' believe that the inviscid limit is a justifiable starting 

point. 

9 
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.To gain a p9ysical understanding of (6) we follow Smith (1979) and,' 

in Eq. (7a-c), consider three separate cases corr~sponding to when the 

denominator of ~a. 'in (6b)\ i5 positive (i. e., superresopant), negative 

(subresonant) or zero (resonant) 

(a) 
2 J 2 

K - K 
a. s > 0 (la) 

Here the amplitude of the wave is positive and tpe streamlines are 

displacEjld northward over mountains (h > 0) and southward over valleys 

(h < 0). As the potential -vorticity conserving particles approach the 

mountain, Othe increase in h must be compensated by)' a decrease 
" 

in 

absolute vorticity, t:,.~ + f3y. In 'this superresonant flow the latter is 

i 

- 1 
effected by a relatively large decrease in 5...p as the particles move u 

northward, 'ins: reas in~ f3y. Naturally the rev~rse argument can be . , 
pres~nted for the flo~ over a valley This type 

Flg< lb. fo., the topography of Fig., la .In this and 'subsequent f' &,ures -. ,. . . , 
the basic flow Plot~ are for, the ~potential height in deca eteij' 

~ 

solid lines are positive contours and dashed \ines are negative 

contours. 

(b) 
2 2 

K - K < 0 
a. s 

(Th) 

.. . 
In this case-the respvnse is reversed wi~h a southwatd displacement . . . 

of the streamlines over mountains and a northward displacement over 

valleys (see Fig. lc)._ Again the absolute' vortiif}ty is rrèduced 

(increased) over high \l.9w~ ground but as the flow ~as a very large 
o l ' 

. scale and henee low relative vorti~ity, this ~s aecomplished by \a " 
,"- . 

different mechani~ invQlving south~ard t~orthw~rd) flow into region~ of 
. ' 

-, 

~ t-, 

" , ", 10 
" 
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smaller (larger) planetary vor~ity, ~y. Flows of this variety, wh~fl---------~ 

aTe eommonly referred to as subresonant, are characterized by a' 

dominance of the planetary vorticity advection over that of relative 

vorticity. 

. ~c) 
o 2 2 
K - K - 0 (7c) 

ct s 

Here the advection of relative and planetary vorticity cancel 
, 

resulting in an infini te , or in other words reS01l81lt, response ta the 

topographie io!eing. This singula~ity lS dssociated with the fact thot . ' 
there' exists an unforced (or free) solution to (4) represE'nting a 

• 

standing Rossby wave whose westward directed phase speed exactly 

b~ances the eas.tward advection of rélatlve vortlcity by the tlw m('1l1l 

... 
zonal wlnd, Us In whaü follows we often consider flows for wh-k,h (7e) .. 
is identieally true and in these situations it should he undel-;.tood tlJHl 

we are refernng to the free Rossby wave 'iolution (611) for which Il~ - 0, 

Us - P/K~ and ~ct 15 arbftrary 

2.3 Spectral equations 1 
As a first step towards solving the model (>(juation, undl't' gl·lwl'.11 

conditions, it will be nec.e~ary to spatilllly discretiu our Hy·;tl·fn 

With this objective in mind we expess the total <;treamfullct!oll ;w th!:! 

SUffi of a (time-indepepdent) linear term and an innnit", Fotlr1"r snrtttri. 

!/J(x,y.t) 

.. 
" 

.. 

F~x. '1) 
Il 

II 

-r 
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c, " 

where Fa(x,y) is a member of following orthonormal basis 

{ J2cos(~nay/D), 2sin(2~max/L)sin(~nay/D), 

2cos(2~m x/L)sin(~n y/DY } 
a a 

(9) 

T~e subscript a corresponds to the pair of wavenumbers (ma ,na) conneèeea 

with that basis function and a summation over a implies a symmation over 

aIl modes. Note that the inclusion of the linear eflrm in y in (8)~ill 

a~low us to specify a constant zonal flo~ on the walls. 

The set of basis functions (9) can be sQown to sati'sfy the 

following conditions. 

a F - 0 at y - 0 and Y'- D, x a 

(rob) - [ l ifa ~ (3 
<F F > = ôa (3 a (3 

0 ifa "'" f3 fJ-: 

where « » denotes the horizontal average. 

--.. 

« » - 1 JDJL )dxtly LD a o( .. 
and 

2 
M K ·F 

a a a 
(lOc) 

• From here it can be readily seen that this choice of basis functions 

ensures that the boundary conditions (2) and (3) are sattsfied for all 

time. 

Substituting (8) into (1) 'and applying a. Galerkin procedure leads 

to the fOI~OW,ing~t of equations governing the beha~i~ur of the set of 

real 'spectral coefficients, (l/la(t)} 

.. 
12 
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where C ~ <FnJ(F ,F » 
,{J!O ",! 0 

and 

\" tPn(f h /H)c n L '" 0 ~ ",Ht 

{JE 

b n - <F na F > 
",0 ,... X 0 

, . 

" 

(1 t) '.~ .r . \ 

In (ll),"cfJw and b{1a are the 'interaction cOf.'ffici,ents, Ka 15 th(' tW()' 

. 
o dimensiona1 wavenumher and (ha l is the.set of spectflll copffldt·l)t., 

"" 
corresponding to h(x,y) .• The eva1uation of (' /lnd fJU) bfJo 1,; 

Cl 

straightforward but cumbersome and is omi t t('d h('rc:> 1 (Il(' n'IHI('r 1 ... 
, 1 

referred to Appendix A of Mitchell (1982) for the detallHj. 
, 

" 1 . 
So far we have siùïp1y rep1aced the difficult, if not imposslhl(l . . . 

(Cl 
Q 

, solve nonllnear partial different la1 ('qUl1t Ion (11 "hy 011 "qulI U y 

, 

1 . 
intractab1e Infinite ~et of nonl inc'li.r dl ffp~-eTlt 1111 <'<)llllt 1011"" F\l1 { Ill' 1 

progress will require s,.hat we truncat<· ~tw 51wctflll ~('l'I('h f',lvl'lI hy 

(8) . It [ollows that' if one IncludN, lIII lhos(' IHI"lis 1.\lI1CI !OIHl 
If 

which ma:5 H 

fOI 

non1inear 
( 

spectral 

diff(>rentlal equations. , ,IW(' notp Ihat thi~ •. (nIIlC/lt{~d h('( ul 

equations has been used by mllny o.tlwr rNH~lIn.:lH·r". il1r l\J(IIIlf', 

, . 
Boville (1981) and Mukougl1wa lITld Hirotll (19861'»,J In Clwptul' ") Wl' will 

consider a linearized version of tÎ11s t1n'Il(~ syut('1n ot flqul1tlonfj ,whl}", 

in Chapter 4 we will f'lnploy th .. 119n11nf'nr roq\Jl1ttnllti thPInSfdvt'"" 

• 

/ 

" 
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LINEAR ANALYSIS 

.. 
. 

This chapter consists of three sections, ea~h of which deals with a 

different theoretical aspect.· of the linea.r stability of the fini te-

• amplitude steady-state flows d~rived in Section 2.2. The'first section 
. '. 

is oessentially a parame tric study of the linear stability of the 

eq\,lilibrium ,flows. More specifically, the frequency of aIl possible 

small-amplitude .perturbations ,.are calculated as a function OI thé 

strength 
~ 

of 
~ . 

the mean zonal 
1 wind, and the , arnplitud~ of the 

topogrJ!phy, '; ha' In this section a particular effort is made to 

characrterize the various instabiltny mechanisms. '. Following this, in-

Section 3.2, one of these instability mechanisms, narnely' forrn-drag 

instability, is considered in more detail. In this ~tudy the effect of 

the Reynolds stresses, which _ were absent ,in many eàrlier st_u~ies 

fe.g., Charney and'Devore" 1979; Hart', !1979; Charney and !lierl, 1981; 

Rambaldi et al., 1985J, on form-drag in~tability ls ernphasized, 

Finally, in Section 3.3 the stabili ty of a -particular weakly non-

_parallel -e'quilibrium flow is studied numerically, as in the previous 
.1' , • 

sections,- and analytically, using WKB theory. In this section, part' of , 

the intention is to clarify the factors governing the regional natur~ of , . 
sorne of the instabilities found in the earlier sec~ions. 

3.1 LINEAH STÀBILITY OF FREE AND FORCED TWO-DlMENSIONAL WAVES 

A large part of the initial motivatio~ for the present ,study arose 
.' 

from tÀe earlier work of Mitchell ~nd Derome (198~). The latte.r have 
• 

~ -
shown that rather rêalistic blQcking-like flow patterns could be 

, 
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generated a:S solutions 'of the quasi-geostrophic pptential vorticity 

equation. The stability of these steady state flows was ~ested by means 
o - • 

of numerical experiments in which a time-dependent version of the model .... . 
equation was integrated forward in time using as initial conditions c8eh 

of the equilibrium. flows plu~ perturbations of various amplitudes. 1 t 

wa,s shown that a number of the flows were stable to small-muplitud(> 

disturbances while-Others were not, but because of the complexity of the 

equilibrium 'solutions, no general statement eould bt> mad<.> about the 

stability of the solutions as a funètion of t~e parameters of the 

problem. 

_ In the present study we are conFerned wi th the lineitr stllbi li ty of <;1) 

finite-amplitude wavy flows generated as in Mitchell and Derome, bute for 

the simpler barotropic modei deseribed in Chapter 2. . " ' 
As discussed ln 

Section ~2. 2 our idealized equilibrium flows are ~omposed of Il COI,ISt /lnl . .{ 

zonal wind plus a single planetary wave and are, therefore, too s!mpl~ 

to be asso<!'iated' with blocking patterns. ln this study W'd ,~Q~·al not only \ 

. -
wf'th free planetary waves as in Lorenz (1972) and Gill (197/~) b.ut nlso 

ç,' 
with topog.raphically forced flows as l'ri Charney And ()eVor(' (1979). \O}" 

show here that topographie, shear (Rayleigh) ând resonal1t Instllbill.tllHl 

o 
are possible .• , eaeh having preferred 'regions in parameter SpllCC> • 

• 

3.1.1- An overview 

, 
Most of the instability mechanisms to be dcscribed twre hnv(. bc('n 

studied be~pre, but the present model mnkes it posnlbl(' to pn'sflnt thNII 

in .1 unified fashi6n whlch, it 18 hopt:'d. w111 b(' found ht"lpfl.ll. ln 

addition, it reveals thE' existence of IIn.lnRtl1bll1ty mf>chllnl"m whlch. to ~".' 

the authoJ;' s knowledge, has not bl'E'n f'ncou~('r('d h .. f or" - 1-"urtharm<Jrp, 

.. 
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e,model employed to obtain th~ g~~w~ rates uses many more degrees~of 

reedom to def1ne 'the struct~rè, oJ ~he perturbations -than in th~ above 
. 

studies, 50 that more accurate result:s are prese~tj!d. . . The aécuracy is 
ct '" • _ 

gained at the expense of having to obtain the eigenvalues of re!atively ,. 

large matrices, and in that sens~ our- approach is like that used by, for 
1 

examp1e, -Frederiksen (1979) and' Simmons '~t al ~ (1983);' one important . 
• 1: 

difference - is that we allow the perturbations to interact with the 

bottom orography, hence permitting topographie instability. The growth ~ 

, .' 
rates of the disturbances are presented as functions of the'amplitude.of 

the single hàrmonic ,orography and of the speed of the mean zonal wind 

speed.. The physics 'of the instability'mechanisms in' various parts of 
~ , 

parameter space is i11uminated by a~alyzing suitably simplified 
p -(truncated) models. , 

We show, in particular, that ~hen the equilib~ium flow is composed 

of a constant zonal wind Us plus the gravest possibl~ wave, the 

fo1lowing is obtained: (a) the free Rossby wave is stable, whatever its 

amplitude; (b) for the • topographica1ly forced wave, three major 

instabili ty regions are found in paramete'r space, two of which have 

; 
statianary growing perturbations. ane region corresponds to topographie 

instability (us somewhat su~erresonant), and the others being associated 

with shear or resonant triad instabili!=y (us subresonant). When the 

zonal wavelength of the equiHbrium wave is halved, the free Rossby 
4 • 

wave becomes unstable when its ~mplitude is sufficiently large. The 

topographically forced wave has two maj o,r regions of instability" . 
jroughly speaking. one 'on each side of the - resonant us' 

• 
Again the 

superresonant Us domain contains t9pographic ins~ability~hile the 

subre;onan~ one con tains either shear or reSQnant tr~ad in~tability . 

.... . ~. 
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While t:he classieal shear and resonant ,rinstability me~hanisms are 

weil understood, topographie instability' ,appears ta be less so, presum-
'. , 

ably because of its more recent history. To avoid' ·c.onfusion .later in 

"' the discussion, we wi~l now p~ovide a definition of topogrll~biC' in-

stability (or form .drag instaBil~ty as it is often referred to). Fol:' 

our purilOses, 'the porase tOPofraphi, instability is meant to describe a 

mechanism whereby a growing w~rturbation on the same senie as the 

-
, forcing produces a substantiai mean zonal flow with a nonzero meridionai 

ayerage through its interaction with the topography via form drag. In 

fact, such a zona~ (low," can only be generated by form ,~r\lg in a 

barotrbpic model. 
, 
In subs_ection. 3.1.2',we derive the linearized .. version of the model 

eqyation wl'file in subs'ecti'on 3.1. j we describe the mcthod of so1uÙon 

used to ob tain the growth rat-es and the perturbation struc tures. In 

subsection 3.l.4 we_present the nurnerical results and their llnlllysis in 
., , 

terms "of severely truncat,ed models whi'ie in subsection 3,1 J we 

summarize the main results. 

. r 

3.1.2 Perturbation equations . , 
It is our goal here ta study th~ stability of the st~ady flow ~ a~ 

a function of ma' na' )Js and ha/Ho To this end we obtain the "11ooar 

equation gqverning the evolution of a small amplitude perturbation w' to 

~. i.e., 

!/J(x,y.t) ~(x,y) + w'(x,y,t~, (12) 

Sub~tituting (12) into (1) and negle~til)g productlO of pcrt\Jrbn.t1ons 

yields 

.# 

i '. -'_'~~-_.~~ -~---------------------
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a t 6.1/J' + J(~, 61/J') + J(1/J'; 6~ + f3y) + J(ïp', f hjH) '- O.· (13) 
o • 

Physica11~ speaking, the second term in (13) represents the advectipn of 

perturl;lation vorticity by the basic flow, -while the third and fourth . 
involve the generation of vorticity by perturbation flow across lines of 

constant basic-state pote.ntial vorticity. The possibili ty of 

interaction between the per~urbation and the topography implied by- the 

fourth term distinguishes this' study from t;hose involving the s~ability, 
\ ,. 

of a free Rossby wave [e.g., Lorenz (1972) and Gill (1914»). 

To see more clearly the effect pf the to~ography o~ the perturba-

tion, it is instructive to consider the' zonal1y averaged perturbation 

momeDtum equation. If we let 

* ~(x,y,t) ~ 1/J(y,t) + ~ (x,y,t) (14) 

where the overbar represents a mean zonal average and an asterisk a ~ 

deviation from it, then it can eas[ly ohe shoWn that: .the integration of· 

(13) with respect to y, with the use of the bou?dary condition 

vey ~ 0) 0, yields 

* * *)~\ * a u' - - a (û v' + u ' v')'+ v' f h/H 
t Y - . 0 

• / i-"'(15) 

This equation shows that the mean 
•• u~' 

zond pert':lrbation v&1,oe~y can be 

a1tered by'two distinct pro~esses. The first is seen to be due to the 

convergence of the Reynolds stress, resu1ting from an interaction 

between the perturbàtion and the equilibrium flow, while the second i5 

J ' " 

associ~ted with form drag, that is, to the interaction between the per-

turbation and the topography. 

.. , 
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If we now integrate (15) from y - 0 to y - D we obtain 

r -f0 dt li'" dy ... ~ v' h dy 
o . H 0 

(16) 

so that if a perturbation has au' component ~ith a' nonzero aren 

• 
average, the latter must be the resu1t of an interaction with the t~pog-

raphy, ,~at is, of the for; drag mechanism. We will return ta a discus­

sion of (15) and (1?) in the Interpretation of-our results . 

. ' Assuming solutions of the form 

.... iW t 1 
~' - e ·~(x,y) (17)_ 

and using (4) a110w5 us to rewrite (13) as 

(18 ) 

'(ultimately, of course, we will be interested in the real pnrt of !/J' 

only.) Now we need only solve (18) for w(m
Q

.ll
Q

.lIs .hc/lI) iri ordH to 

estab1ish the parametric dom~in of ins~ability. 
J 

lt should be noted that {3 in this study is considen'd consttlnt.~ but 
. 

\. ' 

even if it were a free parametét it could be removed from the probl~m'by 

an appropriate nondimensionalization. It may be worthwhlle to digrvhS 
. . 

to outline one such procedure, since the nondimensional plltmnetets w~ich 

arise frequent1y occur in the 1iterature. By lntroduclng th~ 

nbndimensional variables * * (x ,y ) - Ks(x.y). and 

..,.* -
~ - (Ks/U)!/J, whe:e U 'is the yelocity amplitude ~f the basic WIlV~1 thr 

-'t" * ';/ 
w(mo ,nQ ,uS ,hQ /H,{3) problem Can be replaced py li W (mQ,lIQ.UKs/fJ.KsIKo) 

problem. The nondimens~onal. frequency 

19 
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c· When· p. • Ks/Kcf- 1 the w* problel1l- then reduces ta that of a- free 

Rossby·wa,ve stability analysis, which have been performed by 

Lorenz '(972) and Gill (1974) on an infini te ,B·p~ane. ,In agreeme~t_ wi'th 
, l ' 

Lorenz, Gill found that such flows will be uns table if the wave 

amplitude or waven~ber are sufficiently high. ~oreover, Gill observed 

that for vanish~r:.gly small basic·wave amplitude [i. e. , 

'H l!I UK;//3 « 0(1). in his notation]: the instability i~ actually of a 

resonant wave ~nteraction nature 'while for large amplitude [i.e., 

M - 0(1)] the instability is. ca~sed by the shearing motion of the, wave , 

itself. [Note that Mhere is different from that of Section 2.3.] Both 

of these authors used severely truncated F~urier expans~ons and as such 

were unable to specify accurate curves of marginal stabil!ty in the 

parameter space. Coaker (1977), using a numerical techn{que based on a 

third·'order 'Floquet system, wen~ a step further and actually obta'ined 

curves of marginal stability. A review of"" papers dea,ling wi th the 

stability of free waves can be found in Grotjahn (1984). ' 

In the forced case (Le., 1"" 1) it 'has been found 'that the 

topography may be destabilizing either because the topographié wave is , " 

u~stable to a resona'nt or a shear mechanism or because the topography 
o 

itSeŒ interacts favourably with the perturbation via form drag. This 
• 

latter instability, which will be described in detail shortly was first 
t 8 

discovered by Charney and' DeVore (197~) and wàs 1ater connè~ted with the 

shear and resonant 4mechanisID's by Charney and Flierl (1981). Both of 

these works relied on severely truncated systems and neither p-resentec;l 
, Q, • 

actual curves of stability. lt ig part of our purpose here to 'obtain 

, 1 such curves and, in addition, to relate our findings to those arising-

from a severely truncated model. 
J 
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~ Ret:urning to the dimensiona1 perturb~tion equatton we, will now' 

outline the nÎethod of solution .. , . 

,3.1.3 Method of s,olution. 

To s,olve the perturbation equation (18) we expand ~ using the basts 

defined in (9), i.e. 

A 

1/J(x,y.) (19) 

which after app1ying the Galerkin procedure to (18) leads to the 

fo11owing ~t of algebraic équations for the coefficients ~(J 

fi 

(20) 

e f 

, 2 2 
where ~f - Ks - Ke and a re~ers to the basic-state wave. Alternative1y, 

we cou1d have obtained (20) by 1inearizing the spectral equations given 

in (11). 

To this 'point we have transformed the perturbation equation (l~) 

into an infinite-order matrix eigenva1ue prob1em of the form 
~ ;' 

(A.- iwI)·X - 0 

1 
1 

(21) 

whère A is a real, and in general. nonsymmetric coefficient matrix 

depending ,on the basic state, l is the iden~ity matrix, X is the 

eigen~ector containing the components ~fJ' and w the eigenvalue We may 

. 
obtain approximate solutions by truncating the spectral 'series in (19) 

. 

for fJ il t mfJ - H and nfJ -. N "With this ttuncntion A is _4 

(N + 2NH) x (N + 2NH) matrix yielding N +- 2NH eigenvalùes °and N + 2NH 

) 

21 
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. eorresponding eigenveet"ors 1 Which we caleulated -numerically using 
Il 

'tt -

a 

series of ElSPACK routines (Garbow, ,1974) . lt was found, a post:eriori, 
_ . 

. that a [H,N] -' [8,4] truneation (l,eading td a 68x68 matrix ·eigenval~.e 

problem)-satisfaetorily resolved '.the dominant instabilities o'V'er the 

chosen range of parameters. 

~e fixed parameters in this analysis,~, fo, H; L and·p, have the 

• ,;1 • 

following assig~e~s '. 

6 
<D - 4xl0 m • 
f - 2n~in(8 ) o 0 

H 

L 

" IxlO m 

21fRcos (B ) 
o 

p - 20eos(O )/R 
o 

~ 

(22) 

" whete the rotational rate of the earth, 0, the radi~s of the e~rth, R, 

and the mid-channel latitude, '0
0

, are 7. 292xlO-- 5 S-l 
6 

6.37xlO m' and 

4S 0N, respeetiv~l~. Also, by way of reducing the pa~ameter space and 

hence the amount of ealeulation, we consider topographies which have 

, 
·only either a zonal-wavenumber1l or -2 str1-1eture and half an oscillation 

in the meridional direction, i.e., 

m 
a 

"\ 

(23) 

"" 
This selection is to sorne extent justified by thelfa~t that these two 

c,?mponents contain the bulk of the amplitude of tp.e earth' s topographie 

. In---the next subsection we present 
( 
an overall picture of the 

spectrum. 

\li 
s tabil i ty of zonal-wave.number -1 and - 2 bas ie flows. In bath cases we 

follow'the same format, by first analyzing the stability characteristics 
Q 
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of' the Rossby and \ thén the topographically forced wave from the 

point of ,:}ew curves and instability mechanisms (e.g. 1 

, 
form drag, resonant i teraction 0; ~shear instabïlity). Guided by the 

-
numericalj results, also use a severely trun.cated model' ta help 

distinguish the instabilities and ta obtain instability 

criteria .. 

... 
3.1.4 Parametric analysis~ 

Here we present' a ,stability analysis of free and topographically 
" - . ... 

fO,rced zonal-Ylavenùmbe.r-l :and -2 basic waves 

a. Zonal-wavenumber-l basic waVe 

1) fREE ROSSBY WAVE ! 

S in,ce, permi tt~ng a ,free Rossby wav.e to assume a' nonzero phase 'speed 
~ 

has the so~e effect, fl~om the point of view of stabiliti, of doppler 

shifting the phase speed of .its perturbation lt is sufficient to take it 

to be stationary. Given the channel par,ameters used here, the actual . 
mean zonal ~ind. required ta balance the meridional advection of 

\ 

p-lanetary vorticity and fix the RO,ssby wave in space is approximately 
, _ 1 

24.30 m s We found this zon~t·wavenumber-l, stationary, free Rossby 

wav~ to be,unconditionally stable We will now argue that tQe stab11ity 

of this wave is a consequence of the conservation of varlous quantities 
~ 

in the (system (i. e. , energy, enstrophy and zonal momet\tum) and' the 1n-
-~ ~" 

clusion of 1~teral boundaries . . .. ~ 

Fjortoft (1953) showed' that if both the kinetic energy and 

enstrophy (i. e. , mean square vorticity) are 
. 

to be conserved, energy must 

23 
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be transferred simultaneously to both shorter ànd longer wavelengths . . ' 
This dynami~ constraint, together with rne fact that the geometry of our 

- model fixes a lowe< bound on th~ se: of posstble w~venumbers, requ~res 

the basic wave· to interact 'with a mean zonal flow. Speeifieally, this . , 

(1,1) free Rossby wave must inte'ract with a (0,1) perturbation component 
oe.. •• 

o 

for instability to occur sineè it is ,the only mode with a sUialler 

wavenumber Since, however, the ('0,1) mode is cons,trained to remain 

constant in order to ma~ntain the conservati~n of zonal momentum (see 

(16) with h - 01, stability of the basle wave is guaranteed regardless 

of its amplitude This is essentia+1y the same reason why Baines (1976) 

found that Rossby-Haurwitz waves with a total wavenumber less than \ are 

unçonditlonally,stable. 

2) TOPOGRÀPHICALLY FORCED WAVE 

~ d... 
In contrdst to the free Rossby wave, the topographie wave may or 

may not be staèle, depending on the actual wave amplitude and the mean 

-zonal wind .. Despite the. complex relationship that exists between 
; . 

and ~hese parameters, ~as~ two general comments can.be 

made First, aU the maj or fnstabilities encountered here contain at 

1 least sorne mean zonal kinetic. ènergy (in contradistinction to pure~y 
1 t: 

z<>pal basic-statè instabilities, which contain no meân zonal kinetic 

." 
energy) . 

/ 

""" Second, they are aIl on roughly' the same. scale as the basic 
~ 5 

wave (ma~ing their resolution a relatively easy task). 

We begin the analysis by presenting e-folding curves (see Fig. 2~, 

T for the fastest- growing perturbations, as .a ofunction. of , topogr~lvic 
, 

lamplitude and mean r zonal ... wind o Following this we consider 

representative eil?enfunctions from ,the various regions of instability 

24 
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and propos,; an instability mechanism in ea~ case. Finally, motivateù 

by the rtumedcal results, we recommend a simple theorê1:ical model u~eful 

in analyzing these instabilities 

(i) Elgenvaiues From Fig. 2a we first observe that mean zonal 

winds exceeding appro~imately 26 m S_1 lend to unconditionlllly stable 

flows ThiS is a direct consequence of the conserv,ltlon of Il uniqul:' 

linear combination of horlzontalJ.y integrated perturhation (,llergy and 

~nstrophy (see Charney and Fl1erl, 1981, p 537) The p~act meRn zonaI­

t 
wind cutoff.,· 50 d.etermlned, depends on1y on the /3-p,lr,lIn<>tt'r ,1Ild th~ 

channel width, i e , 

_ 1 

26 24 m s 

The stablllzing influence of the 1dtera1 bOUlldolrtl'S 1·" ("/ld"lll ill (,li.). 

WhiCh shows, that for d fixed liS' stilbllitv lS (,llt.t11"d pr<lvld".\ tilt' 

boundaries are sufficiently close 

tyre and Shepherd (986) preSf'llt ~ IncE.' phY'>lC,ll inn·rpr,'t.1t ion 1)1 Thh 
- 4 

result and. aptly stress the tact th.lt it .lpplil·!' Illon' gl'tH'j.dlv tn 

finite amplitude disturbance!>, él!> iu-',!: dpmonstl.llpd hv /\I1\(1t'd (!'j(Jl!) 

On the near superre'309'ant side ,llltl cOlltiguO\l:. !..O rh .. !"",Olldl1t willd 

line (located at 

(denoted region 1) 

2 - 1 Us = 4 30 ms) 

• 
This inst<lbi li tv 

m;\ J or rI' g I,I~ rd 

ch.Jr.1Cr(·rized h'l 

amplified perturbatIons that are fixed in spac~ 

after considering a rppresentative pigenfuncr!on in :1lj!Jfof·çt 1011 il t!)f'j'<> 

should be nû doubt that this 15 trul-; the Ç.11H-< 
( 

J' .. ' 

/ 
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amplitudes can be exceedingly large and the quasi-geostrophic assumption 

underlying the entire t~ry often violated. 

On the subresonànt side of the resonant wind line are indicated - .. ,1 
tw~ 

distinct regions of instability [denoterl: II(a,b) J. Betwéen regi6'n l lmd . ' 
region II(a) lies an are a for which no growing perturbations whatsoever 

were fountl, while to-the left of region II(b) sorne ~ety limited areas of 

instability were disc~ed. The growth'rates in these regions are_rel-

atively small, however, and for this reason have not been shown. 

Growing perturbations from region II (b) are characteriaoed, by nOn-

" zero phase speeds whereas, those from region II (a) are fixed in space. 

In general, regions II (a, b) both involve structures dominated by the 

sarne three components, leading us to believe that they arise' from the 

same mechanism We will see in b . .• h su sectlon l.l. t at this instab il ity 
\. 

arises from shear i~tabili ty inherent in the topographie wave itself 

rather than through any direct interaction between the perturbation and 

the topography as in ,the case of form drag instability . 

. , . 
(ii) Eigenfunctions Now we consider a representative ei-genfunction 

from each of the three regions of instability described previolls1y. 

(a) Superresonant1 instabili ty. The typical growing pert~rbation 

from region l has a wavy part corresponding to, yet out of phase with, 

the topography. In addition to a dominant (1,1) component, the 

perturbatiott has also 
-,~ 

Fig. 3b, which is the 

/ 
a strong (0,1) component. For example, consider 

\ 

growing' perturbation to the ba,sic flow shpwn in 

lSuperresonant with ~7spect to this particular waven~ber. 
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Fig. 3a. 
. 

Since the perturbation amplitude is undetermined in this 

linear .theory, the ~ontours are left unlabe'led. .. 

", The physical m hanism respo~ble for this expanential growth 

( 

\) involves the in~e.rac ion between_ th,'-'p.erturbation- and bath the_' tcitlogra­

phy and the equilibrium wave. Referring again to Fig. 3b we see that 

-
Ehe perturbation high east of the mountain induces southerlies over the 

mountain and northerlies over the valley, leading ta vortex shrinking in 

the souther." half of the channel and vortex stretching in the northern 

half This implies a ge~ation of anticyclonic and cyc,lonic vortie i ty 

" , 
in the south and)' north, respectively, leading ta an incr€'<lsP ln th~ 

o 

zona11y averaged midchannel wind The strengthened wester1y zonal f10w, 

in turn, advects)he basic wave ridge in ·such a way as ta reinforee the 

-perturbation high, thereby ensuring a positive feedback of the 

~perturbation onto itself .. 

- 1 

To see more clearly the role of form drag in this ilWt.1bi lirv Wl' 

present Fig 4, which shows the distribution of the Reynolds strcs& and 

form drag for this representative case Form drag ~1early dominates the 
l, 

overall zonal momentum tendency and, d~ expected, b the sole :;Qurcp ut " 

the large (0,1) component The R~ynolds stress. on the other h .. wei', is 

much weaker but its (0,3) structure cloes moderato to 50mB ('xtt'nt the 

effect of the form drag, Note that an i,nalysis basad on sevPl'e trun-

cation, such as Charney and DeVore's (1979), would mbs {lltogerhor the 

\} 
effect of the Reynold§ stress 

'(b) Subresonant instability \.Je te i terClte thllt, in ~eneral. the 

unstable subresonant s~ructures from retions 1 l (a. b) are .,sdo~ip"tod by 

the,.....same three cOl?ponents. nllme l y th~ zon111 (0.2) llnd -thè ':IlIVV n, 2) and 

\ 
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~ 
(2,1) m~des. The'various struct~res themselves differ only, in that the 

" 

amplitudes of the thr~e 'dominant )modés have different, ratios ' .. All the 

me6ln 'zQnal c-omponents in th~se .pertzurbations [not only the dominant !. 

(0,2) one] have an even meridional wavenumber, 'and for this-reas~n_ ~heir 

growth is clearly not th~ conseqùence of a form-drag mechanisIR [see 

(16) 1 • We now present a representative eigenfunction from each of 

II (a. b) and ~lso a description of a weak subresanant to.pographic in-

stability lying outside regians II(a,b). 

Region II (a) . Growing pertttrbations found in regian II (a) have a 
.. 

small, but nonzero, mean zonal .part and a d~inant. zonal-wave~umber - 2 
, 

structure. Specifically, in increasing order of imp~rtance, the (0,2), 

(1,2) and (2,1) components dominate these structures. 
~ 
To illustrate 

, 
this. we present Figs. Sb. c. which show the growing and damped per-

turbations, 
, J 

respectively, ta the b-asic fJ6w of-' Fig. Sa ... , 
Recall that 

these perturbations have zero phase speeds so that the str~ctures shawn 

here will not change outside an overall exponential amplitude growth o.r 

decay. \ 

It is apparent that this instability is not a response to a form­

drag mechanism._but, rather arises from ~ tilted ridgejtrough mechanism 

(acting upon shears inherent in the topographie wave) involving the wavy 

(1,2) and (2,1) components. In simple terms, the tilted phase Unes 

seen in Figs. Sb, c a110w" the dis turbance to carry momentum away from 

(to) the jets in the basic· f1~w, causing the latter ta weaken r 
(strengthen) and, in turn, the disturbance to grow (dampen). lt should 

• 
, 

be mentioned that un1ike c1assical barotropic instability on a' ~urely' 

zonal basic flow. the d1st~bances to the two-dimensiona1 f10ws 

considered in this study invariably exhibit sorne modulation of the wave 
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structure along the zonal direction. As would be expected, Figs~ Sb, c 

show that the- modulation 1s on the scale of the equilibrium flow, 

namely, zonal wayenumber one. 

To assess their respective roles -in this instability, we presel'\t 
( 

the Reynolds-stress and form-drag distributions in Fig. 6. Noticè that 

the weak form drag works against the Reynolds stress in forcing the 

(0,2) component. 

Region II(b) As alréady mendoned, the region 'IICb) structures 

are dominated by the same components as in region II(a) and likely arise 

trom a similar if not iden.tical mechanism. Unlike the reg"ion II Cb) 

structures, ho~ver, these structures aIr undergo an amplitude 

modulation in time (other than exponer;tial grbwth) due tD the presence 

of a nonzero phase speed. Figs. 7b, e show a growing perturbation nt 
; 

l 
9 days, respec"tively, to the basic flow depicted in Fig 7a. o days and 

Throughout i~S perio~ "oi oscillation, thJ(perturbation has a pronounced 

zonal-wavenumber-2 structure similiar to the typical reg~on lI(n) 

perturbation shown in Fig. Sb. 
~. 

The R~ynolds-stress and form-drag profiles for the perturbation 'at 
,./ ~ • 1 

.. 

t - 0 are shown in Fig 8. Notice that,the form drag has a greater rel; ~ 

ative importance than in the region IICa) example. This might be eX"-

pected since the basic flow, which 15 further from linesr resonance. 

results in a reduced Reynolds stress contribJtion. 

At this point we would lil.<e to report that wedged between (and 

occ-asionally overlappirg), the tW() _major suhresonant ,instability region,> 

.,cir" sorne smal!' pockets of wh'at ap~ears to be travelling fOrl;T-drag in-

stabtlities (albeit weak). To the author's knowledgc aIl prevLous 

studies o.f topographie instabil ity have yielded stat ionar'l djsturbnnces. , 

29 

~. 

'\ 



c 
\ 

( 

c 

----- ------- ---------::--------:-r--,---:------~-,..,.~--:"Z,~".'?', 71,),:::"". -:-, -,-~---:-------; 

... 
We will now present an example of a travelling, sUQresônant topographie 

instability. 
1 

Consider, for' instance, the travel.ling perturbation in Fig. 9b ta 

the weakly unstable, subresonant basic flow of Fig. 9a. The Reynolds­
<l 

stress and forrn-drag profiles for the-perturbation at this and various 

other times are shown in Fig. la. The profiles at t - D, TI8, T/4 and 

3T/8 are simply the mirror images of those at t-T/2, 'ST/8, 3T/4.and 
~ ~., 1 ... 

! 

7T/B, respectively. 

The inspection of fig~res corresponding to Fig. 9b but at other 

1 • 
times (not sho~), as weIl as consideration of the frequency, reveals 

the" presence of a dominant westward-travelli-ng (1,1) wave, with phase 

speed of approximately 10.9 m S-l. 
': .. # 

This wave interacts. wtth l the topog-

raphy to produce e,tther a westward or eastward (O~nal ~low, depend-

• ing on its precise location in the channel (Fig. 10). lt is interesting 
"'-

that at t - 3T/4, when the effect of form drag is almost at the maximum 

over the eRtire oscillation of 29.5 qays, the profiles of Reynolds 

stress and form drag are_nearly identical tô those of the superreso~ant 

case of Fig. 4. Ta check that this in~tability is not merely an 

artifact of the truncation, we incrE!ased the resolution ta 

[H,N] - ["lS,lS]'c3;nd found that ft remained, with now an e-folding Jltil1\§l 
1 

of 35 d~ys (the additionàl components having increased the ~rowth rate). 

In any case, we ~~hould k~eP'.: in mind that this subresonant topographie 

• instability is still rather weak~ 

Pedlosky (1981), recognizing ,the limitations of severe truncation, 

found in his analytica~ ~~el that subresonant topographi~ instability 

was possible if the "zonal wavelength of .tbe topography v:as long enough 

(in pa~ticulal" if ka < 1rjj3D::::: 0.S81rjD ih our notation): Our (1,1) 
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t?pography certainly satisf!es this condition since ka ~ 9.28~/D. The 

subl!'esonant instability.,encountered here. however 1 should not be con­

fused wlth that discussed by Pedfosky. The instability here i5 not sta-

tionary nor is the basic state weakly forced and nearly resonant as re-

qüired under the assumptions of his model. As pertains the instability . . 
discussed by Pedlosky we will show in Section 3.2 that' {t. 15 in fact ~n 

artifact of ge~ere truncation. 

1 

(iii) Severely truncated model. Inspited by' the numer1cal results, , " 

we now consider the stabil~ty of a basic wave, denoted by a (which 15 

"arbitrary at this po~nt), to a perturbation made up of two oth~er W'1V(>~ 

and ra zonal- component, i. e. , 

~' _ e-lwt{~ J2cos(-D~n y) 
'\ -y -y 

f 

(2S) 

With n"O 105s of general~ty, we assume that 8 the various wavemunb<"rs 

are such that the interacting triads are\ .<-r, a, (J) and ({3. 0, (), The' 

frequency equation arisin~ from this confiiuration ls givan by the 

fif,~h-order eq~ation 

/ 
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( W , - bw + cw - 0 

~ 

where 

2 
+ (w 

e 

. -, 
, , 

(26a) 

(26b) 

r, 

(26c) 

In (26c) . ' s1gn the positi,ve is taken if ma - mp + me and the 
? \ 

negative sign if othe·~~sfl''''1':·.Also, C4p and we are just the linear ~ofsby 

:ave frequencies for the p and e components, whi1e Ape and Al~ meaSMre 
" -

the interaction effect of the p component with the e component and the 1 

u 
component with the ï3 component, respectively. [see App~ndix A. for . 
definitions of the various terms in (26).] 

~ , 

- ,- We now treat several special cases of (26) in,' order to permit a 

simple analytic analysis of the various instabilities to these zonal-

wavenumber-l basic states [a - (1,1)]. 
~ 

(a) Superresonant instabi1ity. Sinée the numerical resu1ts 'reveal 

that 'growing perturbations in the superresonant regime are dominated by 

the (0,1)" and (1,1) components, we set 1 - (0,1), P - (1,1) 

and e - (O~ 0) . The nontrivia1 frequencies so obtained, after putting 

we = 0 and Ape - 0 in (26), gre 

'. 

2 
W -

f3 

-.. 

(27) 
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In this case the necessary conditions for instability are obv.iously 

2 
W < - A -

/3 -y /3 
(28a) 

(28b) 

Referring to Appendix A. w~ see 'tha~ the second inequal i ty fixes 

. 
the range of potentially uns table mean zonal winds, 1. e. , 

/3/K~ < Us < /3/K~' (specifically. 24 30 m 5.
1 < usc < 26.24 m S-I) This 

is the /3-plane channel analog ~of a result obtained for an infinite {J. 

plane by Charney and Flierl (1981) Because {J ls po'sitivE> anef 

2 2 2 
we can write our result as K-y < Ks < K{J' which 1s che analog 

of Fjortoft's (1953) result regarding the seales of three modes involved 

in an energy exchange. Note that here, the resul t app lies ta a topo­

~raphically forced model Jand that the intermediate wavenumber is tlot 

that of the equilibrium streamfunction but that of the resonant scale 

associated with the mean zonal wind Us In short. then, the cane lus ion 

is that the growing d1sturbance must possess' at least two scales, om~ 

larger and one smaller than the resonant scale Ina bounded dama i n 

such as ours 1 the perturbation scale K'Y is bounded from b('low lInd 

therefore so is Ks' implying an upperbound on us' for in!,tfIhility. The 

first inequality, on the other hand, determines the minimwn basiG wave 

amp1itud~e required for instability ta occur . .. This condition can bt> 

physieally interpreted as demllnding that the dispersive effects of {J 

. 
(embodied in w{J) are overcame by those of wave interaction (measured by 

Many of the - essentiai features of regioh l instabil1ty ~~.g., 

resonant amplification and zero pnase spaed) are reflectéd in (27), and 

\. 
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indeed, even quantitative1y this expression serves' remarkab1y we1l. 

This 1ast point can be justified by comp~ring ~he superresonant e-

fo1ding curves of Fig. 2a and Fig. lla, the former being obtained with 
o 

the full numerical model and the latter using (27).' lt is interesting , 
f" 

to note that (27) consistently overestimates the insta~ility. A 

discussion ~n Othe topie df form-dr~g instability, using a simple system ., 
similar to this, can b~. found ln Buzzi et al. (1984) (see a1so 

Reve11 and Hoskins. 1984), 

pl The subresonant curv~s seen iri Figs. Ua .. b were obtained using a 

simple three component mode1, which we now describe. 

(b) Subresonant instability. The numer~ca1 evidence.suggests that 

we should select a perturbation composed of -y - (0,2), fJ': (1,2) and 

~ - (2,1) in order to mode1 the twq dominant subresonant- instabi1ities 

encoùntered here. For this truneated system the conserved 

energy/en~trophy integral diseussed earlier is userul (the reader _ls. 

again referred to Charney and Flier1, 1981), sinee it implies that the 

potenÜal1y unstable mean zonal winds lie between, and only between, 

2 2 1 fJ/KfJ and fJ/K6, in other words between approximately 6.43 m s~ and 

r9.89 m ~ _1. Returning to (26)_ we (ill argue that with this severe1y 

truneated, system eaeh of regions II(a,b) may be adequately reproduced 

" and' distinguished' on the basis 0::' the respective signs of b, c and 

To aid us in this " endeavour we reeall that region II(a) 

instabilities are stationary whereas those from region II(b) are 

'travelling. 

Upon inspec titlg the frequency equation (26) i t becomes apparent 

that perturbations of this sort to basic f10ws for whieh 
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2 
b - 4c < 0 

i 
o 

("29 ) 

are unstable and t{avelling. The neutral curve asso€iated with these 

perturbations' is obtained by making (29) ,an equ~lity, i.e., 

(30) 

This, in turn, yields a simple relationship between the critical 

topographie amplitudè and the constant mean., zonal wind speed. 

Figure l'lb shows the neutrai curve, so determinedt as weil as a few e-

folding eurves within the region. 

we coqclude that this low-order 

From a comparis6n of Figs. 2b and 

system reso~tremelY well 

reglon II(b) instability discussed earlier. 

llb 

the 

The fact that the curves in Fig 2b (and llb) are slanted towards 

the Us axis at approximately 15.4 m ~_1 may be understood with the ald 
• 

of (30). When the constant mean zonal wind speed is such that - ' 

(Jl) 

(which oecurs when Us =.15.4 m 5-
1

) then (30) will only be satisfied for 
/ 

a vanishing topographie amplitude. It fo110ws that the slope of the 

)J , 
e-fo1ding curves is connected to a resonant triad interaction between' 

the (1,2) and (2,1) components ,of che perturbation and che (1,1) cam-

1 panent of i:he basic state, at a constant ~ean wind' speed of approxlm-

To obtsin an explicit (albeit apprbximate) necessary condition for 
\ ' 

region II (a) inst.:tbility. we note chat 1~ the basic now ls unst~ble and 

'(1 
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(32) 

then the grô~ng perturbations will be s.tationary. Whether a part;cular 
, 

flow satisfing (32) is actually-unstable or not will depend on the si~ns 

of band c. For exampl'e, if c < 0, i.e., 
o 

(33j) 
(-

'II: • 

(33b)' 

the flow will be uns table', and since (32) is au~omatically satisfied the 
" 'Q 

growing perturbations will be statio~ary. In" this case the 

inequality in (33) presents two po&sibilities, either 

2 • A - > 0 and w + Af3€ < 0 -yf3 € 
(34a) 

or 

2 
A- < 0 and w + AI!E, > O. -yf3 € • 

(34b) 

( , 

Ft,om the definition it can be 'seen that (34a) 

~ 2 ' . 2 
demands ~/Kf3 < Us < f3/K-y. f~r inscability to (i.e. , 

6.43 ~ S·l < Us < 6.56, m's·1). 'This, therefore, is not a canaidate as ~ 
• Cl 

necessary, condition for regian II (a) 
1 

instab,ility, 
, 

since region II(a) 

instability occurs at mean.zonal winds exceeding 6.56 m s·1 
, " 

This range 

of unstable meap zonal winds corresponds, rather", ~ to a very narrow 

region of weak instab,ilitY,discovered with thé high~~ ··resolut:io1;l. ,mode! 

and ignored here because of the negligible growth rates involve~ The 

second pair of inequalities [i.e., (34b)J on the other hand, imply that 
" \ 

2 2 '1 l 
f3/K-y < Us ~ f3/K€ (6.56 m s~ < Us ~ 19.89, ~ s· ) for unstab1e flow .. The 

neutral curve corresponding to this region is shown in Fig. lia, again 
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with a few e-folding curves indicated. A tomparison of Figs 2a.and l1a , 
t 

should leave no doubt that 
.. J' 

(33a) and (34b) are Inecessary cond~ti.-àns-

related to reglon U(a) inst:"ability". 
1 

. The only d'ther candidate for instability. within this severe1y 

tr':I1cated setting, occurs wheIl b
2 

.-, 4c .> 0 with b < 0 and ~ > 0-. 

happen~ hQwever, that b > 0 for 2halH < 0.,7 and 6.43 m 
_1 

s 

< Us [19.89 - 1 of 
." 

m s , so that in the range parameters considered here 

this is not a ' Jiable possibility. The reason that b' > 0 in this 

parameter range is due to the fact' that the interaction effects embodied 

in the last two terms of b are $mall when compared with the dispersive 

effects of ~ as felt through the first two' terms oE b for these 

re!atively weakly forced and linearly nonresonant flows,' 
, , 

Although' this tr}lpcated system may have given us little physiclll 

insight into the subresonant zonal-wavenumber~l instabilities, it could 

yield - useMl information upon fur;h~~UdY, especially in c'on'nection 

with the relationship between the growth rates of perturbations and 

their periods. 

Now we turn to a stability analysis of zonal·wavenumber-2 basic 

waves. 

b, Zonal-wavenlJmber-2-.basic wave 

/, ( 
f ou~d \that the 

, ' 

1) FREE ROSSBY WAVE .. 
In contrast to th~ zonal-wav'enumber-l case. '~we 

zonal-wavenumber-2 free Rossby wave will be unstable if the wave. 

amplitude i5 large ~nough. 

.generated by. the basic wave .. 

Specifically, if the rms wind speed 

'\1 13,·1 h exceeds appro-ximate ly ,5 m. Si t e flow 
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will be unstable. 
~ 

On t~e other hand if the rms wind speed is too large, 

say greater th an approximately 75.0 m s - 1 the instability mechanism 

cuts off and stapility ensues. Also, no instability with an e-folding 

time less than 10.0 days was found. AlI of the above observations 

are based on a (M,N] - [10,10] truncation. Interestingly, ~he 

[M,N] ~ [8,4] truncation consistently overestimated the instaqility 

The fastest- growing perturbation to the free Rossby wave flow of 

Fig l2a is shown in Fig l2b (here the rms wind speed in ~ i~ 

20 0 m S-l). In thiS case the (M,N] = [,8,4] truncation was found to 

adequately resolve the instability This travelting disturbance is 

purely wavelll<e (i e , it contains abs()lutely no nonzero mean zonal 

components), and 'the Cl, 2), (3,1) and Cl, 1) compone\lts dominate the 

structure (in ascending order of y importance) Figure l2c tbows the same 

disturbance after 16 days (or. apprcxima .. -ely one-quarter of its total 

period of oscillation), with the exponential growth suppressed 

The stability of the free Rossby wave at small amplitude is con-

nected to boundedness of the domain. If this wave were unbounded in the 
, 

meridional direction, then when 1'1 « 1 (i.e, when the nonlinear effects 

are weak) it would be unst&~le via a second-order resonant interaction 

(as demonstrated by Gill, 1974)._ Plumb (1977) has shown, however, that . 
a very long wave (specifl.ca1.ly, if i ts longitudinal wavenumber ka is 

less than 0 68l~/D) in a meridionally bounded domain will be stable in 

this small amplitude limit In short, we conclude that th~s long Rossby ), 

wave (for which ka "" 0.56511'/D) is stable in this limit because of- the 

boundedness of the domain. 

( 
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2) TOPOGRAPHICALLY FORCED WAVE 

Here we follow the same format as befor~by considering the various 

instabilities in detail, beginning with eigenvalues, chen eige'n· 

functions, and finally, with â severely truncated system. 
? 

(i) Elgenvalues In Fig. 13 there are two
o 

major and distinct 

regions of instability separcged 'by th~ resonpnt wind line located' at 

approximately 19 89 m S·l. On the near superresonant side is ~ region 

(region III) of form drag instability', which as' before, lS charactèrized 
~ 

by perturbations which are resonantly ampllfied and fixed in space. 

S inc~ tpis instability arises from the same mechani:sm and hus the sume 

essential "feâtures as that from region' l, which we have alt-e.:1dy 

descrlbed ln detail, we wlll dispense wlth lt an.d consulet' the" 

subresonant instabillty (region IV) only 

In general, the real part of the frequencies of the growing 
~ 

perturbations frolJl region IV are nonzero, and hence the perturbations 
<, 

have the aJ:earance of propagating waves The fact that this region is 

contlgUOu~:o th_ r_.~nant .Ind l~ne .ugge.t. that It m.y be ln .ome "Y 

connect~c;l to the free Rossby·wave in).b iH ty encountered earHer. This 

conj ecture will be strengthened w~ we consider sorne typicul uns table 

eigenfunctions "'ttt subsection ii. Unlike the free Rossby·wave case, 

hnwevër, a resonant wave interaction is also possible, 
'-.i 

leading to 

nonzero growth rates even for vanishingly small bas ic wave ampljtt~.des. 

(This occurs in the limit as ha -- 0 and Us -;+ 15 37 -m s·l.) A severely 

truncated system formulated in subsection Hi will" help 'us understar:td 

th.> form this particular reJ,onant interaction takes. 

/ 
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Q A.s in the case of zonal-waven'umber-~ ~c flows, there are other 

subresonant instabilities, which because of the very small growth rates 

involved wt!" have chosen to ignore. Now we will consider two 

eigenfunctions from region IV, corresponding to small and large basic 

wave amplitude, respectively. 

(ii) Eigenfunccions. As in the case of the growing perturbations 

to th~ free Rossby wave, the s;rowing per,turbations to the forced wave in ~ 

• 
reg; on IV have no mean zona! part whatsoever. Obviously, then, form 

, 
drag is not operative here, leaving shear and resonant interaction 

mechanisms as the only instability candidates Let us consider the 

latter Urst. True resonant interaction instability involving a free 
~ 

Rossby wave exists only in the limit as the basic wave amplitude tend~ 

to zero (see Coaker, 1977). Moreover, the wavenurnbers of the triad 
<> 

o g 
involved in the resonant interaction must be such that a particular 

dispersion relâtionship is satisfied, a fact which in a bounded domain 

,everely re;tri:ts the set àf w~ in t~e perturbation lapable of 

undergoing a resonant interaction leading to instability. On the other 

hand, in the case of a topographica11y forced basic state, the fact that 

the mean zona~ wind, us' is a free par:ameter ma~es it significantly 

easier for this same dispersion relationship ta be satisfied for a given 
, J 

~ 

s~t of waves,' A case, in point is this particular zonal-wavenllmber-2. 

topographically forced basic state" 'it which, for 1:1 vanish~n\lY small .. 
! . 

forcing, the (1,1) and (1,2) components in the perturbatio~ resonan~ 

interact with the (2,1) compone~t'of'the . . ' 

• _ 1 
basic state at Us ~ 15.37 m~ , 

15 37 m 5-
1 

in Fig. 13). \ 
"', 

(as evidenced by the' zero located, 'at 
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\.Je have ehosen the topograpieally for .ed bas ie flow of Fig. l4a to " 

il1ustrate the resonant-wave irltéraetion' echanism encountered hère. 

.' . (The va1~e of H for this basic f10~ lS appr ximately 0.03 The gro\oling 

'perturbation to this basic flow is clearly dominated by the (l, 1) and 

(1,2) components. (See Fig. 14b.) Like instabili.y on a pure1y z.onal 

basic state this perturbation appears as a simple sinusoidal travelling 

wave ~in this case mov~ng westward at the rate of approximately 

undergoing an overall exponential amp l i fieat ion 

approximately 0 3% per day in this case). Under closer examination, 

however, i t is seen that the wave also exhibi ts sorne s l ight merldional 
, 

propagation as well as changes in i ts t 11 t as i t moves though the 

channel, due to the nonzonality of the basic state (See Fig. 14c.) 

As ln 'the free Rossby wave problern described by Gil1.L197/0, .1S the 

amplitude of the topographlcally forced Wélve 'is increased (hy, eJther 

increasing the topographic height or moving neal'e1' linear re&OIHlllcC) the , 
number of waves ln the perturbation able to abstract l'nergy froln the 

basic Uow significantly increases With this corne& II shift from a 

resonant, interaction mechBnism to a :;,hear-type instllbility (lI101'e 

characteristic ~f pure1y zonal basic flows) In the case lit hand, th(l 

first nonresonant interaction compone-nt ta appear, as the' b,!s lc \olaV(' 

amplitude is increased, ls th~ (3,1)" mod{". ,Reca.l1il1~ ttw C'llrlier frf'(' 

Rossby-wave analys is, the se component'i [1 t> , (1, 1), (1,.~) und (3,1) l 
1 

are' the sarne dominant modes in the growing structures encol.lntered thore 

This, then, gives us reason to believe that region IV inst.1bl11 ty (tpr 

f!1"'derately forced basi.c/states) may 'in some 'iense ~imply IJf'-'1~'<tt!nS1.0n 
of the free R~ssb~-wave instability 
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Consider the growing perturbation sho~ in Fig., 15b to the basic 
1 . ' 

• ",1 #~ • 

flow of F1g . .l5a (now, M z l.ü} .... The perturbation is quite localized in 

space with its maximum amplitude occuring between the basic-state ridge 

and trtmgh Hnes (indicated with R's and T's, respectively). To 

il1ustrate the tiIpe. evo1u .• on of this structure (with the exponential 

growth suppressed) a 40-day Hovmo11er diagram, through the center of the 

channel, is shown in Fig. 15ç. The perturbation seems to represent a 
J 

series of highs and lows aIl simultaneously undergoing a 35-day 

~ 
oscillation. The regions of maximum lnten~ification lie direct1y between 

the' basic - state ridge ari~ trough lines, where, in: fact, the la:rgest 

shears are to be found. This is consistènt wit~ Frederiksen (1979), who 

re1ated regions of maximum perturbation growth to f~at!-;;:es in the basic 

flow. (Frederiksen considered a ba,roclinic mode1 without topography 

which is, of course, qui te different from ours.) We mention that in 

Section 3.3 we will attempt to delineate the factors responsible for the 

~ local growth of linear disturbances such as this one. 

Now we will use a severely truncated model to help elttcidate the 

resonant interaction mechani"f1l responsible for the instability of the 

smal~7amplitude region IV basic flows. 

(iii) Se~erely truncated model. The dominant modes in the unstable 

resonant intetaction structures are (1,1) ând (1,2), so in (26) we 

set fJ ~ (1,1), e'" (1,2) and ignore the zonal compon~nt. With 

A~i - 0 we get that 

1 

(35) 
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from which the following necessary candi-tians for instability result: 

< - 4A 
f3€ 

and hence, (36a) 

(36b) 

t;s for perturbations in region II (b) , ' a growi:ng perturbation he J;"C 

has a nonzero phase speed since 

w 
r 

(37) 

Simil§l.rly, there is the p~ility of instabillty even for vanishing~y 

04( \ ~ small basic-wave am~litude T
1
is can be seen~y setting 

- 0 (38) 

in (36a) Now if (38) can'be met for sorne Us (which in this case occur~ 

at the now familiar value 
- 1 

Us :::: 15 37 m s- ) is of then (36) 

automatically satisfi",d and the flow will be unstable for any nonzero 

forci-flg. ' This is precisely the dispersion relationship to which we 
/, 

alluded in subsection ii 

3.1.5 otscussion 

A quasi-geostrophic p-plal!e channel model has been used to 

invéstigate the linear stability of free and fQrced barotropic planetary 

;;.raves. By expanding the perturbation-wave structure in - tenns of 

orthonormal basis fl,1nctions, the prob1em WliS cast in the form of li 

standard matrix eigenva1ue ~roblem. The cHlculations WE'ra made with 

. -
- sufficient resolution to ensure. the accuracy of the frequancies 

• 1 

(eigenvalues) and of the' wave structures (e1.genfunctions), but extensive 

, 1 
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use was made of severely truncated models in the interpretation of the 

results~ Calculations were made for an equilibriwn flow composed of a 

constant zonal flow and one wave having either a zonal-wavenumber-l or o 

-2 structure; in both cases the wave h~d the grave~t possible meridional 
1 

scale permitted by the channel. \ 
The free Rossb'y wave with zonal wavenumber 1 was found to be 

stable," whatev~r its, 1mplitude. The stability of this wave was seen to " . .. . 
be direcJ;ly linked to the boundedness of the domain. The topographi-

cally forced zonal wavenumber l, on the other hand, was found to be 

~ 
stable or unstable, depending on the amplitude of the topography and the 

strength of the constant mean zonal flow us' Three major and distinct 

regions of instability were found. One region, as expected from 

1 
Charney and DeVoÏ\e (1979), contained orographically unstable flows and 

\ . 

occurred for u~ somewhat superresonant. Two major unstable regimes were 

found w~en Us was subresonant, but only one having appreciable growth 

rates. InterestingIy, the growing perturbations were found' ta be 

staÙonary for two of the three uns table. domains of instability for this 
r 1 

wave. No sé!tisfflctory explanation for this result can be offered at 

this time. We also reported on the existence of a weak, subresonant 

and travelling topographie instability. .. 

As for zonal wavenumber 2, the free Rossby mode was found ta· be 

unstable when its amplitude was r;te'ither tao small nor too large, but 

\ 
th~ e-folding times ol?tained were always greater .than ten days. The 

forced wavenumber 2 showed two eontiguous regions of instability, one on 

ei ther side of the resonant u.s '. Naturall~ ,- the somewhat superresonnant 

Us was associated wlth orographie instability. In the subresonant 

region, the instability mechanism was shown to be assoeiated with a 
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• resonant-trisd interaction when the wave a~li tude was Sffiall and to 
1 

transform into shear (Rayleigh) instability as the wave amplitude was 

increased. The latter type of instSlbility was shown to be associated 

with somewhat more localized perturbations which change shape over a 

well-defined penoQ as they move through the equil ibtium wave. Being 

more localized , these perturbations require more modes for thair 

description and hence are less well represt'nted bv !'>l'\,prvlv trunclltep 

models than the ether main instabilitles reported upon in this poppr 

The model used in this study hdS, ,ldmittedly. il r.ltlll'r er\ldtl 

geometry but it has nevertheless been d useful tool in rlt·lIlonst"rat.ing tll(' 

strong constraints that tUe -finiteness of the domatn Clin lmpo';" 011 tht' 

flow, 

plane 

WhiCyCill (1974, refened ta in 

The model's slmplicity l1<1s ,d'io 
4 

J 

hi!, work w 1 t h llw" i Tl tIn i t l' "1']-

!Hl"., l h 1(' t () oh!.1 i 11 ,j 

reasonably coherent picture of the .,tabilttv jHojlPnll'" ot \)oth trI"> .Iml 

, 
• forced planetary waves and to delimit ln par,unetpr .,P,ICI' tl1\' rl·glon ... lli 

instability. Finally .. the investigation r<>\·(.;!l(.(\ tlll' IH:i!,t('llCt' nt 

travelling topo~r"lplllCclll.y unst.1ble W.\VC·,. 

been noticed before 

In the l1('xt section we w111 di:lC'\I<;s rhl' lonn·t!r.1p. in:'!",'lh!) i ly rn 
~ 

considerably more det,lil \Jp w111, ·in p.lrticu!lIr, 

structure the perturhlJtion must h.l'/I> (in ho(!l tlH" InI'llll 1.<111:11 Ilnd nddy 
~ , 

pi}rts) ln order to ,descrHre prop1:-r1 v t hl ... lm. t ,\ Il i 11t y , 
\ 

, 
J -

.- ' 

1 
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3.2 som~ effects of truneation on topographie instability 

The fact that zonal flows, whieh are otherwise stable, may be unst-

able in the presence of a sinusoidal topography was demonstrated by , , 

Charney and DeVore (1979) in their pioneer~ng paper on multiple equi-' 

\ 

libria. They found topographie instability to be a stat-ionary pheno-

menon assoeiated exclusively with the il!" near-superresonant equilibrium 

solution. Hart~(1979) arrived at the same charaeterization or topogra-

phie instability without, however, the eonstraint of severe truncation. 

Ha~t/s description of topographie instability is s~ill less th an general 

though, because of his assumption of a meridionally in~inite tôpography 

R~cognizing the limitations of Charney and DeVore/s severê 

truncation, and Hart's highly anisotropie orography, Pedlosky (1981) 

performed a multiple scaling analysis which indicated, among other 

things, a sensitivity to the meridiorNil sc.ale of the topography not 
, 
evident in the earlier studi~s. For instance, subresonant topographie 

. 
instability was found to exist when the racio of the cross-stream 

wavenumber'to the downstream wavenumber was large e~Ugh. Using a ~ome­

wnat more descriptive approach, and ~thout Pedlosky's stringent scaling 

assumptïons,. Rambaldi et al. (1985) derived essentially the same in-

stability criterion. , 
, -

AlI of the studie{ desc;ibed above are identical in at least one 

respect: they aIl describe a disturbance ta the forced equilibrium flow 

consisting of a single free ~ave, wi th the same zonal and meridional 

wavenumber as the forcing, and a mean zonal flôw.,. Aside from the 

benefit of analytric tractability,- this assumption ensures that any in-

stability that arises is the direct consequence of the presence .. of 

topography, rather th an a shear (or resonant) mechanism connected to the 

1 , , 
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equilibrium wave itseli. 
1 1 

Wit~ s~ch a disturbance the only way the menn 

" zonal flow can change (say exponential~y) is through the interaction of 
-, 

the iree wave wi th the' topography via forqt drag 1 s ince the Reyi101ds 

stresses are absent. 

In this study, besides the on-scale free wave we inelude mnny ather 

waves in the perturbation, all having the same zondl wavenulllber as the 

topography but different llIeridional wavenumbers, This nl:'cessarilv 

entaiis a numerical approach to the stabilitv analysis Following from 

'he previous Section, our philosophy here 1S to resolve 11 gi~en in-

stability as well as possible and then by systematic simpllfication 

(i e , successive truncations) determine the minimum syste~requiretl for 

o 

Hs reasonably true- description. Ta Circumvent the problC'1lI of Ji$Î' nt.1I1-

gling one instabihty mech.:miSIn from another we wlll l>xplo Lt l'l'ri/lin 

symmetries Inherent in the resultant matrix eigenvnlue problem 

• In subsectlon 3 2 1 we lNi11 rewrite the perturbation ('quat'inns in il 

manner better suited to tins particuLlr whi lI! in 

subsection 3.2 2. 'We will rederive the in!>t'lbility criterion rn('I1Lion~\d 

earlier so that the pitfalls of sorne seVf.>re trunc.1tiOT1!à ilr\' madl' apllil o 

\ 
rent. In subsectl.on 3 2 3 We present our m.llnerte:.!l r(ls\Jlt~ .1011 in 

subsection 3 2 4 summarize our findings, 

3,2.1 Perturbation equations revi~ited 

To see more clearlv saIne of the " effects of tnltlclltion on 

topographie instabili.ty. it i5 essentlal th:lL we n'd('>riv(1 l'he <'quatlon' 

fe,:: the total perturb.ltion. !/J'. il'> weIl as ~eparate eql.1ationo;' governing 

its mean zonal and dd t Jo' and .h'*. e y p,lr s. '1' '1' 

• 1 

/ 
/ 
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a. !{J',=equat:.ion 

'\ 
Using'{~-(6) in (13) we immediately arrive at 

2 
8 ~!{J' ~ u (~ + K )8 !{J' 

t s s x 

1 
(39) 

_ 2 

+ J [l/J ,(fi + K ) 1/J 1 J + J [1/J l , (f IR) h J .. 0 
s a 0 S 

where ~s and hs are the wavy parts of ~ and h, respectively, i.e. 
~ • 

o 

(40) 

wi th Ji. = ma and T/ - na' The third and fourth terms in (39) represent 

the interaction of the perturbation wi th the equilibrium wave and the 
r 

topography, respectively. 

In preparation for- what is to follow, we partition the wavy part of 

the disturbance into a component: on the same scale as the topography 

(denoted by -,p~ + l/J~) and a part with the sarne 
'../ 

zonai but different (and 

arbitrary) rneridional structure (denoted by R; + R~), i.e., 

* , !{J' N' + l/J') + (R 1 + R') where (41) s c s c 

7 1 

<Xl co 

!{J' !{JT/·FT/ l/J' .. l/JT/ . FT! R' ... I!{Jn. r R' I!{J~ r s s s c c c s s s c c 
n;éT/ nr'T! 

FT/ .. 2sin(kx)sin(1 y) 
s 71 

FT! - 2cos(kx)sin(1 y) 
" C T! 

with 

k - 2~J1.IL and 171 = ~T!ID. 
o \ 

It is important to understand that, we are 

ignoring all cornponents 
1 

other th an that of the 

in the perturbation with a zonal wavenurn1fer 

topographie forcing. Quali tatively speaking, 

the rnaj or conclusions contéfined in this study' are independent of chis 

assumption (a~ will be demonstrated). 
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b. "lf"-equat:ion 

Using (40) - (41) in (15) leads to the following equation which 

governs il' - - Byïii', 

a u' 
t 

d <u'> 
t 

-=~------~~--~. - a (u. a R' - vaR') 
y sxc sye 

(f IH) ·<h a 1/>'> 
o s x c 

-

~42) 

(43) 

The first term on the right-hand sicIè of (42), involving R~ on1y, 

represents the interaction between the equilibrium flow and t?'é 

disturbance, through the convergence of Reynolds stresses Thé last two 

terms invo l ve the interaction between the topography and the 

perturbation, via form drag. Note that bath the on-sca1e
6 

(J/!~) dnd off­

scale (R~) parts of the perturbation are~operative here. "From (43) it 
' 0

0 , \ 
can be seen that on1y the perturbation component, on the scale of, and 

900 out of phase with, the forcing affects the tendency of the channe1-
, 

av'~raged dist1Jrbance zonal momentum. 

,(. 

c l/J' -equat:ion 

supstit,!tirig (41) in (39), multiplying by F~ and }rttègr."1ting over 

the channel yields an equation for a~~;, 

(44) 

h K
2 ,2 

W ere '1 - K + l~ i5 the two-dimension,Il wavenumber of the top;'graphy. 

.A similiilr procedure gbes an evolution equation ror ae"':: 

f 
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<Fq.v (a
2 

+ K
2

)U /> + (f /H)<F~.~a ~ > 
cs YY rJ 0 C XS 

Fin~lly, to close the ~~ we need equations for aeR; and atR~. These 

are acquired by substi~uting (41) into (39), ~~ltiPlying by ~ and ~, 

respec'hvely, and chà.nnel·averagi~g, with the result that, \:1 11 .-; Tf' 

and 

.2 
u (K 
- S 5 

'" 

2 ,.,n' 
K )<r ·a R'> n S )Ç C , /) 

2 2,.,n 
U (K • K ) <i'" . a R' > 

S sne x S 

3.2.2 An analytical solution ' 

(46a) 

(46b) 

T", proceed analytically we. need to make sorne simplifying assump· 

tio~. An ad h€c assumption, often used.in ,theopast, is to neglect aIl 

~ \ ' 

ln the disturbance wavy structure ..... Thi~ but the, on· scale' component 

facili tates analytical progress but by ignoring modes (eo ; g. R~ and R~) 

'" 
:whicI;-i a priori, are~ not kn0w;t to' be unimportant leads to â rather w6ak," 

set of conclusions. Nevertheless we will corl1!:inue here w~th this 
( 

ass\imption,· for th,e. cime be)ng , ,in ~rder to de~ive eXPlici~ly the analy· 

tic~ resul ts which we compare to our numerical ones in subseétion 3.2.3. 
/ ~ . 

Mathematicall~',p~aking, this ad ho~ assumption all~ws us to ignore (46) 

and 'the first! term on the right-hat;ld side of Ç42). Fro~ the iatt~r we 

then get,-

• 

; 
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" 
- " 2 lJ.~(y,t) - u(t)"2sin (1 y) 

11 
. '(47) 

- (f h /H)k.,pl1 
• 0 CI: C 

.. 

Differen~i~ting (45) with respect to time and then substituting (44) and 

,(47) gives an equa)=ion for the Qut-of-ph,\se spectral coefficient by 

itself 

where 

and 

o 

2 
K. - k· (u - ft/K ) 

s '7 

o k 2' [ 2 
Ï .. -. (3K . -

2 s~ 

2K 
'7 

2 
wi th .. f - K. + Ï 

(48 ) 

Assuming solutions proportional to e:<p(-lCJt) lt fo11ow5 tl1<ltj 

'exponentially growing perturbaelons fi e , wl - Im{w) > 01 are onVy 

il 

pos~ible if Ï is negative. This instability criterion pr('sents two 

pE>ssibihties.· If the flow is superreso/wnt (K; < K'7)- ins,tability ig-

possible on1y"if 
1 

1 .< j3k. 
'7 

On ,the other hand, if the - flow 15 

t '" ~ , 

subr,esonant (Ks > K~)_growing perturbations exist only if 1'7 > J3k In 

other words, ir ,t!tis model • wjl,ves e:dst only in a 

superresonant regime .... hile unstable narrow wnves exist in subresonant 

regimés Note also that growing perturbations are necessftrJ-ly. 
_~J 

,stationary [i e" ~- Re(w) - OJ 

. 
these instabili,ty conditions fOI 'form drag Instability have pre· 

[;-

viousiy bean obtained by R,'lmbaldi et al (1985), Also, in'hios Study on 

_oe-ar1y resona~t topogr~phi'c waves Pedlosky (1981) derivf!<l the-se çondi-

tions under the assumption of weak forcing. 
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The problem with this approach is that there is no proper rationale , 

for neglecting 'the components we did Substituting (47) into (46b) 

shows that the second and third _terms on the right-hand side of the 

latter are non-zero if n - 31'/, and as such'-'f' e eddy component 

wlüch has a meridional wavenumber of 3TJ· TliS mode, which has been 

ignored in ~he analysis up till now, has a non-zero p'rojection on atu' 

[see (42) l, implying that u' defined by (47) should be -'corrected before 

we embNce wholeheartedly the conclusions of the pr~vious paragraphs. 
/ 

For this, and othe~ reasons, we now turn to a numerical approach which 

treats the case for which R~ ,(and R;) are in general non-zero 

• 3 2 3 Numerical results 

To begin we will briefly outline the numerical techniques we have 

employed to solve the disturbance equations 

" 
Consider expanding u' in 

) 

an infini te slne-series, i,e 

" 

U'(y,t) where ~ = j2sin(1 y) 
z n 

Equations for the (ttme-dependent) spectral coefficients in (49) can be 

obtained by multiplying (42) by ~, and then averaging with respect to 

y On the othe~_hand, the spectral equations for the eddy coefficients 
Q 

are given by (44) - (46) , 
n ) 

substitution of the various after direct , 

spectral series 

Assuming solutions proportional to exp(-iwt) the problem becomes 

one of solving an infinite-order matrix eigenvalue_ system for which' we 

ma~ ob tain approximate solutions by t~uncating the spectral series. In 
{ 
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this conne'ction we need ta define two new truncation numbers, IIZ and NW, 

both of which will be considered variable. These aFe the number of mean 

zonal and wavy components kept in (4'9) and (41), rèspectively. This 

trupcatio~ leads to NZ + 2NW eigenvalue~ and NZ + 2NW corresp0l!ding 

eigenvectors, which we calculated numerically as before. 

In this particular study we choose (}.L,'7)"" (1,1) so that the 

topogl!aphy has one oscillation in 'the zonal direction and half an 
\ 

"'oscillation in the meridional direction. Recall that, parametrically 

speaking, the stability of the s't;ady flow associated with this forcing 
f 

was studied in detail in subsectlOn 3 1.4a .. For the channel 

parameters considered here we have that 1'7 ~ 3 Sk (> )3k), which 

according to the analytic solution suggests that only subresonant unst­
~ 

able perturbations exist Our numerical analysis will make lt poss'ible 

to check thiS analytical result 

One minor complication that the, ,9-ition of the off-scale com­

ponents in the perturbation structures ~ntails is that instabilities may 

, exist which are non-t~raphic, in the-sense that they do not crucially 

depend on a f;rm drag machanism. This is not to say that the topogra-

phy does not intefa~t with the perturbation, it simply means that it 

does not force, through the action of'form drag, a perturbation zonal 

flow with a non-zero channel ave~age [see (43)'). • These instabilities, 
" . 

which are not of interest here, will only serve to clutter the analysis. 

" 
Conveniently, though', the stability matrix A can be, split into two 

fpdependent matrices, denoted AR and Ar, which can be associated with 

non- topographic' and topographie perturbations, respee tively. To see 

#~ 
this we note that' in this channel model an interaction between the basic 

, 
state wave, (J.L, '7), a perturbation mean zonal ~ornponent, ... (O,p), a-nd a 
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perturbation eddy component, (J1.,q) 1 is only possible if YI + P +. q is 

odd. [Where (m,n) denotes the zonal and meridional wavenumbers, m and 

n, respectively.] . This implies, since ~ - l, that the stability matrix , 

A ~ecouples into two sub~atrices, Ar and AR: the first involving per­

turbations with mean zonal and eddy components that are both odd [I.e., 

(O,n) and (J1.,n) , with n odd for both] , and the second involves perturba-

tions with mean zonal and eddy components that are both even Cn even in 

both). Thts decoupling of the matrix A into two submatrices can also be 

dedûced 'from a consideration of the y- symmetries contained in the per-

turbation equations, as do ne in Appendix B. Since the structures 
1 

related to Ar have, ln general, a mean zonal part with a non-zero 

meridional average [i e., since they have mean zonal components, (O,n), 

with n oddJ their existencE;" is crucially dependent on form drag. In 

contrast, the perturbation structures associated with AR do not dep,end 

on a form drag mèchanism (i. e:O' s ince they have no mean zonal c,omponents 

with n od~) but can arise, rather, from the convergence of Reynolds 

stresses. Hereafter we will be concerned with Ar only. 

Ue will now present a numerical analysis wherein we emphasize the 

effects of cru~cation on topographie instability. VIe will consider. 

separately the ins tabili ties residing néar and far away, i'n parame ter 

~pace, from linear resdnance .' 

j 
a. Instability close to linear resonance 

All the gr9wing near-resonant perturbations encountered here were 

stationary., In addition, one and only one unstpble modeywas ever found 
t-

for. any given parameter setting. In Fig. 16, ,the e - folding time is 

plotted against the mean zonal wind for' various combinations of trun-

.... 
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cation numbers NZ and NW (from here on, we will use the notation 

TR - [NZ,NW] to indicate the truncation). The topographie amplitude is 

fixed at a value of 2hQ/H'- 0.2. No~e also that linear resonance occurs 

3 
_1 

when Us ~ 24. m s 

In Fig;' 16a,.. NZ is fixed at a' value' of 41 and NW is allowed ta vary 

from \ ta 41. The left-most curve (TR - [41,1]) is that which wou1d be 
Il 

obt~ined if one' used the ana1ytic solu!:ion from subsection 302.2. In 

this case, as expected, instability is confined to the subresonant side 

of the resonant wind line However, as the number of meridional 

wavenumbers in the eddy e~pansion i; increas.e.? the instability moves ta 

the superresq,.nant side. Curves correspon~ing to NW"> 41 have not Se en 

dntfted. since they are virtually coincident wi th the NW ~ 41 curve. 

These resu1 ts indicate that the components ignored in the ana1ytic.al 

model are crucial, at least from the point of view .... of determining where 

topographie instability lies in parameter space: ( 

Using thè right-most curve in Fig. 16a (TR - [41,41J) as our 

control curve we would like to determine the least number of moqes (mean 

zonal and eddy) required ta accurate1y reproduce. it. In Fig. 16b, NZ is 

set to a value of 9 and, as before, Nw is a11owed' to vary. Again t;he 

e-folding curves move to the superresonant side as m1 is increased . . 
1 

l (interestingly" whèn TR - [9,7] the inst'ability disappears a1together) 0 

Further, when TR - [9,9] there is no appreciable difference fram 'the 
, 1 

control curve. In fact, when TR - [1,1] the control curve is still 

extreme1y well represented, as can be seen by comparing the latter and, 

tha dâshed curve adjacent to it in Fig 16a. We conc1ude, in short, tha~ 

'ta r;et a reasonably true pi,cture of this near- resonant top~gra'Phic i~l 
\ 

stability we need only inc1ude the (0,1) and (l, 1) compQnents in the 

o 

c 0' .. 
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perturbation structure." In .addition, if more .woaves are inc1uded care 

should be taken to inc1ude as many meridional wavenumbers in the eddy 

expansion as in the mean zonal one (i.e., NW - NZ) . 
• 

To conclude this subsection we ~ing to the attention of the reader 

the dashed curve in Fig. 16b. This eurve was obtained using perturba-

tions composed of 9 meridional. wavenumbers' in the mean, zonal and eddy 

expansions (i.e. TR [9,9]) and 9, zonal wavenumbers. The additiona1 

zonal wavenumbers 'are seen to have a slight stabilizing effeet on the ;" 

,-
instability, whieh becomes more pron?unced away from linear resonance. 

b Instability away from linear resonance , 
In addition to the instabilities described above the numerical 

analysis xeveâled growing perturbations' to basic flows fa~ removed from 

linear resonance. Unlike the previous instabilities these, in general, 
1 r 

require more components. to be resolved and have smal1er growth rates 

Moreover, they are travelling (i.~., wr ~ 0) rather than stationary. We 

will see that these growing,disturbanees ha"{e the interestin& property 

of drawiQg energy from the basic state through the form drag mechanism 

and/or the convergence of Reynolds stresses, dt'pending on their phase 

relationship with the equi1ibrium wave. 

'. Fig. 17a pres4ts .Ie_fOlding curves as a ,function of the orographie 

amplitude and constant mean zona'l wind for TR .. [41,41]., On the super­

resonant side we find the region of stationary ~~~eso?a~t jnstabi1ity 

1 discussed earlier.. New here are tlJe two adj acent 'regions of> in-

b l 1 b ' 10 - l d 1'4 - 1 sta i i ty ying .etween approximate.cy m s "an ms. The 

growing perturbàtions in these regions are dominated by the (0,1) and . ~ 

, 
(0,3) mean zonal components and the· v.(l,l) ànd (1,.3) -eddy modes Motiv-
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.. 
ated by this fact we now consider a truncated' system involving these 

llIodes alone. 

Fig. 17b shows the e-folding curves when TR - [3,3J. Notice that 

the superresonant curves are virtually identical to the corre~ponding 

ones of Fig. l7a. On the other hand, the subresonane curves of Fig. l7a , 

are less well represented in this low-qrder system. In particular, the 
• 

two subresonant regions have be~n ·'replaced by a single smaller one. 

q ~ 
Nevertheless " the agreement is "close enough to warrant further inves-

tigation with this severely truncated model. 

1) THE FREQUENCY 

For t~is low-order system it is a relatively simple mat,ter ta 
, 
ob-tain an .explicit expression for the frequenéy w. Deno-ting the com-

ponents of the system as. 0 ~ (0,1), ~ - (0,3), ~ - (1,1) and é ~ (1,3), 

the frequency equation can,be writtén 

4 2 
W - b·(j} + C '/ 0 

where 

and 
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ê .((f h /H)/D.fJ. 
pq 0 ex 1-' 

where êpq is tbe interaction coefficient associated with the p and q 

cornponents (see Appendix C) and ~ex is the amplitude of the basic-wave. 

Before discussing the subresonant instability we will consider the 

behaviour of w near linear resonance ... Under near resonant condi tions: 

!:lp ~ 0, !:le > 0, ~~ < 0 and !:l€ < O. If the flow i5 subreso~nt, !:lp > 0, 

and if i t is superresonant, 6/3'::: 0 It is shown in Appendix C that 

under these conditions the frequency can be approximated by 

(52) 

which, in turn, c'an be written more sirnply 
p 

as 

D 

2 ' 2 6e!:l(3 2 
w "" (128/135) 

2 2'
Cep 

KeKp 
(53) 

-
As expected \ole find that the near resonant' instability is dominated ,by 

-the 8 ~ (0,1) and p - (1',1) co.mponents, and is exc;lusively. ~uperresonant 

~ (since ~e!:lp<O in that case). The yfJ - (0,3) and € - (1,3) cpmponents 

are found to have a slight stabilizing effect [as measured' by' the ... 
nÜllleric;àl factor in ~53) 1; , 

It is ,:!-seful to compare (53) wi th the equation one obtains by 

- ignoring the € component altogether (as in Rambaldi et al., "1985). Re-

turning to (50) and setting w€ - CeE - C~€ - 0 we find that under'near 

resonant cond~tions 

••• 
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0' 

,f • 

(54) 

In Appendix C'" it is, shown that (see C.10) so 

t~at (54) can be further simplified, i.e. 

" 
2' 

(55 ) W 

In this case we get the erronea)s ,results that near resonant instabili.ty 

is dominated by the ~ ~ (O,3) and (3 = (1,1) components, and that it is 

exclusively subr~sonant (i e. 6~6{3 < 0). 

Returning to the subresonant instability we will now use (50) to 

obtain an express,ion for the neutral curve, 
• 1;. 

valid at low bas ic - wave 

amplitude. 
2 -

To begin, we observe that the curve defined by b - 4c = 0 

separates, in parame ter space, ... uns table trave Lhng perturbations from 

,growing-stationary or neutral-travelling perturbations In the small 

amplitude limit (i.e., ~~- 0) this curve can be approximated by 

o . 

(56) 

This equation was used to obtain the dashed curve shown in Fig. l7b. 

Notife r in particular, that the neutral curve intersec ts the Us axis 

when 

Wf3 + ,w = 0 
€ 

(57) 

which in the hand 13.6 m 
_ 1 

case at occurs at Us :::;: s 
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Before describing, more- preci\Sely, the nature of this subre'sonant 
ç 

instability we refer the reader ta Va1lis (1985) for a very complete 

analysis of a truncated system similiar to this, but defined on a.doubly 

periodic "domain. 

f) THE STRUCTURE 

Ta help understand the nature of the mechanism(s~ ~derlying 'the 

subresonant inst'ability we present a typièal structure in Fig. 18 The 

four panèls show the structure at various ~times during its period of 

oscillation (the exponêntial grow.J;h has been suppre.ssed and the dashed 

lînes in~icate negative values). ~e arrow at the bottom of each per-.. 
turbation structure indicates the location of the basic state trough 

(which aIs a corresponds to the posltlon of the topographie peak) Also 

shown are the profiles of form drag, Reynolds stress and mean zonal mo-

mentum at each of the presentation times [the first two quantities are 
.' 

defined in (42)]. 
1 

This sequence can be interpreted as representing a wave on the 

scale of the forcing [i.e., (1,1)] which is travelling westward and, due 

to the presence of a weak (1,3) mode, méandering meridionally. In 

Fig. 18b the (1,1) wave is nearly 90° out of phase with the tqpography. 

At this particular time we would expect a "f.orm ,drag mechahism to be 

largel~ responsible '" for the exponential growth of the stru'cture. 

(Notice that the fo~m drag profile 150 at a maxinîum over the sequeflce.) 

In contrast, in Fig. 18d th~s wave is almost in phase wjth the,topogra-

phy im?lying, that the form drag mechanism is no longer operative (the 

form drag profile on' the right verifies this). At this time the (1,3) 

1111. 
component ,dominates, the tendençy of the mean zonal flow through" the con- . 
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vergence of Reynol4s stresses. (Notice the signifi~ant phase line tilt 

in Fig. l8d.) lt is apparent that' the growth of this disturbance is 

dependent not only on form drag but also on the Reynold~ stresses, which 

help maintain the exponentia'l growth despite the 

the perturbatioJ 

trav~ling nature o~ 

/ 
The perturbation juse described arose out of a truncated system. 

When more wavenumbers, in bath the ~eridional and zonal directions, are 

used to define the structure this instabiljty remains but is stabilized 

sbmewhat by the presence of higher harmonies. Cons ider Fig. 19· which 

shows the perturbation when 13 zonal wavenumbers and 13 meridional 

wavenumbers 

~ compoRents) 

are used ta define the structure (for a 'total of 351 
f 

Comparing Fig. 18 and Fig 19 we conc1ude that although 

the latter contains more detail it is qualitatively very-similiar to the 

structure obtained using the severely truncated system. F 

3.2.4 Discussion 
, 

A quasi-geostrophic fi-plane channe~ model with sinusodal topography 

• has been usee!, ta investigate top6'graphic inStab il ity . The equilibrium 
, ' 

flow was composed of a constant zonal flowtplus one forced wave having , 

the gravest possible zonal and meridional scales permitted by' the 

channe 1 [i. e . 

wavenumbers, 

(~,~) - (1,1), where ~ and ~ are the zonal and meridional 

respectiv e1y) . 
6f,' 

Linear perturbations to the equilibrium --
flow were chosen ~aving a single zonal wavenumber, that of the forcing 

but many harmonies in y, including that of the topography. The mean 

zonal part of the perturbation structure contained as.many components as 
~ 

the wavy part. A numerical stability analysis, involving the solution 

of a standard matrix eigenvalue problem, was chen performed. 
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It was found that topographicallYi unstable flows reside in 

parameter space both near and far from line~r resonance. In the former 

region the flows were superresonant and Fhe instabil~ty was stationary. 

In contras.t, the flpws far from linear resonance were subresonant and 

the instability was travelling. The travelling instability was_ founr to 
, 

depend crucially on th. combined effects of form' drag _ and. Reynolds 

stresses The stationary instability, on the other hand, persisted 

without the presence of Reynolds stresses. 

One of the opj ectives of this was to study the 
1 

effects of truncation on topographie instability. In particular, we 

~re interested in obtaining the minimum systems Ci e., the least number 

of com~s oin the âisturbance expansions) req1)ired ta reasonably re-

solve t'he various instabilities In this connection '4t was discov,ered 

r-
that the near-superresonant instability could be resobred adequately 

with only two components in the pe~turbJtion structure, Specifically, 

only the mean zonal (0,1) and eddy (1,1) modes were required. l'he 

subresonant instability needed the (0,3) and (1,3) mbdes, 
1 

in addition 

to, the (0,1) and (1,1) components to be reso1ved, Fina11y, it was a1so 

... 
found, in both cases, that when more 'components were used ta define the' 

disturbance structure that care had to be taken to allow as much ' 
o 

mer'idiona1 s'truct1,lre ~ the mean zonal pàrt as in' the· wavy part. 

As a complete dèparture from the present discussion we now turn ta 

the ~ext .section '~herein we consider the local instability of a 

particu1ar weakly non-parallel~ equilibrium flow . ~ Ta help put the 

.Il d' . 
upcom~ng .. lSCUSSlon into sorne context we return ta Fig, 15. The -
disturbance il;I.ustrated il! this figure was interpreted in Secftio'n 3.1 as 

representing a westward propagating stru~ture which un~ergo,s periods of 
,) 
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enhanced growth &s-tt passes through f~vourable regions associated Vith 

• the basic fl?w. A similiar, but much more co~plex sort of behaviour has 

been described and analyzed by .Frederiksen, who in a series .of papers· 

(see Frederik~en, 1983 and' references therein) has attempted to shed , 
• ,! 

sorne light<! on the problem of regional, cyclogenetis in the atmosphere. 

o 

Al though '..Qur mode l is much t60 simple to explain the geographical .. 
distribution of cyclone occurence in the atmospheFe (i.e." storm tracks) 

i t may be useful 

, one enêounters 

in helping 

whe~ng 
to resolve sorne- o~ the ~retica~ issues 

to under9tand the results of stability 

calculations such as those des~ribed in Frederiksen (1983), 

1,' 

J 

,.' 
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3.3 Local instability of weakly non-parallei flow 
, 

To date'there have béen several papers published dealing with the' . .-' 

barot;rqpic instability of weakly non-parallel atmosphehc flow. 

Tupaz et al. (1978), for instance, used the barotropic vorticity'equa-

tion with Rayleigh friction and forcing to examine the effects of the' 

downstream variation af a slo~ly v~rying Bickley jet on its instability 
o 

properties. The linear instability chc:racteristics of the 0j et Were 

obtaine,d thro.u,\ long- term integrations. oh an op .. en 

More recently, Merkine 'aqd Balgo~nd (1983) 

,B-plane channel. 

used the baro~ropic 

vorticity equation with a localized vQrtictty source and Rayleigh tric-

tion· to study the linéar insta~ility of a weakly nçm'-parallel zonal 

flow. The basic flow was obtained analyticaIly assuming' weak localized , \ , 

rl forcing, weak frictional eff~cts and that ce,rtain resonance condit.ions 

were met. Numerical integrat,fons, performed on an infini te ,B-plane 

channel, revealed the existence of. unstable loc'alized wavepackets whoseo 
,1 1 ~ 

èharacteristics depend on the maximum shear ànd the z'bnal le~gth'-sëale 
r 

/ 

of the basic flow. 
\ 

In the pre~ent ~tu~y we will 'utilize our simpler l'(lodel (than the 

aforementioned) ~9 address the question of the local growth of linear 
o • 

perturbations. As discussed in Chapte~'2 our basié flow represenFs an 

exact firiite-amplit~de solution to 
, Q 

the barotropic vorticity equation 

without di~sipatipn or inhomogeneous forcing. In what follows .th~ 

numerically determined fastest- growing eigenmode to a slowly varying 

basic flow, of this sort, is analyz.ed and then compared with the corre-

. , ' 
sponding app~oximate·solution acquired using,the WKB approximation., In 

1 

this "fay we hope to shed s?me light on certain aspects of the local 
'" 

ins tab ili ty of two-dimensional flow. 
1 
\ 

"-
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By, way of review we'recall that in Section 3.1 a detailed-stability 

ana]..Ysï; was' performed on ~ ~see (6) 1 'for two different :cases, 'Cienoted 

Ell and E21. [These cases correspond to (ma,na ) - (1,1) and (2,1), re-

spectively. ] In both çases. ~ was s~abl~ or unstable depending on ,the ~ 
particular ~aluesuof ha ând pS' When ~ was unstaple then either a res­

-" onant interaction ~ shear or topographie mechanisrq ,was responsible. For 

example. in a region" of para~ete'[' spac~ near superresonan,ce ~ was found' 

1 

to be uns table to perturbations of the topographie varie ty. In this 
~ ., .' . caS'e the disturbances were stacionary and resonantly amplified. The 

6. 
structures thems,elves ~had a large eddy component on the scale of the 

topographx and a substantial meanozon;l"companent. generated th~ough an 
.. 0 _*_ 

interaction ~etween the free-wave and the topography via,form drag. 

Mukougawa and Hirota (1986a) (hêreinafter referred to as MH) con-, 
! 

sidered the cas~s Ell, E3l and E12. By comparing t~~ three qases they 

concluded topograpbically f01:'ced that the instability of properties 
! ' 

waves a~e completely different according to whether the mèridional 
( 

wayenumber (na) of 'the topography is even or odd. In particular, they 
" ' 

cam~ to the conclusion that when na is even topographie instability does 

not exist. In the next subsection we ViII demonstrate, by considering .' . 
,aIl the growing modes, not just th~ fastest-growing ;tnes as 

/ 

in MH',' that 
/ 

,topographic insta~ility does indeed 'exist when the meridionalowavenum~ / ~ .. - '\ 
.1 

is ceven .. ' Following this briéf discussion we will oonsider in detail dhe 

behaviour of a strongly mod~lated growiig eigenmode. with the aim of con-

tributing to our understandin% of'the local instability chara~teri~tics 

" 
of inhomogeneous flow'. 

\ 
r 
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3.3.1 Topographie instability 

In -this at;.d the following 5ubsection we will consider the 1inear 

stability of the steady-stat~, ~, when (ma,na ) il. (1,2) (i.e. E12). In 

this casè the topography, and henee thB forced steady wave, has one com-

plete oscillation in oo(:h the zonal and meridional di'rect;ions. The 
~ 

fi~ed ~arameters in tbts study are as before except that D = 5 56xl0
6

.m 

and If = 8 43xl0
3 

II! .(corresponding to MH) For these chaDnel dimensions 
1 

> 
tlle ratio of the basic-state x and y wavelengths (i e Lx = Lima and 

o - L /L "" 0.2 
Y x. 

; ,... 4 

ThE! srnallnes9' of ~his parameter will enable us \0' to develop" in 

~ \ . 
subsect~on 3.3 2', a locally-parallel model witèh which to interpret sorne 

.of our resul ts . 

"In "MH, curves of constant growth rate as a funéti.on of Us and ha "t, 

(in our notation) for the fâstest-growing perturbations to ~ are / " 

presented The' curves were obtained using 820 degrees ot freedo~ 

(TR Si [H,N] - [20,20]) and- as 'sUch can be regarded as b'eing 'very reli-
.' - 1 

able, Their numerieal rèsults, togethêr wlth a discussion' based on a 

severely truncated model,' led MH to conclude that topographie in-

sta~ility does not exist when the meridio~al wavenumber of the topogra-

phy is even. However, by considering ~ tne growing modes, not Just 

the fastest-growing ones as, in MH, !le have found that topographi.e in-
1 

stability does in fact kxist.in this case. 

CO\ls!der Fig. 20 which is, a plot' of, the growth. rate curves for the 

slowest gro~wing perturbation to ~ as a function of Us and ho ~ 2 'ha' 

The growth rates in Fig. 20 have been nondimensionalized as in MH, 

specifieally, \ 
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In this case a nondimensional growth rate 

(59) 

spond~ to ,an e- folding time of, 11.2 days. For the salœ of economy a.., 

lower truncation (i.e. TR - [10,10]) than in MH was used to obtainJ these . . , 
1. ' 

curves [We will consider the effects of truncation shortly.] By con-

sidering the frequencies' and 

that: (1) they are :tat1o~ary 
structures of these modes we have found 

(i.e. wr - Re(w) = 0) and occur only for 

near superresonant basic flow and (2) the u' compenent'of the ~tructures 

~J 

have a non-zero channel average. As discussed earlier, -the latter can 

on1y be the result of an ipteraction with the topography, that is, of a , 1 
form drag mechanism. 

The equilibrium' flow and. the grnwing per'turbation associated wi th:. 

3 - 1 the point Us = l m s and ho = 0,5 km in Fig 20 are shown in 

Figs 21a, b, respect,i-trely. 'TI:is structure is characteristic of aIl the 

o~her unstable structures connected with Fig. 20 
l " • -. ( 

Notice that ihe eddy 

paF~ of th~ ptructure is on the sca~e' of, 
. \ 

topdgraphy and that there i5 a substantial 

and out ['f' phase with, the 

mean ion l q~mponent. From 

thes~, and previous considerations we conclude that ~hese modes depend 

crucia1ly on a form drag mechanism and, as such, represent topographie " 
) 

instability. More to 'the point, we have found topographic inst'atJility 
, . ~ . ' 

to exist even though the >Îleridional wavenumber ·of the to-pography is 

even. 
'b 

Ta convince the reader that thi~ instabi1ity is not an artifact of 
, 

the truncation we p~esent Table 1. This table shows the growth rate of 

the mode just ~escribed as a function of truncation. (N - H and 

NL -' N + 2· N'H, is' the numbe'r of èlegrees of fr~edom). As ~an be seen 

" 
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the instabi1ity persists despite th~ stabLlizing influence of the addi-

1 " 

tiona1 components. Admitted1y" it is not c1ear from Table i that ,.. 1 

convergence in"' the fre.quency hé:!-s been ,chieved but unfortunaté1y 

further tests at higher resolutions were not possible because of 

computer memory constraints. It is somewhat consoling, however, that at 

o these truncations the eigenfunctiQns. were found to be .wel1 resolved 

Note that the dashed eurve lin Fig. 20 is the neutral curve obt'aineci 

using a severe truncation invo1ving the (0,1) and (1,2) components 
\ 

a1one. ':Che aceuracy at this truncation is of course poor, but the 

results a~e qualitatively correct. 

~ It shou1d be understood that the topographically uns table modes to 
, / 

this basie-state are in fact the least unstabre of a number of unstaDl~· 

modes. ,For . i lnstance, the topographie mode to the basic-state of 

Fig. 2la has an e-fo1ding time of approximately 4.8 days while the,. 
. 

fastest-growing mode (whfch is non-topographie 
, ' 

in or.igin)· has an e-
1 

fo1ding time of approximately 0.7 days. In tqe ne,xt subsection w,e will , 

il one of, these fastest-growing modes. 

3.3.2 perturbation 

subsection it was demonstrated that 'an equ~librium 

fl'Ow a meridiona11y asy~etric topography eou~d 

be topographi __ ~~~~~~~ As expected this instabi1ity resides in a 

region of .parameter spaee near .linear r~sonance where a st'ong feedback , 

to the zonal flow is obtained. However, un1ike the topographie in-

stabilities 'previously discussed, involving a meridionally symme'çric 

topogra2hy, it happens to be, ~or a given p~rameter setting, just one 
\ 

of several growing modes, most of which have much 1arger growth rates. 

,) 
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These other growing modes are h · . ·éh .• non-tOpograp ~c ~n or~g~n, ave relatively 

large growth rates and cover an extensive are a of parameter space (~ee 

Fig. ,,12 of MH). For ,obvious reasons, then, an insl"ection of at least 
, , 

Ù ' 
.one of these other growing modes is in order. In part (a) we consider a 

! 

tepresentative gro\>ling mode of this type, both from a synoptic and an 

energetics o point of vie.w. In part (b) we use an analytical t~chnique, 

. 
based on WKB theory, ta help interpret our results. 

'a. SCructure and energetics 
/ 

/J 

1) STRUC;rURE 
, 

In MH the fastest-growing mode to a basic flow generatêd by a zonal 

'wind of 17 m 5-
1 

over a ,topog:raphy with an amplitude of 2 km is 

presented (Fig. 133." of MH). _This mode 
Co 

has an .e-folding time of 

o 

approximately 1.5 day~ and, although it is not stated in, MH, is 

stationary. ' In this study we will consider the fastest-growing mode , . 
o 

when, Us ... 17 m S_l anc' Qo "" 1 km s).nce the wind speeds associated with 
1 • • 

the equ~librium wave are l&;~ré realistic. The basic-staté streamfunctioh 

and zonal flow, in this case, are shown in Figs. 22a, b.~ The fastest-

growing mode has a e- folding' time of approxima;:ely 3.6 days, is sta~ 

tionary and has a structure as shawn. in Fig. 22c. We should mei1tion 

that due ta t:he symmetry of the basic flow the structure of the mode 

~onsi~ts only of those zonal. components, (D,n), where n is even, and 

eddy componet:\ts, (m,n), where n is odd. We ~ee that this mode has a 

7 g • 
very simple meridional • structure, with !hast of its amplitude centered. 

~ .. .. ~ .. '" 1~' 

" . about x - L/2, with a pia; towards the downstream side (i.e. eastward). 
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As can be seèri, the fastest-growing perturbation on this no'n-zonal 

basLe-state exhibits a structure' whose ~mplitude is strongly modulated 

in the zonal direction. This is in eontrast to the situation involving 

a zonally-uniform basie-state whose growing perturbations take~h~fform 
..-\ .. j ~ ~. .. 

of a single harmonie w~ve i~ X (multiplying sorne structure in y). Re-

,- turning to -'fig. 22c we note the presence of a zonal-wavenum9,er-.1 modula-

tion pattern which is raughly in~phase with. the ü field (see Fig. 22b).· 

The peak in tl:e envelope, near x - L/2, appears to be associated with • 
\ 

the weak basic-state easterly jet situated at"the center of the channel; , ., r . .,. 
As we, will shortly see the instabilrty me.chanism respons.ib.1e for the 

1"1 \ 

overall exponential growth of this mo(jé is esp,ecially efficient arô'~nd 
o ' 

this easterly jet. 

THe zonal and meridional energy spectra, E1(m) and E'(n), . , 
resp~ctively, corfesponding to this growing mode are shawn in Fig~ 23. 

• 
These normalized energy spectra are defined as follows 

/ 

and (60) 

... 
Q 

wherl? 

.. .. .' .,. 
As ~eto~e the subscript ~. is a shorthand notation for the ord~red pair 

lit 

fJ .;.. (m,n? . We not.e that the zonJr' energy spectrum peaks at m - ·3. For 
• y 

, ' , ' 

'zonal wavenumbers 'greater than three E' (m) faUs off rapidly indieating 

that the mode is weIl resolved, at least in the zonal direction. 
~ 

The 

meridional energy spectrum is a maximum at n -'1 and falls off 
~ 

significantly for meridional wavenumper~ greater th an five. 
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" A--t-o-t-a-f---of 2~O components (-i.e. 71~ - [10,-10]) were used tl~efinè 
~. l 

the structure presentéd in F~g. 22c. The perturbation can, however, be 
\ 

accurately represented with a much smaller number of components. Con-
~ \ . 

sider, for example, Table 2 which shows the growth rate and frequency of 
~, 

! 

" 1 this mode ~s a func tion of trunca tion. 'l'able 2 reveals tha.t: (1) the 
o , 
instability is very accurately resolved (at ~east in terms of w) when 

. 
H ~ 3 and N ~ 5, and (2) when H ~ 3 and 'N ~ 3 th'e real part of w i5'" non-

zero (albeit very small) and the growth rate is reduced (by about 25%). 
ta' ' . . 

The only growing mode when TR - (5,3) is shown in Fig. 24 (at t ~ 0). 

We have seen" throughout this discussion, that the active region 
1 

associated with this instability, 'is locateti·· near ,and - somewhat 

~ downstream of X'~ L/2. In the next part we will atte~pt to identify the 
~ 

1 • 

-
insta~ility mechanism(s) responsiblë region of preferred 

" 
for this 

growth. 1 
2) ENERGE'TICS 

;' 
The energy ,sQurce 'for this expenentia-lly growing d:Lstur~ance is of 

course the basic-st'ate". To see. exp~iciJ:ly the convers:an rk-chaniSm(S) 

\ .,' 
behinâ the in~tability' we.need Uo obtain êhe perturbat~on energy equa-

t:i.on. In a man~r s:Î.miliar to Simmons et.al. (1983) we will write the _ 
, ,. 

perturbation energy equation for this system in the form 

• , 
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where 

and 

2 

dE' - d < l 'V1/J' 1> - Cx + Cy + Cxy 
t t 2 

, Cx <u'v'·a v> x Cy - - <u' v ~ . a ü> ~ 
Y 

2- 2 _ 
Cxy ... - < (u ' • v' ). a u> 

x 

(61) 

\Here E' i§ t~e horizohtalJy-~teg~ated perturbation kinetic energy and 

Cx, çy and Cxy are distinctively different conv-~rsion term~. 

Written in this fashio~ (61) éan~be readily interpreted as a ~ 

generali~ed form of the energy equation for a unidimensio~al basic­

" state. ~For unidimensional unstable flow, Cxy ~ 0 ând either: (1) Cx e 0 

the basic flow, is ~nal1y-uniform or (2) Cy a 0 if it 
... .. 

merid~Qnally-uniform. In eithér of these cases, perturbation energy 

growth is impIi!d' when the eddy momentum flux, u 'v' , i9 on '/ive rage in a 

directiq,n opposite to the gradient of the basic-state )1 . ve OCl.ty. When 

the basic flow 1s two-climensional there is an additional, and less 

familiar conversion mechanism, expressed by Cxy. This term implies that 
. 

ther~will.be perturbation energy growth when the disturbance is mainly . . 
zonal (U,2 > ~,~) ~in" ~egions of diffluence and mainly 

~eridional (U,2 < V,2) in regions o~ confluenc~ (8 xü> 0). 

By considering the,local contribution~ ,to each of the conversion 

terms a good ide ... a of the mechanism(s) behind.}jle local growth of'" a 

part~cular perturbation can be obtained. This sort of analysis was per­
I 

• formea, for example, by Simmons et al. (1983) in their consideration of 

the linear stability of the 300 mb climatological mean January flow. ,In 

f 
the following discussion the structure of the basic-state (see 

Figs. 22a, b)\should be kept in mind. 

, \ 
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In the top and bottom panels of Fig" 25' we have plotted the local 

contribution~ to Cx + Cy and Cxy, r~spectively. With.regards ~o Cx we 

point 

ignored. 

that since the basic\, flow is nearly zonal (i. e. , 
" 

conversion is reiatively unimportant and can be 
, f 

Notic~, first, that the local cont~ibution to Cx + Cy is a 

maximum near x - L/2. This reflects the ~act that the large negative 

perturbation center near x - L/2 is tilted~in a manner which will lead 

to a weakening of the basic-state easterly jet and so, by energy con-

serva~ion, encourage its own growth. 
1 

,j, 

The ~ocal contribution to Cxy is a maximum further dowpstream from 
1 

X b" L/2. The three positive areas cenee~e~ along y D/2 arise from 

meridional perturbation flow where the basic-state is confluent. On the 

other hand, those near the wall's are connected with the zonal perturba-

. 
tion flow where the basic-state is ,diffluent .. Comparing the two ~onver-

sion fields we find that the Cx'+ Cy field has a larger maximum but 

since this field is ,aIso more con~ined in space: .. its i~tegrated value,. at 
1 • 

this time, is actually smaller th an Cxy, [i e. (Cx + Cy)/Cxy ~ O.8J. 

Figures 25a, b demonstrate that the Cx + Cy conversion, principally 
t " < -

.".... involving the transfer of basic-state zonal ,omentum (since 

ICxl « ICyl), is correlated with the perturbation amplitude 

centered at x .. L/~ (see Fi.(22C),' The Cxy conversion, on the 

hand, is associated with the considerable perturbation amplitude 

maximum 
.\ 

ather 

q.ownstream 

crucially 

from x - Lj2. As we have ~ee:q. this conversion depends 

o~ ~te~ce of regions'of confluence and diffluence in 
, 

the basic-state. 

In this subsection we have considered, in a somewhat descriptive 

manner, the structure and energetics of the fastest-growing llnear per­
l -
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turbatio~ to a larg~plitude, nearl!-zonal steady state. We found, in 

'particular, that the instability was in" a large part maintained by ,the 

transfer of zonal momentum into an easterly jet, through the action of 

Reynolq,s stresses (i. e. u 'v'). Downstreâm from the lobation where this . 
'~ 

transfer is largest the disttb.nce is fcund to un~ergo further 

enhancement of .. its local grow h due the transfet' of energy out of 

regions where the basic-state is either confl~nt of diffluent. 

The fastest-growing mode to the basic flow of Fig. 22a was obtaïn-
1 

ed'numerically by solving a matrix eigenvalue problem. In the next part 

we wi~ use WKB theory to obtain an approximate analytic solution which 
, 

we compare with the numerical one. This method is 'bas~d on the .. assump-

tions'that the basic~state i5 slowly varying in x (i.e. fi'« 1) and that 

-
there exists a spatial scale separation between the basic-state and ~the 

1 • 

perturba~iop. AlthougQ neither of these conditions are very strongly 

satisfied in this case (recall that or ~ 0,2) we will show that it is 

still possible to get qualitative ~ement between the analytic~î and 

numerical solutions. 

b. WKB analys~s 

• 
In this part we will exploit the fact that the pasic flow is 

r-' ~early ,zonal (i. e ., ~ ~ LylLx ::::: 0,2) to finde an approximate analytic 

r~presentation for its fastest-growing perturbation. In (1) we USé WKB 

~heory to derive'a simplified perturbation equation for our system., In 

(2) we solve ~s eQu~Sion afte~ making sorne suitable simpl~ying 
assumpt~ons. In thls analysis we make extensive use of sorne techniques . 
developed by Pierrenumbert (1984) to study the stability of slowly 

varying nows: 

.. 
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1) WKB THEORY 

rewrite the line~rized perturbation equation as 

(a ;P)·a ].llt/J' y x 

/ 

2 _ 
K·(at/J)·aljJ 

5 y X 

(62) 

-- 2 (a ~)·a (ll + K )ljJ 
x y s 

Here the various variables and constants ha\ been nondimensionalized 

according to' t -, (U;D).t*, (x,y) - (x,y/"jD, (~,ljJ')'- (;P,1/J')~'jDU G,nd 

* Ks - D·Ks ' where U is sorne characteristic velocity, D is the ~hannel 

width 

fact 

and an asterisk denotes a dimensional quantity. To 

tthat the basic flow is a s.lowly varying function o~ 

express the 

x X will 

introduce the slow x- scale, X - ox,l where 0 is sorne small parame ter , 

In terms of X, ~nd expanaed in powers of the small 

parameter 0, the coefficients of (62) can be written 

(63) , 

and 

• Since the coefficients of G~2) are slowly varying in x we will, in 

the, spirit of the ~B approximation, assume a solution of the form .. 
ljJ' ~ ~(X,y)'exp(i8(x,t)) (64) 

where the.freque~c~ w and wavenumber k are defined to be th~ derivatives 

df the phase f~nction 8(x,t): ..... 
-w and a

x
8(x,t) - k(X) r, (64) , 

'-
, .' 
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The frequency and; wavenumber are re1ated.4~by a local dispersion re1a'! 

tionship, yet to determined. l t is important to· realize that the phase, 

"'" . 
function O(x,t) (which is in general complex) des~~ibes the fas~ va:ia-

" tion whi1e its x-derivative is assumed to be slow1y varying (i. e. 

axO(x,t) ~ k(X)]. For a solution of this form the x-derivàtives in (62) 

beco\ne" 

a 1/1' ~ 
X 

(ik~ + 6a X~) . exp (iD) (65a) 

2 [- 2 
+ 0(02)].exPCi O) a '1/1 l '" k ~ + iD (~aXk + 2kaX~) , xx (6§b) 

3 [- 3 \ 

+ 0(02)].eXP (i8) and a 1/1 1 ik ~ 30k(~aXk + kaX~) xxx 
(6Sc) , 

The equation upon~hich ~he remainder of this discussion. is Qased is ./ 

J 

obtq.ir:ed by substituting (63).-(65) along with'"' 

~(X,Y). = .~o (X" y) + fi '~1 (X,y) + ... 

into (62) and collecting all the 0(1); terms, i.e. 

1 • 

i' 
t 

·1 
... ~ 

~(66) 

(67) 

With the appropriate boundary conditions (67) constitutes a 

eigenvalue prob1em which for a given w determines the. eigenva1ue k(X) 

"artd the eigenfunct~on ~o (X ,-y). The latter can be writter:t as the product 

A.(X)·4>(y;X) whàr? ~(y;xj cornes directly out of (67) and depends only­

parametr,icaHy on X. The amplitude fut;lction, .A(X) , is determined by the 

~ 

ampli tude equation which resul ts at the ·next· levei o~' approximation' 
\ 

0(0) perturbation . ' 
after the imposition of a solvability condition on the 

• 0 J"" 
·equat~on . As 'deI.h0nstrated by Sarie and Nayfeh (1975), in their study ~f 

... 
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weakly non-parallel boundary l~yèr flows, A(X) re~re~ents an 0(5) corre­

ction to the eigenvalue k(X). (Using this fact~and (64)," the perturba" 

tion, to first approximation, can be explicitly writ~en in the form 

, X R 

ljJ' - <!>(y;X) .exp[ij (k + Skl)d~] ·exp(-iw. t) 

Xo 

(68) 

whe're the 0(5) correction to k contains the. effects of the x-.derivatives _ 

of t!he basic flow and Xo is a ,.CQnstant of int:egration. For parallel 

flow, q, i,s strictly a function"of y, k l "'" '0 and k is a constant. On the . . 

other hand, wh~n weak non-parallelism is allowed q, and k become fune-

'tions of X and there develops an 0(5) correction to the' lat.ter. From 

here on we will ignore the presence of Sk 1 • and toccus our attention 

instead on the'x-variation of k induced'by tpe non-parallelism. 

At this time we will determine the 0(1) zonal flow, lio. This can 

be done easily by recalling that by definition, Q = - K~:~, from which 

it follows t16at 

2 ' 
1{ • li .,. a .Q 
'5~ ') y, 

(69) -
'. 

nondimensional ,B-parameter and 

h is the ,nondimensional topography whose amplitude 
~ , 

i n~ndimensionj3.Hz~d acc.ording to h -0 (foDjUH) .h~. Substituting (63) 

-
into (69) and retâining only the 0(1) terms leads immediately to the 

,f 

equation governing uo~ i.e. , 
) 1 

z /Jo 
,2 

K ·u, a - f3 - ax.rlio + a h (70) s 0 y 

" 
\ i A

. \ 

-----
" ,f 
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Solving this equation for Uo yields the result 

and u (X) w 

- u s - u (X)· cos (n~y) ,w 

u .cos(2~X) with u 
CI 0 

where u 
s 

': ..... ~ ," 1. ~! f r 

" , 

2 
f3/K s 

. (71) 

To see the connection between the 1?erturbation equation (67) and 
, 

thé more familiar Rayl~igh-Kuo equation we note that the coefficient of . . 
the second term, given e.xpliç,itly ~n (70), is equivalent to the corre­

spo~ding one in the Rayleigh-Kuo equation if o~e sets h - O. By an~logy 
> • 

with .barotropic înstability, a necessary condition for' instability when . . 
h ~·o is that the'northward gradient'of potential vortic~ty must'vanish o 

-for sorne y within the channel,. ..In other ,words, U o must be equaj: to zer6 

somewhere in the domain [fro/m the left most relation {~ (70) J. It 

-
follows from (71) that this necessary • condi tion fo'r .instability will 

onl)' be satisfied when IUwl > us' 

For the sake of convenience we will replace U o in (71) with' ü. lt 

has been found a posteriori that, qualititively speaking, this.substitu-. . 
, 

tion has little effect on our final conclusions. Tbe zonal velocity, 

U, i5 given by (71) with n 2 r.eplaced', with (5 2 + 1) 1/2 n 2 . in the 

denominator of uo ' This can be verified by using , the . identity 

a/; ~ - 8Xü in (69). ,The aç:tual ü* 'f~ow is shown in Fig. 22b. We see. 

that the conditi·on for instability discussed in the previous paragraph 

(i.e., ü* - 0)' is often ,satisfied in th,is case. 

tTe 'will now atternpt to solve the eigenvalue pr'o.blem posed in (67). 

/ 

... 
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2) THE ~ SOLUTION 

l 
Equation (67) can not', in general, be solved' explict:~y unless some 

further approxima4ion is made. For this reason ,we W'ill· apj?roximate the 

meridional' structure of, the disturb~nçe' with just "three meridional 

components, i e.: " , 

(72) 

. Reca11 that the numerically-determined fJstes.t. ~r~wing mode describ1d 

~ . 
previously was dominated by these three y-components. J In part (a) we , 

will use (67) to ob tain a dispersion
n 

relationship .oin the form: 
? 

F (k, uw' w) - O. 'Thereafter, in part, (b), we wi 11 find the particular w '. 
6 for which there exists a solution, k(X) , "1hich siniultfineo~sly satisfies 

" 

'the dispersion reJ.ationship and the ?ounda1."y conditions whieh we have':-

yet to define 

. (a) The' dispersion rel.itionship. S"ubstituting, (71) and (72) into 

(67) and collecting lïke terms leads to three homogeneous e'quations for 

the.c'oefficients 4>1,4>3 and 4>5 [see (D.l). in'Append;i.x Dl. Setting the 
, '.- 1 

determinant of the coefficients to zero leads to the following, 

3 2 
w + B(k,u )'w + C(k,u ),w + D(k,u ) - 0 w w W 

(73) 

1 p ( 

1 

1 
i 
1 

) 

The coefficients of ~his çubic equation, which are rather complicated . . . 
functions of' k and uw' 'can be found in ~;ndix D. 

Fo·r the moment " we 'will simplify the' pres'en~ '- anafysis by 

considering the dispersio~ relation obtained on the basis of ~etain1ng 

only the first ~ terms in (72) (i. e. 'using a' two-term truncation), In 
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this,s~ecial case the dispersioflrelat~on can be written very simply in 

the form 

• 2 2 2 2 \ 
a(K l 

of: K ) u (K - K ) . 
W 3 W S #< 1 

, (74) k u 
2 2 2 S. 

2KIK3 4KI 
0 

u Ü~(~)(K: 
2 , r" w 2 2 2 K~) } 2 2 2 2 2 

± 
4KIK3 

- KI) + K3 (Ks - + tiX
I
K3 (K

s - KI) (Ks -) K3) 

• 
2 2 2 2 2 2 

where Ko - k + nI K3 - k + n
3 nI - 11" andt n

3 - 31f l 1 

\ 

Th~s ·is an algebraiè equation which relates freqUeJey 

each particular X (recall that Uw is a function of ~) 
and wavenumber at 

On the bas is of 

(74) we make the following remarks: 

-
0 When k is real, comp.lex w will only be-, possible if 

KI < Ks < K3 ' This implies that for uns table flow 

(75) 

If u* -s 17.0 m 
_ l 

S then Ks - 5.43 and, from (75), we must have m,< 3.58 

-.~~ iAst~bi.lity to occur. This' shortwave cutoft is consistent with 
..... l'.t. \ .... .,.iJ.. 0. 

our numerical resul ts • where~n AŒ;'El.nal , • .w,avenumbers four and greater were 
I~ 1 , 4i'\" ç) .• 

~ ~ "' stah,lè" (judging by their relatively small amplltudes, së"'e'" Fig· .... 43). 
• .! 1 1 

o • W,'ives are more unstable in an easteFly .j et th an in an westerly 

jet.' This can be seen in (74) by noticing that w depends not onl,Y on 

the magnitude but'aiso the sign of ~/uw' This asymmetry is~ch that p 
• 1 

r 
(which' is positive here) has a stabilizing influence on waves in wester-

\ 

t 

, , 
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lies and a destabilizing influence on wa"es in eas,terlies (Kuo, 1973). 
~ .. '" ~ , ~ J 

For the basic z.onal flow under consideration our, theoretical calcula·-

t:;'Orl~ [1. e., based on (74) 1 have s~~ t?at it appetrs t~'b'e iocally-

* " stAble for aIl x lying betwe.en - L~ and L/4, where,p/Uw ~ 0, and u~-
.~ 

~ s~~bl~ through much of the rest of the domain, where P/uw < O. Again, 
1 

, 

thi-s is qualitatively Gonsistent with th"" numerical results .. 

~----

o .. By analogy with parallel flow instability'we cau, at each X in . 
the ~omain. find the real wavenumber (~t one exists), 

for whiéh the imaginary par,t of W is maximized. i. e. 

\, 

• 

designated k , 
M . 

(76) 

An,equation for kM' in terms of the parameters o~s problem, can be 
, ... 

found in Appendix D (part b) For each kM we can also ,calculate a 

grotvth rate, wi-(kM) and a phase speed, cr(kM) - wr(kM)/kM. ConSider 
• 

Fig. 26 which is'a plot of mM ~ (2~~)_1.kM' wi(kH) and c;(kM) as a fun-

~ -
ction of X (we temind the reader that these curves'pertàin to the ~o-

\ f 

Cerm syscem). The growth rate has been nondimensionalized accordlng to 

(59). As expected these curve;j are symmetric about X - 0.5 where lIw(X) 

has its largest negativ.e value. At ~ - 0.5 the most-unstable and the 
'. '\ • 4 • 

shortest-unstable waves (not shown) hav~ wavenumbers approximately equal 

~ 2 and 3.2, ,r.:pectivelY.~ Movin~ awa~\from X - 0.5 the most-:llsta~le. 
and the shortest-unstable ~aves langthen. At any va~ue of X for which" 

~ .. 
G 

instability is found there' is no long wave cutoff., 

We will now return to the dispershn relation (73) which is based 

on the three- term system given by (72). Consider Fig. 27 which is a 
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a function of X. ,Compared with Fig. 26 

. we nO,te that the, growth rates and phase. speeds are sijn:i:ficantly 
,,\.\ ,'!', 

"'" _ ~;\>::"I . t • 

reduced. W'e also .noté :that the most unstabl~ wavenumbers are slightly lit . . 
larger ~~:n befor~ and :àre now only a weak" funct:L<;>n of f. It appear~ 
then that the range' of unstab.le wavenumber~, growth rates anq. phase '. ~\ 
speed~ determïned using (73) are compatible with thos~ arising from the 

numerical moclel. More pr7cisely 
1 

speaking, when we . . compar,e the 

numerically-determinéd fréquency (i.e., w ~'3.6·i) with the local , 

fX'equency; sayat. X - 0.5 (i. e., w -..:;;: 0.7 .+ .4.7' ï), we .End a .reasonable 
~ " 

agreement. Notice, that in contrast to" 'the numer'ical mode, "which is . 
statio~ary, 'the fastest-grlj}wing local mod~ has a non-zero phas~ spèell. 

The local mode how~ver is travelling so slowly"that' after ,one .e- fo.lding 
1 , J - , 

time its fastest 'zo~al component .traverses "'only one··fiftieth 'Of i1i::O. 

. 
wavelength, and f,or this reason could be consicfered af approximatelx 

stationary. 

As it js presently written, (73) is not well suited to our p~rposes 
• 0 .. 

Slnce we are interested in sp~cifying an X-independent' w in order' to 

. 
find k(X). To remedy the situation wè s~mply invert (73) to get k as a, 

polynomial with X-.dependent coefficient' 
(, 

9 S 
+ [:a

1 

2 1 
[a g ]' k + [asw]·k + br''ù ] ·k . .. 

~ 

2 5 a 
+ '[as + bsw].k + (a

4
w + b4 w J·k 

" , o ~ 

4 

yhere the 
" . 

li 's n .• and bn ' s are ;unctio~s 

(77) 

.' 

, 
of . uw• anq, céÎn be fO\lnd in 

Appendï.x D .. This nint~-de?ree' equat~on clèarly yields. for ~ fixed ~'. 
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nine roots Ol!' branches of k(X).· ~·.our i"ina·i' sohttion tbetefpre should be "\ 

f 
written as the sum of nine independértt solutions each co~responding to 

1 

one of these branches. The partic}llar w to be used in (77) will be . 
determined next, after wè set the b?undary conditions. 

~ 

(b) Boundary conditions. To set the boundary.conditions {f will 
....,/ 

, 
be useful to' have in mi,nd" the nature of. the u~stable mode whiéh we are 

\ \> 

trying to rep~esent. Recallihg Figs. 22~, c ,we 
• ~~'!t 

obsli've' 
.J' 

envelope of the mode peaks near·x L/2 (X 0.5), where the bq.sic~ 
. , 

',state easterly jet is centered. Away from the peak the ~p~t~~e dacays 
;;;: . . ................ 

also, that'-~1Qng , 
l 

rapidly, , especial1y in the upstream direction.,;. N0Fice 
< , • 

waves (in x) seem to prevaid. up:?tream.,af the':(peak and short waves 

, downstr~am. This perturbation bear,s many of. tHe identifing' marks of ~ 
~ , 

so-called unsté;l,qIe local mode as ~erined by Pierrehumbe~t (1984, herein-' 

~fter referred to as PH) in his study of barocll.'flic instability. of 

slowly varying·flows. 
o 

In FH it was established, numerically; that, flows with localized 

~aroclinicity can support two distinct' types of unstable modes,! rèf~rted 
, ~ 4 

Local modes have peak~plitude downstream of to as local and global, 

the point o,f maximum 'baroclinicity, decay to zero exponenti~lly, bot-b 
- .' 

upstream and downstream from, the peak, and do not require periodic boun-
, , ' i, ~ 

dary. condi ti-o,ns fo'r th~ir e:x:.l-sten~e. Global modes,' on the other han~ .. 
, '\ 

require periodic boundary conditions for their existence ~nd have growth ) 

rat,es which depend on the' average baroclinici ty of the basic flow. 
.. .... 0, .. -

~hese characteriz!tions were put on_a'f~rm-~a~alytical basis via 'a WKB 

analysis. Due the generali ty of the 'techniques, deveIopeè in -PH, to 

study these two classes pf unstable mod~s, they can be applied to manyb 
1 , 

other·~nstabilities, including' tne one under.consideration here . 
• 
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Foll~wing' pg we will assume that the unstable mode of Fig. 22c is a 

lo'cal mode and as such doe's-nQ,t de pend on the periodic boundary 'condi-

tions for its existenc~. 
• '. !),. 

The corr~ctnes-s of this assuniption can. be 
\ 1" 

judged a posteriori. ,On this- basis, we ~ill take the domain tf be 

zonally-infinite [i.e., xE (- ~, + aJ)]. Consequently,' as boundary con-

ditions we will require that the p~rturbation va~ish at plus and, min~s 

infini ty, i. e . ... 

1{J 1 -+ O. (78) 

( In addition, in oroër tG isolate the· locally-unst,able easterly~ jet for 

, . 

o 
.. 

~ '-. . 
furtper ~oflsideration, we will set 

u (X) 
w 

Ixi ;, 0.25 

{

• uoO ·'cos [21f(X + 0.5) 1 owhen 

el'sewl;ere. ' 
(79) 

Notice thàt in (79) we have translated· the X-~xis so that the easterly 
~ 

J • 

jet i,s cent~red about X - 0 rather"than X,- 0.5. SuSject tO! (78"). and . . 
(.79) we will no~ solve-;'(77), using the ltechniques developed in PH. In 

this regard, the reader ts referred to PH, for' any details ,wh·ich" have , 

been omit~d herè. 

For what follo~s we will need to consider under what circumstances 

"l'if : 

the perturbation expansion given by (66)' can break down. A sôlution for 

which this expansion becomes unordered would be . invalid and should 
, , 

1 

therefore be discar~ed. As discussed i~ PH, an approximation such as 

this ,can break .-üown in one of. two ways: (1). if k -+ 0 at sorne X then the 

: .le~ding 

dk/dX -+ . 

r:.t, .,. 

',......, /' 
/." 

, 
term in (6Sh~ can become comparable to tpe 0(5) term and (2) if 

\ .' ( 

" aJ at someq' X while k remains fini te. Only the lattèr type of . • 

• • 
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breakdown can occur in this problem since the former corré'spobds to a 

" c.;I.assical turning po~nt, and cannot happen tor unstable modes -in this 
. ;~~.:.~?~~~;~.~ 

. :}.,,+t-P'tob~em as k ~ 0 in (77) implies that w - 0, 
li; '~:-!~:t~I~~~ ;I~ . ~ . 

R~turning to (77), we /note that si;':;ce ..k depends on X through uw' 

-' 

, 
any particular branch of k is' such that k( - al) - k(+ al). Because .of 

~ 

• this the only way the boundary condition (78) ~ari be satisfied i5 if the 
" ' .. '-

solution switch'es branêhes fo'r sorne Xfwithin the domait).. ",Sranch.switch-
~, • - ~. (J ~ - ~., .. 

exitstence df a> ~ point, Ir$ay X~, where two. ing, in turn, implies the 
, ~. 

.-1 .\. 
D~anche~' ~alesce. Howevet, as 

I,,t-.. ~ ,... : .- . 
in, genë'x:a1, also a breakdown . ' . ' .. 

. 
shown' in . PH, " a coalescence poirrt is, 

:"'------,.. 
point because dk/dX - ('!.k/duw) (çluw/qX) 

and dk/du('l -> <Xl there. [The behaviour of! k in, the 4I.ricinity· of a 

coalescerlce,; pp~nt is obtained by' conside'ring a Taylor series expansiQn 

of the dispersion, relation.] 
. " 

For' this reason sorne sp~cial technique 
, 

m,ust be employed' in 'ordet; to con't.i-nue the solution acro-ss, the coales.· 
~ :~.w ' ... '\ 

~ence poi~t.· Fortunately, in' the'special case where duw/dX - 0 at the 

coaleséence point, this dlfficulty is circurnvented ~nd the ~xpansion 
, 1 1 

remains ordered th'rough the" coalescence point. Consequently, in- our . - . , 
1': ·fI. ",/ 

problem, we will demand that: the· coalescence point occurs at X - 0 sinc'e 

o 'du~/dX - 0 there. 

lt remains now to fînd the particular w -I4)~' (t'f i.,t: exi~ts) ~for 

whi'ch two branches of k(X} merge a15\' X - O. l;n this re!?ard it can be 

shown -that 

a w - 0 k 
" 

.-' 
" 

(80) 

at 'c'oalescence (where waand 'k are consider~d complex). This· is equiv- ,/ 

alent to the cond,itian-tha. ~(k) haye a saddle point at co .. es~en;:. Ta/ 

find tbe saddle point in, our proolem we will perform a complete con-

,formal mapping o~ the functièm w(k). 
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.. 
of Hnes of constant and all ,as ~ 

• ,1 
function of, l!'r ' q.nd , ~1 

, 
. - 1 

[m - (27r~r ,k]. A sadd1e point c1ear~y exists . -ait 

m'~ m~ z'2.06 + 0.21·1. 
e ../' 

A!= .find 

- .d , 

tha t wc:::: O. 66 + 4-. 60 . L . 
t 

Xt 
, 

shc>u1d b~ pointe~ out that the' ima~in~ry part 
" 

pf, wé ls the so-called 
, /" - . 

absolute .gr9wth rate _ at X - O. For a discussion of the 'conéept: of 

> ".t 1 .... 

absolute instability we refer the r~ader to Merkine (1977).' 
~ ~ 

The complex frequency Wc can now be u~ed in (77) to determihe k(X). 
, 

qiven k(X) we mus~ ensure that th~ tW'o bra,nches, whi;:h merge at X 0, , 
ca11 them k+[uw(X),wcl and k~[uw(X),wel. are such than 

• 

+' , k . [u (Œ),), w] > 0 , and 
l w e (81) 

in or,der that the'boundary conditions be' satisfied. 
, 

~f' this ,is the 

case, then our final solution is g~ven, ~ (68), with the exponent!, irt-

vo1ving the integra1'over,x written as 

fXk+pk for ,K ~ 0' 

fX • kdx ,0 
(82) 

f:k-dX 
• 

x 
for < 0 0 - x 

"'» ., 

·and w - wc '-
1 • 1 

Consider Fig. 29 which is plot of two branches of ,m - (21f6)" ·k, 

designatêd m+ and'm:, . as a f~ncti;n'of' the zonal flow uw(X) [normalized , 

SO,~ that uw(O) - - '1] . 

uw(Q) -.- 1 as required 

Notice that .indeed the brancts coalesce at , ..., 
~'>- ',' 

if the soalution is" to be à vali one. Note also 
~ 

that' ml crosses the Uw axis j~st slightly ·upst'ream. of U w - - 1. This 

'ref1ects !=hEt' facto that th~ m9du1ation pattern "peaks, ,.just upstream of 

x -,O. Downstream of th1s point the mode ~e~ays to zero as req~ireq by 
.. 

the boundary condftions. 

a 

J Referring to· ml, we 

~ r~ .... .: 
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for al"'i" a11_ "w -~nd -decreases very' rapidly near ~ ~\\ - 1: "ThiS 'l~S" 
~serv;é1ti9n indicates tqa,t the moq,e decays rapidly in the upstream di-

, \ ... 
rection. A considerat~~n 'Of m; and m; shows that_ thet~~mOde, lengthens 
i 
1 

upstream and ~hprtens downstream of the point wh~re Uw -t~ l, 

_ Comparing the arÎalytical solution wi th the. numeric~l, solu'tion we 
'. •• 'b ~ 

cOnclude, that the agreement, a't l~ast qualitatively-, i5 ~rite good. In . . 
p~rt\cular, lhe anâlytical solution has correctly 

upstream decay, the 
... 

slower downstream decay and 
• 1 

~eprodifëd the sharp 

the loC!'-tion of the 

peak, 
\ 1 \ • 

In addition, the presence of 'long waves upstream an~ short waves 

. ~ .. \.. 

downstre,am of the peak in the numerical solution is also seen in the , . 

ana~ytical one. Quantitati:Vely ~peaking; the agreement is also quite . 
reasonable as can be seen when one compares, for instance, the numeri-

cally obtained frequency and the a!lalytic one LW'" 3.61· i ahd 

Wc '" 0 .. 66 f; 4.60.i, respectively, Admittedly, in contras t, to the 

numerical mode, the analytic' mode has a small but non-zero real 

freq,uency. Us lng .. a s imiliar argument as before' one could make thé case 

that when one compares the period of oscillation of this mode with its 

e-folding t~e the mode is for aIL lntents and pu~poses stationary . . 
We believe that the maj or reason for the liiscrepé\ncy, bet~een the 

• 

numefically and anatyticàlly determined frequencies- is that the basic 

, . " 
assumption~tha~"? a LylLx is small is oniy~mahginally satisfied fpr the 

basic flow studied here (recall .that S "'" 0.2)'. Presumably, had we 
t 

~ ch~en the-channel pa~ameters so that S wer~ much smaller we wouldohave 

found a better ~greement be~ween W and wc' In fact, we have carried out 
• 

~ , 
a few calcula t ions us ing smaller ,values fbr <5; ï t was found, however 

t 

that in- these cases the numerical mode could not- be resolved using only 

three y-component~, 

" 

•• 
To make a comparison between 'the nwnerical 
, -
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~'" 
a~al;de modes woul!1 therefore r:qUi~e more y-eompon.ents in the theory 

and ~e ~ considerably more involved algebraie tas~, which we did not~ 
undertake. 

, • 1.1 
For the sake of" comparision, we includê Fî'g .• 30,....,which· is the two.-

term counterpal;'t (i:e'., based on the two-term system) of Fig. 29. In 

.. } 

contrast to the previous case, this mode grows just downstream of X - 0 
• • • • 

, and peaks at the point where Uw "" - _ 0'.97. For the two - term system the 
.. 

absolute frequency is Wc "" 2.82 + ~.39·i. 
, , " 

- , 

3.3.,3 Discussion '\ 

grap~ically forced steady-state consisting ~f a constant mean zonal part 1" 

and a wave wi th a ~:ingle oscillation in bo·th the zonal and meridional ' 
" . 

<lireetions [i.e. (ma:,na:) - (1,2)]. Growth rate eurves, as a function 

~ 

of the 2'onal wind .(us ) ~nd the topographie amplitude (ho)' for one 'of 

. the unstable modes. wer-e obtainect IlUmerically, From an analy~~s of the 

frequeneies and structures of'these growing modes it was determin~d that 

',while- topographie ,instabcility ls not thé' dominànt inst;ability, it does 

indeed exist for:th~s topographie structure. 

A major portion of this study' was dedieated. ,to a ,detailed analysis 

of the fastest- growing perturbation to ~ particular superresonant, , 
" . 

1 . 
l~rge-amplitude steady-state flow (us - 17 m s- an~ ho - 1 km). This. 

,mode ois charaeted.stie of the.fastest-growing perturbation"to ,a wide 
11 ) 

range of steady-states, making our results more general than they-might 

at 'firs t appear. The fast~st-growing perturbations to these steàtiy-
> 

s'tates' are·, in gel\E?ral, non.t()p~graphic insof~r as they do not, involve . 

ol/I 
the direct i~raetion of the per~urbation with the topography through a 

form drag mechanism, 
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We consid~red the structure and energetics of the fastest-grow{ng' 

perturbation,_ The mode was f'Ound ,to have a relatively simple meridiona1 

\ ' 

" structur~ and a high. degree of localization in the Zoonal dil-ection, 
i 

Most of the amplitude of. the stntêture is located near and somewhat 

downstream from an easteJ;"1y jet in the basic flQw. A look at the 

energetics of the'mode revealed that its overall exponential growth is 

• 
. stiongly maintained by. a trans~er of' easterly zonal momentum o~t of,the 

bas-ic-state, near the center of the channel. A smaller, but ~till im-

portant, energy exchange Is found further downstream, in a region where 

the mode is meridionally-oriented when the basic flow is )confluent and 

1 . 
zo.nally-orientedwhçn Lt i5 diïfluent. A similiar behaviour was found 

by'Simmons et ,fLl, (1983) in -their study,of the stability properties of· 
J, . , 

the 300 mb climatological'mean Ja~uary-tlow. 

, ,An analytic appr'oximation to the faste6t- growing mode was obtained . . 

using the WKB app~ximation, coupled with 'Sorne techniques developed by 

Pierrehumbërt (1984) to study baroclinic instabi~ity. The approximate 

, ~~ , 
analytih solution correcçly predi~ted the location and çhe shape of the 

uns table wavepacket but overestimated the fr:eqùency, More specifi-

the analytic solution reproduced ,the amplitude peak j ust 
t ' 

downstream of the easterly jet and tNe rapid decay of the envelope, both 

upstream and downst~eam from the peak (.especially upstream) A better 

agreement between the numerically determined and the analytic frequency 

would have certainly been found 'had the basic flow béen more slowly 

varying in the zonal d1rection, as required by WKB theory. 

We believe that this stu2Y has been useful from the point of view 

of highlighting the role' downstream variations play in the line'ar 

insta?ility pf inhomogeneous 

<. 

• 

barot/oPiC 

/, 
J. 
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. ' 
• has confirrned the ,utility of local instability analyses ~n assessLng 

r~gions of maximum eigenmode growth. Although this sort of analysis is 

. too simple to be directly applied to the behaviàur of any re-al fluid" i t -'1 

. 
can assist in the physical understanding of the connection between , 
spatial inhoÏnengenities, in a basic flow and preferred regions eddy 

activity. 
f, 

. , 
In this chapte.r we have considered the linear instability of a 

particular class of non-zonal basic states which . " eXlst 'as exact 

solutions to the 
• n 

inviscid barotropic vorticity' equation. Although 

linear theory can be useful in describing the initial growth of an 

. '" infinitesimal perturbation to. a give~ unstable basic flow, it is 

.. seriously limited by the fact\ that the latter remains Jormally 

~ , - \ ' 

uncnanging with time. No matter how small the perturbation is initially 

it will: given the constant supply of basic state energy, gro~w so large 

that noTh\S~ar effects cannot be ignored. In the next chapter we-will 

-
consider Qthè nonlinear evolution of initially small (as opposed to 

infinitesirnal) perturbations to a number of unstable baS1C flows. 

Amongst the questions we will be askingvare' (1) in what way(s) do the 

effects of nonlinearity haIt the growth of the perturbation (as they 

must if energy is ,to be r 0 Tlserved)?, (2) how large, in amplitude, does 

the perturbation become before it is stabilized?; (3) does the 

perturbation maintain this maximum amplitude or does it begin sorne sort 

decay stage?, (4) how does the basic flow alter with time as the' 

perturbation evolves? 

o 

• 
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CHAPTER 4 

NONLINEAR ANALYSIS 

4.1 Sorne qackground 

-
In Chap.ter 3 the linear stabil:l,ty of free' and topographtcally 

forced waves on a .a-plane channel was investigated. In the case of 

topographically forced waves it-was found that topographie (form drag), 

shear (Rayleigh~ and resonant instabilities' were present, For a gi~en 

unstable equilibrium flow the strÉmgth, as well ~s the nature" of the 

instability depended on the'particular parameters the problem (such , 
" 

as t.he _arnp],itucie 2Ltlle sinusoidal topography and thp. mp.Rn 7'onRl, 'W'ind) 

Fo~ example, near linear reso~a?ce (as determined by the ch~nnel width, 

"1 . 
D, the ,B.-parameter and the rnean zonal wind, us) the equilibrium flows 

were found to be unstable to infinitesirnal perturbations of the forrn 

drag variety. ~ 

III the present investigation we will atternpt ta ex tend sorne our -
\... 

earlier. linear results into the nonlinear dornain. As before, the 

equilibrium flows are the result of the interaction of a ~sterly mean 

zonal wind over a two. dirnensional to,pography. the nonlinear stability 

t7 
properties 'of these flows will be determined by means of numerical 

integration' of the spectral .equa~_ions [see (11) 1 using as initial 

conditions each of the equilibrium flows plus its fastest-growing linear 

disturbance. 

nÙffierically, 
~ 

(The fastest- growing linear \disturbances are 

" as in Chapter 3.) Un1ike sorne sirniliar studies, 

obtained, 

involving 

various ad hoc spectral truncations (e.g., Charney and DeVore,a 1979; 

Fischer, 1980 and Egger and Metz, 1981), our Integrations will be 

performed using sufficient reso1ution to ensure the~c~uracy of the 

solutions. 
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In sorne ways the objectives- and methodblogy o~ the present 

investigation are similiar to those of Mukougàwa and Hirota (1986b). 

The latter also studied the nonlinear temporal evolution of forced waves 

in order to understand the phenomenon of wave amplification dur~ng 

blocking episodes in the troposphere. -In contrast to our study, 

however, the bulk of their investigations involved the analytical 

treatment of near-resonar.t flows using a low-order spectral model, as in 

Charn~ and DeVore (1979). It was found that the evolution of the 

forced wave amplitude depends "on the sign of the initial zonal flo~ 

perturbation: "if the zonal flow is decelerated Îllitially, the wave 

amp1ifips in~'l:i' non1inpoHr 

decreases. In eit~èr case, 

o<;('i 110Hti OnT orhprwisE' the wave !!wpli tude 

t~ period of the oscillation decreases with 

an increase of ~he amplitude of thE: initial forced wave. [The use -of 

the low-order model for these near-resonant flows was justified in a 

~Y noÎüinear spectral model with many degrees of freedom.] In the 

present stud:r we will be considering off-resonant flows where many 

degrees of freedom are required to capture the nonlinear evolution (as 

will be demonstrated) . 

Direct numerical integation is by no means the only way,to test the 

nonlinear st~bility bf an equilibriurn flow subject to a finite-amplitude 

disturbance. Instead, one might employ variational methods to determine 

criteria for, nonlinear stabilit~. In Arnol'd (1966)', for instance, two 
\ 

powerful stability theorems were so obtained.\ (A thorough discussion 

on the subject of Arnol'ds nonlinear stability theorems can be found in 

Mclntyre and Sheplrerd, 1986.)' As discussed in Section 3.1, when the 

se-cond theorem of Arn01' d is applied to our particular equilibium 

solutions the following ,is obtained: if Us ~ fJ/(rr/Dy2 the equilibrium 

92 

{, 



c 

" 

flow ls nonliI,f~r1Y, sta1;>le (i. e., 

-. 
stable- in the Liapunov sense). . ' .., 

(Liapunov stabilfty means that if the disturbance is small initia*ly~the 

perturbed flow will, remain "near" the unperturbed flow for aIl time.) "" 

Since, the .equilibriùm flows which we will be considering in this study 

are all such that Us '< f3/(Ir/D)2 this, stability criterion is not' -very 

useful. 

'Another means' of studying the nonlinear behaviour of small­, 
" • 1 

amplitude disturbanees i~ to use the methods of weakly nonlinea~ theory, 

In faet, weq.kty nonlinear theory comprises a large proportion of, the 

entire nonlinear 

exp10ited weakly 

theory no] 

nonlinear 

known, Deininger (1981), for example, 

theory to obtain the fini te-amplitude 

stability . characteristic's of a topographically foreed wave on §in 

infini te f3-plane 
, 

Deininger foond that a nonlinear feedbaek between the 
1.. ' , , 

topographie wave and the disrurb,anee produ,ces an oscillation for \ 

topographically subresonant zonal flow,and an explosive. nonlinear 

instability'_for topographieally )superresona~~ . zonal flow. It is 

important to bear in mind, however, that these results are restricted to 

a time period in .which the disturbanee is sinall, albeit'o fini te. In 'the 
o 

case o'f . explosive ins'tability nothing can be 'said about the behaviour . " 

of the disturbance beyorrd the ,time it achieves ·any' sigpificant 

amplitude .' '(Another weakness, in Chis .<ipproach lies ,i;t the fact chat the 
1. 

spectral ,expansion for the disturbance ·is. severel')' truncated.) In ou2 

-
study we pre~er not to make any a priori assVffiption, regarding the 

ampli tude or spatial eharacteristics of the' disturbanee and for this· 
• . 

" : •• .j • 

reason . have opted for direct numerical integration ~despit~ the heavy 

~omputer load) ,0'" 

-
StiJl anothelr way to -study the nonlinear stability of inviscid 

equilibrium flows' is to utilize the mechods of statist!;.ëàl mechanics. 

93 

.' •• _i 

1 

\ 

\ 



·' 

, 

\ 

\ 
\ 

\ 

\ 

, 

,,~ 

Frederiksen and Carnevale (1986), for instance, used these methods to 

study the nonlinear stabilit'y properties of flow over topography in 

spherica1 geometry. In that study, c1imatic states were obtained usfng 

each of the equilibriUm flows plus a finite-amplitude disturbance as 

initial conditions. The nonlinear stability properties of a given 
< 
't 0 

equilibrium flow was thën ,obtained by comparing the initial condition' 

with i ts corresponding climate If the cl ima te was the same as the 

initial condition, then the equilibrium' flow was deemed, stable; 

b 

otherwise it was unstable, It was found, for example, that ~quilibrium \ 

flows for which the sol id body rotation component of the zonal wind,' U l, 

is eastwrird were unstable due to the generation of -large amplitude 
, 

transient waves. In contrast, for flows with westward U i ' the 

equilibrium flow-and the climate were virtually identical. Since in our 

study we are more interested in the time-dependence of the disturbances 

the methods of statistical mechanics have only limited utility 

"Notwithstanding this fact, in Section 4.4 we will obtain statistical 

, r" 

equilibria in order to help interpret the asymptotic behaviour' of our 

simulations. 

Hav~ng set ~he stage ~e 'ill nOw describe our own investig~tions. 

To begin, in Section 4.2 we tiiscuss sorne of the technical âspects of our 

nt.lmerical model . In this sec fion we pay particular attention to the 

• 
fact that the 'o.tr~ncated spectral equations do not identical~y conserve 

energy and potent,ial enstrophy, as does the model eq~ation. In 

Section 4.3 we discuss in detail eaéh of the' experiments, while in 

S 1ction 4.4 we· i~~orpo'rate equil\brium statistical mechanics" to 

, ~ 

rationaii~e the long term behaviour seen in our numerical simulations. 

Finally, in Section 4.5 we summarize our' r~sules. 

Il 
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4.2 Some preliminaries 

As~stated, in this study \.re !.ntend to describe' thé results of a 

number of fully nonlinear integrations of thé trunc,ated spectral 

equati9ns. In ~ach case the initial condition represents an equilibrlum 

flaw plU~o its fastest-growing' linear di~-turbanèe (hereinafter denoted 

FGLD) . To this end we sj'!t as the initial condition for 'our flOnlinear 

s imula'tions to come 

.', 
~(x,y) + ô'~ (x,y) -r 0 

(83) 

,T,tT,,~ ~'r is the real part of the
o 
eigenfunction corresponding to the FGLD 

" to ~. [The underscore indicates that ~r ~as been~normalized so 

is of the same ord:r as -:;f, i.e.,'!r - (Maxl~*I/Maxl1V;I)-itr'] 

that it' 

The 0-

parameter in (83) simply fixes the initial.arnpl'itudE?t of the disturbance 
" 

relat;ivQ to the' equilibrium flow. [Note that ô. he~ is different from 

that" of Section 3.3.] In what follows, S will range from between 

approxirnately O.Ol to 0.3. 
• • 0 \' 1 

It is weIl known that fluid'motions '~overned by the model equ~tio~ 

[see (1) 1 ~-h-i.ghly constrained due to the. conservation ~f various 

quadratic invariants. Perhaps~the most oDvious time-invariant quantity 
'- - --

associated with (1) is the chan~el averaged' potendai vortic:Lty, <Q>. 
\. 

~ (Recall that angle brackets denote horizontal. averaging.) 

to the fact that dt<Q> - 0, we also ha~e ,,", 

2 2 

In addition 
CI 

" 

, d E - d <l.Y!él> - 0 
t ' t 2 

~. Q 
and d Z * d <--> a 0 

t " t 2 
(84) . 

where E and Z a~e the energy and potential e~strophl' ,respectively .. 

Besides E and Z conservation, in the absence of topography, the qhanne1 

-' 9S 
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.'6 . , 
averaged zonal flow is also.conse~ed, i.e., dt<u> -.0. Ou the other 

hand" in the presence of a two-dinumsional topography, we get instead 

that, 

dt;:<U> 

\, 

f <v(b/H» o 
(85) 

This is a forro of the so-callad form drag, equatiob 
, , . 

which implies that 

the cliannel averaged zonal flow can only change when, on average, there 

is a no'hzero meridi6nal flow across isolines of the two-diménsional 

topography, h(x,y). 

Returning ,to .the spect~~l equ~tions (11) we re~ter:té ohat these 

equations bave 

Lorenz (196"1, 

been used by 
o' 

Boville (19'81), 

many bther researchers,' including 

Mitchell and Derome (1983) and 

Mukougawa and Hirota (1986b). A~though they. are relaÙvely easy 

li. ) 1 
equations to formulate and 1mplement they , ' 

do havè at least one (often 

igno"red) drawback, as \pertains the spectral forms of. energy and 
0 

'potentiat enstrophY· 1t ~ould be desirable if the 
;: . 
Hoite set of 

, J 

spectral equations conserved E and Z as ' does the original, model 

equation. However. as' we w~ll. see. this ,sy's~em conserves these 

quantities'only in the llmit of infini te m~ridional re~plution (i.e., as 

N-+ CIO). The origin of t1i.is probl~m' can b,e - seen, perhaps most 

fundamentally. in the- sp,ecial case when h ... O. tn this case. we know 
, 1 b 

BnslyticsllZ that dt<u> - G, however numericsliy we' get 

(86) 

... 
where Fa denotes a meln zonal basi~ function of the form J2cos(~nay/D) . 

A detaileèl' ~nalysis (presented in Appendix. E) 'of the triple SUIn .on the 
• 1 

. ' 
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right-hand side of (86) reveala that it vanishes, nontrivially, only in 

'. 
the limit of infini te meridional resolution. In the general case where 

h " 0 we find the situation to he similiar in terms of. the numerical 
\. .-

treatment of E and_Z (~s shown in ~ppen~ix F): Happily though, E and Z 

[and <u> when fI - 0] are nearly conserved at moderatè meridional' 

resolution,. sayat N ~ 15 ,(as, will" he, j demonstra1!ed thrc;>ugh direct 

numerical integraUon). The fac.t .t:hat E and Z are not identically 

conserved, numerically, cau actually he turned to our aavantage in the 

-
sen5ê that ~heir non-coqservation-signals that the meridional resolution 

may not he enti~ely adequate. • 

Except where otherwise stat:ed, in- this study we set H - N "" 15, 

leading to a set of' 465 nonlinear differential equations. At this point-

it should he mentioned that for this resolution it was more.efficient to 

use a transform method to solve' ,thè mode1 4 equation rath~r than the 

interaction coe:5ficient method implie~ hy (11)-. Although the two 

methods yield the same results, for large resolution studie~ such as 

this the transform method is considerahly more effic;ent. ,[For deta!led 
t a 

account of ,the spectral transform method we 
... 

rafer the reader to 

Appendix B of Mitohell, 1982.] The time~stepping was performed using'a 

centered scheme with the prohlem of time-.decoupling ~ontrolled with a 

weak Rohert ttme filter (v ~ 0.01). This time ·filter was designed hY' 

Rohert (~966) and was later ana1.yzed hy Asselin (1972). Also, the 

originaL computer code was vectorized in order ,to take full a~vantage of 
'rl> . 

,a high sp~ed CRAY ~-MP supercomputer~ 

The ·linear distdrhances used to perturh the initial steady flows 
.' 

were ohtalned num~rically 'using standard matrix eigenvalue techniqu~,s- of 
• # ~ -

the sort described i~ Chapter 3. Except where otherwise statid, we used 

the channel parame~ers set in Section 3.1 [see'(22»). 
" c o 
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4.3 ~umerical~simulations 

We flow describe a number of numerical simulations, each started 

with a' steady flow plus its fas'test- growing linear disturbance. In a11, 

thr;e basic e~periments will be described. In the, first expérimèrit~ 

involving a1'\" -initial weak- instability [1' - 0(50) daysL we '~ill 

inve'Stigate how the line~r: 'distu~b~nce behaves 
.~ 

at finite-amplitude. 
.0 

Sin,ce the initial disturbanc~ cannot grow exponentially, for an 

indefinite perioo of~ time, certain nonlinea~ corrections mUs~ be 

affected in order to stabilize the 
.., 

system 

. . . . 
(albeit" maybe .. just • 

temporarily) . In the second experiment, invol ving 'a much s tronger 

instability "[T - 0(5) days) , particular interest wi,ll br- pa~1/ to the. 

longer term béhaviour of the system. l'he' first·· two experiments 

incorporate a s{mple sinus iodaI oopography of the type 'used in 

Chapter 3. The th1rd e~perimeT\t, on the other hand, involves a less . 
idealrze~ topograpQy, l~ke that' used by Kasabara (1966) in his study of 

the dynamical influ~nce of mountain barriers upon atmospheric flow-

patterns. 
b 

This latter simulation is performed in arder to check the 
-1 

extent to whicn the behaviour seen in the preyious simulations is a 
..... , , 

consequence of the highty idealized single-wave orography . 
• 

As stated, the first two experiments involve a topography which is 

a simple sinusoidal function, more specifically, 

h h ·2sin(2~m x/L)sin(~n y/V) q ,.çr ~ a 
Il _ ... 1 

(87) 

~ 

where ma .. 2 and na - 1 [1. e., a - (2,1) 1. With this topography the 

pteady flow"st-reamfunction arising from (4) can be written 
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~ - - Us·y + ~ ·2sin(2~m xIL)9in(.~n v/DY a. a a" 
(S8) 

, . '\ 
2 2 

~a- fo(h~/H)/rKa - Ks) and 
2 

K - P/u .5 s where 

J ~ 

1 We notice that the stea~y flow stre~mfu~ction comp.rises a m~an "'zonal 

compone'nt. (i . e .• plus a forced 
~. 

statiopary wave which has 

• precise1y the same form as the topography. With regards to the latter 
./ ., 

we mention that in 'both of 'the experime~~s {nvo1ving (87), ha > 0 and 

K~ < Ki. which imp1ies that the forc~~stationary wave is exactry half a 
..r' 

1 

wa;e1_ength out of. phase with the topography (S,inCe ~a\< 0). A full 

1irtear stabi1ity analysis of this'particu1ar' steady f1ow, in t~rms of ha 
, 

and us' can be found in Sec tion 3. 1 (see , for examp1e, region IV of . -

" .. 
Figure 13), 

Before "' continuing we note .thdt we will frequently use 
'. 

nondimensiona1ized quantities. In this reraid it should be understood • 

that we hav~ nondimensionalized the space coordinates' and time with D~ 1 

and us/D, respectiyely. . . \ 

, 
., , 

\ 

4.3.1 'Experiment 1: Initial weak instability 
, 

.. 
~ 

Initial condition 
~ 

a. , . 
In this ~xperiment we set u -s 10 m s - 1 (or Us - l, in 

nondimensiona1 terms) and 2h~/H - 0.095. The steady f10w resu1ting from 
\04 \, 

this parameter settiqg is shown in Fig. 31a. Since the st~ady f1~w is 
, 

symmetric about x - LI; we have plotted the streamfunction over only 

haU the dométin. (The position of the topographie ridge . fs indicatèd 

with an arrow in Fig. 31a.) The structure of the FGLD [i.e., wr(x,y)] 
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. corresponding \ to this flow is shown in Fig, 31b. To resolve the 

\\,., 

disturbance we have used 15 zonal and 15 meridional waven~bers (i.e., 

H - N - 15). We find that the disturbance has absolutel! no mean zonal "' . 
energy and, due to the symmetric nature of the basic flow, coptains only , 

odd zont;ll wavenumbers. 

The disturbance of Fig. 31b has an ê-fo1.di
s
ng time (T - .Il/Wi 1) ôf' 

approximately 47 days and a ~eriod of oscillation (T la 1 21f/wr 1 ) of 

about 33 days. Part of;the motivation for' studying the ~ime-dependent 
0' ." t 

behavioJr a.f 1 this slowly ;mplifying disturbance lies in the fact that 

much ot' "the analytical tl)eory used to study the 
~ 

fini te-amplitude 

. 
stability - ,.-. of planetary 

il 

.. 
-waves (e.g. , Loesch, 1978 .. . 

. '" Deininger, 198~; 1982) pivots aroun~ the assumpt10n of weak instabil;t.ty. 

In this way. then, we will be aple to compare our ~ericai resul ts wi th 

the analytical ones. We . stress, however j that in contrast to the 

<}--

analytical approach, in our numerlcal treatment we make absqlutely no 
• 4) • 

a priori assumptions regarding the disturbance amplitude; that is, the 

initially small-amplitude disturbance is not required to remain small. . . 
To understand the subsequent time-dependent behaviour of this 

perturbed steady flow, it is impèrative. that we understand the initial 
• 

r 'instability mechani~m itself~. So, t'o aid us in this endeavor we. form 
... 

the energy equation governing the initial linear'dist~rbance, i.e~ 

d E' - - <u'V~xV + 8 ü» (- ~ 
2 _ 

(89) -'< u' v' )8 u> 
t. y • . . x 

---
This equation has been discussed in detail in sub~ection 

~ 
3.3.2. As 

concerns . the disturbance at hand, ~e find that 'the second term on the 

right-hand side of (89) is .by far the largest (over the disturbance' s 

entire period of osc~llation), indicating that,this ~nstability relies 

mainly on the existence -of zonal shears in u. More ~pecifically, this 
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instability depends on regions of confluence (aii > 0) and diffluence 

(8xü < 0) in the steady flow. 

,h7~e plotted, in F~g. 31c, 

• Ta see this mechanism more clearly we 
6 

positive contours of - (u,2 - v,2)8xÜ' 

Notice tp,at the maj or contti~ution ta the channel average of this ... . , 
quaIfti ty cornes from a .. 'JIt:'egion ne"ar" the 

1 
southern boundary. 

# 

where' the 

steady flow is diffluent and the disturbance is zonal. 

lt is interesting ta consider the effsct of truncation on this 

" disturbance. Referring ta Table 3 we notice that the instability first 

qppears at 11 - N .:. 3 
1 

but does not begin to converge till around 

11 - N - 15. Given that such a relatively large number of waves . ' 
~s 

required to ~esolve ~r(x,y) it is natural ta question the role the small 

scales play. To partially answer this question, we present Fig. '32a, 

,which shows the zonal and meridional energy spectra of wr (fcte thàt ~r 

We see that ~r i5 dominated in the zonal has ho energy in even m). , 

direction by m - 1 and in the meridional direction bX n - 1 and n - 2. 

In fact, a.detailed ana1ysis reveals that most of .the structure can be 
o 

ascribed to just, two wave components, namely, p - (1,1) and f - (1,2), .. 
Comparing E'(m) and E'(n) we also conclvde that most of the small scale 

, structure in wr lies in the meridiona1 direction. 

Further tc;> Fig, 32a we present Fig. 32b which 1S a ~lot of L\w r' 
. 

with the P and f waves remdved in order t~highlight the small scales. 

Particularly striking 'here 1s ~e Jocalized band of large vorticity 

gradient in the northern half of the channel. The fact that this 

,J h'b' l b 2 'd l . structure ex ~ ~ts a. strong zona -wavenurn er- mo u at~on pattern, 

corresponding to the zonal structure of the bas~c wave, may suggest the 

presence of' a nonparallel cri tical layer. (The existence of such a '. 

crit,ical layer, for 8. neutral wave, "1as demonstrated by Merkine, 1982.) 

1 
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Since the subjec~ of nonparallel ctitical lay~rs is weIl o~tside of the 
.' 

scope of the present study we will not purs1l:~,. this interesting subj~ct 
• 

-any f~rther. To conclude our description or the FGLD we point out that 

si'qce the' ini't.ial ' dÎ;sturbance requires, such a fine, structure in order 

to be resolved, ~ usual multiple scaling approach based on severe 

truncatlon Ce.g., De~ning~~, 1981) would'not ~ app1icabl~. 

Now we turn to an examinati~n of the dynàmical interactions between 
t-

the forced stationary wave and 'the superimpo~ed ~isturbante with respect 

to which it is unstable. In so d"oing, we hope to address the following, 

questions: (1) by what means will the initially small-amplitude 
• 

disturbance be stabilized and how large will it grow b~fore 

stabilization?- (2) what role will t9Pographic form dràg play? (3) after 

t 
the initial stabilization, wÙI, the instabili ty redevelop, thereby 

restarting the whole process or will the system move into a new regime . 
'D 

with Uttle, or no, memory of its initial condition? ,(4) will the 

• 
smaller scale waves remain at their initial low· energy level or ~ill 

they'-play an increas~ngly significant role as time passes? 

b. Time-dependent behaviour 
; 

In this experiment w~ set {; - 0.02 50 tl1at the amplitude of the 

~, disturban\!e i.s initially very small compar.eci with the steady wave. The 
~ 

time integration will ·extend ov~r 'about eight e-folding times of the 

initial, slowly amplifying, disturbancè. To de termine the right time 
, .. 

5tep, ~t, we note that the highest frequency eigenmode obtained from the 

linear anaIysis has l/wr :::: 4.2 hours. Therefore, 'we" choose ~t: ,- l ho ur - ~ 
to ensure ~hat this high frequency mode is resolved, as ~q~ired by the 

Courant-Friedrichs-Lewy (CFL) convergence condition for computational 

stability (i.e., w~t: < 1) .. 
.... 
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• Before describing the simulation itself we will define ~o terms to 

be often used in the sequel. Th~'basic wave"denoted ~b, is simply the 

:a~ the spectral expansion with - the same wavenumber as the 

topogX'aphy, i. e. 
/ 

b l/J - ~ ·(C)·F (x,y>_ + ~_(t) 'F_(x,y) 
cr cr 1. cr cr 

, 
where " (90) 

'\ 
F - 2sin(2~m xIL)sin(~n y/D) , & F_ - 2cos(2~m x/L)sin(~n·y/D). 

cr cr cr cr cr. cr 

Recalling (87) we see that l/Ja'F(i is that part of the basic wave that. is' 

a quarter of a wavelength out of phase with the topography. On 

ather hand, ~he' discurba~cel denoted ~d, is defi~ed ta inc14de aIl 

the 

the 

waves except for the basic wave. According to the~e definitions, at 

b -' d t - 0 we have tha~ ~ - ~cr·FQ and l/J. - 6'!r' In'other words, initially 

the basic wave corresponds to the forced stationary wave component of 

the steady flow while the disturbance corresponds to the superimposed 

FGLD. 
1 

An informative overview of tha simulation is afforded through 
, , 

Fig. 33a which shows the total energy, E, and the méan zonal energy, E, 

over e9600 timesteps. We see, as hoped, that E remains nearly constant, ~ 

,i.e., to within 0.05 % of its initial value. The potential enstrophy 

(not shown)' is also conserved to within 0.05·% of its initial v,alue. 

The mean zonal energy, on the other hand, goes through sorne rather-

dramatic changes over the integration per~od. The evolution of E begins' 

with a monotonic decrèase till about day 200 (or about four e-folding 

times) at which point an amplifying oscillation with a period of 

approximately 15 days appears. To quantify the relative importance of 

the changes in Ë we note that at t - 394 days E comprises less than ,40 % 

o 
of the· total energy,' as compared with more than 75 % at t - O. Needless 
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to say, an appreciation of the dynamics underlying the behaviour of the 

mean zonal energy will be prer~quisite to a firm understanding of the 

dynfimical interactions between the basic wave and the disturbance. 

The evolution of the basic wave energy, Eb , and the disturbance 

energy, Ed , is shown in Fig 33b Comparing these curves with E from 

Fig. 33a we find that, perhaps surprisingly, in the f~rst ha If of the 

Integrat~on the disturbance Lppears to derive .m~sç-of its energy from 

the mean zonal part of the flow rather than the basic wave. However, 
. ... . 

despite its relative passivi\y during this time, we will see ~that the 

basic wave is crucial, both from the point of view bf the evolution of 

the mean flow and the disturbànce. More precisely, we find that the 

basic- wave: (i) allows for the mean flow via 
.', 

topographie form drag and (ii) the zonal shearq upon which the 
( 

disturbanee initially fééds d 'in part a) . Before discussing 

certain aspects of (i) and (ii) we point out that this behaviour is in 

~tark contrast -to the nonlinear equilibrating meehanism described' in 

Deininger (1981). In Deininger's weakly ~onlinear study the mean zonal 

flow was unehanged due to the fact the ba,sic wave (or "'topographic" 

wave, using his terminology) remained fixed relative to the topography, 

thereby disenabling topographie form drag 

To appreeiate' the important role the basic wave plays in this 

simulation and, in particular, to understand its effect on the mean flow 

we reeall the form drag equation (85) For this spec~~l case of a 

single-wave topography, the form drag equation can be rewritten as 

d <u> 
t 

. 
(27rm f jHL)h 1/1- (t) 

Q a Q Q 
(9la) 
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Recall,that ~(t) is the spectral coefficient of the component of the 

. 
basic wave that is a quarter of a wavelength out of ~hase with the 

topography (recall also that ha> 0). This equation is a mathematical 

statement of the fact that' low pressure (i.e., l/Ja > 0) to the east of a 

mountain causes 
, <J 
a deceleration of the mean-flow (1. e. , 

Conversely, high pressure toward the east (l/Ja < 0) of a mountain 
û 

implies. an' acceleration of the 0 me~n flow (dt<u> > 0). (In 

Deini-nger (1981), ~(t) - 0 so that this mechanism was inoperative.) 

• 
Bearing in mind thése ideas, ~onsider Figs,' 34a, b which .show the 

- t b b - -
evolution, over the first 240 days, of ~ - ~ (~a - ~a'~) and <~, 

respectively. As expected, we find that <u> ~reases when ~ > 0 

(1. e., o < t ~ 200 days) and increa,ses when V>a < 0 (i.e. , 

200 ~ t ~ 240 days). '. 
Given that. the basic wave is directly responsible for changes in 

the channel-averaged, fiowl we now ask to what ~tent this can account 

for the behaviour-of E seen in Fig. 33a. To see the link between the 

basic wave and. E consider that 2Ë il! <ü
2> - <[us + û(y, t) />, which in 

turn, implies 

~
. 1,,2 

d = u . d <u> + -' d <u > , .. ' s t 2 t 
(9lb) 

.è 

Using (9Ia) in (9lb) reveals that the basic wave, ~hrough its influence 

on <u>, systematically' affects the tendency of Ë. In fact, in this 

simulation most of the changes in Ë seen in Fig. 33a ~an be accounted 

for by this dynamical arrangement. Now, putting these observations 

together, we conclude that despite the apparent passivity of the basic 

wave (see Eb in Fig. 33b during the first,ha~f of the simulation) small 

changes in its phase relative to the topography result in significant 
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changes in the mean zonal energy. From the point of view of the 

1 -

disturbance this is important since energy which is lost or gained by . , 
the mean flow then becom~s available.for lts own growth or decay. 

Returning to Fig. 34a we notice that this wave behaves fairly 

erratical~y for the first 200 days. How~ver, after day 200 the wave 
~I 

begins to show a fairly _systematic westward phase propagation (as 
.- . 
evidenced by the clockwise rotation of the traj ectory) . This - westward j 

. -
propagation can be seen very c1early in F~g. 34c, which extends the 

" 

:craj ec coryo day 400.. The evolution of <ü> ,over the same time period 

1s shown in ..l'tg. 34d. ~e appr.oximate 15-day vacillation seen in <u> 

\ ' 
cân be umierstood as the consequence of 'the interference of the free-

forced-stationary wave [i.e., ~a·Fal. That such a vacillation is 

possible has been nicely demonstrated by Lindzen et al. (1982), in thei4 

study of vacillations in zon,ally-averaged flows. In that study the 

authors used a linearized waye equation (obtained by substituting, in 

our - notation, 1/J': - ,U~-7' + 1/Jb into (1) 1 to demonstrate that the 

approximate period of this vacillation is determined by the period of 

the free-travelling Ro~sby wave with the same horizontal wavenumber as 

the topography, i.e 

. wher,-e ,(92) 

For the case at hand Ta' as determined by (92), is approximately equal 

to 16 days which compares very yll with the 15 day period of 

oscillation we find numerica11y . 

. 
Iole now turn our attention to the behaviour of the disturbance- in 

this simulation (see Ed in Fig. 33b). To begin we remark on the 
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e~ceedingly larg~ amplitude the disturbançe attains. (For instance, 
\ • 1 • 

EdjEb ~ 0.47 at t - 200 days as compared with Ed/Eb ~ 0.00037 at t - O.) 

.Clearly, no analytical method ~hich is based on the ass~ption thàt. the 
o .... 

disturbanc,e forever rem{iins small could capture the finit~-am~~. tu de 

béhaviou~ ~f this,' disturbancé. Next, 'we point out", that during th~ 

" _ent~ s~mulat~on the disturbanee is dominated?y the ft and E wave~ see 

tme dashed curve in Fig. 33b). ,(We 're.mind the reader that these were . , 

. d' ". . 
the' d,ominânt waves in if> initially 

of if>d it will suffiee. therefore, 
'" 

In'order to follow the béhaviour 

,to consider· the bebav~our of these . 
waves alone The ampli.t~de of these primary waves, over the first 

, . . 
" '240 days is 'shown in Fig. 35a (where 

/' 

.... 
Notice that the amp~itude of, both waves changes smoothly from a .. 

period of quas i,,- exponent-ial growth to deeay. As pert_ains the, r~spectivé 

phases of the primary wâves we find chat th'ey propagate zona~ly At 

near:èy the same
u 

phase 'speed, but in the opposit~ direction tonsider; 

\ 
for éxample, the westward propagation of th~ fi-~ave as shown in 

""' 
Fig 35b 

Looking more~ carefully at ~e primary' waves we find that, due to , 

\l 
small changes in their time-dependenl:"' phase speeds', the sum of their 

r . 
phases evolves as in Fig. 35c. We note tha t '2;0:"" 0 fi ~ 0 € + 00: 

, ineludes a small contribution from the basic wave (é g., 100:1 < 0.5 0
) •. 

Notice that for about the first 120 days the primary waves beFtave al'most , 
• 1 

linearly, ïnsofar as their phase 
o 

sum hlarely change~' at' ail 

decreas~ng a'~~ O~ inct'easing). It turris J out that during this in:ltial 

quasi-linear st~?e' the disturbance is alway~ positioned'.to ,extract 

energy from th; basic wavef.through the instability mech~nism dese~ibed 
,0 (' , / 

{n part a. Eventually, however.' the, phase sum of the primary 'faves 

-;.---- • J 
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'. • begins to change and, in- f>articular, 
\ -

to approach a value of 900
, 

'. 
Comparing Fig. 35c with Fig. 35lr'-we noti,ce that the growth of the 

disturbance halts precisely when "Z8 - 90°". At this Ume the unstable 

phase relationship which initially existed between the primary waves and . ~ 

~. 1 ~ • " 

the basic wave has been adjusted in such a way as tp "turn off" the . . 
, 

Q growth mechanism, thereby leading t@ the decay (albeit short-lived) ,o.f 

" 

the behaviodi of the disturbance past the' initial 
~ 

notic.,e from Fig 33b that Éd appears, to go through a 

stabilization' (following a pegk in Ed at t :::: 320 days). After .. , 
second çs'tabilization the disturbance explodes in amp~itudc From 

what we have seen 50 far it is absolutely cleBr that ·regardless of the 

criteria one might sel.oect, the,'steady flow of Fig 31a is nonlinearly 

unstable Despi té the fact' that the ini tial ~is·turbance pos~,j(,.,sed_ Bueh 

a large e-fold,ing Ume (i e , ·r :::: 47 <days) and such a sm;lll ampl itUc!f., 

the s)lstem is founa departing ,:ery'raptdly from its initial condition 

aftér only. six e- folding ~imes Furthqr to this consJder Fig!> 3611-<': 
, 
which show the total streamfunction .. ~t t - ~OO, 200 and 300 dnyc;. 

respectively In addi tion, consider .Figs 36d- f which show t1w 

vorticity of the disturbance at the same times Take note that ln 

F~gs, 36d- f the 'contour interval at t - 200 and 300 days 15 Li va times 

, \ 

greater th an at C - 100 days, Al though the small sCOlIe waves hav~ nOI" 

pla,yed a significant role up till now lt f., app<lrent from thi: s("quenc(' 
\' 
that khey are becoming increasingly energetic Rnd AS such will 

\, . 
p~esumably play a greater r;r~ in the future. 

By 'olay of summarizing OUI;' results 'Nf' will briefly 
If 

n!lJpom~tg SOUI(! 

of the queries posed at the onset' '<(1) the initilllly Bmall.a'mpl1t~dC! 

.. 
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disturbance did not remain small but, rather, ~ventù&lly became as large 

as the basic wave itself; (2) an interaction between the basic wave and 

the topography, via form drag, led to an·arnplifyin~ l5-day vacillation 

in the mean flow which came to dominate the overall plcture; (3) the 

small scale waves _emained relatively passive, 
~. 

however~ indications were 

that: they. would become- increasing significant (this will be considered 

further, shortly), One of· the more interesting features of thi~· 

simulation was the mean flow vacillation, which arose from ':the periodic 

interference between a forced stationary wave 
. 

on the scale of'" the 

topography and a free travelling Rossby wave (with the same wavenumber), 

, Lindzen et a.l. (1982) argue thfit such an intern€rence effect is a 

plausible explanation for sorne vacillations found in 0 both rotating 

annulus experiments (Pfeffer et a*" 1980a,b) and the. atmosphere 

(Winston and Krueger, 1961). The authors point out, however, that their 

1> 
theory cannot,. in itself, explain how the travelling Rossby waves are 

generated Possibly these waves are genelfted as in our simulation, 

that lS, through a finite-amplitude interaction between the forced 
~ 

statio~ary wave and a superimposed disturbance with respect to which it 

is uns table . 
1 

. . , 

Now, rather than take this simulatfon any further we have decided 

to perform a new experiment initialized ~ith a steady flow which is much 

more unstable to linear disturbances [e.g., T - 0(5), daysJ Id this 
~ 

more . physically relevant experiment we hope tQ see the long term \ 

behaviour of the system earlier in the integration. With regards to the 

long term beâ-aviour of this, \ as weIL as' the . previous 1 timulation we 

should bear in mind that our mopel is qûite unrealistic. Clearly, the 

inclusion of friction imd forcing would chànge the picture, since ,these 

\ 
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processes operate - at time scales of· a f~w days ta sorne weeks. . 
Notwi.thstanding this fAct, we beU.eve that a saUd understandi.ng of the 

inyiscid limit i~réqu~site ta unGerstandin~ more complicated systems. 

4.3.2 Experim~t 2~ Initial strong inst~bility 

a Initial condit~on 

" . 
As in the previous experiment we will'~se the sinusotdnl topogrnphy 

gi;ren io (87). In this experiment, however, we choose Us - 16 mis and 
" 

For the"se parameter values one &hould expect the standy '., 
flow to be more unstable ,than' before s'ince Us is eloser ta 1 ts resonllnce 

·value (of approximately 19.89 mis) 'and the topographie amplitudl' i5' 
• 1 

higher. This expeetation is confirmed by a numeric,ll .lnillysis which 
, 1 

yields a FGLD for which (r,T) z (4.72,28.37) doy~ (wlwl1 1'1 - '~.- 1\1) ,. 
Since the initial disturbance is still weIl reso.J.v<>d -WJit-uJ~H - ,'1 - ') ("1'1' 

\ ' . 
• 

Table 3) we wlll, for convienence, use this lowi"r resolutiol1 111itl.11 

disturbanee for }his "Simulati.on 

integration the model is run, ,lt the hl.glH'r M - N - l') t't'Ullca! ion 

levei The dist\p.rbance "defined by i5 t h,l t 

(r,T) ~ (4 70,28 41) days cinsider rigs }la, h whlch .. how!; '" ancl "'1' , 
in this case 

" 
b T~me-dependent behaVlour 

Here we will ma in} v discuss our resu l ts t"')r 1) .. j(). 07. llOw~vor "Otllf' 

mention will be made of il simul.1tlon H\.r-rtinp, wlth ;, lLlrgl1'r nmpl1tudl.l . . 
4 

in:ti.1l disturbance (Le 6 - 2/0 (2).' On th~o,b'l:!.ili o! !.he. 1nlQll1, 

linear analysis we hav~ cho;~n .1 tlm~step of of ~[ - l~ tlIlnutp~ for thl~ .. 
, . ' 

/ 
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simulation. Consider Fig. J7c which shows E and Ë over the integr,ation 0 

• ';.- ,~ J 

peri~d. Ve feel thàt, 'on the ba~is' df' the good' energy conservation seen .. 
...-

;1J.-Fig. 37c, our solution is' reasonably accurate (E stays within 0.5 % 

. 
. of its initial value). Further to this, we refer the reader to'Table' 4 

"which compares a few ~mRbrtant quantities 'at t - 6b days obtained after. 
,0, 

'running the model at a lower resolution (H - N - 13) and with 'a smaller 

timestep (At - 5 minutes)~ 
• 0 

Al~o, as' a quicJ< " assessment of the 

treatment of the smaller scale waves in the numerica_odel, .we note 

that ate t "" 60 days the potential enstrophy. Z. is within 3 % of its 
\ ' " 

initial value. The' fact that the potential enstrophy is not as weIl 
• r , \ 

conse~ed as~he energy indicates that, by t - 60 da~s. the smatl scale , 
", 

part of the fiow.is not being treated quite as weIl as the larget scale 

part. (this will'be pursued further shortly). 

. 
Returning to Fig. 37c we notice that Ë behaves quite interestingly 

over the Integration period. As can be seen. Ë monotonically decreases 

till t ~ 14.5 days and thereafter remains relatively constant till 

• 
t "" 25 days. Notice, that hy t - 25 days the m!,!an zonal energy l'ias 

~ .. 
decreased to"approximately 25 % of its initial value. Following day 25, 

Ë shows a sharp increasing trend which is marked by a large. but 

dilninishing, vacillation (with a period of approximately 15 days). , 

In th'e last half of the .simulation Ë oscillates around a mean value 

which represents abou~ 75 % of the total energy. (Initially. ;~ 

, 1 
co~rises only 25 % of the total energy.) By way of summarizing the 

li " 1 

, 
overall b.ehaviour, of the mean zorllil" energy we simply state that in the 

; ~ 

first 25 days there is an energy transfer from the mean zonal to the 
• 

wavy part of the flow,' (Le. , Ë-E*) while ip..the la's~ 7,5 days there is 

a much more significant reverse i:raIlsfer (i.e'"Ë +-E*). 

III 
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. ,Turning ,to the Qehavfour of <U>, sho1N1l in Fig. 38a, we nôtice chat, 

, 
1 

aft~r only four or so e-foldi~g times (~ecall that T = 5 days) , the me sn 

. 
wind reverses direction, going from westerly ta eastefly. Following 

~ 
-this dramatic reversal, <u> continues ta decrease for about another 30 

days at which point it settles down to a per10d of relative calm as it 

ôscillates gently around an p,verage value of approxima te 1y' 

- 1.3 (or - 21 m i- 1 in dimensioria1 units). [Reca11 that initin1ly 

l n ( 16 S-I).J <u> - + .u or m 

w~should expect corresponding changes in the basic wave. Ta see these 

changes, consider Fig. 38b which shows' that the bas ie wave inl t Lally 

propagates eastward but reverses eomp1etely towards .the west nt around 

'the.tlme of the mean w{nd reversaI. 6ver the last flfty duys the basic 

wave exhibits an oscillatory behaviour, which is the comb~nati()n of 11 
~ ) 

, 
". westward propagating transient '3 component and. a much stronger. 

statiQnary component 
'\ 1 

[The stationary. component repr~sents h1gh (low) .. 
J • 

pressure situated directly over the mountain (valley). J 

As concerns the streamfunction. con~ider Ftgs 39a, b whlch .. how tP 

and, li at t - 25 days At this time the flow is dominlltcd Ily .1- wavy 

structure on the scale of. but sI ightly out of phtls(' wi.rh. the 

topography. A sequence of subsequent stearnfuncti<>n plots {nqt. shown) 
, 

o 
reveals that. the trans ient compone1= 0 f the bas le WllV{l dt"cny'i >1lld the 

easter1y mean-wind lncreases 'For example. conslder Figs, J9c, d which 

shows 1P and li at t - 60 days. Notice. the strong eltsterly flow which . . 

d~Pé\rts southward over the rnlJùntain at~d northward oVt'r t.l1l' 'l,'llloy 

Alrhough the wavy part" of the flow 1'1 Ltrgely domlnlJted by th .. w .... v~ on 

th~ 'Jcale of the topography, other seales arc aluo Qviden~. Tf) :HH,' the 

contribuÙon of the non--copographic 8-<:,11e$ conatder n~ 3'J1'! whkh nh()wII 
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'the ~onal and meridional energy spectra, with the basic wave removed. 

Notice the rather fIat appearance of hoch spectra at large wavenumbers, 
'T . 

which suggests t~at the small scales may be beginning to equilibrate, in 

the statistical mech'anical sense. o ., [Whether a stat:i!st1cal .f!quilibrium 

ca~ ~ctually be supported by this finite system is questionable sinc~ it 

identically conserves neither of the "quadratic invariants (this will be 

taken up further in Section 4.4) .. 1 . Furthe,~. to Fi."g. 39~ we. point out, 
, . 

that the sum of the individual energies of the non-topographic modes is 

only about one half that of the basic wave itseif. . . 
To assess the sensitivity of the system to a 'change in the 

magnitude of the initial disturbance we reran the model with S - 2jO.02' 

(twice the previous disturbance ampli.tude). Outside of a Îaster initial 

deyelopment. the behavi~r of this simulation is in aIL \essential 

respec~s 

, 
identical to the S = jO~02 case. This can be seen. for 

~ 

instance. by comparing the dashed and solid curves of Fig. 38a. Notice 

that al though the mean wind ~reversal occurs earlier than before" <u> , 
i ultimately settles ~own ta approximately the sarne value. The fact that 

these two cases behave so similarly is not that, surprising since their 

initial E and Z values are so close [i.e., (Eo.Zo) ~\2.078.74.184) when 

S - jO.02 and (Eo.Zo} ~ (2.152,75.375) w~~- 2jO.02]. In Section 4.4 

we will offer an explanation, based on the theory of statistical 
, 

mechan'ics,' for the similarity between these simulations. Finally. we 

present Fig. 40 which shows the ev~lution of the total and mean zonal ." . 
potential enstrophies. Notice that shortly after the mean wind reversaI 

. 
(at t ~ 25 dqys) the total potential enstrophy begins to show a slow but 

noticeable decreasing trend. ~his behaviour is indicative of increasing 

actiNity around the çruncation wavenumher . 

.. 

113 Of 
'.' . ., 

.' ... -.. -

cO • 
... 



o 

o 

. ~ 

o 

• Q 

, . 
A similàr mean wind ~eyersal as we have observed here was a1so seen 

by Ëdelmann (1972). The 

solution of the sha110w 

latter obtained an approximate stâtionary 

water equations, initia.U.z~d w~thj unifor~ 
. 

wester1ies, by performing successive time-averaging of Fhe simulation. 
~ '1 

However, as pointed out by Fischer (1980), Edelmanns' solution may have 

converged to a staêi~narf solution wi th 'e'asterly wi:nds as a consequence 

of the method of integration. Egger and Metz (1980) a1so found, through 

simulation of the barotropic vorticity eql!ation, tha.t <Il> can decrease 

'dramatically when it is initially positive d.e .. westerly). However, 

Egger and Metz's conclusions were limited by the sev~re truncation used 

(Sawford and Frederlksen,01983). 

CI 

. The fact tha~ unif;rm westerly flow over topography can gelleratt' 

strong t;ansien1:s leadi.ng, to its ul.timate demise has heen known (or SOIllH 

time' now. In contrast, it is known that an initLll tmiform ('asrerly -
flow will not nece~sarily generat-e any strong tr,m~il'nl lH'haviour 

Kasahara (1966), for ~examp1e, through direct numerical simuliltion of che 

--shallow water equations, found that westerly flow ovpr topography could 

produçe a train of long waves on the lee side of dn obstacle On the 

other' hand, nno such long waves 0 were seen to appear in ttH> l'lise ct 

.. 
initial easterlies. To see whether our model behaves siml.ll1rly or not 

we performed two 
'" 

Us - - 16 m s - 1 

s irou 1(J t ions starting with 

, 
[Corresponding to initial uniform westerl'~s nnd 

easter~ies, respectiv'ely (i e . I/J - ± us' y at t - 0). ) Rl'ferring- to 
... 

Figs'. 41a, b, we indeed find thelr behavi()ur to b(' v .. rv dt f[onm"T:, 

w~th the easterly case remaining stable and the westerly case Ipnd!nx ID 

lar~e oscillations (with <u> tE'nding ta deCr~;1Se), W(' not" thdt th(!o 

qualitative differences between initial westerly and enst~rly Clow over . 

" 
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to~ography can be understood using conservation of po~entia1 vorticity 
o 

arguments. Rather th an review these arguments we simply Jefer the 

\ 
reader to Holton (1979 r pg. 89-91). 

Returning to Fig. 41b we find that in the stable easter1y case the 

vacil1a~ion period obtained by 1inear interfer,ence theory [see (92)J and 

that by Integration are almost identical (i. e., Ta.::: 4.6 days). (W'e 

note that the circular shape pf the traj ectory is also consistenf wi th 

the theory.) By contrast, in, the unstable westerly Case we find that: 

(1) the theoretica1 period (of" approximatel,y 42 days) is ~ much longer , 
th an the numerica1 period (of approximately 15 daysJ and (2) the 

traj ectory. is quasi-eUiptical rather th an circu1ar. The failure of 

the theory in this case lies in the fac t that, strie tly spealÙng, the 

theory only works in situations wherein the variation of the mean zonal 
~ 

,wind is small enough for the lineariz~tion to apply. As a final remark 

we point out that the elliptical shape of the _lat~er orbit is 

reminiscent of Yoden' (1987) who described a new class of statospheric 
• 

vacillations- using a highly truncated spectral model. These 

vacillations were interpreted as a nonlineàr Interference between a 

stationary wave and a topographically modified Rossby. wave where 

variations of the mean zonal wind are important to the wave bepaviour . 

. 
(In linear Interference theory it is assumed a priori Shat ~he' 

fluctuation of the mean zonal ;And has no effect on the wave structu~e.) 
\.. 

" 
In the next

P 
experiment we will chec;k the 

~ ' .. 
extent . tO' 'W4ich the 

, 
qualitative.ôehaviour we have found in this experiment is a function of 

our choice of a highly idealized sinusiodal topography. 

a 115 

et • 



o 

.. 

•• -jo 

o 

.-
• 

4.3.3 Expeilment 3: Localized ~opography 
.' 

~. Initial condition 
.~ 

In contrast to the' previous Ones this. experiment will involve a 

topography' ~hich 1s 1oca!ized in space. Mor~ spec1fically', the 

topography wlll be Gaussian in the zonal direction and sinuso.1dal in the 

m~ridiolfl direction, i.e., 

h(x,y) 

where " h(x) 

il (x), sin(7!'y/D) 

2 
- { (2x-L)j..?r) 

e ~ -

..., 

'. 

(93) 

c 

:1 
~ - (L/2r) ] for 0 ~ x s L 

otherwise 

" has a ho h .(1 :1 Note that h(x) maximum, at x - L/2 of - exp[-(L/2r) )l g 

and decays to .zero at x - 0 and x - L. In the sequal, wo take 

'hj/H - 0.1 and r - D/2. Ultimately, this topography will he projected 
• 

onto our basis functions given i~ (9) We note that tha spcctrally 

expanded topography will differ from (93) by d constant, owing Lo the 

fact that the spectral expansion has no channel c1veragt> Howcve r, s lnce 

h(x,y) only./appears as a differentiated quantity in (1),' this dlsPllrity 

* inconsequential .. Consider Fig. 42a which is a plot of h (x,y) 

Gi~n the localized topography of Fig 42.1 the corresponding stendy 

flow 1s obtained tiy subst\tuting the spectral farm of (93) lnto (4) und' 

applying the Galerkin procedure, with the resuit chat 

--'" 

'. 
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[The ~Q's a~e defined in (88).] Recalling (88) we see that rather than 

one resonance point, as in the case of the sing1e-waye topography, we 

" 2 1ow ,have lineal;;resonance whenever Us - f3!Ka' For ir:stance, Us ... 17 mis 

is sandwiched b~tween resonances at approximate1y 19.9 and 15.3 rn/s. 

\ are with the [These wind associated speeds resonant 

Q ... (2,1) and Q -. (3,1) wavesJ. In this case., the flow defined by (93)-

(94) is domiI)ated by a combined zonal-wavenumber-2 and -3 structure. 

The actual steady flow is shown in Fig. 42b. 

A stability ana1ysis reve'als .. that the FGLD ta the steady flow of 

Fig. 42b is' such that (r,T) ; (13.3,35.6) days (when 11 ... N - 15)., The 

structure of the FGLD is shown in Fig. 42c. 

b. Time-dependent behaviour. 

In this simulation we chose" 6 ... 2JO.02 and !::.ta- 0.25 hour. ',~ .. 
the' evolution of E and Ë ... for this Consider Fig. 43a which shows 

simulat1on. We note immediate1y the qualit?-tive similiarity in E, in 

this simulation, and E seen previously (see e.g~, Fig. 37c). As before, 

E initially decreases as <u> (not shown) tends to zero. ' [As "regards . , 

<U>O, we note that <U> :::;; 1. 000, - 0.014 and - O. 760 at t - 0, 100 and 400 

days, re.spectively:. J Following the mean wind reversaI (at about t 7' 100 

days),E increases ta, and remains at, a much higher val~e than ~~ t - O . 

. . 'Consider Fig. 43b which shows the evolttion of the ene~gy in zo~al 

~s can be seen, most of the energy that is lost by wavenumber-l and -2. 
~ 

" 
the mean flow in the first 100 days is transferred' into zonal' 

. 
wavenumber-l. However, following t ... 100 days the energy in zonal 

wavenumber-l is gradual1y ~eèurned to ~he mean flow. A$ ·in the previous 

simuiations this latter trend' is characterized by a~ méan flow 

J 
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vacillation arising from the periodic interference between two waves 

with the same horizontal wavenumber but different phase speeds. 
" . 

The eddy streamfunction and mean zonal flow at t - 100 and 
1 

t - 400 days are shown in Figs. 43c, d. [Take note that the contour 

interval in Fig. 43c is thr~e j:imes that bf Fig. 43d.] By comparing 

these plots (and bearing in mind Figs. 43a, b) we find that after around 

day 100 the ~ddy part of the flow becomes substantfally decreased~whil~ . . 
the mean zonal part b.comes more negative. In Fig. 43d (i.e., t/J* at 

t - 400 days) we note, for future reference, the pre~ence of a high 

pressure $ystem overlying the mountain. 

On the basis of this experiment we 'conclude that the qualitative 

behaviour we saw in the previous'simulation is not merely an artifact of 

the sinusiodal topography. Having rSaid this we will now turn our 

attention to rationalizing the asymp~otic behaviour of these simulations 

using the meehods of equilibrium statistical mechanics. 

/. 
'." . 
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4.4 Statistical -mechanical equilibrium • 
In the last two subsections it was found that the p' nurnerical 

,simulations consistently evolved towards relatively stable states with 

strong easterlies, on the one hand, and high pressures overlying high 

ground, on the other. Along with this tendency there was, in'each case, 

. 
a- slow decrease in the potential enstroppy. The nature of these 

asyrnpototic states,' togeth;r with the increasin~ activity around the 

• truncation wavenumber (as measured by the slight lack of conservation of 

potenti~l enstrophy), su~ge~ted to us that the simulations were relaxing 

towards classical statistical equilibria. ln this section we will 

pursue this matter further. 

To check tp \o{hat extent the asympt'Otic behaviour of our nurnerical 
\ 

simulations can Be unde~stood as 'a relaxation t~wards statistical 
.. . 

mechanical equilibriurn is p'roblematic, since chese methods rely· on the 

cOnservation of E and Z in the truncated system. [Recall the E an~ Z 

are not exactly conserved in our particular, but widely used, system.] 
" 

By way of circumventing, this problem' we propose to: (1) adjust· the 

numerical model in such a way that E and Z are identically cQnserved~ 

(2) perform a new simulation initialized as close as possible to 

experiment 2 and finally; (3) compare the asyrnptotic behaviour of this 
00 

simulation with the corresponding equilibriurn derived using t~e methods 

statistical mech'anics. In this way, we hope to shesi sorne light, .a.lbeit 

indirectly, on the long term behaviour of our previous simulations. 

In subsection 4, 4,.l we write down the 

-sta~istical equilibriurn and ou;line the nume{cal 

equa1!Ïons governing 

me thod used to so Ive 

chem. \ole note that this will comprise only a brief review of tlw 

methods of classical statistical" mechanics since the details can be 
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found elsewhere (e.g-., S~~>n et al., 1976). In subsection 4.4.2 we 

• 
deséribe the resu1ts of the new numerica1 simUlation, while in 

6 

subsection 4.4.3, we compare the long term behaviour of the new 

simulation with-the corresponding statistical equili~rium. 

4.4.1 Methods of stat1st1ca1 mechanics: a brief rev1ew 

The taeit obje~tiye oi statistical mechanies i5 ,to obtain time-mean 

solutions ato a finite set of nonlinear equations, without having to 

actually solve the initial-value problem ieself. In practice, this 

" 
involves replacing the fini te' set of det~rminist:ic equations [,involving, 

r\e!, the real spectral ,coefficients (l/Ip(t))] by a time-independent set 
, . ~ 

governing sorne st:at:ist:ical property of flow. The solutions to this . 
latter set of equations represent an ensemble average over a large 

number of realizations of "the system (al.l with the same initial E and' 
{j 

Z). The prerequistes ~or the previous step are that Liouvilie's 
o 

theorem be satisfied (1. e., ~ a.(;Jp/atPp - 0) and that the truncated 
.~ 

versions of energy and potential enstrophy be conserved. Furthermore t 

to ensure that the system remains .in statistical equilibrium, it is 

usual to as.sume equal a priori probability for all accessible (i.e., 

. 
allowed by the 'initial E and Z) points in phase space. [This is the so-

1 • 

called ergodfc.hypot:hesis.} Under this assumption it can be shown chat 

the equilibrium solutions, which rQpresent ensemble averages, are 
" 

eq~ivalen~ ta long time averages over a single realization. 

Returning to our partieular set of spectral equatio~s (11) we note 

that Liouville' s theorem is satisfied sinee 
1 

... . 

there are no self-

interactions (i.e., ~p!a - O. whenever any two indices are equal). 

However, as we already know. this system of equations does not 
1('; 

...... 
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identically conserve the truncat~d versions of energy and potential' 

enstrophy. To rectify this s{tuation will require the following 
" . • , 

corrective measures: (1) satting Us - O,·to ensure energy conservation 

and (2) projecting f3.y onto our ?rthonorma1 basîs tgive'~ in (9)],' to 
t. 

ensure potentia1 enstrophy conservation (seè Appendix F). With regards 
• 

~ , 
to (2) we will-, f'Or the tiÎne being, simply absorh the projected f3.y into 

(1.. •• 

h (see Appendix G). 
0 

Now, if we write xi Ki ·1/Ji' Hi F fo·h.l/H 
'I:l " resulting spectral equations can he 

Salmon et al. (1976, equation 1.6p,.i.e. 

d x. 
t .1 

and f3 i jl = 

express-ed 

In this case the ,energy and potentia1 enstrophy are &iven by 

2E and 

i 
I 2 2 

K.x . 
.1 .1 

i i i 

- cijl the 

as in 

(95) 

(96a,h) 

respec tively,. Under the 'various âssumpt'1ons~_outlined ear1ier, i t can he ..... - . 
shown that < theo expectation values (denoted with bo1d angle. brackets) 

of and Ei k 
2 statistica1 equilibrium x· x,i at are 

.1 r , i!'~ 

2 _ 1 

'<X.> = f3 K.(ex + f3 /.(.) H. 
.1 010 a .1 .1 

(97a) 
l 

2 1 2 _ 1 2 2 2 _2 2 
and <x.> - • (ex + f3 K.) + f3 K.(ex + f3 K.) Hi 1. 2 0 o l . o l 0 P l 

(97h) 

2 
where a o + f30Ki is necessari1y positive for eV~YQi. The parameters a o 

and f3 0 in (97) are determined by solving Fhe two coup1ed e~uations' which 

o 

arise after equating the expectations for the tdtal e~gy and potentia1 

enserophy to the invariant values, E and Z, i.e. 
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and \" <Z > - 2Z L l -

'\ 
(98a,b) 

Equations 98a, b will be solved using the Newton-Raphson method nt the . /" 
H • N - 15 truncation 1evel, corresponëing to our numerical simulations. 

A few interpretational comments regarding (97a,b) are in orc!pr . 

First, we note that since ensemble averages cire pquivalent ro lonr,-tim{' . . -

averages, the right-hand side of (97a) represents Lhe stdLionarv part of , 
1 

the streamfunction (Sawford and Frederiksen, 1981) Furthe~m~l\'(', ,',IVPll 
l ' 

higr enough resolution f3
0 

> 0 (since 00 + I\/~ > 0 \/ 1) 50 th.lt tlw 

streamfunction and t~pography ar~ po-;'ltlvply correLltt>d III 0 t IH' r 

words, if the flow contains small enouEh s(,i.llt'~ th", t'ljuilibrlum 

streamfunction lS such that we will find high pl'eSSltl;'e ovpr moun!.1 in', , . . - ~: 
and low pressure over valleys ~ Referring ta (')lb) WP Ilot ICI' [h.1t wh i J C' 

1> ~ 

/-
,) 

the expected transient part of the streamfunction ls ;:('r.o, tlH',l'n''1ï',V ut 

the transient flow .... is liot (as evidenced t)y rl1l' prl">l'TlCl! of tlll' f l r'; t 

term) _ More to the point, the first and second tel'l11'; Oll tlll' rip,ht h,lIld 

o 
siqe represent the ~ in the tr",msient: ~ll1d th ... '.1.ItloT1.11Y poIl"l'. of 

the flow, respecti,vely_ 

4,4 2 Numerical simulation: experiment ~ 

At this 

conservation 

stage we re,ind the rendcr thllt in 'Heler to ('II!l\lrt; thr. 

of E and t we have ,et Us - 0 ",Hl pr".Ion!., (iv o,~;,~ 
orthonormal basis (9), ,i 

Appendix G) AssUÎning a 

a sinusiodal topography. we.get for stpadv flow. 

, ' 
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~ ~1.J2cos(~iy/D) + ~ ·2sin(2~m x/L)sin(~n y/DY L Cl: Cl: Cl: .... 
(99) 

i 

'-' where 
_ 2 2 

1/J.- f3./(K. - K ) 
1. l l S 

and . ; ·r 
. 
This equa tion is meant to be compared wi th (&8) which gi ves ~ for the 

case when Us ~ 0 and the planetary vorticity is a linear function in y. 

We emphasize that in order to relate the findings in this section to 

those of ,the previous one we intend to adjust P so that ~, as defined by 

(99) , isl as close as possible to ~, as defined by (88) 

{. ')'f 0 88510. 11 ~l -~ As shown ~n Append~x F ~ f3 ~ .7 x m. s 
2 

and K s has the 

same value as - 1 
in experiment\, 2, then <Ü> - - <8y1/J> ~ 16 m s-

chosen the f3-pa!ameter so that we get the same initial Obviously we have 

westerly mean-wind as in experiment 2. Further'o this, if we take 
.----

2ha/H - 0.12 then the wavy part of ~ is also identical to that of 

experiment 2. The FGLD to this steady flow has 

(T,T) ~ (4.78,29.59) days. This compares very favouraply with the FGLD 

of experiment 2, for which (:J,T)::::: (4.72,28.37) days. As befare, we . , . 
will intialize the integrat'ion using this steady, flow pl\~s lts FGLD, 

with 6 - 2JO.02. The initial streamfunction in this case is shown in 

Fig. 44a. whiJe a sca!=ter dl'e.gram, of 1/J"versus Q ,., shQwn in Fig. 44b. 

We smphasize the fact that initially the relationship between Q an~ 1/J is 

very nearly linear. 

Consider Figs. 44c, d which show the evolution of the mem wind and 

the trajectory'of the basic wave, respectively. Comparing Fig. 44c with 

the dashed curve of Fig. 38a [showing the 
<' 

evolution of <U> in 

experiment 2 (6 - 2)0.02) J we notÙe immediatel'y the strong resemblance, 

Although in this ;i~ulation <u> tends towards a slightly larger negative 

value than before, the qualitéitive behaviour is nearly the same. The 
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• 
basic wa'Ve trajectory cO.i'responding to experiment 2 (not - s\1own) is aiso . 
quite similiar to that given in Fig. 44d. On the ,basis of these 

compad.sions we can quite safely say that t"h~ynamiCS governing ,the 

-'long term behaviour of these two simulations afre for all intents and 

pJrposes the same. We will now show tHhe the long term behaviour of ex-

periment 4 is connected with the tendency of the truncated dynamical 

system to evolve towards a statistical equilibriwn 

4.4.3 Appro~ch ta equilibium of tpe numerical simulation -To.compare the long-term behaviour of the numerical simulation with 
O· 

statistical equilibrium it ~ould perhaps be most dpproprLlte to considel' 

a time-average of say the last 50 days of the numerical simuL1tion 

Given that the simulation varies little ovel' the last 50 days w(> wi 11, 

instead, simply compare ~e slmulatlon at t - 100 daV5 wlth tilt' 

corresponding 5 ta t i'St ica 1 equ illbr ium, as done in 

respectively As can be seen, the equlllbrlum and ,'>1111111.']((>(1 

steamfunctions are quite 5imiliar. More !'pecifically, bath solution!> 

are characterized by a strong eastel'ly flow which depart5 sauthwnrd over 
r, 

the mountain ang northward over the valle1 

As further evidence that 
4 

the simulation i5 evolving towllrds 
1 

s~tistical equilibrium we present t~nergy spectra 

(t - 100) and the ~tat{stical equilibrium in Fig 45c 

for the simUlation 

equilibrium zonal spectrUJ1U,at m)l- 2 1s related to the f.:let the (>lwrl'.Y 15 

~anced on the topographic 'icale 1 sr-e the second tenn' O!1 tlw l'1e,ht 01 

~b) J •• Comparing 'the two sets of curvcs W~ Und the C}O!.lt'st: a~re(ttnent 
\, .. 

at the largest scales (1 e , for m. n < 2). which .. u~p,at;tg rhllt 
1 

tht· 

• large sfales are "the" first to.equll1brate. 

( 

. ., 
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. scales is not nearly as good but close enough 1 to "suggest that the 

./ 
simulatibn is indeed approaching èquilibrium energy spectrum throughout . 

. 
Final1y, we present T~ble 5 which compa~e~ a few quant1ties taken "from 

theO simulation and the equilibrium solution, respectively. Note that a 

comparison is also made between the ~qu~librium solutions for 0 - ZJO.02 

and jo 02. In this connection, we comment that the simi1arity between 

these· two solutions is consistent with our findings in experiment 2, 

where we considerea both 0 - 2jO.02 and 0 - jO.02. 

'\ 

• 0 

... 

• 

1 

.'" .. 

125 

.* • 



~ t 
~ 

1 
\ 

.­
',,~ 'tt. 
~ 

o 

l' 
~ ... 
~ 

0-

4.5 Discussion 

In this chapter we have considered the inviscid nonllneBr stability .. 

of topographically forced plane.tàry flows consisting of a constant 

westerly 'mean <lzonal i flow and a wave on the' scale of' the sinusiodal 

topog.raphy. The basic flows exist as fini te-amplitude steady state 

solutions of the barotropic vorticity equation (defined on a midlatitude 

,B-plane channel). The nonlinear stability of these nows was tested by .' 

m~ans of numerical Integration of a spectral analogue of the mode 1 

equation where the initial conditions consisted of each steady solution 

plus a small amplit~de disturbance. In each case the small amplitude 

dü~turbance represented the equilibrium flow's fastest-growing linear 
~ 

disturbance. ca~culation~ wère 
i> 

made using sufficient 1 resolution to 

as~ well aS ensure the accuracy of the initial linear eigenmodes the 

time-dependent solutions. 

As alluded to already, each of the ;;,uilibrium flows tested was 

found to be linear-ty unstable. In the first experiment, involv(ng a 

weakly unstable steady flow, the.linear analysis revealed that the 

insta&iclity was of the RayleIgh type, which relied, on zonal shl?urs in 

the basic flow (as opposed ta a form drag or 'resonant interaction 

mechat;lism) . In addition, it was discovered that the fastest-growing 

linear disturbance was dominated by two wave components whose relative 

phase relationship' was the key to the linear, instability 
o 

In the 

1 

subsequent simulation it was rev~aled that nonlinear interaètions 

between the mean ~onal flow, the basic wave'and the disturbance resu1~ed 

Ll changes in 

ha!.t ip the 

~his unst~e phase re 1at·ionship leading to a temporary 

d,isturbance' growth. At the time of thi<; temporary 

stabilization the energy of the' initially small 'amplitude disturbance 
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was found to comprisé a significant fraction of the total energy, The 

1 
fact that the disturbance was aqle to achieve such a large amplitude (at 

the expense of the mean zonal f1ow) indicates that weak1y nOl}linear 

theory, such as that used by Deininger (1981), would not be capable of 

exp1aining'the behaviour of this simulation, 

One of the more interesting features of the simulation just 

~ 

described was the appearance, shortly after,the initial stabilization of 
,~ 

the linear disturbqnc~, of a l5-day ·mean flow vacillation. This 

vacillation, which eventually came to domina te the overall picture, was 

rationalized using a simple linear inter·ference theory like that 

proposed by Linctfen et al. (19/2). More \fspecifically, i t was argued 

1 
that the vacillation arose from the periodic interference between a 

forced stationary' vave on the fale of the topography and a free 

travelling Rassby wave (with the same horizontal wavenumber). The 

vacillation seen in our model is ~teresting since similiar vacillations 

havIe be'en fOU~d to exist in r~tating annulus e~iments .as weIl as in 

the at!l10sphere (Lindzen et al .• 1?82). Anot~er interesting feature /Jf 

the model simulation was the -.overil1 tendency of initial westerly mean 
1 

zonal flow to'decrease. 

The second simulation described in this chapter involved an 
1 ~ 

equilihrrum flow which was much more unstable than the first, , 
/) 

(The 

fastest-growing linear dis turbance , had an . e- folding time of 

approximately five ' days~) in the previous experiment, H ' 1n this 

simulation the mean zonal flow was-. found to decrease as time passed. In' 

fact. after only four e-fqlding times of the initial disturbance the 

channel averaged zonal flow changed direction entirely (going from 

westerly to easterly). 

~ 
Following this dramatic reversaI the flow 

\ 
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eventually' settled down to a quasi-stable state representing a strong 

easterly zonal flow being diverted southward over mountains and 

" We note that add~tional experiments involving northward over valleys. 

1 
a- larger amplitude ini tial disturbance and a Gaussian topography -\ 

confirmed the generality of this sort of behaviour. (A similiar 

behaviour as we encoun'teretl here was found. by Edelmann (1972) who 

computed' stationaFY solutions of the shallow ~ater equations -by means of' 

so-c~lled iteràted time-averaging.] 

In manY"- ways the asymptotic behaviour of the simulation just 

described was found to be reminiscent of the statlstical equilibrià 

derived by Salmon et al. (1976). In order to che.ck the extent to which 

the behaviour of this simulation can be understood as an dppYOllCh 

• • 
towards ~tatistical equilibrium. t~e l'atter was explicitly determined 

\. 

using the same initial condition and resolution as that used in the 
J 

integration. Following a comparision of the simulation and th~ 

correspondin~ statistical equilibrium it·was discovered that indced many 

aspects of the numerical simulation could be interpreted as fi 

manifestation of the syst-em evolving towards statistical equi.librium. 

We believe that this result strengthens the case 
8 

for utilizing the 

methods ~f statistical mechanics when testing the stability of 

equilibrium solutiôns invo'lvirig flow oVer topography. 
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CHAPTER 5 

S~y AND CONCLUSID~S 

. 
This study has been concerned with the stability of free,~ and 

topographically forced planetary waves. Instability theory has long 

" been central to our understanding of the fluctuations in the large-scale 

circulation of the atmosphere, but it was only relati vely recently that , 

these methods have b~en' applied to flows ~hich vary in both horizontal 
Cl 

directions. Although instability studies invo1ving parallel flows are . 
of interest (as evidenced by the plethora of such studies contained in 

the literature) their relevance to naturally occuring f1ows, such as the' .. 
atrnosphere, is sornewhat questionable.· [As discussed in Chapter 1 the 

f' 
tirne-averaged state of the at'lllosph'ere is characterized by a 

longitudinally varing flow as a consequence of topographie and local 

thermal forcing.] Investigations dealing with the st3bility of parallel 

flow~are woefully inadequate, for example, when it cornes to describing 
r __ 1 

the dynamics involved in regional cyclogenesis. In this investigation, 

by way of coming a little closer to reality, we considered the stabi1ity 

of basic flows which vary in two horizontal directions. 

In Chapter 2, after formulating our mathematical ~odel, we derived 
,. 

a particular class of exact steady-state solutions to the model equation 
, 

(i.e., the barotropic vorticity equation). These-solutions involved the 
" 

diversion of a westerly méan zonal flow (i.e., where tne aver~ge is 

around latitude circles) by an idealized sinusiodal top0graphy. lt has 

been shown in Derome (1984) that these particular finlte-amplitude 

solutio'ns are, in the absence of dissipation, the same as those of 

Charney ahd Eliassen (1949) except that the latter were ,obtained as 
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solutions to a corresp.,onding linear' problem. Finally. in the la:;t. 

, secti~n of Chapter 2 we derived a set of spectral equations which would 

enable us to study certain aspects of tre linear and nonlinear stability . 

of these solutions which could not be studied analytically. 

In Chapter 3 we investigated the linear stability properties of the 

equilibrium flows derived in the previous chapter Here the' -equilibrium 
, 

flows were perturbed by infinitesimal perturbations and their stability 

judged on the basis of whether or not the p~rturbations had non::ero 

o 1 
grow;:h rates. Section 3.1 constituted a full parametric Ilnalysls of the 

linear stability of both free and forced equilibrium flows of tris sort 

In this section equilibrium flows were studied having the gravest 

possible meridional scale allowed by the {3-plane channel and a zonal 

wavenumber of either 1 or 2. The forced zonal-wavenumber-l flow was 

found to have three maj or regions of instabil i ty in parame ter ~pace. 

two of which had stationary,growlng perturbations The free Rossby wave 

of that scale was stable for aIL amplitudes T~e forced zonal 

wavenumber two wave -had two .adj~cent instability domains. one on 'each 

side of the resonant mean zonal wind The free wave became unstable for 

sufficiently large amplitudes The results of this section werc inter-

preted tbrough the use of a severely truncated spectral modçl and were 

related to those of previous studies with infinite {3-planes, In' this 

section we also reported the existence of a travelling subresonant topo-
<-

graphie instability which seems to have go ne unnoticed in previous 

studies. 

lt was revealed in the stabllity analysis of Section 3.1 that the 

equllibrium flows were unstable to shear (Rayleigh) • . resonant 

interaction and tppographic (form drag) instabilities. Following this. 

\ 
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in Section 3.2 the dependence of the meridional structure of growlng 

perturbatrons on topographie instability was studied in more detail. In 

this analysis perturbations were taken consisting of an arbitrary mean 

zonal part and a wavy part which had the same zonal wavenumber as the 

forcing but arbitrary meridional structurè. This conf~guration. allowed 

us to: (1) isolate those instabilities which depended crucially on form 
a 

drag and (2) investigate non-tppographic effects on topographiç 

instability such as those arîsing from the convergence of Reynolds 

stresses. (Pe.rturbations involving an arbitrary zonal structure were 
• 

also stÛdied and"it was found that, qualitatively speaking, the results 

-were unchanged.) Following a numericaf analysis it was discovered, in 

partisul~, th~t unstable long waves (i.e., those with zonal wavelength 
~-~ 

longer than their meridional wavelength) exist only under superresonant 

, conditions. This was found -to contradict some previous results, based 

on various ad hoc assumptions, which suggest that long waves are 

unstable' _only when the flow is subresonant. Further, this model 

!'evealed the existence of some interesting t,rave~ling tnstabilities 

~hich were shown to ~depend bath on 
, 

form drag and Reynolds stresses. 

(In ~hat these two mechanisms temporally alternfite in ,supplying the 
yt 

perturb~tion.the energy required to maintain its exponentfSl growth.) 

In Section 3.3 the linear instability. of a weakly non-zonal basic 

f~ was investrgat~d numerically using the spectral method and 

analytically via WKB theory. Part of the motivation for this study lay 

in the recent success of Frederiksen (1983) in studyii1g the stability 

/ 

properties of th~ time-averaged Northern Hemisp~ere flows for the ~onths~ 

. of January and July 1978. Frederiksen found a good agreement betwee/ 

the obse~ed geographical \'stribution of synoptic scale eddy haat flux 
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and the distribution predicted by his numerically-determined fastest'-

growing mode, Due, however, to-~the complexity of his model he was not 
4 

'- <l; 

able to fully comment on the basic dynamical mechanisms responsible for 

. 
the the local growth of his idealized zànally-varying flows. - Our 

barotro~c p-channel model, on the other hand, is simple enough that a 

WKB analysis, in ,conjunction with sorne techniques developed by 

Pierrehumbert (1984), could be used to shed sorne light on this problem . 

• 
Our numerical,analysis revealed that the slowest-growing eigenmode 

l 

to a particular wea~~ non-zonal basic flo~ was stationary, on the scaie 

of the topography ~epended crucially on a fonn drag mechanism (of 

1 
the sort illuminated in Section 3.2). The fastest-growing eigenmode, Qn 

th'e other hand, did not involve a form drag mechanism but depended, 

rather, on the presence of .local 

4 
itself. A closer look at this 

shears inhere~he 

mode revealed a shnple 

basic flow 

meridional 

structure which.was strongly modulated in the zonal direction. The peak 

in the modulation pattern was associated with an easterly jet::'. in the 

basic flow which was particùlârly uns table as a resu,lt _ of the beta 

effect. A s~ondary maxim.um in the modulation pattern was nssociated 

with regLons of basic flow c~nfluence and diffluence. The corresponding 

analytic solution, acquired using the WKB approximation, correctly 

reproduced the location and shape of the unstable wavepacket but 

overestimated the frequency. In was suggested that had the basic flow 
, , , 

been more slowly varying in the zonal direction a liètter agreement in 

the frequency would al sa have been obtained. 

Till Chapter 

~properties of free 
-~ 

\ 

4 we had )only copsidered .the 

and forc~aves. Athough Iinear 

11near instability 

theory ls use fuI in 

predicting the initial be~aviour of a small alsturbance superimposed on 
~. ~ 

-r---
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. 
an unstable basic flow it is of little use once the former achieves any 

appreciable amplitude. In Chapter 4, on tpe other hand, we used a fully 

nonltnear ~pectral numerical model to study the evolution of a number of . . 
disturbances pasé' the point where the linearization procedure failed . 

. \ 
Three 

basic 

" 
basic experiments wel"e per~ormed~he first 

flow which was only wea"lY unstable. In t&.e 

of which involved a 

latter it was found 

that ·the ,basic flow was nonlinearly uns table in the sense that' the 

initially very small amplitude .distt;rbance gr~w nearly as large' as the 

.basic wave itself. In this connection, and in contrast to the nonlinear. 

" 
equilibration mechanism propo.sed by Deininger' (1981), it was discovered 

that the growth ex~rienced by the disturbance in the ear~y stages of 

the simulation was largely 'at the expense of the energY'-of the mean 

zon~l part: of the basic flow rather than the basic wave itself.' The 

crucial role of the topography in this redistribution of energy between 
~ 

the mean zon~l flow and t~e eddies was 'noted. 
. 

One of' the more 

interesting features of .this simulation was a mean flow vacillation' 

which appeared half way into the simulation ~nd which came to dominate 

the flow thereafter. This vacillation was foùnd to be the consequence 

of the periodic interference batween two waves with the sarne horizontal 

'. \ 
wavenumber (that o~ the topography) but different phase speeds, 

r • 
The second experiment descri~ed in Chapter'4 involved a basic flow 

, . 
\ 

which was initially much more unstable to linear disturbances. Once 

again, the basic. flow was found to be nonlinearly unsta~le. More?ver, 
, , c 

aS,in the previous simulation the mean zonal flow dec~eased dramatically 

with time. In fact, in this particular 'simu~ation the channel-avera~ed 
"-

flow eventually re~ersed direction: going from ~esterly to. easterly. 

Following this' reversË..t the flow .. appeared to settle into a cfuasi-steady 

\ 
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state, characterizeç by an easterly mean flow which was diverted 

southward over mountains and nortHward over valleys. A similar sort of 

long-term behaviour was" found in the third experiment_ of Chapter 4 and -, 

which invplved"a rnqre cornplicated topography (i.e., nonsinusoidal). The 

various connections between these results' and those of sorne previous 

investigators (i e.. Kasahara, 1966; Ede1rn~mn, 1972; Egger and 
,.Ir .. 

Metz, 19f1; YQden, 1987), who used models with varying degrees of 

simp~ification, wast noted. Fina11y, at the end of Chapter 4 we 1 

exploited the methods of statistica1 rn~ics in arder ta r~tionalize , . 
\ 

the asymptocic behaviour of 

it was conclude.d Chàt the 

sorne of 1(r simulations .. F~om thi~ analysis 

long- terrn behaviour ~he silllulations was 

consistent with an approach towards statistical equilib~ium. 

. 
~ 

1 

.. 

( 

.. 
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Al'PENDIX A 1 ~ 

DETAILS OF THE DISPERSION RELATI~NSHIP 

- The varibus .. terms in the dispersion relationship [Eq. (26) J 
(" 

associated with the severely truncated model are given explicitly below. 

-
a Wave d~spers~on 

,> 

b Wave InteractIon 

2 _ 2 

/3/K )(f/J ('r~ /u) 
E a. JJCH. S 

\. . • 
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APPENDIX B 

D~COUPLING OF THE STABILI~Y MATRIX 

As mentio~ in 

into two ~bma\rices 

subsection 3 2 3. the stability matrix ... _.decou~ 
o 

We will show here that this is related 'to the 

symmetries present in the perturbation equations. , 
'-

The equation for -, u , the mean zon.a~ perturb~tion" wind, IS obtained 
a 

by zonally averaging (39) and takes the form ;' 

2 * * . a u' - a [v (t::" + K N' ] - a [(f /H)h a !/J' ] ;.. 0 (B 1) 
t Y Y s s y. 0' S x 

while the /quation for !/J* (devlatlon from the zonal average), obtatned 
J -

by sub~racting (~ 1) from (39), can be wrttten as 

x~ 2 * a t::,,!/J' + u (t::" + K )3 l/J' 
t S S X 

- v (t::" + K
2
)u' + Z;;-a [(fC- 0 s S x 0 s 

~ . 
when only one zonal harmonlc is allowed ln the x direction In the fol-

'~ lowtng dis'Cussion, we will call a functio'n even (odd) i~ it has the sta-

ted parity with respect to the middle of the channel (v - D/2) and we 

will take hs ' and hence Vs {see (40)], to be even By insppction of 

(B.l) and (B.2) we see that sOlutio~ith the followin~ paritfe.s dre 

pOSSib7 (a) !/J' * ahd il' both evenr [i. e., n odd ln t#s ln(l11rv/D) ,of 

!/J'* 4d il'] and (b) !/J'* and il' both odd (n even). Solutions of: thc\ 

first type have a Li' with a nonzero channel'faverage and must involve the 

form drag mechanism; they-are ~:sociated ~ith the Ar m~trix. Solu\ions 

of the second type have a Li' with a zero çhanr.lel average/and may or. tnay, 

nOL lnvolve the form drag, mechanism, they are assoc i"lte~~ with the A8-
.- . 

matnx 

Î 
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APFENDIX ~ 

Q TOPOGRAPHIC INSTABILITY: TRE DISPERSION RELATIONSHIP 

a .. Interaction ë:oefficients 8 

The interaction coefficients in (50) are defined as follows 

"- , 

" A 

C /15 
.-

C /5 
.-

i7C /35 C8(3 C /3 C ilE CrjJ(3 - - and CrjJ 0 0 0 .. € 0 

CC.l) 

Qwith C 
l6JZ7r (D and L are- the channel width and length, !iiespec ti ve ly) 0 = Li) 

• 

b TQe frequency near linear resonance 

To obtain an approximate expression for w, valid near linear ,.re- \ 

sonance, we take 

:::: 0 o 
o 

Writing the basic state amplitude in terms of 6(3' i e , 

1) 

(f ·h /fl)/6/3 o Cl ... ... .. 

(C. 2) 

j 
·CC. 3) 
~ 

we riote that 6(3 > 0 implies subresonant flow and /).(3 < 0 supe~resonant 

flow. The fact that ~Cl -+ <Xl as 6.f3 -+ G will allow us ta neglect: a number 

of t'€~ms in (SOL. leading to a simple final Iresult. For future reference 

we note also that, near ~inear resonance ,.t> , 

~, and 6~.< a 

6 < 0 , 
€ 

-JI 

if 
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For the channe 1 di.mens ions . used in this s tudy ~ 1 == 0.14 S]2 sa tha t 

• 
• tlifJ < 0 (We mention that channel widths for which 0"1 ~ )2 

istically large.) 

The solution to (50) can be written 

2 
W 

where. 

• 
b 

[ ]

1/2 

~ ± ~. 1 - 4c/b
2 

near re.$onance, 

~ 

" _2 [60 " 6. " 1 ::::: b·.,p - -c + -·c 
0: 2 Of 2 ifJ~ 

Ko K", 

" and C ::::: C 

tl 
~ 

_2 

tPo. 2 
K 

ê 

. -

~e 

Since 4c/b
2 

- 4(ê/t/) tl/3--+ 0 as tlf'1-+ 0 the rddlcand III ((: ':» h po"itiv(' 

implying that unstable. near re!;onant flow is nf'cess,lrllv SLlllolldt"V 

Ci e • 'w
2 

is ~eal"'and negative) To choose tlll: .lppropl·t.lte o,lgn 111 

(C 5) conSi,de,\he ratio of the terms in tlw squ.ll'e br.lckl't of 

and note that 

l' 

which is BPtproximately equal to - (, 7Rxl0
Q 

wht'Il 6
1 

.:c '0 ]/4 

't. 

10 2 1 « 1 we can write 
L 

_2 
1/J 

0: 

" 
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It follows that b > 0 (since ~~~e > 0), which in turn, implies that the 

negative sign in (C.5) must be:'t~ken if w
2 i5 to be negative. From here 

it is a simple matter to show that for ~p = 0 

2 
te) = c/b , , . 

, 
which is equivalent to (52) 

The following ratio is used to obtain (55) 

_ lil1f. 
() 3 ~ t:J. ->0 

f3 

which is approximate1y equa1 to - 0 028 when 01 ~ 0 14. 
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APPENDIX D 

DETAILS OF THE TYO AND THREE TERM SYSTEMS 

a. Three-term system 

also 

1 The equations governing ~1' ~3 and ~5 are as follows 

2 
C - k·u . (K 

w s 

2 2 
K - k 

P 

2 
+ n 

p 

o 

o 

- f ~3 + (w + g) ~5 0 

e - k LI (K 
w 

f - k LI (K 
w 

g - k LI 
.Ç 

(K 

and n .. P'7r 
P 

for p - l, 3 ,mcl ') 

2 

s 

'2 

s 

2 

s 

(D 1) 

2 ) K2) Kr)/(~ :) 

'2 '2 - K
3
)/(:! K ) 

~ 

' ) 

K~ ) /K' 
" 5 

Setting the deternhnant of the coefficients of (0 1) to zt>ro le.lds t"o .1n 
t 

equatiQn for w [~ee a1so (73)], i.e. 

3 2 
W t B·w + C w + D - 0 \ (0 7) 

\ 

where B - a + d. + g C - d g + II d + a'g - t'e - !J c . 
and D - "8 d g - 8 f e - c·g b 

-

.. 

1 -

/ 



o 

c 

Inverting (D.2) l~ads to (77) with the.sn's' and bn's defiùed as follows 

1 

8 2 - [u (u s s 

8 -_ 5 

2 
'+ [u 

s 

+ ~ [u 
'5 S 

2 
a - - [3u + u u 

6 S S W 

" 

, 

2 
- n )] _ 5 

r 

1 

\ 
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" 

b - [Cu 3 e S 

.. 2 2 2 2 2 '2 2 
+ U [ni (K - n

3
) + ns (Ks - ni - n

3
) 1 

s s 
"-

\ 

2 2 .. 2 2 '2 '2 2 
+ u [n1(K - ns) + 11

3
(K

s 
- III - ns)] s s 

> 
2 2 2 

b
4 - ni + n

3 + n 5 
.... 

. 
';1 2 '2 '2 

b s - [3u + (u j2)j(K - III - 113 - IlS) 
S S S 

.) 
b - - [Ju 

7 S 

b Two- terro svstem 

1 ) DISPERSION, R'ELATIONSHl P Whel1 ,p~ - n tl1l'l1 llw ''(l'I,1t [olh 

governlng "'1 and <P J are obt.lint'd from (0 1) by !:o(·t! 11l~~ (. - t - g - 0 

" (D.2) after setting e - f - ~ - () 

2) DETERJ1INATION OF k .'1 

define kH to he the wavenllmlwr which mnx irnlzJ.'<; ""i 

simply SE't Jk:.J!" () 

posi ti ve roots 0"( the l'esul t ior, (''1'wt 1 on TI1I' ('und i t lull ", w 
., I( l 

-, "\ ~ 

ta an 8th-order algebrill, ('qlll1tlon ln pow('r', of k' 

the aid of an algebrllic m:mlp\Jlfltor) tho r()ol .. 

~ 
The c:o(JUidf"n!'i of using a stilndaid method. 

h .... '"'.. 'jn 
t a ~ '~n mu l , 1 P l 1 t" 5 k , 

1 ... , 

.. 
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C ~ 
7 

2 
20n 1 

2 
+ 20n

S 

, 
c --6 5X

4 
+\n: 

C -' s 

S 

6 " 2 
20na - 8n K 

3 S 

2 2 2 
Bn3K K w s 

' ...... 

. 
4 2 2 

+ 30n
I 4nsKs -

4 2 6 
+ 8nsKw + 20n

1 

" . 

-, 
2 2 2 2 2 2 2 2 .. 

+ 4n K - 6n
1
Ks - 4n 1Kw + BOnln

S 3 W 

4 2 4 2 4 2 2 4 - 12nlKs - Bnll(w + 120n
l
n s + 12nsKs 

44 422 8 62 
- 12n K - 20n3K K + 5n I - 6n K 

3W WS 1S 

422 \26 242 242 224.224 
- 8n 1n3Kw + B0l1l n' 3 - 68n In3Ks + BnIn3Kw - 12n! n3Ks + 24n In 3K

w 
"'-

1 

84 84 822 
- n K - 4n K - 4n3K K 

3S 3W WS 

4 6 '! 4 6 2 " " " 4 " " " " 2 :2 2 8 2 - 72n 1n3K . Bn1 n sKw + lBnln3Ks + 24nlnsKw + 12nlnsK K - 6ninaKs ' s w,s 

c = 
I 

c = o 

- 2 8 2 
4n In3K

w 
2 6 " + 4n l nsKs -

2 6 " :2 6 :2 2 
Bnln3<Kw - 4n1n3KwKs 
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Appendix E 

<0> in the numerical modei (h • 0) 

In this appendix we will show that in the absence of topography 

(i e., h - 0) the channel-averaged zonal f10w, <u>, is conserved only in ( 

the limit of infini te meridional repolution .. To begin we rl'call (86) 

and no te tha t 

-1 
• 

0 for n even 
F (y-D) F (y-O) 

cr (E.I) -
a a 2)2 for odd, \ - 11 

cr 

where F denotes a meat'\. zonal hasis funetion of the form j2cos( "'11
0

\'/0) 
a • • 

1 It fo110ws, therefore, that in the numerieal rnodt·l 

d <u> '­
C 

where na is odd 

<, 

We also note that c{3((} 1s nonzet"o only whcn r~{3 and f, 

are both eddy basis Junctions 'and Ff) ... Fc Concencrating on tht' 11)1H'1-

summation 'on the right-most side of 
. 

we CE '2) obs<>t"v(> that: ( 1) ('lIC!.l 

2 K C" ~n(i Ot1CP l>y' e (ha .. twice, once multiplied by 

2 
KfJcefJa' (2) c({3a - • c{3to. and 0) cfJ(Q - 0 lE nif) ... m~. Tt follows [rom 

(1) - ( 3) tha t 

d <u> 
t 

whtlre I 
{3« 

• 

2j2 L "'/3"', <r< 

denotes 

/3« 

~ 

summati6n 

/ 
/ 

2 L' 1 11/3) (Ca ln ) 
1 (a a " 

(F.,3) 

cr 

o'Jer all p,Ji rs (/3, q t)fJt witbout rcpfttit1on. 

El 
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The interaction coefficient·S', c{3ea' can obtained in exp1~~t 

from Appendix A of Mitchell (1982). Using our notation we get ~ 
form 

1- (-1), ~ {3\ ex n +n -n] 
ne + ~,B ( n~ 

J2 [1-(-1) -ne+
n

/3+na 
+ LV1!:m(n ~ - n ) + 

~ fi. - n + n/3 + n 
• e a 

where m l!I ID, - mp an~ominator9are assumed to be nonzero. 

the fact that~a is odd we can rewrite (E.4) more cornpact1y as 
~ 

C ... J2rrm[1 + 
/3w ,LV 

'\ 

n 
E 

n 
e 

\') 

- n,B 

Letting s ~ nE ~ n{3 and d - ne - n,B it follows from (E.5) that 

(i) when d ~ 0 
b 

l (cp ln 2) J2 [ _n +n.e] 
I~[n 1 1 

sJ (-1) f 
ea a LVrrm 1 + + S n 

a ex ex n 
Q 

1 f l- 1 d] - d n + d n 
ex ex 

(H) whén,d - 0 

J2 [ 
2n . I (c.e- ln 2) (-1) e] l (2In:) - LV7rm 1 + Ea Q 

a _n 
a 

-• 
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Evaluating the infinite' series in.(E.6) and (~.7~ we arrive at the 

following 

1 

-{ 
0 if n ,. n{3 I fdf3 ln 2) 

l 

la a 4)2 2 
a ---rvrrm("If 18) 'ff n - n 

l {3 

(E.8) 

~ 

It follows from (E. 3) and (E.8), cherefore, that since 

for "', ne - n{3 ,the factor n~ - np - 0 while for nE ... 11{3 we havl that 

\ L.(c{3~'aln~) - o. "r t is crucial to understand that this result is true 

on1y if we have ~inite merid.ioo.1 resolutl~." When ve truneate ot 

,} sorne meridional wavenumber <u> is (not identically 

e~tent to which L.Cc{3éQ/n~) ... 0 when ~ ... n{3' 

conserved to the 

As a final r~mark we comment tha~ in the spec ial case where we 

include only one meridional mode the channE' 1- averaged zonal flow i5 

indeed conserved. The latter can be seen by using r~E - n{3 in (E.3). 

() 

1 
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, , Appendix F 
. 

E 'and Z in the numerical model 

In this appen~ix. we discuss the behaviour· of energy and potential 
J 

1 enstrophy in the numerical moclel (recall that E and Z are analytically 

conserved). In particular ~e will show that neither of these quantities 

is identically conserved at fini te N (where R is the number of 
'> 

meridional wavenumbers in tlfe spectral expa~sion).' 

a. Energy o 

. As concerns the energy we note that by definition: 

- * l _2 l *2 *2 
E - E + E - 2 <u > + 2 <u + v > (F.I) 

'" Substituting ü - Us + û(y,~) in.(F.l) we get for the te~dency of E: 

l ",2 *2. *2 
d E ~ u ·d <u> + 2-·dt<u +'u + v > t st. (F.2), 

From (11) it fo11ows that the speC1!:ral versions of the two terms on the 
~ 

rlght-h~nd side of (F.2) can be written: ~ 

dt<u> 

where D 
a 

\,D 1/Ja(f h JH)cf3' L" a 1-' 0 E Ea 
and 

{3êO! • 

- 2 
[F (y-D) '- F (y-O))/K with F 

a -a 0: a 
\ 

J2cos(7rn ylD) 
a 

(F.3) 

(F.4) 

Now, by considering the sums in, (F. 3) c.irefu11Y (as in Appendix 1 E) we 
'" 

find that .when, and only when, N -+. ~,the first term' vanishs whilè the 
6 

'second term becomes: 
., 
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.... 
" , 
.q. 

1 

• 

dt<u> - L (fohf3/HN abf3a (F.S) 

f3a . 

, 
It fôllows after substituting (F. 5) and 

(F. 4) into CF. 2), that enèrgy ls conserved as N -. <0 but ls, in general, 
'II 1 ~ .. 

not conserved when N is fini te owing to the mistreatment of dt<u>.by the 
, 

numerical scheme (this' ls true even tt h - 0). Notice that in 'the case 
,) , 

where Us - 0, energy is conserved despite this latter fact. 

b. Pot,ential enstrophy 

Now we will briefly consider the behaviour of potentlal enstrophy , 
, 

in the numerical model. ~riting the potential enstrophy ds 

l 2 0 

~«6tP 2 
Z - -<Q > t [3y + f h/H) > -1 2 0 .. (f·b) 

lt follows. that 

d Z -
1 2 

+ [3 d <u> + f " -·d «6!JJ) .>- ·d <6!JJ(1l/1f» t 2 t t o t 
(F.7) 

.. 
Afte,r inspecting (F 7) we conclude that just as E was not copserved for 

J 

fini te values of' N neLther is i, in part due to the s'eçond term in 
\ . , 

(F.7). lt is foùnd, however, that in.the special case wherc Us" 0 and 

13 - 0 (or where [3,y i5 projected onto the set of basis functions) 
• ~ ~' • f 

potential en5trophy is identically conserved in the numeri~al model. 

D~spitè the fact that E and Z are not iden~ically conserved 

nume-r}cally, we have ~nd'by experieocc. that they are m~arly conserved 

at moderate meridionai resolutions (say,.N ~ 15) 
J 
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E AND Z 

/ 

Il THE 

APPENDIX G 

STATIS~CAL MECHAN~CAL MODEL 

ProJettion of p·y onto our orthonormal basis \ 
" As diseussed- in Appendix F, given our choice of basis funetions (9) 

E and Z are not, in general, ldentically conserved numerically for a 

finite N However, E and Z are conserved numerically wheri (1). u
s

'= 9 

(i e the mean-wind vanishs at the walls) and (2) when P y is projected 

onto our orthonormal basis. With regards to the latter we write· 
(., 

where 

P y = I"p.L )2COS(1Tiy/D) 

.L 

f 
l 

J • 2 2 2f3D/1r'.L 

o 
when .L is odd 

1 

when i is even 

b ~eady channel-averaged flow, <ü> ~ 

(G 1) 

Given the constant of proportionali ty [in (4') 1 then 

<ü> <ay~> can b~ written (assuming h = 0), 

<u> = 2)2 '\' P / (k ~ _ K2) 
D L.L .L S 

(G 2) 

.L 

• 
where, k i = 1T.L/D. As discussed in the text it is Qur objective to 

specîfy <ü> and Ks and find P To this end we simply substitute (G.l) 

into (G.2) and solve for fi, with the result that (for .L odd) 

with 
2 2 

K /(1T/D) . 
S 

(G 3) 

149 

" 

.' 



l 
y 

l 
y 

f 
y 

{ 

(0) 

/ ...... -.::::::::::::-·~o , ",' _-----. .J~.... " ",,- 7."'" \ 1 ,'" " ....-----""""- ... ,', \ 
1 l " ".' --...." , \ 
1 1 ' " .. --- ~.~ " \ \ 1 
, , " ,',,' "0 \ \ \ , 
, 1 1 1 l ", \ 1 l , 1 l , , 1 , 
1 , 1 1 J 1 1 1 1 1 
1 l , \ \ 1 1 , , 1 
1 1 \ \ \ , 1 1 , 1 
\ \ \ \ '... ," 1 1 1 
\ \ \ " ---- .... - , l , 1 
\ \ ',........ 0 _-'''./ 1 1 
\ " "...... "'"-.- - __ -' /;1' _",' " 

, " -- _____ - ,'" 1 

'......... ......... ________ ---' ",,1 

~------ ---------" 
x-

----- -----.... -------------....... " ,....----------....- , ,,;'--- ..... \,. --
" ,,------------........... .....,.... '1 ," --"---- ... ·''80. ...." 1 , ,il" ...' 1, _ -r. ~ , 1 

1 /' " \ \ 1, ...' 1 
l/ 50 ''I, {,' \ \, 
, / ~ \.\ ~ { (-7-'\ \ l : ,'. 0 ' , \ \ l '\ ) , 1 f (b) , 1 \ \ \ ., ,., , 

, -bo \ \ , ,'- " __ -' " 1 l , 
, \ \ \ ~\ " / 1 1 1 

: \ \ ~ ", .......... _____ - ........... .,.,/,1 / " 

1 \\q......,.'1 , \ \, ' ... , ',,--------- "'/,// 
" ............ , ...... ..-, -------' -,' / 

\, ..... _- --- "( 
'-..... - ---~---- -'; ------ ____ '2" _____ ----

x--

('----~-~==~,~~---'-''6 /,,--:=-~=: ======--:==::.-'''''' 
'\ f , ... ' """,' " .... ~_ .......... .-.- __ ---_ ............. , ... 

, .... " f'" , , " ,." ,---- ---_ .... ,,' 
\ , , , , 1 ,',' ,,.'" ....... , ' \ 

\ \ 1 1 1 " ,',' ~' " " , 
\ \ \ \ / " J .' " ,/ \, '\ (C) 
\ \ '... \ , " ,',9,' nO \ \ 
\ " ,,"........ ~ -",," 1 4// ":-',' 'JI 0 \ \ 

\ "', - ____ .... ",1 1 ~/ ' 1 \ 

\ " ','..... --" """',, " " \ .. , "........... ----- .... "", 1 1 \ 
" ......................... - ______ -- ..... ",,,,,' " l , 

............... _---------,' ,,,,,,,,' ",' '........ ...-- _________ --,... l'''' -- -----------------
x--

Super~and subresonant flows. 

(a) 
(b) 
(c) 

Topography in meters: 
superresonant fl~w: 'us 
subtesonant flow: Us 
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Figure 2 Contours of e~fo1ding 'time in days for'the fastest-growing 

perturbation~ to zonaL-wavenumber-l flows, 
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region II (b) , 
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Figure 3 Unstable superres9nant zonal-wavenumber-l flow (region 1). 

(a) 
(b) 

Basic flow: 
growing 

Us - 25 rn/s, 2ho/H - O.O~;l 
perturbation: ~ - 0.021 day-
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Figure 4. Reynolds stress (dot) 1 form drag (triangle) 'and" total 
momentum tendency (plus) for the case of Figure 3_ 
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Unstable subresonant zonal-wavenUmber-l flow [region II(a)] 

(a) 
(b) 
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Basic flow: Us - 18 rn/s, 2hQ /H - '0.1; # 

growing perturbation: w O.li day·l; 
damping perturbation: w O.li day-l 
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Bas ie flow: Us - 12.5 mis 1 2ho./H 
growing perturbation at t - O' w - -
as in Cb) but at t 9 days. 
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Figure 31 Experiment 1: Steady.f1ow and disturbance. 
(GINT - contour interval) 

., 
(a) Steady flow streamfunct;.ion .(GINT - 0.1); 
(h) FGLD structure at t - 0; ~ 

Ll2' 

..d 

2 ,2)8 - , . (c) positive contours of - (u ~ . v xu. (CINT - 0.15), 
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,respectively; _. j 
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,basic ~ave and distu~bance energb, E and Ed , respect­
ively .. (Note that the ~lot of E has been terminated 
early sa that it wou1d not o~scure Ed ). The da~he4'curve 
is the contribution ta Ed from the ~ and 1 waves aione. 
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Figure, 34;. Experimentyl: Basic wave trajectory and the.,channel ,averaged 

flow. 

t/Jb 
1.-

(a) for' 0 ~ t s 240 days (dots at every 4"0 days);, 
(b) <g> for 0 !S t :f; 240 days; . ,- (c) t/J for 240 < t S 400 days; ,l' ; ~ ~- . 

, 'l"" (d) <li> fsa r 240 s t S 400 days; . , 
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Figure 35 E~perimént 1: Behaviour of the primary d~sturbarce waves. 

(a 

" 

Amplitude of the primary waves and the:basic wave: 
AB': Ae and Aa' Fèspect:4vely, ~S - O,02)~ 
phase of the p-wave: (J Q • tan - .(t/rp/tPp) ; 
phase sum.: ~8 - 8f3 ~ .(J € + (Jo:, 
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(c) (f) 

Experiment 1: Streamfunction of the total flow. 'I/J 1 and 
the· dist~rb-:nce vort

9

ici.ty 1 rd 1 at spec:Î.fied times. 

. (a) 
(d) 

~I/J (t -'100); (b) I/J ·Jd~ - 200); (c) 1/1 (t - 300 days); 
rd (t -100); (e) ç (t - 20Q);-(f) rd (t - 300 days).­

[In (a),(b) and Cc) GINT - 0.1; in (d) GINT - 0.2; 
in (e) and (f) GINT - 1.J' 
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Figure 42 Experiment 3: Localized topography 

(a) Topography: r .. D)'2 and hcJH .. 0.1"; 
(b) steady flow eddy !:ltreamfunc tioOn; 
(c) FGLD at t - 0 days. ()* indicates that the mesn 

- zonal compone nt has been rernoved. 
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Experiment 3:, 6 ... 2)0.02. , 

(a) Total and rnean zonal ehergy, E and Ë, respectively; 
(b) zonal wavenumber one, E(m-l) , and two energy, E(~2); 
(c2 eddy streamfunction and mean zODal flow: t - 100 dnys; 
(d) eddy streamfunc.tion .and mean zonal flow: t ~ 400 days. 

In (G), GINT ~ 0.15 and in (d), GINT - 0.05. 
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Figure 45 Simu1ation~at t - 100 days versus statistica1 equi11brium, 

(a) Simulation streamfuJ1ctipn (GINT - 0',1); 
r (b) equilibrium streamfunction (GINT ~ p.l); • 

Cc) energy,spectra for the simulation and the statistica1 
equiloibrium (the .latter are shown as contim/ous curves).-
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11 NL "-
W. 'e 

.1. • 

4 

10 210 2.33 

12 300 2.13 
/ 

14 406 1. 56 

16. 528 2.15 

18 666 1. 06 -
\ \ 

20 820 1. 60 

22 990 1. 51 1 

,f 
Table l Growth rate o( the 'topographie mode as a funetion of 

truneation' 11~~ N and NL is the total number of degrees 
.of freedom. 

Table 2 

11 N NL "- A 

W •• W 
1. r 

, ,-
10 10 210 3.61 0.0 . 

. 
10 . 5 - 105 3.61 o 0 

5 5 55 3.54 0.0 

3 5 35 3.44 0.0 

10 , 3 63 - 2.78 0.97 
• 5 3 . 3~,~ 2.78 • 0.82 

3 3 21 2.50 1.10 . 

Grow~h rate and frequency of the fastest-growing mode 
eorresponding to Figure 22 as a funetion of truncation . 
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----

,.. 
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, . 

-
Experiment 1 ' ExperimeRt 2 • 

M r (days) -T (days) A 
, 

T (days) T (days)' 

Table 3 

...1 

. . d. - . 
2 -- -- 2.54 \ 36.66 
3 27.06 32.97 -- ! --
9 56.50 33.90' 4.ri , - 28.94 

11 5i.56 \ 32.87 4.78 • 28.27 
'13 . 49.28 32.83 5.07 28.86 
15 46.85 33.04 r/ 4.70 28.41 . 
17 47.0Z 33.29 

,J' 

4.75 28.15 
19 "48.13 33.46 4.72 2\37 . 

Experiments 1 and 2: Effect of resolution oh e-fo1ding 
time, T, and period, T, for the fastes~-growing 'linear 
disturbance M - N, where M and N are the nurnber of 
zonal and meridional wavenumbers, ~espectively. 

f * E
b 

At 'mins) M E <u> 

15 15 1.499 - 0.570 0.3,78 - 1-.336 . 
15 13 1.490 0.577 0.398 . - 1. J40 

5 15 1. 541 0.531 0.347 " - 1. 358 
"' - .6. ';-

'.' ,-
Ëo -, 0,500 * b Eo ~ 1.578 Eo ~ 1.555 <u>o ,.. 1.000 

Table 4 ' Experiment 2: Simulation sensHivity to resolution, /1: 
and timestep, At, 'at '0 - 60 days, 0 - jO. 02 1 • 
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Table 5 
( l 

<Ii 
"'<., 

0 

" • 
Simulation ( t=100) 5 tatistica1 Equilibrium 

, . 
0 - 2JO.02 0 - 2JO 02 0 - JO 02 

-

",... . 
<u> - ],..685 (1.000) - 1. 655 - 1. 631 . 

Ë 1.717 (0.631) l. 700 . 1,652 

* , 
E 0.477 (1. 631) 0.564 0.5~5 

E
b 

0.273 (1.555) 0.342 0,336 
, -. . 

ct 
, - 15.634 - 15.688 

0 . 
~ 

/3
0 

. 2.613 2 646 

. 
" , 

~ 

Experiment 4: Simulation at t -'100 days versus 
statistica1 eq~i1ibrium .. The' values in parenthesis are 

, for t - 0 days. Note that values for equilibrium at 
. 0 - JO. 02 are a1so provided. 
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