
1

1

-1

On Necessary and Nonconflicting
Assignments in Aigorithmic Test Pattern

Generation

Henry Cox

B. Eng .. McGiII University, 1986

Department of Electrical Engineering
Mc Gill University

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the de(l;ree of

Doctor of Philosophy

April 1991

© Henry Cox

1
Abstract

Necessary. nonconflicting. and arbitrary assignments can be distinguished during

algorithmic test pattern generation. A necessary assignment is one which must be made in

order to find a test-there is no test in the half-space defined by the opposite assignment.

Certain other assignments are noncontlicting in the sense that they narrow the search space

and never lead to backtracking-if the fault is testable. then there is at least one test vector

in the half-space defined by the assignment. The remaining assignments are arbitrary­

the y may or may not lead in the direction of a test and may or may not cause backtracking.

Since nec€ssary and nonconflicting assignments do not lead to backtracking. an efficient

test pattern generation algorithm should determi'le and apply them prior to any arbitrary

branehing.

This thesis presents algorithms based on the mathematical properties of images and

inverse images of set functions to identify necessary and nonconflicting assignments in com­

binationallogie circuits. Issues relating to the efficient implementation of these algorithms.

are addressed from both a theoretieal and praetical perspective. Experimental results ob­

tained on a variety of benehmark circuits show that algorithmic assignment identification

can be used to reduce or eliminate backtracking in automatic test pattern generation.

l
Résumé

L'on peut discerner troIS types d'allocations lors de la production d'échantillons pour

fin de test: nécessaires, non-conflictuelles, et arbitraires. Une allocation nécessaire est

une allocation qui doit être faite pour résulter en un test. C'est-à-dire qu'il n'y a pas de

test possible dans l'espace défini par J'allocation inverse. O'autres allocations sont non­

conflictuelles dans le sens qu'elles diminuent l'espace de recherche pour un vecteur de test

et qu'elles ne requièrent pas de réojustements une fOIs l'allocation décidée. Si une faute est

vérifiable par t~st, alors il existe au moins un vecteur de test dans le sous-espace défini par

une allocation non-conflictuelle. Les allocations arbitraires sont incertaines. Il est possible

qu'elles mènent à des réajucotements (une revision de l'allocation dans un temps futur)

Étant donné que les allocations nécessaires et non-conflictuelles ne nécessitent jamais de

réajustements, un algorithme efficace pour la production de vecteurs de test devrait les

considérer avant les allocations arbitraires.

Cette thèse présente des algorithmes basés sur les propriétés mathématiques des

images et des images inverses des fonctions sur les ensembles. Ces algorithmes s'appliquent

pour identifier les allocations nécessaires et non-conflictuelles dans les circuits de logique

combinatoire. La réalisation efficace de ces algorithmes, du point de vue théorique et

pratique, ~st étudiée. Des résultats expérimentaux sont donnés pour plusieurs circuit!,

étalons. Ces résultats démontrent que l'on peut réduire ou éliminer les réajustements dans

la production automatique d'échantillions pour fin de test.

ii

l
Acknowledgements

1 would like to thank my supervisor, Janusz Rajski. for his assistance and guidance

throughout my studies. His vision and enthusiasm are greatly appreciated and cannot be

overemphasized.

1 am also grateful for the assistan .e and support of my friends in both the VLSI Design ,
Lab and the Robotics Lab at McGill. Ir partlcular. 1 would like to thank Mike Parker (der

Mouse), who seems to know an efficient way to code any algorithm and whose knowledge

of the UNIX environment i5 legendary. RoI) Aitken and Fadi Maamari havp. been sources of

many usefuJ ideas and discussions. 1 woul-t.\ also like to thank ail the other memt:.ers of the

lab. past and present. for making it both ô stimulating and enjoyable place to work over

the last 5 years.

1 would like ta acknowledge the generOll\,; financial support provided me by the Nat­

ural Sciences and Engineering Research Coum. il of Canada and the Centre de recherche

informatique de Montréal.

Finally, 1 would like to thank Sally Duscha fOI' putting up with a lot while 1 was coding

the algorithms and preparing this manuscript as weil as for proofreading above and beyond

the cali of duty. 1 have it on reliable authority that it is not much fun to be around me

when 1 am debugging. 1 would also like to thank Dudley and Clara for giving me an excuse

to stop work and go to the park for a few minutes.

iii

Claim of Originality

The author daims originality for the following contributions of this dissertation:

The new concept of reduction lists. based on the mathematical properties of images

and inverse images of set functions. is introduced. The properties of reductlon lists are

studied and algorithms to compute them are presented. Applied to the problem of automatlc

test pattern generation. the reduction lists are used to identlfy necessary assignments

Necessary assignments are those assignments which must be made in order to generate a

test pattern-no test exists in the space defined by the alternate assignment(s). Reduction

analysis is unifying in the sense that ail other methods of identifymg necessary assignments.

including conventional backward implication. dominator identification. and learning. are

special cases of this general concept.

The new concept of tendency lists. based on mathematical properties of monotonic­

ity (unateness) of Boolean functions. is defined and algorithms to compute tnem are pre­

sented. The tendency lists are used to identify a novel dass of algorithmic assignments

during automatic test pattern generation termed nonconflicting assignments Nonconflict­

ing assi&nments lead in the direction of a test pattern by narrowing the remalOing space

which must be searched. but are guaranteed never to need to be backtracked.

These algorithmic assignment identification techniques imply that a global analysis

of the effect of assignments to nodes in the circuit under test car, be performed by a local

computation at individual gates in the net\'work. This information (..êm be used to identify

several classes of algorithmic assignments during test pattern generatior .. The global nature

of the cornputation is achieved through the indexation of the nvde asslgnments analysed.

which then propagate throughout the network on locally computed lists

Structural properties of the circuit under test determmed by an analysI5 of rec.onver­

gent fanout are exploited to hmlt the number of asslgnments whlCh are analy~('d and the

area of the circuit which is processed ln order to reduce the amount of computation reqlmed

to identify necessary and nonconfhcting assignments The use of preprocessed reductlon

iv

l

.. '

Clalm of Originallty

information including gener;c reduction lists and propagate ass;gnments to further reduce

required computation i$ discussed.

A new test pattern gelleration algorithm is developed. The core of QUEST algorithm

is the identification of necessary and nonconflicting assignments. Arbitrary branching is

delayed as long as possible to avoid making assignments which may lead to backtracking.

Necessary and nonconflicting assignments are extracted iteratively until a test pattern is

generated or no more algorithmic assignments can be found. at which point an arbitrary

branch is made. If a conflict is detected. then a backtrack is perforrned to reverse the

most recent arbitrary assignment. After each arbitrary branch or backtrack. algorithmic

assignments are again identified. The algorithm is complete: the process continues untiJ a

test pattern is generated or the target fault is proven to be untestable .

v

J.

Table of Contents

Table of Contents

Chapter 1 Introduction. .. 1

1.1 The role of test pattern generation " 3

1.2 Outline of dissertation 5

1.3 Notation conventions .. . 7

1.4 Publication history " 7

Chapter 2 An overview of algorithmic test pattern
generation .. 9

2.1 logic systems for test generation .. 10

2.2 Necessary assignment identification techniques , 18

2.3 Developments in nonconflictmg assÎgnmen1 identification 22

2.4 Deterministic test generation algorithms .. 23

Chapter 3 Images and inverse images of set functions.. 27

3.1 Images of set functions: forward propagation. 27

3.2 Inverse images of set functions: backward implication , 30

3.3 limitations cf set functions . 34

Chapter 4 Reduction list calcul.;;ttion: a method to identify
necessary assignments 37

4.1 Reduction lists and necessary assignment identification 40

4.2 logical constraints and propagation of implications. 48

4.3 General theorem of reduction. Sl

4.4 Stem correlation , S3

4.5 Complexity of test ~attern generation and the computation of
reduction lists

Chapter 5 Exploiting circuit topology in efficient
identification of necessary assignments ...

5.1 Structural analysis of reconvergence ln combmatlollal CIrcUIts

5.2 Candidate asslgnment Identification

5.3 Region of propagation

56

59

59

61

69

vi

Table of Contents

Chapter 6 A method to identify nonconflicting assignments
based on Boolean function monotonicity 71

6.1 Generalized function monotonicity arld tendency lists 72

6.2 Tendency lists and nonconflicting assignmel1ts ' 74

6.3 Pessimism in the tendency analys:s , 78

Chapter 7 The QUEST test patt~rn generation algorithm..... ... 82

7.1 Organization of the test pattern generation system 83

7.2 Preprocessed information ... , 84

7.3 Experimental results ... , 89

Chapter 8 Conclusions .. , 94

Chapter 9 References. .. 95

vii

List of Figures

List of Figures

1.1 Notation conventions. 7

2.1 Test pattern generaf.ion using a 5-valued alphabet. 11

2.2 Test pactern generation llsing a 9-valued alphabet. 12

2.3 Test pattern generation .JSII'lg the SPLIT circuit model 13

2.4 Test pattern generation using a 16-valued alphabet

2.5 Classical backward implication

2.6 Unique sensitization in the FAN algorithm

2.7 Learning in SOCRATES .. .

3.1 Images for a 2-input AND gate

3.2 Forward propagation ln a circuit

3.3 Inverse images for a 2-input AND gate

3.4 8ackward implication in the circuit from Fig. 3.2

3.5

3.6
Pessimism in the forward implication step

Three implementations of the exclusive-or function and corresponding

15

18

19

20

27

30

30

33

34

characteristic equations 35

4.1 Test pattern generation for 1~1 38

4.2 The search forest 38

4.3 The AND- OR graph of justification points , 42

4.4 Reduction list calculation in a drcuit 44

4.5 Reduction list calculation with partially determined circuit values 45

4.6 Necessary assignments in the region of the D symbol 46

4.7 Test generation for B,Jo'

4.8 Circuit nodes with associated ~ _J··~tion hsts

4.9 Test generation for fault Iso'

4.10 Value justification of a full adder

4.11 Correlation of asslgnments

4.12 Stem correlation ln the D-reglon-propagation of the fault efTect

47

48

50

50

54

55

viii

,(

"

"

--------------,--.. ~----

4.13

4.14

5.1

5.2

5.3

5.4

5.5

').6

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

List of Figures

Stem correlation in the D-region-no propagation of the fault
effect " 5S

A 2-input trivial function .. 57

Candidate assignment identificë:ltion .. 62

Transier of requirements from one justification POI"t to another 65

i'>remise: No stems eXlst whose stem regions include Ji and at least

one other justification point .. 66

Propagation of gate assignments 67

Test generation for z~O • • . . • . • . . • • • • . . • • •. 68

Property 5.5: the region of reduction list propagation .,. 69

Pruning assignments .. , .. 71

Test gefleration for CSQ •• 76

Nonconflicting assignment identification in redundancy
identification. 77

Test generation for ES1•....••............. , 79

Test generation for ES1 80

The QUEST test pattern generation algorithrn .. 83

Propagate assignment identification. .. 87

Propagate assignments example .. 87

ix

List of Tables

List of Tabl~s

2.1 Gate functions: B~ x B~ -+ B~ 10

2.2 Gate fLinctions in a 5-valued algebra 11

2.3 Gate furll.;:': .. ms in a 9-valued algebra .. 12

2.4 Gate functions in an l1-valued algebra. .. 13

2.5 Three codings of a 16-element alphabet 15

2.6 Comparison between algebras .. 16

3.1 Gate functions in û 16-valued logie system: B16 x B
16

-+ B
16

. 29

3.2 Inverse images in B 16 33

7.1 Experimental results 90

7.2 The effect of nonconflicting assignments 92

x

Chapter 1 Introduction

With the increasing complexity of VLSI circuits and the growing demand for very

high shipped product quality and reliability, test has become one of the most important

and costly phases of integrated circuit production. Test pattern generation, whether manual

or automatic, is a key part of any test methodology. Extremely high quality requirements.

measured in single defective parts per million. have made it essential to find test patterns

for ail testable faults while identifying ail untestable faults in order to guarantee complete

coverage by the test set.

The processes used to fabritate integrated circuits are both very complex and im­

perfecto Only sorne of the circuits produced work correctly. as random defects introduced

during the fabrication protess cause a portion of them to fail. These failures may be logical

in that they change the function of the faulty circuit. or parametric in that sorne operat­

ing parameter of the circuit, such as current drive capability. output voltage leve!. etc.. , is

affected [Ravi87. ShMaFe85. McCMou87]. The goal of testing is to screen out defective

circuits so that only fault-free ones remain. This goal can be very difficult to achieve, as

the circuits may contain hundreds of thousands or millions of potentially faulty individ­

ual devices yet have only a few hundred signais which can be directly stimulated and/or

observed.

Testing is performed by applying a set of input patterns to the circuit. a test set.

which differentiates between fault-free and faulty CIrcuits-I.e. a faulty circuit will behave

differently than a fault-free circuit when the test set is applied. For the pur poses of this

l

Introduction

discussion. it is assumed that the circuit design is correct in the sense that if perfectly

fabricated. the circuit would perform exactly according to specifications.

Techniques for obtaining a test set can be broadly categorized as (unct;onal or struc­

turaI testing. Functional testing attempts ta verify that the circuit under test performs

properly. without reference to the way the circuit itselt was designed and fabricated or the

defects it is subject to (ThaAbr80. LaiSie83. AbBrFr90). Although functional tests for cer­

tain types of regular structures such as memories thoroughly test the devices (NaThAb78).

functional tests for less regular designs often cover an unacceptably low numbpr of phys­

ical defects [Klug88. AbBrFr90}. Structural testing attempts to ver if y that the individual

devices within the circuit work properly and that their connectivity is correct. and th us that

the circuit as a whole is fault-free (AbBrFr90).

Structural testing usually makes use of a fault model which is intended as a high-Ievel

abstraction that represents the actual defects which the circuit under test may experience.

Many different fault models have been proposed. of which the most common is the single

stuck-at (SSA) mode!. origin,illy proposed in [Eld59). in which it is assumed that ail fab­

rication defects can be model~d by a single line in the circuit which permanently carries a

logic a or logie 1. Many authors have questioned the applicability of the stuck-at model and

have proposed alternate fault models-among them. MOS stuck-open and stuck-on faults

[Wad78). bridging faults [Mei74). transition faults (WaLiRoly87) and crosspoint faults in

programmable logic arrays [Smith79)-which may more accurately represent device failures,

The most common justification for the c.ontinued use of the stuck-at fault model is that

test sets developed under the stuck-at fault model tend to be excellent tests for other types

of faults as weil (termed "windfall coverage") [WiIPar83]. Once a particular fault model is

chosen. the quality (or goodness) of the test set is measured by the (ault caverage-the

proportion of faults from the fault mode! which are detected by the test-and has a direct

impact on the defect leve/-the number of faulty circuits which are incorrectly declared

good [WilBro81].

Digitallogic circuits can be dlvlded into two classes. combinatlOnal CIrCUits, whose

output depends only on their current input. and sequential circuits. whose output depends

2

l

(

1.1 The role of test pattern generation

Oil both their cu"rent input and internai state. determined by previously applied input

patterns. Sequential circuits perform a i'kh set of useful tasks which often cannot be

performed by combinational circuits. Consequently. most circuits which are produced are

sequential. Unfortunately. testing sequential circuits is significantly more difficult than

testing combinational ones. as their memory must be considered [Kautz68. BoHsPu71].

This implies that the entire sequence of test patterns must be treated as a whole in

sequential t.:sting. rather than a single vector at a time in combinational testing. In addition.

changes to the internai states and the transitions between them due to the presence of faults

must be taken into account.

To cope with the complexities of analysing sequential circuits. structured design for

testablility techniques have been used to convert sequential circuits into pseudo-combina­

tional circuits during test mode by making the memory elements directly controllable and

observable [And080. FuKaYa89. Stew77. WilAng73. EicWil77). At the s~me time. scan de­

sign techniques have created a new set of extremely large "combinational" circuits. prompt­

ing a great deal of interest in efficient tools for combinational circuit testing.

1.1 The role of test pattern generation

Within the context of structural testing with a given fault model. there are two

basic methods to obtain test: methods based on fault simulation of a set of patterns­

for example. a set of random or pseudo-random patterns with [ScLiCa75. MuAgND90] or

without input weighting [BaMcSa87. Golomb87. HorMcL89]-and methods based on test

pattern generation [Roth66. Goel81. FujShi83. KirMer87. SchAut89]. Regardless of the

chosen technique. however. deterministic test pattern generation plays a vital role.

It is sufficient to find a test pattern for each testabl~ fault using any available

technique--for example. either deterministic test generation or random pattern fault sim­

ulation can be used. However. in order to prove that a faLlt is untestable. it is necessary

to prove that no test pattern exists for the fault. Redundancy identification cannot usually

be done using fault simulation-based techniques in an acceptable amount of time. as the

number of patterns which have to be fault simulated in order to exhaust the search space is

3

1.1 The role of test pattern generatlon

huge-2 fL patterns for an n-input combinational circuit. for example. In addition, testable

faults which are extremely unlikely to be covered by random test patterns exist {Wun881;

generally, tests for these faults must be found deterministically.

The goal of deterministic test pattern generation is to find a test vector (or sequence

of test vectors) for a given target {ault from the fault model which will distinguish between

a fault-free circuit and a circuit which contains the fault-i.e. the output of the circuit

under test will differ depending whether or not it contains the fault. The target fault is

un testable if no such test vector (test sequence) exists.

Test pattern generation can be viewed as a branch and bound problem [GoeI81}:

test generation algorithms usually search for a test pattern by systematically branching

and bounding until either a vector is discovered or the search spac~ IS exhausted. Even for

combinational circuits. the test generation problem is NP-ccmplete [FujToi82, GarJoh78]­

in the worst case, ail known test pattern generation algorithn.~ will require exponential time

to find a test vector or prove that none exist.

Oeterministic test pattern generation is a process of progressively translating a set

of required values at sorne nodes in the circuit to a new set of requirements at other no dt:::

which satisfy the original requirements, but are closer to primary inputs. A test pattern has

been successfully generated when ail requirements are satisfied by assignments to primary

inputs. The fault has been proven untestable if no test pattern exists which will satisfy the

requirements.

This thesis characterizes three types of assignments made during the course of de­

terministic test pattern generation. A necessary :Jssignment to anode (a150 termed a

"mandatory assignment'· in [KirMer87) and "single pruning" in [RobRaj88)) is one which

must be made in arder to find a test-there is no test pattern in the space defmed by

alternate assignment(s) to the node. Viewed as a brandi decision. assigning any other

value to the node is equivalent to branching into an area of the search space whlCh does

not contain a test pattern. guaranteeing that a bound step must evenlually be Llken A

nonconflicting assignment (termed "monotone prunmg" in [RobRaj88]) 15 one whlCh leads

in the direction of a test by restricting the space which remains to be searched, but never

4

1.2 Outline of dissertation

needs to be backtracked. If the fault is testable. then a test vedo, is guaranteed to be

found in the space definen by the nonconflicting assignment. The remaining assignments

are arbitrary or branch assignments-they may or may not lead to a test pattern. and

must be backtracked if a test cannot be found after they have been assigned.

A general theory describing the identification of necessary and nonconflicting assign­

ments. based on the mathematical concepts of images anrl inverse images of set functions.

is developed in this thesis. New techniques to identify necessary and nonconflicting as­

signments in deterrninistic test pattern generation are presented. The identification of

necessary and nonconflicting assignments is algorithmic in the sense that there is no ele­

ment of choice or luck in the computation. no reliance on heuristics. and no possibility of

these assignments causing a backtrack if the fCiult i5 testable.

Issues relating to the efficient irr, .. ementation of the algorithms are presented From

both a theoretical and practical point of view. In particular. the concept of stem regions

[MaaRaj90) is applied 1\l the problem of necessary and nonconflicting assignment iden­

tification to reduce both the memory and processing time required to find them in an

implementation-independent fashion.

The goal of this research is to reduce or eliminate backtracking during test generation

for any target fault in any circuit using algorithmic techniques rather than heuristics. To

this aim. necessary and nonconflicting assignments are extracted iteratively until either

the fault is tested. proven to be untestable. or no more algorithmic assignments can be

found. at which point an arbitrary assignment (branch decision) is made. By making

as few arbitrary assignments as possible through putting off branching. the potential for

backtracking is reduced.

1.2 Outline of dissertation

The body of this thesis is divided into six chapters. as follows:

Chapter 2 reviews developments in test pattern generation over the last two decades in

light of the work presented in this thesis. The review focuses on four topies: logic systems.

5

1.2 Outil ne of dissertation

identification of necessary assignments. identification of nonconflicting assignments. and

deterministic test pattern generation algorithms.

Chapter 3 reviews the theory of images and inverse images of set functions. the basis

of the algorithms to identify necessary and nonconflicting assignments presented in thls

the!iis. Although the concepts of images and inverse images themselves are not new. the

application to deterministic test pattern generation is nove\. Throughol..' l ~-j;S thesÎs. the

discussion and txamples use a 16-valued algebra to describe the steps of a test pattern

generation algorithm. However. the definitions and theorems developed are independent of

the logic system in use. and are valid for any other algebra as weil. including conventlonal

5. g. and ll-valued systems. Using a difTerent logie. system enhances or restricts the ability

of the algorithm te distinguish cases which arise during test pattern generation. but does

not change the nature of the problem-the underlying theory is valid in ail cases.

Chapter 4 generaliz~s and formalizes necessary assignment idenUication using the

concept of reduct;on lists. The work is unifying in the sense that ail other proposed

necessary assignment identification techniques. including c1assical implication. dominator

identification and "Iearning" are special cases of this general concept.

Chapter 5 addresses issues relating to the efficient implementation of the algorithms

to identify necessary assignments. The use of structural properties of the circuit under

test to reduce the computation and memory required to identify necessary assignments is

discussed.

A generalized theory of BooJean function monotonicity is developed in chapter 6 and an

algorithm to compute tendency lists. from which nonconflicting assignments are identifled.

is presented.

Fina/ly. a new test pattern generation algorithm. QUEST. whlch exploits nec.essary

and nonconflicting assignments is described and experimental results obtatned by the al­

gorithm when run on a variety of benchmark Circuits are presented ln chapter 7

Chapter 8 concludes the dissertation.

6

(
...

...

1.3 Notation conventions

1.3 Notation conventions

Throughout this thesis. prirnary inputs and gates are labeled with capital letters:

fanc.ut branches are labeled serially with lower case letters corresponding to their stem.

For non-stem circuit nodes. gates are referred ta by their label (upper case letters) whereas

their output lines are referred ta by the corresponding lower case letters.

The stuck-at fault model. used throughout this thesis. assumes that faults in the

network are represented by a line (or lines) in the circuit under test which permanently

propagate a constant logic value-O for a "stuck-at zero" (so) fault and 1 for a "stuck-at

one" (81) fault-regardless of the signal applied to the line. The fault "Iine l stuck-at 1" is

represented by "181 ": fault "1 sluck-al 0" is represented by "Iso". Multiple stuck-at faults

are represented by the list of their component single stuck-at faults.

Figure 1.1 Notation conventions

Example 1.1: The 2-input MUX in Fig. 1.1 iIIustrates the notation conventions used in

this thesis. Two faults are present in the network: b1 s1 and dso '

1.4 Publication history

The material contained in the chapters of this thesis discussing the 16-valued logic

system for test generation (chapter 3). the identification of necessary assignments (chapter

4). and the experimental results obtained by the QUEST test pattern generation algorithm

(section 7.3) have been published in the Proceedings of the 1990 International Test Con­

ference [RajCox90]. A comprehen~lve paper dlscussing necessary and nonconfllctrng as­

signment identification. properties relating to an efficient implementation. and the QUEST

7

1 4 Publication hislory

algorithm has been submitted to IEEE Transactions on Computer-Aided Design [CoxRaj91)

and is currently un der review.

ln addition. several papers discussing the application of a 16-valued logie system to

the problems of multiple fault coverage analysis for test pattern generation and failure diag­

nasis have been published [RajCox86a. RajCox86b. CoxRaj87]. of which the most complete

discussion is found in (CoxRaj88). The logie system used is isomorphic to the one pre·

sented in chapter 3. The algorithm ta identify dominators described in section 7.2.2 was

first presented in [CoxRaj87).

•

8

Chapter 2 An overview of algorithmic test pattern generation

Test pattern generation has been studied widely for the past three decades or more.

Sinc.e Roth's classic paper [Roth66). many test pattern generation algorithms have been

proposed. In this chapter. key developments in algorithmic test pattern generation for com­

binational circuits are reviewed from the perspective of their r4'\lation to the ideas presented

in this thesis: the identification of neeessary and nonconflicting assignments.

The choice of logic system (or alphabet) used by a te_~ pattern generation algorithm

has a major impact on its organization and efficieney. Therefore. it is necessary to review

the logie systems for test generation which have been proposed before the algorithms

themselves can be discussed. Section 2.1 reviews conventional 5 [Roth66). 9 [Muth76).

and U-valued (Cheng88] logie systems. In order to take advantage of formai concepts

developed for Boolean algebras. a 16-valued logie system [Akers 76. Raj8S] is used by the

algoritl.ms for combinational test pattern generation presented in this thesis. The benefits

of a 16-valued system are demonstrated through examples of faults which are not properly

handled by other logie systems.

The algorithmic assignment identification techniques used by various test pattern

generation algorithms are reviewed in sections 2.2 and 2.3. while the heuristics used by

the algorithms are ignored. The categorization of assignments made during test pattern

generation into necessary. nonconflicting. and arbitrary asslgnments and methods used for

their identification is the basis for the differentlatlon between test generatlon algorrthms

found in se-;tion 2.4.

2.1 logic systems for test generation

2.1 Logic systems for test generation

The two-element Boolean algebra B~ = {O, 1} is widely used to analyse switching

circuits. and is suffieiently precise to deseribe the behaviour of a fault-free eombinational

circuit. However. in order to describe the behavior of a possibly faulty circuit. a four-element

Boolean algebra. B~ = {O(O),O(1),1(O).1(1)}. where a(b) indicates that the response in

the fault· free circuit is a and in the faulty circuit is b. is required. Using the D-symbols

[Roth66]. B~ = {O,D, D, 1}. The function of a 2-input gate is described as a mapping

B~ x B~ -+ B~. The functions AND and OR are shown in Table 2.1.

0 D iJ 1 0 D D 1
0 0 0 0 0 0 0 D D 1
D 0 D 0 D D D D 1 1
D 0 0 D D D D 1 D 1
1 0 D D 1 1 1 1 1 1

a) AND gate b) OR gate

Table 2.1 Gale functions: B~ x B~ B~

The symbols O. 1. D. and D describe the logie values at nodes in potentially faulty

circuits in response to an applied input vector. During the course of test generation.

however. these values can appear at circuit nodes in varlous combinations. For example.

each primary input may be assigned to either 0 or 1 in the final test vector which IS

generated. but before the test pattern is determined. it is not known to which of the

possible values it will be assigned. logic systems differ in the way they represent the

combinations of signal values which arise during test generation and in their abihty to

distinguish between them.

The use of an appropriate algebra tan aid the test generation algorithm; simllarly.

an inappropriate algebra can hinder it. Comparisons between algebras typlcally focus on

the number of elements each contains. the space reqUired to store Circuit values. and the

time required to mampulate them A better compaflson 15 the abdlty of the logl< system to

resolve circuit values during test pattern generatlon Increased resolutlon may reducf! the

10

2.1 logic systems for test generation

amount of branching and backtracking performed by the test generation algorithm. l'educing

both CPU time and storage requirements despite using more values.

2.1.1 5-valued logic system

0 D D 1 X 0 D D 1 X
0 0 0 0 0 0 0 0 D D 1 X
D 0 D 0 D X D D D 1 1 X
D 0 0 D D X D D 1 D 1 X
:t 0 D D 1 X 1 1 1 1 1 1
X 0 X X X X X X X X 1 X

a) AND gate b) OR gate

Table 2.2 Gate funetions in a 5-valued algebra

A
X B G

01 D

C ~ 80 K ~
F D H

0 X

E

Figur'e 2.1 Test pattern generation l1sing a 5-valued alphabet

ln the 5-valued alphabet A5. the basic symbols O. 1. D. and D are each represented

individually. while the combinations of values are ail represented by the same symbol. X

(unknown). The 5-valued alphabet. AS = {D, 1, D, D, X}. has been used in many ATPG

algorithms [Roth66. FujShi83. Goel81. SchAut891. Table 2.2 iIIustrates the function of 2-

input AND and OR gates. giving the output value for each possible combination of input

values. Wh en targeting (attempting to generate a test for) Cso in the circuit from Fig. 2 1.

most circuit values are quickly determmed to be X. Aside from C = 1. required to sensltlze

the fault. no necessary assignments can be identified. Several arbitrary branch decisions.

each of which may or may not lead ta a backtrack. must be made before a test vector can

be found.

11

2 1 logic systems for test generatiol1

00 10 01 11 xO Ox xl lx xx 00 10 01 11 xG O:r xl lx Xl'

00 00 00 00 00 00 00 00 00 00 00 00 10 01 11 xO Ox xl lx xx
10 00 10 00 10 xO 00 xO 10 xO 10 la 10 11 '0 10 lx xl lx xx
01 00 00 01 01 00 Ox 01 Ox Ox 01 01 11 01 11 xl 01 xl llx1
11 00 10 01 11 xO Ox xl lx xx 11 11 11 11 11 11 11 11 1111
xO 00 xO 00 xO xO 00 xO xO xO xO xO 10 xl 11 :rD :rx xl !xxx
Ox 00 00 Ox Ox 00 Ox Ox Ox Ox Ox Ox lx 01 11 xx Ox xl lx XI

xl 00 xO 01 xl xO Ox xl xx xx xl xl 11 xl 11 xl xl xl 11 xl
lx 00 10 Ox lx xO Ox xx lx xx lx lx lx 11 11 10 lx lx lx lx
xx 00 xO Ox xx xO Ox xx xx xx xx xx lx xX 11 xx xx xl lx xx

a) AND gate b) OR gale

Table 2.3 Gate functions in a 9-valued algebra

A

z/X B G
." '/b

C r/r 90
F o/t H

K %/1.

0 Z/X

E

Figure 2.2 Test pattern generation using a 9-valued alphabet

2.1.2 9-valued logie system

The 9-valued alphabet Ag = {OO, 11,10,01, xO, Ox, lx, xl, xx}. where ab indicates the

value in the fault-free circuit is a and in the faulty circuit is band "x" indicates unknown-­

the value in the fault-free (faulty) circuit may be either 0 or I 1-has also been proposed for

test pattern generation (Table 2 3) IMuth76]. Compared ta A5. Ag has a unique symbol

to represent four additional combinations of Signai values. A test generator employmg A9

[ChaDonOzg78. JaMoChHa89. KlrMer87) encounters a similar problem when generatmg

a test for C"o (Fig. 2_2) as do those whlch use A5' no necessap: assignments can be

identified. and several arbitrary branches must be made before a test I) • .lltern can be found

1 Note that the x symbol used by A9 IS Ilot the same as the X used by A5 ln A9 r r!('I1()!(". th,,! Ihl'
value in the fault-free (faulty) machIne 15 unknown. Independent of the value ,n the falllty (f~,,1t freel
machine. whereas il' A5."X denOLes that the comblnatlon of pOSSIble loglt value,,> tarned by the
node in the potentiahy faulty CIrCUIt is unknown-s'ee Table 26

12

2.1 logic systems for test generation

OOE lOD OID 11E xOU OxU xlU bU xxD xxE xxU
OOE OOEOOEOOEOOEOOEOOEOOEOOEOOEOOEOOE
IOD ODE IOD OOE IOD xOU OOE xOU lOD xOU xOU xOU
OID OOE OOE OID QID OOE OxU OID OxU OxU OxU CxU
11E OOE IOD OID HE xOU OxU dU bU xxD nE xxU
xOU OOE xOU OOE xOU xOU OOE xOU xOU xOU xOU xOU
OxU ODE OOE OxU OzU ODE OxU OxU OzU DrU OxU 01'U
dU OOE xOU 0ID xlU xOU OxU xlU xxU xxU xxU xxU
bU OOE IOD OxU bU xOU OxU xxU bU xxU xxU xxU
xxD ODE xOU O:tÜ xxD xOU OxU xxU xxU xxU xxU xxU
xxE ODE xOU OxU xxE xOU OxU xxU xxU x'CU xxE xxU
xxU OGE LOU OxU xxU xOU OxU xxU xxU xxU xxU xxU

a) AND gate

OOE IOD OID llE xOU OxU xlU lxU xxD xxE xxU
OOE ODE IOD OID 11E xOU OxU xlU bU xxD xxE xxE
lOD IOD IOD HE lIE lOD bU llE lxU bU IxU bU
OID 01D HE OID HE xlU OtD xlU HE xlU xlU xlU
11E HE HE 11E HE 11E llE llE 11E l1E llE 11E
xOU xOU IOD xlU 11E xOU xxU xlU bU xxU xxU xxU
Ox" OxU lxU OID HE xxU OxU xlU bU xxU xxU xxU
dl..> dU llE xlV HE xlU xlU llE 11E .dU xlU xlU
lxU bU 11:U llE llE bU lxU IlE IxU lxU !xU lxU
xxD xxD IxV xlU HE xxU xxU xlU IxU xxV xxU xxU
xxE xxE IxU xlU HE xxV xxV xlU IxU xxU xxE xxV
xxU xxU IxU xIU llE xxU xxV :z:lU !xV xxU xxV xxV

(b) OR gate

Table 2.4 Gate functions in an H-valued algebra

A Z/Z~

B ____ z..;.~.....;'/Z~r-'"
t,A1/D

G

C Z~/I So
F O/f/D H o ____ Z.;.~....;/Z~L

E :r/Z~

Figure 2.3 Test pattern generation using the SPLIT circuit model

2.1.3 l1-valued logic system

As in Ag. circuit values in the good and faulty machmes are treated separately in

the l1-valued logie system for test generatlon proposed ln ICheng88]-each value can be

O. 1. or x (e!ther 0 or 1). independent of the value ln the other machine 1 n addition. the

relation between the values in the good and faulty machine is recorded-the \'alues may

13

2.1 logic systems for test generation

be Equivalent. Different. or the relation between them may be Unknown. Signal values ln

A11 are identified by the triple G F R. where G is the value in the good machine. F is

the value in the faulty machine. and R is the relation between the values in the good and

faulty machines. For example. the value xxE means that the values !!": the good and faulty

machine are unknown-the values could be either ° or l-but are the same-either both

are zero or both are 1. Circuit values in the ll-valued logie system are taken from the set

A11 = {ODE, 11E,xxE, 10D,01D,xxD,O."U, xOU, lxU,x1U,xxF}.

Compared to A9. A11 is able to distir.glJish the \'alues xxE and xxD (represented

by {O,l} and {D, D} in the 16-valued alphabet discussed below). both (lf which are repre­

sented by xx in A9. Distinguishing these two values is particularly useful ln circuits con­

taining XOR gates. However. A11 does not distinguisI1 the value eombinati')ns {D,t, D}.

{O,l,D}. {O, D, D}. {D, D, 1}. and {D,l, D, D} of B16. ail of which are represented by

xxU. The inability of the model to resolve these values may lead to unnecessary branching

and backtracking during test pattern generation. For example. in Fig 2.3. All IS unable

to determine whether D. D. or both can be observed on the primary output of the cirCUit.

and so must make several arbitrary assignments before a test pattern can be found.

2.1.4 16-valued lagie system

As a response to an applied input vector. each no de in the potentially faulty circuit

will carry one of the four possible vcllues from B~. However. during test generation for

a particular fault. the final test pattern is not known, Any of the 16 subsets of the set

{D,l, D, D} is a possible node value during test generation: 2 therefore. a complete alphabet

for test pattern gel1eration contains 16 values. 3

Since the subsets of B~ are used to represent Î.' le sets of possible values whlCh anse

at network nodes during test generatlon. it is natlJ(al to introduce the power set 1'(/l~)

2 The empty set. {}, tndicating Inconsistency, IS olle of the possible asslgnmcnts--no test piltt('rn eXlsts
with the current set of asslgnments

3 The general mathematical theory which leads to the 16-va!r,o>d alphabet IS presented ln chapter 3

14

,

.1

2.1 Logle systems for test generatlon

of B~ to represent them. The power set of the basic D symbols has been used by Akers

for test generation [Akers76J: as it is a Boolean algebra. it is isomorphic to the 16-v$llued

system used in [Cox Raj88, Raj88] for fault diagnosis. Three possible codings of peEl)

al'~ shown in Table 2.5: the elements of P(B~) themselves. natural numbers from 0 to 15

(B16 in Table 2.5). and bitwise encoded quadruples describing the presence or absence of

elements of Bl (B~ in Table 2.5).

B16 p(Bl) B4
2

xl x DXJrO

0 {} 0000
1 {O} 0001
2 {D} 0010
3 {O,D} 0011
4 {D} 0100
5 {O,D} 0101
6 {D,D} 0110
7 {O,D,D} 0111
8 {1} 1000
9 {0,1} 1001
10 {D,l} 1010
11 {O, Dt 1} 1011
~2 {D,I} 1100
13 {O, D, 1} 1101
14 {D,D,l} 1110
15 {O,D,D,1} 1111

Table 2.5 Three codings of a 16-element alphabet

A (0.'1

B ~1J G
01 (DI

C le).ll ·0
F(C5l

H
(0.1) 0

E (t\1)

Figure 2.4 Test pattern generation using a 16-valued alphabet

IS

2.1 loglc systems for test generatlon

During test generation for 0 30 in Fig. 2.4. the 16-valued logie system is able ta identify

that assignments A = {O}. B = 0 = {1} are necessary in arder ta observe {D} at the

circuit output. Similarly. in arder to observe {D} at the output. assignments A = D = {1}.

E = {O} are necessary. In bath cases. a test is found with no arbitrary branching. As

shown in Figs. 2.1-2.3. the 5. 9. and ll-valued logie systems are unable to determine if

D. D. or both can be propagated ta line L. Therefore. test generation systems using

these algebras cannat reason about necessary conditions for fault effect observation. and

are forced to make several arbitrary branches. each of which may lead to a backtrack.

2.1.5 Comparison between logie systems

The fundamental difference between the logie systems presented in this section is the

number of signal value combinations which arise at circuit nodes during test generation

which are distinguishable.

B16 P(B~) AH A9 AS

0 {} - - -
1 {O} OOE 00 0
2 {D} 01D 01 D
3 {O,D} OxU Ox x·
4 {D} 10D 10 D
5 {O,D} xOU xO x·
6 {D,D} xxD :xx· x·
7 {O,D,D} xxU· xx· x·
8 {1} llE 11 1
9 {O,l} xxE xx· x·
10 {D,l} dU :r:1 x·
11 {O, D, I} xxV· :1::1:. x·
12 {D,I} !xU lx x·
13 {O, D, I} xxU· xx· x·
14 {D, D, 1} xxU· xx· x·
15 {O, D, D, 1} xxV· xx· x·
• indicates values which cannot be distinguished

Table 2.6 Comparison between algebras

16

2.1 Logic systems for test generation

Table 2.6 compares the values represented by B16 (Raj88. Akers76] with those of

AH (Cheng88J. Ag [Muth76]. and AS (Roth66J. There are five elements of B16 which

cannot be distinguished by AU-ail are represented by xxU. For example. if a primary

output carries value xxU. it is not possible to determine whether D. D. or both D and

D can be observed there. Resolution is progressively worse if A9 (seven indistinguishable

values) or AS (eleven indistinguishable values) is used. Element '0" ({}) of B16 indicates

inconsistency, and has no representation in any of the other algebras.

The major advantage of a 16-valued logic system is better resolution of signal val­

ues. The value combinations which arise at circuit nodes during test generation are not

compacted. but are represented as distinct sets of possible node values. Thus there is less

loss of information with a l6-valued logic system than with the logie systems described

above.4 The increased resolution offered by a 16-valued logic system may lead to a more

efficient search for a test pattern. In particular. it is possible to identify necessary and

nonconflicting assignments in the region of the circuit reached by the fault effect. which is

not possible using AS and is restricted using A9 and Ali. At the same time. the use of a

16-valued logic system does not increase the time required for logic system computations

such as forward propagation and backward implication. as they can be performed in linear

time using table lookup. regardless of the Jogie system in use.

A 16-valued logic system has a number of advantages in addition to increased value

resolution. Value justification is the only operation required by a test generation algorithm

which uses a 16-valued logic system-it need not perform "D-drive" or "X-path check"

operations and need not maintain a "D-frontier". Forward propagation determines the set

of possible values which could be carried by each line in the circuit. including those reached

by the fault effect. The set of primary outputs to which the fault effect may propagate

is known after forward propagation (those outputs whose set of possible values indudes

D and/or D). There is no need to distinguish between sensitization and propagation of

the fault. as both can be represented in terms of justification. The test generation process

4 See section 3.3 for discussion of information loss in a 16-valued (ogie system. and section 44 for a
technique to recover the (ost information.

17

2.2 Necessary asslgnment identification techniques

begins with the initial set of justification points (node/value combinations which must be

justified) that the point of the fault must be driven to a value opposite that caused by the

fault (sensitization) and the fault effect must propagate to dt least one primary output­

either D or D must be obsE:rved on at least one of the outputs whose set of possible values

includes D and/or D (propagation).

2.2 Necessary assignment identification techniques

ln 1966. Roth proposed the D-algorithm [Roth66). The contribution of this paper

was the 5-valued calcul us described in the previou5 section-the singular caver describing

the forward propagation of the D symbols and encoding the conditions required to justify

each symbol at the output of a gate. The assignments which are implied by the values

which must be justified are necessary-no test pattern will be found if these irnplied values

are assigned any other way.

rn
....:m=-----iO...-lI1-

a) NOl\controlling value

---:..;----iDt--(QJ-
b) Controlling value

Figure 2.5 Classical backward implication

Example 2.1: Fig. 2.5 illustrates two important cases of classical local implication which

arise during test generation. In a. the requirement at the output of the AND gate is uniquely

translated to its inputs as there is only one combination of input values which can produce

the required output. On the other hand. in b the requirement is not uniquely translated

to the inputs. as th cre are several input cornbinations which could be used to produce the

required output. In arbitrarily choosing to use one of the possible input combmations to

produce the required output in b. conflicts may occur due to reconvergent fanout Excessive

time may be required tù generate a test or prove redundancy as. In the worst ca!>c. ail of

the input combinations must be explored.

18

2.2 Necessary assignment identification techniques

Classical backward implication is powerful. yet simple: the computation moves from

the output of agate to its inputs. However. since the computation is local. relating to

a single logie gate. global information which could a!d the test generation process is not

recognized. The inputs to the gate whose value must be justified may be correlated in that

they are driven by overlapping input canes. Since backward implication does not identify

the correlation. the input combination arbitrarily chosen ta justify the required output value

of the gate may lead to a conflict.

This weakness was partially overcome in the FAN algorithm [FujShi83]. which uses

structural information about the circuit under test to identify an additional class of neces­

sary assignments which cannot he found by backward implication. When the D-frontier

consists of a single gate. the "unique sensitization" step is performed. A topological search

is done to determine those lines through which the fault effect must pass in order to ap­

pear on any primary output. As FAN uses a 5-valued algebra. it is unable ta represent that

these lines must be assigned to D and/or D. Instead. unique sensitization identifies those

assignments to noncontrolling values which are necessary to propagate the fault effect from

the inputs to the output of the gate at which the fault effect must be observed. In the

TOPS algorithm [KirMer87). the unique sensitization assignment& of FAN were formalized

using the concept of dominators and found using the algorithm in (Tarjan74J. originally

proposed ta find dominators in flow graphs.

A~~ __ ~~~ ____ ~

B----t
C_~
D~~ ________ ~~

J

Figure 2.6 Unique sensitization in the FAN algorithm

Example 2.2: No necessary assignments are identified by local implications in generating at

test for FSQ in Fig. 2.6. However. in order for the fault efrect to be observed at the primary

output. it must propagate through J, implying that A = l = 1 are necessary assignments.

After A is assigned to 1. the fault cannot propagate through G. so D = 1 is also a necessary

19

2.2 Necessary assignment identification techniques

assignment. To justify l = 1 after D = 1 is assigned. necessary assignment C = 0 is

identified by local implication. and a test pattern is generated. Note that if a 16-valued

logie system for test generation is used in this example then ail necessary assignments can

be identified by backward implication from justification points F = 1 (sensitization) and

J = D (propagation). without explicit dominator identification.

Dominator identification is a powerful technique and can be performed efficiently using

the linear-time algorithm proposed in [HareI86). rather than the O(nlog(n)) algorithm from

[Tarjan74). However. dominator analysis can be used to find necessary assignments only

in the region of the circuit reached by the fauh. affect. and not in the rest of the circuit.

Further. there may be no necessary assignments to noncontrollir,g input values even if

dominators exist.

The contribution of SOCRATES (SchTriSar88. SchAut89) was to take advantage of

information about the function of the circuit under test to identify additional necessary

assignments which could not be found using classical implication or dominator analysis.

SOCRATES identifies neeessary assigilments through "Iearning"-finding the effect of ev­

ery assignment to every node in the circuit by injecting and determining the implications of

each assignment individually (one at a time). If an assignment would make it impossible

to justify a required value. then that assignmfmt must be disallowed.

Figure 2.7 Learning in SOCRATES

Example 2.3: The effect of assigning input A to 1 in the circuit from Fig. 2 7 is to produce

1 on D. E. and F. Wh en jU:itifying F = 0 (for example. when generating a test for j.1)' no

necessary assignments can be identified by local ImplicatIOn Havlng determlJlf'd through

learning that assigning A to 1 causes F = 1. however. A = 0 15 identifled as a necessary

assignment.

20

(

2.2 Necessary asslgnment identification techniques

SOCRATES uses a 5-valued algebra. and thus cannot resolve values or identify nec­

essary assignments through learning in the region of the circuit reached by the fault effect.

The effect of assignments to 0 or 1 only can be learned. and only in the ,region not reach­

able by the fault. To partially overcome this problem. SOCRATES performs additional

proc,essing steps. similar to dominator identificl'tion. to identify necessary assignments in

the D-region.5 ln [JaMoChHa89) a version of SOCRATES using a 9 rather than 5-valued

logic system was presented: due to increased resolution of signal values. that algorithm is

able to identify some necessary assignments in the D-region.

A different approach to test pattern generation achieving similar results in terms of

necessary assignment identification was taken in the NEMESIS test generation system

[Lar89). The function of the good and faulty circuits are expanded into product-of-sums

equations in terms of primary inputs and internai network nodes. the Boolean difference

is taken [SeHsBe68). and the resultant equation is solved using techniques developed for

Boolean satisfiability problems. The number of terms in a clause of the satisfiability equa­

tion is determined by the number of inputs of the gate to which it is related. with n-binate

factors and 1 (n + 1)-ate factor for each n-input gate. The 2SAT problem (ail clauses have

two or fewer terms) is equivalent to test pattern generation in fanout-free circuits. and can

be solved in linear time: the 3SAT (and higher order) problem is NP-complete.

ln NEMESIS. necessary assignment identification (termed "non local implication") is

performed in a manner similar to learning in SOCRATES by determining the effect of each

assignment on the satisfiability equation. Since the NEMESIS algorithm is based on the

Boolean difference rather than D-calculus. it do es not suffer the disadvantages of 5. 9. or

l1-valued alphabets and is able to identify necessary assignments in the region reached by

the fault effect.

5 These techniques and their limitations are discussed more fully in chapter 4.

21

2.3 Developments ln nonconflicting assignment Identification

2.3 Developments in nonconflicting assignment identification

Nonconflicting assignments restrict the space remaining to be searched for a test

pattern and cannot cause a backtrack. Thus. they need never be retracted. That is. if there

was a test pattern in the search space before the nonconflicting assignment was made. then

there is at least one test pattern in the subspace remaining after the assignment has been

made. Conversely. if no test pattern exists in the search space after the nonconflicting

assignment is made. th en there were none in the unrestricted search space either. These

assignments are extremely useful because they vastly and irrevocably reduce the space

which must be searched in order either to find a test vector or prove the fault untestable.

The guarantee that they will never have to be backtracked is the distinguishing feature

of nonconflicting assignment identification. Although analysis of the pola rit y of reconver­

gent paths has been used in LAMP2 [AbrKul851 and other test generation systems. this

information was used to guide the test generator heuristically rather than algorithmically.

Similarly, the multiple backtrace heuristic of FAN (FujShi83] implicitly uses a form of po­

la rit y analysis to find desirable arbitrary assignments. although again. these assignments

may Jead to backtracks.

Properties of nonconflicting assignments were first used in the PLAN ET te6t genera­

tion system [RobRaj88) to find algorithmic assignments during test pattern generation for

cross point and deJay faults in programmable logie arrays (PLA's). In two-Jevel structures.

monotone pruning is used to make irrevocable assignments to primary inputs. A vote is

collected for ail inputs connected to those product lines whose value is required in order

to generate a test. and those inputs for which the vote is unanimous are assigned. For

example, in order to test for a missing device fautt at the cross point of a product line and

an output line, the product line must carry a "1" and ail other product lines connected to

that output line must carry "0": in order to produce a "a" on a product line. the desired

value of inputs connected to it in true (cornplemented) form is "0" ("1")

Recently. function montonlcity ln general mulu-Jevel structures has been ll~ed ta fmd

desirable assignments in a test generation system based on Boolean difference and tech-

22

11

\.

2.4 Deterministlc test generation algorlthms

niques developed to solve satisfiability problems [Lar89]. Clauses which contain variables

that appear in only true or only complemented form in ail clauses of the expression are

removed. resulting in a drastic pruning of the search space. "Clause removal" is a similar to

nonconflicting assignment analysis. ex ce pt that there is no guarantee that the assignments

made in this step can be justified since there is no restriction on the variables assigned. If

the assignment used to prune a clause is not justifiable. th en a backtrack will occur.

2.4 Oeterministic test generation algorithms

Test pattern generation algorithms can be distinguished based on the methods they

use to identify necessary. nonconflicting, and arbitrary assignments. Much work in the area

of test pattern generation has focussed on finding better heuristics for test generation­

methods of identifying branch decisions which are most likely to lead to a test vector or

redundancy proof in the least amount of time. This thesis is concerned with algorithmic

test pattern generation rather than with heuristics. Key algorithms differentiable on the

basis of the algorithmic techniques they employ are discussed in this section and compared

to the QUEST test pattern generation algorithm, proposed in this thesis and presented in

chapter 7.

Four major test pattern generation algorithms are discussed in this section: the D­

algorithm. PODEM. FAN. and SOCRATES. The algorithms are presented in the way they

were originally proposed by their authors. presuming that they use a 5-valued logie system.

As discussed earlier in this chapter. the use of an appropriate logic system has a major

impact on the efficiency of the test pattern generation algorithm-for example. the number

of necessary assignments it can identify. In addition. th~ choice of logie system influences

the way the algorithm works-the order and type of operations it must perform.

The two basic requirements of any test pattern are that it must sensitize the fault and

that the fault effect must be observed on at least one primary output. These requirements

are referred to as sensitization and propagation. and are traditlonally treated separately.

The sensitization condition requires that the point of the fault be driven to a value opposite

23

2.4 Determlnistic test generatlon algorithms

that caused by the fault (a li ne which is 81 is driven to O. and vice versa,: the propagation

condition requires that either D or D be observed on at least one primary output.

ln addition to backward implication. the D-algorithm (Roth66) introduced the con­

cepts of the "D-frontier" and .. D-drive" to monitor and promote the propagation of the

fault effect. respectively. The D-frontier consists of those gates whose output value 15

either D or D which drive gates whose output value is X. The D-frontier represents the

extent to which the fault propagation requirement has been fulfilled-the limlts of the region

of the circuit in which it is known that the logic values in the fault-free and faulty circuits

are different. D-drive is performed to advance the D-frontier toward primary outputs-to

propagate the D symbol one step closer to primary outputs. At each stage. backward

irnplication is performed to identify necessary assignments which appear after an arbitrary

assigr.ment is made.

The PODEM algorithm (GoeI81) is similar to the D-algorithm. except that arbitrary

assignments are made to primary inputs only. Since assignments to primary inputs can

always be justified. this restriction has the effect of ensuring that "unjustified nodes" (other

than the sensitization requirement at the point of the fault) do not occur in the PODEM

algorithm. making it considerably easier to implement than the D-algorithm.

PODEM ::.iso introduced the" X -path check" step. which ensures that the fautt effect

can propagate to sorne primary output. The X -path check step is performed to identify

those gates on the D-frontier from which it is not possible to propagate the fault effect to

any primary output. That is. if there are no X -paths from a node on the D-frontier to at

least one primary output (i.e. ail paths are blocked by O's and/or 1·s). that node can be

dropped from the D-frontier. If no gates remain on the D-frontier. the fault effect cannot

propagate to any primary output. and a backtrack must be performed If the X -paths

are not checked. the test generation system will not recognize that the fault effect cannot

propagate until much later. after unnecessary branching and boundmg has occurred

The FAN algorithm [FujShi83] IS an extensIon of the PODEM algortthrn Will! two ma­

jor modifications. intended to address weaknesses of PODEM. The restriction of branch

24

(

(

(

2.4 Deterministic test generation algorithms

assignments to primary inputs is removed. making FAN more difficult to implement (un­

justified values caused by branch assignments to internai circuit nodes must be taken care

of). However. by allowing branching at internai nodes. FAN is able to identify conflicts

by exploring ail node assignments in cases where exhausting input combinations afTecting

those nodes is not practical. In addition. FAN identifies dominators. a class of necessary

assignments which cannot be found by conventional backward implication and not identified

by either the PODEM or D-algorithms. By identifying additional necessary assignments.

FAN is able generate a test or prove that none exist for certain difficult faults with fewer

arbitrary branches and backtracks than PODEM or the D-algorithm.

Using the learning techniques described above. SOCRATES [SchTriSar88. SchAut89]

is able to identify additional necessary assignments which are not found by either the D­

algorithm. PODEM. or FAN. including certain necessary assignments in the region of the

circuit reached by the fault effect (see chapter 4). SOC RATES itself is an extension of the

FAN algorithm. performing the same steps as FAN. but identifying additional necessary

assignments. and thus finding a test pattern or proving redundaney more efficiently.

Compared to other test pattern generation algorithms. the QUEST algorithm has a

number of novel features. Certain of these features are due to the use (If a 16-valued logie

system for test pattern generation and others come about due to the analysis of necessary

and nonconflieting assignments.

A 16-valued logie system signifieantly simplifies the test generation algorithm. as

there is no need to perform any of the computation related to D-drive. X -path check.

maintenance of the D-frontier. etc. In addition. there is no need to distinguish between

sensitization and propagation of the fault-the only operation the algorithm must perform

is justification of unjustified signal values. It has been noted that. for some untestable

faults. the fault effect cannot be propdgated to primary outputs. while other faults cannot

be sensitized [MinRog89]. In order to prove that these faults are untestable with a minimum

of backtracking using conventlonal algonthms. It is deslrable flrst to attempt propagation

or sensitization. respectlvely. The effectlveness of the strategy depends on the fault whlch

is targeted-either will perform better for sorne faults and worse for others. Viewed from

25

•

2.4 Oeterminlstic test generation algorithms

tha perspective of a 16-valued logie system. the question becomes not which strategy to

use. but if the traditional approach to test pattern generation is appropriate. Since both

sensitization and propagation are required in order to test the fault and both are specIal

cases of line justification. distinguishing be(ween those assignments made for sensitizatlOn

and those made for propagation is both arbitrary and counterproductlve. Both sets of

assignments are necessary. and should not be distinguished.

The formulation of the test generation problem as a set of justification points makes

it easy to identify necessary and nonconflicting éJssignments systematically using the tech­

niques presented in chapters 4 and 6. respectively. The systematic identification of neces­

sary assignments replaces a number of operations performed by other algl)rithms such as

conventional backward implication, dominator identification. and learning. while Identifying

additional necessary assignments which cannot be found using any of those techniques.

The identification of nl)nconflicting assignments is novel and is not performed by any other

general test pattern generation algorithm. At the sa me time. if no necessary or noncon­

flicting assignments can be identified. then any of the heuristics proposed by other test

generation algorithms can be used by QUEST to choose arbitrary assignments.

26

.,

Chapter 3 Images and inverse images of set funetions

The mathematical concepts of images and inverse images of set functions form the

foundation on which the methods to identify necessary and nonconflicting assignments

developed in this thesis are built. In this chapter. these concepts are defined and applied

ta algorithmic test pattern generation.

3.1 Images of set funetions: forward propagation

During (orward propagation, the set of possible ialues at the output of each gate

is determined given the sets of possible values al its inputs. The values at the inputs to

the gate are assumed to be independent-thus the possible output values are simply those

which can be produced by each of the possible combinations of input values.

A

B

{D.D.1} ___ D~~ ___ {O_.5_,D_.1_1_
{O.D.1} .

Figure 3.1 Images for a 2·input AND gate

Example 3.1: Consider the 2-input AND gate shawn in Fig. 3.1. The sets of possible

values on the inputs. are {D,D.l} and {D,D.n Thus the set of possIble values at the

3.1 Images of set functions: forward propagation

output is:

AND({O, D, D}, {a, D, 1}) = {AND(O,O), AND(O, D), AND(O, 1), AND(D,O),

AND(D, D),AND(D, l),AND(l,O),AND(l, D),

AND{1, l)}

= {O,D,D,1}

This calculation can be formalized using the concept of images of set functions

[Raj881:

Definition 3.1: Let 1 : X x Y -+ Z be a function of two variables. and A. B. and C be

nonempty subsets of X. y, and Z. respectively. A ~ X. B ç Y. C ç Z. The image

I(A, B) ofAx B under 1 is the set of ail images I(x, y) such that x E A and y f B.

Using set builder notation:

I(A,B) = {f(x,y) 1 xE A and y E B}.

Using the bitwise encoding B~ from Table 2.5. the function of agate can be described

by tour characteristic equations. The equations determine the presence or absence of each

possible value at the output of agate given the sets of possible values of its inputs.

Example 3.2: The characteristic equations for a 2-input AND gate with inputs A and 11

and output Gare:

Co = aO + bO + aDb:o + aDbD

CD = albn+ aDbl + aD~
CD = al bD + aDb1 + aDbD

Cl = albl·

For example. the equation for ct 5ays that 1 15 a possible value at the output of the AND

gate only if 1 is a possible value of both mputs Characterrstlc equatlons wlth ,) <'Imilar

form can be defmed for OR. XOR. etc gates (ac, weil as for larger ftHH tlOlldl blo(k'i. If

desired). The Imagp. at the output of a 2-input AND gate and a 2-Input OR gate for ail

256 pOSSible combinations of input valL:es 15 shown in Table 3.1 uSlng the BIG codmg from

28

•

1

J

3.1 Images of set functions: forward propagation

0 123 4 5 6 7 8 91011 12131415 o 1 2 3 456 7 8 91011 12131415

0 0 o 0 0 o 0 0 0 0 o 0 0 0 000 0 000 0 o 0 a 0 o 0 0 a o 0 0 0
1 o 1 1 1 1 1 1 1 1 1 1 1 1 111 1 o 1 2 3 .. 5 6 7 8 91011 12131415
2 o 1 2 3 113

, 2 3 2 3 3 333 " 2 o 2 2 2 8101010 81010 la 8101010
3 o 1 3 3 1 1 3 3 3 3 3 3 3 333 3 o 3 2 3 12151415 81110 11 12151415

4 0 1 1 1 4 5 5 5 4 5 5 5 4 5 5 5 4 o 4 812 .. 41212 812 812 12121212
5 0 1 1 1 5 555 5 5 5 5 5 5 5 5 5 o 51015 4 514 J 5 8131015 12131415
6 0 j 3 3 5 577 6 7 1 7 7 7 7 7 6 o 61014 12141414 8141014 12141414
7 0 1 3 3 5 5 7 7 7 7 7 7 1 7 7 7 7 o 71015 12151415 8151015 12151415

8 0 1 2 3 4 5 6 7 8 91011 12131415 8 o 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
9 0 1 3 3 5 5 7 7 9 91111 13131515 9 o 91011 12131415 8 91011 12131415

10 0 1 2 3 5 5 7 7 10111011 15151515 la 0101010 8101010 81010 la 8101010
11 0 1 3 3 5 5 7 7 11111111 15151515 11 0111011 12151415 8111011 12151415

12 0 1 3 3 4 5 1 1 12131515 12131515 12 012 812 12121212 812 812 12121212
13 0 1 3 3 5 5 1 1 13131515 13131515 13 0131015 12131415 8131015 12131415
14 0 1 3 3 5 5 7 7 14151515 15151515 14 0141014 12141414 8141014 12141414
15 0 1 3 3 5 5 1 1 15151515 15151515 15 0151015 12151415 8151015 12151415

a) AND gate b) OR gate

Table 3.1 Gate functions in a 16-valued logic system: B16 x B16 -4 B16

Table 2.5. Similar tables can be computed for ail other 2-input gate types. at which point

forward propagation through individual gates ean be performed by table lookup.

The sets of possible output values of ail gates in the network can be determined in

linear time in a forward levelized selective trace from primary inputs to primary outputs

using the sets of possible input values of each gate to find its set of possible output

values. Sinee gate inputs are assumed to be independent. forward propagation through

multi-input gates can be performed by forward prCipag"tion through a cascade of 2-input

gates performing the same function.

The presence of the fault in the circuit under test is accounted for by changing

the circuit structure slightly. The point of the fault becomes a new circuit node whose

propagated value is assigned to {D} or {D} if the fault is stuck-at zero or stuck-at one.

respectively.6

6 Multiple faults can be dealt wlth similarly there are several (ault sites. cach of whlch may propagate
a tault effect The propagated value of each individual so (s1) fault site is {D,O} ({D,l}). as the
only requirement to generate a test for the multiple fault is that the fault effect trom at least one of
the component single faults be observed on at least one primary output.

29

.--.-------------------------------

A (0.11 ~

B (0.11

C (0.11

3.2 Inverse images of set functlons: backward Implication

H ,,:ato,"

Figure 3.2 Forward propagation in a circuit

Example 3.3: Due to the presence of a 81 fault on line a in Fig. 3.2. line a propagates {D}

to input 1 of AND gate D. The sets of possible signal values of ail nodes in the circuit are

determined when ail primary inputs are assigned to {O, 1}. For example. the only possible

output values of gate D are D and 0: D if input B is assigned to 1 and 0 if B is assigned

to O. Note that the values propagated by the subcircuit driving the point of the fault (in

this case. input A) do not affect values in the subcircuit driven by the point of the fault.

as the presence of the fault alters the behavior of the circuit.

3.2 Inverse images of set functions: backward implication

Another operation which is required during test pattern generation is backward im­

plication. where the smallest set of values at the inputs of a &ate whith could be combined

to produce a restricted set of values at the output of the gate is determined-the inverse

of the image function just described. Backward implication is the generalized analogue of

conventionallocal implication discussed in section 2.2. and is used to derive the necessary

input conditions to justify a restricted value at the output of agate.

A --.!.{Q:.:,.::..:D,.:..!..~J--r_
8 l&.e.l! 1)I-C_{_Q_,i5,_:9;4_~_

Figure 3.3 Inverse images for a 2-input AND gate

Example 3.4: If {D} must be justified at the output of the AND gate ln FIg 3 3 (slgmfled

in the figure by crossing out the alternate output values). then the value of mput A must

be {D} and of input B must be il}. If either input carried sorne other value, then the

30

3.2 Inverse images of set funetions: backward Implication

set of possible values at the output of the gate would not include D and it would not be

possible to justify the required value.

The process of backward implication can be formalized using the concept of inverse

images of set functions [Raj8S]:

Definition 3.2: Let f : X x Y ~ Z !Je a function of two variables. and A. B. and C be

nonempty subsets of X. Y. and Z. respectivel~t. A ç X. B ç Y. and C ç Z. The inverse

image of C on coordinate X under f. restricted ta A x B. which we denote fIA~B(C), is

the set of ail x E A such that f(x, y) E C for sorne y E B. and similarly for coordinate Y.

ln set builder notation:

fiA~B(C) = {x E A 1 f(x,y) E C for sorne y E B}

fiA~B(C) = {y E B 1 f(x,y) E C for sorne x E A}.

Example 3.5: ln a 2-input AND gate with inputs A and B a. d output C. consider the

combinations of input/output values in which A = {D} partidpates: AND(D,O) = O.

AND(D,D) = D. AND(D,D) = O. and AND(D,l) = D. In order for D to appear in

A'. the reduced value of input A. it must appear in the original value of input A and sorne

combination of D on input A with a value at input B must produce a value which appears

in C'. the reduced value at the output of the gate. Using the bitwise encoding B~. the

inverse image for agate can be described by four characteristic equations. as was done in

the previous section for images. For the AND gate. the inverse image A' on input A of the

reduced or restricted set C' (C' ç C) is:

, 1
aO = aoco

a~ = aD(bl c~ + bDCb + '15c~ + bocb)

a'v = a[)(b1 c~ + bDC'v + fryjCb + bocb)

al = al (b1 cl + bDCn + bDc~ + bocb)·

31

.'

3.2 Inverse Images of set functions: backward implication

Lemma 3.1: Let the power set of set S. denoted PtS). be the set composed of S and ail

of its subsets (including the ernpty set). Given A. B. C. !iA~B(C), !iA~B{C) defined in

P(S). then:

!iA~B(C) = A n fis~B(C)
= A n {x E S 1 f(x, y) E C for sorne 1/ E B}

fiA~B(C) = B n fiA~S(C),
= B n {y E S 1 f(x, y) E C for sorne x E A}.

Proof: From the definition of the power set. for any X E P(S). X ç S and X n S = X.

For any general set function 9 with inverse image g-l. g-1[C n D) = g-l(G) n g-l[DJ

[HrbJec84}. Thus:

fiA~B(C) = fITIns)xB(G n S)

= {x 1 x E (A n S) and f(x, y) E (G n S) for sorne 1/ E B}

= {x 1 x E A and f(x, y) E S for sorne y E B} n

{x 1 x E Sand !(x, y) E C for some y E B}

= A n {x 1 x ES and f(x, y) E C for sorne y E B}

= A n !IS~B(C)

and similarly for !iA~B(C), •

Example 3.6: Using lemma 3.1. Tables 3.2. and b are computed for 2-input AND and OR

gates. respecth'ely. The table gives the generalized inverse image fji;'v,V,l}Xn(C) given G

(column address) and B (row address). For example. using Table 3.28 to find the inverse

image on input A of output {D} for the AND gate in Fig. 3.3: table[{D}.{O, D, 1}) ri

{O, D, 1} = {D} n {O, D, 1} = {D} (table[2.13] n 11 = 2n 11 = 2). To increase readability.

elements 0 (inconsistency) and 15 (no implication) are replaced by blanks and penods.

32

(

(

3.2 Inverse images of set functions: backward implication

o 1 2 3 4 5 6 1 8 91011 12131415 0 1 2 3 4 5 6 7 8 91011 12131415

0 0
1 1 1 2 3 4 5 6 7 8 91011 121314
2 510 2 3 12
3 .10 3 1 3 3 4 5 1 7 1213 1213

.. 3 12 4 5 10
5 12 5 1 2 3 5 5 7 7 10111011
6 710 12 .14 6 3 5 7 14
1 .10 12 .14 7 1 3 3 5 5 7 7 14

8 1 2 3 4. 5 6 1 8 91011 121314 8
9 . 2 4 . 6 8 .10 12 .14 9 1 2 3 4 5 6 7

10 510 4 514 81310 121314 10 3
11 .10 .. .14 8 .10 12 .14 11 1 3 3 4 5 7 7

12 3 2 3 12 14 8111011 12 .14 12 5
13 . 2 12 .14 8 .10 12 .14 13 1 2 3 5 5 7 7
14 710 12 .14 8 .10 12 .14 14 3 5 7
15 .10 12 .14 8 .10 12 .14 15 1 3 3 5 5 1 7

a) AND gate b) OR gate

Table 3.2 Inverse images in B16

H (D;W;e;tJ

c (tltJ

Figure 3.4 8ackward implication in the circuit from Fig. 3.2

respectively. Similar tables can be computed for other gate types and backward implication

can be performed using table lookup.

E;cample 3. 7: Fig. 3.4 iIIustrates backward implication for fault aS1 • conlinued from exampfe

3.3. In order to observe {D} at the primary output. line F must carry {D} and fine G must

carry {1}. In order for F to carry {D}. line el mu~t carry {l} and line dl {D}. whic;' in

turn implies that bl must be {l}. Finally. if input B is {l}. then C must be assigned to

{O} in order to produce {i} at G.

33

•

3.3 Limitations of set functlons

3.3 Limitations of set functions

ln the definition of the image and inverse image set functions for a gate. the inputs

to the gate are assumed to be independent. If the inputs are correlated by a common

subcircuit. then the sets of possible values at circuit nodes obtained using images and

inverse images may be pessimistic in that not ail the values in the sets (and. in particlJlar.

not ail the combinations of values) can actually be produced.

Figure 3.5 Pessimism in the forward implication step

Example 3.8: The circuit of Fig. 3.5 is an implementation of a 2-input MUX with data

inputs A. C and select B. The select input can be either 0 or 1. but since both data inputs

are 1. the output value will be 1 regardless of which is selected. However. the set of possible

values of F found du ring forward propagation using images of set functions is pessimistic.

containing both 0 and 1. The pessimism arises as a result of the implicit assumption made

in forward propagation that the values of nodes D and E are independent when. in facto

the are closely related-they cannot be 1 simultaneously.

As images and inverse images were defined for 2-input gates whose inputs are inde­

pendent. the characteristic equations extracted from multi-gate circuits containing recon­

vergence may not be exact.

Example 3.9: Fig. 3.6 iIIustrates that the characteristic equations derived for three different

implementations of the XOR function are not the same When forward propagation IS

performed in circuits containing reconvergent fanout. spunous lerms ln ll1(' (harrlctcrlstlC.

equations brought about by reconvergent fanout cause values whlch cannot attually be

produced to appear at network nodes. For example. inspection of the equatlon for Co for

34

(
~---")D--C

a) 2-input XOR gate

c) AND-OR Implementation

A ____ ~ __________ ~
D

F

B ____ +-________ ~

e) Four NAND implementation

3.3 limitations of set funetions

Co = aObO + aïf75 + a Db D + al bl

CD = aObD + a~O +aDbl + albD

CD = aObD + a~l +aDbO + albD
Cl = aObl + aï1'D + aDb D + albO

b) Charaeteristic equations for a

c

Co = aObO + aD" D + a Db D + al bl +
aOal + bObl

cD = aOb D + aïl'o + a Db1 + al bD +
avaD(bD + bD) + bi!D(aD + aD)

CD = aObD+a:v-hl +aDbo+a1bD+

aïjGD(bD + bD) + bit D(aD + aD)

Cl = aOb1 + avh D + a Db D + al bO +
bObl (aD + aD) + aOal (b D + b Dl

d) Charaeteristie equations for c

co = aObO + aï1ïJ + a Db D + al hl +
aoal(bD + bD} +bObl(aD + aD}

CD = aObD +avO +aDhl +albD +

ajylD(bjJ+ bD) + bï1v(aD + aD) +

aoajJlll bl + al bOb~l

CD = aObD +aï1'l + aDbO + albD +

aïJ<lD(bD + bD) + bVOD(aD + aD) +
aOa Dal bl + al bOb Db1

Cl = aOb1 + a71D + aDbD + albO +
al (aO + b~D) + bl(bO + a OaD)

f) Chartlcteristic equations for e

Figure 3.6 Three implementations of the exclusive-or function and correspollding
characteristic tquations

35

3.3 limitations of set functions

the circuit in Fig. 3.6c indicates that 0 will appear in the output value if input A carries {O, 1 }

and input B {D, D}. {D}. or {D}. Methods to overcome the problem of reconvergent stem
correlation are discussed in section 4.4.

36

i

(

(

(

Chapter 4
Reduction list calculation: a method to

identify necessary assignments

The key to the necessary assignment identification technique presented in this chapter

is the concept of reduction which defines the relation between assignments in the circuit

under test and the values which must be justified. A general theory of reduction based on

the mathematical properties of images and inverse images of set functions is developed.

Applied to deterministic test pattern generation. the calculation of reduction lists provides

a systematic means to identify necessary assignments using set operations and to store

this information in a concise form.

Test generation for a particular target fault can be represented by a search tree

whose nodes represent the state of the test at each instant and whose edges represent

assignments. leaf nodes represent inconsistent states (backtracks) or valid test patterns.

If the fault is untestable. then there are only non-solution leaf nodes; if the fault is testable.

then there may be solution and non-solution leaf nodes. depending on the order in which

the space is searched. If inconsistent requirements are detected during test generation. a

backtrack is performed and the state of the circuit is rolled back to that which existed prior

to the most recent arbitrary assignment: the alternate choice (if an~) is th en explored. The

fault is untestable if there are no arbitrary assignments which can be reversed.

Using a 16-valued logie system for test generatlon. the only operation performed is

justification (section 2.1). The state of the test process at any point (the current node in

the search tree) is represented by a set of node/value combinations which must be justified

, ,
,,-

Reduction llst calculatlo": a method to Identify necessary asslgnments

in order for the conditions of the test to be satisfied and a test pattern identified. Given

an initial set of justification points. others can be derived in two ways:

• A necessary assignment to an internai no de of the circuit under test is identified and

applied. Since the assignment is necessary. there is no need to search the space

defined by alternate assignment(s) to the node. as no test patterns exist there.

• An arbitrary decision is made to search the tiee in a particular direction and a branch

node is assigned to a particular value. Unlike a necessary assignment. the decision

may not be correct and must be reversed (backtracked) if a conflict is detected.

Figure 4.1 Test pattern generation for 1$1

EJtample 4.1: ln order to sensitize a 81 fault on line f of the circuit shown in Fig. 4.1. the

output of the AND gate must be driven to {O}. Since F is a primary output of the circuit.

propagating the fault effect is trivial. If input A were assigned to {1}. then the value of

both lines D and E would be {t}-thus. the AND gate output would be {i}. and it would

not be possible to test the fault. Thus. a necessary assignment (and a second justification

point) in this example is node A assigned to {O}.

--------c..7 -...-. ---
/FA Confllct
VI' (no test exlsts)

•••

• • •

• • •

Figure 4.2 The search forest

38

(

Reduction list calculation: a method to Identify necessary assignments

Necessary assignment identification through reduction list calculation can be under­

stood through the search forest-the graph composed of ail possible search trees for a

particular target fault. Edges represent assignments made in the circuit ur,der test and

vertiees represent the state of the test generation process after the assignments have been

made. From the raot. many initial assignments are possible-for example. in the search

forest depicted in Fig. 4.2. input A can be assigned to {O} or to {1}. However. input B

could equally weil be assigned initially. as could any other primary input or internai node

of the circuit. Once an initial assignment is made. there are again many choiees for the

next assignment. and 50 on. Individual search trees may overlap. as the test generation

process lands in the same state (at the same node) after a particular set of assignments

is made. regardless of the order in which they are assigned-for example. the sa me node

in the search fore st is reached if the test generator assigns first A = 1 and then B = 0 or

first B = 0 then A = 1.

Reduction list ca\culation is equivalent to searching one level deep from the current

no de in the search forest to identify the f;rst-order necessary assignments. In other words.

from the node in the search forest: representing the current state of the test. reduction

lists identify those assignments which immediately terminate at non-solution leaf nodes.

For example. in Fig. 4.2. the reduction lists would identify that A{Q} and B{t} are non­

solution leaf nodes. and thus that A{l} and B{O} are first-order necessary assignments. On

the other hand. C {D} would not be identified by the reduction lists as it is a second-Drder

necessary assignment (found by searching two levels deep in the search forest)-after Cft}

is assigned. any assignment to D leads to a conflict. Reduction analysis determines the

effect of a single assignment mët:de to a no de in the circuit and does not recognize conflicts

whieh appear only after multiple assignments are made. However. applying necessary

assignments moves the process into a new node in the search forest. Jrom which necessary

assignments which were not recognized from the previous state may be identified.

The result of necessary assignment identification is to create a reordered search tree

where non-solution leaf nodes are placed as near the root as pos~ible. preventmg the test

generator from wasting time searching areas of the tree in which there are no solutions.

Ideally. the test generator would identify ail necessary assignments rapidly. and thus find

39

4.1 Reduction lis\ .', "'Y asslgnment Identification

a test pattern or proye untestability without backtracks. • lever. the test generation

problem is NP-complete [FujToi82) 50. in general. test generation algorithms are able to

identify only sorne of the necessary assignments (see section 4.5).

4.1 Reduction lists and necessary assignment identification

Reduction lists capture global information about the function of the circuit under test

through local computations of lists at the inputs and outputs of each gate. GI" ~'al analy­

sis is achieved through the indexation of the assignments which appear on the reduction

lists. Necessary assignment identification through reduction list calculation is unifying in

the sense that ail other proposed techniques. including backward implication. dominator

identification. and learning are special cases of this general method.

Definition 4.1: An assignment is a pair consisting of a node identifier and a value. The

a:;,signment of node S to value v is denoted Sv.

Definition 4.2: For each line l in the circuit and for each possible value v which it could

take. the reduction list Rt contains those assignments to nodes in the circuit which would

cause value v to vanish from the set of possible values of 1. An assignment which reduces

v at 1 is called a reduction assignment for Iv. An assignment which reduces the r'Jquired

value at a justification point is called a reduction assignment.

For each possible value of each line in the circuit. the corresponding reduction list

gives the set of reduction assignments for that line and value. Using a 16-valued logie.

system for test generation. each line in the circuit has four reduction lists associated wlth

it. one for each possible value. O. 1. D. and D.

Example 4.2: ln the circuit shown În FÎg. 4.1. when A is assigned to {1}. the value of

F becomes {1}; stated equivalently. asslgning .1 to {1} causes 0 to val1l'"h from the set

of possible values at F. In other words. A{ 1} (read "node A ass/gned to value {1}")

40

(

4.1 Reduction lists and necessary assignment identific.ation

reduces F{O}-A{l} is a reduction assignment for F{O}' Thus. reduction list RÔ contains

assignment A{l}'

Necessary assignments are derived from the reduction lists at the justification points.

If C{z} must be justified. then ail assignments which appear on reduction list Rf must be

eliminated. That is. if p{lJ} is an assignment which would reduce C{z}' then value v must

be removed from the set of possible values of point P since assigning P to v will cause

a confliet (it will no longer be possible to justify C{z})' If the set of possible values at P

remaining after v is removed is empty (represented by {} in PlB~) from Table 2.5). th en

a confliet exists under current assignments and a backtrack must be performed.

Example 4.3: From the previous example. if F{O} is a justification point (for example.

in generating a test for 181)' then assignment A{l} must be eliminated from the set of

possible assignments at A since assigning A to {1} will lead ta a conflict. Thus. A{1} is

a reduction assignment and A{O} is a neeessary assignment.

The set of justification points can be represented by an AND-OR graph. whose

AND-nodes represent assignments ail of which must be .iustified in order to find a test

and OR-nodes represent assignments at least one of which must be justified. For example.

in order to generate a test for a fault. the point of the fault must be driven to a value

opposite that caused by the fault (sensitization) and D or D must be observed on at

least one primary output (propagation). A justification point is satisfied if the forward

propagated value of the corresponding gate is the same as the required value. A test

pattern is generated when ail justification points are satisfied. Conversely. the justification

point cannat be satisfied if its forward propagated and required values are disjoint. If an

AND-node cannot be justified. then no test patterns exist in the space defined by current

assignments and a backtrack must be performed to reverse the la st arbitrary ac;signment.

The fault is untestable if there are no arbitrary asslgnments which can be reversed. If an

OR-node cannot be Justifled. then it is dropped-If none of the OR-nodes can be satlsfled.

then a backtrack must be performed Lemma 4.1 follows from this reasoning.

41

•

4.1 Reduction lists and necessary assignment IdentifIcation

Figure 4.3 The AND-OR graph of justifIcation points

Lemma 4.1: Given the set of justification points {A~l"'" A~n} ail of which must be

satisfied (AND-nodes in the AND-OR graph) and points {O~l"'" O::'m} at least one

of which must be satisfied (OR-nodes in the AND-OR grapr). then the set of reduction

assignments is:

Example 4.4: The required value of an AND or OR node may not be unique. For example.

in order to justify {D} at the output of an ANDgate whose input valLes are {D, D} Ctnd

{O, 1, D}. it is necessary to justify {D} at the tirst input and {l, D} at the other. In order

to be a reduction assignment with respect to the second input. an assignment would have

to reduce both D and 1 there.

Operations intersection (n). union (u) and difference (\) are performed on the re­

duction lists.

Example 4.5: Given lists of assignments L1 = {A{O}' BiO}' C{l}}' and L2 = {A{l}' B{O}'

C{O,D}}:

L1 n L2 = {B{O}}

L1 u L2 = {A{O,1}' B{O}' C{O,D,l}}

LI \ L2 = {A{O}' C{l}}'

ln order to reduce a value From the output of il gate. It 15 nece55ary to elimmate

ail combinations of Input asslgnments which could be c.ombmed to producé 1 bat ouI put

value. For examl-+. in order to reduce value z From the set of asslgnments at the output

of a 2-input gate, one or the other (or both) input value from ail Input combloatlons whlch

42

-

4.1 Reduction lists and necessary asslgnment identification

produce z at the output must vanish. An assignment which would cause this to happen

belongs to Rf.

Example 4.6: From the characteristic equations for a 2-input AND gate given in exam­

pie 3.2, value 0 is included in the 5et of possible values at the output of the gate if 0 is

present at '1ither input. or if D at one input can be combined with D at the other. Thus,

for an assignment to reduce 0 at the output of the gate, it must reduce: 0 at both inputs,

either D at input A or D at input B, and either D at input A or D at input B. This can

be represented as the intersection of reduction lists from the inputs of the gate: in order to
-+c --+A -+B --+A -+B -+A-+B

appear on R 0 ' an assignment must appear on R 0' R 0' RD or R D' and R D or RD'

ln addition, if the output value of the gate were assigned to sorne value other than 0, then

that would have the effect of reducing 0 at the output of the gate as weil. The reduction

equations for output C of a 2-input AND gate with inputs A and B are:

Example 4.7: Similarly, the reduction equations for output C of a 2-input XOR gate with

inputs A and B are:

Similar sets of reduction equations can be defined for other gate types. induding

simple gates such as OR, NAND. NOT, etc. as weil as for rrlore complex blacks such as

MUX es, adders, etc. More generally, provided that its fi 'nction r.an be described in terms

43

1

4.1 Reduction lists and necessary assignnlfnt Identification

Une List Contents

B (0.11

A -A
{A{1}} RO

--A
{AfO}} RI

B -B
{B{l} } RO

-B
{B{O}} RI

a) Non-minimal example circuit

~ ----~,----
A L-/ L ~

C -+c
{C{1}} RO

RG {C{O}} 1

D '-'D
{A{1}' B{l}' D{t}} RO

-D
{D{O}} RI

E
--tE

{A{1}' C{l}' E{l}} RO
-+E

{E{O}} RI

c) Minimized example circuit
F -F

{ A { 1 } , p{ 1} 1 RO
-F

{D{Ol' E{Ol' F{O}} R 1

b) Reduction lists for 8

Figure 4.4 Reduction Iist calculation in a circuit

of images and inverse images of set funetions. reduetion equations can be defined for any

module.

Example 4.8.' The circuit from Fig. 4.48. taken from [SchAut89]. illustrates reduction list

calculation in a network of simple gates. As discussed in example 4.2. A{l} appears on

ïl fi. If F{O} must be justified during test generation. then {1} must be eliminated from

stem A. Note that the circuit trom Fig. 4.48 is nonminimal. implernenting the sa me function

as the circuit shawn in Fig. 4.4c. In general. if an assignment ta stem S appears on a

reduction list at one of its reconvergence gates G when ail inputs are assigned to {D, 1}.

then S con trois the output value of G. The circuit can be redesigned ta make .') a direct

input ta G and the intervening unnecessary logic deleted. making the cirfUlt both smaller

and easier to test (sorne reconvergence has been removed).

The reduction lists are completely deflOed by the forward propagated values 01 network

nodes. whic.h are determined by the mjected target f~ult and the asslgnments whlch have

been made in the circuit under test. Given a target fault and set of Justification palOts.

44

4.1 Reduction lists and necessary assignment identification

there is one and only one corresponding set of reduction lists. Example 4.9 iIIustrates

reduction list calculation when circuit values are partially determined.

Line Ust Contents

A -A
{A{l}} Ro

-A
{A{O}} RI

B -B Rl {}

C -0 RI {}

D -D
{A{l}' D{l}} RO

-D
{A{O}' D{O}} RI

E -E
{A{l}' E{l}} RO

-E
{A{O}' E{O}} RI

a) Example circuit

F -F
{A{l}' F{l}} RO

-F
{A{O}' F{O}} RI

G -0
{A{l}' G{l}} Ro

-0
{A{O}' D{O}' E{O}' G fOl} RI

H -H
{A{l}' H{l}} RO

-H
{A{O}' D{O}' F{O}' H{O}} RI

b) Reduction lists for a)

Figure 4.5 Reduction list calculation with partially determined circuit values

Example 4.9: ln the circuit from Fig. 4.5. A{l} reduces G{O} and H{O} if B = {1}

and C = {1} have been determined by other assignments du ring test pattern generation.

However. if A = {O,1}. B = {D, 1}. and (' = {D, 1} (i.e. no assignments have been made).

then A{1} does not reduce either G{O} or H{O}'

Reduction lists identify necessary assignments in the region of the circuit reached

by the D symbol. In addition to other necessary assignments. the reduction lists identify

dominators (section 2.2) as nodes whose necessary asslgnment is to {D}. {D}. or {D.D}.

Static and dynamic learning and structure-based sensltlzation (described in [SchAut89J) are

45

4.1 Reduction Iists and necesury asslgnment Identification

...:..;,;,...z-..... E (11

Figure 4.6 Necessary assignments in the region of the D symbol

also special cases of necessary assignments identified by the reduction lists. as iIIustrated

by the following example.

EJCample 4.10: The subcircuit in Fig. 4.6 illustrates the generality of necessary assignment

identification by reduction list calculation. Here. if B = C = D = J = {O,1}. then [{O}

reduces I{D}' L{D}' M{D}' N{D}' and Z{D,D} (hence 1 is a dominator with respect to

output Z). In addition. K{O} reduces M{D} and N{D}' No assignments arE" necessary.

however. as the fault effect does not need to be observed at Z in order to test the fault

(the fault effect may propagate to another primary output through gate E). However. if

B{1} is assigned during test generation. Z{D,D} becomes a justification point and [{Dl is

a necessary assignment. After I{D} is assigned. then F{1} can be identified as a necessary

assignment by backward implication. Finally. if J{1} is assigned during test generation.

K{1} is a necessary assignment. as K{O} reduces both D and D al Z.

Assignment analysis through reduction list calculation is equivalent to ma king as­

signments in the circuit under test and finding the implication of those assignments on

the values of ail other nodes in the circuit. Assignments are aPlalysed in parallel using

list (set) operations. rather than serially. as is done by the learning techniques proposed

in [SchTriSar88. SchAut89]. The key differences between reduction list computation and

necessary assignment identification by other techniques are the parallel nature of the cal­

culation and the use of a 16-valued logic system Test generatlon ôlgonthms employlng a

46

4.1 Reduction lists and necessary assignment Identification

1 (D.OI
C ~--+-+-+-+--t

o ..a;.&.--+--+--+---t M (D,D,D.l)

E 1

F (0.1'
L (0.01

Figure 4.7 Test generation for BSQ

5-valued logic system cannot identify certain necessary assignments in the region of the

circuit reached by the fault effect. even if structure-based sensitization techniques are used.

Example 4.11: The 4 x 1 multiplexor from Fig. 4.7 iIIustrates necessary assignment iden­

tification in the region of the network which can be reached from the fault site. Previous

assignments have set C = D = E = {1}. The reduction lists indicate that A{Q} reduces

L{D}' K{D}' J{O}. and J{O}. and therefore reduces both D and D at M. Thus A{i} is

a necessary assignment. After A{l} is assigned. backward implication from M{D} identi­

fies F{O} as another neeessary assignment. Using a 5. 9. or l1-valued logic system. A{l}

cannot be identified as a necessary assignment because the values of lines J. J. K. and L

cannot be resolved.

To partially overcome problems caused by the poor resolution of a 5-valued logie

system. common logie modules (adder!,. multiplexors. etc.) whose logic dependencies are

predetermined. have been added to ttw library of building blocks recognized by a modular

version of SOCRATES [SaMaTrSc89]. However. dependencies between modules and in

unrecognized structures contÎnue to be overlooked ln addition. before each new module

can be recognized. implication. unique sensitization. and multiple backtrace procedures

which take the signal dependencies of the module into account must be derived manually

47

4.2 Log!cal constralnts and propagation of Implications

Itr~-
• - Z • Iq

"
a) n-Input gate b) rn-Output fanout stem

Figure 4.8 Circuit nodes with associated reduction lists

and added to the system. Based on the concepts of images and inverse images of set

functions. reduction lists enjoy complete value resolution and are able to identify necessary

assignments automatically. without resorting to modular circuit descriptions.

4.2 Logical constraints and propagation of implications

By formulating the test pattern generation problem in terms of images and inverse

images of set functions rather than in terms of logical assignments and their implications.

the test generation algorithm is able to extract information about the function of the circuit

under test. This is important. as the logical :.onstraints imposed by assignments propagate

unconditionally in the circuit under test-from inputs toward outputs and trom outputs

toward inputs. The result of full implication propagation is to determine ail implications of

each assignment. both forward and backward in the circuit.

The circuit under test can be viewed as a graph. with gates represented by nodes

and lines as edges. Primary inputs and outputs are special types of gales. with no inputs

and no outputs. respectively. Each edge in the graph has a set of reduction lists associated

with it. one reduction list for each possible value of the line. Since the constraints imposed

by assignments propagate both forward and backward in the circuit. it is natural to dis-
-+ -tinguish "forward" (R) and "backward" (R) components of the reduction lists. shown as

directed arrows in Fig. 4.8. Circuit nodes relate the reduction lists of the edges connected

to them. For each edge connected to a node. the outward bound reduction IIst component

(forward or backward if the line is an output from or input to the correspond mg gate.

respectively) is a functlon of the ,"ward bound reductlon IIst components of .III other edges

connected to the node. The operation performed when the reductlon Iist cornponents are

combined depends on the function of the correspondtng gate.

48

r

4.2 logical constraints and propagation of Implications

The propagation of reduction lists from the output of agate to its inputs can be

described by a set of reduction equations. In order to reduce a value from an input of a

gate. an assignment must reduce ail combinations of values of the output and other inputs

of the gate in which the reduced input value participates.

Example 4.12: From the inverse-image characteristic equations for a 2-input AND gate

with inputs A and B and output C given in example 3.5. value 1 remains in the set of

possible values at input A of the gate if O. 1. D. or D is present at input Band remains in

the implied value of the output. In order for an assignment to reduce 1 at input A. it must

simultaneously reduce: either 0 at input B or 0 at output C. either 1 at input A or 1 at

output C. either D at input B or D at output C. and either D at input B or D at output

C. These conditions can be stated in terms of the intersection of reduction lists from the

output and other input of the gate: in order for an assignment to appear on li t. it must
-+B +-c -+B +-c --+A'-C -+B +-0

appear on R 0 or R o. R 1 or R 1 • R D or R D' and R D or R D' As in example 4.6. an

assignment of input A to a value other than 1 also reduces 1 at the input. The reduction

equations for input A of a 2-input AND gate are:

Example 4.13: Similarly. the reduction equations for input A of a 2-input XOR gate are:

49

4.2 Logleal constralnts Ind propagation of Implications

Figure 4.9 Test generation for fault IsO

Dependencies between circuit nodes may cause logical constraints at one justification

point to appear at another. The reduction lists are able to capture these constraints and

identify additional necessary assignments.

Example 4.14: ln order to test the fault IsO in the subcircuit shown in Fig. 4.9. F{1} must

be justified. We note that E{O} requires B{O}' as B{1} reduces E{O}: thus. Ri2 includes

E{O}' Since E{O} appears on Rt2• it also appears on 'Ri1, and th us propagates to stem

D and appears on Ji f. Since E {O} appears on both Rf and R il, it reduces F{1)'

However. F{l} is a justification point-thus E{1} is necessary. A similar argument applies

to D{O}' which is al50 necessary. It is important to observe that an assignment to stem E

appears on a reduction list at D despite the fact that D is neither driven by nor drives E.

o d1
c1

E ____ ~~~~--------~~~~H---1~11-

CIO•lI

Figure 4.10 Value justification of a full adder

Example 4.15: ln justifying {1} on both the sum and carry outputs of the full adder from

Fig. 4.10. no necessary assignments are identified by backward implication despite that

consideration of the function reveals that inputs A. B. and C must ail be assigned to {1}

However. assignment e{O} appears on R [: smce 11 {1} must be Justlhed. an c1"~lgnrnent
which reduces F{1} implies that E must carry {1} (1 e. c.:{0} appears on J'Ô'-') Hente L'fO}

-2 4-
requires that A = B = {1} (i.e. appears on both R 0 and R g2). as E = {1} is reqUired

50

'f' ,

4.3 General theorem of reduction

if 0 = {O} in order to satisfy H{1}' Thus, C{O} appears on Il p, since it appears on both

R't/ and Rg1. Finally, since C{O} appearson Rf and ïlf, it appears on Rf. G{1} is

a justification point, 50 O{O} is a reduction assignment and C{l} is necessary. A similar

argument can be made for assignments A{O} and B{O}' both of which are also reduction

assignments.

4.3 General theorem of reduction

Reduction lists can be calculated for a general set function f using theorern 4.1.

Theorem 4.1: Let f : X x Y - Z be a function, and A, B, and C be nonempty subsets

of X, y, and Z. respectively. A ç X. B ç Y. C ç Z. Let Rt for each x E A, R~ for

each y E B. be the set of assignments which cause values x. y to vanish from sets A. B

at coordinates X. Y. respectively. Then the set of assignments which cause value z to

vanish from set C at coordinate Z. denoted by Rf, is the intersection of ail assignments

which cause x and/or y to vanish from sets A and/or B for e\'ery x E A, Y E B such that

f(x, y) = z. For each z E C:

Il; = (Ze \ Z{x}) u n (Il; u (n R~))
XE!IA:B(z) YE!I~~B(z)

= (Ze \ Z{x}) u n (11~ u (n R;)).
YE!IA~B(z) XE!IA:y(z)

+-
The set of assignments which cause value x to vanish from set A, denoted by R 1. is the

intersection of ail assignments which cause y and/or z to vanish from sets Band/or C.

respectively. for every y E B, zEe such that xE fIA:B(z). For each x E A:

RJ = (XA \ X{:r}) IJ n (R~ u (
-, f(r,ll)

51

43 General theOlem of rl'ductlol1

Similarly. for each y E B:

Proof: (By construction) ln order to reduce a value at the output of a gate. an asslgnmenl

must reduce ail input combinations which cause that value to appear To reduce :: al

output Z. it is sufficient that an asslgnment reduce ail values r at input .\ whlch could be

combined with sorne value at input Y to produce z at Z By deflllition. the IIlverse Image

on X of z given Y = B is that set of values at X If the asslgnmenl does nol reduel' .1

value x in that set. then it must reduce ail values y at II1put }' whlCh could bl' cOlllbm(~d

with x to produce z at Z-that is. ail values in the inverse Image on} of::: glven thal

X = x. A similar argument can be made starting with ail values al IIlpul)' whlch C,ln be

combined with a value at X to produce z.

To reduce a value at the input of a gate. an assignment must reduce a:1 Input/output

combinations in which that value participates. For example. to reduce J' aL II1put X. Il IS

sufficient for an assignment to reduce ail values z at output Z which can be produ<.ed by

combining x with a value at input Y -by definition. those values in the image on 7, of .r

given Y = B. If the a~signment does not reduce sorne z 111 that set. then it must redu<.e

ail values y at input Y which can be combined with x at input X to produc.e z at the

output-ail values in the inverse image on Y of z given X = x. Similarly. to reduce 11 at

input Y. •
Lemma 4.2: For each fanout branch St of stem S carrying value v (Fig 4.8b).

for each .r 1 11

For the fanout stem itself.

ri

Fi ~ = (S, ." i :) (lJ Il fil' l,If Il ,

;=1

4.4 Stem correlation

Example 4.16: Using theorem 4.1 to derive the reduction equations for an AND gate, with

inputs A = {D, 1, D, D}. B = {O,l, D, D} and output C = {O, 1, D, D}:

=4,1
-'C - A r'--~B---+~B-""-""-~B--~-:-B-" ~ A -+ B - B
Ra = (C{O,D,D,l} \ C{O}) U (Ra U (Ro n RDn R D n R l)) n (R DU (Ra n RD))

(j (il'Jy u (R~ n R~)) n (ilt u R~) =t8

-+A -A -+B -+A -B -B '~A ~""A----:-A-'
= (C{D,D,l}) U Ra n (R DUR D) n (R DUR D) U (Ro U (R D n RD n Rd)

-A -B -+A -+B -A -+B
= (C{D,D,l}) U Ro n Ro n (R D li RD) n (RD U R D)

-(' -'A -B -+B -+A-tB
Il [) = (C{O,D,1}) U (R D U (R D n R 1)) n (R 1 U R D)
-;(' -'A -B -tB --~A ~B
f(D = (C{O,D,l}) U {{ R DU (R D n R 1)) n (R 1 URl)
-'(' -A -B
R 1 = (C{O,D,D}) URl URl'

4.4 Stem correlation

The values at the inputs to agate may be related to each other through the reconver­

gence of a fanout stem. In this case, the set of v~lues at the output of the gate determined

using images of set functions may be pessimistic in that certain values present in the set

cannot be obtained. Reduction lists capture the relation between circuit Ilodes and can be

used to eliminate this pessimism, reducing branching and backtracking as weil as the total

CPU time required to generate a test.

Example 4.17: The circuit of Fig. 4.11 is an implementation of a 2-input MUX with select B

and Inputs A, C. Since both data inputs are {1}, output F will be {1} regardless of which

is selected Unfortunately, the forward propagated value of F erroneously includes both

o and 1 (see example 3 8) However, reduction list lit; = {B{O,1}} identifies that either

assignment to input B reduces 0 at F. indicating that 0 is not an attainable assignment at

7 SlIlce any slIch asslgnlllcnt wOlild l,HIS\. Il = {}

8 Since any sllch assignlllent would cause A = {O}. and thus C = {O}-a contradiction

53

•.• Stem correlation

Une Lllt Contents
A -tA

RO {}

B -tB
{B{t} } Ro

-tB
{B{O} } Rl

e -te
Rt {}

D
..... D

{B{t} } RO
-tD

{B{O} } Rt

E ->E
{B{O}} Ro

-tE
{B{l} } Rl

F F
{B{O,l} } Ro

-F {} Rt
'---

a) 2-input MUX b) Redu.tion Iists for 8

Figure 4.11 Correlation of assignments

line F: the forward propagated value of F can be restricted to {1} from {O, 1 }. eliminating

the pessimism. A stem correlation exists for assignment F{O} caused by B.

Stem correlation is similar to the identification of uniquely implied signal values pro­

posed in (SchAut89]. except that the use of a 16-valued logic system enables the reduction

lists to identify stem correlations in the region of the circuit reached by the fault effect.

Examples 4.18 and 4.19 iIIustrate two important cases of stem correlation in the D-region

which cannot be identified by 5. 9. or ll-valued logic systems.

Example 4.18: The set of possible values of node F in Fig. 4.12 determined using images of

set functions is {O,D,D}. However. as in the previous example. a stem correlation exists

for assignment F{O} caused by B. The forward propagated value of F can be restricted to

{D, D}. No further assignments are required to cause the fault effect to propagate to the

output of the MUX.

The reductlon IISt5 are determined by the current sets of possible vahw,> 111 tllf' CIrCUIt

under test. taking into account asslgnments made earher in the test generatlon process

Stem correlation identified by these reduction lists mdicates that It is not possible to both

.'\'

'~

4.4 Stem correlation

Line List Contents

A -A RD {}

B -B
{B{l}} RO

-B
{B{O}} Ri

C -c RD {}

D -D {B{1}} RD
-D

{B{O}} Ri

E -E
{B{O}} R--+g

Ri {B{1}}

F -F
{B{O,l}} RO

-F
{B{O}} R-

-fi RD {B{l}}

a) 2-lnput MUX b) Reduction lists for a)

Figure 4.12 Stem correlation in the D-region-propagation of the fault effect

satisfy the current set of justification points and produce the correlated value. However. if

the set of justification points were difTerent. it might be possible to obtain the correlated

value.

A 10.1)

8 (DI

d2
H IttlJ

1 IMjl

h2

Figure 4.13 Stem correlation in the D-region-no propagation of the fault effect

E)(ample 4.19: Stem correlation can be used to determine that the fault effect cannot

propagate to the output of the encoder illustrated in Fig 4.13. Although the value of node

G found using images of set functions IS {D,O.1}. the reduction hsts show that CID} is

correlated by stem C-thus, the forward propagated value of G can be restncted to {a, 1}.

ln this example, it is not possible to both justify H{l} and produce D on the output of

55

4.5 Complexity of test pattern generation and the computation of reductlon Iists

gate G. However. if I{Ol were the only justification point. then D could be produced at

the output of gate G by assigning C = D = {1}.

4.5 Complexity of test pattern generation and the computation of
reduction lists

During test generation, node values in the circuit under test are progressively refined

as the process converges to a test vector. That is, the cardinality of the sets of possible

values of circuit nodes is a monotonically non-increasing function Thus. reduction hsts

can only grow during test generation-assignments can be added, never deleted-since

an assignment must cause a reduction in a more refined system if it caused a reduction

previously.9 Since the total number of assignments which can appear on any reduction

list cannot be greater than the number of nodes in the circuit. the reduction lists can be

computed in polynomial time using selective trace.

ln a circuit containing llines and n nod .s, there are a total of 41 reduction lists and 4n

node assignments. An individu al reduction list cannot contain more than 4n assignments.

and at least one assignment must be added to at least one reduction list in order for further

computation to be scheduled. The time required to update a reduction list is proportIon al

to its length. Therefore. the worst case time required to compute the reduction lists is

O(ln2).

As discussed above, reduction analysis is equivalent to searching one level deep in

the search forest to identify first-order necessary assignments. Second-order necessary

assignments can be identified if double assignment!> are placed on the reduction lists.

rather than single assignments as has been discussed heretofore ln general. reduction hsts

will identify ail necessary assignments only if ail assignments are analysed (smgle. double.

triple, etc.). The p.xponential complexity of test generation arises thlough the exponentlell

number of assignment combinations which must be considered in arder to Identlfy ail

9 The reduction lists may decrease in slze on a backtrack. as the tes. generation protess 15 rolled back
from a later stage to an earlier one where node values were less rehned

S6

{

4.5 Complexlty of test pattern generatlon and the computation of reduction lists

A ___ -..-_---t E

H

Figure 4.14 A 2·input trivial function

necessary assignments and through backtracks which may occur if an incomplete analysis

is do ne and sorne necessary assignments are overlooked.

Example 4.20: The circuit of Fig. 4.14 implements the function AB + ÀB + AlJ + AB = 1.

Ali primary inputs are assigned to {Q, 1}; the set of possible values of ail nodes determined

during forward propagation is {Q,l} (not shown in the diagram to increase readability).

Although it is not possible to produce {O} at the output of the circuit. no correlation is

detected by the reduction lists (see the preceding section). The uncorrected pessimism

may result in unnecessary branching and backtracking during test pattern generation for

faults in a cir-::u!t containing this module. Note. however. that the reduction equations are

able ta prove that ;"1 is untestable without branching. (In arder to produce {Q} at node

1. E = F = G = H = {Q} are required. A{1} requires B{O} in order to satisfy E{O}'

but B{O} requires A{Q} in order to satisfy F{O}' A conflict is detected since A cannot

simultaneously be assigned to both 0 and 1.)

The previous example indicates that. at the cost of additional processing. a more

exact analysis of stem correlation can be done by attempting ta justify each of the possible

output values of each gate in the circuit at which some fanout 'item reconverges and then

dropping ail values which cannat be justified. This technique is equivalent to analysing

the effect of double assignments (i.e. identifying second-order necessary assignments) It

is not difficult to design a circuit in which the only necessary assignments are third (or

higher) arder and cannot be identified even if double asslgnments are consldered

57

4.5 Complexlty of test pattern generatlon and the computation of reC:'~ctior lists

Necessary assignment identification can al50 be performed in terms of conduction

analysis ln which the assignments that produce values at network nodes are captured.

Reduction analysis is more concise, however, as 2n conduction lists are required to capture

the sa me information as is done with n reduction lists. For example, conduction list ctO}
contains those assignments which cause node A to become {O}. but says nothing about

assignments which caU5e A to become a non unique set of values containing 0 (for example

{Ot 1} or {D, 0,1 }-a unique conduction list is required for each possible value. 2n in ail.

On the other hand. one reduction list is required for each element of the base set of values,

n in ail. Conduction lists can be formed by the intersection of the corresponding reduction

lists.

58

..

Chapter 5
Exploiting circuit topology in effk!ent

identification of necessary ~ssignments

The processing required to compute the reduction lists is proportional to the number

of assignments which must be analysed and the area of the circuit in which they must be

propagated. This chapter discusses structural properties of the circuit under test which

can be used to restrict both while guaranteeing that no first-order necessary assignments

are overlooked. This information can be found in a preprocessing step and then reused for

each target fault.

Certain necessary assignments can be identified by backward implication. Since back­

ward implication can be performed in linear time. an efficient test generator should identify

as many necessary assignments as possible using backward implication before going to

more expensive and sophisticated techniques such as reduction list computation. The key

observation is that only potentially necessary assignments whk" would not be identified

using backward implication should be analysed using recluction lists.

5.1 Structural analysis of reconvergence in combinational circuits

This section presents definitions which are used throughout the chapter to describe

the topology of the circuit under test in order to formalize reduction list computation.

Necessary assignment identification represents an ùpphcdtion of the stem reg/on concept

(MaaRaj90] to a general problem mvolving signal propagation along potentia"y reconvergent

paths.

5.1 Structural analysis of reconvergence ln comblnatlonal circuits

Definitions 5.1 through 5.3 are taken from [MaaRaj90).

Definition 5.1: If there are two or more disjoint paths between stem A and gate B. then

A is a reconvergent (anout stem. and B is a primar] reconvergence gate of stem A.

• If there are no reconvergent fanout stems on t;'e paths from reconvergent fanout stem

A and its primary reconvergence gates. then A is a narrow reconvergent (anCJut stem.

Otherwise. A is a wide reconvergent (anout stem .

• Let C be a narrow reconvergent fanout stem. 1) If C is located on a path between

reconvergent fanout stem A and a primary reconvergence gate of A. th en ail the

primary reconvergence gates of stem C that are not primary reconvergence gates of

stem A are secondary reconvergence gates of stem A. 2) If stem D is located on

a path between reconvergent fanout stem A and a primary reconvergence gate of A.

then ail the primary and secondary reconvergence gates of D that are not primary

reconvergen~e gates of stem A are sccondary reconvergence gates of stem A.

Primary and s,' ndary reconvergence gates of a stem are referred to collectively as recon­

vergence gate, ~f that stem.

Definition 5.2: The stem region of reconvergent fanout stem A is composed of ail the cirruit

nodes (stems and gates) that are both reached by stem A and reach a reconvergence ,ate

of stem A. and ail the output lines of these nodes.

Definition 5.3: Let x be a line in the stem legion of A. x is an exit line of stem A if x

belongs to the stem region of A (x is an output line of a no de in the stem region of A).

and x in an input to anode which is not in the stem region of A.

The algorithm given in [MaaRaj90] can be u ~d to identify the reconvergence gates.

stem region. and exit lines for ail reconvergent fanout stems in the circuit under test

60

,1

5.2 Candidate assignment identification

5.2 Candidate assigrlment identification

Definition 5.4: An assignrnent to a network node which may reduce the value of sorne jus­

tification point is caUf d a cérndidate assignment if the corres~;onding necessary assignment

cannot be identified by backward implication. The node is ca lied a candidate node.

The time required to <:ompute the reduction lists is proportional to their length. Since

reduction list calculation is more costly than convention al backward implication. an efficient

test generator should not use reduction lists to identify necessary assignrnents which can

be found by other means. This section discusses the impact of reconvergent fanout on

necessary assignment identification and presents properties related to the structure of the

circuit under test which can be used to restrict the number of candidate assignments which

are analysed using the reduction lists. Assignments which do not match the criteria of any

of the following properties êlre not candidate assignments and need not be considered.

Definition 5.5: For gate G performing function f : X x Y -+ Z. with inputs A. B nonempty

subsets of X and Y. respectively. A ç; X. B ç y, x E A is a control/ing input value of

G if IIBII > 1 and fl~~ B (f(x, R)) = B. Similarly. y E B is a controlling input value

of G if IIAII > 1 and fiA~y (f(A, y)) = A. C ç Z is a controlling output value of G if

IIfIA~B(C)1I > 1 and "fIA~8(C)11 > 1.

ln other words. a controlling value at the input to a gate forces the gate output to

value v. regardless of the value(s) at the othe' input(s) of the gate. A controlling output

value of agate is one which can be produced Ly two or more combinations of values from

its inputs. Note that definition 5.5 is not static. but takes into aç::vünt the current input

and output values of the gate.

Lemma 5.1: If no additional necessary assignments can be Identifled by backward impli­

cation. the required value of each JustIfIcation pOlllt IS a controlling output value of the

corresponding gate.

61

5.2 Candidate ISsIgnment identification

Proo': If there is only a single input combination which could produce the required output

value. then backward implication can be used to replace the justification point with other

requirements closer to primary inputs. Similarly. requirements at the output of any single-

input gate can be replaced by requirements at the input of the gate. •
If an assignment to a node in the network causes a reductioil at a justification point­

i.e. there is a necessary assignment to the node-then that assignment can be identified

by conventional backward implication if there is only a single path from the no de to the

justification point. However. if there are two or more disjoint paths from some no de to the

justification point, the effect of an assignment to the node may propagate along multiple

paths and cause a reduction at the justification point. Conventional backward implication

does not take reconvergent fanout into account and th us could not identify the necessary

assignment.

As discussed in the previous chapter. additional necessary assignments may be iden­

tified in the restricted space after the first set of necessary assignments is applied to the

circuit under test. Thus. backward implication and reduction analysis are performed itera­

tively until no more necessary assignments can be found. To further reduce computation.

reduction analysis is restricted to those assignments which would not be found after sev­

eral iterations of processing. That is, if an assignment to node A is necessary only if an

assignment to node B is also necessary. th en the processing of A can be put off until the

status of B is determined.

A<-,,~ __ .. - ~
- --._~z

./

.. ~-~-: - -........

Figure 5.1 Candidate asslgnment idelltiflcatioll

62

5.2 Candidate assignment identification

EJfample 5.1: Fig. 5.1 depicts a subcircuit containing one justification point. Z. and four

stems. A. B. C. and D. three of which are reconvergent. There is a single path from

stem D to Z. so any necessary assignment to D can be found by backward implication

from Z. On the other hand. stem C reconverges at Z. The effect of an assignment

to C may propagate along disjoint paths to Z causing a reduction which could not be

identified by backward implication. Although stem A is reconvergent. ail paths from A to

Z pass through C. If an assignment to A is necessary. then an assignment to C is also

necessary-there is no reason to analyse A until necessary assignments to C (if any) have

been made. Similarly. ail paths from B to Z pass through D. so assignments to B need

not be analysed as their effect is registered at D. Thus. stem C is the only candidate stem

in Fig. 5.1.

Property 5.1 formalizes these conditions:

Property 5.1: Assignments to stems which reconverge at any justification point are candi­

date assignments.

Proof: Assume that backward implication cannot be used ta identify any additional nec­

essary assignments from justification point J and that an assignment to no de N reduces

the required value of J. From lemma 5.1. the required value at J is a controlling output

value of J. The reductlon assignment to N controls J in the sense that it reduces the

r .quired value at J regardless of other assignments in the network. There are two cases

to consider:

1. A single path from N to J. The êssignment to N must cause controlling value to

appear at the input to J which is reached from N -otherwise the required value at J

would not be reduced. This implies that the required val'Je of J can be redueed by an

assignment to that input. and thus that backward implication can be used to identify

a necessary assignment to that input-violating the original assumption. This case

cannot oeeur.

2. Multiple paths from 1\' to./ An asslgnment to S may change the value of several

inputs to J. This case cannot be captured by conventional backward implication.

63

...

5.2 Candidate asslgnment identification

which does not consider reconvergence. Thus. assignments to N must be explicitly

analysed .

3. Multiple paths from N to J which are not disjoint. Since the paths are not disjoint.

there is a common section. The reduction assignment to N must control (in the sense

of case 1. ab ove) the gates along the common part of the path. and in particular. the

common gate closest to J. Cali this gate G. If there is a reduction assignment to

N then there is also a reduction assignment to G-the value assumed by G when

the reduction assignment to N is made. However. since G is simply another no de

in the circuit under test. candidate assignments to Gare also considered. From G.

there may be either a single path (case 1) or multiple disjoint paths (case 2) to .1:

in either event. there is no reason to explicitly analyse candidate assignments to N

until necessary assignments to G (if any) are made. After necessary assignments to

G are made. then necessary assignments to N will be identified in the next iteration

of either backward implication or reduction analysis. depending on whether or not

there are multiple disjoint paths from N to G. In either case. first-order necessary

assignments to N will not be overlooked. •
ln a preprocessing step. lists of stems which reconverge at each node in the circuit

are recorded. During test generation. the union of the lists of reconvergence stems for each

AND-node of the justification list are marked as candidate stems.

The set of values which must be justified in order to test the fault can be represented

by an AND-OR graph. as discussed in chapter 4. OR-nodes arise because the fault may

be detectable on two or more primary outputs. It is not necessary to justify any individu al

OR-node-the only requirement is that at least one of them be satisfied. From lemma 4 1.

an assignment must reduce the desired values of ail OR-nodes (i.e. both D and D at ail the

reached primary outputs) in order to be a reduction assignment. Thus. only asslgnments

to stems which reach ail of the OR-nodes of the justification hst are potential redu(tlon

assignments.

Property 5.2: Candidate assignments wlth respect to the OR-nodes of the Justlfl<.atlon hst

are to those stems which reach them ail.

64

1

-{

1

5.2 Candidate assignment identification

Proof: An assignment to a stem cannot affect the value of an OR-node which it does not

reach. Thus. if a stem does not reach ail of the OR-nodes. it cannot affect ail of them.

Therefore. assignments to that stem could not be necessary and need not be analysed .

•
As the only OR-nodes which arise during test pattern generation are primary outputs

to which the fault effect may propagate. the list of stems which logically drive each of the

primary outputs is recorded in a preprocessing step. During test pattern generation. the

list of reached ·tems for each OR-node of the justification list are intersected to find the

set of stems which reach themall: these stems are candidates.

Certain stems are candidates despite that there are only single paths from them to

justification points. Logic constraints propagate unconditionally in the circuit-both from

outputs toward inputs and from inputs toward outputs. As was demonstrated in example

4.14. an assignment to anode may cause a reduction in an area of the circuit which is

neither driven by nor drives the node. Assignments which reach one justification point may

correlate the values of other nodes and thus may cause a reduction. These cases arise only

when two or more justification points lie in the stem region of the node.

B (0,11

A 10,11

C {0,11

Figure 5.2 Transfer of requirements from one justification point to another

EJCample 5.2: There are three justification points in the circuit shown in Fig. 5.2: X{o}.

Y{t}. and Z{O}, A{1} requires B{O} (in order to justify X{o}): B{O} implies Cft} (in

order to satisfy Y{1}): Cft} requires A{O} (in order to satisfy Z{O}). Since AU} leads

65

,
;.

5.2 Candidate assignmenl identification

to a conflitt. A{O} is a necessary assignment.10 A{O} cannot be identified by backward

implication. thus assignments to stem A must be analysed using the reduction lists.

Figure 5.3 Premise. No stems exist whose stem regions include Jl and al least
one other justification point

Property 5.3: Stems whose stem region includes two or more justification points are can­

didates.

Proof: (By contradiction) Assume that there exists stem S which has no reconvergence

gates among the justification points and whose stem region includes only one justification

point. and that an assignment to S is necessary. Without loss of generality. assume that

the justification point inc\uded in the stem region of S is J1. as shown in Fig. 5.3. The

primary outputs reached by J1 are disjoint with those reached by the other justification

points-otherwise a reconvergent stem driving Ji and at least one other justification pOlOt

must exist. Since the set of outputs reached by J1 is disjoint with those reached by the

other justification points. an assignment to S which makes it impossible to observe the

fault effect on the outputs reached by J1 cannot impede propagation to any of the other

outputs-S does not reaeh them. The assignment to S is not necessary. contradlcting the

original hypothesis. 1

10 A {O} is necessary ln the sense that there IS no test pattern ln the spat.c dchncd I>y A (l} Of tullrse,

there may be no test pattern in the space deftned by A {O} either, in which case the currcnt sct of

justification points cannot be satlsfled. and a backtrack must be performed

66

5.2 Candidate assignment identification

Assignments to certain non-stem nodes are also candidates. Assignments to the

outputs of multi-input gates may correlate the value of several stems. the effect of which

may propagate further in the network than a single assignment to any of the stems. In this

case. the correlated stem assignments are subsumed by the non-stem assignment(s) and

no longer need be considered.

Figure 5.4 Propagation of gate assignments

Example 5.3: ln Fig. 5.4. there are no stem assignments which propagate to the output of

gate F. However. E{O} CaUtldS both stems A and B to become {O}. the combine~ effect

of which "bounces back" to F from stem B through line bl and gate D. reducing F{l}'

The necessary assignment to E may have an impact on justification points elsewhere in

the circuit. as its effect propagates forward from a2.

Non-stem candidate assignments can be found using property 5.4 in linear time in a

levelized forward trace from candidate stems.

Property 5.4: The set of candidate assignments to the output of gate G performing function

!. with inputs It, ... , In carrying values vt, ... , vn with candidate assignments v1', ... , vn'.

respectively (v1' ç vt, ... , vn' ç vn). is Z = {z E !(v1, ... , vn) l "!I~[~ xvn (z)11 =

1 and !I::~ Xvn (z) ç vj' for sorne j. 1 :5 i ~ n}. The subsumed input candidate as­

signments. ul' for input Ii (vl' ç vi'). are those input assignments uniquely implied by

the candidate output assignments: vj" = {x E v}' 1 fi-lI} (z) = x for sorne z E Z}.
tJ X xun

67

5.2 Candidate assignment identification

01

o

c) Minimized circuit

8) Non-minimal circuit

Line List Contents List Contents

A -A {E{1}}
t-A

1 {A{O} } RO Rl
-+A

{A{O}} RI

al -tal
{E{l}} 'R a1 {A{O}} RO 1

-fal
{A{O}} R1

a2 -a2
{E{l}} 'R a2 {A{O} } RO 1

-+a2
{A{O} } RI

B -B Ra {F{l}}
t-B
RI {E{l}}

hl bl
Ra {F{l}}

+-bl
RI {E{l}}

b2 -b2
Ra {F{l} }

-+b2
RI {E{1}}

e lie
0 {F{l} }

D -D Ro {E{l}}
..... D
Rl {F{ 1}}

E -+E
Ra {E{l}}

<-E
Ra {E{1}}

F -F Ra {F{ 1}}
+-F
Ra {F{1} }

G
-+G
Ra {E{1},F{I}} -G Ro {A{O}}

z -z {E{l}}
1

R 1

b) Reduction lists for a (empty reduction lists not shown}

Figure 5.5 Test generation for zsO

Proof: From the definition of the image and inverse image of set functions. •
Example 5.4: The candidate assignments to test zSQ in the CircUit from Fig 5 5a found uSlOg

property 5.4 are A{O}' E{1}. and F{lf-E{l} subsumes AlI} and }J{O}' and FOI <'lIh~um(>c;

B{l}' E{l} reduces Z{1}. a Justification pomt-thus "IO} IS li ')p(P"'''',HY .l''''lg,rHlII·n1

If non-stem candidate assignments are not analysed. then necessary asslgnment Ill!}

would be overlooked. Note that the circuit 10 FIg 5.5a performs the sa me functlOn as the

68

5.3 Region of propagation

minimized circuit in Fig. 5.Sc. in which ail necessary assignments can be directly identified

by backward implication.

5.3 Region of propagation

The second major issue in the efficient identification of necessary assignments is the

area in which reduction analysis must be performed. It is important ta restrict the region

of the circuit in which reduction lists are computed to avoid r~lculating lists which will not

be used to identify necessary assignments.

Definition 5.6: The shadow of the justification points is the region of the network reached

by tracing backward from the justification points.

Definition 5.7: The cone of the candidate stems is the region reached by tracing forward

from the candidate stems (found using properties 5.1 through 5.3).

The justification points and candidate stems mark boundaries beyond which reduction

lists need not be computed. However. due to the unconditional nature of reduction list

propagation. candidate assignments may appear on reduction lists. anywhere in the region

of propagation. In particular. stem assignments may propagate outside of their stem region.

fZ2J c:on. of ·lnt tJnct .tem.

lSS'9 ehodow of).Ietlflcotlon point.
~ area of Interest

Figure 5.6 Property 5 5 the region of reduction list propagation

69

5 3 Region of propagation

Property 5.5: Reduction lists need not be computed outside the region where the shadow

of the justification points overlaps the cone of the candidate stems.

Proof: By definition. there are no justification points outside the shadow at which as­

signments which propagate outside the shadow could cause a reduction or From which

5uch assignments could "bounce back" to reenter the shadow. By definition. there are no

candidate assignments outside their cone. Assignments need not be prClpagated backward

outside of the cone as there are no stems From which such assignments could "bollnce

forward" to re-enter the cone (any such stem must reconverge at a justification point and

thus Nould be a candidate). •

During the course of test generation. justification points are .ldded as assignments

are made. deleted as they are satisfied. and changed as backtracks occur. The candidate

assignments and region in which they must be analysed is related to the set of justification

points. and change as the justification points change. Each time the set o! justification

points is modified. the candidate assignments and region of propagation must be updated.

The overhead to update the set of candidate assignments is related to the topology of the

circuit under test. The region of propagation can be updated in time linear in the size of

the circuit.

7U

..
> ..

Chapter 6
A method to identify nonconflicting assignments

based on Boolean function monotonicity

Nonconflicting assignments have the desirab!e property of vastly and irrevocably re­

ducing the space which must be searched for a test vector while guaranteeing that they will

never need to be reversed. If a test pattern exists in the search space before the noncon­

tlkting assignment is made. then at least one test pattern exists in the search space after

the assignment is made (Fig. 6.1a). Conversely. if there is no test pattern in the search

space after the assignment is made. then there was no test pattern in the original space

(Fig. 6.lb).

lC lC @lC)(

lC)(o~< o
.) Test pattern exists b) No test pattern exists

Figure 6.1 Pruning assignments

ln this chapter. tendency lists are defined for general Boolean algebras in terms

of images and inverse images of set functions. providing a systematic means to analyse

funetion monotonicity and identify nonconflieting assignments during deterministic test

generation.

6.1 Generalized function monotonicity and tendency lists

6.1 Generalized function monotonicity and tendency lists

A Boolean function is sa id to be unate in variable x if x appears in only trLe l'Positive

unate") or only r.olTlf)lemented ("negative unate") form in the sum-of-products or product­

of-sums form of the function [BrHaMcSa84}. Function monotonicity or unateness can be

exploited during test generation.

E)(ample 6.1: ln order to sensitize the So fault at the output of a 2-input MUX performing

function f = AB + BD. it is necessary to justify a "t" at the circuit output. Justification

is equivalent ta satisfying the Boolean equation AB,- Bt = l-which can be satisfled by

making assignments in such a way ttl4it one or the other minterm evaluates to 1. To this

end. assignments A = 1 and C :; 0 lead in the direction of the goal and cannot confllct

with it. On the other hand. either assignment to input B. while leadmg one term toward

the goal. leads the I)ther term away from the goal. sa there is no non<.:onflicting assignment

to B.

Function montonicity in networks which do not contain faults can be described ln

terms of the two-eiement Boolean algebra B~ = {n, 1} and is efluivalent to unateness of the

Boolean function implemented by the network. There is a direct correspondence between

the variables in the sum-of-products (product-of-sums) form of the Boolean equations

describing network node functions and the values assumed by these nodes when test vectors

are applied.

ln circuits which may contain faults. however, monotomcity cannot be deftned ln

terms of B~ as it is not possible to represent the possible presence of faults. Onl solution

is to use B~ and record function monotonicity separately for the fault-free and faulty

circuit. This solution is poor. however. as it does not exololt the close relatlonshlp between

the fault-free and faulty circuits in the reglon reached oy the lault eHeet On the other

hand. B~ = {O,D,D.l} is sufflclently precise to descrlbe urcuit value", Hl tlw prp<,pn<e

of potentlal faults and recognlzes the relation h"h'J"Pfl th,· LIlJI! Ire(: dllfl LllJl! Y (If(Illt c,.

offering a better solutIon ln the reglon of the c.lrcult not reaehed by th(:: I.JUIt f'flf'{.l.

monotonicity defined in terms of B~ reduces to that defmed ln terms of 1J~

12

6 1 Generalized function monotonicity and tendency lists

For general Booleên algebras. theorem 6.1 describes the construction of tendency

lists at the output of alogie block performing funetion f, given the tendency lists at its

inputs. Assign:nents whlc.h appear on tendeney list Ti' at node C lead C toward value "­

(an element ln the base set of the power set whieh IS Isomorphic to the Boolean algebra

in question)-after those asslgnments are made. z will be in the set of possible values at

C' if it was possible to produce z at C before the assignments were made. In other words.

tendency IIsts glve. for each element of the base set of the Boolean algebra (power set).

those assignments whlch lead in the direction of that element and do not eonflict with the

goal of producing iL

Theorem 61. Let J X;< Y - Z be a function. X. Y. and Z Boolean algebras. and A.

/J. and C' be noneml ty subsets of X. Y. and Z. respectively. A ç X. B ç Y. C ç Z.

Let T}. 7~r for each x E A. Y E B. be the set of assignments which tend toward values

x. y at input coordmates X. Y. respectlvely. The set of assignments which tend toward

value z m set (,' at coordinate Z. denoted by Tf. is the union of ail assignments which

tend toward T at coordinate X. x E A. if J(x, y) = z for sorne y E Band IIJ(A, y)" > 1

combmed with ail assignments which tend toward y at coordinate Y. y E B. if J(x, y) = z

for sorne x t- A and II/(x, B) Il > 1. In set builder notation. for each z E C:

A' = {a E A 1 J(a, b) = z for some b E Band f lA: b (z) #- A}

B' = {b E B 1 J(a, b) = z for some a E A and fl~~B(z) -:1= B}

Tf = U T;'< U U T{.
xEA' r./EB'

Proof. (By construction) ln order for an assignment appearing on a tendency list at input

coordinate X ta cause Z ta tend toward z. that assignment must cause input X to tend

toward a value J' whlch can be combmed wlth a value b at Input Y to produce z at Z.

However. If the image of li at mput X and b at Input }' on output Z is uniquely :::. then b

at Input)' 15 the only reqlllrf'lllent ln c;<1tlsfv ': : 1 f' l ,11 \" IS not reqlllrf'd A Slnlilar

argument ,lppllt.>s to dsslgnllH'lltc., "1'1"'dllllg <1t 11I1,"t 1 •

73

6.2 Tendency lists and nonconflictlng asslgnments

Theorem 6.1 is used to derive tendency equations for a 2-input AND gate with inputs

A and B and output C for difTerent combinations of input values in the following eltample.

Example 6.2: For an A{~D gate. with inputs A

output C = {a, 1, D, D}:

{O,l,D,D}. B

Tf = Tt u T~ U TA u Tt u T.g U TE
TC = TI

A U TA U T1
B U TB

D D D

Tg = Tt U TA U Tf U Tg

Tf = TtuTf·

{O.l,D,D} and

Similarly. for an AND gate with inputs A = {O,D,D,l}. B:= {O,D} and \Jutput C =

{O,D}:

Tf = TtuTA
TC = TA U Tl A U TB.

D D D

6.2 Tendency lists and nonconflicting assignments

Tendency lists can be used to identify nonconflicting assignments during automatic

test pattern generation. The key observation is that assignments to primary mputs can al­

ways be justified. whereas assignments to internai nodes may not themselves be satlsfiable

Therefore. primary input assignments only are analysed using tendency !lsts.

The tendency lists at pumary input nodes are initialized with the correspond,", Input

assignments. 1 i{o} is added to list Tt} and 1 j {i} is added to list Tf} at each unasslgned

primary input 1 J. T endency lists in the rest of the cIrcuit can be computed ln Imear tlme

using theorem 6.1 in a levelized forward pass For each possible value of every node Hl the

network. the correspondrng tendency !lst contams those Input asslgnments whlch lead ln

the direction of that value at the node Unique mput asslgnments whlch aPP("lH on that

tendency list are nonconflicting aS51gnments wlth rp"p~r t 10 that nm\!· and v,slw'

The tendency lists at the JustIfIcation pomts are used to Identlfy nonLOnfllctll1g a.,

signments. A vote is collected by fmdmg the Unie', .;;f the tendency hsts correspond mg

74

6.2 Tendency lists and nonconflitting assignments

to the desired value of ail justification points. Unique assignments appearing in this set

are nonconflicting with respect to ail justification points and can be applied to the network

under test. l1

Lemma 6.1: Given the set of justification points {A~l"'" A~n} ail of which must be

satisfied (ANO-nodes in the AND-OR graph) and {O!l ' ... , O~m} at least one of which

must be satisfied (OR-nodes in the AND-OR graph). unique assignments appearing in

are nonconflicting assignments.

Proo(: From theorem 6.1. such an assignment could not lead any justification point away

from its desired value(s). •

The following examples il/ustrate nonconflicting assignment identification during test

pattern generation.

EJCample 6.3: CIl} is the only necessary assignment to generate a test for fault Osa in

Fig. 6.2. Voting at justification points J{D,D} and K{D}' the set of desirable assignments

is {A{O},B{1},D{1}} U {A{l},B{O}} U {B{l},D{1},E{l}}' resulting in a unanimous vote

on inputs D and E. yielding nonconflicting assignments D{l} and E{l}' a test vector for

the fault. Note that CIl} is a nonconflicting asslgnment in addition to being necessary.

fJCample 6.4: Nonconflicting assignments may be identified when the target fault is untest­

able. In that instance. they restrict the remaining search space. enabling the test generator

11 Ali nonconfhcting assignments can be made slmultaneollsly as the lIoateness propertles of the IIlpllts
are independent of each other However assignlll~ them alll1l:1v resliit III an over-slH'clfled test vector­

a vector which contains fewel dol' t cale IIlput J"'~IlI11Cllt' t!JOlIi I11lghl othelWl5f' he the (,15C That
15. if the nonconflictlllg asslglll11ellts ille made sell,ll1v I<lthel thall Sllllllltëllieollsly the test generator

may recogl1lze that the fault 15 tested wlth fewer Inputs assigned To nllnlOllZe the llul11ber of assigned

primary inputs while avoidlng unnecessary branching and backtrackmg. it may be deslrable to make
nonconfllcting input assignments senally ooly if no necessary asslgnments can be identifled

75

6.2 Tendency lists and nonconfllctlng asslgnments

A 10,1) f ~.1)
J fO.1.0.D}

..;;.....;.~-t--------f--...., H (0.1.01

a) Example circuit

Line List Contents Une Lilt Contents

A TÂ {A{O} } H TH {B{l}' D{O}} 0 0
TÂ {A{l}} TH {B{1}' D{1}} 1 D

B TB {B{o}l
TH {B{O} }

0 1

TB {B{l} } 1 r.1
{D{O}' E{1}} 1 0

C TC {CIO} }
TI {D{1}' E{1}} D 0 TI TC {Ct!}} {E{O} }

1 1

D TD {D{O}} J r.J
{A{O}' B{O}} 0 0 r.J

{A IO}' B{1}' D{l}} TD {D{1}} 1 T9
E TE {E{O}} D {A{11,B{O}}

0 TJ {B{1},D{O}} TE {E{l}} 1
1

TK
r.F K {B{O},E{O}l F {A{l} } 0

T9 r.K
{B{1}' D{l}' E{1}}

{A{O}} TR 1
{B{l}' DtO}' E{1}}

G r.G {D{1}l
1

TB {D{O}} 1

b) Tendency lists for 8

Figure 6.2 Test generation for C~O

lo identify a conflict more quickly (i.e. with fewer branches and backtracks). The CIrCUIt

in Fig. 6.3 iIIustrates the identification of nonconflicttng asslgnments dunng redundancy

identification for eOs1. Voting at Justification pomts E{O} (fault sensltlzation) and l'ml

(fault propagation) identifies nonconflictmg asslgnments A {O}. lJ {1}' C 11)' /JI O}' l'J'lO}'

and G {1}' reducing the remamtng search space to f; of Its prevlous Sile

The tendency lists correspond to the values m the network. reflectmg the asslgnments

which have been made and the values whlch must be justlfled. Asslgl1ments made durtng

16

Une

A

B

C

D

E

F

G

H

1

List
T.Â

0
TA

1

TB
0

TB
1

TC
0

TC
1

TP 0
TD

1
T.E

0
TE

1

T.F
0

TF
1

T.G
0

TG
1

T. H
0

TH
1

Tl
0

Tl
1

A (0.1)

8 10,11

C (0.11

o (O.tl

E 10.11

F (o.!1
G (o.tl

Contents

{A{o}l

{A{1}}

{B{O}}

{B{l}}

{C{O}}

{C{t}}

{D{O}>

{D{1}}

{E{O}}

{E{1}}

{F{O}}

{F{t}}

{G tOI}

{G{l}}

{A{l}}

{A{O}}

{B{1}}

{B{O}}

6.2 Tendency lists and nonconflicting assignments

lU.1)

(0,11

(0,1)

a) Test generation for eOs1

Line List Contents
J Tl {C{l}> 0

TJ {C{O}> 1

K T.K {E{l}} 0
TK {E{O}} 1

L TI {A{O}' B{l}' F{I}} D
TI {A{I}' B{O}' F{O}} 1

M T.M {B{O}' E{t}. D{t}} 0
TM {B{l}' E{O}' D{O}} 1

N T.N {D{t,. E{l}'C{O}' F{t}} 0
TN {D{O}' E{O}.e{I}' F{C}} 1

0 T.0
{E {CI},F{1}} 0

1'0 {E{I},F{O}} 1
p TP {A{O}' B{t},e{I}' D{O}' E{O}' F{O.l}' G{l}}

T.P {A{l}' B{O},C{l}' D{O}' E{O,1}' F{O}' G {1}} 0
TP {C{O}. D{1}' E{o.t}. F{1}.G{O}} 1

Q T.Q
{B{l}' CIl}' D{O}' E{O}' F{O,1} , G {l}} 0

TQ
{B{O}' Clot' D{1}' E{1}' F{O,l}> G{O}} 1

R TR {D{l}' E{1}' F{O,1} , (,' {1}} 0
TR

{[lIO}·E{O},F{D,1}'(,'{OI} 1

b) Tendency lists for a)

Figure 6.3 Nonconflkting assignment identification in redundancy i~entiflcation
17

\

i.

601 Pesslmlsm ln the tendency Inllysls

test generation. whether necessary. nonconflicting. or arbitrary. constrain the operation

of the circuit under test and may lead to the identification of additional nonconflicting

assignments which could not be identified previously. The tendency lists are updated to

reflect the possible values in the network each time the values change.

As the maximum tendency list length for each network node can be predetermined

(the number of primary inputs which reach it). efficient tendency list computation can be

implemented easily. Tendency lists need be calculated only in the shadow of the justification

points (see section 5.3). Incrementai updating of the tendency lists is simple as changes

originate at and propagate forward from nodes whose value was changed.

Nonconflicting assignment analysis can take the place of heuristic techniques used by

other test generation algorithms. For example. required values of "head lines" (FujShi83)

can be justified by nonconflicting assignments to primary inputs. so there is no need to put

off their justification. Other techniques such as [SilSpi88) which rank branch assignments

by theïr likelihood to cause conflicts can be replaced. since those assignments are often

nonconflicting.

6.3 Pessimism in the tendency analysis

Tendency list calculation performed using theorem 6.1 is pessimistic in that some

nonconflicting assignments which can be identified by exact analysis of the Boolean equa­

tions implemented by the network may be overlookedo However. an assignment which could

lead to a confliet will never ineorreetly be identified as noneonflictingo

The following examples illustrates a circuit in which the tendency lists correctly iden­

tif Y ail nonconflicting assignments in one gate-Ievel circuit (exarnple 605). but miss sorne

in a slightly different gate-Ievel irnplementatson of the sarne functlon (example 66)

Example 6.5: Although no necessary asslgnments are rdentlhed when targetlllg f.lIllt J.,',!

in Fig. 6.4. voting at justificatIOn pOints E{O} and L{D} determlnes that desrrable Input

18

•

6.3 Pessimism in the tendency analys!s

~ 0.1

a) Example circuit

Line List Contents Line List Contents

A r.A {A{O}} B r.B {B{O}} 0 0
TA {A{t}} TB {B{1}} 1 1

0 r.C {O{o}l D r.D {D{O}} 0 0
TP {C{t}} TD {D{1}} 1 1

E TE {A{l}' D{1}} F TF {B{1}} 0 0
TE {A{O}' D{D}} TF {B{O} } t 1

G r.G {Ott}} H TH {A{l}' B{O}} 0 0
TG {C{O}} TH {A{O}' B{l}} 1 1

1 TI {B{t}} J TJ {C{1}} 0 0
TI {B{O}} TJ {c{O}} D D

K T.K {c{o}. D{1}} L T.L {A{O}' E{l}' C{l}' D{O}} 0 0
T.K {C{l}' D{O}} TL {A{t}. E{O}' C{o}. D{1}l 1 TE {A{t}. B{O.1}' C{O.l l' D{1I} 1

b) Tendency lists for 8

Figure 6.4 Test generation for ES1

assignments are {A{l},D{l}} U {A{1},B{O},C{O},D{1}}' resulting in nonconfticting as­

signments A = D = {1}. B = C = {D}. a test pattern for the fault.

Example 6.6: The function of the C1fcuit 1,1 Fig. 6 5a IS nct affected by expandmg the four­

input NOR gate at its output into a cascade of two-input gates (Fig. 6.5b). However. the

79

•

6.3 Pessimism ln the tendency analysls

b) Output gate cascade

a) Schneider's counter-example

Line List Contents

H T.H {A{l}' B{O}} 0
TH {A{Ol,B{I}} 1

1 T.I {B{I} } 0
TI {B{O}} D

J T.J {C{1}} 0
TJ {C'{O}} D

K T.K {C{Ol,D{1}} 0
T.K {CIl}' D{D}} 1

X r.X {A{l}' B{O,t}} 0
r.X {A{O}' B{1}} 1
T X

{A{l}' B{O}} D
y r.Y

{A{I}' B{O,I}' CIl}} 0
TY

{A{Ol,B{I}} 1
TY {A{1}' B{O,t}, CIO}} D

L r.L
{A{O}' B{l}' c{1}' D{O}} 0

r.L
{A{1}' B{O,I}' CIO}' D{1}}

Tf {A{I}' B{O,t}, C {O,I l' D{l}} 1

c) Tendency lists for b

Figure 6.5 Test generation for ESt

tendency lists are modified (compare Tj;in Figs 6 4b and 6.5c). resultmg in a pe,>slmlstlc

vote and a missed nonconflicting assignment to II1put H

80

(

6.3 Pesslmism in the tendency analysis

Pessimism in monotonicity analysis through tendency list computation is brought

about by incomplete treatment of fanout-free regions. The problem is that the tendency

lists. by treating individual gates. do es not determine the effect of individual assignments­

the effect is that sorne input Iists are added to the output list more than once. A solution.

not developed further in this thesis. is to extract the fanout-free regions of the circuit and

perform tendency analysis for the entire region at once.

81

1

•

Chapter 7 The QUEST test pattern generation algorithm

The objective of the QUEST algorithm is to reduce or eliminate backtracking during

automatic test pattern generation by delaying arbitrary branching as long as possible. At

every step. necessary and nonconflicting assignments are applied iteratively until eithel a

conflict is detected and a backtrack initiated12 . no more algorithmic assignments can be

identified and an arbitrary branch is made. or a test vector i5 generated. The algorithm

is complete: the process continues until a test pattern is generated or the target fault is

proven untestable.

This chapter also discusses the use of preprocessed information during test genera­

tion. There are tradeoffs between the time taken to identify necessary assignments and the

number which are overlooked. Unldentified necessary assignments may cause unnetessary

branching and backtrackmg during test generation: however. dynamic reduction list calcu­

lation may be costly. even when the techniques described in chapter 5 are used to reduce

the amount of processing performed. Thus. from the point of view of (PU tlme. It may

be desirable to obtain information which can be used to identify sorne necessary asslgn­

ments quickly and can be reused for each target fault. avoiding the dynamic calculatlon of

reduction lists completely.

Finally. experimental results obtained when the QUEST algorithm was used to gen­

erate tests for faults in a variety of benchmark Circuits are presented

12 Necessary and nonconflicting assignments cannot cause a backtrack unless there IS no test pattern in
the search space deflOed by the most recent arbitrary brdnch

(

7.1 Organlzation of the test pattern generation system

7.1 Organization of the test pattern generation system

for each target fault
inject fault:
do

do
forward propagation: j* section 3.1 * j
update justification points: /* section 4.1 * /
if conflict detected

elle

endif

backtrack:

calculate reduction lists; 1* chapter 4 *'
calculate tendency lists: 1* chapter 6 * 1
make necessary assignments:
make nonconflicting assignments:

until no algorithmic assignments identified
if test vector not yet found

make arbitrary branch (heuristic):
endif

until test pattern found or fault proven untestable:
endfor

Figure 7.1 The QUEST test pattern generation algorithm

Test pattern generation begins with the insertion of the target fault. To account for

the presence of the injected fault. the line (or fanout stem) associated with the fault is

broken and a pseudo-primary inputjprimary output pair is created. as described in section

3.1. Forward propagation is performed to determine the sets of possible values in the

circuit in the presence of the injected fault. and test pattern generation begins with the

initial set of justification points that the fault must be sensitized and the fault effect must

be observed on at least one primary output.

The reduction and tendency lists are computed (updated) to reflect the forward prop­

agated circuit values. and necessary and nonconflicting assignments are identified from the

reduction and tendency lists at the jU5tification points. Necessary assignments become new

justification points. slnce thelr values must be Justlfled ln arder for the fault ta be tested.

Forwaro propagation is performed to update Circuit values ta reflect the asslgnments which

83

7.2 Preprocessed information

were made. and the cycle is repeated until a conflict is detected or no more necessary or

nonconflicting assignments are found.

Necessary and nonconflicting assignments may be identified in the restricted space

after an arbitrary assignment which were not necessary or nonconflicting before the branch

On a backtrack. ail assignments which were made after the most recent arbitrary branch

must be retracted along with the branch assignment itself. A convenient method ta do

this is to keep track of the set of justification points (including assigned primary mputs)

which existed prior to the arbitrary branch and roll back ta it. A change ta the justification

points initiated by a branch or backtrack can be treated in the sa me manner as any other

justification point modification-node values and reduction and tendency lists must be

updated to reflect the new set of justification points.

7.2 Preprocessed information

Two types of reusable information can be recorded during preprocessing and used

to reduce the amount of computation performed by the test generator when targeting a

particular fault. Topological information can be used to limlt the work done to caleulate

reduction lists while guarant~eing that no first-order necessary assignments are overlooked

(chapter 5). However. the dynamic computation of reduction lists may be cost/y. even if

these techniques are used. Generic reduction information can be used to identlfy a subset

of the necessary assignments. avoiding dynamic reduction hst calculation. Two classes

of generic reduction information. generic reduction lists and propagate assignments. -'!re

presented in this section. Dominator identification. although not generic. IS used to trigger

the application of propagate assignments and is also discussed.

7.2.1 Generic reduction lists

Generic reduction lists are analogous to "statl<. leiunlng" defln('d 10 IS(Il TnSM88j

The generic reductlon lists are computed wlth ail the pnmary r"Dub d'i~rgll(·d [0 ~ 0.1 f

and no injected faults. Due to the conditions under which the IIsts are cOlllputed. the

84

1.2 Preprocessed Information

assignments they contain are reduction assignments only for justification points and nodt's

not reachable from the point of the fault.

For each stem in the circuit. assignments to both 0 and 1 are added to the generic

reduction lists. along with candidate gate assignments found using property 5.4. Subsumed

stem assignments are not dropped. however. as the gate may be inside the D-region

while the subsumed stem is outsid~ for sorne target fault-there would be no reduction

assignment to the gate. despite that the stem assignment is still valid. If subsumed stem

assignments are dropped. necessary assignments may be overlooked.

Similar to the discussion presented in chapter 5. memory requirements can be reduced

l>y pruning the generic reduction lists to remove implications which can be captured by

backward implication. Property 7.1 formalizes the conditions under which the implication

of an assignment to a network node (either a fanout stem or gate) must be stored on the

generic reduction list of another node.

Property 7.1: Let f: X x Y ~ Z be a function. and A. B. and C be nonempty subsets

of X. Y. and Z. respectively. A ç X. B ç Y. C C Z. For each zEe. generic reduction

list Gf contains ail assignments Sv such that Sv E Rf and either IIfl:4:B(z)1! # 1 or

IIfiA~B(z)1I # 1.

Proo': From theorem 4.1 and the definition of Înverse images. only these implications

cannot be identified by backward implication. •
ln order to avoid storing implications which can be found by sever al iterations of

backward implication and generic rE:ductions (see property 5.1). stem assignments need be

retained at a network node only if there are multiple disjoint paths trom the stem to the

node-in other words, the no de must be a reconvergence gate of the stem This implies

that. in computing generic reduction lists. assignments to a stem nee~ not be propagated

out~ide its stem reg!on. Similarly. candidate gate assignments need not be propagated

outside the area defined by the union of the stem reglons of stems for whlch the gate

subsumes at least one assignment.

85

4'
1

1.2 Preprocessed information

7.2.2 Circuit dominators

Dominators-nodes through which the fault effect must propagate in order to reach

any primary output-are necessary assignments to {D, D}. and can be identified either by

backward implication or reduction analysis. T 0 avoid overlooking necessary assignments

if the reduction lists are not updated dynamically. dDminators not found by backward

implication can be identified in linear time using th~ algorithm from (CoxRaj881. outlined

below.

Viewing the circuit as a graph. with vertices and edges corresponding to gates and

lines respectively. dominators can be identified by considering only the subgraph whose

vertices: al reach a justific~t:on point whose required value includes D and/or D. and h)

whose set of possible v~!ues includes D and/or D. Vertices whose removal would result in

an unconnected subgraph correspond to dominators.

One method to find such gates is to trace backward in reverse ~evelized order from

justification points whose required value includes D and/or D. The inputs "0 a gate are

placed on a list if D or D at that input can be combined with the other input values to

produce D or D at the gate output. Gates are removed from the list when their inputs

are checked. If the list contains a single gate at any point. then that gate is a dominator.

Individual justification points are scheduled when their level is processed (OR-nodes are

treated as a single justification point).

7.2.3 Propagate assignments

The basis of the identification of propagate assignments is that. i:l order for the fautt

effect to propagate from a reconvergent stem to a primary output. it must first reach at

least one of the stem' s exit lines.

Example 1.1: If stem 5 from FIg. 7 2 is a dOl11l1lator. the fautt effect must propagate

through e1. e2 or e3 (its exit lines) in order to be observed at any pnmary output. If

assignments made earlier in the test generation process makE' it impossible to propagate

86

1

1

,.

7.2 Preprocessed Information

Figure 7.2 Propagate assignment identification

the fault effect through e2 (i.e. neither D nor D is in the set of possible values at e2). then

it must propagate through el and/or e3-an assignment which eliminates D and D From

both el and e3 is a reduction assignment.

Definition 7.1: An exit line of a dominant stem is active jf it Îs within the shadow of the

justification points. and its set of possible values includes D and/or D.

A {0,1}

8 {0,1} F [D,D,'}
1 (0,' .0,01 (Q,1,0,0) K C (O,H G {D,O,l}

D {O,o} J (O,1,O,OI
H (D,O,1} E {0,1}

a)
A (0,1}

8 (0,1) F (D,D,t)
1 10,1,0,0} (0.1.0.01 K C (O,tI G (D,D,l)

o 10,0) J (0,1,0,01
H (D,D,l) E (O,l}

b)

Figure 7.3 Propagate assignments example

Example 7.2: ln order to propagate the fault effect from D. an identified dOmlniltor, to any

primary output in the subcircUit shown in Fig. 7.3a. It must propagate through .12 or I{.

the exit lines of D. A necessary condition to observe the fault effect on either eXit li ne is

87

7.2 Preprocessed information

A = {1}. If NAND gate J from Fig. 7.38 is replaced by a NOR gate (Fig. 7.3b). there are

no necessar}' assignments-the required value of A to propagate the fault effett through

exit lines K is A = {1} and through j2 is A = {1}. If. however. B = {O} and C = {1} are

assigned earlier during test generation. tl'-en the only active exit line of Dis i2. so A = {O}

is a neces5ary aS5ignment.

Propagate assignments for each exit line of each reconvergent fanout stem in the

circuit can be found dliring preprocessing by:

1. Injecting {D, D} at the stem and calculating the reduction lists inside its stem re­

gion. Only assignments to fanout stems are placed on the reduction li5ts. and only

"forward" reduction lists are computed.
-+ -+

2. Recording the intersection of reduction lists R D and R D at each exit line of the

stem.

When a .econvergent stem is identified as a dominator during test generation. the

p.opagate assignments for each of its active exit lines are intersected to find the set of

assignments which make fault propagation from that stem impossible.

Propagate assignments for nonreconvergent fanout stems can be defined similarly.

If a nonreconvergent stem is a dominator. the fault effect must propagate to at least

one primary output reached by the stem in order for the fault to be te5ted. In effect.

the "exit lines" of a nonreconvergent stem are its reached primary OI.tputS. Making this

assumption. its propagate assignments can be identified during preprocessing and used

during test generation as described above.

Propagate assignments are similar to those found by SOCRATES using "instructions

1 and 2" [SchTriSar88] and "dynamic instructions 1 and 2" [SchAut89]. except that they

are identified once during preprocessing. rather than dynamically during test generation.

88

1

1.3 Experimental results

7.3 Experimental results

The algorithms presented in this paper were implemented to investigate the behavior

of a test generation system which uses necessary and nonconflicting assli ments and. in

particular. to determine the extent to which backtracking can be reduced using algorithmic

rather than heuristic techniques.

Faults can be di"ided into classes depending on the relative difficulty of findtng a test

pattern for them. For example, many faults are "random testable" because it is easy to find

a test vector for them by fault simulating random input vectors. In addition. experimen­

tal results indicate that a test can be generated for many faults using only preprocessed

information. However. faults exist-particularly certain untestable faults-which are aban­

doned unless ail necessary assignments are identified using dynamically updateti reduction

lists. This observation leads to the conclusion that no test generation system is ideal for

"III target faults. An algorithm which finds ail necessary assignments may take excessive

CPU time because the dynamic calculation of reduction lists is costly. yet an algorithm

which uses only preprocessed information will abandon or spend excessive time branching

and bacJ.;tracking needlessly on sorne difficult faults. On the other hand. a multi-phase

algorithm can combine the best features of ail its components.

Complete test pattern generation experiments were run on the ISCAS'85 benchmark

circuits (BrgFuj85]. Although the circuits are smal\. they contain examples of interesting

faults which are abandoned by many test generation systems [GoelB1. FujShi83. KirMer87.

Cheng88). In order to test the deductive power of the QUEST algorithm. ail faults were ex­

plicitly targeted-no fault simulation was performed. Experimental results were generated

as follows:

Oeterministic test pattern generation: A two-ph~se algonthm was used. wlth a back­

track limit of 10 for each pass. In or der to determine the effect of algonthmJC as­

signments on test generation in the absence of "intelligent" heuristlcs. the results

presented in this section were produced by asslgnmg to {a} the flr<;t un.l<,slgned

primary input which could have an effect ln the fmal test pattern

89

J

7.3 Experimental results

a) Phase 1: Test generë:tion using preprocessed information only. but using domi­

nators and propagate assignments.

b) Phase 2: Test generation using dynamically updated reduction Iists.13

Circuit
Testable Untestable CPU Time(sl·

Flts Abd. Undet. Flts Abd Avg. Max. Pre.

C432 520 0 0 4 0 0.22 0.45 6.63

C499 750 0 0 8 0 0.21 0.66 358

C880 942 0 0 0 - 0.13 0.41 451

C1355 1&66 0 0 8 0 0.73 1.36 11.81
C1908 1870 0 0 9 0 0.61 1.49 31 75
C2670 2630 32 0 117 0 0.44 2.61 2688

C3540 3291 2 0 137 0 0.95 2.58 104.68
C5315 5291 2 0 59 0 034 1.67 4802
C6288 7710 71 0 34 0 3.45 6.74 43218

C7552 7419 28 0 131 0 0.79 3.35 86.24

... Sun 4/SlC

Table 7.1 Experimental results

Table 7.1 summarizes the results obtained. differentiating between test~ble and untest­

able faults in the benchmark circuits. For example. C2670 contains 2630 testable faults

(after prime fault collapsing [Cha79]). of which 32 were abandoned after the backtrack

limit was exceeded. These faults were covered by test patterns generated for other faults.

however. 50 no faults were undetected in the experiment. Further. in ail circuits. ail of the

faults which were abandoned after phases 1 and 2 of the test pattern generation algorithm

were covered when less than 1000 random vectors were fault simulated. and thus would

not have been targeted in a conventional test pattf~rn generation experiment which begins

with random vector fault simula~ion. C2670 also contains 117 undetectable faults. ail of

which were proven to be untestable in the experiment. The table also reports the average

time required to target a faiJlt êfnd the maximum time required for any target fault in the

experiment. The preprocess time includes the time required to perform a" operations up to

the injection of the first target fault-read the netlist and crea te data structures. analyse

the topology of the network. extract generic reduction information and identify propagate

assignments. etc.

13 The implementation used here does not take advantage of the techniques described in chapter 5

90

•

--------------- 1

7.3 Experimental results

No untestable faults were abandoned. Furthermore. phase 2 of the test generation

algorithm (full reduction list propagation) was required to proye redundancy only in (432-

three faults were abandoned (after 10 backtracks each) by phase 1. after which two of the

three were proven untestable with no backtracks and the third was proven untestable with

one backtrack in phase 2. Circuit C2670 contains eight faults which each required one

backtrack (in phase 1) to prove redundancy: circuit (7552 contairrs 6 faults which were

backtracked. the "worst" of which required 3 backtracks (phase 1). This result indicates

that QUEST is particularly efficient at redundancy identification. which is often a problem

for convention al test pattern generation algorithms.

Table 7.28 details the branching and backtracking activity during the test generation

experiments summarized in Tablt> 7.1. For each pha:;e of the test generation experiment.

the table gives the number of faults for which branches (backtracks) were performed.

~he total number of branches (backtracks) performed in that phase. and the number of

faults abandoned in that phase after the backtrack limit was exceeded. Branch~s and

backtrar.ks are not counted for faults which were abandoned. Ali faults (b0th testable and

untestable) were targeted by phase 1: faults abandone~ in phase 1 were targeted in phase

2. For example. 26 of 5350 total faults in C5315 were abandoned by phase 1. Of 5324

faults successfully targeted. arbitrary branching occurred for 4053 of them. 2 faults were

abandoned by phase 2: a test pattern was generated for the remaining 24.

Table 7.2b summarizes the results of a second series of experiments. performed to

determine the effect of nonconflicting assignments on branching and backtracking durin{,

test pattern generation. Ali faults were targeted a second time using the conditions de­

scribed above. but without identifying nonconflicting assignments. Applying nonconflicting

assignments reduces the amount of branching and backtrackmg performed during test pat­

tern generation. In addition. one untestable fault in C432 and 11 un testable faults ln (2670

are abandoned if nonconflicting assignments are not identifled.

Despite the simplistlc heuristic used to choose arbitrary asslgnments. il tpc,t 15 gen·

erated for the vast majority of faults wlthout backtrac.kmg Of partlcul,lr Intf re~t IS the

91

J

7.3 Experimental results

Phase J Phase 2 Un---
Circuit Branch Badtrack Abd. Branch Backtrack Abd. Det

Flts Tot. Flts. 1 Tot. Flts. Flts. Tot. Flts. Tot. Flts. Flts.
C432 458 5064 0 0 3 1 1 1 1 0 0
(499 686 22131 31 ;)t 0 - - . - - 0

C880 706 8423 0 - 0 - - - - - 0

C1355 1566 50368 86 109 0 - - - - - 0
Cl908 1810 37453 23 29 7 5 68 0 0 0 0
(2670 2074 60225 184 238 34 2 112 2 12 32 0
0540 2747 43243 250 356 19 11 265 12 29 2 0

U
5315 4053 65248 201 318 26 24 538 22 44 2 0

C6288 7624 133835 2155 2587 74 2 19 0 0 71 0
C7552 7085 231477 783 13~2 75 17 370 14 14 28 0

..) Nonconflicting assignments identified

Phase 1 Phase l Un-
Circuit Branch Backtrack Abd. Branch Backtrack Abd. Det.

Flts. Tot Flts Tot Flts Flts Tot Flts. Tot. Flts. Flts
C432 520 9802 0 0 3 0 0 0 0 1 1
C499 686 22817 33 38 0 - - - - - 0
C880 867 16952 0 - 0 - - - - - 0
C1355 1566 52517 94 125 0 - - - - - 0
C1908 1860 41399 88 100 7 7 10 0 0 0 0
C2670 2199 73791 184 238 45 2 a4 2 12 43 11
0540 3070 49192 258 383 19 17 300 12 29 2 0
C~315 4754 84044 229 346 27 24 563 22 50 3 0
C6288 7631 131483 2155 2587 14 2 19 0 0 11 0
C7552 7119 291952 797 1358 77 44 592 16 18 28 0

b) Nonconflicting assignments not identified

Table 7.2 The effect of nonconflictin& assignments

number of faults for which a test is generatecl without branching. a result which is inde­

pendent of heuristics and is heavily influenced by nonconflicting assignment identification.

Missed necess~ry assignments cause backtracking in test generation. For ex ample.

for sevE"ral faults abandoned by phase 1 of the algorithm. a test was generated without

branching by phase 2. Although the number of abandnned faults is reduced by nonconfllct­

ing assignment identification. the greatest gains come from the identification of necessary

assignments. If ail necessary asslgnments were identlhed by full reductlon IIst propagation.

even fewer backtracks would be performed ThiS approach 15 practlcal If reductlon analysis

is implemented efficient/y. explOltmg the propertles developed in chapter 5.

92

7.3 Experimental results

reduction analysis is implemented efficiently. exploiting the properties developed in chapter

5.

ln practice. the heur;"tic used to d.oose arbitrary branches has a huge impact on the

number of branches and backtracks performed for both testable and untestable fau/ts and

affects the number of abandoned faults. It wou/d be interesting to investigate the effect of

various heuiistics on QUEST. In addition. new heuristics based on algorithmic measures

(reduction list '·!ngths. etc.) are promising.

93

Chapi:er 8 Conclusions

This thesis characterizes three types of assi&nments made during the course of de­

terministic test pattern generation. Necessary assignments are those which must be made

in order to find a test pattern-the search is guaranteed to fail if they are not made. Non­

conflicting assignments lead in the direction of a test and never need to be backtracked.

vastly and irrevocably reducing the space whic" must be searched for a test pattern. Re­

maining assignments are arbitrary-they may or may not lead to a test pattern and must

be reversed is a test cannot be found after they are assigned.

A complete mathematlcal basis for the idp.ntification of n.:cessary and nonconflicting

assignments has been developed and algorithms to identify them presented. Issues relating

to the efficient implementation of these algorithms have been discussed from both a the/)­

retical and practical point of view. Structural properties of the circuit under test are used to

reduce the processing performed to identify necessary and nonconflicting assignments. In

addition. several classes of generic reduction information are exploited to identify necessary

assignments while avoiding dynamic reduction list computation.

The identification of necessary and nonconflicting assignments IS the core of the

QUEST test pattern generation algorithm. Experimental results show that QUEST is

able to reduce or eliminate backtracking in test pattern generation through algorithmic

rather than heuristic means. Results also indlcate that QUEST is partlcularly efficient at

redundancy identifIcatIon. whlch IS often a problelll for cOllventlonal test pattern generatlon

algorithms.

•

'f

------------------------------'1

Chapter 9 References

[AbrKul85] M. Abramovici. J.J. Kulikowski. P.R. Menon. and D.T. Miller. "Test Generation
in LAMP2: Concepts and Algorithms." Proceedings International Test Conference.
Philadelphia. PA. Sept. 1985. pp. 49-56.

[AbBrFr90] M. Abramovici. M.A. Breuer. and A.D. Friedman. Digital Systems Testing and
Testable Design. W.H. Freeman and Co .. New York. 1990

(Akers76] S.B. Akers. "A Logic System for Fault Test Generation." IEEE TransactIons 011

Computers. vol C-25. no. 2. June. 1976. pp. 620-630.
[And080] H. Ando. "Testing VLSI With Random Access Scan." Proceedings COMPCON.

Spring 1980. 1980. pp. 50-52.
fBaMcSa87] P.H. Bardell. W. H. McAnney. and J. Savir. Built-In Self- Test for VLSI. Wlley­

Interscience. New York. 1987.
(BoHsPu71] W.G. Bouriclus. EP Hsieh. G.R. Putlolu . .1.P. Roth. P R Schneider. and C J

Tan. "Algorithms for Detection of Faults in Loglc Circuits." IEEE TransactIons on
Computers. vol. C-20. no. 12. Nov. 1971. pp. 1258-1264

[BrHaMcSa84) R. K. Bray ton. G D Hachtel. C. McMullen. and A Sanglovannr-Vmcentelli.
Logie Minimizatlon Algorithms for VLSI Synthesis. Kluwer Academie Publlshers. Bos­
ton MA. 1984.

[BrgFuj85} F. Brglez. and H. Fujiwara. "A Neutral Netlist of 10 Combinatlonal Benchmark
Circuits and a Target Translator in Fortran." Proceedings International SymposIUm on
Circuits and Systems. SpecialSesson on ATPG and Fault Simulation. Kyoto. Japan.
June. 1985.

[ChaDonOzg78) C. Cha. W. Donath. and F Ozgimer. "9- V Aigorrthm for Test Patler'l
Generation of Combmatlonal Digital CIrcUIts" IEEE TransactIons on Computers. vol

C-27. no. 3. March 1978. pp 193-200
[Cha 79] C. W Cha. "Multiple Fault Diagnosis ln Comblnatlonal Networks" Pro(('cdmgs

16th Design AutomatIOn Conference San Diego CA. June 1979. pp 140 1 sr)

[Cheng88] W.T Cheng. "Split Circuit Model for T, t Gf::JlCriltlon' Pro(('(·dlllf:<' j!;tI, !J('slgn

Automation Conference. AnaheIm. CA. June. 1988. pp 96-101

l ..

Reference!>

{CoxRaj91} H. Cox. and J. Rajski. "On Necessaryand Nonconflicting Assignments in AI­
gorithmic Test Pattern Generation." IEEE Transactions on Cùmputer-Aided Design.
under review

(CoxRaj87) H Cox. and J. RaJski. "A Metnod of Test Generation (',Id Fault Diagnosis
in Very Large Combmational Circuits" Pro,:eedings International Test Conference.
Washing~on. D.C .. September. 1987. pp. 932-943

[CoxRaj88} H. Cox. and J. Rajskl. "A Method of Test Genl~ration and Fault Diagnosis."
IEEE Transactions on Computer-Alded Design. voL -r. no. 7. July. 1988. pp 813-833.

IEic\"'il77} E.B. Eichelberger. and T.W. Williams. "A Logic Design Structure for LSI Test­
ing." Proe. 14th Design Automation Conf. June 1977. pp 462-468.

(Eld59] R.D. Eldred. "Test Routines Based on Symbolic Logical Statements." Journal of

the ACM. vol. 6. 1959. pp. 33-36.
(FujToi82] H. Fujiwara. aJ1d S. Toida. "The Con.rlexity of Fault Detection Pmblems in

Combinatlonal Logic Circuits." IEEE Transact,:ons on Computers. vol. C-31. no. 6.
June. 1982. pp. 555-560

(FujShi83] H. Fujiwara. a~.d T Shlmono. "On the Acceleration of Test Generation Algo­
rithms," IEEE Transactions on Computers. vol. C-32, no 12. December. 1983. pp
1137-1144

(FuKaYa89) S. Funatsu. M. Kawal. and A Yamada, "Scan Design at Nec''' IEEE Design

and Test of Computers. vol 6. no. 3. June 1989. pp. 50-57
[GarJoh7B] M. R. Garey. and D S. Johnson, Computers and Intractobiftt.v: A Guide to the

Theory 01 NP-Completeness. W H Fre~man and Co . N~w York. NY. 1978 .
(GoeI81) P Gael. "An Impliclt Enumeration Aigorithm to Generate Tests for Combinational

Loglc Circuits," IEEE Transacttons on Computers. vol. C-30. no 3. March. 1981. pp
215-222

IGolomb87] S. W. Golomb. Shilt Register Sequences. Holden-Day inc .. San Francisco, CA.
1967.

(Harel86] 0 Harel. "A linear Time Algorithm for Finding Dominators in Flow Graphs
and Related Problems." Proceedings of the 18th ACM Symposium on the Theoryof
Computing. 1986. pp. 185-194

(HorMcL89j P.O Hortensius. R 0 McLeod. W. Pries. D.M. Miller. and H C. Cardo "Cellu­
lar Automata-Based Pseudorandom Number Generators for Built-In Self-Test." IEEE

Tranactions on Computer-Aided Design. vol. 8. no 8. Aug. 1989. pp 842-859.
(HrbJec84] K. Hrbacek. and T Jech. Introduction to Set Theory, 2nd ed. Pure and Applied

Mathematlcs. Marcel Dekker. me . New York. 1984
(JaMoChHa89] R Jacoby. P Moceyunas. H Cho. and G Hachtel. "New ATPG Techniques

for Loglc- OptlmizatlOn." Proceedlngs InternatIOnal Conference on Compl1ter-Alded De­
sIgn. Santa Clara. CA. November 1989. pp 54~-551

[Kautz68] W H Kautz. "Fault Testlllg and Diagnosis ln Comblllationai Digital CIrcuits."
IEEE TransactIons on Computers. vol C-17. no 4. Apn11968. pp 352-366

96

•

References

[KirMer87] T. Kirkland. and M R. Mercer. "A Topological Search Aigonthm for ATPG."
Proceedings 24th Design Automation Conference. Miami Beach. FL. June. 1987. pp
502-508.

[Klug88] H.P. 1<lug. "Microprocessor Testing by Instruction Sequences Derived From Ran­
dom Patterns." Proceedings IEEE International Test Conference. Washington De.
Sept. 1988. pp. 73-80

(LaiSie83) K.W. Lai. and D.P. Siewiorek "Functional Testing o~ Digital Systems." Pro­
ceedings 20th Des,:gn Automation Conference. Miami FL. June 19(B. pp. 207-213.

[Lar89] T. Larrabee. 'ï:fficient Generation of Test Patterns Using Boolean Difference,"
Proceedings International Test Conference, Washington DC. August 1989. pp. 795-
801.

[MaaRaj90] F. Maamari. and J Rajski. "A Method of Fau't Simulation 8ased on Stem
Regions," IEEE Transactions on Computer-Aided Design. vol. 9. no. 2. F~b~u;Jry

1990. pp. 212-220.
[McCMou871 F..J. McCluskpy. and S Mourad. "Comparing Causes of IC Failure." Devel­

opments ln IC Testing. edited by D.M. Miller. Academie Press. London. 1987. pp.
13-46.

[Mei741 K.e. Y. Me:. "8ridging and Stuck-At Faùlts." IEEE Transactions on Computers.
vol. C-23. po. 7. July 1974. pp. 720-727.

[MinRog89] H.B. Min. and W.A... Rogers. "Search Strategy Switching: An Alternative to
Increased Backtracking." Proceedings InternatIOnal Test Conference. Washington De.
August 1989. pp. 803-811.

[MuAgN090] F. Muradall. V.K Agarwal. and 8. Nadeau-Dostie. "A New Procedure for
Weighted Random Built-Ir: Self-Test." Proceedings IEEE International Test Confer­
ence. Washington Oc. Sept. 1990. pp. 660-669.

[Muth76] P. Muth. "A Nme-Valued Circuit Model for Test Generation." IEEE Transactions
on Computers. vol. (-25. no. 6. june 1976. pp. 630-636

[Nal hAb78] R. Nair. S M Thatte. and J.A. Abraham. "Efficient Algonthms for Testing
Semiconductor Random-Access Memories." IEEE Transactions on Computers. vol.
C-27. no. 6. June 1978. pp 572-576.

[RajCox86a} J. Rajsld. and H. Cox. "On the Application of a Transition Logic System to
VLSI Fault Analysis .. Proceedings International Symposium on Circuits and Systems.
San Jose. CA. May. 1986. pp. 1265-1268

[RajCox86bj J. Rajski. and H Cox. "Stuck-Open Fault Testmg ln Large (MOS Networks by
Dynamic Path Tracing." Proceedmgs International Conference on Computer DeSIgn.
Rye Brook. NY. October. 1986. pp 252-255

[Raj88] J. Rajskl. "GEMINI A Loglc System for Fau!t Dlagnosls 8ased on Set FunctlOns."

Digest 18th International SvmpOSlUf77 on F,JII!I Tolerant COn1{Juflflf!. 5vc.,f('nl~ 1okyo.
Japan. June. 1988. pp 2CJ2-29ï

97

1

(

"

Y'
d

References

(RajCox90] J. Rajski. and H. Cox. "A Method to Calculate Necessary Assignments in Algo­
rithmic Test Pattern Generation." Proceedings International Test Conference. Wash­
ington. D.C .. September. 1990. pp. 25-34.

(Ravi87] K.W. Ravi. Imperfections and Imputities in Semiconductor Silicon. John Wiley
and Son~. New York. NY. 1987.

(RobRaj88] M. Robinson. and J. Rajski, "An Aigorithmic Sranch and Bound Method to PLA
Test Pattern Generation." Proceedings International Test Conference. Washington.
D.C.. September. 1988. pp. 784-795.

[Roth66] lP. Roth. "Diagnosis of Automata Failures: A Calculus and a Method." IBM
Journal of Research and Development. vol. 10. July. 1966. pp. 278-291.

(SaMaTrScS9) T.M. Sarfert. R. Markgraf. E. Trischler. and M.H. Schulz. "Hierarchical Test
Pattern Generation Based on High-Level Primitives." Proceedings International Test
Conference. Washington OC. August 1989. pp. 470-479.

(ScLiCa75) H.D. Schnurmann. E. Lindbloom. and R.G. Carpenter. "The Weighted Random
Test Pattern Generator." IEEE Transactions on Computers. vol. C-24. no. 7. July
1975. pp. 695-700.

[SchTriSar88] M.H. Schulz. E. Trischler. and T. Sarfert. "SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System." IEEE Transactions on CAO. vol. 7. no.
1. January 1988. pp. 126-137.

[SchAut89] M.H. Schulz. and E. Auth, "Improved Deterministic Test Pattern Generation
With Applications to Redundancy Identification." IEEE Transactions on CAO. vol. 8.
no. 7. July 1989. pp. 811-816.

[SeHsBe6B} F.F. Sellers. M.Y. Hsiao. and l.W. Bearnson. "Analysing Errors With Boolean
Difference." IEEE Transactions on Computers. vol. C-17. no. 7, July 1968. pp. 676-
683.

[ShMaFe85] J.P. Shen. W. Maly. and F.J. Ferguson. "Inductive Fault Analysis of MOS
Integrated Circuits." Design and Test of Computers. Dec. 1985. pp. 13-26.

[SilSpi88] G.M. Silberman. and 1. Spillinger. "G-Riddle: a Formai Analysis of Logic De­
signs Conducive to the Acceleration of Backtracing." Proceedings International Test
Conference. Washington. D.C .. September. 1988. pp. 764-772.

[Smith79] J.E. Smith. "Detection of Faults in Programmable Logic Arrays." IEEE Trans­
actions on Computers. vol. C-28. no. 11. Nov. 1979. pp. 845-852.

[Stew77] J.H. Stewart. "Future Testing of Large LSI Circuit Cards." Proceedings 1977
Semiconductor Test Symposium. Oct. 1977. pp. 6-15.

[Tarjan74] R. Tarjan. "Finding Dominators in Directed Graphs," SIAM Journal on Com­
puting. vol. 3. no. 1. 1974. pp. 61-89.

[ThaAbr80] M.S. Thatte. and J.A. Abraham. "Test Generation for Microprocessor," IEEE
Transactions on Computers. vol. C-29. no 6. June 1980. pp 429-441

[Wad78) R.l. Wadsack. "Fault Modelmg and Loglc Simulation of (MOS and MOS In­
tegrated Circuits." Bell System Technical Journal. vol. 57. May-June. 1978. pp.
1449-1474.

98

1

References

[WaLiRoly87] J.A. Waicukauski. E. Lindbloom. B.K. Rosen. and V.S. Iyengar. "Transition
Fault Simulation:' IEEE Design and Test of Computers. vol. 4. April 1987 . pp. 32-38.

[WilAng73] M.J.C. Williams. and J.B. Ange". "Enhancing Testability of Large-Scale Inte­
grated Circuits Via Test Points and Additional Logic." IEEE Transactions on Comput­
ers. vol. C-22. no. 1. Jan. 1973. pp. 46-60.

[Wi1Br081] T.W. Williams. and N.C. Brown. "Defect Level as a Function of Fault Coverage."
. IEEE Transactions on Computers. vol. C-30. no. 12. Dec. 1981. pp. 987-988.

[WilPar83) T.W. Williams. and K.P. Parker. "Design for Testability-A Survey," Proceed­
ings IEEE. vol. 71. Jan. 1983. pp. 98-112.

[Wun88] H.J. Wunderlich. "MultilJle Distributions for Biased Random Test Patterns," Pro­
ceedings IEEE Intt~rnational Test Conference. Washington OC .. Sept. 1988. pp. 236-
244.

99

•

