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ABSTRACT

An intercomparison of the distribution and extreme values of daily precipitation between the National

Center for Atmospheric Research Community Climate System Model, version 4 (CCSM4) and several

observational/reanalysis data sources are conducted over the contiguous United States and southern Canada.

The use of several data sources, from gridded station, satellite, and reanalysis products, provides a measure of

errors in the reference datasets. An examination of specific locations shows that the global climate model

(GCM) distributions closelymatch the observations along theEast andWest Coasts, with larger discrepancies

in the Great Plains and Rockies. In general, the distribution of model precipitation is more positively skewed

(more light and less heavy precipitation) in the Great Plains and the eastern United States compared to

gridded station observations, a recurring error in GCMs. In the Rocky Mountains the GCMs generally

overproduce precipitation relative to the observations and furthermore have a more negatively skewed

distribution, with fewer lower daily precipitation values relative to higher values. Extreme precipitation tends

to be underestimated in regions and time periods typically characterized by large amounts of convective

precipitation. This is shown to be the result of errors in the parameterization of convective precipitation that

have been seen in previous model versions. However, comparison against several data sources reveals that

model errors in extreme precipitation are approaching the magnitude of the disparity between the reference

products. This highlights the existence of large errors in some of the products employed as observations for

validation purposes.

1. Introduction

From a socioeconomic perspective, precipitation is

one of the most important variables to predict in future

climate, because of its implications for water resources

and natural disasters. For these purposes, it is not simply

the average precipitation that is important but rather

the spatial and temporal distribution of precipitation

intensities. One aspect of this distribution of crucial

importance to society is extreme precipitation. For ex-

ample, heavy precipitation can have large impacts on

crops both because of the direct impact of flooding as

well as the negative consequences of excess soil mois-

ture (Rosenzweig et al. 2002; Gornall et al. 2010). A

recent study by Scoccimarro et al. (2013) showed a 2%–

5% increase in the intensity of extreme events over land

in the future, using an ensemble average of models from

phase 5 of the Coupled Model Intercomparison Project

(CMIP5). The use of global climate models (GCMs) for

prediction of changes in the distribution of precipitation

requires continual assessment of the ability of these

GCMs to represent the distribution in the current and

historical climate. GCMs are well known to have sig-

nificant errors in the distribution of precipitation, his-

torically precipitating too frequently and with too low of

an intensity when compared to observations (Dai et al.

1999; Iorio et al. 2004; Sun et al. 2006), even when the

mean precipitation is well represented (Chen et al. 1996;

DeMott et al. 2007).
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The convective parameterizations inGCMs tend to be

associated with large errors in model precipitation, in

particular in the extreme precipitation. Several studies

have been conducted examining the diurnal cycle of

precipitation in previous versions of the National Center

for Atmospheric Research (NCAR) Community Cli-

mate System Model, version 3 (CCSM3) and have

shown that the convective parameterization triggers

convection too early and frequently, which does not al-

low for the buildup of convective available potential

energy (CAPE) necessary for heavier rainfall events

(Dai and Trenberth 2004; DeMott et al. 2007). Although

increasing resolution does aid in many aspects of the

representation of precipitation, improvements to the

parameterization are necessary to solve this problem of

timing and consequently intensity (Iorio et al. 2004;

Dirmeyer et al. 2012). In CCSM4, a more recent version

of the NCAR GCM, improvements have been made to

the parameterization of deep convection to include

convective momentum transport and dilution due to

entrainment in the calculation of CAPE (Gent et al.

2011; Neale et al. 2013). Gent et al. (2011) compared the

simulation of daily precipitation frequency over land

between 208N and 208S in the CCSM4 to the CCSM3.

The CCSM4 showed significant improvement, even

when run at the CCSM3’s lower resolution, which they

attribute to improvements to the deep convection

scheme (Gent et al. 2011). However, there are signifi-

cant differences in the convection that occurs in the

tropics versus that which occurs in the midlatitudes.

In this study, we conduct a validation of the pre-

cipitation distribution and extreme values in the more

recent versions of the NCAR GCM: the fully coupled

CCSM4; the Community Atmosphere Model, version 4

(CAM4); and CAM5. Since these newer versions of the

NCAR GCM are improved over the previous version

(CCSM3) both in terms of their parameterizations and

resolution, their representation may be closer to obser-

vations than previous versions. As the ability of GCMs

to produce accurate precipitation fields increases, we

need to consider the validity of the common assumption

used in the validation ofGCMs that observational errors

are smaller than model errors. It is therefore important

to consider the errors within the reference datasets used

for validation, as well as the methods used to compare

models to reference data. To this end, the validation

will be made against three observational or reanalysis

products to help constrain the extent of observational

errors, which we may think of as the disparity between

various reference data sources. A remapping method is

used to regrid between various resolutions instead of an

interpolation to be consistent with the interpretation of

a GCM being an area average of precipitation (Chen

and Knutson 2008; Gervais et al. 2014). Furthermore, all

statistics are computed after the remapping procedure

to ensure that there are no mismatches in scales as can

occur when an index at a point location is remapped to

a different resolution (Kursinski and Zeng 2006), an is-

sue that Sillmann et al. (2013) cited in their analysis.

Focusing on the CCSM allows for more detailed error

analysis both spatially and seasonally, which helps to

elucidate the abilities and limitations of the models in

their representation of various precipitation mechanisms.

2. Data

a. North American Amalgamated Precipitation

We employ two currently available datasets: the Cli-

mate Prediction Center daily Unified Precipitation

Dataset (UPD), provided by the National Oceanic and

Atmospheric Administration/Earth System Research

Laboratory (Xie et al. 2007), and the daily 10-kmGridded

Climate Dataset for Canada (GCDC), provided by the

National Land and Water Service (Hutchinson et al.

2009), to create a gridded precipitation dataset over

a contiguous region in North America. The native grid

types and spacings of the two datasets differ, with the

UPD being on a 0.258 latitude–longitude grid and the

GCDC being on a 10 km 3 10 km Cartesian grid. We

amalgamate these two datasets over their common time

period of 1961–2006 to create the North American

Amalgamated Precipitation (NAAP) dataset, where the

UPD covers the contiguous United States and the

GCDC covers Canada south of 608N.

The methods used to grid station data differed be-

tween the UPD and the GCDC. For the reader’s refer-

ence, we will briefly outline these gridding methods used

by the data creators of the UPD and the GCDC. The

UPD was created through the optimal interpolation of

24-h precipitation accumulations from gauge-based

measurements in the continental United States (Xie

et al. 2007). The method of interpolation was conducted

in two steps. First, a daily precipitation climatology was

created by summing the first 6 harmonics of station data

time series for stations with reporting rates over 80%

during the period 1978–97 (Xie et al. 2007). This daily

precipitation climatology was then interpolated using

the Shepard (1968) method, onto the 0.258 latitude–

longitude analysis grid (Xie et al. 2007). An orographic

correction was conducted on the daily climatology due

to a general bias toward lower precipitation in moun-

tainous regions, which results from a bias in station lo-

cations toward lower elevations in these regions (Xie

et al. 2007). The Parameter-Elevation Regressions on

Independent Slopes Model (PRISM) monthly precipi-

tation climatology (Daly et al. 2002), which is adjusted
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for orographic effects using empirical relationships that

are established locally and are available over the conti-

nental United States, was used to conduct an orographic

adjustment of the daily climatology. The correction to

the daily UPD climatology was done by scaling the daily

climatology so that its monthly accumulations closely

match that of the PRISM monthly accumulations while

preserving the variability of the daily climatology (Xie

et al. 2007). In the second step, the ratio of the daily

station data over the uncorrected gridded daily clima-

tology was calculated at each station location (Xie et al.

2007). Using the interpolated climatological field for the

ratio allows stations to be used even if their observation

length is too short to be included in the climatology (Xie

et al. 2007). This ratio was then interpolated using the

optimal interpolation ofGandin (1965) to the analysis grid

(Xie et al. 2007). The interpolation of this ratio was con-

ducted because this field is smoother in space than the

daily station data themselves and thus results in less errors

when interpolated (Xie et al. 2007). Multiplying the in-

terpolation ratio by the orographically adjusted daily cli-

matology at each analysis grid point then yields the desired

interpolated daily precipitation field (Xie et al. 2007).

The GCDC used a trivariate thin-plate smoothing

spline (Hutchinson 1995) to interpolate 24-h precipi-

tation accumulations from Environment Canada, cre-

ating a 10 km 3 10 km gridded precipitation dataset for

Canada south of 608N. In this method, the elevation was

defined using a digital elevation model, and a scaling

factor was applied to increase precipitation with eleva-

tion. First, a binary field of precipitation occurrence was

created from which grid points with and without pre-

cipitation were determined. Second, a precipitation

surface was created through the interpolation of station

data that had precipitation. In this step, the square root

of the precipitation value was interpolated instead of the

full value as it is more normally distributed. The final

interpolated precipitation field was equal to the pre-

cipitation surface for grid points that were determined to

be precipitating and zero where it was deemed non-

precipitating. Hutchinson et al. (2009) find that the er-

rors in the GCDC dataset are modest for seasonal and

annual averages but are relatively large for daily pre-

cipitation and extremes, even in the southern portion of

the data where the station density is highest. This was

attributed in part to the high spatial variability and low

data coverage (Hutchinson et al. 2009).

To combine the UPD and the GCDC into a single

dataset we linearly interpolate the GCDC from a

10 km 3 10 km grid to a 0.258 latitude–longitude grid.

The grid spacing of the GCDC is much higher than the

UPD (.2.5 times) and so the distances over which the

interpolation is conducted are short, and as a result we

expect that additional errors associated with using a

simple linear interpolation over amore complexmethod

should be small. The two datasets are then combined

for the years 1961–2006 (when both datasets are avail-

able), where the GCDC covers Canada and the UPD

covers theUnited States. In theGreat Lakes regions, the

coverage is split between the GCDC and UPD datasets.

Attempts were not made to smooth the boundary be-

tween the two datasets, as this could introduce errors

in the higher-order statistics of the combined dataset.

The NAAP is the final product of this merger between

the GCDC and the UPD.

b. Global Precipitation Climatology Project
One-Degree Daily

Global Precipitation Climatology Project One-Degree

Daily (GPCP 1DD) is a satellite-derived precipitation

dataset at 18 latitude–longitude resolution from 1997 to

2008. This dataset should not be confused with the two

other GPCP products, theGPCP version 2 satellite–gauge

monthly precipitation dataset or theGPCP satellite–gauge

pentad dataset. The GPCP 1DD is based on two satellite

products: namely, the threshold-matched precipitation

index (TMPI) for the regions between 408N and 408S and

the Television and Infrared Observation Satellite Opera-

tional Vertical Sounder (TOVS) Pathfinder Path A out-

side of this region (Huffman et al. 2001). The GPCP 1DD

will subsequently be referred to as the GPCP.

The TMPI uses 3-hourly brightness temperatures de-

termined from infrared radiometers mounted on geo-

synchronous satellites, where precipitation is deemed

to be occurring if the brightness temperature is below

a threshold value and it is assumed to occur at a constant

specified rain rate. Low brightness temperatures are in-

dicative of ice particles in clouds, which have a relatively

weak relationship to precipitation occurrence (Huffman

et al. 1997). Thismethod ismostly useful in regions of deep

convection between 408N and 408S (Huffman et al. 2001).

The threshold brightness temperature and conditional

rain rates vary on amonthly basis and are calculated using

information from the Special Sensor Microwave Imager

and the GPCP version 2 satellite–gauge monthly pre-

cipitation dataset (Huffman et al. 1997).

The TOVS dataset is based on a relationship between

cloud-top pressure, fractional cloud cover, a profile of

relative humidity, and precipitation that is empirically

determined using collocated gauge measurements

(Susskind et al. 1997). The TOVS data go through sev-

eral processing steps to remove biases relative to the

TMPI at the border between the two datasets. The

TOVS data are rescaled by setting low values of pre-

cipitation to zero so that the value of the total number of

rainy days at the border with the TMPI are equal
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(Huffman et al. 2001). The precipitation amounts are

rescaled during precipitating days so that the total

amounts match the GPCP version 2 satellite–gauge da-

taset (Huffman et al. 2001). Finally, a smooth transition

is created at the border of the TMPI and the TOVS on

a daily basis by calculating the difference between the

TOVS and TMPI data at the border and then adding

a function to the TOVS that is this difference at the 408N
and 408S border decreased linearly to 0 at 508Nand 508S,
respectively (Huffman et al. 2001).

There are many known issues with satellite data in

reproducing accurate daily values, particularly with re-

spect to the frequency of events and the magnitude of

extremes (Sun and Barros 2010). Global daily pre-

cipitation products are rare and so the GPCP is an ap-

pealing dataset and has been used in numerous studies

as a source of daily precipitation observations for

the validation of GCM output (e.g., Emori et al. 2005;

DeMott et al. 2007; Scoccimarro et al. 2013). The crea-

tors of theGPCP, however, suggest that the data only be

used for time mean calculations because of errors in the

daily amounts (Huffman et al. 2001). The GPCP will be

included in this analysis since it often employed in the

literature. However, the potential for errors will be

indicated through comparison with the NAAP data,

since they will be used without the spatial or temporal

averaging advised by the data creators.

c. Climate Forecast System Reanalysis

The National Centers for Environmental Prediction

(NCEP) Climate Forecast System Reanalysis (CFSR) is

a coupled global reanalysis spanning the period 1979–

2010 at 0.58 latitude–longitude grid resolution (Saha

et al. 2010). In this analysis, 6-hourly precipitation totals

are summed into daily precipitation totals to be consis-

tent with the NAAP dataset. The CFSR assimilates at-

mospheric variables and is at a higher resolution, which

should improve its performance over a GCM. Regions

with a dense sounding network, such as theUnited States,

are likely to have better represented mass fields and

therefore more accurate precipitation than other regions.

The precipitation output from the CFSR, however, is

produced solely by the CFSR background precipitation

model and does not assimilate any precipitation obser-

vations (CFS Team 2011, personal communication).

Consequently, it is likely to suffer from similar types of

issues in the production of precipitation as GCMs.

d. Community Climate System Model, versions 3
and 4

The CCSM4 consists of four component models:

the Community Atmosphere Model, version 4; the

Community Land Model, version 4; the Parallel Ocean

Program, version 2; and the Los Alamos sea ice model

(CICE). The component models are coupled at every

atmospheric time step, except the ocean component

model, which is coupled once per day. We use a pre-

industrial control run of the CCSM4 with additional

output (MOAR), forced with historical International

Panel on Climate Change (IPCC) values for incoming

solar radiation, carbon dioxide, and aerosols. The reso-

lution of the atmosphere component model CAM4 in the

CCSM4 control run is 0.98 3 1.258 latitude–longitude and
it has 26 levels in the vertical using hybrid sigma–pressure

coordinates (similar to CCSM3) (Gent et al. 2011).

For comparison with the CCSM4, we also use

a CCSM3 preindustrial control run from the CMIP3

experiment. The resolution of the CCSM3 model run at

T85 spectral truncation is approximately 1.48 latitude–
longitude and also has 26 levels in the vertical. More

details regarding this version of the model can be found

in Collins et al. (2006).

The deep convection scheme in the model follows

Zhang andMcFarlane (1995), consisting in general of an

ensemble of entraining plumes and compensating

downdrafts at various heights that occur when the at-

mosphere is unstable. In CAM4, this schemewas revised

to include impacts of convective momentum transport

and the calculation of CAPE to now be diluted through

entrainment (Neale et al. 2013). The closure assumption

of the deep convection scheme is that CAPE is con-

sumed at an exponential rate. The inclusion of entrain-

ment in the calculation of CAPE can reduce its value

and improve the vertical moisture structure. The land

model also received improvements that could aid in the

representation of precipitation (Gent et al. 2011). More

details on the physics, parameterization, and their im-

provements in this model version can be found in Gent

et al. (2011) and Neale et al. (2013).

e. Community Atmosphere Model, versions 4 and 5

To evaluate the ability of the atmosphere only model,

output from an Atmospheric Model Intercomparison

Project (AMIP)-style control run of CAM4 and CAM5

will be used. These runs are conducted at the same

resolution as the CCSM4 run but using time-varying

SSTs and sea ice in addition to the IPCC forcings. Al-

though the CAM5was produced shortly after the CAM4,

there are changes to the shallow convection scheme and

in the representation of aerosol indirect effects. Further

details can be found in Neale et al. (2010).

3. Methods

Following Chen and Knutson (2008), model output

precipitation is interpreted in this study as an area

5222 JOURNAL OF CL IMATE VOLUME 27



average of precipitation within a model grid box. To

make consistent comparisons between the various

gridded observational, reanalysis, and model data, we

ensure that all datasets are remapped from their native

resolutions (Table 1) to the grid size of the lowest-

resolution data used in the comparison, in a manner that

is consistent with the area average view point of a grid

box. In this study, unless the 1.48 latitude–longitude

CCSM3 is also being compared, the lowest-resolution

data are the CCSM4, CAM4, and CAM5model outputs,

which are all on a 0.98 3 1.258 latitude–longitude grid,

referred to as 18. The resolution change is accomplished

here using a first-order conservative remapping method

from the Spherical Coordinate Remapping and In-

terpolation Package (SCRIP) from the Los Alamos

National Laboratory (Jones 1999). The method com-

putes weights for each input grid point based on the area

overlap between the input grid boxes and the output grid

boxes. Multiplication of the input grid precipitation field

by these weights regrids the dataset while conserving the

total amount of precipitation.

Several metrics for the distribution of precipitation

are utilized. Kursinski and Zeng (2006) showed that the

order of operations of the computation of precipitation

indices versus spatial averaging is important. In all cases,

the statistics are calculated on the specified grid after the

interpolation or remapping procedure, which is consis-

tent with the method in Chen and Knutson (2008). If the

order of this operation is reversed, results of errors in

GCMs may be ambiguous, as was found for example in

Sillmann et al. (2013). All statistics are calculated during

the time period of interest (annual or bimonthly) for

a single year; then, the value of each year in the time

period is averaged. This climatological averaging time

period is 1979–2005 for all datasets, except for any

computation involving the GPCP, where it is 1997–2005.

There are small changes when all results are averaged

over the 1997–2005 period; however, they do not im-

pact the interpretation of our results. The bimonthly

periods used are January–February (JF), March–April

(MA), May–June (MJ), July–August (JA), September–

October (SO), and November–December (ND). Given

the non-Gaussian distribution of precipitation, median

and percentile values will be used as metrics of pre-

cipitation. The 97th percentile of precipitation in a given

period for each year averaged over all years (1979–2005

or 1997–2005) will subsequently be referred to as the

climatological extreme precipitation.

The full distribution of precipitation is represented

using two metrics. First, the empirical cumulative dis-

tribution function (CDF) for all days is computed

for each year and then it is climatologically averaged.

The CDF is a common metric used for validation of

GCMs, which shows the cumulative probabilities of

increasing daily precipitation amounts. The significance

of differences between CDFs is determined using the

Kolmogorov–Smirnov (KS) (Massey 1951; Stephens 1970)

and Cramer–Von Mises (CvM) tests (Anderson and

Darling 1952; Anderson 1962). These two tests check the

null hypothesis that the CDF of the test data are from

the same population as the NAAP using various metrics

of the difference between the distributions of the full

precipitation time series (not the annual distribution

climatologically averaged). Second, we show the annual

total precipitation versus bins of daily precipitation ac-

cumulation averaged climatologically, which we call the

total mass distribution (TMD). This shows the contri-

bution that each daily accumulation range has toward

the total precipitation. The TMD is a physically intuitive

metric that is useful in understanding the importance of

heavy precipitation events. The probability of heavy

events is low but they are more significant in terms of

TABLE 1. Datasets, their acronyms, data types, native grid sizes, and native time periods. Note that for all intercomparisons the

resolution is remapped to the CCSM4 resolution and the time period is limited to 1979–2005, except for the GPCP, which is limited to

1997–2005.

Dataset Acronym Data type Native grid size Time period

North American Amalgamated

Precipitation

NAAP Gridded station observations 0.258 latitude–longitude 1948–2006

Global Precipitation Climatology

Project One-Degree Daily

GPCP 1DD Satellite observations 1.08 latitude–longitude 1997–2007

NCEP Climate Forecast System

Reanalysis

CFSR Reanalysis 0.58 latitude–longitude 1981–2010

Community Atmosphere Model,

version 4

CAM4 GCM atmospheric

component model

0.98 3 1.258 latitude–longitude 1979–2010

Community Atmosphere Model,

version 5.1

CAM5 GCM atmospheric

component model

0.98 3 1.258 latitude–longitude 1979–2006

Community Climate System Model,

version 4

CCSM4 Fully coupled GCM 0.98 3 1.258 latitude–longitude 1960–2005
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their contribution toward the total precipitation, al-

though in theCDF they represent relatively small changes.

The skewnesses of the TMDs are used to demonstrate

the spatial coherence of the differences in the shape of

these functions between the various precipitation data-

sets. Generally, the TMDs of precipitation are positively

skewed, since light precipitation occurs more frequently

than heavier precipitation. A more positive skewness

value translates to less high and more low daily pre-

cipitation amounts. A Monte Carlo method is used to

test the hypothesis that the skewnesses of the TMDs are

the same, relative to the NAAP. The data from the

NAAP and the test dataset are randomly reassigned to

two new datasets, 1000 times. The difference in skewness

between the NAAP and test datasets are considered

significant if outside the range of 5th to 95th percentiles

of differences found using the Monte Carlo test.

4. Results

The three reference products, the NAAP, GPCP, and

CFSR, each have advantages and disadvantages for use

in the validation of GCMs. The NAAP data are based

on direct station measurements and are thus considered

to be the closest to the truth. The disadvantages of

gridded station datasets like the NAAP are that they can

have biases when the station density is low (Gervais

et al. 2014); they can suffer from measurement error,

particularly for solid precipitation (Goodison et al. 1998;

Cherry et al. 2007); and they are only available over

continents. The GPCP and the CFSR have the advan-

tage that they are available globally. However, these

datasets have the potential for large errors as the GPCP

is created using indirect measurements and the pre-

cipitation in the CFSR is produced by a model. In this

study we are using all of these datasets to evaluate

precipitation in the CCSM model in North America.

Focusing on North America allows for analysis of re-

gional precipitation errors in more detail. Furthermore,

satellite products like the GPCP and reanalysis products

such as the CFSR are commonly used to validate models

in regions where station data are not available (e.g.,

Sillmann et al. 2013; Shiu et al. 2012). Consequently, this

study has the advantage of comparing these reference

products for validation purposes in a region with typi-

cally good station observations.

To evaluate the potential for biases in the NAAP due

to low station density, we apply results from an experi-

ment by Gervais et al. (2014), who examined the impact

of station density on precipitation statistics in theUnited

States. Their experiment consisted of the interpolation

and remapping of station data using the same method-

ology as in this study but conducting the gridding

repeatedly with successively fewer stations. In doing so,

they are able to infer biases resulting from decreased

station density. They normalize these results across

a region to produce a distribution of potential biases

with respect to station density. They found that the im-

pact of station density on biases in precipitation statistics

changed seasonally and regionally. In general, a small

(large) decorrelation length scale of station data and

a low (high) spatial homogeneity of station statistics

result in larger (smaller) biases (Gervais et al. 2014).

Experimentally derived upper and lower bound curves

of potential biases in climatological median and extreme

precipitation over the entire United States are created

by fitting a curve of the form

y5 aebx1 cedx (1)

to the 99th and 1st percentiles of this distribution

(Gervais et al. 2014). This provides a measure of the

upper and lower bound of biases that takes into account

the full breadth of biases across the United States.

In this study, the experimentally derived upper and

lower bound curves of potential bias in climatological

precipitation versus station density in gridded station

data in the United States of Gervais et al. (2014) are

applied to the station density of the NAAP (Fig. 1). This

is used to produce an estimate of biases in the NAAP

due to station density (Fig. 2). According to Hutchinson

et al. (2009), the GCDC dataset is the most complete

daily dataset of Canadian precipitation for this time

period, though the station density is smaller than any of

the non-Canadian datasets that they came across. The

density of stations used in the NAAP is very heteroge-

neous with the most stations located in more densely

populated regions, fewer stations in mountainous re-

gions, and scarce stations in northern Canada (Fig. 1).

As a result, there are very large biases in much of Can-

ada (Fig. 2). There are additional sources of bias in the

NAAP due to station measurement error, which has

been shown to be on the order of 10% for liquid (Adam

and Lettenmaier 2003) and on the order of 100% for

solid precipitation (Goodison et al. 1998; Cherry et al.

2007). In this analysis the NAAP is generally considered

to be the closest representation of the true precipitation

field; however, potential biases associated with lower

station density will still be considered.

Examining the average annual median precipitation

of the observational and reanalysis data provides a gen-

eral idea of the magnitude and patterns of observational

errors in these datasets. The GPCP has a similar pattern

in the annual median precipitation as the NAAP, al-

though there is a lack of detail in the western mountain

ranges in the GPCP (Figs. 3b,c). The biggest difference
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between the GPCP and that NAAP is that generally the

magnitude is higher in the GPCP and there is a discon-

tinuous decrease in the median precipitation in the

eastern United States when the input data source

changes from the TMPI (south) to the TOVS (north) at

408N (Figs. 3b,c). At this boundary, the percent errors in

median precipitation in the GPCP relative to the NAAP

drop from 40%–60% to 0%–20%. The pattern of error

in the CFSR relative to the NAAP is very different than

that of the GPCP (Figs. 3c,e). Differences in the CFSR

relative to the NAAP include a reduction in area and

eastward shift of the region of higher annual median

precipitation in the southeastern United States (Figs.

3d,e). However, the errors in the eastern United States

and Canada are typically less than 20%. The CFSR

has higher annual median precipitation in the Rocky

Mountains, stretching from the United States to Canada

and in much of Canada, than the NAAP (Figs. 3b,c),

with percent errors up to 60%. The potential of errors

due to station density in the NAAP in these regions are

high for the climatological median and the extreme

precipitation; however, the errors in the CFSR relative

to the NAAP in the Rockies are greater than the upper

bound of these climatological errors (Fig. 2).

There are some large climatological errors in the av-

erage annual median precipitation between the models

and the NAAP; however, the results are generally very

promising. In certain regions, such as the East Coast, the

magnitude of the percent climatological error relative

to the NAAP in the average annual median precipi-

tation is lower than that of the GPCP in the eastern

United States and Canada (Fig. 3). If we consider ob-

servational error to be the difference between reference

products, this implies that the models are within obser-

vational error in these regions. One area of substantial

errors in all the model runs is an underestimation of the

median precipitation in the southeastern United States,

with up to 40% difference relative to the NAAP, which

is smaller in the CCSM4 than in the CAM4 (not shown)

and CAM5 (Figs. 3f–i). There are some general biases

toward higher median precipitation along the West

Coast and interior mountain ranges in both models,

which are higher in the CCSM4 than the CAM5 (Figs.

3f–i). In Canada, the CAM4 (not shown), CAM5 and

CCSM4 generally perform well compared to the NAAP

except for an overestimation over the Rocky Mountains

and some higher values of median precipitation in the

north that are similar to those of the CFSR and smaller

than those of the GPCP (Figs. 3f–i).

In addition to errors in the median field, we are in-

terested in how well the distribution of precipitation is

represented. Specific locations are chosen to use as ex-

amples of these distributions, where the locations are

geographically diverse and include sample points with

different precipitation climatologies (Fig. 4). How rep-

resentative these points are of the area around them

depends on the spatial homogeneity of the precipitation

distribution, which is typically higher in the east than in

the west (not shown). The CDFs and TMFs are shown in

Figs. 5 and 6. For the CDF, we can apply the KS and

CvM tests of significance, which are used here to de-

termine whether products have the same distribution as

the NAAP. TheCDFs at these locations are significantly

different for all datasets, a result that is generally true

apart from some isolated locations (not shown). For the

TMDs we use a Monte Carlo method to determine

whether differences in the skewness of the TMDs, rel-

ative to the NAAP, are significant. The skewnesses of

the TMDs and their significances are shown for the en-

tire region of study in Fig. 7.

The northern and southern West Coast points are

within a coastal region with predominantly orographic

FIG. 1. Number of stations per CCSM4 grid box (0.98 3 1.258 latitude–longitude), averaged over
the years 1975, 1985, and 1995. Values are rounded to the nearest integer.
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precipitation. The seasonality in these locations is tied to

the intensity of the storm track, with higher precipitation

in the winter when the storm track is more intense. The

largest discrepancies in the CDFs of the northern West

Coast point are that the GPCP and the CAM5 have too

many nonprecipitating and light precipitation days (Fig.

5a). This results in precipitation totals in the GPCP

being deficient throughout much of the range of daily

amounts (Fig. 6a). For the CFSR, CCSM4, and CAM4

CDFs, we see somewhat higher probabilities beginning

from the 1mmday21 until the 20mmday21 amounts or

a shallower slope in probability over this time, which

results in lower precipitation totals for these amounts

compared to the NAAP (as seen in Fig. 6a). In general,

for the northern West Coast points the TMF of the

models are bracketed by reference products throughout

the entire distribution, except the CAM5 for very low

daily amounts (Fig. 6a). The southern West Coast point

typically has much less precipitation compared to other

locations (Fig. 6b). In relation to the CDF, the TMD can

be thought of as an integration, over a range of daily

amounts, of the change in probability times the amount

and the number of days. The CDFs and the TMDs show

that the CCSM4 has a higher number of precipitating

days resulting in a general over production across all

intensities for the southern West Coast (Fig. 6b). The

CAM5 also has some notable issues at this location, with

too many nonprecipitating and light precipitating days

until around the 5mmday21 amount.

The two Rockies points (western and eastern) are

inland but are similarly in a region of predominantly

orographic precipitation. The precipitation intensity in

the Rockies is typically lighter and the annual total is

very low compared to other locations. The CDFs for the

two Rockies points show that the NAAP has more rain-

free days than any of the other products (Figs. 5c,d),

which results in their being more precipitation and

a shift toward higher amounts in the other products

(Figs. 6c,d). The exception is the GPCP for the eastern

Rockies point where there are less precipitating days

at amounts .10mmday21, where the slope of the CDF

curve levels off (Figs. 5d, 6d). For theGPCP, thewestern

Rockies point is located south of 408N and the eastern

Rockies point is located north of 408N (Fig. 4), where the

data source changes from the TMPI to the TOVS, re-

spectively. The changes in the steepness of the CDF

slope and the skewness of the TMD may be symptom-

atic of changes in data source for the GPCP, specifically

since the distribution is skewed in the data processing

and adjusted to produce a smoother boundary (Huffman

et al. 2001). However, as discussed previously, the

Rockies typically have a lower density of station ob-

servations and the NAAP precipitation is adjusted for

orography. There is thus a possibility that the errors in

FIG. 2. (a),(c) Upper and (b),(d) lower bound on the percent bias in climatological annual (a),(b)median and (c),(d)

extreme precipitation for the NAAP data using an experimentally derived relationship between upper and lower

errors bounds and station density found in Gervais et al. (2014). Note that the color scales are reversed between the

upper and lower bound maps such that the magnitude of the color schemes are identical but in opposing directions.
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FIG. 3. (left) Climatological annual median precipitation (mmday21) for (a) NAAP, (b) GPCP, (d) CFSR,

(f) CCSM4, and (h) CAM5 and (right) absolute value of percent anomaly relative to the NAAP fe.g., j[(GPCP 2
NAAP)/NAAP] 3 100jg in climatological annual median precipitation (mmday21) for (c) GPCP, (e) CFSR,

(g) CCSM4, and (i) CAM5.
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the median and distribution in the region are related to

errors in the NAAP either because of station density or

to the orographic adjustment. In such regions it is diffi-

cult to determine what is observational errors and what

is model error; however, the general similarity between

the NAAP and the GPCP for the western and the

NAAP and the CFSR for the eastern Rockies points for

the TMD suggests that the NAAP is performing well

(Figs. 6c,d).

TheNorthAmericanmonsoon point is in a region that

has low annual precipitation amounts and is named for

the North American monsoon, a period of enhanced

precipitation during the late summer/early fall. The

CDF reveals that there are more precipitating days in

general in the models than the NAAP (Fig. 5e) and the

opposite for the other reference products. This results in

TMDs with amounts of precipitation that are consis-

tently higher in the models than any of the reference

datasets (Fig. 6e), where we can also see that the TMD

is skewed toward higher amounts. The Great Lakes

point, on the other hand, is better represented by the

models than either the CFSR or the GPCP for the CDF

and the TMD (except the CAM5 for some amounts;

Figs. 5f, 6f). This is particularly notable in the CDF for

nonprecipitating and low precipitation amounts (Fig.

5f). This implies that the CAM4 and CCSM4models are

within observational error at this location.

The east coast of North America is influenced by the

proximity to the Atlantic Ocean and the Appalachian

mountain range. In the summer, the region receives

predominantly convective precipitation. During July–

August and September–October, it can experience

heavy precipitation from tropical cyclones that can im-

pact anywhere along the coast. In the winter it tends to

experience larger-scale precipitating systems, with the

most notable being nor’easters. The greatest difference

in the CDFs of the northern East Coast point is that

the GPCP has too few nonprecipitating days fol-

lowed by a steeply sloping probability of amounts up

to 20mmday21 (Fig. 5g), which results in an over-

abundance of daily amounts until the 20–25mmday21

bin and an underproduction of heavier amounts (Fig.

6g). Similar to the eastern versus western Rockies where

the two points are located on opposite sides of the 408N
change in GPCP data source, the TMD of the GPCP

shows an excess of lighter and deficit of heavy events in

the northern East Coast and the opposite in the southern

East Coast (Figs. 6g,h), as well a change from an un-

derabundance in the north to an overabundance in the

south of days without rainfall (,1mmday21; Figs. 5g,h).

For the model TMDs, there tends to be more high

amounts than the other reference products; for the

CAM5, there tends to be an underproduction of low

precipitation amounts. The behavior of the models are

also the opposite for the southern East Coast relative to

the northern East Coast, where we see a positively

skewed TMD at the southern East Coast point for all of

the models relative to the reference products (Fig. 6h).

The Great Plains and Gulf Coast regions experience

a great deal of convection. For the Gulf Coast this is true

for most of the year, whereas convection is particularly

important in the spring/summer seasons in the Great

Plains. TheGreat Plains andGulf Coast points also have

the greatest errors in their precipitation distributions.

For the Great Plains point, all model-based products

(CFSR and GCMs) have too much light precipitation

and not enough heavy precipitation, seen in both the

CDFs and the TMDs (Figs. 5i, 6i). This could be asso-

ciated with in the GCMs’ inability to produce heavy

convective precipitation events. The Gulf Coast point

sees similar errors from the GCMs, but the CFSR per-

formsmuch better than in the Great Plains in comparison

FIG. 4. Location of grid points used to examine the distribution of precipitation.
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FIG. 5. Climatological annual empirical cumulative distribution function over all days at point locations as

indicated in Fig. 4.
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to the NAAP (Figs. 5j, 6j). For theGulf Coast CDFs, the

GPCP has errors in the opposite direction (Fig. 5j),

which demonstrate that, if the GPCPwere used solely to

validate the GCMs, we would assume even larger errors

in the GCMs, while the opposite would be true if the

CFSR were used. These two locations highlight the im-

portance of using several data sources for validation and

how the errors associated with reference data sources

FIG. 6. Climatological annual total mass distribution at point locations as indicated in Fig. 4.
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can have a large influence on the interpretation of

model results.

A comparison of the skewness of the TMDs relative to

the NAAP reveals spatial coherency in many of the

featuresmentioned above for the specific point locations

(Fig. 7). There is a distinct shift in the difference in the

skewness of the GPCP compared to the NAAP at 408N,

where it is less skewed south of 408N and vice versa (Fig.

7a). This coincides with the change in data source from

the TMPI (south) to TOVS (north) in the GPCP and is

thus likely due to errors in the GPCP. This shift in the

distribution was noted previously for the western versus

eastern Rockies points and southern versus northern

West Coast points. This seems to be a robust feature

along the 408N latitude, except along the West Coast.

The CFSR is negatively skewed relative to the NAAP in

the west, where there is high orography, and positively

skewed in the east (Fig. 7b). The differences in skewness

between the GPCP and the CFSR relative to the NAAP

are of the samemagnitude but the spatial patterns differ.

The bias patterns of skewness in the GCMs are very

similar to that of theCFSRbutmore amplified (Figs. 7c,d).

The CFSR, with higher resolution and mass fields based

on assimilated data, is likely to have a somewhat better

prediction of precipitation than the GCMs; however, it

is still model based so the similar error patterns to the

GCMs are expected. The skewness in the Great Plains is

consistent with the idea that there is too much light

and not enough heavy precipitation in the models,

particularly in regions that experience convection. It is

interesting to note that the error in the skewness in the

Great Plains is higher in the uncoupled models (Fig. 7d)

(CAM4 not shown) than in the fully coupledmodel (Fig.

7c), and the error in the Rockies is lower in the un-

coupled models (CAM4 not shown) and higher in the

coupled model.

There aremany regions in northern Canada where the

bias in the skewness with respect to the NAAP is neg-

ative for all the other reference and model products

(Fig. 7). These regions include northern Quebec, On-

tario, Manitoba, and the entire west coast of British

Columbia. It is unclear whether this is a result of a

common bias in the GPCP, CFSR, CCSM4, and CAM5

or it is due to the sparseness of station data in these

regions (Fig. 1) and the resulting potential for large er-

rors in the NAAP data (Fig. 2).

The ability of the GCMs to reproduce observed ex-

tremes in different bimonthly periods is shown in the

climatological extreme precipitation in each of these

models with comparison to the NAAP (Fig. 8). In the

NAAP, we see a maximum of extreme values along the

West Coast whose seasonality is such that the extremes

are greater in winter (JF, MA, and ND) and small or

nonexistent in the summer (MJ and JA). The models

produce the higher extremes in this region as well as the

seasonality; however, during the bimonthly periods

where this feature is largest (JF, MA, and ND), the

magnitudes are on the order of 10–20mmday21 larger.

FIG. 7. Anomalies relative to the NAAP (e.g., GPCP–NAAP) of the skewness of the climatological annual total

mass distribution, at each grid point, for the (a) GPCP, (b) CFSR, (c) CCSM4, and (d) CAM5. Locations shown in

Fig. 4 are included for reference and shown as open squares.
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Within the Rocky Mountains, the NAAP generally has

finer scale structures, even though the models are re-

mapped to the same resolution. Studies using an earlier

version of the model saw that increasing the resolution

resulted in much better representations of orographic

precipitation (Gent et al. 2010; Iorio et al. 2004).

Therefore, this may be a result of the model resolution

being too coarse to fully capture details in the orography

that are important for precipitation. During the JA pe-

riod, the models have lower values than the NAAP in

the North American monsoon region. This may be in-

dicative of issues representing the monsoon processes in

the model. In general, however, the largest errors in

the climatological extreme precipitation are located

east of the Rockies, where heavier convective pre-

cipitation is frequent.

FIG. 8. Climatological (1979–2005) extreme precipitation (mmday21) for (left) NAAP, (center) CCSM4, and (right) CAM5 in bimonthly

periods: January–February, March–April, May–June, July–August, September–October, and November–December.
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Focusing on errors in the easternUnited States, one of

the most notable features that the models are not able to

produce is the heavy precipitation in the plains during

the MJ and JA bimonthly periods (Fig. 8). During these

bimonthly periods, the Great Plains experience heavy

convection and propagating mesoscale convective sys-

tems (MCS), which contribute significantly to the total

rainfall in these seasons (Fritsch et al. 1986). DeMott

et al. (2007) discussed issues in creating heavy convec-

tion in the CAM3 model, particularly in the Great

Plains. They found that the diurnal cycle in the CAM3

model was too strong and the timing of convection was

too early. They used subdaily observations and model

output to identify the mechanisms involved and found

that the necessity for the model to consume CAPE

within a 1-h-long convective adjustment time scale, as

well as the condition that plumes must detrain at the

level of minimum moist static energy, resulted in con-

vective plumes that were too high and included too little

entrainment. As a result, the convection occurred too

quickly (DeMott et al. 2007). This then caused the

model to be unable to build up moisture and larger

CAPE values that would be necessary for heavy rainfall

at a later time in the day (DeMott et al. 2007). The in-

clusion of entrainment in the calculation of CAPE in the

newer model versions may have helped but not solved

these issues with the parameterization scheme, resulting

in an improved representation but still a continued

bias in the model’s heavy precipitation during the MJ

and JA seasons.

To investigate whether this issue with convective pa-

rameterization is perpetuated in the newer model ver-

sion, the phase and magnitude of the diurnal cycle are

examined using 3-hourly precipitation from the CAM3,

CAM4, and CAM5 models in comparison to 3-hourly

satellite precipitation estimates from the Tropical

Rainfall Measuring Mission version 7 (TRMM) from

the National Aeronautics and Space Administration

(Huffman et al. 2007). Results for the CAM5model are

also shown at a higher resolution, 0.238 3 0.318 latitude–
longitude, which is referred to as 0.258. We expect

representativeness errors will only impact the magni-

tude of the diurnal maximum but not the timing of

maximum convection, so the 0.258 data are not re-

mapped to the 18 resolution. Results are shown for the

time period of 2001–10, except for the CAM5 0.258
model where a common time period was not available.

The CAM5 0.258 model analysis is shown for 1996–

2005, a time period of the same length and overlapping

as many years as possible with the other products for

1996–2005. We found little change to the phase and

amplitude when using alternate sets of earlier 10-yr

analysis periods. The phase is computed as the time of

the peak in the first harmonic of the diurnal variation,

and the magnitude is the mean precipitation over all

days. Comparing the diurnal timing from CAM3 to

CAM4 run on the same dynamical core as the 18 reso-
lution shows a reduction in the magnitude of the diurnal

cycle over the United States but no clear improvements

in the timing of the diurnal maximum (Fig. 9). There are

some minor improvements in the central United States

in the CAM5 (Fig. 9), but the diurnal timing issue per-

sists.

In CAM3, Dirmeyer et al. (2012) showed that in-

creasing the resolution of the GCM did not resolve the

diurnal timing problem so long as the precipitation was

still parameterized. This is also seen in the CAM5,

where increasing the resolution from 18 to 0.258 does not
improve the timing issue over most regions, notably in

the southeast (Fig. 9). Over the RockyMountain region,

there is an area of later phase that develops at higher

resolution; this error is found in many other orographic

regions in themodel at high resolution (Bacmeister et al.

2014).

Dirmeyer et al. (2012), did find that the CAM3with an

embedded two-dimensional cloud-resolving model,

which is known as the superparameterized CAM3

model (SP-CAM3), did have better timing of their di-

urnal precipitation maximum (Dirmeyer et al. 2012). In

a newer version of the model with embedded cloud-

resolving model, SP-CAM3.5, Pritchard et al. (2011)

were even able to produce propagating systems in the

Great Plains much like MCS found in observations.

These results are consistent with the idea that issues with

heavy precipitation in the plains during the summer are

due to issues with the parameterization of convection.

Although the SP-CAM3.5 does have many other issues

with the representation of precipitation, such as an

overproduction of intense precipitation (Iorio et al.

2004) and some remaining timing issues (Dirmeyer et al.

2012), it is nonetheless illustrative and encouraging to

see that a model with explicit convection has some

ability to produce MCS.

Heavy precipitation in the Gulf Coast during the JF,

MA, and ND bimonthly periods is simulated in both the

CAM5 and the CCSM4, but the magnitude is much too

low and often displaced farther toward the East Coast

(Fig. 8). There are many different precipitation mecha-

nisms responsible for extreme precipitation at this time

of year and so it is difficult to speculate as to the source

of the error.

Another glaring issue in the model representation of

extremes occurs in the SO season in the Gulf Coast

and along the U.S. East Coast (Fig. 8). Tropical cyclones

are responsible for up to a quarter of September pre-

cipitation in these regions (Knight and Davis 2007). It is
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well established that GCMs at standard resolutions have

severe issues with the production of tropical cyclones

and, when they are produced, they are generally much

weaker than in observations. It is possible therefore that

these errors are associated with errors in the production

of tropical cyclones in the model.

To put the errors in extreme precipitation in per-

spective, we compare climatological annual extreme

precipitation in the NAAP, GPCP, CFSR, CAM4 (not

shown), CAM5, and CCSM4 (Fig. 10). We see that er-

rors in the CFSR are generally the smallest: for the ab-

solute value of the percent difference, they are within

0%–20% in central and eastern Canada/United States,

much greater (30%–60%) in the U.S. RockyMountains,

and in some areas in the Canadian Rockies and around

Hudson Bay up to 80% (Figs. 10c,d). The errors in the

GPCP are typically higher (0%–40%) in most of the

United States (Figs. 10a,b). The GPCP has a distinct

change in the errors at 408N, where the input data for the

GPCP change from the TMPI (south) to TOVS (north).

South of 408N, the GPCP, particularly in the southwest,

there are larger extremes with errors ranging from

10% up to 100%, while north of 408N the extremes are

generally smaller (up to 40%), except along the West

Coast, which approach 60%. The creators of the GPCP

have noted large errors when the GPCP is used at the

daily frequency provided and have suggested that the

errors decrease when it is temporally averaged

(Huffman et al. 2001).

The GCMs have some large errors in the Rocky

Mountains and West Coast (60%–100%), similar in

pattern to the CFSR (Fig. 10). A central difference be-

tween the CFSR and the models is in the southeastern

and central United States, where there are errors be-

tween 20% and 60%, which as discussed previously are

likely due to issues with the representation of convec-

tion. Errors in extreme precipitation in the CAM4 (not

shown) are very similar to the CAM5 and CCSM4.

FIG. 9. Local time of first harmonic of JA diurnal precipitation (color hue) in the (a) TRMM, (b) CAM5 at 0.258,
(c) CAM4 at 18, (d) CAM5 at 18, and (e) CAM3 at 18. Color intensity represents the mean daily precipitation

(mmday21) beginning at 0.2mmday21. The observation period is 2001–10, except the CAM5 at 0.258, where it is

1996–2005.
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Although the locations of the errors are different, the

magnitude of errors in extreme precipitation in the

GPCP and the models are on the same order, which

implies that the models are within observational error

(Fig. 10). However, given the known errors in the

GPCP at daily resolution and the highly visible differ-

ences in the error field at the location of the data

transition in the GPCP previously discussed, these re-

sults imply that caution should be exerted when using

the GPCP to evaluate extremes. It should be noted that

errors in the CFSR typically have a similar pattern to

those in the GCMs; as such, using the CFSR for vali-

dation could result in an underestimation of errors in

GCMs.

FIG. 10. (left) Anomalies and (right) absolute value of percent anomalies, relative to the NAAP, for the (a),(b)

GPCP; (c),(d) CFSR; (e),(f) CCSM4; and (g),(h) CAM5 climatological (1979–2005) annual extreme precipitation

(mmday21). Anomalies are computed, for example, as (GPCP–NAAP), and absolution value of percent anomalies

are computed, for example, as j[(GPCP 2 NAAP)/NAAP] 3 100j.
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In addition to examining errors that exist in the cur-

rent version of the model, it is important to determine

what improvements if any there are over the previous

version of the model. Gent et al. (2011) show that the

distribution of precipitation is much better represented

in theCCSM4 than theCCSM3 in the tropics, evenwhen

the CCSM4 is run at lower resolution; however, it

has not yet been shown how the distributions compare in

the midlatitudes. Using the SCRIP remapping pro-

cedure once again, we remap both the NAAP and the

CCSM4 data onto the lower-resolution CCSM3 T85

spectral grid (approximately 1.48 latitude–longitude)

over the 1979–99 period and examine similar metrics as

above. Comparison between the CCSM3 and CCSM4

median precipitation errors with respect to the NAAP

reveal that there is a notable reduction in excess pre-

cipitation over the northernWest Coast but overmuch of

the rest of the domain there is little to no improvement or

in some cases a small increase in error in the represen-

tation of the median precipitation in the CCSM4 (Fig.

11). For the extreme precipitation, we do see modest

improvements in the southeastern United States as well

as the West Coast (Fig. 11).

5. Conclusions

Although it is well known that precipitation obser-

vations and reanalysis can have some large errors, the

traditional assumption has been that these errors are

small relative to those in the precipitation produced by

a GCM. As the representation of precipitation in GCMs

improves, however, we find that errors in model pre-

cipitation are approaching these observational errors

and so they must be carefully considered. Results from

Gervais et al. (2014) related station density to errors in

gridded station measurements and suggest the potential

for large errors in gridded precipitation station analysis

when station density is low. Applying this relationship

between errors and station density found in Gervais

et al. (2014) to the NAAP dataset, we find the potential

for large errors exists in the mountainous regions of the

western United States, as well as in the majority of

Canada. A general bias in the models toward negatively

skewed precipitation in northern Canada with respect to

the NAAP was interpreted as an error in the NAAP

since intercomparison with the other reference sources

all had the same bias. We also see large changes in the

GPCP at the border of its data change. Changes in the

skewness and extreme precipitation across this border

can be of the same magnitude as errors in the models.

This implies that the GPCP for some metrics, the ex-

tremes in particular, can be as biased as the models and

thus should be used with caution. The errors in the

CFSR generally have the same pattern as theGCMs and

so when validating against this data you are likely to see

fewer errors than actually exist. These results support

FIG. 11. Anomalies relative to the NAAP, for the (a),(b) CCSM3 and (c),(d) CCSM4 of climatological (1979–99)

annual (a),(c) median and (b),(d) extreme precipitation (mmday21). All data are remapped onto the CCSM3 res-

olution and anomalies are computed, for example, as CCSM3 minus NAAP.
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the viewpoint that in many cases the model error is ap-

proaching observational error and thus utilizing several

reference products to constrain these model errors is

important.

CAM4, CAM5, and CCSM4 all had very similar

biases in their representation of the distribution of pre-

cipitation. In general, the well-known tendency of pos-

itive skewness in climate models is present in these

models but only east of the Rocky Mountains. This co-

incides with regions that experience a larger portion of

convective precipitation. Regions within and to the west

of the Rockies generally have a more negatively skewed

distribution than the NAAP, indicative of a shift toward

higher daily precipitation rates than that found in the

observations. Errors in skewness are higher in the east

than the west. Several locations have distributions that

are very close to or fall between the various observations

and reanalysis, which is very promising.

Examining the extreme precipitation for different bi-

monthly periods implicates different processes as sources

of bias. In particular, there is a large underestimation of

extreme precipitation in the Gulf Coast region in the

winter and spring months. Heavy precipitation is also

underestimated in the spring and summer from the Gulf

Coast through the Great Plains. These types of errors

were seen in previous versions of the model and were

attributed in those cases to issues with the convective

parameterization and an unrealistic representation of

the buildup of CAPE. An analysis of the phase of di-

urnal precipitation for various versions of the CAM

model reveal that these issues with diurnal timing are

ongoing in the newer versions of the model and are not

remedied by increasing the resolution from 18 to 0.258. A
final notable issue with model’s extreme precipitation

is the lack of heavy precipitation in the SO period from

the Gulf Coast inland and up the eastern seaboard. Al-

though this is likely not the only source of errors in

this region, this error is attributed in part to a lack of

extreme precipitation from tropical systems as they are

not well resolved in the model.

When errors in CCSM3 and CCSM4 were compared

by Gent et al. (2011) in the tropical regions they found

large improvements in the representation of the distri-

bution of precipitation. However, when comparisons are

made in North America using the metrics in this study,

we find the gains in the representation of the CCSM4 to

be minimal. There are many potential reasons of which

one contributing factor may be the continued issue with

convective parameterization in the model.

When examining output of future climate model runs,

we can use these results to inform us of which processes

we can and cannot expect the CCSM model to ade-

quately produce. This study focused on the United

States and southern Canada; however, this area contains

a wide range of precipitation climatologies that may be

useful in understanding GCM prediction of precipitation

in othermidlatitude regions.Although the CCSMmodels

are doing relatively well in producing an adequate dis-

tribution in many locations, they do have some difficulty

in producing extremes with higher magnitudes. Our

confidence in their abilities to represent future changes in

these extremes is therefore low, but for the production of

larger-scale precipitation processes it is higher.
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