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. ABSTRACT

g

We examine the linear instability of the observed two-dimensional

‘(latitude/height) January 1979 zonal wind of the mid-latitude Southern
Hemisphere. The model used is a 10-level, linear, quasi-geostrophic 45°S

) B-plane channel model, with 30 Fourier harmonigs in the meridional

direction and a single harmonjc in the zonal direction. The most unstable
> /s
mode has a zonal wavelength corresponding to wavenumber 12 at 45°S .. - The

mode corresponding to zonal wavenumb&r 5 at 45°5 1is also baroclinically
IL" ! >

unstable. 1Its latitude-height structure bears -qualitative resemblance to.

the observed wavenufnber 5 circulation, which frequently dominates the

summer Southern Hemisphere mid-latitude circulation. The latitude of the.

-maximum eddy ‘amplitude at 50°S 1is simulated, but the maximum 15;. located

near the surface instead\ of aloft. -Effects of surface dissipation and a

' -
normalization of the 2zonal wind by the cosine of latitude are also
. .

_considered. ’ - .
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RESUMR

,Nous examinons l'instgbilité lin:aire du vent longitudinal bi-
dimensio}mel (latitude/hauteur) en janvier 1979 dagns les latitudes 'moya’nnes-'
de l'h.émisphére sud. Nous utilisons un modele linéalre, quasi-géostrophe
sur plan’'S a 45°S. Celui-ci possede 10 niveaux verticaux, 30 harmoniques
‘de surface méridionnales et une seule harmm;ique longitudinale. Le mode le
plus instat:le\mﬁ? une longeur d’onde correspondant au . r‘\ombrei d'onde

. ¢ g
longitudinal 12 a 45°S.. Le. mode qui correspond au nombre d'onde

3

longitudinal 5 a 45°S est de plus baroclinement instable. Sa structure en
latitude/hauteur ressemble qualitativement ;5, celle du nombre d'onde S’
dérivée des observations. Nous obtenons' bien un maximum d'amplitudes des °
perturbation a 50°S mais celui-ci est situé prés de la surface plutdt qu'en
. hauteur. Les effets de‘ la d;.ssipation de surfgce et d’une normalisation dp

vent longltud)ional par le cosinus de la latitude sont egalement consideres,
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CHAPTER 1

Medium scale waves, consisting largely of zonal wavenumbers &-7,
\ o /.
frequently dominate the Southern Hemisphere summer circulation pattern.

Salby (19820) noted predominant wavenumber 5 patterns e;r'e frequently found
in the temperature fields of the lower sti‘atosphere, during the summer
months of FGGE. These pentagonal features appear to remain'quasi-
stationary or propagate eastward with periods of abo;.lt' 10 d.ays. The

eastward phase ‘progression and wave structure 1in the vertical are

L .
consistent with features of a baroclinic instability, with a sharp scale

~ selection mechanism in both time’ and space. Hamilton (1983), using a data

set of the Australian. Bureau o’f Meteorology, alsp noted a prominent
wavenumber 5 peak in the geopotential height zonal wavenumber spectra of
the 300- and 500-mb surfaces in the Southern Hemisphere summer. Similar
findiré—gé were also reported by uRandel and Stanford (1983), in an analys;s
of National Meteorological Center (NMC) geopoténtial height fields for the
1978-79 summer. They suggested that the waves might be maintained by the

zonal mean kinetic energy. In subsequent observational studies B(Randel and

Stanford, 1985a, 1985b, 1985c), the same authors found that the

vacillations in the wave-zonal(’néeaﬁ exchange, with a time scale of .10-20

days, result from nonlinear baroclinic instability, and identified well-

defined life cycles of baroclinic growth, maturity and barotropic decay.
Interference between the bch;‘oclinic‘ eastward moving waves and quasi-
stationary medium scale waves was also observed. A specific case of the

life cyéle of the baroclinic instability was examined by Randel and

Stanford (1985c) using zonally averaged diagnostics,
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T
: ' Lambert (1986) examined the eddy kinetic energy (EKE) budget of the

L

4 winter and summer Southern Hemisphere circulations during 1979. The data

set used was the FGGE analyses of the European Centre for Medium Range

Weather Forecasts. The terms evaluated as a function of zonal wavenumber

2}

" (m) were EKE, conversion C(EAPE,EK,E) of ]eddy available potential energy

(EAPE) to EKE, conversion G(EKE,ZKE) of EKE to zonal kinetic energy (ZKE),
the transfer of EKE' among waves by nonlinear intéraction (L), and the
Boundary flux (LB) of EKE. The results for January 1979 are shown in
Fig. 1.1. We see there is" a prominent peak in wave kinetic energy at
wavenumber 5; the dominant terms in the budget equation are the conversion
of EAPE to EKE, and EKE to ZKEZ,_ and probably dissipation. This suggests
that the wave 5 circulation is due‘ to a baroclinic instability. This
maximum of dEKE at “zonal wavenumber 5 occurs at about latitude 45°S,

Chen et al. (1986) nalso analyzed the same data set and showed that:
the medium scale waves (zonal wavenumbers 4-6) cont‘ribuce about half of the

total eddy transport of momentum and sensible heat 1In the Southern

.
«

Hemisphere summer general circuylation. . The developing Tgtages of these
waves are do;ninatedJ by l')aroclinic processes and the decay stage by
barotropic processes. '}‘hey’ thus suggested that the waves “are a
manifestation of classic baroclinic instability.

Charney (1§47) and Eady , (1949) first demonstrated that
baroclinically unstable Wwaves could grow on a mean zonal wind with vertical
sheénr. The fastest growing mode hasl zonal lenéth scalel;\ of about 5000 k'm
anﬂd« is maintained\b); the release.of available potent‘ial émergy offthe mean

state. Brown, (1969a,b) extended the Instability analysis using a basic

~—flow with both vertical and lateral shears using an initial value approach.

He identified unstable modes with sources of: energy being the zonal
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Figure 1.1 Terms of the eddy kinetic budget as a function of zonal
wavenumber(m) . The/curves labelled a, b, ¢, d, e desgribe -the
terms EKE. C(EAPE, EKE), C(EKE, ZKE), L, LB respectively~The"

scale on the left applies to EKE, while the one on the right
applies to the other quantities (adapted from Lambews, 1986).
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A
available potential energy or the zonal kinetic energy. Song (1971a,b)
examined. the 1nstabi}1ty properties of similar basic states, using an
eigenvalue technique. Unstable mo:_ies with energy sources associlated with
the vertical and horiz;antal shears were found. -All these studies uaed- thae

quasi-geostrophic equations on a g-plane. Lai:gr studfes by Gall (1976)

have used the Erimitive equations with saherical geometry and an 'initials

- value approach to investigate the linear instability of two-dimehsionql

zonal mean flows. He found that for the zonal wavenumber range 1-15, the
fastesé growing modes are wavenumbers 12-15. HoweL\rer, the wavenu;nl;ers that
dominate the intermediate scale transient eddies in a éeneral circulation
model are longer (wavenumbers 5-7). In addition, the linear theory ]
predicts maximum perturbath;n amplitude for wavenumbers 5-7 to be near the
.
earth’s surface, while the maximum amplitude for waves of similar scale in
the general circulation model are located in the-upper troposphere.: Gall
attributed these discrepéncies to nonlinear effects. Fred%riksen {19815)
exanired -the instability characteristics of observed Southern Hemisphere
zonally averaged flows using a 1inee;r sphericd4l, quasi-geostrophic model,
He used an eigenvalue technique and identified differe;lt familiemc of
unstable modes. The appropriate wunstable modes E‘.lo have maximum
s\freamfunction vamplit'ude and eddy fluxes 4;: the cc;rrect latitudes, but the
amplitudes of the streamfunction“,,.momgntum and heat fluxes are also too
large at the surface when compared to observations. MHe found that for one™-
basic state, the second fastest growing mode, and not the mode v;ith the.
largest growth rate, corresponds most closely with observations.
Frederiksen made no specific attempt to {identify the wavenumber “ 5

disturbance. Kalnay and Mo (1986) performed mechanistic experiments with a

generél circulation model to ;leterinine the origin of Southern Heniisph_ere

[
°

ey o
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stationary Rossby waves. In their "easterly deceleration" “Wexperiment,
where the initial zonal flow is decelerated by adding a"negati‘ve solid l?ocllwy
rotation velocity of 5 m/s at the equator, aspentaéonal stationar?' wave
s.t:rpct:ure is ge‘rat\ed. 'i'hey suggested that this phenomenon might}‘ be
related to the observed wavenumber 5 in the Southern Hemisphere summer. ‘

In t:his’ study, we use‘a iO-level linear quasi-geostrophic g-plane
model to Iinvestigate the baroclinic instability of an observed two-
dimensional Southern Hemisphere medan zonal flow, that of .f*gnuary 1979. The
wind and Eemperature data for the latter are taken from Lambert’s (1986)
data set. An' eigenvalue technique is used, which yields unstable modes in
addition to the one with the fastest growth ratg. The perturbation
structures are compared to observations of the wavenumber 5 circulation
during 1979 obtained from Lamblert's data set. The results will show
whether linear baroclinic instability of the observed zonal mean flow can
account for the wavenumber 5 circulation. This is 'of great 1ntere:t as
some of the observational studies already referred to strongly suggest that

baroclinic instability is a plausible mechanism for the maintenance of

these waves,
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“A. Formulation of the model

7

We use a 10-level, quaéi-geostrophic mid-latitude pB-plane model,

The hgg%zont:al and vertical scales of the wavenumber 5 disturbance are such
o y. 2 “

th'at-:'qua;i-geostrophic dynamics 1is ‘expected to give good results. The
motion takes place in a cyclic zonal channel with channel walls at y-;O and
" y=nL in the meridional (y) direction, and of length 2rL in the zonal (x)“

"direction, The Coriolis paraméter f = f, + py 1is assumed to -have-a

¢

constant meridional gradient g; f, and g are evaluated at 45°S. The

o

distance nL is identified as the -latitudinal extent of 50° latitude, from

20°S. to 70°S. In the vertical direction, the model atmosphere is divided
into ten layers of equal mass, from 0 to 100 mb, 100-200 mb, ---, 900-1000
mb, with flat top /)and bottom boundaries. Pressure {s used as the wvertical

O

coordinate. Quantities with .subscripts 0, 2, 4, ---, 20 denote values at

the full pressure levels 0, 100, 200, ---, 1000 mb respectively; odd values °
a e L4 - .
of the subscript indicate the half pressure levels 50, 150, ---, 950 mb.

—

4
The model geometry in the vertical is shown in Fig. 2.1.
- The gox"rerning quasi-geostrophic equations describe physically the

conservation of potential vorticity. Mathematically, these may be written

as ! )
2‘% q = 0 . k=1, 3,5, ---, 19 _ (1)
wﬁere‘
“k"z_‘;jﬁl "k';{l"
o ql-[v'”22] R N ,
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The total derivative dk/dt at level k includes 'advection by the horizontal

velocity components. in the zonal <“k) and meridional (Vk) direction;; the
latter velocities are given in te:rms of the strean;function (wbk). The
vertical pressure velocity Wy - (dp/désk £as been eliminated to obtain (1;.
| : v? denote the st:ablility

p'
. )
parameter at level k, the ideal gas constant, vertical préssure increment,

The other symbols afﬁ R, Ap = llOOmb, T, p, C

<«

temperature, pressure, specific heat at constant pressure, horizontal’
- '

o . Laplacian, respectively. The Coriolis parameter £ = £ + By is assumed to
be constant, except when differentiated in the meridional direction,
consistent with the quasi-geostrophic f-plane approximation., The vertical
boundary conditions for the inviscid analysis are wvanishing vertical

velocities at the top and bottom boundaries, w, = 0 = ws,. The bottom

boundary condition will be mod}‘fied when surface diésipation is included

a

later., - N

) : We use\{?ourier harmonics to represent variations in the horizontal.
Fqﬁ},hlowing Lorenz (1963), we choose an appropriate set of orthogonal

’ : ‘ furictio_ﬂs for the channel model: \

g - o,

léj - 2 s8in jyo cos nx - , -

. ¢ = 2 sin"jy sin nx
o ) : M | o o

-3
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where ?io - x,{L and y, = Y/L, vith0 s x, s 2, 0 sy, s #; J and n are

integers representing the meridional and zonal mode numbers respectively.

»

For the most part of this study, we resolve 30 modes 4in the meridional

4
N o\
direction (1 s j s 30), and the instability analysis is carried out, as a

-function of a fixed zonal mode number (n=1,2,---). We thus do not 1include

.

. the subscript n in the description $f the eddy modes 8y ¢j'. The

functions (¢°J, ¢j' ¢j') are eigjnﬁuﬁct:lons of the Laplacian operator,
satisfy an orthogonality condition, and have vanishing tangential
;lerivatives at the boundary. The Jacobian of..two ortht;gonal functions,
which arisjes in -t:he advective terms, can be expressed as a series involving
the complete set of orthdgonal functions using 1nteract}on\coe‘fficients.

The streamfunction at each level ¥ \i;s expanded in a series of
. ~

lorthogonal functions. The boundary conditions \bf’\nownormal flow ‘at " the

' )
north-south channel walls are satisfied, because of :the vanishing
. \ .

tangential derivatives of the orthogonal functions at the walls. In the
zonal direction, we assume periodic boundary conditions. The total

streamfunction ¥, consists of a basic state component ($k) and a

perturbation component (¥;'): ' .
| b = Bt b - T e
- %, - L?fo jz Yy oy , U - - f—g @)
¥ - szo“"’t 2 [“kJ by + By 4y .9
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The streamfunction amplikudes (ij. Akj' Bkj) are all non-dimensional. The
basic amplitudes ij are specified using an observed Southern Hemisphere
mean zona17flom (Uy) while the perturbation gmplitudes (Akj' Bkj) are

“calculated from the linearized version of the governing equations (1). The

'

latter yields an eigenvalue problem for the nondimensional eigenvalue

A=o/f , as a function of the zonal modenumber n:

RX = APX . (3)

4
\

Here, R and P are square coefficient matriceeL while X is é column vector

{

consiﬁting of the peiturbation amplitudes. (Akj' Bkj}. To reduce the
dimensions of the various matrices, the complex amplitude Rkj - Akj + 1Bkj
is defined for each 1q§e1 ané each meridional ;ode; these then~make up the
vector X. The dfmensions of g, P are thus 300 x 300 (10 vertical levels,

30 meridional mode while X is a,3b0 X 1 column vector. The eigenvalue A

is found by vifg (3) using IMSL computer routines. More detailé of the

sblutipn procedure are given in the’Appendix. Instability results when the
eigenvalue o has a posit{ve real part, implying exponent%al growth in time
of the perturbation. )

An equation for the channel averaged perturbation energy may be

derived as follows: ’ 4{/,

E [EKEk + EAPEk] - E [ck+1 (ZAPE, EAPE) + C, (ZKE, EKE)] o)

Flo

An overbar denotes a channel average in the zonal and’ meridional
directions. The summation is ;ver'odd values of the pressure level 1index
k. The perturbation energies are the .eddy kinetic energy (EKEj and eddy
available potential energy (EAPE). The two forms of energy conversion are

the conversion of zonal available potential energy (ZAPE) to EAPE, and from
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zonal kinetic energy (ZKE) to EKE. The energy and energy conversion terms

ei}" at each level may be expressed as
\ o )
: 1 A T
SRR R | ol Bl B , 62
1 2 ' ' )2
s EAPEk =2 Pra ["bk ) ¢k+2J (5p) .
. 1 2 H [J [ 3 ’ r ' 5
Cipy (ZAPE,EAPE) = 35 iy (U}c Upr2) [”’k' ffk+2] 3 [“’k"’ “’k+2] (3e)
)’ 1 . o ! o
: au, Ay ap -
: - k k k ‘
Ck(ZKE,EKE) - - 3y 3% 3y (5d)
B We see that the baroclinic conversion ’C(ZAPE,“EAPEj involves the vertical

shear of the mean zonal wind and the perturbation meridional heat flux,

C§y The barotropic conversion-involves the horizontal mean zonal wind shear and

the momentum transports (Reynolds stresses). Indéed, two useful diagnostic

-

[ ’ f L !
w o 8 ’ "
Y+l el T TR ["” - “’k+2} ax [”’k + ¢k+2] |
- ' o ' *
S e
, “ Y T by
Explicit expressions for the above quantities

13
=

B. The basic state

The data used to obtain the basic state are the January 1979 ECMWF :

,

in terms

streamfunction amplitudes (ij, Akj' Bkj’ are given in the Appendix.

‘quant)it:ies are the heat (v'T') and momentum (u’v’) transports themselves:

(6a)

(6b)

the

" (European GCentre for Medium Range Forecasts) level III-b FGGE (Global

Weather Experiment) analyses, which are available as point values on a
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1.875° by 1.875° latitude-longitude grid.at 15 pressure levels from 10 mb
. 3

to 1000 WP (Lambert, 1986). To obtain the mean zonal wind and temperature

fields, the data were averaged over latitude circles qtom 20°s to 70°s, ;nd

projected onto 30 meridional Fourier harmonics, as .welll as the 10 pressure

levels used in our model. Fig. 2.2 shows the observed zonal wind and the
model wind field. We ée;\that the meridional and vertical resolutions used
pr;duce _; good approximation to the observed winds. Fig. 2.3 shows the
amplitude distribution of the Fourier meridional modes of the zonal wind at
200 °“mb. The finst mode‘(j 1) has by far the largest amplitude, and {the
bmpliﬁude; almo§t vanish for mode numbers larger th;; 15 (j>15). The model
winds are constrained to vanish at the walls ;ty 20°s ;nd 70°S; this
distortion is not expected to have a significant effect on the instability
analysis as the regions of maxim@m verticalﬁénd horizontal wind shears are
locat?d away from the wélls. Frém the observed gemperature field, we can
calculate the static stabilityAS at pressure level k, related to the
stability parameter as follows:

'S .{'% %3] - = ;k |

k k .

1 PN 2

Here a and © are the specific ‘voluma and potential temperature
respectively. 1In Fig. 2.4, we show the(;;;;erature and static"stability as
a function of pressure at 45°S. The stability increases rapidly in thd
upper troposphere and lower stratosphere, as expected.

"An important parameter ch&ragéerizing the baroclinic instability of
a qual flow U(p) is the Richardson number, which is a measure of the
relative effects of the stabilizing static stability and the destabilizing
thermal wind. Following Gall (1976), we define both a conventional

Richardson number (Ri) for the f-plane model, and a spﬂg;ical Richardson

number (Ri;) appropriate for a sphere.
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" Figure 2.2 The obsérved (top) and model (bottom) zonal wind field as

" functions of pressure(p, mb) and latitude (.¢, degree south) with
Sm/s contour interval.
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Ri, = £2s [fﬁ‘-’ + oudlU tangd
8 o p . dp a .

Here, ¢ 1is Jlatitude and f = 201 sin ¢ is the Coriolis parameter on the
‘ |

sphere; Q. is the ‘angular velocity of rotation of the earth. This
modification to Ri expresses the fact that for a given vertical wind shear,
the horizontal temperatﬁre gradient is larger in the north than in the

south, &hen‘both.points are in the same heﬁisphere. A second modificat:ionO
) @ ‘ . - \
to Ri, mo;ivhted by the fact that solid body rotation on the sphere is Jhe

dynamical equivalence of a horizontally.uniform flow on the p-plane, is

°

given below:’

’ * Ri =§ [8(U_/_cos9§)]2
. e ap

o

This modification amounts to replacing the zbn#l wind profile U by .U/cos¢

in the definition of R1¢. Fig. 2.5 shows a ¢ompa¥ison of thev three

-

Richardson numbers for the troposphere. The vertical resolution 1is not

sufficient to resglvé the rapidly varying static stability fn the upper
troposphere anévlower stratosphere. The locations of minimum Richardson
number .aretsimilar for all three versions, but the latitudinal extensions
of ‘relattvely low values (< 60) differ for the cases, with Rig showing the
smallest latitudinal extent. These results show that the Richardson number
criterion describes similar gross characteristics for the growth of

barociinic waves 1in f-plane and bpherical geometries, The differences,
il

however, do imply that full spherical effects might be ‘important.

°

\
-
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Figure 2.5 The three Richardson numbers (Ri, Rig, Rij) for the
., troposphere,’ as functions of latitude ( ¢, degree south) and
pressure (p, mb). The contour interval is indicated in brackets.

[~}



- 18 -

CHAPTER 3
Linear Instability Analysis: Part 1
A.  Observed and model gzonal wavenumber 5 eddy structure

As discussed in the Introduction, obse:rvational evidence shows that
) "zonal wavenumber 5 1Is the major component of the January 1979 eddy
: circulation, and that this wave might be due to b:{roclinic instabilit; of
the zonal Dme‘arf flow. Two important eddy éransporia for baroclinic waves

1

are the polewyard transports of heat and momentum., In Fig. 3.1, we show

\

latitude-pressure plots of the zonally averaged eddy kinetic energy (KE),
poleward heat flux (VT) and poleward momentum flux (UV) due to zonal

. wavenumber 5, as obtalned, from the Jaﬁuary 1979 Southern Hemisphere data -

.

-

set used- by Lambert . (1986; private communication). Ve see that the
’ 1

latitudinal structures are relatively simple: the kinetic energy peaks at

about 50°S while the heat and momentum transports have maxima slightly to
o

the north. The 1atitudinal extent in all cases 1is approximatley 20°
latitude. The height structure shows a double maximum of 'comparable
amplitudes 1in the heat transport, and only a single maximum in the upper
troposphere for the kinetic energy and momentum transport. These results
show general agreement with the observational analysis of Chen et al.

(1986), and Rapgel and Stanford (1985a). The latter examined the 1979/80
| Y, .

becember-F'ebruary seasonally averaged medium scale (wavenumbers 4-7)
v}
Ilatitude-height wave structure. They found that the northward heat flux

shows only a surface maximum,' instead of the double maxima shown in Fig,

)

3.1.

We now examine the linear quasi-geostrophiic instability properties

i

o ' of the mode corresponding to zonal wavenumber m=5 in the mid-latitude
‘ B
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Figure 3.1 Latitude ( ¢, degree south)-pressure (8' mb) plots of the .

zonal wavenumber 5 kinetic energy (KE, m“® /s ’
0 K/s) and poleward momentum transport (UV,

transport (VT,
m /s2 ), for January 1979 Southern Hemisphere. The contour
intervals are indicated in brackets. Negative contours indicate
equatorward momentum transport.
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Southern Hemisphere, using the basic zonal flow shown in Fig. 2.2. Ve

first note that at ¢° - 45°S, the wavelength of wavenumber m = 5 ig 5660

km. Because of the dimensions of the channel gsometry chosen in our model,
' o

the gétual zonal waanumber (m) is related to the model zonal modenumber

+

(n) as follows:
' nacosg

m o= ——= = 2.54n

"Here, a is the radius of the earth. Thus the modenumber corresponding , to
: ) .

wavenumber 5 at 45°S isn = 2. In Fig. 3.2, wve show the nondimensional-
growth rate, 1.e-. the real part of the eigenvalue (ar )}, for’the unstable
modes, for 1 < n = 10. Also shown 1is the non&imensional frequency
corresponding to éastward propagation, g’iven by the imaginary p‘ar't: of the

eigenvalue (oy). The dimensional e-folding time and period are thus 1/arf°

A .

%

and 2"/bif° respectively,

We ;'.ee from Fig.-3.2 that the growth- rate is maximum for n}ode n=5,
corresponding to zonal wavenumber 12 at 45°s, with a‘ wavelength of
approximately 2400 km. The e-folding time is 2 dgys, typical of time"
5ca1:as associated with baroclinic instability. The n « 2 mode,
corresponding to zonal wavenumber 5, has a’ smaller growth rate (e-folding
time of 4 days). However, we can identif).' two families of unstable modes
selected according to the real part of the unst;able eigenvalue, 1.e. the
frequency, This is shown in the bottom of Fig. 3.2, Within each .of  the
two families, the n = 2 anc} n=95 mocies are the most unstable mode, even
th9ugh the ‘lat:t:er mode has a larger absolute growth ~ra;:e. The —pe’x:iod of

) ) ‘
the n = 2 mode corresponding to zonal wavenumber 5 is just over 4 days;

-~

this\ is “shorter than the observed period of about 10 days for the phase.

propagation of the mode.

In Fig. 3.3, we show the latftude-height sections of the structure

- -
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Figure 3.2 Real (o.) -and imaginary (o;) parts of the unstable

&y

eigenvalue in non-dimensional units, as a function of zonal
modenumber (n). The solid curve corresponds to the most unstable
mode; the short and long dashed curves correspond to the families

n=2 and n=5 respectively, as identifed by the real part of the
atovenva Ine .
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of the eddy kinetic energy, poléward heat and momentum tranf/ports, in
arbitrary nondimensional units. The model eddy statistics all peak at the

surface near 50°S, in cont:lrast to the observed peaks in the troposphere
away from the \surface. This is a well known feature of- linear unstable
baroclinic waves (Green, 1970; Gall, 1976, Simmons aﬁ; Hoskins, 1977;
Frederiksen, 198la), As a result, the doubie_maxima in the heat transport
is not simulated at all. The latitude of the maxin;a are reproduced, but
the latitudinal extent is too smlail %compz?red to obsgrvation;. The reg.ions
of negative momentum transports are also exaggerated lin the model results,
Fig. 3.4 shows the potential energy, conversion from ZAPE to EAPE,‘and from
ZKE to EKE, as a function of latitude and pressure. The eddy statistics
are ~a‘g‘ain confined to the surface near 50°S, The energy cycle 1is
characterized by conversions from ZAPE to EAPE, and' from EKE to ZKE,

characteristic of ©baroclinic growth and-- barotropic conversion of

baroclinically unstable waves} ) - ‘

1

o

0 a o
-We see from Fig. 3.2 that the most unstable mode occurs at n = 5,
and has * a zonal scale which is smaller than that of wavenumber 5. Its

wavelength is about 2400 km, corresponding to wavenumber 12 at 45°S. This

“result has-been found in earlier studies of the baroclinic instability of

ot 4]
two-dimensiondl- basic states (Gall, 1976; Simmons and Hoskins, 1978;

Frederiksen, 198la). These studies also show that mnonlinear effects will
stop the growth of these short, shallow modes, and synoptiic scale modes
11 dominate the spectrum at that stage. The eddy structure of the mode n,
5 from the model is shown in Figs. 3.5, 3.6. The mode has maximum

amplitude at about 50°S, near the surface. Its vertical scale is smaller
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than that of the n = 2 mode examined earlier, {.e. it is a shallower mode.

We also note that the energy convers%on C(ZKE, EKE) 1is positive and has

maximum amplitude near the surface, in contrast to the case of n = 2, where

the conversion 1is negative and 1is 1largest aloft. This  barotropic

L]

instability ' is probably due to the shallow nature of the mode. However,

this barotropic conversion is small compared to the baroclinic comversion .
-~ ~

-

* C(ZAPE, EAPE).

' k4]

C. Discussion ‘ *®

Fre&eriksen (1981a) (hereafter referred to as F) has examined the
instability properties of modes which grow on Southern Hemisphere =zonally
averaged flows for January, May and August. The January basic state was
obtained from monthly averages from 1972 to 1976 as determined by the
Australian Bureau of Meteorology analysis. The data seé is thus! not the
same as that used fgr,our basic state zOAal wind, The model used by F‘Ey a
linear 9-level spherical, inviscid, adiabatic quasi-g?ostrophic model. The
vert}cal co-ordinate used is the o-coordinate, i.e. pressure normalized by
surfac; pressure. In our; modei, we use pressure ‘as the vertical
coordinate. Two differences 'betweéﬁ.f's model and ours are ‘thus the
spherical geometry and vertical coordinate representation. F was not
seeking Aexplicltly the zonal wavenumber 5 mode, But it is insfructive
nonetheless to compagékhi results with ours. ;

F identified several families of unstable modes selected according
ﬁo the phase speed. The most unstable mode occurs at wavenumber 10; with
an e-folding time of about 2 days. This agrees with our results. The

latitude-height eddy structure was shown only for the most unstable mode,

which occurs at wavenumber 10, ﬂg well as for the most unstable mode at

i
B
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wavenumber 4. Thus no specific attempt-was,made by F to examine the
wavenumber 5 structure. - ¢
The zoﬁally averaged perturbation streamfunction, ‘temperature,
momentum and heat fluxes were shown as a function of latii:ude and height

for the most unstable mode in F. The maximum -amplitudes occur at 50%, at

the surface. This agrees with our results for the n = 5 most unstable

‘mode. Secondary maxima in the streamfunction and momentum flux were "alsd
¢ ®

found in the upper troposphere. F states that for wavenumber 7, the eddy,
» - :

statistics show more amplitude in the uppér trolposfheré, relative to the
wavenumber 10 mode, but the primary maximum still seems to be near the
surface; latitude-height sections were not shown for this wavenumber.

The closest mode to the wavenumber 5 circulation that F showed 1is

‘the most unstable mode at wavenumber 4. The latter has an e-folding time

of about 5 days, but is a slowly westw;rd-propagating mode; the observed
wavenumber 5 circulation propagates eastward with a period of about 10
days. The maximum eddy s.treamfunction amplitude “again occurs at the
surface, but is located at 77°S.’ F attributed this behaviour to the fact
that this mode might be propagating in the westward basic zc:nal flow that

occurs in the stratosphere and lower troposphere petween 70° and 80°S. The

F

most unstable mode at wavenumber 4, thus bears little resemblance to the

observed wavenumber 5 circulation. v

+

We have examggedwthe eddy structure of the n = 2 mode, which has

the same wavelength as \the“wa“'zenumber 5 circulation at 45°S.” This mode

A

J
shows a deeper vertical structure than the fastest growing n = 5 mode, with

maximum eddy amplitudes at the surface near 50°S. There is, -however, an

\ Y
indication of a secondary maximum in the upper troposphere, especially in - .

the poleward heat and momentum fluxes (Fig. 3.3). The observed Wavenumb@pr

.

1)
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5 eddy statistics '?'Fig. 3.1) shows the primary maximum to be at about 200

mb . This vertical structure problem in Tinear, frictionlesrs quasi-

. o .
geostrophic baroclinic instability has already been discussed earlier. The

1

latitudinal extent of the model n = 2 wave is 't:oo small compared to the
observed circulation. We note that F found the ‘same results for the

latitudinal spread of the poleward eddy heat flux for his most@;ﬂpg%tgb}e

’

. B id
made; he suggested that there might bé a broadening in latitude it the

nonlinear regime.
The modeél results so far do not show the appi:opfia?:é zonal scale
& 2 o

selectton mechanism, The observed wavenumber 5 circulation frequently

dominates the circulation; our results do not show this’ sharp scale

~

N,
selection in terms of growth rate. In the next section, we examine the
effects of surface dissipation and a different normalization of the basic

-+

zonal wind on the scale selection.
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CHAPTER 4 —
inear stab H -
. Surface dissi o o '
. We have seen from the results of Chapter 3 that the eddy statistics

gl

of the n = 2 wave, correspdnding to zonal wavenumber 5 at 4'5°S. all show
maximum amplitudes: at the surface. Theo observed vertical distributions
show maximum aplitudes in the; upper troposphere. —Here, we investigate the
effects of surface dissipation, in the form of an Ekman pumping induced
verticai velocity, on the perturbation vertical structure.

The surface vertical pressure velocity induced by Ekman pumping

(wp) 1s , '

?

oy ‘ ‘
pide ) K172 2 L
“p 29 T [Zfo] V¥ 4

Here,— the subscript B denotes surface .vglues; P, B, K are the density,
gravitationeil accelerat:lion fnd ecﬂldy viscosity rrespectively, In our modei,
the surface values are taken as ¥p ""?!1’19- wp = wyp. In this case, the
conservation of potential vorticity expreséed by eqs. (1) in Chapt;r 2 are
.modified accordingly; the corresponding coefficient matrices R and P of eq.
. : .
(3) are als\o changed, with R becoming a complex matrix. The meridional
resolution is reduced from 30 to 20 modes because of the extra computer
stora*ge requirements of the complex coefficient matrix. This 1is not
ei&p’ectegi to yield much error as the higher order modes have vanighingly
small amplitudes in the basic zonal wind (Fig. 2.3). Further dgtails are
contained in the Appendix. We take two values for the eddy diffusivity, K

r=.5 mz/s and K = 10 mz/s. These values correspond to a spin down time 7

- H(2/fol()1/2 8f 6 “and 4 days respectively for a barotropic vortex of
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height H = 10 km. We will 1."efe1:'0 to ‘these two cases, as light and heavy
dissipat‘fion renpectivef&.

We show the non-dimensional growth rate (o¢.), as a function of zonal
modenumb;r (n) in Fig. 4.1, for -the ‘cases without dissipation (a), and
light (b) Aagnd heavy (c) dissipation. Case (d) will be :discussed in the
next section. We see that surface dissipation decreases tfhe growth rate in

all- modenumbers, but does not ‘appreciably affect the scale with the largest

o ¢ %
growth rate: the n = 5 mode remains the fastest growing mode. Thus Ekman °

friction is not the correct scalé selection mechanism for the observed
wavenumber 5 circulation. The eddy structure is shown in Figs. 4.2 and 4.3
for the light'and heavy dissipation cases respectively. The two cases give

similar results: a secondary maximum now appears in the kinetic energy and

poleward heat transport; this maximum 1is of comparable magnitude as the

" surface maximunm. The latitudinal extent of the kinetic energy aloft has

increased, - giving better agreement with the observed values. The
latitudinal scales of the heat and momentum fluxes are still too small.

Our model is on the mid-latitude f-plane. We have so far compared
the model results to the observed wavenumber 5 circulation on the sphere.
To attempt to make this comparison with 'spherical geometry more rezylistic,
we dow divide the basic zonal wind profile by the cosine of the latitude.
This normalization of the =zonal wind is motivated by ~the fact th t solid
bgdz,rotation O}‘l the sph;re which haséa velocity profile propoptional to
the ’ cosine of . latitude, - is dynamically equivﬁént to ; a latitudinally

uni form zonal wind on the B-plane. .In Fig. 4.1, we show the growth rate as

a

a function of zonal modenumber for this case (d). _ We see that; the growth ‘

rate of the largest scales are almost unaffected-by this normalization, and

that the scale of the most unstable mode occurs at n = 3, much closer to

]
.
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Figure 4.1 Growth rate ("r )} in non-dimensional units as a function

of zonal modenumber (n), for the cases without dissipation (a),

light (b) and heavy (c) dissipation, and for zonal wind profile
normalized by the cosine of latitude (d).

&

- 7t -
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Figure 4.2 As Figure 3.3 but for the case of light dissipation.
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Figure 4.5 As figure 3.3 but for the case of heavy dissipation.
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\ .
that of ‘wavenumber 5 than the previous cases. Thus spherical geometry
seems to be very important as a scale selection mechan:l.sm.\ The e-folding
time (5 days) and period (3 days) of mode n = 2 corresponding to wavenumber
5 are relfatf&rely ux;changed from before. Fig. 4.4 shows the eddy structure
for this mode. We see that the kinetic energy now has maximum amplitude
aloft, with a secondary maximum near the surface. The latitudinal position
as well as 'the extent of the maximum are both well r.:eproduced. Hc:;wever,
the double maximum vertical structure of the heat transport 1is not
reproduced here; the latitude of the maximum is also shifted slightly
poleward. The momentum transport has maximum amplit@de aloft, ©but the
latitudinal position is located too far poleward and the scale is too
narrow,
cussio
We have examined the effects .of surface dissipation and the
normalization of the basic zonal wind by cosine of latitude on the eddy
structure. The former is parameterized as a vertical velocity near the
surface due to Ekman pumping. The latter normalization is mot;ivated by the

3
fact that solid body rotation on" the spheré\ is dynamically equivalent to a
\

latitudinally uniform wind pro?ile. For reai\ist‘ic dissipative time scaled
corresponding to several days in the troposphere, the effects of
dissipation is to reduce the growth rates for all zonal modenumbers, with
no appreciable shift in the most unstable modenumber, The normal}zad basic
wind profile gives as the most unstable mode a scale whi;:h is much closer
to the observed wavenumber 5 wavelength.’ This sugge;ts that spherical
gffects might be important for, the scale selection\ in the Southern

Hemisphere circulation. - ’ o
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The model eddy structures for the n = 2 mode show bet.ter agreem;ant_
with the ot;served wavenumber 5 structure when surface d:séipation is taken
into account. In particular, the kinetic energy shows a secondary maximum
aloft which 1is eiongated in the meridional directiw poleward heat,
trar.wport also shows a seconday maximum aloft. However, the primary
maximum is still near the surface. The normalized zonal wind profile gives
an elongated primary maximum aloft in the eddy kinetic energy at almost the
observed latitude. This is the best simulat;d case for the kinetic energy
structure. However, the poleward heat flux does not have an amplitude
maximum aloft. | A

The meridional momentum flux is not well modelled by any of these
cases. The normalized wind yields a primarylpolew’ard flux maximu&x alo%t
and an equatorward flux to the south, in general agreement with the
observed distribution. How;ver, the poleﬁard maximum is too narrow in

latitudess while the equ%torward‘flux is too strong. An equatorward flux to

the north of the poleward maximum is also found in the model res;.x‘lts; this

‘feature is absent in the observed structure. However, we note that F found

a very similar equatorward-poleward-equatorward momentum flux pa?c/ern\ in
t

one of his linear modes - that of zonal wavenumber 10 growing on a basic

stat.e‘consist:ingl of an instantaneous May 1979 2zonal wind profile. . He

- C ] N
attributed this complex structure to the fact that the mode grows on both

the subtropical and polar jets.
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' CHAPTER 5 -

Conclugi@qng

We l;ave examined the linear instability of the obs;wed two-
dimensional January 1979 zonal wind of the mid-latitude Southarn
Hemisphere.' The motivation for doing this analysis 1is to investigate
whether the’/observed Southern }f:rﬁ;sphere wavenumber 5 circulation is a
linear baroclinically unstable mode. The model used is a 10-1Leve1, linear,
quasi-geostrophic mid-latitude pB-plane channel model, with 30 Fourier
harmonics?in the meridional diréctiidn‘. and a single harmonic in the zonal
direction. With' this horizontal and vertical resolution, the latitude-

¢ .
height structure of the observed zonal wind is well. reproduced: The

' observational studies strongly suggest that the waverfumber 5 circulation 1s

due to baroclinic instability, as it exhibits the characteristic baroclinic
conversions and barotropic decay during its 1life cycle. The results of our

study are summarized below: .

) ."

(1) The most unstable mode (n=5) occurs at a zonal scale wt;ich is
smaller than that of wavenumber m=5. In facty, it corresponds to wavenumber
12 at 45°S, and has an e-folding time of about 2 days. ,The modal with
wavelength corresponding to wavepumber 5 (n=2) 1is alsc; baroclinicaII.y
unstable, with an e-folding time of 4 days. It is possible to identify two
families of unstable modes using the phase speed given by the imaginary
part of the efgenvalue, of the modes n=5 and n=2. Within eachw family, the
modes n=5 and n=2 are }:llxe most gapidly growing. The period of -the n=X mode

is 4 days, shorter than the observed period of eastward propagation of

about 10 days. -'l‘he‘ latitude-height eddy struccy@\ of this mode shows
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maximum amplitude” near 50°S at the surface for the kinetic and potential
energies, poleward heat 4nd momentum transports. Compared to the
obserVationz; of the wavenumber 5 circulation the latitudinal positign is

well saimulated, but its extent is too small. The position 1s consistent

" with the regions of minimum Richardson number of the basic zonal flow. The

observed structure also shows the maximum eddy amplitude in the upper
treoposphere, with a secondary maximum present in only the poleward heat
flux. The energetics show typical baroclinic and bafotropic conversions
characteristic of baroclinic.waves. The eddy - structure of the most

unstable mode (n=5) shows a shallower vertical structure, with maximum

amplitudes again near the surface. This yertical structure: problem has

been discussed in the literature; it is present in models of linear

baroclinic waves.
(2) Surface dissipation was introduced in an attempt to improve the
vertical structure of the n=2 mode. This was modelled as a vertical

velocity near the surfdce due to Ekman pumping, with spin-down times of the

order of 4-6 days. We find that the growth rates are decreaseél for all

modenumbers, with little change in the phase speed{ the fastest growing

mode is still n=5. Thus surface dissipation is not an effective scale

selection mechanism. The eddy structure of the mode n=2 shows a secondary

‘maximum in the upper troposphere of comparable amplitude to the primary

maximum near the surface.. The maximum aloft has an elongated latitudinal
extent, in agreement with the observed structure; the double maximum in the
poleward heat transport is also simulated. However, the latitudinal extent
is too narrow.

We also Investigated the effects of a normalization of the zonal

wind by the factor cosine of latitude. This i{s motivated by the fact that

| ." |
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" solid body rotation on the sphere is dynamically equivalent to a uniform

latitudinal structure on the B-plane. The results show that the maximum
growth rate now occurs at a zonal scale whlgch is much closer to that of
wavenumber 5 than in the previous analyses. It thus appears that spherical

effects are important in the scale selection process. The eddy structure

-

of mode n=2 reveals an elongated :primary maximum in the upper troposphere

at about 50°S in good agreement with the. observed results. However, the
4o

poleward heat flux once again has maximum amplitude at the surface. In all
cases, the poleward momentum. flux is (the least well reproduced, The
normalized zonal wind profile yields a maximum of this flux aloft; in all

other cases, the maximum is near the surface. The latitudinal extent is

©

too small, with the result that equatorward transports occur both to the
north and south of this maximum. The equatorward transport to the south of

the g:aximuml is found in the observed transport, *but with much smaller

\

magnitude; the transport to the north of the maximum is not present in the

il

observed values.

. \
(3) Our results show that baroclinic instability of the observed

. Januar& 1979 summer Southern Hemisphere zonal flow produces an unstable

u;ode with qualitative -resemblance to the observed wavenumber 5 circulation.
Howaver,, ESpherical ‘éffec“t:s"y might be in;porta/nt as a scale selection
mechanism for this circulation as the fastest growing mode. The latitude
heigi’lt eddy st:ructure is” not expected to be significantly modified by
spherical geometry-. Moura -and Stuone (1976) examined the  baroclinic
1nstability of simplhe two-dimensiional zonal wind shear profiles on a
sphere, using a linear 2-layer quasi-geostrophic model. The found that the
structure of the most unstable modes are qualitatively similar to those on

a ﬂ-pltane‘ For example, the unstable waves far from neutral stability have

-~
Y
- w3 -

v
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amplitudes which show a quasi-Gaussian behaviour with latitude on both the

sphere and A-plane; this is what we found with our eddy structure on the B-

Ny

plane.
\

Our results' also show that the unstable modes have the vertical
structure problem associated with linear baroclinic waves: the amp;litude

©

maximum 1s near the surface while observed eddy statistices indicate it
should be in the upper troi)o“sphere. this has usually been attributed to
nonlinear effects (Gall, 1976; Frederiksen, 198la). We have seen that
reaiistic _surface dissipation can also improve the vertical, structure in
the' linear regime. Frederiksen (1981b,c) has examined the n;nline‘ar growth
and vacillation cycles of waves in Southern Hemisphere zonal flows with a
multi-level spherical model. };e finds that zonal wavenumber 7 is the
dominant wavenumber with axﬁplitude maximum in the upper troposphere, at the
first peak in the vacillation cycle. The initial zonal flow that he used
is, the January zonal mean flow profile obt’:ained‘ from 1972-76 —monthly

‘averages from the Australian’ Bureau of Meteorology analysis. _ Hamilton

"(1983) examined the Australian data gand found a' prominent wavenumber 5

>
circulation during over one-quarter of the summer months from November
k}

thrt;ugh March, 1972-197?. The dominance of this wavenumber was first
discussed by Salﬁy (1982). ",l‘hus' Frederiksen was probably not aware of its
importance at the time of his study. His use of the monthly average
January zonal flow from 1972 to 197.6 might also have somewhat masked the
dominance of this wavenumber. ' It would be of ’great\ interest ti; first
repeat the present analysis with spherical ge’ometry and surface "dissipation
with the obser\;ed January 1979 zonal flow, and then to perform a nonlinear
initial value ar&sis using tlie observed zonal flow fmd the most unstabk
mode 1is initial conditions. The results would show the potential

importance of spherical effects and nonlinearity in the selection and

maintenance of the wavenumber 5 circulation.
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The set of 1linear algebraic equationa‘ (3) for the ’non-
dimensional growth rate A = o/f; may be obtained from the linearized
governing equations (1). The linearization is around the basic state
zonal flé:w described by /equat:ion (2b); the perturbationg consist of
the eddy modes described by equation (2c). The streamfunction
amplitudes of the zonal flow (W%J) apd of the perturbations'(AkJ.BkJ)
are all non-dimensional. We form thg complex eddy amplitude Rkj at

. 4
vertical level k for meridional harmonic J:

I >

Substituting the Fourier expansions (2b),(2c) into the linearized
version of the governing equations (1), we project ;11 terms im:o the
set /‘of basic functions truncated at t;he first 30 meridional
harmonics. Replacing the eigenvalue o By -io, we then get a set of
real coupled 1linear algebraic equations for the non-dimensioned
eigenvalue -1a/i’:‘o,' and the eigenvectors consisting of the eddy
amp}itudesd(Akj, Bkj)’ for the top level ( k = 1 ), intermediate
levels ( k= 3, 5,..... 17 ) and the bottom level ( k = 19 );these

- n

equations are given below. -

k=1 :

[- %‘;—] [- ( n2+jz+r§ ) Iilj + r§R3j ] ‘ - o

*
- 2°2 2 2 ‘ 2 } L
- -q°- - Cc . - R
E_{ [¢ #*-a-ntasy, 03] CoaRiat 2opsatifag | P £, "1
P,q - - ) ) ' )
d
T (A
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X 2 2 2 2
'Z{ [‘ plrg’ om0 p” Tkei¥ke2,p” k-l"’k-z.p] Cp1aRKp

P.q

2 2 BL ‘
+ rk+1cp:1qwk.ka+2,q+ rk-lwkpcpJq‘RkJZ,q } -n £, Rkj - L (A2)
¥ ©°
kK = 19
io 2 2 2 1
[’ £, [ DAY ) Reg j* r18 17,3 ] o a
- <. 2
P

»

2 2 2 2 2 : BL
Zl[“’ LU LI NRC I S & sz19,.1
P q !

1

(ﬁ35

5

>

}Sere.ri_l-pi_le' (k=3,5,...19) is the noncdimeknsionalvvalue of yi_l

and the interaction coefficients C are given by

AL
‘ibqu' -0 . ' . (p+j+q even‘)

Spq™ : §£g njap” [ (P+3+0) (-pHI+) (BA4Q) (PH1-Q) ] (p+)g. 0dd)
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The summations extgnd over the range 1 < p,q < 30, for the caéé

- x,
of 30 Fourier harmonics. The coefficient matrices R and P may be read

<

off from the above equations after defining the eigenvector

consisting of the set of complex amplitudes |{ Rkj }. ¢
Thé expressions in terms of the eddy amplitudes' (Akj'Bkj) for B
the various' perturbations energies and energy conversions in
eqdations ¢{5) and (6) at time t = O are given below. .
. — . /
EKE, = 2 L2f2 ( n2+; ) sinpy,sinqy, ( +B B )
K 0o/ q Yosinayy ( Apphrg * BipBiq &
q ] . \\
-~ ' : d - - .
EaPE, - 12 £2 t2 ) sinpy.sinay.-|( A, - ) (A - )
K+l 0 i1 ) SIOPYoSInayg | Chypm Mg ) C A Az g
P.q '
* Byp” Braa,p) Brpl By, g ]
¢, ., (ZAPE,EAPE) -P?/‘z 1263 o2 —.p sﬁ\py sinj;' sinqy (¥, - ¥ )
k+1 ! 0" "k+l/ _ 0 0 0 'kp "k+2,p
: rlq ’
[‘_ By Braz,17C Piq” Ae2,q) ~ ¢ Ayt Prez, 1€ Big” §k+2,q)]
. © _ . + /‘/
§ d — .
, +2.3 2 - ‘
C, (ZKE,EKE) = 2/2 L fonji-f q cospy,sinjy,singy, wkp(Bijkq Akjnkq)
” piq
a » » . !
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[ ] 3 2
( Vie1Tes1 ™2 L fo“z_smpyo“i"qyo[ CBip® Bieaa,p) C Aiq™ Aur2, o
. P:q ,

4

© OBt Ay 0 CBrg Brio g ]

-

¢ 2 2
: Ukvk - -2 L fonz-p sinpyosinqyo ( A'kkaq- kaA'kq ) ;
P.q

With the inclusion of surface dissipation as modelled by an

) Ekman pumping vertical velocity, the equation (A3) for the lowest

©

level (k = 19) streamfunction amplitude is modified : R

© *

k =19 :

' 2 2 .
NS 1:1 N T R ST e .1 2
[ £ ]‘[ . [ R IRGIT T ] R19,5% T18%17,3 ]
: B 2 2 2 2 . 2
- 'Z—{ [( Pran g o r18"'17.9] ®p31q°19,q% *18%34"19,p"17,q }

™
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