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ABSTRACT

The authors investigate whether combining a data type derived from radio occultation (RO) with the

infrared spectral data in an optimal detection method improves the quantification of longwave radiative

forcing and feedback. Signals derived from a doubled-CO2 experiment in a theoretical study are used. When

the uncertainties in both data types are conservatively estimated, jointly detecting the feedbacks of tropo-

spheric temperature and water vapor, stratospheric temperature, and high-level cloud from the two data types

should reduce the mean errors by more than 50%. This improvement is achieved because the RO mea-

surement helps disentangle the radiance signals that are ambiguous in the infrared spectrum. The result

signifies the complementary information content in infrared spectral and radio occultation data types, which

can be effectively combined in optimal detection to accurately quantify the longwave radiative forcing and

feedback. The results herein show that the radiative forcing of CO2 and the longwave radiative feedbacks of

tropospheric temperature, tropospheric water vapor, and stratospheric temperature can be accurately

quantified from the combined data types, with relative errors in their global mean values being less than 4%,

10%, 15%, and 20%, respectively.

1. Introduction

Climatic feedbacks of atmospheric temperature, water

vapor, cloud, etc., as measured by their impacts on the top-

of-the-atmosphere (TOA) radiation fluxes, are currently

not well constrained by observations and differ consider-

ably in climate models (Bony et al. 2006). Leroy et al.

(2008) and Huang et al. (2010) used an optimal detection

(OD) method (multivariate linear regression) to deter-

mine longwave climate feedbacks from spectral measure-

ments. This method takes advantage of the infrared (IR)

spectral features of climate forcings of greenhouse gases

and feedbacks of temperature, water vapor, and clouds

and quantifies each of them by partitioning the total

change in the outgoing longwave radiation (OLR) spec-

trum. One limitation of this method when applied to IR

spectral measurement, however, is the ambiguity issue.

Some feedbacks have similar infrared spectral finger-

prints: when their fingerprints are obscured by uncer-

tainties, it becomes difficult to quantify them. Particularly,

Huang et al. (2010) noted the fingerprint ambiguities

between tropospheric temperature and water vapor,

between tropospheric temperature and high-level cloud,

and between surface temperature and low-level cloud.

Incorporating another set of satellite measurements

that better distinguishes signals similar in the thermal in-

frared spectrum provides a potential solution to the dif-

ficulty. Like spectrally resolved infrared radiances, the

quantities (phase delay in the transmitted radio signal,

satellite position, velocity, etc.) in the Global Navigation

Satellite Systems (GNSS) radio occultation (RO) needed

to derive atmospheric microwave refractivity profiles can

be measured with high accuracy in space (Goody et al.

1998; Kursinski et al. 1997). With the measurement un-

certainties well constrained and precisely quantified, ac-

cumulated IR spectral and GNSS RO data will describe

various subtle changes in the climate system and form

valuable climatic records.

However, every remote sensing measurement is based

on a particular inverse method that relates the directly

measured quantity to a geophysical variable of interest.

Combining two arbitrary measurements does not guar-

antee an improvement in determining a variable because

their information content may not be complementary.
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Moreover, in studying long-term climate trend signals,

it is very difficult, if not impossible, to trace the uncer-

tainty in an operationally retrieved geophysical variable

to measurement errors or instrument change because of

the complexity of retrieval algorithms. Optimal detection,

however, which applies to direct measurements and links

the changes in them to climate forcing and feedbacks

through a linear regression, affords a simple way to trace

the propagation of errors and quantify the overall un-

certainty (Huang et al. 2010). Building upon the work of

Huang et al. (2010), the purpose of this paper is to in-

vestigate whether incorporating a GNSS RO observable

into optimal detection reduces the uncertainty in detec-

tion results obtained with the IR spectrum alone. In

comparison with the IR spectrum, the GNSS RO ac-

tive microwave measurement is sensitive to variations

in temperature and water vapor but is insensitive to

clouds. So we are particularly interested in whether

there is an improvement in temperature and water

vapor longwave feedbacks and whether the evalua-

tion of cloud feedback can benefit as well. In this the-

oretical study, we ignore the instrumentation-related

uncertainties in actual datasets; rather, we focus on

understanding the uncertainties arising from the in-

verse method itself when jointly applied to IR spectra

and GNSS RO data.

Following Huang et al. (2010), we generate hypo-

thetical climate change signals in IR spectra and RO log-

dry pressure profiles through a forward simulation based

on a general circulation model (GCM) doubled-CO2

experiment. In section 2, we describe the GCM experi-

ment and the spectral and RO simulations. In section 3,

we investigate the joint optimal detection with the two

data types. In section 4, we summarize and discuss the

benefits and limitations of incorporating refractivity

measurement.

2. Simulations

As detailed by Huang et al. (2010), we use the differ-

ence between the beginning and ending steady states in

a doubled-CO2 (280–560 ppmv) experiment by CCCMA,

an atmosphere–slab ocean coupled GCM participating

in the Cloud Feedback Model Intercomparison Project

(CFMIP; Williams and Webb 2009), as a surrogate for

climate change. CFMIP data are chosen because the data-

set includes 3D fields of cloud properties that are nec-

essary for computing IR spectra. The model-generated

monthly mean atmospheric profiles of temperature, spe-

cific humidity, and cloud fraction and condensate con-

centration are archived at 17 pressure levels with 2.58 3

2.58 horizontal resolution. We have used the 20 years of

the steady state prior to a step CO2 doubling and 15 years

of the post-doubling steady state to simulate spectral IR

radiances and RO log-dry pressure.

IR spectra ranging from 100 to 3300 cm21 are simulated

using a moderate-resolution radiative transfer model,

MODTRAN 4 (Bernstein et al. 1996), at 2-cm21 resolu-

tion. Five additional layers of standard atmosphere

(McClatchey et al. 1972) are patched to the top of the

17-layer profiles in order to properly represent the strato-

spheric absorbers. Clouds are assumed to overlap ran-

domly for the all-sky computation. Except for water vapor

and CO2, other greenhouse gases including O3, CH4, N2O,

and chlorofluorocarbons (CFCs) are prescribed with con-

stant values. More details of the spectral radiance simu-

lation are described by Huang et al. (2007a).

Microwave refractivity (N) is computed using a widely

used empirical formula

N 5 a
P

T
1 b

P
W

T2
, (1)

where T, P, and PW are atmospheric temperature, pres-

sure, and partial pressure of water vapor, respectively. The

constants a 5 77.6 K hPa21 and b 5 373 3 103 K2 hPa21

are empirically determined (Smith and Weintraub 1953).

The refractivity uncertainty caused by parameter uncer-

tainty usually is far less than 1% (Kursinski et al. 1997)

and is thus negligible compared to the uncertainty level

of 5%–20% due to signal shape uncertainty and other

causes considered in the analysis below. Following Leroy

and North (2000) and Leroy et al. (2006), we use the

logarithm of the integrated refractivity—‘‘dry pressure’’

(Pd), whose physical meaning is easy to interpret—to

construct the feedback fingerprints. By definition,

P
d
(h) 5

m
d
g

aR

ð‘

h

N(h9) dh9, (2)

where md is the molecular mass of dry air, g is the gravity

constant (9.80665 m s22), R is the ideal gas constant,

and h and h9 are height coordinates. Replacing N with

Eq. (1), applying the hydrostatic equation and the ideal

gas law, and approximating the mean molecular mass to

be md, we obtain

P
d
(h) 5 P(h) 1

b

a

m
d

m
w

ðP(h)

0

q(P9)

T(P9)
dP9, (3)

where mw is the molecular mass of water vapor and q is

specific humidity. The impact of atmospheric water va-

por is given by the second term on the right-hand side. In

the upper atmosphere where the water vapor content

is negligible, Pd is close to P, and variations in ln(Pd)

are strongly related to variations in geopotential height
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according to the hydrostatic equation. Because height,

instead of pressure, is the natural independent vertical

coordinate for RO retrieval (Leroy 1997), we first com-

pute Pd from CCCMA profiles with Eq. (3) and then

interpolate ln(Pd) into 17 fixed height levels: 0, 0.8, 1.5, 3,

4, 5.5, 7, 9, 10, 12, 14, 16, 18, 20, 23, 27, and 30 km.

3. Optimal detection

Optimal detection (Bell 1986; North et al. 1995;

Hasselmann 1997) is a multipattern linear regression:

dy 5 Sa 1 r. (4)

The column vector dy [ns 3 1] contains the total change

signals in the measurement. In general, the observation

vector y can contain any combination of data types. In

this study, y contains all the spectral channels of the IR

spectrum and all the levels of log-dry pressure profiles.

The columns of the matrix S [ns 3 nf] contain the finger-

prints of the nf physical contributors (Xi, i 5 1, . . . , nf).

The signal amplitude vector a [nf 3 1] is the solution to the

problem we seek—the amplitude of each of the nf con-

tributors that collectively give rise to the total change

signals. The vector r [ns 3 1] is the residual that cannot be

explained by linear combination of the fingerprints. The

least mean squares solution to Eq. (4) is

a
ml

5 (STS�1S)�1STS�1
dy, (5)

where S is the total uncertainty covariance matrix. The

rows of (STS21S)21STS21 are the ‘‘optimal finger-

prints’’ (Leroy and Anderson 2010); applying them to

data, one obtains aml, the most likely fit of a to the data.

The matrix inverse S21 is computed with a matrix pseu-

doinversion: S21 5 el21eT, where the columns of e [ns 3

ne] are the first ne eigenvectors of S and the diagonal of

l [ne 3 ne] contains the corresponding eigenvalues. (Off-

diagonal elements of l are zero.) In this study, we retain

the first 50 eigenvectors and eigenvalues (ne 5 50). The

uncertainties of individual elements of aml are the square

roots of the diagonal elements of (STS21S)21.

The total uncertainty matrix is S 5 Sy 1 Su 1 Snl,

where the terms on the right-hand side are the con-

tributions of natural variability, uncertainty in the fin-

gerprints, and overall nonlinearity, respectively. The

natural variability covariance is computed from an

unperturbed run of the climate model

S
y
5 cov(y), (6)

the fingerprint uncertainty is computed by

S
u

5 �
n

f

i, j
(dyN

i � hdyN
i i)(dyN

j � hdyN
j i)

ThdF
i
ihdF

j
i

* +
,

(7)

and the nonlinearity is computed by

S
nl

5 dy
total
��

i
dy

i

� �
dy

total
��

i
dy

i

� �T
* +

. (8)

The vector dytotal denotes a single realization of the total

change signal; dyi, the partial change signal contributed

by Xi; dFi, the magnitude of radiative forcing or feed-

back by Xi, measured by OLR broadband flux change;

and dyi
N 5 dyi/dFi, the fingerprint of the ith forcing or

feedback corresponding to change in Xi. With this nor-

malization, the ith element of a and aml is an estimate

of dFi.

In Eqs. (7) and (8), h� � �i denotes an average over in-

dividual realizations of climate change, which, in this study,

are all the individual grid point elements of CCCMA.

Here, spatial variation is used to represent the impact of

uncertain physics of climate change on the fingerprints

because we are limited by the availability of 3D cloud

fields from either a multimodel ensemble or a perturbed

physics ensemble (Huang et al. 2010).

We focus on the all-sky application and use the numbers

given by Huang et al. (2010) for the reference values

(‘‘truth’’) of the CO2 forcing and longwave feedbacks (dFi;

see Huang et al’s Table 1); we also refer the readers to the

results there (their Fig. 2) for the IR spectral fingerprints,

dRi
N. These results are obtained by using the partial ra-

diation perturbation (PRP) method (Wetherald and

Manabe 1988). In this paper, we compute the RO fin-

gerprints with the same perturbation idea. First, two sets

of dry pressure profiles (Pd
1 and Pd

2) corresponding to the

two steady periods of the doubled-CO2 experiment are

computed. The total change signal is obtained as the

difference between the logarithms of two period means:

(dlnP
d
)

total
5 lnP2

d � lnP1
d, with the overbars indicating

temporal means. Then, we replace the values of a vari-

able Xi in the ending period with its mean value in the

beginning period and recalculate another set of dry pres-

sure profile (Pd
2)i. The change in the dry pressure pro-

file contributed by Xi is computed as (dlnPd)i 5

ln(P2
d)� ln(P2

d)i. Because the phase delay in RO signals

is insensitive to cloud (its contribution to refractivity, even

in the case of thick and extended cumulus, is unlikely to

exceed 1%), we have considered only the noncloud

contributors. These contributors include tropospheric

temperature, tropospheric water vapor, stratospheric tem-

perature, and stratospheric water vapor. For convenience,
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the tropopause is set to be 200 hPa globally [see Huang

et al. (2010) for a discussion of the caveat].

Figure 1 illustrates the global mean log-dry pressure

profile change h(dlnPd)ii due to the different physical

contributors. The overall change signal obtained consid-

ering all the contributors together is well reproduced by

the sum of individual contributions. This indicates that log-

dry pressure can be linearly partitioned to a great extent.

Stratospheric water vapor contributes negligibly, which

results from the very small water vapor content in the

stratosphere. The other three contributors—tropospheric

temperature, tropospheric water vapor, and stratospheric

temperature—result in very different changes in the log-

dry pressure profile. In the doubled-CO2 experiment, the

troposphere generally warms in response to the CO2 forc-

ing. Under the hydrostatic balance dP/P 5 2(g/RT) dh,

the increase of temperature makes a fixed-pressure layer

thicker. This equivalently increases pressure and thus log-

dry pressure at every given height level. The impact of

the tropospheric warming integrates with height and

maximizes at the lower stratosphere where tempera-

ture change changes the sign. In contrast, the stratosphere

generally cools in response to the CO2 forcing, which re-

duces dry pressure. The moistening in the troposphere

increases dry pressure; this signal is the most significant in

the lower troposphere because water vapor concentra-

tions are greatest there. While the ‘‘wet-dry ambiguity’’ in

radio occultation exists in retrieval, the wet (water vapor)

and dry (temperature) terms are distinguished here be-

cause the vertical structure of their changes (column-wise

warming and moistening) are taken into account. The

contrast in shapes provides the basis for including log-dry

pressure in the fingerprints for the total change signal.

Fingerprinting longwave radiative forcing and feed-

backs (dFi) in the IR spectrum (dRtotal) is motivated by the

fact that dFi is characterized by different partial radiance

change patterns (dRi), as recognized by many previous

authors (Kiehl 1983; Slingo and Webb 1997; Haskins et al.

1999; Huang et al. 2007b; Leroy et al. 2008; Huang and

Ramaswamy 2009). Optimal detection requires an ac-

counting for how the uncertainty in fingerprints contrib-

utes to the uncertainty in the interpreted forcing and

feedbacks (Huang et al. 2010; Leroy and Anderson 2010).

This accounting is made by normalizing partial radiance

dRi by associated OLR changes and then computing the

variation of the normalized spectral fingerprints dRi
N. If

the unnormalized dRi contains insufficient information to

determine dFi, then the normalized dRi
N will have dispa-

rate shapes and Su would be inflated, leading to overly

large uncertainty in OD results.

Extending the problem to include RO log-dry pres-

sure demands the same normalization if the forcing and

feedbacks are still assessed with radiative flux changes.

When the perturbation is small, dFi and (dlnPd)i, to

the first-order approximation, are both proportional to

the change in the controlling geophysical variable, dXi.

If the assumption of linearity remains valid, (dlnPd)i

should be a strong predictor of dFi. We check that re-

fractivity measurement can be linked to feedback values

by correlating the column-average dry pressure change

[
Ð htop

0 (dlnPd)i dh]/htop (htop 5 30 km) to dFi. The corre-

lation coefficients over all the CCCMA grid points

across the globe are 0.87, 0.88, 20.82, and 20.93 for

tropospheric temperature, stratospheric temperature, tro-

pospheric water vapor, and stratospheric water vapor,

respectively. The correlations are strong enough to justify

normalizing the dry pressure signals by the longwave ra-

diation flux and using (dlnPd)i
N 5 (dlnPd)i/dFi as part of

the fingerprint vector.

We assess the uncertainty in the optimally detected

feedback results with two tests. First, we develop a set

of optimal fingerprints using normalized global mean

partial change signals, forming the ith column of S, si 5

[hdRii/hdFii, h(dlnPd)ii/hdFii], and apply the optimal fin-

gerprints to the global mean total change in the IR spec-

trum and log-dry pressure profile [hdRtotali, hdlnPd,totali].
Table 1 shows the OLR changes induced by five con-

tributors determined in this way. Because we have used

accurate fingerprints in obtaining the OD results, the

difference between the most likely aml and ‘‘truth’’ does

not reflect the uncertainty whereas the numbers de-

termined by (STS21S)21 does. Comparing the uncer-

tainties obtained using only the RO log-dry pressure

profiles in S to those from using only the IR spectra, it is

FIG. 1. Changes in global mean dry pressure profile contributed

by tropospheric temperature (denoted ‘‘ta-trop’’), stratospheric

temperature (‘‘ta-strat’’), tropospheric water vapor (‘‘hus-trop’’),

and stratospheric water vapor (‘‘hus-strat’’). The overall change

(‘‘all’’) when considering all the temperature and water vapor

changes simultaneously, (dlnPd)total, is compared to the sum (�) of

individual contributions, �
i
(dlnP

d
)

i
.
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evident that the OLR changes determined from RO log-

dry pressure are of lower accuracy than those from IR

spectra. However, when the two measurements are com-

bined, the uncertainties are reduced to values noticeably

less than what are given by either measurement alone

for tropospheric temperature and water vapor and for

stratospheric temperature. The reason for the improved

accuracy is illustrated in Fig. 2. The ellipses illustrate the

joint probability density function (PDF) of OLR changes

contributed by tropospheric temperature and water va-

por. The major axis of the uncertainty ellipse derived with

only the IR spectrum in the fingerprint vector has a slope

very close to 21, indicating compensating errors between

the feedbacks. Although larger in area, indicating larger

uncertainty, the uncertainty ellipse derived with only the

RO log-dry pressure in the fingerprint vector intersects

the IR-only uncertainty ellipse and thus effectively limits

the IR–RO joint estimates to a smaller (area reduced by

25%) and less tilted (correlation reduced from 0.53 to

0.35) ellipse. The overall effect is to reduce the uncertainty

in OD results and decrease the incidence of compensating

errors. Since the information content of a measurement can

be defined as the improvement of the knowledge of a

quantity by making the measurement (Rodgers 2000), the

result here signifies complementary information content of

the IR and RO measurements. Although the RO mea-

surement is insensitive to cloud, by reducing the uncertainty

in tropospheric temperature, which is ambiguous with high-

level cloud (Huang et al. 2010), the uncertainty in the high-

cloud estimate is also reduced (see last row in Table 1).

Second, we use a set of global mean fingerprints S de-

veloped from global mean normalized partial change

signals, the ith column of S being si 5 [hdRi/dFii, h(dlnPd)i/

dFii] (see Fig. 3), and apply them to the total changes

in the IR spectra and RO dry pressure profiles [dRtotal,

(dlnPd)total] at every GCM grid point. In this case, the

performance of OD can be assessed by the globally

averaged root-mean-square errors (RMSEs) in detected

dFi, which are given in Table 2. Comparing the IR-only

detection and the IR–RO joint detection, it is evident that

incorporating RO log-dry pressure considerably reduces

the RMSEs in tropospheric and stratospheric tempera-

ture, tropospheric water vapor, and high cloud, generally

by more than 50%. From the global distribution of the

biases (OD result minus truth; see Fig. 4), it is clear that

the IR-only detection is subject to compensating errors in

the ambiguous contributor pairs. Most noticeable are the

offsetting errors in the Antarctic concerning tropospheric

temperature and water vapor, and in the tropics concern-

ing tropospheric temperature and high cloud. This also

leads to large biases in the global mean of these detection

results, which account for 43%, 20%, and 31% in the total

mean squared errors in tropospheric temperature, tropo-

spheric water vapor, and high cloud, respectively. In the

IR–RO joint detection, however, such compensating er-

rors are largely suppressed. Unimproved, however, are the

stratospheric water vapor and the surface temperature

feedbacks, to which GNSS RO is insensitive.

The two tests show that adding RO log-dry pressure to

the IR spectrum in the fingerprint of climate change

noticeably improves the quantification of the longwave

feedbacks of tropospheric temperature, tropospheric wa-

ter vapor, stratospheric temperature, and high cloud. The

GNSS RO measurement particularly helps resolve the

ambiguity, when only IR measurement is used, between

tropospheric temperature and tropospheric water vapor,

and between tropospheric temperature and high cloud.

Based on the results from test 2, the RMSE is reduced by

TABLE 1. Global mean all-sky OLR changes contributed by tro-

pospheric temperature (Ttrop), stratospheric temperature (Tstrat),

tropospheric water vapor (qtrop), stratospheric water vapor (qstrat),

and high-level cloud (Chgh) in the doubled-CO2 experiment. Op-

timal detection results obtained from IR spectra, RO dry pressure

profiles, and IR-RO jointly are compared to PRP-determined ref-

erence values (‘‘Truth’’). Unit: W m22.

OLR

change

PRP

‘‘Truth’’

Optimal detection

IR RO IR 1 RO

dFTtrop 9.78 9.83 6 1.11 10.41 6 2.08 9.87 6 0.98

dFTstrat 20.47 20.46 6 0.19 20.56 6 0.25 20.47 6 0.11

dFqtrop 24.99 24.94 6 0.77 25.19 6 1.12 25.02 6 0.59

dFqstrat 20.27 20.26 6 0.13 24.50 6 10.41 20.25 6 0.13

dFChgh 21.18 21.19 6 1.49 N/A 21.21 6 1.37

FIG. 2. Joint detection of global mean tropospheric temperature

and water vapor contributions to OLR change. The small circles

and ellipses illustrate the joint estimates and the PDFs of (dFTtrop,

dFqtrop), optimally detected by IR only (blue), RO only (red), and

combined IR 1 RO (black) measurements. The ellipses are drawn

according to (aml 2 a)TSTS21S(aml 2 a) 5 1; the accumulated

probability within the ellipses equal 39% in the bivariate normal

distribution case.
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FIG. 3. Global mean IR spectral and GNSS RO log-dry pressure fingerprints. (left) Infrared spectral fingerprints

for CO2 forcing, surface temperature change, and feedbacks in tropospheric temperature, stratospheric tempera-

ture, tropospheric water vapor, stratospheric water vapor, and low, middle, and high clouds in order. (right) Four

GNSS RO log-dry pressure fingerprints of the same feedbacks as the spectral fingerprints in the same row.
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51% for tropospheric temperature feedback, 64% for

stratospheric temperature feedback, 45% for tropo-

spheric water vapor feedback, and 65% for high cloud

feedback. The remaining RMSEs relative to their global

mean feedback values are 4% for CO2 forcing, 10% for

tropospheric temperature feedback, 15% for tropospheric

water vapor feedback, 20% for stratospheric temperature

feedback, 44% for stratospheric water vapor feedback,

91% for high cloud feedback, and 115% for surface

temperature response; they are much larger for low and

middle cloud feedbacks.

4. Discussion and conclusions

We have explored how to quantitatively evaluate

longwave climate forcing and feedbacks from multiple

measurements by using an optimal detection method.

Compared to the thousands of infrared radiance channels

that are typical of a spaceborne spectrometer, the in-

formation content in the GNSS RO dry pressure profiles

of merely 17 or so vertical levels seems very small. Indeed,

if the two measurements are used to quantify the long-

wave climate feedback independently, the uncertainty

in longwave feedbacks derived using only RO log-dry

pressure is generally larger than that using spectral mea-

surement. However, the climate change signal in the

GNSS RO log-dry pressure profile induced by atmo-

spheric temperature is distinct from that induced by water

vapor or cloud, so that the ambiguity issue that affects

the linear partitioning of these feedbacks in the IR

spectrum does not impede the partitioning in the RO log-

dry pressure profile. We have demonstrated that when the

two measurements are jointly used to quantify the feed-

backs, the additional information provided by the GNSS

RO measurement can be critically helpful to improve the

accuracy in the results.

Because we have applied optimal detection to syn-

thetic IR spectra and log-dry pressure profiles, much as

in Huang et al. (2010), the accuracy in the feedback

detection results estimated in this study may quan-

titatively differ from what is associated with real data.

However, our estimate of the uncertainty is likely a

conservative one in terms of global mean feedback

values because the fingerprint uncertainty, a key source

of the uncertainty in the feedbacks, is measured by the

variation of the fingerprints over all the GCM grid

points (all the samples allowed by the doubled-CO2

experiment). Because the variation of the climate states

of different regions in the GCM exceeds the uncertainty

in our best knowledge of the present global mean cli-

mate state and the variation of the changes in the climate

states of different regions in the GCM also likely ex-

ceeds the uncertainty in the change of global mean cli-

mate state, the uncertainty we estimate is most likely an

over-estimate of the actual uncertainty.

With three sources of uncertainty (fingerprint uncer-

tainty, natural variability, and nonlinearity) considered,

we show that the global mean values in CO2 forcing and

longwave feedbacks of tropospheric temperature, tro-

pospheric water vapor, and stratospheric temperature

can be accurately determined from IR spectral and GNSS

RO measurements, with RMSEs in them generally being

less than 20%. Because of unresolved ambiguities, how-

ever, the accuracy in surface temperature response and

cloud feedbacks remains poor, but it can likely be im-

proved by incorporating other types of measurement. For

instance, reflected solar radiances may resolve the IR

ambiguity between low cloud and surface temperature

changes over most types of surfaces. Note, however, that

combining another data type may introduce new ambi-

guities as well. In the reflected solar radiation case, an

ambiguity may occur between cloud and ice-covered

surface or between cloud and aerosol, which IR spectral

measurement may resolve to a certain extent in turn.

Further investigations should reveal whether and by how

much the addition of a shortwave radiation data type can

resolve the low cloud ambiguity.

This study demonstrates that the optimal detection

method is suitable for integrating the infrared spectral

and radio occultation measurements in climate feedback

analysis. This methodology can be applied to the climatic

datasets that are to be made available by the existing and

planned spaceborne infrared spectral and radio occul-

tation measurements such as the Atmospheric Infrared

Sounder (AIRS) on the Aqua satellite, the Infrared At-

mospheric Sounding Interferometer (IASI) on MetOp,

the Crosstrack Infrared Sounder (CrIS) planned for the

National Polar-Orbiting Operational Environmental

Satellite System (NPOESS), the Constellation Observ-

ing System for Meteorology Ionosphere and Climate

(COSMIC), and the planned Climate Absolute Radiance

and Refractivity Observatory (CLARREO). Given the

large feedback discrepancies in the present climate models

(Bony et al. 2006; Solomon et al. 2007), such observational

TABLE 2. Global RMSE in optimally detected OLR changes.

Unit: W m22.

IR RO IR 1 RO

dOLRco2 0.10 N/A 0.11

dOLRTs 3.27 N/A 3.88

dOLRTtrop 2.02 2.36 0.98

dOLRTstrat 0.25 0.14 0.09

dOLRqtrop 1.32 1.47 0.73

dOLRqstrat 0.10 6.36 0.12

dOLRClow 3.76 N/A 3.66

dOLRCmid 1.36 N/A 1.25

dOLRChgh 3.05 N/A 1.07
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data–based analysis will provide strong constraints on the

feedback values and climate sensitivity and help discrimi-

nate climate models in terms of decadal climate change

projection. When real observational data are used for de-

tecting the feedbacks, a rigorous estimate of the overall

uncertainty will require accounting for instrumental noise

and spatiotemporal sampling error, as well as an ap-

propriate quantification of natural variability and fin-

gerprint uncertainty. For example, simultaneous IR and

RO soundings of the same object rarely exist due to their

different remote sensing techniques (nadir versus oc-

cultation), so the joint fingerprinting can only be based

on contemporaneous data. The constraint of spatial and

temporal sampling and averaging needs to be assessed

with specific instrument orbits and measurement rates.

Meanwhile, it is important to understand how long it

takes the measurement types to constrain the transient

climate sensitivity. When applying the method to tran-

sient climate change signals, at decadal scale, the un-

certainty due to natural variability can be assessed from

a simulated multidecadal time series; and the fingerprint

uncertainty can be derived from a multi-GCM ensemble.

In the doubled-CO2 experiment, fingerprint uncertainty

is the dominant source of uncertainty, whereas in an ap-

plication to short time scales, natural variability may

dominate over fingerprint uncertainty. These various as-

pects should be investigated in future studies in accor-

dance with a realistic instrumental model.
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