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Abstract

Given a simple polygon P of n vertices, we present an algorithm that finds the
pair of points on the boundary of P that maximize the external shortest path between
them. This path is defined as the external geodesic diameter of P. The algorithm takes
O(n?) time and requires O(n) space. Surprisingly, this problem is quite different from
that of computing the internal geodesic diameter of P. While the internal diameter is
determined by a pair of vertices of P, this is not the case for the external diameter.

Finally, we show how this algo:iithm can be extended to solve the all external

geodesic furthest neighbours problem.
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Rasumé

Ce travail présente un algorithme qui trouve une paire de points sur la fron-
tiére d’un polygone simple P de n coins, qui maximise le trajectoire externe le plus
court entre les deux points. Ce trajectoire est définit par le diaméwre géodésique
externe de P. L’algorithme prend up temps O(n?) et requiert un champ O(n). Fait sur-
prennant, ce probleéme n’est pas semblable au probleme de calculer le diamétre
géodésique interne. Bien que le diamétre interne est deilerminé par une paire de coins
de P, ce n’est pas le cas pour le diamétre externe. En fin, ce travail demontre com-
ment cet algorithme peut étre étendu pour résoudre le probléme de rous les voisins a

la plus grande distance géodésique externe.
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“What has it got in its pocketses?”

— Gollum —
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Chapter 1

Introduction

Let P be a polygon described by a list of vertices (vo,v1,...,v,), where the vertices
vo and v, are considered to be identical. The edge e, = (vi—1, v,) of P is the closed
line segment connecting v,.; and v, for 1 < : < n. In addition, we say that P is
simple if no two non-consecutive edges intersect, and consecutive edges intersect at
a vertex. The collection of edges of P form the boundary bd(/F). The interior and
the exterior of P shall be denoted as int(P) and ext(P), respectively. The polygon 1s
considered to consist of the union of its boundary and its interior.

Let é(p, ¢) be the Euclidean distance between points p and ¢. Given a polygon P,
an external geodesic path between py and py, denoted m.(po, px), is a polygonal chain
with vertices (po,py,. .., px) which both avoids int(P) and minimizes the path length
}E&(p,_l,p,) (see Figure 1.1). This minimum path length shall be called the ezternal
fqu-zt)desic distance between py and pi, and shall be denoted é.(po, px). Analogously,
we define the exterior-avoiding internal geodesic path w (po,px), and its associated
internal geodesic distance 6,{po, pk).

Given a polygon P, an external geodesic diameter A.(P) is an external geodesic

path with endpoints p and ¢ in P, such that

be(p,q) 2 6:(p',¢) VP, 4 € P.
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Figure 1.1: An external geodesic path



The length of this diameter is denoted by é.(P). Similarly, for the internal case, we
define A,(P) and é,(P) (see Figure 1.2).

Although Shamos [16] first proposed the problem of finding shortest paths, or
geodesics, in a simple polygon, the first non-trivial results were due to Chazelle [3],
who developed divide-and-conquer algorithms for many such problems. He used pre-
processing of the polygons to solve the interna! geodesic distance, ail internal geodesic
path, and internal geodesic diameter problems (which he called the internal path, all
internal path, and internal length problems), in time O(n) plus triangulation, O(n?),
and O(n?), respectively. Tke all internal geodesic path problem is that of preprocess-
ing a polygon such that the geodesic path between two query points can be determined

in optimal time.

Suri [18] has subsequently improved upon one of these results with an O(nlogn)

algorithm for computing the internal geodesic diameter of a simple polygon.

Guibas, Hershberger et al. [6] give an algorithm for computing the shortest path
tree of a polygon P with respect to a point ¢ € int(P). This algorithm requires
only linear time, assuming that a triangulation of P is supplied. The shortest path
tree of a polygon P with respect to z is simply the union of all the gendesics from
r to all vertices v of P. The shortest path tree can be used to answer queries about
the length of the shortest path from z to the query point y in O(logn) time; the
path itself can be computed in O(logn -+ k) time, where k is the number of links in
the path. Guibas and Hershberger [5] also give a method of solving the ail internal
geodesic path problem in O(n logn) time.

Asano and Toussaint [2] have given an O(n®log n) algorithm which solves a rciated
problem, that of finding the geodesic center of a simple polygon. The geodesic center is
the point which minimizes the maximum geodesic distance to any point of 7. Pollack,

Rote and Sharir [12] have subsequently improved this with an algorithm that runs in
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Figure 1.2: Internal and External Geodesic Diameters
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O(nlogn) worst-case time.

This thesis is divided into six chapters. The following chapter presents some
definitions and lemmas about the behavior of external geodesics on polygons. Chapter
three presents the algorithm of Guibas, Hershberger et al. [6] for computing the
shortest path tree of a polygon P rooted at s. Chapter four presents Suri’s {1§]
method for determining the internal geodesic diameter of a simple polygon. Chapter
five presents the concept of a depth profile and gives our algorithms for determining
the external geodesic diameter of a simple polygon and for solving the all external
geodesic furthest neighbours problem. Finally, Chapter six contains some concluding

remarks.
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Chapter 2

Definitions and Preliminary
Results

In this chapter we present some needed definitions and make a few observations about
the behaviour of exteinal geodesics on simple polygons.

A converx polygon is a polygon such that, for any two points in the polygon, the
closed line segment joining the points is entirely contained in the polygon. The convez
hull CH(P) of a polygon P is defined as the minimum area convex polygon enclosing
P. We define a pocket Q of P as a minimal polygonal chain of edges and vertices of
P, whose edges are not coincident with convex hull edges, and whose endpoints are
the only vertices of @ lying on the boundary of CH{P) (see Figure 2.1). We dcfine
the lid of a pocket as the line segment (convex hull edge) that connects the endpoints
of the pocket. A pocket together with its lid forms a pocket polygon.

Let z and y be distinct points on the boundary of polygon P, such that = and y
are not contained in a common pocket of P. We define a circuit of P with respect
to = and y as the shortest closed polygonal chain containing z and y that entirely
encloses int{P) (sce TFigure 2.2). More specifically and without loss of generality, we
can assume that our circuit is (po, p1,-..,Px), Where po = px = z and p, = y. The

points z and y can then be said to delimit two semi-circuits (po = ,p1,...,p =
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y) and (p; = ¥,Pit1,- .-, = ). It should be noted that =.(z,y) is one of these

semi-circuits.

A furthest neighbour ¢(v) of a point v contained in a set of points @, is defined as
8(v) € @ = 6(v, $(v)) = max é(v,z).
A geodesic furthest neighbour ¢,(v) of a vertex v in a polygon P, is defined as
é.(v) € P =>§,(v,¢(v)) = max §.(v,z).

The all geodesic furthest neighbours problem is simply that of determining the geodesic
furthest neighbour for each of the vertices in a polygon. An ezternal geodesic furthest

neighbour ¢.(v) of a vertex v on the boundary, bd(P), of a simple polygon P is

$c(v) € bd(P) => b.(v, d(v)) = I?Bﬁ’fp) be(v, z).

The all external geodesic furthest neighbours problem is the problem of determining
the external geodesic furthest neighbour of each of the vertices of the polygon.

To prove the first of our lemimas, we observe that a polygon with no pockets
(.e. a convex polygon) has an infinite number of pairs of points that realize the
external geodesic diameter, and that this diameter is merely one-half of the length of

its perimeter (see Figure 2.3).

Lemma 2.1 If a simple polygon P has only one pocket Q), then at least one point of

a pair that realizes some A.(P) must lie on Q.

Proof Assume the contrary. Then the endpoints of all external geodesic diameters
must lie on the boundary of CH(P). Therefore, 6.(P) = 6.(CH(P)). Let m be the
midpoint of the pocket lid. Then there exists a diameter A, (CH(P)), which has m as
one endpoint and m’ € P as the other. Let gy be a point of Q) on the perpendicular

bisector of the lid. Let a and b be the endpoints of the lid (see Figure 2.4). Then the

9




-7y
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Figure 2.3: External geodesic diameters of convex polygons
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Figure 2.4: [lustration for the proof of Lemma 2.1
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following holds:
5.(a,q0) > %5@, b) and 8.(b, q0) > %5(a,b).

Then clearly é.(qo, m’) > 6(m, m’) = 6.(P), which is a contradiction. 0

It is in fact possible that the endpoints of an external geodesic diameter lie within

a common pocket, as illustrated in Figure 2.5.

Lemma 2.2 Let (qo, g5) be a pair of points of polygon P that realizes a diameter
A,(P), such that gy is in pocket () and ¢ is contained in no pocket. Then the two
semi-circuits of P defined by qo and qf are of equal length.

Proof Assume the contrary Let S; and S; be the two semi-circuits defined by
qo and ¢, with lengths [; and [, respectively. Without loss of generality, we can
assume that {, > I} = 6.(P). For all € > 0, there exists some point z € S, such
that 0 < 8.(¢p, z) < €. Then for e sufficiently small, 6.(z, go) = 8.(P) + €, which is a

contradiction. a

Lemma 2.3 Let (qo, q5) be a pair of points of polygon P that realizes a diameter
A.(P), such that qq is in pocket () and qg is contained in no pocket. Then qy will be

a point which attains

r;leaé( (65(q, a) + 65((], b))7

where a and b are the endpoints of the lid ¢f Q.

Proof Assume the contrary. Of the two semi-circuits defined by a and b, let S be
that semi-circuit not containing the lid of @. Let [ be the length of S. If we let ¢; be
the other endpoint of A,.(P), then

6¢(P) = min{8c(qo,a) + 8c(90a), 6¢(40, b) + 6(q0, b)}-

13
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Figure 2.5: An external diameter contained in a single pocket polygon
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By Lemma 2.2, the two quantities are equal, and thus also equal to their average:

55(P) = %(55(90, a) + 65(Q6, a) + 6:(40; b) + as(Q('), b))

Since ¢, s contained in .S, then

6e(P) = 5{8e(q0, @) + bc(g0, ) + 1),

ol

Consider z € @ such that é(z,a) - 8.(z,b) > 6.(qo,a) + 6.(qo,b). Let z' € CH(P)

such that 6.(z,z) is maximized. Similar to the methods above, we obtain

8.(z,2") = =(b.(z,a) + 6.(z,b) + 1),

D=

which implies that 6.(z, ) > 6.(P). Clearly, this leads to a contradiction. a

Lemma 2.4 Given a pocket ) with endpoints a and b, the point qg that realizes
1ax (6e(q, 0c(q,b
max (6(q, a) +6:(g, b))
is a vertez of Q.

Proof Assume the contrary. Let Do = 6.(qo,a’) + 6.(q0,b’), and let D, = §.(z,d") +
6.(z,b') for some ¢ € Q, z # qo, where a’ and b’ are the last vertices on the paths
from a and b, respectively. Note that a’ and &' may Le the same vertex.

The locus of points z such that D, = Dj defines an ellipse. Let [ be the unique
edge of @ containing go. This gives us two cases:
Case 1:  [is tangent to the ellipse defined by D, = D, (see Figure 2.6(a)). For all
¢ > 0, there exists some z € [ such that 0 < é.(qo,z) < €. Then for € sufficiently

small, we have

D, = 6.(z,a') + 6.(z,b") > D,
which is a contradiction.

15
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Figure 2.6: Illustration for Lemma 2.4
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Case 2: [ intersects the ellipse at go (see Figure 2.6(b)). This case is similar to
Case 1, except we restrict = to lie on the side of gy opposite that of the perpendicular

bisector of a’ and V. Again we arrive at a contradiction. a

The preceding lemmas may be used to indicate how to handle some of the situ-
ations in which the diameter of a polygon P may be found. We have four types of

candidates for our diammeter:

1. neither endpoint is in a pocket,

o

both endpoints are in the same pocket,

3. one endpoint is in a pocket and the other is on the convex hull of P, and

4. the two endpoints are in different pockets.

The first case can only occur if the polygon has no pockets, as was shown in
Lemma 2.1. Candidates for type 2 diameters can be generated by finding the internal
geodesic diameters of all the pocket polygons of P. For type 3 diameters, it suffices
to check the vertices that attain max (6.(g,a) + 6.(q,b)) for each pocket @, with
endpoints a and b, as was shown in Lemmas 2.3 and 2.4.

It is the last type that requires the most involved analysis. As we have seen, it 1s
possible that one endpoint of the diameter does not lie on a vertex of the polygon.
However, even though it is possible that an external geodesic diameter can be realized
with neither endpoint on a vertex, such a diameter will not be unique, and there will

exist an equivalent diameter that has at least one endpoint on a vertex.

Lemma 2.5 Guwen some A,(P) with neither of its endpoints qq and ¢ on a vertez,

then the two semi-circuits Sy and S; defined by qo and gy must be of equal length.

17
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Proof The case where the polygon has no pockets has already been considered.
Otherwise, if there exists at least one pocket, by Lemma 2.1 at least one endpoint
of A (P) (say qo) is in some pocket Q. Let [; and I; be the lengths of Sy and S,
respectively. Assume that [; 5 [5.

Without loss of generality, assume I; < 5. Let a’ and ¥’ be the vertices adjacent
to qo in 97 and S, respectively. Let £ be the edge of () containing ¢g. Consider 8,
the angle between £ and the line segment ag,, measured clockwise from £. We can

have three cases:

us
i< =
1. 0< 5
T
5] 0 —-— —
2
T
3. 60>~
2

Case 1: Iff< 7—2r-, then we can connect a’ to p, a point on € which is chosen to be

distance e from go, and outside the angle 8, for some ¢ > 0 which is sufficiently small

(see Figure 2.7(a)).

(6:(a',p)* = (z+€)*+y
= zl+y? 4+ 2e+ ¢
> (6e(a’, 90))*

55(01, P) > 6.(d',q0)

which is a contradiction. It should be noted that a situation can arise vhereby there
is a vertex a” of S; which is collinear with @g,. This situation can be resolved as
above by choosing ¢” in place of a'.

Case 2: Similar to Case 1 except that p can lie to either side of go (see Fig-

ure 2.7(b)).

18



Figure 2.7: The three cases of 8
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Case 3: Similar to Case 1, except that p has to lie inside the angle § (see Fig-
ure 2.7(c)).

These three contradictions imply that 1; = [,. a

Lemma 2.6 If 3A.(P) realized by points q; and qj, where neither qo nor ¢f 1s a
verter, then Ipo and py such that 8.(po, po) = 6:(qo, ¢), and at least one of po and py

is a vertez.

Proof If q;is not contained in a pocket of P, the result follows from Lemmas 2.3
and 2.4. Otherwise, let Q and @)’ be the pockets containing ¢y and g¢j respectively.
Let £ € Q and &’ € Q' be the edges containing go and gj respectively. Consider the
semi-circuits S; = (g0, 5, - - ., 0',¢5) and S2 = (¢, &, . ..., go).

We note that « and 3 cannot lie on the same side of the perpendicular to £ through
qo, since in that case we can simply choose a point on ¢ which is ¢ to the other side
and extend our path, leading to a contradiction. Similarly for @’ and . We also
note that neither o nor B can lie on the perpendicular through g by an analogous
argument. Similarly for o’ and J3’.

We define a to be the perpendicular distance from a to the line through ¢, and
label the point at which the perpendicular meets £ (or its extension), as 0. We define
b to be to be the distance from O to ¢y and parameterize it with z. We parameterize
the perpendicular distance by y. Similarly, we get d to be the perpendicular distance
from 3 to ¢ (or its extension), and c to be the distance from said perpendicular to
go. Applying similar treatment to pocket Q' yields point O’, distances e, f, g, and h,
and parameters u and v (see Figure 2.8).

Without loss of generality, we assume that A > e. We move one end-point of

A.(P) some small amount Az and observe the behavior of r1(z) and ry(z).

riz) = Val+ 0+ e+ f2— Va2

20




Figure 2.8: Illustration for the proof of Lemma 2.6
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rlz) = Vet +d?+ \/92 + h?% - \/d2 +(b+c—z)2
From the Pythagorean theorem, we have

r(z)? = u?+ (v—e)? (2.1)
r(2)? = (u—(f+9))*+(v—h) (2.2)

From (2.1), we get u = £,/ri — (v — €)? substituting this into (2.2), we obtain

(i\/m— (f+g)>2+(v — h)? =1

(ri = (v=e)) £2f +g)yri —(v—e€)* +(f + 9)*+ (v —h)* =713,
Rearranging gives

[ _ ri—rit+(—e)?-(f+9)*—(v—"1h)*
Fyri=-ef = 2(f+9)

- T%“rf—(f+g)2+ez—h2+v(h—e)
B 2(f +9) f+g)’

since we can assume that f+¢ > 0, because otherwise the point is already at a vertex.

If we define constants C and @ as

_ (h-e)
R
Q = Ui=ri=U+o)+e —hY

2(f+9)

we have £:,/rf — (v — €)? = vC + Q. Solving for v, we have

P (v-e)® = v2C?+CQ+Q’
ri —(v? —2ve+te?) = v’C*+20CQ+Q”

vI(C*+1) +20(CQ —e) + (Q*+e* —1]) =0

-

22



which in turn leads to
~2(CQ ~€) £ \J4(CQ — €)2 — 4(C? + 1)(Q? + €2 — r2)
2C?+1)

~(CQ =€) £ /(CQ—c)2~ (C?+1)(Q? +¢? —r2)
(C?*+1) )

Because of the construction, v must have at least one real value, which means that

JCQ—=e)2—(C?+1)(Q* +e2—r2) € R

We want the smaller value of v, which is

(CQ —e) = J(CQ—e)? = (C?+1)(Q? +¢? — 1)
(C*+1) )

v=—
Since we want v > 0, we must have
—(CQ—-e)=(e-CQR)>0

and

Q4+ —r2 > 0.

If these two conditions are satisfied, the existence of a non-negative value for v
implies that we can move by some distance Az so as not to decrease the path length.
To show that e — C'Q) > 0, we consider that
h—e} [62—h2+r§—rf—(f+g)2}
f+yg 2(f +9)

2¢(f +g)* 1 3 2 g
Y T [hez—-h +hr? —hr? — h(f+g)

-+ eh2—er§+erf+e(f+g)2]

e—-CQ = e—-[

1
= m[—h62+h3—hr§+hrf+h(f+g)2

+e3—eh2+er§—erf+e(f+g)2].

23




€ %

Since f +g > 0 as above, we can discard the 1/(2(f + g)?) term. The remaining term

evolves under our tender ministrations as follows:

2Af+9)(e—CQ) = (K2=e)(h—e)+(h—e)(ri—r) +(h+e)(f+g)°
= (h=e)[(r1 =€) = (r} = ) + (f +9)?] + 2e(f + 9)*.

If we now let

fio= 7 — e’
— 2 2
gu - rz—h

this becomes
2Af +9)e=CQ) = (h—e) [f2 = 6>+ (f +9)] +2(f +9)"

If we now notice that f2 — f? and g? — ¢% as Az — 0, and recall that we assumed

that A > e, we obtain

2Af+9)He—-CQ) = (h—e)[f =g+ (f +9)?] +2e(f +9)*
= (h—e)[2f+2fg] +2(f +9)

> 0.

To show that Q% + e¢? — r? > 0, we consider that

Qe =1l = (Q+ /- Q- P - ).

If we let K, be the first and K_ be the second terms on the right hand side, we
note that the desired relationship holds if X4 and K _ have the same sign. This is
obviously true when K, < O0or K_ > 0:

2 _p2 4 2 n2 2
I(+=[e h*+ry—m (f+g)]+ /7.%__62.

2(f+9)

24




To simplify this, we let K} = 2(f + g) K. Then we have

Ki=e—hi+ri—ri—(f+9)*+2(f +g)y/r}-e?

We once again let

f2o=ri=é
— 2 2
g‘ -— rz-"h

resulting in

Ki = ¢-f2-(f+9)+2(f+9)f-

= g2~ fI-f'=2fg-g* +2ff. + 2.

= (92-9¢")=(f =) =2(f - 1)

= (9-—9)(g-+9) +29(fu = f) = (fi = NH(fe = f)
K _ g=g Lot (popl=L

Az = Az (g.+g)+2g Az

Noticing that this matches the definition of the derivative, we let Az — 0 and write

Since g. = \/r2 — h2,

’ T2 : T2 T2
Jo = ===y = =
Vs — h? g~ g
when Az is sufficiently small. Similarly, fI = (ry/f)r}. Since the derivatives of r;

and r, are

o T
no= [¢—‘+ ;‘zJ

y =_[ z—(b+c) }
: V& + (b+c—z)?




we cau then write f! and ¢, as

9. =

R T

=
_C_l: z—(b+c) ]
g \/d2-{-(b+c—-:.):)2 .

Evaluating these at z = b yields

¢ - [Tt

f

r_ g+ h? c
T Ty | Vere

b ) () () ()]

Therefore, we see that we can always choose a direction to move in so as to make K}

negative, which in turn implies
2, 2_ 2
QR+ e ~-ri20.

Which implies that we can always move ¢y in some direction so as not to decrease
the lengths of S; and S;. In fact, we can move to the nearest vertex in said direc-
tion, since once we move a distance Az, the path lengths are no longer equal, and

Lemma 2.5 applies. a

We are now in a position to prove the main theorem of this chapter.

Theorem 2.7 Ar external geodesic diameter of a simple polygon P can always be

realized with at least one endpoint on a vertex of P.

Proof If P has no pockets, then the theorem holds trivially. If P has at least one

pocket, then the theorem follows from Lemma 2.6. 0

26



Lemma 2.8 Let Q be a pocket of polygon P, with endpoints a and b. Then
max l‘ss(av q) - 6e(b7q)| < 6(“7 b)
qeQ

Proof Assume the contrary. That implies that there exists some go € @ such that
16.(a, go) — 6(b, q0)] > 8(a,b). Without loss of generality, assume that 6.(a,q0) >
6.(b,q0). This implies that §,(a, go) > 6(a, b) +8.(b, go). But then we have an external
polygonal chain from a to go through b whose length is less than 6.(a, g), which is a

contradiction. a

27
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Chapter 3

Shortest Path Tree

If s is a vertex of a polygon P, then the shortest path tree of P with respect to s is
simply U, 7.(s,v) for all vertices v € P. This section deals with Guibas, Hershberger
et al’s [6] construction of the shortest path tree for a source vertex s of a polygon P.
The algorithm for the construction requires linear plus triangulation time and is an
extension of an algorithm due to Lee and Preparata [10].

For the sake of completeness, we now present an overview of the algorithm for the

construction of the shortest path tree, the full details of which may be found in [6].

3.1 Observations

Let T be a triangulation of the interior of P. Then the planar dual D of T is a tree,
whose vertices have degree at most 3. This implies that for all vertices z of P, there
exists a unique minimal path 7 in D from a triangle containing s to another triangle
containing z. This gives an ordered sequence of diagonals dy,...,d; corresponding to
the path between s and z, each diagonal being the boundary between two triangles
corresponding to adjacent points in 7. Therefore, each d, divides P into two parts,
one containing s and the other containing z; therefore the geodesic path from s to z

corresponcing to the dual tree path » must intersect each d, exactly once.

28




Then for d = Tw being a diagonal or edge of P, we can construct a funnel Fi
(see Figure 3.1), which is the union of those parts of 7,(s,u) and 7,(s,w) which are
not common to both. As in [6], the point common to both geodesic paths furthest
from s we call the cusp (denoted by a in Figure 3.1), and note that in [10] it was
proved that the portions from ¢ to u and from a to w are outward-convex. Then if
d is a diagonal of P in T, we not.> that exactly one triangle of T' contains d but does
not (otherwise) intersect the area bounded by d and the funnel Fiz. Let v be the
third vertex of this triangle, that is. the vertex which is neither u nor w. Then we
note that the shortest path from s to v must start with the shortest path from s to a
and then either continue along the straight-line segment @@ (if this segment does not
intersect Fi) or follow one branch of the funnel until it reaches a vertex y at which
the line segment 77 is tangent to Fig. These observations are due to [10], and form

the basis of their algorithm and its extension in [6].

3.2 Shortest Path Tree Algorithm

This algorithm first triangulates P. Then each diagonal Tw is examined in turn,
maintaining a current funnel F' = Fgz as a list of vertices (w, wi—1,...,u1,a,wy,
...,wi) stored as a finger tree ([7] and [8]). This structure is essentially a search
tree with auxiliary markers called fingers, which support searching for an element in
O(logd) time, where d is the distance from z to the nearest finger, and also allows
splitting the trce into two trees at an element z in amortized time O(log d). The cusp
CUSP(F) of the current funnel is also maintained.

The algorithm begins by initializing F' to contain s and an adjacent vertex vy,

with CUSP(F) = s. It then proceeeds recursively as follows:
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Figure 3.1: A funnel for diagonal 7@
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Algorithm PATH(F)
Let u and w be the ends of F, with a = CUSP(F). Let v be the third vertex of the

triangle cont.ining 7w but not intersecting the area bounded by F and uw (as in the

description above).

(1) Search F (with binary search) for a vertex y as in the description above, at
which 77 is tangent to F' if such a vertex exists, or a, otherwice. Then split F
at y and create two new funnels F; = (u,...,y,v) and F; = (v, y,...,w). Set
CUSP(Fy) toy, if y is on the path from a to u or to a otherwise; similarly, set
CUSP(F,) to y, if y is on the path from a to w or to a otherwise.

(2) Concatenate §v with the path from s to y to obtain the path from s to v.
(This is done by storing a pointer to y at v; the collection of such pointers

gives the desired path tree.)

(3) If the segment T7 is a diagonal of P (as opposed to an edge), call PATH(F))

recursively.

(4) Similarly, if the segment @Wo is a diagonal of P, call PATH(F,) recursively.

For the correctness and complexity analysis, the reader is referred to [6).

There is a simple extension of the above algorithm which produces information
allowing us to determine the shortest path from s to arbitrary points z inside P. This
extension partitions P into O(n) triangular regions such that the shortest paths to
s from all points in a region are identical except for a portion which consists of a
straight segment from the point to one of the vertices of the region.

This extended algorithm depends on the following observations: For each edge e
of P, consider ®(e), the region bounded by e and the funnel F%. First, note that for

any point z inside ®(e), we can find a vertex y of F, such that either T7 is tangent to
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F,, or y is the cusp of F, and zy does not intersect F,, asin the algorithm above. The
shortest path from z to s then consists of the shortest path from y to s, concatenated
with the segment Z7. Also note that the interiors of the ®(e) are all disjoint, and the
total number of edges along their boundaries is O(n).

The extended algorithm consists of extending the edges of each funnei F, to reach
e, thereby partitioning ®(e) into triangles; since each triangle corresponds to at least
one funnel edge, there are O(n) such triangles (see Figure 3.2). Then we can use
any of the known linear-time algorithms (e.g., [9]) to process this partitioning into a
structure supporting queries taking O(log n) time to determine into which triangle a
point falls. Then of course the shortest path from any point z inside P to s can be
constructed by determining the triangle into which z falls and concatenating the line
from z to the appropriate vertex y of the triangle, as determined when the triangle
was constructed, plus the path from y to s.

Summarizing, given a simple polygon P with n sides, and some vertex s of P, it is
possible to preprocess P in linear plus triangulation time to obtain a data structure
allowing us to determine, for any point z inside P, the length of the shortest path
from z to s in O(logn) time. The path itself may be calculated in O(logn + k) time,

where k is the number of segments in the path.
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Figire 3.2: Partitioning a funnel into triangles
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Chapter 4

Suri’s Algorithm

In this section, we describe Suri’s [17] O(nlogn) method for computing the internal
geodesic diameter of a simple polygon. Suri’s method actually involves solving the all
geodesic furthest neighbours problem and simply taking the maximum of the distances

obtained.

More specifically, given a polygon P, the all geodesic furthest neighbours problem
for P is to find, for each vertex v of P, a point ¢(v) € P such that

8.(v, p(v)) = max é,(v,z) Vz € P.

In a manner similar to that of the previous chapter, this chapter will be devoted
to a review of Suri’s method for computing the internal geodesic diameter of a simple
polygon. This method is presented here in order to lay the groundwork for the later

chapters.

4.1  Observations

There are a few observations that must be made before proceeding to the algorithm;
one is that the triangle inequality holds for geodesics (the proof of this is similar to
that of Lemma 2.8). We also observe that the furthest neighbour of any point in P

is always a vertex of P and that if P is triangulated, we can compute ¢(u) in lincar
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time for any given point u in P. In fact, this immediately gives us a brute force O(n?)
algorithm to solve the all-geodesic-furthest neighbours problem. We simply have to

compute the shortest path tree for each vertex. This, however, is not our ultimate

goal.

We say that two geodesics are disjownt if they have no point in common. Let
u, v, r, and y be four points on bd(P) appearing in counterclockwise order (see
Figure 4 1). The uniqueness of geodesics in a simple polygon insures that either
7.(u,y) and 7,(v, z) are disjoint or that they overlap only along a contiguous subpath.

The geodesic between u and z can be broken down as follows

m(u,z) = m(u,a) || 7.(a,¢) || m(c,x)
where || is concatenation of geodesics, a lies on 7,(u, y), ¢ lies on 7,(v, z), and =,(a,c)
is disjoint from both =,(u,y) and m,(v,z), save for the endpoints. Similarly we have

7 (v,y) = m.(v,b) || 7. (b,d) || 7.(d,y)

and the associated constraints.

If »,(u,y) and =,(v,z) are not disjoint, then we set @ = b = ¢ = d = 2, for
some arbitrary point z which is common to both geodesics. Otherwise, due to the
uniqueness of geodesics in P, we have a, b, ¢, and d being all unique. The points a,
b, c, and d are called the junction pownts for 7 (u,y) and 7,(v,z). This leads us to a

simple lemma:
Lemma 4.1 Given the situation described above, the following inequalities must hold:
§.(u,a) £6,(u,d) and 6,(v,b) < 6,(v,c).

Proof Obvious from Figure 4.1. |

The above lemma is used to prove the property described in the following lemma,

known as the crossing property.
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Figure 4.1: Junction points (also, the crossing property)

36



A,

Lemma 4.2 Letu, v, z, and y be four points on bd(P) appearing in counterclockwise
order such that z is a furthest neighbour of v and y 1s a furthest neighbour cf u. Then,

T is also a furthest newghbour of u and y is also a furthest neighbour of v.

Proof By contradiction. By comparing 6,(u,y) + 6,(v, z) with é,(u,z) 4 6,(v,y), we
see that if z is not a furthest neighbour of u, then the triangle inequality is violated.

0

We will first describe Suri’s solution for the restricted furthest neighbours problem
and then show how to transform the original problem into at most three instances of

the restricted problem.

4.2 Restricted Furthest Neighbours Problem

Two polygonal chains are said to be non-overlapping if they do not share a point,
save possibly the endpoints. Let U = (vy,us,...,u,) and V = (vq,9,...,v;) be two
non-overlapping chains of P, where the vertices of U are in counterclockwise order
and those of V' are in clockwise order. We denote {(u,) as the vertex in V that is
furthest from the vertex u, € U. In other words, v, = ((u,) is a restricted furthest
neighbour of u, if
8.(usyv;) = lrgg%ct 8,(uy, vi)

The all-furthest neighbours problem for U with respect to V is to find the restricted
furthest neighbour in V for each u,. We will drop the word restricted for the rest of

this section.

Let Pla,bic,d], forl < a <b< sand 1 £c¢< d <t denote the closed region
in P whose boundary consists of (ug,...,us) and (v.,...,vs) joined by 7,(ug,v.) and
m,(up,vg). The aforementioned paths are called the connectors of Pla,b;c,d], and

we call their edges connector-edges. We can see that r,(u,,v,) lies completely in
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Pll,s;1,t], for 1 <7 < sand 1 £ j < t. Therefore, we only have to consider
P[1,s;1,t] for a solution to our all-furthest neighbours problem for U with respect to
V. Simply, we have to find {(u,) for alli =1,2,...,s.

Suri uses the following lemma to derive a divide-and-conquer algorithm.

Lemma 4.3 Let u, € U be a vertez and let vy = ((u,) be its furthest neighbour, for

somel < p<sandl < q<t Then,

1. For every u, € (uy,Us...,up), there exsts a vy € (vq,Vg41,-..,v:) such that
v = ((u,).
2. For every u, € (up,Ups1,.--,U,) Such that v, € (vy,vs,...,v,), there exists a
U = ((u;).
Proof Follows from the previous lemma. a

The algorithm follows directly from the above lemma.

Algorithm RFN(P[L,s;1,t])

(1) If[s—1] < 2o0r |t —1| £ 2, then compute all furthest neighbours in linear time

by constructing the shortest path trees from the vertices of the smaller chain.
(2) Otherwise, do the following:

(2a) Let p= [;l;s-l and let vy = ((u,),1 < ¢ <t
2b) Construct P[1,p;q,t] and P[p,s;1,q].

(2¢) Recursively call REN(P[1, p;q,1]) and RFN(P[p,s;1, q]).
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4.3 All Furthest Neighbours Problem

Let (u,uz,...,u,) be the vertices of P in counterclockwise order and assume that
Upt1 = Uy. Let (ug,...,u;) denote that portion of bd(.P) encountered between u, and
up. Let u, be an arbitrary vertex of P. We can assume, without loss of generality,
that u, = {(u,) and u; = ((u,) are such that u,, u,, and u) appear in this order on
bd(P), but u, and uy are not necessarily distinct. The next lemma shows how we can
reduce the all furthest neighbours problem to at most three instances of the restricted

all furthest neighbours problem for polygonal chains.

Lemma 4.4 Let u,, u,, and ui be as above. Then.

1. for every w; € (u,,...,u,), there always exsts a up € (uy,...,Ugk,...,u,) such

that u, = ¢(uy).

to

. for every w; € (u,,...,uy), there dlways exists a uy € (Upg,..., Us,...,u,) such

that u., = ¢(w;).

3. for every u; € (uy,...,u,), there always exists a uy, € (us,...,uy,...,ux) Such

that um = ¢(uy).
Proof See [17]. a
Theorems 4.5 and 4.6 conclude our presentation of Suri’s results.

Theorem 4.5 Furthest neighbours of all the vertices of a simple polygon having n

vertices can be computed in O(nlog n) time and O(n) space.
And since §,(P) = max 6.(u,d(u)), we get
Theorem 4.6 The geodesic diameter of a simple polygon having n vertices can be

computed in O(nlogn) time and O(n) space.
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Chapter 5

The External Geodesic Diameter
Algorithm

This chapter presents the concepts of a depth profile and a restricted depth profile.
We also present out algorithm for the external geodesic diameter and the complexity
analysis of the algorithm. Finally, we present an algorithm for computing all the

external geodesic furthest neighbours on P for all vertices of P.

5.1 Depth Profile
Let @ be a pocket of simple polygon P. Let a and b be the endpoints of @, and let
[ = §(a,b). Let ¢ be any point of @, and define

m(d, q) = min(é.(a, q),d + 6.(b, q)),

where d is a real-valued parameter.

The depth profile of Q) is a mapping
Yo : R — [0,00) such that ¥o(d) = max m(d, g).
q

Associated with each point of the profile is the set of points which attain the maximum

in the above definition:
Uq(d) = {q € Qlm(d, q) = Yq(d)}.
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To see the relevance of these definitions, consider the following lemma:

Lemma 5.1 Let A.(P) be an external geodesic diameter with endpoints qo € Q and
Go & Q- Let S, and Sy be the semi-circuits defined by qo and g} passing through
a and b respectively, and let I, and ly be their lengths. Let I, = I, — 6.(a,q0) and
ly = ly = 6.(6,q0). If 1y~ I = d, then 6,(P) = I + o (d).

Proof By definition,

6.(P) = min{ls, 1}
= min{l, + é.(a, qo), !} + 6:(b,q0)}
= min{l, + §.(a,q0), I, + d + 6.(b, go)}
= I’ 4+ min{6.(a, qg0),d + 6:(b,q0)}
= I +vo(d).

0O

As a corollary of this lemmia, any geodesic of the form 7.(g{,q) for ¢ € Ug(d) is
also an external geodesic diameter of P. Thus in practice, given a point ¢) & @, if
the lengths I’ and [] are known, the depth profile of Q allows one to determine an
external geodesic furthest neighbour restricted to Q.

To calculate ¥g(d) for any given value d, we will first preprocess the pocket Q.
The first step is to compute the two shortest path trees rooted at a and b. Consider
(to, t1,...,ts) to be all the nodes of the trees listed in sorted order along the boundary
of @) from a to b, where a = ¢y and b = t,. Let e, be the line segment in @ with

endpoints the consecutive nodes t,_, and ¢,. We shall consider the restricted depth

profile ¥!(d) to be defined as follows:

P! : R+ [0,00) such that g(d) = maxm(d, q).

gee,
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In terms of 1)(d), ¥ o(d) becomes max ().

To compute ¥|(d) given a specific value of d, we note that if go is not an endpoint of
e,, Lemma 2.5 implies that é.(a, o) —6.(b,q) = d. Let a’ and & be the ancestors of ¢,
in the shortest path treces rooted at a and b, respectively. Then é.(a!, q0) — 6.(b;, qo) =
d — b8.(a,al) + 6.(b, b)), which defines a hyperbola.

1

Algorithm RDP(d)
The algorithm assumes that the shortest path trees rooted at a and b are available,

and that @ has been partitioned into contiguous line segments as decribed above.

(1) Let a; and b be the ancestors of ¢; in the shortest path trees rooted at a and

b, respectively.

(2) Transform the line segment e, to coincide with the z-axis of a new coordinate

system. Transform the ancestors described in Step 1 into this new system.

(3) Compute the points of intersection of the hyperbola with the z-axis. Discard
those points not lying on the transformed image of e,. Find those points of e,

corresponding to the remaining intersection points.

(4) Of these points together with the endpoints of e,, return the point zy, maxi-

mizing the distance ¥!(d) = min{b.(a, z),d + 6.(b, z)}, together with ¥!(d).

Since at most a linear number of extra nodes is generated in the construction
of the shortest path trees, s = O(k), where k is the number of edges in pocket @
[6]. In terms of k, the preprocessing for Algorithm RDP requires O(k log k) time [6].
The merging of the two trees requires time linear in k. Step 1 can be performed
in constant time providing that back pointers from the partition of @ to the leaves

of the shortest path trees are maintained. The transformation in Step 2 requires
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constant time assuming that the trigonometric functions are considered as constant
time operations. Stens 3 and 4 are easily seen to require only constant time.

Thus to compute 1p(d), it suffices to apply Algorithm RDP to all line segments
e, of the partition of @, and to retain that point g9 at which max Yi(d) is attained.

These arguments establish the following lemma:

Lemma 5.2 Given the pocket () preprocessed as in the description of Algorithm
RDP, the depth profile 1¥o(d) may be evaluated for a given d in O(k) time, where
k s the number of edges of Q.

5.2 The Algorithm and its Analysis

Algorithm EGD

Input:  Simple polygon P.

QOutput: A maximal external geodesic path for P.

1. Determine the convex hull of P.
2. Determine the number of pockets of P.

(a) If P has no pockets (P is convex), then
i. Find the perimeter length of P.
ii. From any vertex find the point one-half the perimeter length away.
iii. These two points define an external geodesic diameter of P.
(b) If P has exactly one pocket, then

i. Find the perimeter length of P, less the length of the lid of the pocket.
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ii.

iii.

iv.

vi.

vii.

Compute the shortest path trees of the pocket rooted at the endpoints
of its lid.
Find the internal geodesic diameter of the pocket polygon.

Find the vertex v which maximizes
6.(z,v) + 6,(y,v)

where z and y are the endpoints of the lid.

Find the corresponding point, w, to v on the exterior of the original
polygon, P.

Take the maximum of §,(v,w) and the result of step 2(b)iii.

The result of step 2(b)vi is an external geodesic diameter of P.

(c) If P has two or more pockets, then

1.
ii.

iil.

iv.

For each pocket of P do step 2b.

For each pocket of P preprocess in preparation for Algorithm RDP.
For each pocket vertex, find the deepest point in each of the other
pockets by applying Algorithm RDP.

For each pocket, take the maximum of step 2(c)i and step 2(c)iii.
The maximum of step 2(c)iv over all pockets is an external geodesic

diameter of P.

5.3 Analysis

The proof of correctness of Algorithm EGD follows from the previous results. The

complexity analysis of the algorithm follows:

Case 1: O(n) by one of the various convex hull algorithms.

Case 2a: O(n) trivially.
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Case 2b: Step 2(b)i requires O(h) time, where & is the number of convex hull
vertices. However, applying Guibas et al.’s [6] algorithm for creating shortest path
trees requires O(klog k) time, where k is the number of vertices in the pocket. Suri’s
[17] algorithm for computing the internal geodesic diameter of a simple polygon also
requires O(klog k) time. Step 2(b)iv requires £ queries of O(log k) time each, which
gives O(klog k) time, while Step 2(b)v needs O(h) time. This gives us a time com-
plexity of O(klogk), which is worstcase O(nlogn).

Case 2c: Steps 2(c)i and 2(c)ii each require O(klog k) time for each pocket, which
yields a total time complexity of O(nlogn). Step 2(c)iii requires O(k) for each pccket.
This gives a time complexity of O(n) for each vertex, and a total time complexity of
O(n?). Step 2(c)iv requires time O(m) where m is the number of pockets of P.

Due to the limiting factor of Step 2(c)iii, the algorithm has a time complexity of

O(n?).

5.4 The All External Furthest Neighbours Algoc-
rithm

This algorithm is a simple extension of Algorithm EGD, and has a similar complexity
analysis. It computes and outputs the external geodesic furthest neighbours for every

vertex of P.

Algorithm AEGFN

Input:  Simple polygon P.
Output: ¢.(v)Vv e P

1. Determine the convex hull of P.
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2. Determine the number of pockets of P.

(a) If P has no pockets (P is convex), then

i.

ii.

Find the perimeter length of P.
For each vertex, find the corresponding point one-half the perimeter

length away.

(b) If P has exactly one pocket, then

i

ii.

1.

iv.

vi.

vii.

viii.

1x.

Find the perimeter length of P, less the length of the lid of the pocket.
Create the shortest path map for the pocket polygon.
Apply Suri’s all geodesic furthest neighbours algorithm to the pocket

polygon.

For each pocket vertex, find its furthest-neighbour outside the pocket.

. For each pocket vertex, take the maximum of the results of step 2(b)iii

and step 2(b)iv.
For each pocket of P preprocess in preparation for Algorithm RDP.

For each vertex outside the pocket, find the corresponding deepest
point inside the pocket.
For each vertex outside the pocket, find the corresponding point one-

half the perimeter length away.

For each vertex outside the pocket, take the maximum of the results

of step 2(b)vii and step 2(b)viii.

(c) If P has two or more pockets, then

i.

il.

s

For each pocket of P do step 2b.

For each pocket vertex, find the decpest point in each of the other

pockets.
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iii. For each pocket, take the maximum of step 2(c)i and step 2(c)ii.
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Chapter 6

Conclusion

In this thesis we have presented concepts about geodesics and their behavior in and
on simple polygons. We have also presented algorithms for computing the external
geodesic diameter of a simple polygon and for solving the all external geodesic furthest
neighbours problem. There are a few open problems that are immediately suggested

by our results:

¢ reducing the time complexity of the algorithms. This is promising since the
time complexity is established by only one step of the algorithms. If some
method could be found to reduce the run time of Algorithm RDP, perhaps by
preprocessing the pocket so as to generate a complete depth profile, then the

algorithms would run more efficiently.
¢ finding non-trivial lower bounds.

¢ extending these results to higher dimensions.
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