FIELD ESTIMATES OF AMMONIA VOLATILIZATION FROM SWINE MANURE BY A SIMPLE MICROMETEOROLOGICAL TECHNIQUE

bу

Robert J. Gordon

A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfilment of the Requirements for the Degree of

Master of Science

Department of Agricultural Engineering Macdonald College of McGill University

Montreal

March 1988

Permission has been granted to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film.

The author (copyright owner) has reserved other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without his/her written permission. L'autorisation a été accordée à la Bibliothèque nationale du Canada de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.

L'auteur (titulaire du droit d'auteur) se réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation écrite.

ISBN 0-315-45975-1

R

ABSTRACT:

Recalculation of an existing numerical model for particle diffusion into air from ground-based sources for circular source plots of 7 m diameter show that a satisfactory relationship between horizontal flux of the diffusing gas at a single measuring height above the center of the plot and flux density from the plot can be defined. This provides а simple technique for comparing volatilization rates of NH3 from treated and untreated manure in the field, under outdoor conditions.

The technique has been applied to the study of effects on manure (sus scrofa domesticus) by addition of swine monocalcium phosphate (MCP) prior to spreading. Mean NH3 flux densities during peak volatilization periods of the first three days after, spreading were lower for MCP-treated plots an average of 17%, with a maximum reduction of 30%. by Variability of results from short-term sampling intervals (1 2 h) was high. This makes short-term detection of to differences of < 20% difficult by analysis of variance under the adopted experimental procedures. Observations for volatilization from source plots of equal source strength, source plots with different degrees of dilution of applied manure, wetted manure plots as well as separated manure permit a further definition of the sensitivity the of technique. Suggestions are given about possible reductions

ii

by variability from improved experimental procedure.

t.

γ γ γ

· ,

*

iii

Résumé

Recalculation d'un modèle numérique de diffusion de gaz vers l'atmosphère à partir de sources terrestrés pour des parcelles sources circulaires d'un diamètre de 7 m donne une relation quantitative entre le flux horizontal du gaz à un niveau au-dessus du centre de la parcelle source et le seul débit de gaz venant de la parcelle. Ceci a permis la miseau-point d'une technique simple pour la comparaison directe de la volatilisation au champ de l'ammoniac à partir du traité ou lisier épandu, non, sous des conditions naturelles."

Cette technique a été appliquée à l'étude de l'effet du traitement du lisier de porc (sus scrofs domesticus) avec du phosphate monocalcique. Les débits d'ammoniac à partir du lisier traité, durant la période de haute volatilisation des trois premiers jours après l'épandage, étaient en moyenne de 17% inférieurs à ceux lisier non-traité, avec du une réduction maximum de 30%. La variabilité dans les observations lors d'échantillonnages à fréquence courte (l à 2 h) s'avère très élevée, rendant difficile la détection de observations différences inférieures 20%. à Des supplémentaires sont présentées pour démontrer davantage la variabilité des résultats (pour la volatilisation à partir. parcelles sources identiques) et la sensibilité de la de technique pour la détection de différences significatives

±ν.

(pour le lisier dilué à différents degrés). On suggère «des moyens pour réduire la variabilité par l'amélioration du protocole expérimental.

Acknowledgements:

17

Grateful appreciation and many thanks to Dr. P.H. Schuepp of the Renewable Resources Department of Macdonald College of McGill University.

Special thanks as well to Mr. Peter Alvo, Mr. Guo Ya, Dr. Monique Leclerc, Mr. Richard Brunke and the Agriculture Canada Soil Survey.

The support of this study by the Quebec Agricultural Council (Conseil de Recherche et Services Agricoles du Quebec) is greatly appreciated.

vi

Special Note:

Portions of this thesis appear in the May, 1988 edition of the Canadian Journal of Soil Science entitled:

Gordon, R., Leclerc, M., Schuepp, P. and Brunke, R. 1988. Field estimates of ammonia volatilization from swine manure by a simple micrometeorological technique.28:000-000.

vii

TABLE OF CONTENTS

		, v			^			\$	×.	Page
1.	INTRODUCTION .	 ,	•	•	- •	٠	• •	٠	•	ູ່1
2.	LITERATURE REVIEW	• •		•	•	•	•	, • • • •	o •	5
3.	MATERIAĖS AND METHOI	os.	•	•	• '	•	•	•	. ·	16
	3.1 Modification an	nd Applic	ation	of	the TS	M	•	•	•	16
	3.2 Measured Climat	tic Data	10	•	• •	٠	•	•	•	19
	3.3 Experimental Ap	proach	•	•	•	•	•	· • 、	•	22.
:	(a) Untreated	Swine Ma	nure	Test	s.	•	•	-	•	22 -
	(b) Mono-calci	ium Phosp	hate	Test	s.	•	•••	•	•	23
	(c) Manure Dil	ution Ra	tes Į	ests	•	•	•	. \		24
٠	(d) Separated	Manure 1	ests	•		•	•	· • •	•	24
	(e) Wetted Man	ure [`] Test	б.	•	•	٠	•	•		24
	(f) Soil and M	lanure Sa	mples	•	•	۲ •	•	1. 1.	•	25 🛃
~	(g) Silica Gel	Tubes	•	•	• *	•	•	•	• •	25
-	∽ ∫ (h) Ammonia De	etection	Techn	ique	•	°.	• *	. • '	•	27
4.	RESULTS AND DISCUSSI	ON .	•	•	•	•	•	•	•	35
	4.1 Summary of Expe	riments	•	•	•	•	7	•	•	35
	4.2 Untreated Swine	Manure	Tests	•	•	•	•	٠	•	39
	4.3 Mono-calcium Ph	osphate	ve Tests	•	•	•	•	• ,	•	48 ,
	4.4 Manure Dilution	Rates T	ests	••,	•	•	•	•	•	55
~1'	4.5 Separated Manur	e Tests	•	•	•	•	۰.		•	59 ·
•	4.6 Rainfell Simula	tion Tes	ts	•	, •	•	• •		•	62

viii

4.7 Sensitivity Analysis

5. CONCLUSION

6

0

REFERENCES ,

•

 f_{λ}

ix

LIST OF FIGURES

FIGURE

3.1 Dimensionless normalized horizontal flux SC/Fz(o) versus height for a circular source of radius 3.5 m and various z₀ values at neutral atmospheric stability, using a three-dimensional windfield. Solid and dashed lines indicate results of the numerical simulations using a two-dimensional windfield, for z₀ values of 2 cm and 0.3 cm respectively. Vertical lines define range of possible random shifts of 2.5 cm in postion of the sampling orifice from its ideal (12.5 cm) level .

3.2	Dimensionless normalized horizontal flux $SC/Fz(o)$ versus height for a circular source of radius 3.5 m and various z_o values under unstable conditions, using a three-dimensional windfield. Solid and dashed lines indicate the results of simulations using a two-dimensional windfield, for z_o values of
•	2 cm and 0.3 cm respectively
3.3	Field equipment setup and wiring diagram
3.4	Sketch of silica gel tube
3.5	NH_3 electrode construction
3.6	Influence of solution pH on ratios of NH_4 : NH_3
3. ⁰ / _a	NH3 electrode calibration curve
3.8	NH ₃ electrode response to step changes in \sim NH ₃ concentration
4.1	NH3' flux density for 4 untreated plots of test 8 (August 19-20,1986)
4.2	NH3 flux density for 4 untreated plots of test 11 (August 19-21,1987)
4.3	Percentage of NH ₃ volatilized from test 10 and Test 11 based on the ammoniacal-N applied $\dots \dots \dots \dots 45$

Page

17

. Ų.

Mean NH5 flux density results from MCP treated and 4.4 untreated plots, for days 1-2 of test 2 (July 15-50 4.5 Mean NH3 flux density results for MCP treated and untreated plots, for days 3-4 of test 2 (July 17-18,1985) 51 4.6 Mean NH3 flux density reults for MCP treated and 4 52 4.7 NH₃ flux density for MCP treated and untreated plots, for test 7 (July 21-23, 1986) 53 4.8 NH₃ flux density for plots with various dilutions of manure for test 5 (June 25-26, 1986). Ratios represent relative proportions of added water to 56 manure on a per volume basis 4.9 Average NH₃ flux of first sampling day versus dilution of applied manure for test 5 (June 25-58 26,1986) flux density for plots with separated and 4.10 NH3 unseparated manure, for test 4 (October 29-31, 60 (1985) 4.11 NH₃ flux density for manure plots wetted and unwetted, from test 9 (Sept. 16-18, 1986) 65

and

в

xi

LIST OF TABLES

ر ک

5

TABLE	•	Page
3.1	Chemical characteristics of MCP	23
4.1	Field experiments	36
4.2	Mean meteorological conditions during test peiods	37
4.3	Background concentrations of atmospheric NH $_3$ measured at the ZINST sampling height	38
14	Mean NH, flux densities for 4 replications of untreated manure	39
4.5	NH ₃ volatilized and ammonium content of $0-2.5$ cm and $2.5-7.5$ cm soil layers following application of liquid swine manure	47
, 4.6	Experiments and amount of MCP used in tests on MCP treatment of manure	48 _,
4.7	Mean NHC flux densities for MCP treated and untreated manure	54
4.8	Volatilization losses as percentage of remaining, total N in manure and cumulative losses in terms of inital total N	54
4.9	Mean NH3 flux densities for dilutions of swine manure	57
4.10	Mean NH3 flux densities for days 2 and 3 for separated and unseparated manure tests	61
٥	2	

xii

こうなる これにいたため あるの

xiii

1. INTRODUCTION

one time the main source of Animal manure was at nutrients for crop production. The philosophy of livestock waste management was based on the concept of applying the manure to the land so that the nutrients could be recycled through the plants. Amounts applied usually did not exceed those favourable for crop production, with minimum risk of pollution. But as the cost of labor increased and farm size expanded, manure began to be looked upon more as an agricultural waste than a nutrient resource. Recently, however. the cost of commercial fertilizers has significantly increased to the point where manure is being regarded as an economically feasible alternative source of nitrogen.

Enough total nitrogen (N) from manure is produced annually in the province of Quebec to meet a large percentage of crop requirements, although a significant ... portion of this N is usually lost before it is utilized by the plants in the field.

Approximately one-half of the N in manuge is found in the liquid portion in the form of ammonium (NH_4^+) . Although soluble and therefore readily available for crop use, it is quite susceptible to loss through volatilization as ammonia (NH_3) , particularly during the first few days after field

]

application (Adriano et al., 1974; Lauer et al., 1976; Hoff et al., 1981; and Beauchamp et al., 1982).

It has become the responsibility of the agrometeorologist, soil scientist, crop specialist and agricultural engineer to develop successful management strategies which can be easily adapted to conventional manuring techniques on the farm in order to minimize nutrient losses.

Apart from the nutrient losses, studies have shown that high atmospheric NH₃ concentrations cause the formation of complex sulfates of NH₃ which are components of smog and acid rain (Dawson, 1977). Another problem associated with high concentrations of NH₃ in the atmosphere is that it contributes to the N enrichment of nearby surface water (Hutchinson and Viets, 1969).

The potential for NH₃ volatilization has been studied since the early part of the last century (Sprengel, 1839; Boussingault, 1844). Salter and Schollenberger (1938) indicated that up to 50% of the total N'in manure at the time of spreading could be lost through volatilization. Subsequent investigations in the laboratory and on partially-closed atmospheric chambers over field microplots have demonstrated volatilization losses from manure ranging typically from 20 to 80% of the NH₃-N during the first 3 to 5 days after application (e.g. Stewart, 1970; Mathers and Stewart, 1970; Adriano et al., 1971; Hoff et al., 1981). It

must be emphasized, however, that these experiments are not truly representative of field situations since their flow structure, which in turn controls the rate of transport, is substantially different from that of the natural environment.

It is only recently that micrometeorological techniques have become available to measure surface volatilization of gases out-of-doors, without interference in the dynamics of the airflow. With the help of these techniques a greater interest has been placed on the investigation of factors governing the rate of NH₃ volatilization.

The study reported here explores the use of a simple micrometeorological technique originally developed by Beauchamp et al. (1978) in such a way as to make it better suited to replicated studies of effects of physical, biological or chemical treatments of manure on NH3 volatilization out-of-doors. It then applies this technique to the investigation of:

i) the sensitivity of replicated studies under identical soil-crop-climatic-manure conditions,

. ii) the differences in volatilization losses between manure chemically treated with mono-calcium phosphate (MCP) and untreated manure,

iii) the differences in volatilization losses from

various concentrations of surface applied manure,

iv) the differences in volatilization losses from liquid manure (separated) and solid manure (unseparated) and

v) the effect of rainfall on NH_3 volatilization.

The second of the second strategical descent and a second of the second s

2. LITERATURE REVIEW

Ammoniacal nitrogen generally comprises one-half to two-thirds of the total N in livestock manure (Bouldin and Klausher, 1981). Immediately following excretion, conversion ammoniacal-N to NH3 begins. Since NH3 of is 8 gas at atmospheric temperatures and pressures, rapid loss through from surface applied manure volatilization would be The volatilization phenomenon, expected. however, is somewhat slowed down by the fact that compounds of varying degrees of stability are produced in the aquepus and solid forms of manure. Studies reported by Simpson (1981) and Vlek al. (1981) explained the various reactions which govern et NH₃ yolatilization losses as shown below:

Source NH_3 (gas in atm.) Absorbed $NH_4^+ \rightarrow NH_4^+$ (in soln.) $\rightarrow NH_3$ (in soln.) $\rightarrow NH_3$ (gas in soil)

Adriano et al. (1974) examined the effect of soil moisture and temperature on N losses from manure under greenhouse conditions from measurement of N concentrations in the soil. At 10°C and a moisture content of 60%, the total loss represented 26% of applied N over a 16 week period. At a temperature of 25°C and a 90% moisture content

_5

the loss was estimated as being 45% of applied N. Even though NH₃-N measurements were not taken, the authors hypothesized that the loss of N occured mainly through the volatilization of NH₃.

number of relevant studies invoved NH₃ losses from sewage sludge in a laboratory or greenhouse setting. King and Morris (1974) observed that 36% of the ammoniacal-N was lost from bare soil plots and 24% from grass stubble plots. They concluded that the lower losses from the grass stubble plots were due to the fact that air movement over and through the grass was lower due to the additional boundarylayer resistance introduced by the grass. In a similar study, Ryan and Keeney (1975) found losses between 11 and 60% of the ammoniacal-N applied in the sewage sludge. Losses depended mainly on soil type, decreasing as the clay content of the soil increased from 5 to 30%. Donovan and Logan (1983) concluded that the NH_3 loss increased as the soil temperature and pH increased. They found that a vegetative cover increased the NH3 loss from sludge with large particles but had no effect on well homogenized sludge. Recently, Adamsen and Sabey (1987) noted that surface applied sludge lost 40% of the ammoniacal-N in the two weeks proceeding application while only 0.4% was lost from sludge placed 25 mm below the surface over the same period of time. et al. (1981) used a partially closed system to Hoff

NH3-N volatilized from microplots of 'liquid measure the manure in a greenhouse and field experiment. They swine found that NH₃-N losses varied quite considerably with temperature, soil and manure pH and wind speed. Nearly 65% of the NH₃-N applied to the greenhouse plots was lost in 3.5 while only 14% of the NH3-N was volatilized from davs. the The difference in the measurements field plots. was attributed to a higher pH of the soil (7.0 to 6.5) and manure (7.8 to 6.4) in the greenhouse as compared to the field. Their volatilization sampling procedure was similar to that described by Kissel et al. (1977) which consisted of volatilization chamber through which air was drawn а to acid traps that retained the NH3 lost from the chamber. Liss (1975) and Lemon (1978) had already pointed out such field measurements to be unrealistic due to the fact that this of system interfered with turbulent eddies that type are essential for volatilization estimates; also, the method was subject to variability due to the non-homogeneous soil conditions which were found by Robston (1978) to produce yariability of ±55%.

Lauer et al. (1976) tried to circumvent this difficulty by determining volatilization losses in the field indirectly from NH₃-content measurements of manure samples and the underlying soil collected at intervals after spreading. Corrections were made for increases in the NH₃-N content of the soil. In experiments of 5 to 25 days duration, total

estimated losses of NH3 represented 61 to 99% of the total initial NH₃-N dontent, most of which was lost in the first week. Quantities of N volatilized as NH3 ranged from 17 to 316 kg(N) ha⁻¹, depending on application rate and total NH₃-N content of the manure. They hypothesized NH₃ loss was affected by factors such as the relative partial pressure of NH3 in the manure and the sambient atmosphere, the the wetting and drying of the manure, the air temperature and the diffusion rates of NH₃ (and NH₄⁺). Three general stages of NH₃ volatilization were observed, beginning immediately after application to the land. Initially, the NH3 concentration was assumed to increase due to a slight increase in the NH3 partial pressure gradient. As NH3 lost, the composition of the manure changed so that a lower pH occured, lowering the partial pressure of NH3 to that of the ambient atmosphere. They found highest volatilization during periods of continuous drying. In the winter losses their measurements found losses to be quite low due to snow cover, low temperatures and freeze/thaw cycles which in turn increased leaching lossés.

Beauchamp et al. (1978) developed a non-interfering diffusion model to predict surface flux of NH₃ from observed windspeed and NH₃ concentration at several levels above the surface. A correction for atmospheric stability was subsequently incorporated into the model by Wilson et al.

¥

(1981 and 1982). The resulting trajectory simulation model relates surface flux to horizontal flux profiles in ag (TSM) vertical plane above the surface. It simulates emission of fluid elements (or particles) from the source (i.e. sewage sludge in this particular study) by tracking individual The trajectory dynamics are determined by an trajectories. exponentially-decaying memory term, with a time-constant equal to the Lagrangian time scale, and a random input term for momentum change during a given time step. ¹A simple the model consists of predicting application of the horizontal flux profile above the center of a circular plot. Only plot diameter, surface roughness (micrometeorologically defined roughness length) and a general idea of atmospheric stability must be specified. The advantage of the technique lies in the fact that it summarizes a realistic level of understanding of turbulence statistics (in the form of the Lagrangian time scale and velocity scales), and the dependence of effective turbulent diffusivity on distance from the source, into a statistically predictive model which needs very few input measurements.

The numerical simulations of the TSM showed that horizontal flux profiles over the center of a circular plot, for different cases of atmospheric stability, tend to intersect at a height (ZINST) (Wilson et al., 1983). This permits source strength estimates with very simple instrument requirements, based mean wind 👘 on and

-9

concentration measurements at this single height, regardless of wind direction and atmospheric, stability. ZINST is a weak function of surface roughness, assumed to be homogeneous throughout the test area. By comparison, Eulerian diffusion models require input data at various points in space to define the vertical and horizontal flux components of the It may have to be pointed out that the mass balance. TSM defines the horizontal mass flux at ZINST as a measure of source strength but does not equate the two; the latter corresponds to the vertically-integrated horizontal flux profile.

In their study, Beauchamp et al. (1978) estimated NH3 losses from anaerobically digested sewage sludge applied in the field. At an application rate of 150 kg ha⁻¹, with 40% the total-N occuring as NH3-N they found that 60% of the of total-N was lost in 5 days. In subsequent experiments 56% of the total-N was volatilized over a 7 day period. They attributed the difference to blower ambient air temperatures which they found to be directly related to the NHз volatilization. As well as stating that air temperature had a significant effect on the NH3 volatilization they also observed that the volatilization flux densities followed a diurnal pattern, consistent with the observations of McGarity and Rajaratnam (1973), Denmead et al. (1974) and Hoff et al. (1981). They noticed that the largest loss

occured at midday and that this diurnal pattern was most significant on the first two days after application. They also found that rainfall slightly depressed the NH₃ lossses but found no evidence of a relationship between NH₃ loss and the atmospheric water vapour deficit.

Beauchamp et al. (1982) used the TSM to determine the volatilization from liquid dairy cattle manure . applied NHa to a field for 6-7 day periods during four successive yearly studies in the month of May. Estimated losses ranged between 24 and 33% of the NH₃-N in the manure through volatilization 6 or 7 days after application. They also observed a in strong diurnal pattern in the magnitude of the fluxes throughout the day similar to their 1978 findings. Rainfall again tended to decrease NH3 losses but they found that appeared , to play a larger role in temperature the volatilization phenomenon. Their results show lower volatilization losses than those observed by Lauer et al. (1976) but it should be kept in mind that a different experimental method was employed.

Brunke et al. (1988) used the TSM to correlate NH3 with measured losses from swine and dairy manure meteorological parameters. They found strong correlations on the first day (i.e. the day the manure is applied) with net and : windspeed. concluded that NHa radiation They volatilization to a large degree depends on the drying of manure as well as the concentration applied. Swine manure

exhibited a near linear relationship $(r^2=0.99)$ between the NH₃ loss and the ammoniacal-N applied, as well as the total N applied. This relationship did not exist for surface applied dairy manure. Their results also showed that the soil appeared to have a NH₃ binding threshold since the y-intercepts extrapolated from the regression lines were less than zero. This information would be helpful in situations of low N requirements. They also demonstrated, similar to Adamsen and Sabey (1987), that losses from surface applied manure were at least ten times greater than losses found with manure incorporated immediately after application.

Efforts to reduce volatilization losses of NHa by chemical treatment have a long and intermittent history. During the early part of the twentieth century the common (land-plaster), add gypsum kaınite, practice was to phosphoric acid, sulphuric acid or acid phosphate to freshly manure during storage. Application of excreted these chemical additives to the manure was also practiced at the spreading (Agee, 1913 and Thorne, 1930). The time of advantages were quite apparent, increased conservation of was attained as well as the fertilizing effects of the NH3 added phosphorus and potassium.

Due to varying and questionable scientific procedures many/early studies yielded contradictory results. Lemmerman and Wiessman (1918) and Nolte (1922) found that the addition

gypsum to manure was ineffective at controlling of NH₃ volatilization. /Earlier studies by Dietzell (1897), Severin and Vivien (1905) though, observed that gypsum (1904) significantly decreased NH3 losses. Mixed results were also reported for superphosphate, · lime and sulphuric acid. Blank (1919) and Wissenlink (1921) noticed that sulfuric acid was successful in the reduction of NH₃ losses. The latter mentioned that the advantages inherent in the addition of sulfuric acid were offset by the fact that it was harmful to livestock and also that it seemed to destroy the carboneous material in the manure. Bjorn-andersen (1905) found that 2%, superphosphate significantly decreased NH₃ losses and Lemmerman and Wiesmann (1918) went on to show that 10% and 15% superphosphate reduced NH3 losses by 27.5% and 70.2% respectively over 62 days.

Salter and Schollenberger (1938) stated that strong acıds. such as sulfuric and phosphoric acid, are effective in the reduction of NH_3 losses since they tend to reduce the pH, resulting in more ammoniacal-N occurring as NH4 ⁺ . Midgley and Wiser (1937) ascribed a similar effect to monocalcium phosphate (MCP) or superphosphate (MCP and gypsum). Both studies discussed in detail the chemistry involved with the addition of these chemicals to manure. They mention that phosphoric acid forms a stable end product when reacting with NH₃ - ammonium phosphate as in the reaction given below:

The reaction of sulfuric acid and NH3 is essentially the same, as ammonium sulphate is produced as a final product.

When superphosphate is added to manure the following reaction is developed.

 $Ca(H_2PO_4)_2.H_2O + NH_3 --- CaHPO_4 + NH_4H_2PO_4 + H_2O$, (2)

As gypsum is added to NH3 the resulting reaction given below ensues

 $CaSO_4 \cdot 2H_2O + 2NH_3 --- (NH_4)_2SO_4 + Ca(OH)_2 \dots (3)$

The assumption expressed by equations (1) to (3) are subject to debate. NH₃ in manure generally occurs as ammonium carbonate rather than free NH₃. As ammonium carbonate reacts with such chemicals as superphosphate or phosphoric acid stable end products such as H₂O, CO₂ and ammonium salt evolve. When gypsum reacts with ammonium carbonate, however, two chemicals are produced, namely ammonium sulfate and calcium carbonate. As the manure dries these two chemicals react and form free NH₃. Therefore

gypsum should not be as effective as either superphosphate or phosphoric acid in reducing NH3 losses due to volatilization (Salter and Schollenberger, 1938).

Safley et al. (1983) found that 94% of the NH₃ from cattle manure was lost after 28 days in the absence of chemical treatment, while 70% and 53% of the NH₃ were lost with treatment of superphosphate and phosphoric acid respectively. Both of these treatments were observed to conserve N better than gypsum.

Significant reductions in NH₃ losses from hog manure were found in the laboratory simulations of Tomar and Mackenzie (1987). Observed losses over 15 days were 23.5 g kg⁻¹ for untreated liquid hog manure while they were 4.39 g kg⁻¹ and 1.04 g kg⁻¹ respectively for treatment rates of 2 and 4 g of added superphosphate per 100 g of manure.

Studies conducted by Fenlon and Mills (1980) and Muck and Herndon (1985) examined the addition of lime to manure to reduce N losses. The theory behind these methods was to add a sufficient amount of lime in order to stabilize the manure and thus prevent the breakdown of urea into NH₃. Their studies showed mixed results; when lime was applied at low rates, N losses were greater than those from unlimed manure. Then lime was added at a sufficient amount to bring the pH alove 10, no appreciable loss of total N, was observed.

3. MATERIALS AND METHODS

3.1 Modification and application of the TSM model

Cońsidering the desirability of repeated ΝНз volatilization studies under identical soil and wind conditions the numerical simulations of Trajectory the Simulation Model (TSM) were repeated (by Dr. M. Leclerc) for source plots of 3.5 m radius with a roughness length of l cm, appropriate for cut grass. The original simulations were based on characteristics of a two-dimensional windfield. Since turbulence intensities become large close to solid surfaces (Monin and Yaglom, 1971), and since smaller plots are less likely to assure sufficient averaging of crosswind components, the determination of the sampling height (ZINST) was repeated for characteristics of a threedimensional turbulent wind field.

summarized in Figures 3.1 and Results 3.2 show significant differences between two- and three-dimensional simulation for the higher surface roughnesses. A satisfactory definition of ZINST (of approximately 12.5 cm) can be obtained even for these small source radii, formulation of a quantitative relationship permitting between the observations at the ZINST-level and mean NH3 flux density of the plot $(F_z(0))$ as: -

0.3 cm

Cone • Wind 🖊 (Flux Dansily)

0.5 cm

Figure 3.1 Dimensionless normalized horizontal flux SC/Fz(0) versus height for a circular source of radius 3.5 m and various z values at neutral atmospheric stability, using a three-dimensional windfield. Solid and dashed lines indicate results of numerical simulations using a two-dimensional windfield, for z values of 2 cm and 0.3 cm respectively. Vertical lines define range of possible random shifts of 2.5 cm in position of the sampling orifice from its ideal (12.5 cm) level.

Conc + Wind / (Flux Daňsity)

などのものないないとなったがたちのかたちないないないない

5-2-2

where \bar{s} and \bar{c} are mean cup windspeed and mean ammonia concentration at 12.5 cm above the surface. The numericallydetermined constant $\bar{sc}/F_z(o)$, whose value depends on source plot radius and roughness length (z_o), has a value of 12 for the given experimental parameters. The model is normalized to a surface flux $F_z(o)$ of unity. (4)

3.2 Measured Climatic Data

In order to document general climatic conditions various meteorological parameters were recorded at the downwind side of the test circles throughout the experiments, Figure 3.3 displaying the field equipment setup and wiring diagram.

Windspeed was measured over the entire sampling period by a cup anemometer (Climet Co., model #14-102) at the sampling height of the central mast. In addition, air temperature at 1 m above the ground constantan (copper 10 depth temperature cm thermocoup es), soil at (thermocouples), soil heat flux at 10 cm depth (Thermonetics flux plate, mod. Hll-18-3), net radiation (Fritschen, R-800

Figure 3.3 Field equipment setup and wiring diagram

miniature net radiometer), relative humidity (Cole Palmer humidity probe) and surface temperature of the ground (Barnes IT3 IR thermometer) were also recorded for each sampling period.

For some of the experiments, latent heat flux was determined by the eddy correlation technique, using a Campbell Scientific sonic anemometer (CA27) and fastresponse Krypton hygrometer (KH20). Only a relative measure of the sensible heat flux was used, based on the measured temperature difference between surface and ambient air and a transfer coefficient proportional to the mean horizontal wind speed.

The data collection and manipulation was done by a (Campbell Scientific CR7-X) datalogger which calculated ten minute averages for the above-mentioned parameters. Data were transfered from the datalogger to a cassette tape at the end of each sampling day. From the cassette the data were dumped through a cassette interface (Campbell Scientific C-20) and loaded onto a microcomputer where they were stored on a standard floppy disk. The stored data were averaged over each test period to get a relative measure of the climatic factors encountered during the volatilization sampling.

3.3 Experimental approach

For each experiment excluding tests 4 and 13 (see Table 4.1), four circular test plots of 7 m diameter were used. The plots were separated from each other by 5 m, and were along a straight line perpendicular to the arranged direction of prevailing wind (south-west) and 1-2 h sampling intervals were conducted simultaneously on all of the plots during daylight hours. The test site was attended at all times during sampling operations and sampling stopped when wind direcpion shifted by more than ±40° from the prevailing direction to avoid lateral contamination between plots. The site was a level sandy loam field, with soil physical and chemical parameters reported by Lajoie and Baril (1956), located on the McGill (Macdonald College) Experimental Farm, 30 km west of Montreal. It had an upwind fetch of at least 400 m, with short grass up to 150 m and growing corn beyond.

(a) Untreated Swine Manure Tests

Liquid swine manure (LSM) obtained from the Experimental Farm was dumped into four separate 200 L-drums at the test site along each selected plot. The manure was mixed thoroughly by a sump pump and then spread onto the plots with the same sump pump. The volatilization sampling began immediately thereafter.
(b) Mono-calcium Phosphate Tests

LSM was placed to volume into four separate 200 L-drums and mono-calcium phosphate (MCP) added to two of the drums a completely randomized. design, while the remaining two . in drums were left untreated. Data on the chemistry of MCP are After the addition of MCP the manure given in Table 3.1. mixture (was almalgamated thoroughly with a sump pump. The drums were then covered with plastic and left for six days, being mixed again every second day. On day six the manure again thoroughly mixed and then applied the was once to plots and the NH₃ volatilization measurement immediately followed.

$Ca(H_2PO_4)_2$. H_2O_4	
$Ca(H_2PO_4)_2$	• 6.7%
Free Acid (H ₃ PO ₄)	
Moisture (H ₂ O)	6.5%
Acid Insoluble	
Arsenic (As)	0.2 ppm
Fluorine (F)	9 ррт
Neutralizing Value	

Table 3.1 Chemical characteristics of monocalcium phosphate (MCP) (as specifiked by the manufacturer)

(c) Manure Dilution Rates Tests

LSM was placed into the four 200 L-drums at different volumes according to a predetermined water to manure ratio. Drums 1 to 4 obtained 50 L, 100 L, 150 L, and 200 L, respectively of manure and were filled to volume with water. The manure-water mixtures were then thoroughly mixed and applied to their respective plots at which time sampling began.

(d) Separated Manure Tests

The manure offlection and application procedure for these tests is similar to that of the untreated manure tests stated above. Only two plots are used for these tests with one of the plots receiving separated manure while the other plot received untreated manure. Separation of the liquid fraction was obtained by a 100 \sim m screen. Immediately following separation the manure was spread onto the plots and sampling began.

(e) Wetted Magure Tests

The manure collection and application procedure for these tests is essentially the same as for the above mentioned untreated manure tests. Once the manure has been applied to each plot, two plots are randomly selected to be

wetted by approximately 2 mm of water every 2 h of sampling. This appeared to keep the manure on the surface moist at all times during sampling.

(f) Soil and Manure Samples

For selected tests, soil profile samples were periodically taken for subsequent determination of their ammoniacal-N concentration. Using a soil sampler, samples at depths of 0-2.5 cm and 2.5-7.5 cm were obtained.

Prior to the application of manure to each of the test plots, manure samples were taken from each well mixed drum for the determination of total N according to Bremner and Mulvaney (1982) and ammoniacal-N. Due to financial constraints only selected tests were analyzed for the above mentioned concentrations.

(g) Silica Gel Tubes

Sampling tubes for ammonia with silica gel absorbers (Supelco ORBO-52; 4 mm internal diameter and 70 mm length) were attached to a mast at the center of each plot at a height of 12.5 cm above the zero-plane displacement of the surface. Figure 3.4 shows a tube divided into two grass sections. Section 'a' which is twice the size of section 'b' 'Ъ' measured section. Section measured is the is periodically to see if the probability of sampling loss This is true when the concentration in section 'b' exists.

is greater than 25% of that in section 'a'. Such a situation was never found to exist for any sampling periods.

The silica gel tubes have been designed to absorb amines and alcohols over a range of concentrations from 16.9_ to 67.6 mg m⁻³ which was maintained throughout all tests. Flow rates through the tubes were maintained 3 ± 0.5 L min⁻¹, differences are attributable to varying degrees of resistance introduced into the sampling line from varying dimensions of orifice of the sampling tubes after breaking their previously sealed ends. Flow rates through the tubes were monitored in each sampling line at the beginning and end of each sampling period and found to have remained constant to within 2% during runs. Unless otherwise specified, sampling periods were 1 to 2 h, covering most of the daylight hours of days 1 through 3 after the application of manure.

(h) Ammonia Detection Technique

The ammonia_s(NH₃) concentration of the soil, manure and silica gel adsorption tubes was performed by an Orion "model 95-10 -ammonia electrode as seen in Figure 3.5. This electrode allowed us to obtain fast, economical and accurate measurements of dissolved ammonia.

The electrode uses a hydrophobic gas-permeable membrane to separate the sample solution from the internal ammonium

~ ~,

÷.

Ĩ

C

salt (NH₄Cl) solution. Dissolved NH₃ in the sample solution diffuses through the gas-permeable membrane with a mean pore size of 0.2 mm, until the partial pressure of the NH₃ is, the same on both sides of the membrane. Since the partial pressure of ammonia is proportional to its concentration, the concentration of NH₃ can be calculated.

In order to operate the NH_3 electrode for concentration measurements the following materials had to be used:

- Corning 125 digital pH/mV meter,

- magnetic stirrer,
- 10 M NaOH,
- internal filling solution,
- distilled, deionized water and
- standard solution

To adjust the pH of the sample solution to approximately 13, which is the operating range of the electrode shown in Figure 3.6, Taboratory-prepared 10 M NaOH was used.

The water used to dilute the samples had to be NH3 free in order to obtain accurate measurements. For this we used distilled water which had passed through an anion-cation exchange column.

Ammonium chloride (NH₄Cl) standard solutions 10^{-2} M, 10^{-3} M, 10^{-4} M and $5x10^{-2}$ M concentrations were prepared for calibration of the ammonia electrode. The milli-voltage

Figure 3.6 Influence of solution pH on ratios of NH_4 : NH_3 .

potential from the digital pH meter was plotted against the standard concentrations on 4-cycle semi-logarithmic paper. For calibration purposes the 10^{-3} M millivoltage potential reading was adjusted to zero. When plotted, the points produced a straight line slope of approximately 58 mV/decade (as seen in Figure 3.7).

The calibration curve begins to drift at approximately $9x10^{-6}$ M, outside the operating range of the instrument. In this range the rate of NH₃ diffusion through the membrane and the rate of equillibrium between NH₃ and NH₄⁺ in- the internal filling solution are slow. NH₃ absorption from the air then may become a source of error.

Figure 3.8 shows the response time of the electrode with respect to step changes in the concentration. For most of our readings $(10^{-3} \text{ to } 10^{-6})$ the response time appears to be approximately 1-2 minutes.

The advantages of this type of ammonia electrode over other methods of analysis is that it:

i) allows small sample volumes (2.5 mL) to be measured,

1i) allows guick, accurate and simple measurements,

111) does not destroy the sample and

iv) functions in coloured or turbid solutions where photometric methods fail.

The disadvantages are that:

32

Considered Man - ---

• ?,

33

1

(

i) frequent calibration (every 60 minutes) is necessary,

ii) it is not specific but selective, so that volatile amines may interfere with measurements and

111) reproducibility is threatened due to temperature fluctuations, noise and drift.

4. RESULTS AND DISCUSSION

4.1 Summary of Experiments

Thirteen field experiments were carried out on NH3 volatilization during daylight hours on rainfall-free davs of June, 1985 through November, 1987, excluding winter months. Table 4.1 shows the dates and the description of each test conducted. Meteorological conditions averaged over the test periods are summarized in Table 4.2 as a basis for differences in interpretation of estimated NH3 flux densities. They indicate typical Quebec summer and fall weather conditions. Missing data for some of the tests are generally due to equipment breakdowns and technical problems.

Some "background" levels of atmospheric NH3 were measured on July 9-10, 1987 at the test site in order to see if upwind contamination of plots should be considered. The measurements were made at the ZINST (12.5 cm) sampling height for the 3.5 m radius plots. The measured concentrations tend to agree with those reported by Denmead (1976) and Beauchamp et al. (1978) for the al. et atmosphere ¿bove a grass clover pasture. Our results, given in Table 4.3, were at least three orders of magnitude smaller than observed peak experimental values. Therefore

Table 4.1

¥

1

Field Experiments

3.5

Test #	Date	Description
1	July 4-6/85	MCP
2	July 15-18/85	MCP
3	Aug 22-24/85	, MCP
4	Oct 29-31/85	Separated
5	June 25-26/86	Dilutions
6 ·	July 8-10/86	Dilutions
7	July 21-23/86	MCP
8	Aug 19-20/86	Untreated
9	Sept 16-18/86	Wetted
10	July 23-25/87	Untreated
11	Aug 19-21/87	Untreated
12	Oct 8-10/87	Wetted
13	Nov 6-8/87	Separated ,

2

Table 4.2	Mean period preced (Ta), soil (relat)	meteoro ds: Cumu eding 2 v net rac temperatu ive humic	ological ulative veeks (CP diation (ure (Ts), dity (RH)	conditions precipitations), air tempo Rn), soil ho mean wind	during f on during erature at eat flux (S speed (U)	test the 1 m SF), and	\$
Test no.	CP (mm)	Ta (deg.C)	Rn (Wm ⁻²)	SF (Wm ⁻²)	Ts (°C)	U (m s ⁻¹)	RH (%)
1	41.3	26.5	n.a.	26.2	27.8	1.71	58.9
2	32.3	23.5	350.5	25.0	22.1	2.61	60.4
3	16.6	24.2	n.a.	n.a.	15.5	1.62	58.0
4	25.2	10.4	193.0	15.0	6.3	2.32	41.0
5	68.8	16.8	413.0	31.0	17.9	0.9²	53.0
6	65.7	21.0	517.0	38.0	19.8	1.72	56.0
7	61.6	23.8	501.7	62.3	25.7	1.12	45.1
· 8	50.4	26.6	450.7	33.4	18.3	1.32	25.2
9	74.6	13.6	350.0	23.0	12.8	0.6²	45.0
10	73.8	27.9	473.0	n.a.	25.0	1.12	60.7
11	13.4	25.1	445.0	n.a.	n.a.	1.82	51.3
12	19.0	8.4	185.0	n.a.	n.a.	1.72	58.0
13	50.1	3.2	158.0	n.a.	n.a.	2.8 ²	27.6
1)	measured	at 1 m	height:	2) measured	at 12.5 cm	height	

Date	Time period	Atm. NH3 conc. (Mg m ⁻³)
July 9/87	1030-1230	.706
	1240-1440	.417
	1440-1640	. 357
July 10/87	1030-1230	. 429
,	1230-1430	. 343
•	1430-1630	. 332

Table 4.3 Background concentrations of atmospheric NH3 measured at the ZINST sampling height on July 9-10,1987.

any correction for background sources was deemed unnecessary.

For all of the tests where windspeed was measured close to the ground (ZINST= 12.5 cm), the 0.25 m s⁻¹ cup anemometer stalling speed must have introduced underestimation of average windspeed, leading to underestimation of estimated fluxes of up to 10%. These systematic errors would not affect relative comparisons

4.2 UNTREATED SWINE MANURE

In order to examine the relative variability of data from the 7 m diameter circles for plots of equal expected source strength, four untreated manure plots were simultaneously observed. Mean NH₃ flux density results from tests 8, 10 and 11 conducted in July and August of 1986 and 1987 are presented in Table 4.4. Mean values were estimated for all sampling periods of a given test (16 to 32 h over 2 to 4 days). The fact that longer tests tend to result in lower overall means is not important here since variability between replicates within tests is being examined.

Table 4.4 Mean NH₃ flux densities (kg ha⁻¹ h⁻¹) for 4 replications of untreated swine manure.

. .	-	<u> </u>	0	•	– , ⁽ ,
l'est	1.	2	3	4	F-test
8	1.64	1.62	1.88	1.76	ns
10	0.88	0.82	0.92	0.87	ns
11	7.54	8.48	7.11	8.19	ns

Analysis of data from these tests show that the advantage of economy of land inherent with small test plots

offset to degree by high variability is some of observations, as shown in Figures 4.1 and 4.2. Since the variability appears random in nature among the four simultaneous plots it 15 not lıkely attributable to meteorological variables. Differences in applied total Ν between plots would lead to sys/tematic errors; they are precluded by the fact that N analysis of 50 cm³ samples replicated plots showed only one between significant difference (35% - attributable to non-representativeness of the small sample) in 8 cases, with 6 samples agreeing within The uniformity of terrain and length of sampling period 1%. $\langle \rangle$ 1 h) make significant variations in aerodynamic characteristics of adjacent plots equally unlikely. The most likely source of variability lies (a) in random error in ammonia detection and (b) in random errors in adjustment height of silica gel tubes during replacement between sampling periods. Their relative contributions will be further discussed below. Variations in flow rates through sampling lines (of up to 16%) are not considered, as potential source of random error since they were known and corrected for.

يري» الاترة توجيع مراجع 19

1

Examination of Figures 4.1 and 4.2 show a diurnal pattern of flux magnitude with peak losses generally occuring around noon as the soil surface temperature is increasing and the soil-water content is decreasing. A general reduction in flux magnitude with time can also be

Figure 4.2 Ammonia Flux density for 4 untreated plots of test 11 (August 19-21, 1987).

seen from the above mentioned results. Similar findings have been reported by McGarity and Rajaratnam (1973), Denmead et al. (1974), Beauchamp et al. (1978 and 1982), McInnes et al. (1986) and Brunke et al. (1988).

F

1974 - 1976 - 19

Even though plot variability appears to be rather strong in nature, no statistically significant differences were found to exist between plots. The results of Table 4.1 may be taken to indicate the relative variability expected from the modified technique under the experimental conditions of this study.

Test 11, which was conducted in August 1987, of produced uncharacteristically high flux values. The average NH₃ flux over the entire test of the four plots ranged from 7.11 to 8.48 kg ha⁻¹ h⁻¹, which is significantly higher than the mean flux densities for all untreated measurements from the thirteen tests conducted during this study, which was which 2.37 ± 2.28 kg ha⁻¹h⁻¹. Comparatively, test 10 was conducted only three weeks prior to test 11 generated mean fluxes of between 0.82 and 0.92 kg ha⁻¹ h⁻¹. The ammoniacal-N concentration of the manure applied to the plots for test 10 and 11 was 0.46% and 0.60% respectively. This would lead to expectation of a greater NH₃ -loss for test 11 but some other veriables must have come into play to produce the actually observed differences. Hoff et al. (1981) pointed out that manure and soil pH were a possible explanation for

43

Ŷď

Narge differences in their calculated NH3 losses. The differences in tests 10 and 11 are probably not attributable to dissimilarities in soil or manure pH since the test plots were within 20 m of one another for the two tests, thus any differences in soil pH would be considered negligible. Analysis of manure pH found a standard deviation of only +0.142, which would not contribute to any noticable differences. Upon examination of Table 4.2, it can be seen that there are only slight differences in most of the measured meteorological parameters. Mean windspeed showed a noticeable difference (1.8 m s⁻¹ to 1.1 m s⁻¹) which again explain some, but not all, of the might observed enhancement. Most likely the discrepancy resulted from differences in manure handling and storage procedures which were beyond the scope of our observations.

Figure 4.3 shows that after three days, excluding overnight losses, test 10 lost approximately 10.1% of the initially applied ammoniacal-N content. The corresponding curve for test 11 shows that 63.8% of the ammoniacal-N was lost within three days of field application. Past studies with manure have produced similar results. Lauer et al. (1976) observed up to 99% losses of NH₃ from dairy manure after 25 days and Adriano et al. (1974) reported losses of up to 50% of the total-N applied within a few weeks. Beauchamp et al. (1978) in their sewage sludge experiments lost approximately 60% of the applied ammoniacal-N after 7

Figure 4.3 Percentage of ammonia volatilized from test 10 and test 11 based on the ammoniacal-N applied.

days.

previous studies have Most also shown similar short-term flux magnitude measurements. observations in McGarity and Rajaratnam (1973) observed first day peak flux values of approximately 0.32 kg ha⁻¹ h⁻¹ from the application of 118 kg urea-N ha⁻¹ to the soil which were one order of magnitude lower than the flux values reported by Denmead et al. (1974), Beauchamp et al. (1978 and 1982) and Brunke et al. (1988). The McGarity and Rajaratnam (1973)stuďy used a semi-closed NH3 measuring technique and therefore it could be assumed that underestimation of losses may have occured since a disturbance of the natural environment could have eliminated some atmospheric processes that critically influence volatilization of NH3 (Liss, 1975). Even considering the above mentioned variability in estimating general NH3 flux magnitudes from 7 m diameter plots, it appears that our observations are well within the accepted range cited in the literature for open_systems.

An attempt was made during sampling of test 10 to compare the amount of NH3 volatilized to the measurements of ammoniacal-N in the soil at depths of 0-2.5 cm and 2.5-7.5 cm as a function of time. Results are given ın Table 4.5. Measurements were made prior to field application of the manure and at the end of each of the three sampling days of the test. Some ammoniacal-N moved from the manure into 0-2.5 cm layer and very little reached the 2.5-7.5the сm

layer. The increase in the ammoniacal-N content in the 0-2.5 cm soil layer was relatively insignificant considering the concentration applied with the swine manure. Such a comparison, however, does not permit the definition of an effective N balance due to the fact that no measurements of NO₃-N in the soil were made. Rather it indicates the short term change in ammoniacal-N concentration that can be expected from the application of manure to turfgrass.

Table 4.5 NH₃ volatilized and ammonium content of the 0-2.5 and 2.5-7.5 cm soil layer following application of liquid swine manure from test 10 on July 23-25, 1987.

Day	Tıme	Cum. NH3 volatılızed (mg NH3 kg ⁻¹)	Ammonia (mg l	im conc. (g ⁻¹)
	٢		0-2.5	2.5-7.5
			·	
1	0	0	1.10	1.20
1	8h	161.1	84.40	1.40
2	32h	380.7	155.90	1.80
3	56h	450.7	103.70	1.90

4.3 Mono-calcium Phosphate Tests

a , 173

Four field experiments were carried out on NH_3 -volatilization from MCP-treated and untreated manure in July and August of 1985 and 1986. Table 4.6 shows the amount of $M\overline{C}P$ added to each storage drum approximately six days prior to field application.

1 1 1 1

There is some uncertainty in the absolute magnitude of the calculated fluxes. For tests 1 and 2 the mean cup windspeed was measured at 1 m and extrapolated to the 12.5 cm level on the basis of an assumed logarithmic wind profile whose determinant parameters (particularly the friction velocity) were not known precisely.

Table 4.6 Experiments and amount of mono-calcium phosphate (MCP) used in tests on MCP-treatment of manure.

Test no. Date Amount of MCP added (kg) Plot no. 1 2 3 4

			-		•	
1	July 4-6,	1985	0	1.0	0	1.0
2	July 15-18,	1985	1.0	0	1.0	0
3	Aug. 22-24,	1985	1.0	1.0	0	0
7	July 21-23.	1986	1.0	1.0	0	0

Examples of mean observed rates of NH3 volatilization are shown in Figures 4.4 to 4.6; in general, they show a diurnal pattern and the expected decrease in relative magnitude with time, consistent with the observations mentioned earlier. This pattern is also evident in the period-by-period mesuremnets of the four test plots (2treated and 2-untreated) given in Figure 4.7.

۲

Analysis of variance on period-by-period measurements of NH₃ flux of the completely randomized MCP tests showed no significant difference at the 0.05 confidence level between treated and untreated plots. When the mean NH3 flux densites were examined from the treated and untreated measurements grouped with tests as an additional variable and 🚽 a significant difference at p < 0.025 was found to exist. The results in Table 4.7 show quite well the difference in average fluxes , which cannot easily be noticed from the period-by-period measurements, with reductions of volatilization from treated plots between 5 and 30%.

Total N measurements showed values between 0.3 and 1% based on liquid weight of the sample and volatilization losses can be expressed in percentage of initial or remaining total N. These values are relative; they do not include NH₃ volatilization during evening or nighttime when sampling did not take place or any losses of N through leaching. The results from test 7 if Table 4.8, indicate

Later Start Street

د. ا

FAAT TS;

考止,ら

「「「「「「「「」」」」

۰.,

۶ľ

Figure 4.7 Ammonia Flux density for MCP treated and untreated plots, for test 7 (July 21-23, 1986).

5త ౖ

that after 8 sampling runs, covering the peak volatilization periods of the first three days after spreading, about 12.5% of the total N from the manure had volatilized from the treated plots while 22.4% of the total N had been lost from the untreated plots.

Table 4.7 Average NH3 flux densities (kg ha^{-1} $h^{-1})$ for treated (MCP) and untreated plots.

	, Test l	Test 2	Test 3	Test 7
Treated Plots	4.46	4.26	2.62	2.37
Untreated Plots	5.54	4.94	2.76	3.39
% Dıfference	19.5	13.8	5.1	30.1

Table 4.8 Volatilization losses as percentage of remaining total N in manure and cumulative loss in terms of initial total N.

$\overline{}$	Time (h)*)	Average Loss F	Per Run
		Treated (MCP)	Untreated
	1	3.52%	7.06%
	3.5	2.67%	5.22%
	5.5	1.13%	1.97%
	23	1.25%	1.71%
	25	1.32%	2.98%
	28.5	1.14%	2.56%
	47	0.70%	1.19%
,	50	1.46%	2.15%
Cumul	ative loss		2
dur in	g the 8 runs	· 12.5%	22.4%
		<i>₹</i> €	

 *) mid-point of sampling run, measured from moment o inital sampling after spreading.

4.4 Dilution Tests

The ability of the 7 m plots to detect significant differences in volatilization rates was examined on dilutions of swine manure with relative proportions of manure (on a per-volume basis) of 100%,75%,50% and 25%. Two tests were conducted in June and July of 1986 based on the above mentioned criteria. The mean NH3 flux densities over the entire observation period (indicated in Table 4.1) from dilution tests given in Table 4.9 clearly indicate the the expected reduction of NH3 volatilization from Ailute manure, due to reduction in partial pressure of NH3 (Beauchamp et al., 1982 and Harper et al., 1983). They show, as does Figure 4.8 that an inverse relationship between flux and dilution of magnitude manure exists which is statistically significant with p < 0.05.

For both tests a strong correlation was found to exist $(r^2=0.95)$ between the mean NH₃ flux of the first sampling day and its corresponding dilution rate. This shows that NH3 volatilization to а large degree depends the on concentration of total N and NH3 applied; particularly on the first day after spreading. This is similar to the findings of Chao and Kroontje (1964) and Brunke et al. (1988) who observed an almost perfectly linear relationship between applied ammoniacal-N and the NH3 volatilized.

Ammonla Flux (kg ha⁻¹h⁻¹)

1,2 1

1.2

Figure 4.8 Ammonia Flux density for plots with various dilutions of manure, for test 5 (June 25-26, 1986). Ratios represent relative proportions of water added to manure on a per volume basis.

Beauchamp et al. (1982) however, found no apparent correlation between the above mentioned parameters in their study.

Table 4.9 Mean NH₃ flux densities (kg ha^{-1} h^{-1}) for dilutions of swine manure.

	Test 5	Test 6
25%	0.244	0.201
50%	0.438	0.264
75%	0.529	0.514
100%	1.074	0.823
F-test	**	*

*) significant at the 0.05 level of confidence
**) significant at the 0.01 level of confidence

It is also quite interesting to note that the regression line from test 5 presented in Figure 4.9 has a yintercept that is less than zero. This may indicate an NH₃ deficiency or binding threshold of the soil, similar to the findings of Brunke et al. (1988).

ر5

Figure 4.9 Average ammonia flux of first sampling day versus dilution of applied manure for test 5 (June 25-26, 1986).

58

0

کھ
4.5 Separated Manure Tests

Manure separation tests were conducted in the fall of 1985 and 1987. After field application it was observed that the unseparated manure remained wet for a much longer period time than the separated manure plot (receiving only of the liquid fraction). For both test 4 and 13 the initial NHa loss was found to be higher for the separated manure. On subsequent days (1.e. 2nd and 3rd), this pattern reversed and the separated manure was noticed to be significantly lower flux than the unseparated manure with p < 0.005. These results as seen in Table 4.10 and Figure 4.10 would seem to indicate that initially the separated manure has a higher volatilization potential due to the fact that a greater percentage of its N is in the volatile liquid form. Since manure is spread on an aerodynamically rough surface the (turf grass) the more aqueous solution (1.e. separated manure) tends to attach itself to the surface for a short time where) it may in turn, result in a greater initial NHa through volatilization. The unseparated loss manure, meanwhile, remains wet for a much fonger period of time since its volatile liquid fraction seems to adhere to the solids in the manure before they are eventually drawn out; it therefore has low initial NH3 losses.

1 .

,

١

ŧ

Table 4.10 Mean NH₃ flux densities (kg $ha^{-1}h^{-1}$) for days 2 and 3 for separated manure and unseparated manure tests.

Date	Separated	Unseparated	F-test
Oct 29-31/85	0.371	0.733	**
Nov 6-8/87	0.304	0.350	**

****** significant at the 0.01 level

and the second second

On later days (i.e. 2nd and 3rd) the separated manure have moved into the soil and as a result the NH4⁺ may may have been adsorbed by cation exchange while the unseparated manure may have been trapped on the surface of the turf grass^Uand thus have been exposed to the natural environment for greater NH3 losses. These findings are similar to those reported by Donovan and Logan (1983) who examined factors affecting NH₃ volatilization from sewage sludge applied in a laboratory study. They observed that volatilization from large sludge particles was generally greater than that encountered with homogenized sludge over a period of time. Their findings, however, were not determined as being statistically significantly different.

For test 13 the NH₃ fluxes for the separated manure were higher for every sampling run of the first day while for test 4 only the initial sampling run of the first day had a greater flux density. These differences in the first

day observations of the two different tests may be due to the fact that for test 13 the average ambient air temperature was approximately $-1.5 \circ C$ for the first day as compared to 7.2 $\circ C$ for the first day of test 4. This lower air temperature may have inhibited the separated manure from moving into the soil as quickly for test 13 as test 4, thus resulting in a larger NH₃ loss over the first day.

4.6 Rainfall Simulation Experiments

In order to examine the relative effect of rainfall on the magnitude of NH3 volatilization losses, two tests were conducted in September and October of 1986 and 1987. Considering the fact that all testing was conducted on rainfall free days, rainfall simulation had to be carried out. This was performed by wetting the selected plots with a conventional watering can. Prior to each sampling run (approximately every 2 h) water at a depth of precisely 2 mm was applied to the plots. This amount of water seemed to keep the manure at the soil surface quite wet during the entire sampling period while the unwetted plots appeared to be quite dry on the surface a few hours after spreading.

The mean flux density values are shown in Table 4.11. The initial sampling runs for each test were neglected in the calculation of the mean flux densities, since freshly spread manure was wet for both the wetted and unwetted

plots. Therefore we waited for the manure to dry before any applied to the wetted plots. In both tests, water was not performed until prior to the watering was second sampling run of the first day. It can be seen from the results 'that the "simulated rainfall slightly depressed the volatilization of NH_3 , similar to the findings of Beauchamp et al. (1978 and 1982). The latter study found that NH₃ flux densities were lowered by rainfall but the diurnal air temperature cycle appeared to dictate the volatilization loss to a larger degree. Harper et al. (1983) and McInnes et al. (1986) reported minimum rainfall amounts in order to reduce NH₃ losses from surface applied urea. Harper et al. (1983) estimated that 5 mm of rainfall was required to prevent NH3 losses from a tropical pasture while McInnes et al. (1986) stated that a rainfall event of at least 10 mm must occur ın order for any reduction in NH3 losses. Bouwmeester et al. (1985) remarked that interaction between NH₃ loss and rainfall is complex since rainfall may increase the loss potential, because it adds water to the topsoil, while at the same time reducing losses due to transport of ammoniacal-N into the soil.

.

Q

Table 4.11 Mean NH₃ flux d'ensities for wetted and unwetted manure plots (kg ha⁻¹ h⁻¹).

Test	Date	Wetted ,	Unwetted	F-test
9	Sept. 15-18/86	0.441	0.467	ns
12	Oct. 8-10/87	0.329	0.405	ns

ns= not significant at the 0.05 level

Tests 9 and 12 showed differences between treated and untreated plots ranging from 5% to 18%. However, these differences are not statistically significant from either period-by-period measurements or by taking tests as an added variable. The possibility exists that if greater amounts of simulated rainfall had been applied to test plots (similar to those reported above), effects may have been more pronounced. Figure 4.11 shows the period-by-period measurements of the wetted and unwetted plots from test 9. In general, the diurnal pattern of flux magnitude is apparent and similar to the findings reported earlier ın this study.

A possible explanation for the significantly low NH_3 flux values from the first day of sampling could be due to the fact that the average cup windspeed on that day was only 0.10 m s⁻¹. The mean cup windspeed on subsequent days was

ないというないできょうでしょう

いたいないないという

Figure 4.11 Ammonia Flux density for manure plots wetted and unwetted, from test 9 (Sept. 16-18, 1986).

>1.0 m s⁻¹ which would account for the greater magnitude of losses due to the fact that NH₃ flux as observed by Brunke et al. (1988) is highly and positively correlated with windspeed.

4.7 Sensitivity Analysis

T. Barry Black - Start

In order to examine the relative accuracy of results from the 7 m diameter circles, the possible contributions towards random sampling errors from experimental test procedures will be examined:

We estimate uncertainties in the vertical placement of sampling orifice during sampling periods and during replacement of silica gel tubes to have been as large as ±2.5 cm from the required sampling height of 12.5 cm above zero-displacement and roughness length. As seen in Figures 3.1 and 3.2, where the corresponding range of displacement has been indicated by vertical bars, this could lead to errors in flux estimates of 10 to 15%.

Generally the silica gel tubes were refrigerated and stored at 3 to 5 °C. Sample tubes were capped and sealed before storage and storage period was no longer than two weeks before chemical analysis. Thus, storage time was commensurate with the period (of at least 7 days) where NH₃ samples trapped by silica gel tubes are considered stable (NIOSH Manual, 1979).

66 .

Error in determination of absorbed NH₃ is suspected major source of random variation between plots 88 of The calibration curve for the ammonia similar treatment. slope (in the log-linear electrode has а plot of concentration vs. eléctrode potential) of approximately a decade (10) per 50 mV. Using best-fit linear regression on measured points, deviations of up to 5 mV were observed between actual points and best-fit curve, corresponding to potential errors of up to 33%. Samples and standards must be at the same temperature since a 2% error may, result kept from a one-degree difference in temperature.

The longer response time of the NH3 electrode °at lower concentrations may favor absorption of NH3 from air; this is expected to be a minor error, however, and we could not quantify it.

It appears likely that the errors outlined above account for the observed variability in the volatilization As a consequence, analysis and calibration estimates. procedures are more crucial to data quality than they are for the larger circles where sampling height and absorbed concentrations are higher. Replicate standards should be used for recalibration every hour of reading. In this way it may well be possible to reduce considerably the fluctuations of the technique. The desirability of anemometers with low speed for measurements close to the ground stalling has

already been pointed out if precise flux estimates are to be obtained in conditions of low wind.

5. CONCLUSIONS

The TSM model can be used on small (7 m diameter) test plots, making it attractive for comparative studies on effects of treatments on volatilization of NH3 from manure under field conditions, as well as for other agriculturally 1mportant volatilızatıon processes, such as the revolatilization of deposited pesticide. However, the potential is increased for systematic error (due to nonuniformity of applied dose or loss of wind data due to stalling of anemometers in low near-ground windspeeds) and for random error (in detection of NH_3 at low concentrations and due to incorrect placing of sampling orifice). With the experimental procedures followed in the present study, differences in volatilization rates bf < 30% are difficult to detect from short-term sampling periods by statistical analysis, although they will still be observable in longerterm (several days) mean fluxes. Where absolute values of volatilization rates of NH3 are to be compared at different times of year, uniformity of chemical, physical, and probably microbiological properties of manure prior to spreading should be assured to a higher degree γ than was done in the present study.

Application of the modified TSM-technique to "the NH3 volatilization from manure spread on sandy-loam under summer

and fall field conditions with high soil moisture in Quebec showed reduction in mean volatilization rates between 5% and 30% resulting from the addition of mono-calcium phosphate (MCP) when MCP was added 6 days prior to spreading. Given the fact that this reduction seems low compared to comparative réported laboratory studies, further work on the effect of MCP under field conditions, under different climatic conditions, may be advisable before general conclusions about its effectiveness can be drawn.

NH3 flux densities were found to be significantly different (p<0.05) when 25%, 50%, 75% and 100% solutions of manure (on a per-volume basis) where applied to source plots. An approximate linear relationship $(r^2=0.95)$ was observed to exist between mean first day NH3 flux density and the corresponding applied dilution rate. This supports the assertion that NH3 losses are dependent upon the amount of ammoniacal-N or total-N applied, particularily on the first day after spreading.

First day volatilization losses from separated manure were greater than those observed from unseparated manure. On subsequent days this pattern reversed and losses from unseparated manure were significantly higher (p < 0.01) probably due to the fact that solid manure particles prevented the rapid movement of the volatile liquid fraction into the soil.

Simulated rainfall plots (2 mm prior to each 2 h

sampling run) appeared to reduce NH₃ losses by between 5% to 18% as compared to unwetted plots. Significant differences in their respective losses however, were not apparent (p >0.05). A more extensive investigation into the amount of rainfall required to suppress volatilization of NH₃ to a significant degree must be conducted.

References

Adamsen, F.J. and Sabey, B.R. 1987. Ammonia volatilization from liquid digested sewage sludge as affected by placement in soil. Soil Sci. Soc. Am. J. 51:1080-1082.

Adriano, D.C., Pratt, P.F. and Bishop, S.E. 1971. Fate of inorganic forms of N and salt from land-disposed manure from dairies. Pages 243-246 in Livestock waste management and pollution abatement. Livestock Waste Proc. (Columbus, Ohio) ASAE Publ. PROC-271, St. Joseph, Michigan.

Adriano, D.C., Chang, A.C. and Sharpless, R. 1974. Nitrogen loss from manure as influenced by moisture and temperature. J. Environ. Qual. 3: 258-261.

Agee, A. 1913. Crops and methods for soil improvement. The Macmillan Co., New York. 246-pp.

Beauchamp, E.G., Kidd, G.E. and Thurtell, G.W. 1978. Ammonia volatilization from sewage sludge applied in the field. J. Environ. Qual. 7:141-146.

Beauchamp, E.G., Kidd, G.E. and Thurtell, G.W. 1982. Ammonia volatilization from liquid dairy cattle manure in the field. Can J. Soil Sci. 62:11-19.

Bjorn-andersen, H. 1905. The loss of nitrogen in liquid manure and its prevention by means of superphosphate. Tidsskr. Landokonom. 3:160-169.

Blank, E. 1918. Studies on the nitrogen content of liquid manure. Landew. Vers. Sta. 91:5-6.

Bouldin, D.R. and Klausner, S.D. 1981. Use of nitrogen from manure. Cornell University, Department of Agronomy, Mimeo. # 81-19, 53 pp.

Boussingault, J.B. 1844. Economie rurale. Bechet Jeune, Paris. 648 pp.

Bouwmeester, R.J.B., Vlek, P.L.G. and Stumpe, J.M. 1985. Effect of environmental factors on ammonia volatilization from urea-fertilized soil. Soil Sci. Soc. Am. Proc. 49:376-381.

Bremner, J.M. and Mulvaney, C.S. 1982. Nitrogen-total. Pages 595-624 in M.L. Page, R.H. Miller and D.R. Keeney (ed.), Methods of Soil Analysis. Agronomy (2). Am. Soc. Agron. Madison, Wis.

Brunke, R., Alvo, P., Schuepp, P. and Gordon, R. 1988. Effect of meteorlogical parameters on ammonia loss from manure in the field. In press J. Environ. Qual.

Chao, T. and Kroontje, W. 1964. Relationship between ammonia volatilization, ammonia concentration and water concentration. Soil Sci. Soc. Am. Proc. 28:393-395.

Dawson, G.A. 1977. Atmospheric ammonia from undistured land. J. Geophys. Res. 21:3125-3133.

Denmead, O.T., Simpson, J.R. and Freney, J.R. 1974. Ammonia Flux into the atmosphere from a grazed pasture. Science (Wash. D.C.) 185:609-610.

Denmead, O.T., Freney, J.R. and Simpson, J.R. 1976. A closed ammonia cycle within a plant canopy. Soil Biol. Biochem. 8.161-164.

Dietzell, B.E. 1897. Experiments on the prevention of barnyard manure. Landrew. Vers. Stat. 48:163-187.

Donovan, W.C. and Logan, T.J. 1983. Factors `affecting ammonia volatilization from sewage sludge applied to soil in a laboratory study. J. Environ. Qual. 12:584-590.

Fenlon, D.R. and Mills, P.J. 1980. Stabilisation of pig slurry with lime. Agric. Wastes 2.13-22.

Harper, L.A., Catchpoole, V.R., Davis, R. and Weir, K.L. 1983. Ammonia volatilization: soil, plant, and microclimate effects on diurnal and seasonal fluctuations. Agr. J. 75. 212-218.

Hoff, J.D., Nelson, D.W. and Sutton, A.L. 1981. Ammonia volatilization from liquid swine manure applied to cropland. J. Environ. Qual. 10:90-95.

C.503

)

Hutchinson, G.L. and Viets, F.J. 1969. Nitrogen enrichmentof surface water by absorption of ammonia volatilized by cattle feedlots. Science 166: 514-515.

King, L.D. and Morris, H.D. 1974. "Nitrogen movement resulting from surface application of liquid sewage sludge. J. Environ. Qual. 3:238-243.

Kissel, D.E., Brewer, H.L. anf Arkin, G.F. 1977. Design and test of a field sampler for ammonia volatilization. Soil

Sci. Soc. Am. J. 41:1133-1138.

a see a substantion of the second second

Lajoie, P. and Baril, R. 1956. Les sols de l'Ile de Montreal, de l'Ile Jesus et de l'Ile Bizard dans la Province de Quebec. Queens Printer, Ottawa, Ont.

Lauer, D.A., Bouldin, D.R. and Klausner, S.K. 1976. Ammonia volatilization from dairy manure spread on the soil surface. J. Environ. Qual. 5:134-141.

Lemmermann, O. and Wiesseman, H. 1918. Investigations on the conservation of liquid manure by the addition of different materials. Landw. Jahnb. 52:297-341.

Lemon, E.R. 1978. Critique on: 'Soil and other sources of nitrous oxides.' In: Nitrogen in the Environment. Vol. I. Ed. Neilson, D.R. Macdonald Acad. press. 526 pp.

Liss, P.S. 1975. Chemistry of the sea surface microlayer. In (ed.) J.P. Riley and G. Skirrow, Chemical Oceanography. Vol. 2, 2nd ed., Academic Press, New York.

Mathers, A.C. and Stewart, B.A. 1970. Nitrogen transformation and plant growth as affected by applying large ammounts of cattle feedlots waste to soil. Cornell University Conference on Agricultural Waste Management Proc. p. 207-214.

McGarity, J.W. and Rajaratnam, J.A. 1973. Apparatus for the measurement of losses of nitrogen as gas from the field and simulated field environments. Soil Biol. Biochem. 5.121-131.

McInnes, K.J., Ferguson, R.B., Kissel, D.E. and Kanenasau, E.T. 1986. Field measurements of ammonia loss from surface applications of urea solution to bare soil. Agron. J. 78:192-196.

Midgley, A.R. and Weiser, V.L. 1937. Effect of superphosphate in conserving cow manure. Vermont Agr. Expt. Station Bulletin 419,29pp.

Monin, A.S. and Yaglom, A.M. 1971. Statistical Fluid Mechanics: Mechanisms if Turbulence. Vol. 1. Transl. from Russian. MIT Press. 769 pp. (Data for smooth walls are given on p. 280; a general discussion for atmosphewric turbulence near wall in section 8.5).

Muck, R.E. and Herndon, F.G. 1985. Hydrated lime to reduce manurial nitrogen losses in dairy barns. Trans. of the ASAE 28:201-208.

NIOSH Manual of Analytical Methods 1979. 2nd ed., V.5, 5347, U.S. Dept. of Health, Education and Welfare, Publ. (NIOSH) 79-141.

Nolte, W. 1922. Conservation of liquid manure with waste gypsum. Mitt. Deut. Landew. Gesellshaft 37:41-42.

Robston, D.E. 1978. Application of gaseous diffusion theory to the measurement of denitrification. In: Nitrogen in the Environment. Vol. I. Ed. Neilson, D.R. Macdonald, Acad. press. 526 pp.

Ryan, J.A. and Keeney, D.R. 1975. Ammonia Volatilization from surface applied wastewater sludge. J. Water Pollut. Control Fed. 47:386-393.

Safley, L.M., Nelson, D.W. and Westerman, P.W. 1983. Conserving Manurial Nitrogen. Trans. of the ASAE 26:1166-1170.

Salter, R.M.' and Schollenberger, C.J. 1938. Farm manure Pages 445-461, in Soils and Men, 1938 Yearbook of Agriculture. U.S. Government Printing Office, Washington, D.C.

Severin, S.A. 1904. Gypsum as a means of preventing loss of ammonia in the decomposition of manure. Centbl. Bakt. U. Par. 2:389-396.

Simpson, J.R. 1981. A modelling approach to the nitrogen cycling in agro-ecosystems. In: Wetselear, R., Simpson, J.R. and Rosswall, T. (eds.), Nitrogen Cycling in South-East Asian Wet Monsoonal Ecosystems. pp. 174-179. Austrailan Academy of Science, Canberra.

Sprengel, C. 1839. Die Lehre vom Duenger. J. Mueller, Leipzig. 456 pp.

Stewart, B.A. 1970. Volatilization and nitrification of nitrogen under simulated cattle feedlot conditions. Environ. Sci. Technol. 4: 579-582.

Thorne, C.E. 1930. The mainteneance of soil fertility. Orange Judd Publishing Co., London, 332 pp.

J.S. and Mackenzie, A.F. 1987. Effect of Tomar, Added Phosphorous and Aeration on Nitrogen and Phosphourous Retention by Hog Manure. Accepted for publ. C. J. Soil Sci.

Vivien, A. 1905. Barnyard manure. Monit. Sci. 4.

Vlek, P.L.G., Fillery, I.R.P. and Burford, J.R. 1981. Accession, transformation and loss of nitrogen in soils of the arid region. Plant Soil 58: 133-175.

Wilson J.D., Thurtell, G.W. and Kidd, G.E. 1981. Number simulation of particle trajectories in inhomogeneous turbulence, I: System with constant turbulent velocity scale. Boundary-Layer Met. 21:295-313.

J.

Wilson J.D., Thurtell, G.W., Kidd, G.E. and Beauchamp, E.G. 1982. Estimation of the rate of gaseous mass transfer from a surface source plot to the atmosphere. Atm. Environ. 16:1861-1867.

Wilson, J.D., Catchpoole, V.R., Denmead, O.T. and Thurtell, G.W. 1983. Verification of a simple micrometeorological model for estimating the rate of gaseous mass transfer from the ground to the atmosphere. Agric. Meteorol. 29:183-189.

Wissenlink, W.H. 1921. Changes in stable manure and methods of their prevention. Tydschr. Nederlad. Heidemactsh. 33:81-92.