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Abstract 

 

We present a theoretical framework to study the thermal responses of one-

dimensional multilayered systems, functionally graded solid media, and porous 

materials. The method for thermal analysis resorts to non-Fourier heat 

conduction theories including three-phase-lag, dual-phase-lag, and hyperbolic 

heat conduction. The graded media are modeled as multilayered systems 

displaying finite numbers of layers. For each homogenous layer, the 

differential equations of heat conduction describing the wave-like three-phase-

lag are solved in closed-form in the Laplace domain. Solutions accounting for 

proper interfacial and boundary conditions are first presented to describe the 

thermal behavior of heterogeneous solids and porous media. Transient 

temperature and heat flux are obtained in time domain via fast Laplace 

inversion. We then apply the solutions obtained with each heat conduction 

theory to one-dimensional media and compare their thermal behavior. Finally, 

maps are presented to visualize the thermal responses of cellular materials, 

functionally graded cellular materials, and multilayered systems. For the latter, 

particular attention is devoted to investigate the impact of key attributes 

defining graded media, such as layer bond imperfections and material 

heterogeneity. 

Keywords: Functionally graded material, Cellular solid, Porous multilayered composites, 

Heat conduction, Phase-lag theory, Thermal wave.  

 

1. Introduction 
 

The governing equations of heat conduction are generally described by the heat flux-

temperature gradient and the first-law of thermodynamics. If we use the conventional Fourier 

equation to solve the heat conduction problem, two problems emerge. First, the resulting 

differential equation, which is parabolic, turns out to predict an infinite thermal wave speed 

that is physically unrealistic. Second, for very low temperature, short-pulse thermal heating, 

as well as for micro-temporal and spatial scale applications, the results are not aligned with 
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experimental observations [1]. To reconcile these discrepancies, several non-Fourier heat 

conduction theories have been introduced. Cattaneo and Vernotte (C-V) first introduced a 

thermal relaxation time in the model with a hyperbolic heat conduction and finite thermal 

wave speed [2]. Although valuable, the C-V model leads to results that cannot accurately 

describe experimental data, mainly because the microstructural effects in the heat transport 

process are overlooked. As a result, Tzou [3, 4] proposed a dual-phase-lag (DPL) model that 

could also account for microstructural interactions such as phonon-electron and phonon 

scattering via the phase-lag of temperature gradient, and fast transient effect of thermal waves 

through phase-lag of heat flux. A three-phase-lag (TPL) heat conduction theory was later 

proposed by Choudhuri [5] to encompass all previous theories for non-Fourier heat 

conduction. The fractional derivative of the phase-lag heat conduction was also introduced by 

Ezzat et al. [6, 7]. The use of phase-lags of heat flux, temperature gradient, and thermal 

displacement gradient in the TPL model is important to understand several phenomena, such 

as bioheat transfer in living tissues, exothermic catalytic reactions, and harmonic plane wave 

propagation.  

The study of heat conduction with non-Fourier approaches has been the subject of several 

theoretical investigations [8-13]. These approaches attempt to predict phenomena that cannot 

be captured by classical Fourier theories of heat conduction. For example, Ramadan [14] 

presented a semi-analytic solution for heat conduction in a multilayered composite by using 

DPL theory. The TPL phase-field system for thermal flux was studied by Miranville and 

Quintanilla [15]. Wang et al. [16, 17] studied the non-Fourier heat conduction in carbon 

nanotubes based on the concept of thermomass. The transient temperature field of the DPL 

model around a partially insulated crack was studied by Hu and Chen [18]. Recently, Afrin et 

al. [19] employed the DPL model for heat conduction analysis in a gas-saturated porous 

medium subjected to a short-pulsed laser heating.  

Other works in literature aim at studying the accuracy of thermal induced responses 

obtained with non-Fourier heat transport models. Babaei and Chen [20] investigated the 

generalized coupled thermopiezoelectric response of a functionally graded (FG) cylinder 

using the finite element method. The coupled and uncoupled transient thermopiezoelectric 

behavior of a one-dimensional (1D) FG rod was investigated by Akbarzadeh et al. [21, 22]. 

Hosseini zad et al. [23] used the classical and generalized coupled thermoelasticity to describe 

the behavior of thermoelastic waves at the interfaces of a layered medium. Banik and Kanoria 

[24] dealt with the TPL thermoelastic interactions in an FG unbounded medium subjected to 

periodically varying heat sources. Akbarzadeh et al. [25, 26] employed the higher-order shear 

deformation theory to study the classical coupled and uncoupled thermoelasticity of FG thick 

plates.  

In automotive, naval, and aerospace applications, sudden temperature changes are 

commonly experienced by structural materials, such as multi-phase and fiber-reinforced 

composites [27]. An accurate thermal analysis, as studied in [28-35], is thus essential to 

predict the level of thermal-induced deformation in composite materials. Yang and Shi [36], 

for example, established a stability test for heat conduction in a 1D multilayered solid. For a 

multilayered hollow cylinder, Jain et al. [37] presented a closed-form expression containing a 

double-series for time-dependent asymmetric heat conduction. An exact solution for transient 
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heat conduction in cylindrical multilayered composites was presented by Amiri Delouei et al. 

[38]. Akbarzadeh and Chen [39, 40] theoretically studied the effect of steady-state 

hygrothermal loading on the magnetoelectroelastic responses of homogeneous and 

heterogeneous media. 

Laminated composites often contain imperfections, such as small voids and defects, at the 

interfaces where cracks initiate and propagate. For this reason, the multiphysics of imperfectly 

bonded composites has become a subject of study [41-45]. Duan and Krihaloo [46], for 

example, studied the effect of imperfect bonding between the inclusions and matrix on the 

effective thermal conductivity of heterogeneous media. Hatami-Marbini and Shodja [47] 

studied the stress field of multi-phase inhomogeneity systems with perfect/imperfect 

interfaces under uniform thermal and far-field mechanical loading. 

The mismatch of thermal properties between bonded layers in laminated composites causes 

structural failure. This is one reason for which functionally graded materials (FGMs) with 

continuous transition of material constituents have been introduced. FGMs enable to greatly 

reduce thermal stresses and stress concentrations [48-50]. Since their appearance, FGMs have 

been the subject of intense research [51-59]. An approximate solution was developed by 

Ishigura et al. [60] and Tanigawa et al. [61] for transient Fourier heat conduction in an FGM 

plate by using  piecewise homogeneous layers. A closed-form asymptotic solution was later 

obtained by Jin [62] for the short-time temperature field via a multilayered material model. 

Zhou et al. [63] derived exact solutions for the transient heat conduction in an FG strip in 

contact with a fluid. Using the conjugate gradient method, the inverse hyperbolic heat 

conduction problem in FG cylinders was solved by Yang et al. [64] to estimate the heat flux 

from the temperature measurements. A theoretical framework was also proposed by Wang 

[65] to analyze the transient thermal analysis in FG hollow cylinders via the state space 

approach as well as the initial parameter method. 

All of the forementioned works dealt with solid media; nonetheless, porous materials, such 

as foams and lattices, can be effectively used for thermal management. Due to the 

increasingly growing number of applications, such as sandwich panels, heat exchangers, and 

heat shields [66, 67], several theoretical and experimental studies have been proposed to 

understand their thermal behavior [68-71]. Leong and Li [72] obtained the effective thermal 

conductivity of porous structures via a unit cell model. Sadeghi et al. [73] designed a test bed 

to measure thermal conductivity and thermal contact resistance of metallic foams under 

compressive loads. A three-dimensional finite element model for characterizing the elastic, 

dielectric, and piezoelectric properties of piezoelectric foam structures was recently developed 

by Challagulla and Venkatesh [74]. Furthermore, recent advances in manufacturing have 

enabled the engineering of FG foams, an element that further motivates research on their 

thermal behavior [75, 76]. For instance, Zhu et al. [77] considered the problem of minimizing 

the maximum temperature of a structure insulated by FG metallic foams under transient heat 

conduction.  

Thermal analysis of heterogeneous solid and porous structures requires an accurate 

prediction of steady-state and transient temperature fields. This work theoretically investigates 

the non-Fourier heat conduction in graded solid media with application for the first time to 

cellular materials. It extends the DPL heat conduction analysis in a heterogeneous medium 
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conducted by Akbarzadeh and Chen [78]. The paper provides a semi-analytic solution via 

Bessel functions and Laplace transform for 1D graded solid and porous media with 

perfect/imperfect bonding interfaces for TPL, DPL, and C-V heat conduction theories. The 

semi-analytic solutions obtained in this work enable modeling FG structures with an arbitrary 

material profile and predict their thermal properties. Closed-form solutions are obtained in 

terms of Bessel functions in Laplace domain in Section 3. Section 4 presents the thermal 

responses of 1D media obtained with alternative heat conduction theories. Finally, the effect 

of FGM profile, bonding imperfection, and heterogeneity is visualized into maps presented in 

Sections 5 and 6.  

 

2. Problem Definition and Governing Equations 
 

    This section reports the governing equations of non-Fourier heat conduction in a one-

dimensional (1D) graded medium. Figure 1 shows its material gradients in a general 1D 

coordinate system x


, where the number of layers is N . The position of the inner and outer 

surfaces is ix  and ox ; nx  ( Nn ,...,2,1= ) is the inner surface of the nth layer with ixx =1  and 

oN xx =+1 . The heterogeneous medium is initially at ambient temperature 0T , and is here 

approximated by a piecewise profile consisting of N homogenous layers . 

 
Fig. 1. Multilayered medium in a general 1D coordinate system 

 

    We can describe the general phase-lag heat conduction for each layer as [5, 79]: 

 ),(),(),( )()*()()()()( nnn

T

nn

q

n txKtxTKtxq  +++−=+
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                    (1) 

where 
)(nq


, )(nT , )(n , )(nK , and )*(nK  ( Nn ,...,2,1= ) are, respectively, heat flux vector, 

absolute temperature, thermal displacement ( )()( nn T= ), thermal conductivity, and material 

constant characteristics of the TPL theory; )(n

q , 
)(n

T , and )(n

  are also the phase-lag of heat 
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flux, temperature gradient, and thermal displacement gradient, respectively. The position 

vector and gradient operator are x


 and 


, while t  represents time. By using the second-order 

Taylor series expansion of equation (1) for )(n

q  and the first-order for 
)(n

T  and )(n

  , we 

obtain for  )()( nn T= : 
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where overdot represents the time derivative. The equation of energy conservation can be 

written as: 
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where )(nR , 
)(n , and )(n

pc  are: internal heat generation density, material density, and specific 

heat. By using Eqs. (2) and (3), we obtain the differential equation for phase-lag heat 

conduction in the general 1D coordinate system x

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where 0=m , 1=m , and 2=m  refer respectively to 1D Cartesian, cylindrical, and spherical 

coordinate systems.  

          We note that Eq. (4) is obtained from the wave-like TPL model. Setting 0)()*( == nnK   

leads to the wave-like DPL model. If besides this condition, we omit the term of 
2)(n

q of the 

second-order expansion, we obtain the diffusive-like DPL model. Similarly, the conditions 

0)()()*( === n

T

nnK   and 
2)(n

q =0 leads to the C-V model. Finally, disregarding )(n

q  in Eq. 

(4) generates the classical Fourier heat conduction. Readers interested in a detailed discussion 

on the characteristics of non-Fourier heat conduction theories are referred to [5, 79, 80].     

        We also introduce the following dimensionless parameters for the heat conduction 

analysis in multilayered media: 
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where wiT  and woT  are the temperature on the inner and outer surfaces. 

 

3. Methodology  

 
A general phase-lag model is here used to solve the transient and steady-state heat 

conduction in 1D multilayered media. We consider both perfectly and imperfectly bonded 



A.H. Akbarzadeh and D. Pasini 

 6 

interfaces. The solutions can be applied to both porous materials and FGMs, as demonstrated 

in the following sections.  

Using the dimensionless parameters (Eq. (5)) and in the absence of internal heat 

generation, the heat conduction equation (4) can be written as: 
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. As explained in [1], the thermal wave speed in each layer for C-

V, wave-like DPL, and wave-like TPL models can be derived from Eq. (6) as: 

)(

0

)1(

)(
)(

n

n
n

VC
K

K
C




=−                                              (C-V) (7a) 

)1(

)(

0

)(

)(

0

)()( 21

K

K
CC

nn

n

n

TPL

n

DPL



==




(Wave-like DPL and TPL)  (7c) 

From the above, we note that the dimensionless thermal wave speed in 1D media depends on 

the phase-lag of the heat flux, the phase-lag of temperature gradient, and the material 

properties of each layer of a multilayered composite, as well as  
)(
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The difference of material properties between neighboring layers along with the interfacial 

imperfection cause the separation of the thermal wave into a transmitted and a reflected part 

[14, 23]. 

To solve the heat conduction equation (6) in time domain, the Laplace transform is here 

employed: 
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The differential equation (9) is solved in terms of Bessel functions as: 
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where 
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Bessel functions of the first and second kind. The heat flux is also written in Laplace domain 

using Eqs. (1), (5), (8), and (11) as follows: 
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The integration constants in Eq. (11) are obtained by satisfying the following thermal 

boundary and interfacial conditions:  
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where 
)( j

T  is the thermal compliance constant, or thermal contact resistance for the imperfect 

interface between layers j and j+1; if  and of  are temporal functions for the applied thermal 

boundary conditions on the inner and outer surfaces. The bonding imperfection with thermally 

weak conduction has taken into account in Eq. (15) to obtain a reliable thermal analysis for 

multilayered composites [81-83]. The perfectly bonded interfaces could be also specified with 

0)( =j

T . In this analysis, a Heaviside step function, )()()(  Hff oi == , is used for the 

time-dependent  functions. We note also that this procedure could model other transient 

thermal disturbances [78].  

      Using equations (11) and (13) along with thermal boundary and interfacial conditions (15) 

in Laplace domain results in the following algebraic equation that allows to obtain the 

integration constants: 
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where  TPLK  is a NN 22   matrix,  TPLX  is a 12 N  vector of integration constants 
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TPL AAAAX = , and  TPLF  is a 12 N  vector, whose components are 

given in Appendix A. Solving Eq. (16) gives the  transient temperature change and heat flux 
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in the Laplace domain. To restore temperature change and heat flux in the time domain, the 

fast Laplace inversion technique (FLIT) is employed. As mentioned in [72, 84, 85], the 

Laplace inversion of ),(
~

sf   at time k  is obtained as follows: 
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where Total  is the total dimensionless time interval for the Laplace inversion, and a  is an 

arbitrary real number larger than all the real parts of the singularities present in the function 

),(
~

sf  ; nL  and nN  are accuracy parameters of FLIT defined in the Laplace inversion by 

Durbin [84].  

    The following steady-state solutions for a thermally induced 1D medium can be also 

obtained by using the steady-state form of Eqs. (1) and (3) as well as Eq. (5): 
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where )(n

s  and )(n

xsQ  ( Nn ,...,2,1= ) represent the steady-state temperature change and heat 

flux for each layer of the multilayered composite. Satisfying the steady-state form of 

boundary and interfacial conditions (15) leads to the following algebraic equation to obtain 

the integration constants )(

1

n

sA  and )(

2

n

sA : 
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where  sK  is a NN 22   matrix,  sX  is a 12 N  vector of integration constants 
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s AAAAX = , and  sF  is a 12 N  vector whose components are 

specified in Appendix B. It is worth mentioning that there is no difference between the 

steady-state solutions of non-Fourier and classical Fourier heat conduction models, as seen in 

Eq. (19). 

     The methodology developed above is initially used in the next section to compare and 

discuss the thermal responses of the heat conduction theories under investigation. The method 

is then applied to FG and multilayered media in the following sections. 
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4. Comparison of TPL, DPL, and C-V Non-Fourier Heat Conduction Theories 

 

       Figure 2 shows the thermal responses of a homogeneous sphere ( 2=m ), with inner and 

outer radius 6.0=ix  and 1=ox , subjected to a sudden temperature rise. The thermal 

responses obtained with TPL, DPL, and C-V models are plotted. The curves are obtained by 

assuming an initial ambient temperature of KT 3000 = for the medium. In addition, its inner 

surface is at ambient temperature ( KTwi 300= ), whereas the outer surface experiences a 

sudden Heaviside temperature rise KTwo 600= . The dimensionless phase lags of heat flux, 

temperature gradient, and thermal displacement gradient are respectively assumed 35.00 = , 

25.00 = , and 15.00 = , as those in [6, 13, and 14]. The TPL parameter is assumed as 

2
2
=TC . We consider materials common in the electronic industry and for thermal insulation 

[86], with thermal properties given in Table 1. It is worth to note that the value of the thermal 

relaxation time or the phase-lag of heat flux ( q ) for non-Fourier heat conduction theories 

varies between 10-14s and 103s for metals, organic tissues, and materials with microstructural 

non-homogeneity, such as polyethylene/graphite nanosheets . We observe that the phase-lag 

of the temperature gradient ( )T  follows also similar variations , although in literature, no 

exact value for the phase-lag of the thermal displacement gradient ( )  exists [3, 87-90]. 

 
Table 1 Thermal properties  

 
)(

mK

W
K  )(

3m

Kg
  )(

KgK

J
cp

 

Cu 386  8960  386  

Ag 419  10490  233  

Au 315  19300  126  

 

    The sudden temperature rise on the outer surface of the sphere causes the thermal wave to 

propagate towards the inner surface. The temperature distribution through the wall thickness 

of the sphere at the dimensionless time 098.0=  and the temperature time-history at the 

middle surface of sphere 8.0=  are illustrated, respectively, in Figs. 2a and 2b. The 

hyperbolic TPL, hyperbolic DPL, and C-V models are used to plot the curves. The curve of 

the C-V heat conduction theory reproduces that obtained in [13], while that of the hyperbolic 

DPL model the one in [78]. We note that the results for a homogenous sphere are independent 

of the material properties except the phase-lags. 
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(a) 

 
(b) 

Fig. 2. (a) Temperature distribution and (b) temperature time-history obtained with TPL, DPL and C-V for a 

homogenous sphere 
2

0 0 0( 2, 0.8, 0.35, 0.25, 0.15, 2)Tm C   = = = = = =  

 

       Fig. 2a shows that hyperbolic-type heat conduction theories can predict the thermal wave 

propagation with a finite thermal wave speed through the medium, as a result of the 

hyperbolic nature of the governing equations. Nonetheless, the thermal wave characteristics, 

such as thermal wave speed and temperature difference at the thermal wave front, differ. For 

Fourier and parabolic-type heat conduction theories with diffusive-like thermal behavior, one 

can refer to references [78, 79, 90]. On the other hand, the thermal wave for the hyperbolic 

DPL and TPL models is faster than that obtained with the C-V model, an observation aligned 
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with the premise of Eq. (7). Furthermore, Fig. 2a shows the thermal wave speed for TPL and 

DPL is 12% higher than that for C-V. While the thermal waves predicted with TPL and DPL 

show to move at a given wave speed, the temperature jump on the thermal wave front of 

former is around 5%  larger  than that of the latter.  

       Fig. 2b illustrates that the temperature history in the middle of the plate oscillates around 

the steady-state temperature. The maximum transient temperature of the TPL is 12% higher 

than that of the C-V model, while the maximum transient temperature of the DPL is 6% 

higher than for C-V model. Since non-Fourier approaches seem to better approximate 

experimental results [91, 92], we apply them to graded media subjected to thermal shocks in 

section 5.  

 

5. Application of TPL and DPL Theories to FG Media 
 

      The methodology explained in section 3 is here applied to model FG solid and porous 

media. Before presenting their thermal responses, we start introducing the homogenized 

properties of porous media and the piecewise profile approximation for FGMs.  

 

5.1. Cellular Materials 

 

    Herein, the focus is on cellular materials, including foams and lattices [93]. Since a fully 

detailed microscale analysis of porous media is computationally expensive, a multiscale 

model based on homogenization theory is used. We consider a representative volume element 

of the cellular materials, obtain its properties, and use them as the effective material attributes 

of its homogenous solid counterpart [94-97].  

      Following this approach, the effective specific heat of foams can be obtained by the 

classical rule of mixture which includes the contribution of the solid and gas as [67]: 

)1)(()( rpgrspsp g
ccc  −+=                                     (21) 

where subscripts “s” and “g” represent the material properties of the solid and gas, and 

overbar parameters specify the effective material properties; r  is the relative density defined 

as: 
s

r



 = . If we neglect the heat convection of the gas due to the small size of pores, we 

can approximate its thermal conductivity as [67]:  

grsrr KKK )1()2(
3

1
2

3

 −++=                                     (22) 

In this work, we assume the specific heat and thermal conductivity of the gas to be equal to 

those of dry air: 
KgK

J
c

gpg

310006.1 =  and 
mK

W
K g 025.0= . Equations (21) and (22) are 

thus the effective thermal properties that can be used to analyze the heat conduction in 

multilayered composites with porous layers. 

 

5.2. Functionally Graded Cellular Materials 
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        Functionally graded structures are modelled here as a perfectly bonded multilayered 

composite, where the material properties of subsequent homogenous layers vary according to 

the FGM profile [60-62, 94]. The property profile (Fig. 3) is described by a piecewise 

function of homogenous layers expressed as a function of the volume fraction V. The 

accuracy of the approximated property profile and predicted thermal responses of FGMs 

increases with the number of artificial layers, N , in thermal solutions provided in Section 3. 

In this paper, the FGM profiles are modelled with the following power-laws (P-FGM) [98-

102]: 











n

ioi 













−

−
−+=

1
)(                                       (23a) 

, Sigmoid (S-FGM):   

          


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, and Exponential (E-FGM) forms:  
























−

−








=












n

o

i
o

1

1
lnexp                                       (23c) 

where   can be any material property of FGMs and n  is the corresponding non-

homogeneity index. This straightforward approximation of FGMs could be used for 

functionally graded solids (FGS) as well as functionally graded cellular (FGC) materials. 
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Fig. 3 The piecewise homogenous layers for modeling of FGMs  

 

5.3. Thermal Responses of FGC Media 
 

Functionally graded cellular materials (FGCMs) are efficient lightweight alternatives to 

multilayered composites, which often suffer from bonding imperfections causing, for 

example, undesired separation of thermal waves. FGCMs, on the other hand, offer continuous 

transition of material properties that govern the medium response via their FGM profile. 

To study the thermal responses of FGC media, we examine a practical example: an FGC 

cylinder with inner and outer radius 6.0=ix  and 1=ox  and relative density of inner and 

outer layers 1.0=
ir

  and 1=
or

 . This cylinder is subjected to a sudden temperature rise 

KTwo 600= . The continuous transition of relative density throughout the FGC cylinder is 

shown in Figure 4 for P-FGM, S-FGM, and E-FGM profiles and non-homogeneity index 

2=n . 
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Fig. 4 Effect of FGM profile on the relative density distribution of an FGC cylinder 

( 1, ( 2))m FGM n= =   

 

Through Eqs. (21) and (22) we can gather that the variation of relative density controls the 

effective thermal properties of the FGC cylinder. This is visualized in Figures 5 and 6, where 

the transient and steady-state temperature and heat flux distributions are plotted for the 

hyperbolic DPL model. Since the changes of relative density of the FG cylinder with 2=n  

in S-FGM and E-FGM profile are greater than the P-FGM, the thermal wave speed in the S-

FGM and E-FGM cylinders are also greater than that of the P-FGM cylinder.  

Fig. 7 shows the temperature time-history of the middle of the cylinder roughly resemble 

for all FGM profiles; nonetheless, the absolute value of steady-state heat flux in E-FGM is 

higher than that obtained with S-FGM and P-FGM. From this observation, we gather the 

importance of selecting an appropriate FGM profile so as to satisfy the design requirements of 

FGC media subjected to thermal shocks. Furthermore, Figs. 5a and 6a show that an increase 

in the calculations of the spatial points in each layer creates numerical noises before and after 

the wave front, a phenomenon previously observed [23]. The nature of abrupt Heaviside 

thermal excitations could be mentioned as one culprit. 
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(a) 

 
(b) 

Fig. 5 Effect of FGM profile of an FGC cylinder on temperature distribution at (a) dimensionless time 

084.0=  and (b) steady-state 0 0( 1, 0.35, 0.25, FGM(n 2), Hyperbolic DPL)m  = = = =  
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(a) 

 
(b) 

Fig. 6 Effect of FGM profile of an FGC cylinder on heat flux distribution at (a) dimensionless time 

084.0=  and (b) steady-state 0 0( 1, 0.35, 0.25, FGM(n 2), Hyperbolic DPL)m  = = = =  
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(a) 

 
(b) 

Fig. 7 Effect of FGM profile of an FGC cylinder on (a) temperature time-history and (b) heat flux time-

history at the middle of FG porous cylinder 

0 0( 1, 0.35, 0.25, FGM(n 2), Hyperbolic DPL)m  = = = =  

 

6. Application of TPL and DPL Theories to Multilayered Media 

 

     This section studies the thermal behavior of solid and porous multilayered media as well as 

the influence of bonding imperfection, the heterogeneity of bonded layers, and the relative 

density of a porous core in multilayered media.  
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6.1. Influence of Bonding Imperfection 

 

Figure 8 illustrates the effect of imperfectly bonded interfaces on the temperature and heat 

flux distribution of a bilayered cylinder ( 1=m ) with inner radius 6.0=ix  and outer radius 

1=ox . The cylinder is subjected to a sudden temperature rise of KTwo 600= , and the 

hyperbolic DPL model is used for heat conduction prediction.  

To study the effect of dimensionless thermal compliance constant due to bonding 

imperfection T , we consider a bilayered cylinder with two bonded Cu layers. This case 

reduces to that examined in [78] for perfectly bonded interfaces ( 0=T ), which thus 

represents here a baseline for comparison.  

Figures 8a and 8b plot temperature and heat flux for the dimensionless time 126.0= . 

They illustrate that the thermal excitation causes the thermal wave to propagate towards the 

inner surface of the cylinder. The bonding imperfection causes the separation of the initial 

thermal wave into a transmitted and a reflected part, each travelling, at a given thermal wave 

speed of DPLC , towards the inner and outer surfaces of cylinder respectively. Although the 

temperature is discontinuous at the layer interface of the cylinder, the radial heat flux is 

continuous at the interface; these observations are consistent with the thermal conditions 

expressed in Eq. (15).  

Figure 9 shows that the absolute value of the transient and steady-state temperature and 

heat flux in the middle of the inner layer ( 7.0= ) decreases by stiffening  the thermal 

compliance of the interfaces. In addition, Figs. 8 and 9 show that the thermal compliance 

amplifies the temperature difference at the interface of cylinder and shrinks the heat flux 

transmitted through the interface. As a result of the thermally disturbed outer layer, a thermal 

insulation is developed for the inner layer.  

 
(a) 
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(b) 

Fig. 8 Effect of thermal compliance on the distribution of (a) temperature and (b) heat-flux at dimensionless 

time 126.0= 0 0( 1, 0.35, 0.25, Hyperbolic DPL)m  = = =  

 

 
(a) 
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(b) 

Fig. 9 Effect of thermal compliance on: (a) temperature and (b) heat flux time-histories at 7.0=  

0 0( 1, 0.35, 0.25, Hyperbolic DPL)m  = = =   

 

6.2. Influence of Heterogeneity  
 

Bonding imperfections often trigger thermal wave separation in a multilayered system. 

Material heterogeneity is generally the main culprit. Figure 10 shows the influence of 

heterogeneity of the middle layer in a sandwich slab ( 0=m ). By using the hyperbolic TPL 

model, the position of the inner and outer surfaces are assumed to be 7.0=ix  and 1=ox . The 

perfectly bonded sandwich slab ( 0=T ) has inner and outer layers of Cu while the middle 

layer of the slab consists of either Cu or Ag or Au. For the layer arrangement Cu/Cu/Cu, 

Cu/Ag/Cu, and Cu/Au/Cu, we observe that the thermal waves move towards the inner layer of 

the slab. On the other hand, thermal wave separation occurs for the heterogeneous material 

arrangements Cu/Ag/Cu, and Cu/Au/Cu. This is caused by the meeting of a thermal wave 

front at an interface between layers with dissimilar material properties, thereby generating 

waves with reflected and transmitted portions. Figs. 10a and 10b depict this phenomenon at 

different dimensionless timeframe. Figure 10a shows that the thermal wave speed at the 

middle layer of Ag is higher than that of Au due to their thermal properties; nonetheless, the 

transient temperature at the middle layer of Ag is lower than Au. We note here that the thermal 

wave transmits and reflects from the interfaces; it also reflects back from the inner and outer 

surfaces of the slab at 0=ix  and 1=ox  to finally reach the steady-state temperature.  
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(a) 

 
(b) 

 

Fig. 10 Effect of material heterogeneity in the middle layer of a sandwich slab onto the temperature distribution 

at dimensionless time (a) 084.0=  and (b) 126.0=  

2

0 0 0( 0, 3, 0, 0.35, 0.25, 0.15, 2, Hyperbolic TPL)T Tm n C   = = = = = = =  

 

6.3. Thermal Response of Sandwich Panels with Porous Cores 
 

We examine here sandwich panels with porous cores, commonly used for example in 

aerospace, electronics, and biomedicine. As expected, we show that when a thermal 

disturbance hits a sandwich panel, the relative density of the cellular core controls the thermal 
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response. To do so, we examine a three-layer perfectly bonded sandwich cylinder )1( =m  

with inner and outer solid layers of Cu and a porous middle layer of Cu with the relative 

density of r . The inner and outer radius of the sandwich cylinder are 7.0=ix  and 1=ox , 

respectively. The thermal compliance constants for all interfaces are expressed by the index: 

o

j

T
T

x

K )1()(
 =  )1,...,2,1( −= Nj  and are assumed to experience no changes. 

       Figures 11 and 12 illustrate temperature and heat flux distribution obtained with the 

hyperbolic DPL model. The figures visualize the transient and steady-state temperature and 

heat flux distribution within the sandwich cylinder. The plots confirm the impact of relative 

density; in particular in porous layers, the thermal wave speed decreases with the relative 

density. Furthermore, a reduction of the relative density in the middle layer increases the 

transient temperature in the middle and outer layers of the cylinder, while it decreases the 

transient temperature in the inner layer. A decrease of the relative density also lessens the 

absolute value of the heat flux passing through the inner and middle layer, whereas it 

amplifies the thermal insulation of the inner surface from the thermal shock on the outer 

surface of the sandwich cylinder. Further investigations on the transient responses reveal that 

from one hand a reduced relative density of the middle layer decreases the steady-state 

temperature of the first half of the cylinder, far from the thermal excitation; from the other, it 

increases the steady-state temperature of the second half of the cylinder, close to the thermal 

disturbance. The heat flux within the cylinder, however, decreases with the relative density of 

the middle layer. 

 
(a) 
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(b) 

Fig. 11 Effect of relative density for the porous middle layer in a sandwich cylinder onto the temperature 

distribution at (a) dimensionless time 112.0=  and (b) steady-state 

0 0( 1, 3, 0, 0.35, 0.25, Hyperbolic DPL)Tm n   = = = = =  

 

 
(a) 
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(b) 

Fig. 12 Effect of relative density of the porous middle layer in a sandwich cylinder onto the heat flux 

distribution at (a) dimensionless time 112.0=  and (b) steady-state 

0 0( 1, 3, 0, 0.35, 0.25, Hyperbolic DPL)Tm n   = = = = =  

 

7. Concluding Remarks 
 

This paper has studied the heat conduction in 1D graded media with imperfect bonding 

interfaces through non-Fourier theories. A semi-analytic procedure combining Bessel 

functions and Laplace transform has been used to solve the governing differential equations of 

heat conduction through a medium with a finite thermal wave speed. We have shown there 

are differences in the thermal wave responses obtained with the hyperbolic heat conduction 

theories under investigation. In particular, we observed TPL predicts 5 percent temperature 

difference at the thermal wave front, higher than that obtained with DPL. The maximum 

transient temperature of the former is also 6% higher than the latter.  

The application of the heat conduction analysis to FG solid and cellular materials has 

shown the critical role of the FGSM profile and the FGCM relative density. These material 

attributes have major control on the thermal response of the system. From one hand, we have 

observed the independence of the temperature time-history of the middle of FGC for all FGM 

profiles. From the other, we have appreciated the role of the FGM profile in governing the 

absolute value that the steady-state heat flux can reach. For E-FGM this value is higher than 

that for FORS-FGM and P-FGM. 

The last part of the paper has examined the impact of bonding imperfection, bond 

heterogeneity, and the relative density of porous layers. As numerical results have shown, 

bonding imperfection and material heterogeneity are the main culprits for thermal wave 

separation; in this regard, we have captured the transmitted and reflected parts of the thermal 

wave propagating in a multilayered system. At the interface between imperfectly bonded 
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layers, temperature has been observed to be discontinuous, as opposed to the heat flux. The 

thermal compliance of the interfaces increases the temperature difference between layers, 

while it decreases the heat flux transmitted through the interface. The relative density of the 

porous core in a sandwich panel has been shown to remarkably affect its thermal behavior. In 

particular, the thermal wave speed and the heat flux decrease with the relative density, 

whereas the transient temperature increases. This helps to gain insight into the importance of 

selecting the relative density that best optimizes the thermal management of a sandwich panel 

with porous core. 

 

Appendix A  
 

The non-zero components of  TPLK ,  TPLX , and  
12 NTPLF  in Eq. (16) are given as 

follows: 
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Herein, the non-zero components of  sK ,  sX , and  sF  in Eq. (16) are specified. For 

Cartesian )0( =m  and spherical )2( =m  coordinate, we have:  
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