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Optimal Discretization Based Adaptive Finite
Element Analysis for Electromagnetics with Vector

Tetrahedra
Dennis Giannacopoulos and Steve McFee

Abstract—Efficient functional derivative formulas suitable for
optimal discretization based refinement criteria are developed for
3-D adaptive finite element analysis (FEA) with vector tetrahedra.
Results for generalized vector Helmholtz systems are derived di-
rectly from first principles, and confirmed numerically through
fundamental benchmark evaluations. Practical adaption applica-
tions are illustrated for selected FEA refinement models.

Index Terms—Adaptive systems, electromagnetic analysis, error
analysis, finite element methods.

I. INTRODUCTION

T HE STUDY of refinement criteria for adaptive FEA has
been a subject of considerable importance and interest

over the past decade [1], [2]. Today, the primary focus is on the
research and development of effective and efficient techniques
for practical 3-D applications [3]–[5]. Recent work has estab-
lished the strengths of optimal discretization based refinement
criteria, and confirmed the value of using functional gradient
type error indicators for scalar electromagnetic applications [6],
[7]. The theoretical potential of these variational approaches is
now generally accepted [8]. The objective of this contribution
is to derive, validate and evaluate a corresponding set of
functional derivative formulas suitable for the development
of optimal discretization based refinement criteria for 3-D
adaptive FEA based on vector tetrahedra.

II. FUNCTIONAL DERIVATIVES FORVECTORTETRAHEDRA

Adaptive FEA is especially useful for solving large problems
efficiently, since the computer resources required can increase
at a significant rate with respect to the problem size. For ex-
ample, in some finite element implementations the approximate
computational cost can be , where is proportional to
the number of degrees of freedom (DOF) used in the numer-
ical model of the problem [9]. Today, many realistic problems
require a large number of free, or unconstrained, modeling pa-
rameters in order to compute their solutions with sufficient ac-
curacy. For instance, many practical electromagnetic systems
do not possess the appropriate symmetry to allow for 1-D or
2-D treatments, and, therefore, must be analyzed using full 3-D
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formulations. This has made the effective discretization of the
physical problem a tacit requirement of efficient modern finite
element packages. The need for such computational efficiency
in finite element electromagnetics methods has led to an in-
creased demand for advanced adaptive solver technologies.

One route to adaption which has proven to be successful for
2-D and 3-D scalar systems, is to employ local error measures
closely related to the variational principle used to determine the
solution to the finite element problem [6], [7]. With this type of
approach, regions of inferior discretization in a finite element
mesh can be detected and ranked by evaluating the sensitivity
of the functional to differential displacements of the geometric
nodes. Therefore, by computing the gradients of the functional
with respect to vertex positions, it is possible to determine where
to improve the discretization, based on a purely local error mea-
sure that is closely related to the underlying variational principle
used to compute the finite element solution to the problem.

Functional gradient error indicators associated with optimal
discretization based refinement criteria are defined in terms of
derivatives with respect to tetrahedral vertex positions. These
derivatives may be computed directly for vector Helmholtz sys-
tems. For example, in problems where the field solution varia-
tion, , is described in terms of the coordinate variables, ,
and , i.e., , the 3-D vector counterparts of the
functional derivative formulas given in [7] for scalar systems
may be derived following an analogous procedure. Consider the
first-order vector tetrahedral element (linear edge element), as
defined in [10], with vertex positions , .
For vector Helmholtz systems in which the true solutionis the
stationary point of the following complex functional,

(1)
the -, -, and -components, respectively, of the functional gra-
dients may be determined from the three matrix forms:

(2)

(3)

and

(4)

evaluated over the tetrahedra that share the vertex in question.
Here, is the field solution vector and is the free-space wave
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TABLE I
EDGE DEFINITIONS FORTETRAHEDRA

number of the system. The square matrices, , and con-
tain the -, -, and -derivative information, respectively, that
corresponds to the first term in (1) for vertex
of a tetrahedron. The entries of the matrices, , and are
defined by:

(5)

(6)

and

(7)

where
is the tetrahedral volume;
denotes the length of theth edge connecting
vertices and as given in Table I; and

, , and are geometric parameters related to the
tetrahedron’s vertex positions, which can
be defined as follows with the subscripts
progressing modulo 4:

(8)

(9)

and

(10)

TABLE II
EXPLICIT FORMS OF@b =@y IN TERMS OFZ

Further, is defined in terms of , , and as follows:

(11)

It may be noted that the partial derivatives of with respect
to the element vertex positions, which appear in (5)–(7), can be
determined directly from (8)–(11), and Tables I and II, where
the quantities , , and are defined as follows:

(12)

(13)

and

(14)

The -, -, and -derivatives of the second term in the functional
(1) are given by the second terms in each of (2)–(4), respectively,
for vertex of a tetrahedron. The entries of the
matrices , , and are defined by:

(15)

(16)

and

(17)

where is given by Table III, in which is defined in terms
of , , and as follows:

(18)

It may be noted that the partial derivatives of , ,
and with respect to the element vertex positions, which



GIANNACOPOULOS AND McFEE: OPTIMAL DISCRETIZATION BASED ADAPTIVE FINITE ELEMENT ANALYSIS 3505

TABLE III
EXPLICIT FORMS OFM IN TERMS OFf

TABLE IV
EXPLICIT FORMS OF@(b b )=@y IN TERMS OFb AND Z

are implicit in (15)–(17), can be determined directly from
(8)–(10), and are given for reference in Table IV.

Once the gradients of the functional with respect to vertex
positions have been computed, they may be used in various ways
as error indicators. One simple approach is to assess a weighted
sum of the vertex-based functional gradients for each element,
then use these values to rank the elements for refinement. In this
study, this method is investigated to illustrate one possible way
to exploit the new 3-D refinement criteria proposed for vector
adaptive finite element solvers.

III. RESULTS

In order to validate the functional derivative formulas derived
above, the -component formulas were tested with a benchmark
evaluation based on the geometry and mesh defined by Fig. 1.

Fig. 1. Hexahedra used to define tetrahedral mesh for cavity.

Fig. 2. Variation of normalized functional value and separately normalized
magnitude of functional derivative withx-position of central interior vertex.

The system consists of an air-filled rectangular cavity with per-
fectly conducting walls and excited at the TE resonant fre-
quency. One-half of the cavity was discretized using 40 tetra-
hedra based on subdividing each of the 8 hexahedra shown in
Fig. 1 into five tetrahedra—the symmetry plane is defined by

between the conductors. The full cavity has dimensions
2 cm, 1 cm, and 2 cm in the, and directions, respectively,
and was analyzed using first-order vector tetrahedra (linear edge
elements) [10]. The functional derivative correctly identified
the optimal horizontal position for the central interior vertex,
to yield the stationary value of the functional (Fig. 2). Further-
more, the - and -components of the functional gradients were
confirmed to evaluate numerically to zero at the optimaland

positions for the central interior vertex, respectively, corre-
sponding to the stationary value of the functional.

The proposed 3-D adaptive refinement criterion was also
evaluated using the benchmark problem described by Fig. 1
and excited at the TE resonant frequency. Performance
results for the first-order -adaption studies (B) on functional
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Fig. 3. Cumulative cost of adaption versus error in functional.

Fig. 4. Sample vertex distribution for adaptively refined mesh.

convergence are presented in Fig. 3. The uniform-refinement
baseline (A) is included for comparison. It may be noted that
the -adaption performance results indicate a considerable
savings in computational cost relative to the uniform refinement
approach. In order to illustrate the focus of DOF produced by
the new refinement criterion, an example-refined mesh is
represented in Fig. 4, in terms of the distribution of tetrahedra
vertices; for comparison, an example uniform refinement mesh
with the same number of elements is represented by Fig. 5. A
200% increment in the number of DOF per adaptive step was
used to update the-adaption discretizations based on the new
refinement criterion for this benchmark problem.

Fig. 5. Sample vertex distribution for uniformly refined mesh.

IV. CONCLUSIONS

New functional derivative formulas suitable for optimal dis-
cretization based refinement criteria with linear edge elements
for 3-D vector Helmholtz FEA have been derived. The formulas
for the gradients of the functional with respect to tetrahedra
vertex positions were validated by tests based on a simple 3-D
benchmark system. The-adaption performance results for the
benchmark system that was investigated show that the new re-
finement criteria can be successfully used in 3-D adaptive finite
element solvers to effectively and economically distribute DOF
over the problem domain.
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