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1 
Abstract 

Necessary. nonconflicting. and arbitrary assignments can be distinguished during 

algorithmic test pattern generation. A necessary assignment is one which must be made in 

order to find a test-there is no test in the half-space defined by the opposite assignment. 

Certain other assignments are noncontlicting in the sense that they narrow the search space 

and never lead to backtracking-if the fault is testable. then there is at least one test vector 

in the half-space defined by the assignment. The remaining assignments are arbitrary­

the y may or may not lead in the direction of a test and may or may not cause backtracking. 

Since nec€ssary and nonconflicting assignments do not lead to backtracking. an efficient 

test pattern generation algorithm should determi'le and apply them prior to any arbitrary 

branehing. 

This thesis presents algorithms based on the mathematical properties of images and 

inverse images of set functions to identify necessary and nonconflicting assignments in com­

binationallogie circuits. Issues relating to the efficient implementation of these algorithms. 

are addressed from both a theoretieal and praetical perspective. Experimental results ob­

tained on a variety of benehmark circuits show that algorithmic assignment identification 

can be used to reduce or eliminate backtracking in automatic test pattern generation. 
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Résumé 

L'on peut discerner troIS types d'allocations lors de la production d'échantillons pour 

fin de test: nécessaires, non-conflictuelles, et arbitraires. Une allocation nécessaire est 

une allocation qui doit être faite pour résulter en un test. C'est-à-dire qu'il n'y a pas de 

test possible dans l'espace défini par J'allocation inverse. O'autres allocations sont non­

conflictuelles dans le sens qu'elles diminuent l'espace de recherche pour un vecteur de test 

et qu'elles ne requièrent pas de réojustements une fOIs l'allocation décidée. Si une faute est 

vérifiable par t~st, alors il existe au moins un vecteur de test dans le sous-espace défini par 

une allocation non-conflictuelle. Les allocations arbitraires sont incertaines. Il est possible 

qu'elles mènent à des réajucotements (une revision de l'allocation dans un temps futur) 

Étant donné que les allocations nécessaires et non-conflictuelles ne nécessitent jamais de 

réajustements, un algorithme efficace pour la production de vecteurs de test devrait les 

considérer avant les allocations arbitraires. 

Cette thèse présente des algorithmes basés sur les propriétés mathématiques des 

images et des images inverses des fonctions sur les ensembles. Ces algorithmes s'appliquent 

pour identifier les allocations nécessaires et non-conflictuelles dans les circuits de logique 

combinatoire. La réalisation efficace de ces algorithmes, du point de vue théorique et 

pratique, ~st étudiée. Des résultats expérimentaux sont donnés pour plusieurs circuit!, 

étalons. Ces résultats démontrent que l'on peut réduire ou éliminer les réajustements dans 

la production automatique d'échantillions pour fin de test. 
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Claim of Originality 

The author daims originality for the following contributions of this dissertation: 

The new concept of reduction lists. based on the mathematical properties of images 

and inverse images of set functions. is introduced. The properties of reductlon lists are 

studied and algorithms to compute them are presented. Applied to the problem of automatlc 

test pattern generation. the reduction lists are used to identlfy necessary assignments 

Necessary assignments are those assignments which must be made in order to generate a 

test pattern-no test exists in the space defined by the alternate assignment(s). Reduction 

analysis is unifying in the sense that ail other methods of identifymg necessary assignments. 

including conventional backward implication. dominator identification. and learning. are 

special cases of this general concept. 

The new concept of tendency lists. based on mathematical properties of monotonic­

ity (unateness) of Boolean functions. is defined and algorithms to compute tnem are pre­

sented. The tendency lists are used to identify a novel dass of algorithmic assignments 

during automatic test pattern generation termed nonconflicting assignments Nonconflict­

ing assi&nments lead in the direction of a test pattern by narrowing the remalOing space 

which must be searched. but are guaranteed never to need to be backtracked. 

These algorithmic assignment identification techniques imply that a global analysis 

of the effect of assignments to nodes in the circuit under test car, be performed by a local 

computation at individual gates in the net\'work. This information (..êm be used to identify 

several classes of algorithmic assignments during test pattern generatior .. The global nature 

of the cornputation is achieved through the indexation of the nvde asslgnments analysed. 

which then propagate throughout the network on locally computed lists 

Structural properties of the circuit under test determmed by an analysI5 of rec.onver­

gent fanout are exploited to hmlt the number of asslgnments whlCh are analy~('d and the 

area of the circuit which is processed ln order to reduce the amount of computation reqlmed 

to identify necessary and nonconfhcting assignments The use of preprocessed reductlon 
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Clalm of Originallty 

information including gener;c reduction lists and propagate ass;gnments to further reduce 

required computation i$ discussed. 

A new test pattern gelleration algorithm is developed. The core of QUEST algorithm 

is the identification of necessary and nonconflicting assignments. Arbitrary branching is 

delayed as long as possible to avoid making assignments which may lead to backtracking. 

Necessary and nonconflicting assignments are extracted iteratively until a test pattern is 

generated or no more algorithmic assignments can be found. at which point an arbitrary 

branch is made. If a conflict is detected. then a backtrack is perforrned to reverse the 

most recent arbitrary assignment. After each arbitrary branch or backtrack. algorithmic 

assignments are again identified. The algorithm is complete: the process continues untiJ a 

test pattern is generated or the target fault is proven to be untestable . 
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Chapter 1 Introduction 

With the increasing complexity of VLSI circuits and the growing demand for very 

high shipped product quality and reliability, test has become one of the most important 

and costly phases of integrated circuit production. Test pattern generation, whether manual 

or automatic, is a key part of any test methodology. Extremely high quality requirements. 

measured in single defective parts per million. have made it essential to find test patterns 

for ail testable faults while identifying ail untestable faults in order to guarantee complete 

coverage by the test set. 

The processes used to fabritate integrated circuits are both very complex and im­

perfecto Only sorne of the circuits produced work correctly. as random defects introduced 

during the fabrication protess cause a portion of them to fail. These failures may be logical 

in that they change the function of the faulty circuit. or parametric in that sorne operat­

ing parameter of the circuit, such as current drive capability. output voltage leve!. etc.. , is 

affected [Ravi87. ShMaFe85. McCMou87]. The goal of testing is to screen out defective 

circuits so that only fault-free ones remain. This goal can be very difficult to achieve, as 

the circuits may contain hundreds of thousands or millions of potentially faulty individ­

ual devices yet have only a few hundred signais which can be directly stimulated and/or 

observed. 

Testing is performed by applying a set of input patterns to the circuit. a test set. 

which differentiates between fault-free and faulty CIrcuits-I.e. a faulty circuit will behave 

differently than a fault-free circuit when the test set is applied. For the pur poses of this 
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discussion. it is assumed that the circuit design is correct in the sense that if perfectly 

fabricated. the circuit would perform exactly according to specifications. 

Techniques for obtaining a test set can be broadly categorized as (unct;onal or struc­

turaI testing. Functional testing attempts ta verify that the circuit under test performs 

properly. without reference to the way the circuit itselt was designed and fabricated or the 

defects it is subject to (ThaAbr80. LaiSie83. AbBrFr90). Although functional tests for cer­

tain types of regular structures such as memories thoroughly test the devices (NaThAb78). 

functional tests for less regular designs often cover an unacceptably low numbpr of phys­

ical defects [Klug88. AbBrFr90}. Structural testing attempts to ver if y that the individual 

devices within the circuit work properly and that their connectivity is correct. and th us that 

the circuit as a whole is fault-free (AbBrFr90). 

Structural testing usually makes use of a fault model which is intended as a high-Ievel 

abstraction that represents the actual defects which the circuit under test may experience. 

Many different fault models have been proposed. of which the most common is the single 

stuck-at (SSA) mode!. origin,illy proposed in [Eld59). in which it is assumed that ail fab­

rication defects can be model~d by a single line in the circuit which permanently carries a 

logic a or logie 1. Many authors have questioned the applicability of the stuck-at model and 

have proposed alternate fault models-among them. MOS stuck-open and stuck-on faults 

[Wad78). bridging faults [Mei74). transition faults (WaLiRoly87) and crosspoint faults in 

programmable logic arrays [Smith79)-which may more accurately represent device failures, 

The most common justification for the c.ontinued use of the stuck-at fault model is that 

test sets developed under the stuck-at fault model tend to be excellent tests for other types 

of faults as weil (termed "windfall coverage") [WiIPar83]. Once a particular fault model is 

chosen. the quality (or goodness) of the test set is measured by the (ault caverage-the 

proportion of faults from the fault mode! which are detected by the test-and has a direct 

impact on the defect leve/-the number of faulty circuits which are incorrectly declared 

good [WilBro81]. 

Digitallogic circuits can be dlvlded into two classes. combinatlOnal CIrCUits, whose 

output depends only on their current input. and sequential circuits. whose output depends 

2 
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1.1 The role of test pattern generation 

Oil both their cu"rent input and internai state. determined by previously applied input 

patterns. Sequential circuits perform a i'kh set of useful tasks which often cannot be 

performed by combinational circuits. Consequently. most circuits which are produced are 

sequential. Unfortunately. testing sequential circuits is significantly more difficult than 

testing combinational ones. as their memory must be considered [Kautz68. BoHsPu71]. 

This implies that the entire sequence of test patterns must be treated as a whole in 

sequential t.:sting. rather than a single vector at a time in combinational testing. In addition. 

changes to the internai states and the transitions between them due to the presence of faults 

must be taken into account. 

To cope with the complexities of analysing sequential circuits. structured design for 

testablility techniques have been used to convert sequential circuits into pseudo-combina­

tional circuits during test mode by making the memory elements directly controllable and 

observable [And080. FuKaYa89. Stew77. WilAng73. EicWil77). At the s~me time. scan de­

sign techniques have created a new set of extremely large "combinational" circuits. prompt­

ing a great deal of interest in efficient tools for combinational circuit testing. 

1.1 The role of test pattern generation 

Within the context of structural testing with a given fault model. there are two 

basic methods to obtain test: methods based on fault simulation of a set of patterns­

for example. a set of random or pseudo-random patterns with [ScLiCa75. MuAgND90] or 

without input weighting [BaMcSa87. Golomb87. HorMcL89]-and methods based on test 

pattern generation [Roth66. Goel81. FujShi83. KirMer87. SchAut89]. Regardless of the 

chosen technique. however. deterministic test pattern generation plays a vital role. 

It is sufficient to find a test pattern for each testabl~ fault using any available 

technique--for example. either deterministic test generation or random pattern fault sim­

ulation can be used. However. in order to prove that a faLlt is untestable. it is necessary 

to prove that no test pattern exists for the fault. Redundancy identification cannot usually 

be done using fault simulation-based techniques in an acceptable amount of time. as the 

number of patterns which have to be fault simulated in order to exhaust the search space is 

3 



1.1 The role of test pattern generatlon 

huge-2 fL patterns for an n-input combinational circuit. for example. In addition, testable 

faults which are extremely unlikely to be covered by random test patterns exist {Wun881; 

generally, tests for these faults must be found deterministically. 

The goal of deterministic test pattern generation is to find a test vector (or sequence 

of test vectors) for a given target {ault from the fault model which will distinguish between 

a fault-free circuit and a circuit which contains the fault-i.e. the output of the circuit 

under test will differ depending whether or not it contains the fault. The target fault is 

un testable if no such test vector (test sequence) exists. 

Test pattern generation can be viewed as a branch and bound problem [GoeI81}: 

test generation algorithms usually search for a test pattern by systematically branching 

and bounding until either a vector is discovered or the search spac~ IS exhausted. Even for 

combinational circuits. the test generation problem is NP-ccmplete [FujToi82, GarJoh78]­

in the worst case, ail known test pattern generation algorithn.~ will require exponential time 

to find a test vector or prove that none exist. 

Oeterministic test pattern generation is a process of progressively translating a set 

of required values at sorne nodes in the circuit to a new set of requirements at other no dt::: 

which satisfy the original requirements, but are closer to primary inputs. A test pattern has 

been successfully generated when ail requirements are satisfied by assignments to primary 

inputs. The fault has been proven untestable if no test pattern exists which will satisfy the 

requirements. 

This thesis characterizes three types of assignments made during the course of de­

terministic test pattern generation. A necessary :Jssignment to anode (a150 termed a 

"mandatory assignment'· in [KirMer87) and "single pruning" in [RobRaj88)) is one which 

must be made in arder to find a test-there is no test pattern in the space defmed by 

alternate assignment(s) to the node. Viewed as a brandi decision. assigning any other 

value to the node is equivalent to branching into an area of the search space whlCh does 

not contain a test pattern. guaranteeing that a bound step must evenlually be Llken A 

nonconflicting assignment (termed "monotone prunmg" in [RobRaj88]) 15 one whlCh leads 

in the direction of a test by restricting the space which remains to be searched, but never 

4 



1.2 Outline of dissertation 

needs to be backtracked. If the fault is testable. then a test vedo, is guaranteed to be 

found in the space definen by the nonconflicting assignment. The remaining assignments 

are arbitrary or branch assignments-they may or may not lead to a test pattern. and 

must be backtracked if a test cannot be found after they have been assigned. 

A general theory describing the identification of necessary and nonconflicting assign­

ments. based on the mathematical concepts of images anrl inverse images of set functions. 

is developed in this thesis. New techniques to identify necessary and nonconflicting as­

signments in deterrninistic test pattern generation are presented. The identification of 

necessary and nonconflicting assignments is algorithmic in the sense that there is no ele­

ment of choice or luck in the computation. no reliance on heuristics. and no possibility of 

these assignments causing a backtrack if the fCiult i5 testable. 

Issues relating to the efficient irr, .. ementation of the algorithms are presented From 

both a theoretical and practical point of view. In particular. the concept of stem regions 

[MaaRaj90) is applied 1\l the problem of necessary and nonconflicting assignment iden­

tification to reduce both the memory and processing time required to find them in an 

implementation-independent fashion. 

The goal of this research is to reduce or eliminate backtracking during test generation 

for any target fault in any circuit using algorithmic techniques rather than heuristics. To 

this aim. necessary and nonconflicting assignments are extracted iteratively until either 

the fault is tested. proven to be untestable. or no more algorithmic assignments can be 

found. at which point an arbitrary assignment (branch decision) is made. By making 

as few arbitrary assignments as possible through putting off branching. the potential for 

backtracking is reduced. 

1.2 Outline of dissertation 

The body of this thesis is divided into six chapters. as follows: 

Chapter 2 reviews developments in test pattern generation over the last two decades in 

light of the work presented in this thesis. The review focuses on four topies: logic systems. 

5 



1.2 Outil ne of dissertation 

identification of necessary assignments. identification of nonconflicting assignments. and 

deterministic test pattern generation algorithms. 

Chapter 3 reviews the theory of images and inverse images of set functions. the basis 

of the algorithms to identify necessary and nonconflicting assignments presented in thls 

the!iis. Although the concepts of images and inverse images themselves are not new. the 

application to deterministic test pattern generation is nove\. Throughol..' l ~-j;S thesÎs. the 

discussion and txamples use a 16-valued algebra to describe the steps of a test pattern 

generation algorithm. However. the definitions and theorems developed are independent of 

the logic system in use. and are valid for any other algebra as weil. including conventlonal 

5. g. and ll-valued systems. Using a difTerent logie. system enhances or restricts the ability 

of the algorithm te distinguish cases which arise during test pattern generation. but does 

not change the nature of the problem-the underlying theory is valid in ail cases. 

Chapter 4 generaliz~s and formalizes necessary assignment idenUication using the 

concept of reduct;on lists. The work is unifying in the sense that ail other proposed 

necessary assignment identification techniques. including c1assical implication. dominator 

identification and "Iearning" are special cases of this general concept. 

Chapter 5 addresses issues relating to the efficient implementation of the algorithms 

to identify necessary assignments. The use of structural properties of the circuit under 

test to reduce the computation and memory required to identify necessary assignments is 

discussed. 

A generalized theory of BooJean function monotonicity is developed in chapter 6 and an 

algorithm to compute tendency lists. from which nonconflicting assignments are identifled. 

is presented. 

Fina/ly. a new test pattern generation algorithm. QUEST. whlch exploits nec.essary 

and nonconflicting assignments is described and experimental results obtatned by the al­

gorithm when run on a variety of benchmark Circuits are presented ln chapter 7 

Chapter 8 concludes the dissertation. 
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1.3 Notation conventions 

1.3 Notation conventions 

Throughout this thesis. prirnary inputs and gates are labeled with capital letters: 

fanc.ut branches are labeled serially with lower case letters corresponding to their stem. 

For non-stem circuit nodes. gates are referred ta by their label (upper case letters) whereas 

their output lines are referred ta by the corresponding lower case letters. 

The stuck-at fault model. used throughout this thesis. assumes that faults in the 

network are represented by a line (or lines) in the circuit under test which permanently 

propagate a constant logic value-O for a "stuck-at zero" (so) fault and 1 for a "stuck-at 

one" (81) fault-regardless of the signal applied to the line. The fault "Iine l stuck-at 1" is 

represented by "181 ": fault "1 sluck-al 0" is represented by "Iso". Multiple stuck-at faults 

are represented by the list of their component single stuck-at faults. 

Figure 1.1 Notation conventions 

Example 1.1: The 2-input MUX in Fig. 1.1 iIIustrates the notation conventions used in 

this thesis. Two faults are present in the network: b1 s1 and dso ' 

1.4 Publication history 

The material contained in the chapters of this thesis discussing the 16-valued logic 

system for test generation (chapter 3). the identification of necessary assignments (chapter 

4). and the experimental results obtained by the QUEST test pattern generation algorithm 

(section 7.3) have been published in the Proceedings of the 1990 International Test Con­

ference [RajCox90]. A comprehen~lve paper dlscussing necessary and nonconfllctrng as­

signment identification. properties relating to an efficient implementation. and the QUEST 
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1 4 Publication hislory 

algorithm has been submitted to IEEE Transactions on Computer-Aided Design [CoxRaj91) 

and is currently un der review. 

ln addition. several papers discussing the application of a 16-valued logie system to 

the problems of multiple fault coverage analysis for test pattern generation and failure diag­

nasis have been published [RajCox86a. RajCox86b. CoxRaj87]. of which the most complete 

discussion is found in (CoxRaj88). The logie system used is isomorphic to the one pre· 

sented in chapter 3. The algorithm ta identify dominators described in section 7.2.2 was 

first presented in [CoxRaj87). 

• 
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Chapter 2 An overview of algorithmic test pattern generation 

Test pattern generation has been studied widely for the past three decades or more. 

Sinc.e Roth's classic paper [Roth66). many test pattern generation algorithms have been 

proposed. In this chapter. key developments in algorithmic test pattern generation for com­

binational circuits are reviewed from the perspective of their r4'\lation to the ideas presented 

in this thesis: the identification of neeessary and nonconflicting assignments. 

The choice of logic system (or alphabet) used by a te_~ pattern generation algorithm 

has a major impact on its organization and efficieney. Therefore. it is necessary to review 

the logie systems for test generation which have been proposed before the algorithms 

themselves can be discussed. Section 2.1 reviews conventional 5 [Roth66). 9 [Muth76). 

and U-valued (Cheng88] logie systems. In order to take advantage of formai concepts 

developed for Boolean algebras. a 16-valued logie system [Akers 76. Raj8S] is used by the 

algoritl.ms for combinational test pattern generation presented in this thesis. The benefits 

of a 16-valued system are demonstrated through examples of faults which are not properly 

handled by other logie systems. 

The algorithmic assignment identification techniques used by various test pattern 

generation algorithms are reviewed in sections 2.2 and 2.3. while the heuristics used by 

the algorithms are ignored. The categorization of assignments made during test pattern 

generation into necessary. nonconflicting. and arbitrary asslgnments and methods used for 

their identification is the basis for the differentlatlon between test generatlon algorrthms 

found in se-;tion 2.4. 



2.1 logic systems for test generation 

2.1 Logic systems for test generation 

The two-element Boolean algebra B~ = {O, 1} is widely used to analyse switching 

circuits. and is suffieiently precise to deseribe the behaviour of a fault-free eombinational 

circuit. However. in order to describe the behavior of a possibly faulty circuit. a four-element 

Boolean algebra. B~ = {O(O),O(1),1(O).1(1)}. where a(b) indicates that the response in 

the fault· free circuit is a and in the faulty circuit is b. is required. Using the D-symbols 

[Roth66]. B~ = {O,D, D, 1}. The function of a 2-input gate is described as a mapping 

B~ x B~ -+ B~. The functions AND and OR are shown in Table 2.1. 

0 D iJ 1 0 D D 1 
0 0 0 0 0 0 0 D D 1 
D 0 D 0 D D D D 1 1 
D 0 0 D D D D 1 D 1 
1 0 D D 1 1 1 1 1 1 

a) AND gate b) OR gate 

Table 2.1 Gale functions: B~ x B~ ..... B~ 

The symbols O. 1. D. and D describe the logie values at nodes in potentially faulty 

circuits in response to an applied input vector. During the course of test generation. 

however. these values can appear at circuit nodes in varlous combinations. For example. 

each primary input may be assigned to either 0 or 1 in the final test vector which IS 

generated. but before the test pattern is determined. it is not known to which of the 

possible values it will be assigned. logic systems differ in the way they represent the 

combinations of signal values which arise during test generation and in their abihty to 

distinguish between them. 

The use of an appropriate algebra tan aid the test generation algorithm; simllarly. 

an inappropriate algebra can hinder it. Comparisons between algebras typlcally focus on 

the number of elements each contains. the space reqUired to store Circuit values. and the 

time required to mampulate them A better compaflson 15 the abdlty of the logl< system to 

resolve circuit values during test pattern generatlon Increased resolutlon may reducf! the 
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2.1 logic systems for test generation 

amount of branching and backtracking performed by the test generation algorithm. l'educing 

both CPU time and storage requirements despite using more values. 

2.1.1 5-valued logic system 

0 D D 1 X 0 D D 1 X 
0 0 0 0 0 0 0 0 D D 1 X 
D 0 D 0 D X D D D 1 1 X 
D 0 0 D D X D D 1 D 1 X 
:t 0 D D 1 X 1 1 1 1 1 1 
X 0 X X X X X X X X 1 X 

a) AND gate b) OR gate 

Table 2.2 Gate funetions in a 5-valued algebra 

A 
X B G 

01 D 

C ~ 80 K ~ 
F D H 

0 X 

E 

Figur'e 2.1 Test pattern generation l1sing a 5-valued alphabet 

ln the 5-valued alphabet A5. the basic symbols O. 1. D. and D are each represented 

individually. while the combinations of values are ail represented by the same symbol. X 

(unknown). The 5-valued alphabet. AS = {D, 1, D, D, X}. has been used in many ATPG 

algorithms [Roth66. FujShi83. Goel81. SchAut891. Table 2.2 iIIustrates the function of 2-

input AND and OR gates. giving the output value for each possible combination of input 

values. Wh en targeting (attempting to generate a test for) Cso in the circuit from Fig. 2 1. 

most circuit values are quickly determmed to be X. Aside from C = 1. required to sensltlze 

the fault. no necessary assignments can be identified. Several arbitrary branch decisions. 

each of which may or may not lead ta a backtrack. must be made before a test vector can 

be found. 

11 



2 1 logic systems for test generatiol1 

00 10 01 11 xO Ox xl lx xx 00 10 01 11 xG O:r xl lx Xl' 

00 00 00 00 00 00 00 00 00 00 00 00 10 01 11 xO Ox xl lx xx 
10 00 10 00 10 xO 00 xO 10 xO 10 la 10 11 '0 10 lx xl lx xx 
01 00 00 01 01 00 Ox 01 Ox Ox 01 01 11 01 11 xl 01 xl llx1 
11 00 10 01 11 xO Ox xl lx xx 11 11 11 11 11 11 11 11 1111 
xO 00 xO 00 xO xO 00 xO xO xO xO xO 10 xl 11 :rD :rx xl !xxx 
Ox 00 00 Ox Ox 00 Ox Ox Ox Ox Ox Ox lx 01 11 xx Ox xl lx XI 

xl 00 xO 01 xl xO Ox xl xx xx xl xl 11 xl 11 xl xl xl 11 xl 
lx 00 10 Ox lx xO Ox xx lx xx lx lx lx 11 11 10 lx lx lx lx 
xx 00 xO Ox xx xO Ox xx xx xx xx xx lx xX 11 xx xx xl lx xx 

a) AND gate b) OR gale 

Table 2.3 Gate functions in a 9-valued algebra 

A 

z/X B G 
." '/b 

C r/r 90 
F o/t H 

K %/1. 

0 Z/X 

E 

Figure 2.2 Test pattern generation using a 9-valued alphabet 

2.1.2 9-valued logie system 

The 9-valued alphabet Ag = {OO, 11,10,01, xO, Ox, lx, xl, xx}. where ab indicates the 

value in the fault-free circuit is a and in the faulty circuit is band "x" indicates unknown-­

the value in the fault-free (faulty) circuit may be either 0 or I 1-has also been proposed for 

test pattern generation (Table 2 3) IMuth76]. Compared ta A5. Ag has a unique symbol 

to represent four additional combinations of Signai values. A test generator employmg A9 

[ChaDonOzg78. JaMoChHa89. KlrMer87) encounters a similar problem when generatmg 

a test for C"o (Fig. 2_2) as do those whlch use A5' no necessap: assignments can be 

identified. and several arbitrary branches must be made before a test I) • .lltern can be found 

1 Note that the x symbol used by A9 IS Ilot the same as the X used by A5 ln A9 r r!('I1()!(". th,,! Ihl' 
value in the fault-free (faulty) machIne 15 unknown. Independent of the value ,n the falllty (f~,,1t freel 
machine. whereas il' A5."X denOLes that the comblnatlon of pOSSIble loglt value,,> tarned by the 
node in the potentiahy faulty CIrCUIt is unknown-s'ee Table 26 
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2.1 logic systems for test generation 

OOE lOD OID 11E xOU OxU xlU bU xxD xxE xxU 
OOE OOEOOEOOEOOEOOEOOEOOEOOEOOEOOEOOE 
IOD ODE IOD OOE IOD xOU OOE xOU lOD xOU xOU xOU 
OID OOE OOE OID QID OOE OxU OID OxU OxU OxU CxU 
11E OOE IOD OID HE xOU OxU dU bU xxD nE xxU 
xOU OOE xOU OOE xOU xOU OOE xOU xOU xOU xOU xOU 
OxU ODE OOE OxU OzU ODE OxU OxU OzU DrU OxU 01'U 
dU OOE xOU 0ID xlU xOU OxU xlU xxU xxU xxU xxU 
bU OOE IOD OxU bU xOU OxU xxU bU xxU xxU xxU 
xxD ODE xOU O:tÜ xxD xOU OxU xxU xxU xxU xxU xxU 
xxE ODE xOU OxU xxE xOU OxU xxU xxU x'CU xxE xxU 
xxU OGE LOU OxU xxU xOU OxU xxU xxU xxU xxU xxU 

a) AND gate 

OOE IOD OID llE xOU OxU xlU lxU xxD xxE xxU 
OOE ODE IOD OID 11E xOU OxU xlU bU xxD xxE xxE 
lOD IOD IOD HE lIE lOD bU llE lxU bU IxU bU 
OID 01D HE OID HE xlU OtD xlU HE xlU xlU xlU 
11E HE HE 11E HE 11E llE llE 11E l1E llE 11E 
xOU xOU IOD xlU 11E xOU xxU xlU bU xxU xxU xxU 
Ox" OxU lxU OID HE xxU OxU xlU bU xxU xxU xxU 
dl..> dU llE xlV HE xlU xlU llE 11E .dU xlU xlU 
lxU bU 11:U llE llE bU lxU IlE IxU lxU !xU lxU 
xxD xxD IxV xlU HE xxU xxU xlU IxU xxV xxU xxU 
xxE xxE IxU xlU HE xxV xxV xlU IxU xxU xxE xxV 
xxU xxU IxU xIU llE xxU xxV :z:lU !xV xxU xxV xxV 

( b) OR gate 

Table 2.4 Gate functions in an H-valued algebra 

A Z/Z~ 

B ____ z..;.~.....;'/Z~r-'" 
t,A1/D 

G 

C Z~/I So 
F O/f/D H o ____ Z.;.~....;/Z~L .... 

E :r/Z~ 

Figure 2.3 Test pattern generation using the SPLIT circuit model 

2.1.3 l1-valued logic system 

As in Ag. circuit values in the good and faulty machmes are treated separately in 

the l1-valued logie system for test generatlon proposed ln ICheng88]-each value can be 

O. 1. or x (e!ther 0 or 1). independent of the value ln the other machine 1 n addition. the 

relation between the values in the good and faulty machine is recorded-the \'alues may 
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2.1 logic systems for test generation 

be Equivalent. Different. or the relation between them may be Unknown. Signal values ln 

A11 are identified by the triple G F R. where G is the value in the good machine. F is 

the value in the faulty machine. and R is the relation between the values in the good and 

faulty machines. For example. the value xxE means that the values !!": the good and faulty 

machine are unknown-the values could be either ° or l-but are the same-either both 

are zero or both are 1. Circuit values in the ll-valued logie system are taken from the set 

A11 = {ODE, 11E,xxE, 10D,01D,xxD,O."U, xOU, lxU,x1U,xxF}. 

Compared to A9. A11 is able to distir.glJish the \'alues xxE and xxD (represented 

by {O,l} and {D, D} in the 16-valued alphabet discussed below). both (lf which are repre­

sented by xx in A9. Distinguishing these two values is particularly useful ln circuits con­

taining XOR gates. However. A11 does not distinguisI1 the value eombinati')ns {D,t, D}. 

{O,l,D}. {O, D, D}. {D, D, 1}. and {D,l, D, D} of B16. ail of which are represented by 

xxU. The inability of the model to resolve these values may lead to unnecessary branching 

and backtracking during test pattern generation. For example. in Fig 2.3. All IS unable 

to determine whether D. D. or both can be observed on the primary output of the cirCUit. 

and so must make several arbitrary assignments before a test pattern can be found. 

2.1.4 16-valued lagie system 

As a response to an applied input vector. each no de in the potentially faulty circuit 

will carry one of the four possible vcllues from B~. However. during test generation for 

a particular fault. the final test pattern is not known, Any of the 16 subsets of the set 

{D,l, D, D} is a possible node value during test generation: 2 therefore. a complete alphabet 

for test pattern gel1eration contains 16 values. 3 

Since the subsets of B~ are used to represent Î.' le sets of possible values whlCh anse 

at network nodes during test generatlon. it is natlJ(al to introduce the power set 1'( /l~) 

2 The empty set. {}, tndicating Inconsistency, IS olle of the possible asslgnmcnts--no test piltt('rn eXlsts 
with the current set of asslgnments 

3 The general mathematical theory which leads to the 16-va!r,o>d alphabet IS presented ln chapter 3 
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2.1 Logle systems for test generatlon 

of B~ to represent them. The power set of the basic D symbols has been used by Akers 

for test generation [Akers76J: as it is a Boolean algebra. it is isomorphic to the 16-v$llued 

system used in [Cox Raj88, Raj88] for fault diagnosis. Three possible codings of peEl) 

al'~ shown in Table 2.5: the elements of P(B~) themselves. natural numbers from 0 to 15 

(B16 in Table 2.5). and bitwise encoded quadruples describing the presence or absence of 

elements of Bl (B~ in Table 2.5). 

B16 p(Bl) B4 
2 

xl x DXJrO 

0 {} 0000 
1 {O} 0001 
2 {D} 0010 
3 {O,D} 0011 
4 {D} 0100 
5 {O,D} 0101 
6 {D,D} 0110 
7 {O,D,D} 0111 
8 {1} 1000 
9 {0,1} 1001 
10 {D,l} 1010 
11 {O, Dt 1} 1011 
~2 {D,I} 1100 
13 {O, D, 1} 1101 
14 {D,D,l} 1110 
15 {O,D,D,1} 1111 

Table 2.5 Three codings of a 16-element alphabet 

A (0.'1 

B ~1J G 
01 (DI 

C le).ll ·0 
F(C5l 

H 
(0.1) 0 

E (t\1) 

Figure 2.4 Test pattern generation using a 16-valued alphabet 
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2.1 loglc systems for test generatlon 

During test generation for 0 30 in Fig. 2.4. the 16-valued logie system is able ta identify 

that assignments A = {O}. B = 0 = {1} are necessary in arder ta observe {D} at the 

circuit output. Similarly. in arder to observe {D} at the output. assignments A = D = {1}. 

E = {O} are necessary. In bath cases. a test is found with no arbitrary branching. As 

shown in Figs. 2.1-2.3. the 5. 9. and ll-valued logie systems are unable to determine if 

D. D. or both can be propagated ta line L. Therefore. test generation systems using 

these algebras cannat reason about necessary conditions for fault effect observation. and 

are forced to make several arbitrary branches. each of which may lead to a backtrack. 

2.1.5 Comparison between logie systems 

The fundamental difference between the logie systems presented in this section is the 

number of signal value combinations which arise at circuit nodes during test generation 

which are distinguishable. 

B16 P(B~) AH A9 AS 

0 {} - - -
1 {O} OOE 00 0 
2 {D} 01D 01 D 
3 {O,D} OxU Ox x· 
4 {D} 10D 10 D 
5 {O,D} xOU xO x· 
6 {D,D} xxD :xx· x· 
7 {O,D,D} xxU· xx· x· 
8 {1} llE 11 1 
9 {O,l} xxE xx· x· 
10 {D,l} dU :r:1 x· 
11 {O, D, I} xxV· :1::1:. x· 
12 {D,I} !xU lx x· 
13 {O, D, I} xxU· xx· x· 
14 {D, D, 1} xxU· xx· x· 
15 {O, D, D, 1} xxV· xx· x· 
• indicates values which cannot be distinguished 

Table 2.6 Comparison between algebras 
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2.1 Logic systems for test generation 

Table 2.6 compares the values represented by B16 (Raj88. Akers76] with those of 

AH (Cheng88J. Ag [Muth76]. and AS (Roth66J. There are five elements of B16 which 

cannot be distinguished by AU-ail are represented by xxU. For example. if a primary 

output carries value xxU. it is not possible to determine whether D. D. or both D and 

D can be observed there. Resolution is progressively worse if A9 (seven indistinguishable 

values) or AS (eleven indistinguishable values) is used. Element '0" ({}) of B16 indicates 

inconsistency, and has no representation in any of the other algebras. 

The major advantage of a 16-valued logic system is better resolution of signal val­

ues. The value combinations which arise at circuit nodes during test generation are not 

compacted. but are represented as distinct sets of possible node values. Thus there is less 

loss of information with a l6-valued logic system than with the logie systems described 

above.4 The increased resolution offered by a 16-valued logic system may lead to a more 

efficient search for a test pattern. In particular. it is possible to identify necessary and 

nonconflicting assignments in the region of the circuit reached by the fault effect. which is 

not possible using AS and is restricted using A9 and Ali. At the same time. the use of a 

16-valued logic system does not increase the time required for logic system computations 

such as forward propagation and backward implication. as they can be performed in linear 

time using table lookup. regardless of the Jogie system in use. 

A 16-valued logic system has a number of advantages in addition to increased value 

resolution. Value justification is the only operation required by a test generation algorithm 

which uses a 16-valued logic system-it need not perform "D-drive" or "X-path check" 

operations and need not maintain a "D-frontier". Forward propagation determines the set 

of possible values which could be carried by each line in the circuit. including those reached 

by the fault effect. The set of primary outputs to which the fault effect may propagate 

is known after forward propagation (those outputs whose set of possible values indudes 

D and/or D). There is no need to distinguish between sensitization and propagation of 

the fault. as both can be represented in terms of justification. The test generation process 

4 See section 3.3 for discussion of information loss in a 16-valued (ogie system. and section 44 for a 
technique to recover the (ost information. 
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2.2 Necessary asslgnment identification techniques 

begins with the initial set of justification points (node/value combinations which must be 

justified) that the point of the fault must be driven to a value opposite that caused by the 

fault (sensitization) and the fault effect must propagate to dt least one primary output­

either D or D must be obsE:rved on at least one of the outputs whose set of possible values 

includes D and/or D (propagation). 

2.2 Necessary assignment identification techniques 

ln 1966. Roth proposed the D-algorithm [Roth66). The contribution of this paper 

was the 5-valued calcul us described in the previou5 section-the singular caver describing 

the forward propagation of the D symbols and encoding the conditions required to justify 

each symbol at the output of a gate. The assignments which are implied by the values 

which must be justified are necessary-no test pattern will be found if these irnplied values 

are assigned any other way. 

rn 
....:m=-----iO...-lI1-

a) NOl\controlling value 

---:..;----iDt--(QJ-
b) Controlling value 

Figure 2.5 Classical backward implication 

Example 2.1: Fig. 2.5 illustrates two important cases of classical local implication which 

arise during test generation. In a. the requirement at the output of the AND gate is uniquely 

translated to its inputs as there is only one combination of input values which can produce 

the required output. On the other hand. in b the requirement is not uniquely translated 

to the inputs. as th cre are several input cornbinations which could be used to produce the 

required output. In arbitrarily choosing to use one of the possible input combmations to 

produce the required output in b. conflicts may occur due to reconvergent fanout Excessive 

time may be required tù generate a test or prove redundancy as. In the worst ca!>c. ail of 

the input combinations must be explored. 
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2.2 Necessary assignment identification techniques 

Classical backward implication is powerful. yet simple: the computation moves from 

the output of agate to its inputs. However. since the computation is local. relating to 

a single logie gate. global information which could a!d the test generation process is not 

recognized. The inputs to the gate whose value must be justified may be correlated in that 

they are driven by overlapping input canes. Since backward implication does not identify 

the correlation. the input combination arbitrarily chosen ta justify the required output value 

of the gate may lead to a conflict. 

This weakness was partially overcome in the FAN algorithm [FujShi83]. which uses 

structural information about the circuit under test to identify an additional class of neces­

sary assignments which cannot he found by backward implication. When the D-frontier 

consists of a single gate. the "unique sensitization" step is performed. A topological search 

is done to determine those lines through which the fault effect must pass in order to ap­

pear on any primary output. As FAN uses a 5-valued algebra. it is unable ta represent that 

these lines must be assigned to D and/or D. Instead. unique sensitization identifies those 

assignments to noncontrolling values which are necessary to propagate the fault effect from 

the inputs to the output of the gate at which the fault effect must be observed. In the 

TOPS algorithm [KirMer87). the unique sensitization assignment& of FAN were formalized 

using the concept of dominators and found using the algorithm in (Tarjan74J. originally 

proposed ta find dominators in flow graphs. 

A~~ __ ~~~ ____ ~ 

B----t 
C_~ 
D~~ ________ ~~ 

J 

Figure 2.6 Unique sensitization in the FAN algorithm 

Example 2.2: No necessary assignments are identified by local implications in generating at 

test for FSQ in Fig. 2.6. However. in order for the fault efrect to be observed at the primary 

output. it must propagate through J, implying that A = l = 1 are necessary assignments. 

After A is assigned to 1. the fault cannot propagate through G. so D = 1 is also a necessary 
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2.2 Necessary assignment identification techniques 

assignment. To justify l = 1 after D = 1 is assigned. necessary assignment C = 0 is 

identified by local implication. and a test pattern is generated. Note that if a 16-valued 

logie system for test generation is used in this example then ail necessary assignments can 

be identified by backward implication from justification points F = 1 (sensitization) and 

J = D (propagation). without explicit dominator identification. 

Dominator identification is a powerful technique and can be performed efficiently using 

the linear-time algorithm proposed in [HareI86). rather than the O(nlog(n)) algorithm from 

[Tarjan74). However. dominator analysis can be used to find necessary assignments only 

in the region of the circuit reached by the fauh. affect. and not in the rest of the circuit. 

Further. there may be no necessary assignments to noncontrollir,g input values even if 

dominators exist. 

The contribution of SOCRATES (SchTriSar88. SchAut89) was to take advantage of 

information about the function of the circuit under test to identify additional necessary 

assignments which could not be found using classical implication or dominator analysis. 

SOCRATES identifies neeessary assigilments through "Iearning"-finding the effect of ev­

ery assignment to every node in the circuit by injecting and determining the implications of 

each assignment individually (one at a time). If an assignment would make it impossible 

to justify a required value. then that assignmfmt must be disallowed. 

Figure 2.7 Learning in SOCRATES 

Example 2.3: The effect of assigning input A to 1 in the circuit from Fig. 2 7 is to produce 

1 on D. E. and F. Wh en jU:itifying F = 0 (for example. when generating a test for j.1)' no 

necessary assignments can be identified by local ImplicatIOn Havlng determlJlf'd through 

learning that assigning A to 1 causes F = 1. however. A = 0 15 identifled as a necessary 

assignment. 
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2.2 Necessary asslgnment identification techniques 

SOCRATES uses a 5-valued algebra. and thus cannot resolve values or identify nec­

essary assignments through learning in the region of the circuit reached by the fault effect. 

The effect of assignments to 0 or 1 only can be learned. and only in the ,region not reach­

able by the fault. To partially overcome this problem. SOCRATES performs additional 

proc,essing steps. similar to dominator identificl'tion. to identify necessary assignments in 

the D-region.5 ln [JaMoChHa89) a version of SOCRATES using a 9 rather than 5-valued 

logic system was presented: due to increased resolution of signal values. that algorithm is 

able to identify some necessary assignments in the D-region. 

A different approach to test pattern generation achieving similar results in terms of 

necessary assignment identification was taken in the NEMESIS test generation system 

[Lar89). The function of the good and faulty circuits are expanded into product-of-sums 

equations in terms of primary inputs and internai network nodes. the Boolean difference 

is taken [SeHsBe68). and the resultant equation is solved using techniques developed for 

Boolean satisfiability problems. The number of terms in a clause of the satisfiability equa­

tion is determined by the number of inputs of the gate to which it is related. with n-binate 

factors and 1 (n + 1 )-ate factor for each n-input gate. The 2SAT problem (ail clauses have 

two or fewer terms) is equivalent to test pattern generation in fanout-free circuits. and can 

be solved in linear time: the 3SAT (and higher order) problem is NP-complete. 

ln NEMESIS. necessary assignment identification (termed "non local implication") is 

performed in a manner similar to learning in SOCRATES by determining the effect of each 

assignment on the satisfiability equation. Since the NEMESIS algorithm is based on the 

Boolean difference rather than D-calculus. it do es not suffer the disadvantages of 5. 9. or 

l1-valued alphabets and is able to identify necessary assignments in the region reached by 

the fault effect. 

5 These techniques and their limitations are discussed more fully in chapter 4. 
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2.3 Developments ln nonconflicting assignment Identification 

2.3 Developments in nonconflicting assignment identification 

Nonconflicting assignments restrict the space remaining to be searched for a test 

pattern and cannot cause a backtrack. Thus. they need never be retracted. That is. if there 

was a test pattern in the search space before the nonconflicting assignment was made. then 

there is at least one test pattern in the subspace remaining after the assignment has been 

made. Conversely. if no test pattern exists in the search space after the nonconflicting 

assignment is made. th en there were none in the unrestricted search space either. These 

assignments are extremely useful because they vastly and irrevocably reduce the space 

which must be searched in order either to find a test vector or prove the fault untestable. 

The guarantee that they will never have to be backtracked is the distinguishing feature 

of nonconflicting assignment identification. Although analysis of the pola rit y of reconver­

gent paths has been used in LAMP2 [AbrKul851 and other test generation systems. this 

information was used to guide the test generator heuristically rather than algorithmically. 

Similarly, the multiple backtrace heuristic of FAN (FujShi83] implicitly uses a form of po­

la rit y analysis to find desirable arbitrary assignments. although again. these assignments 

may Jead to backtracks. 

Properties of nonconflicting assignments were first used in the PLAN ET te6t genera­

tion system [RobRaj88) to find algorithmic assignments during test pattern generation for 

cross point and deJay faults in programmable logie arrays (PLA's). In two-Jevel structures. 

monotone pruning is used to make irrevocable assignments to primary inputs. A vote is 

collected for ail inputs connected to those product lines whose value is required in order 

to generate a test. and those inputs for which the vote is unanimous are assigned. For 

example, in order to test for a missing device fautt at the cross point of a product line and 

an output line, the product line must carry a "1" and ail other product lines connected to 

that output line must carry "0": in order to produce a "a" on a product line. the desired 

value of inputs connected to it in true (cornplemented) form is "0" ("1") 

Recently. function montonlcity ln general mulu-Jevel structures has been ll~ed ta fmd 

desirable assignments in a test generation system based on Boolean difference and tech-
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2.4 Deterministlc test generation algorlthms 

niques developed to solve satisfiability problems [Lar89]. Clauses which contain variables 

that appear in only true or only complemented form in ail clauses of the expression are 

removed. resulting in a drastic pruning of the search space. "Clause removal" is a similar to 

nonconflicting assignment analysis. ex ce pt that there is no guarantee that the assignments 

made in this step can be justified since there is no restriction on the variables assigned. If 

the assignment used to prune a clause is not justifiable. th en a backtrack will occur. 

2.4 Oeterministic test generation algorithms 

Test pattern generation algorithms can be distinguished based on the methods they 

use to identify necessary. nonconflicting, and arbitrary assignments. Much work in the area 

of test pattern generation has focussed on finding better heuristics for test generation­

methods of identifying branch decisions which are most likely to lead to a test vector or 

redundancy proof in the least amount of time. This thesis is concerned with algorithmic 

test pattern generation rather than with heuristics. Key algorithms differentiable on the 

basis of the algorithmic techniques they employ are discussed in this section and compared 

to the QUEST test pattern generation algorithm, proposed in this thesis and presented in 

chapter 7. 

Four major test pattern generation algorithms are discussed in this section: the D­

algorithm. PODEM. FAN. and SOCRATES. The algorithms are presented in the way they 

were originally proposed by their authors. presuming that they use a 5-valued logie system. 

As discussed earlier in this chapter. the use of an appropriate logic system has a major 

impact on the efficiency of the test pattern generation algorithm-for example. the number 

of necessary assignments it can identify. In addition. th~ choice of logie system influences 

the way the algorithm works-the order and type of operations it must perform. 

The two basic requirements of any test pattern are that it must sensitize the fault and 

that the fault effect must be observed on at least one primary output. These requirements 

are referred to as sensitization and propagation. and are traditlonally treated separately. 

The sensitization condition requires that the point of the fault be driven to a value opposite 
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2.4 Determlnistic test generatlon algorithms 

that caused by the fault (a li ne which is 81 is driven to O. and vice versa,: the propagation 

condition requires that either D or D be observed on at least one primary output. 

ln addition to backward implication. the D-algorithm (Roth66) introduced the con­

cepts of the "D-frontier" and .. D-drive" to monitor and promote the propagation of the 

fault effect. respectively. The D-frontier consists of those gates whose output value 15 

either D or D which drive gates whose output value is X. The D-frontier represents the 

extent to which the fault propagation requirement has been fulfilled-the limlts of the region 

of the circuit in which it is known that the logic values in the fault-free and faulty circuits 

are different. D-drive is performed to advance the D-frontier toward primary outputs-to 

propagate the D symbol one step closer to primary outputs. At each stage. backward 

irnplication is performed to identify necessary assignments which appear after an arbitrary 

assigr.ment is made. 

The PODEM algorithm (GoeI81) is similar to the D-algorithm. except that arbitrary 

assignments are made to primary inputs only. Since assignments to primary inputs can 

always be justified. this restriction has the effect of ensuring that "unjustified nodes" (other 

than the sensitization requirement at the point of the fault) do not occur in the PODEM 

algorithm. making it considerably easier to implement than the D-algorithm. 

PODEM ::.iso introduced the" X -path check" step. which ensures that the fautt effect 

can propagate to sorne primary output. The X -path check step is performed to identify 

those gates on the D-frontier from which it is not possible to propagate the fault effect to 

any primary output. That is. if there are no X -paths from a node on the D-frontier to at 

least one primary output (i.e. ail paths are blocked by O's and/or 1·s). that node can be 

dropped from the D-frontier. If no gates remain on the D-frontier. the fault effect cannot 

propagate to any primary output. and a backtrack must be performed If the X -paths 

are not checked. the test generation system will not recognize that the fault effect cannot 

propagate until much later. after unnecessary branching and boundmg has occurred 

The FAN algorithm [FujShi83] IS an extensIon of the PODEM algortthrn Will! two ma­

jor modifications. intended to address weaknesses of PODEM. The restriction of branch 

24 



( 

( 

( 

2.4 Deterministic test generation algorithms 

assignments to primary inputs is removed. making FAN more difficult to implement (un­

justified values caused by branch assignments to internai circuit nodes must be taken care 

of). However. by allowing branching at internai nodes. FAN is able to identify conflicts 

by exploring ail node assignments in cases where exhausting input combinations afTecting 

those nodes is not practical. In addition. FAN identifies dominators. a class of necessary 

assignments which cannot be found by conventional backward implication and not identified 

by either the PODEM or D-algorithms. By identifying additional necessary assignments. 

FAN is able generate a test or prove that none exist for certain difficult faults with fewer 

arbitrary branches and backtracks than PODEM or the D-algorithm. 

Using the learning techniques described above. SOCRATES [SchTriSar88. SchAut89] 

is able to identify additional necessary assignments which are not found by either the D­

algorithm. PODEM. or FAN. including certain necessary assignments in the region of the 

circuit reached by the fault effect (see chapter 4). SOC RATES itself is an extension of the 

FAN algorithm. performing the same steps as FAN. but identifying additional necessary 

assignments. and thus finding a test pattern or proving redundaney more efficiently. 

Compared to other test pattern generation algorithms. the QUEST algorithm has a 

number of novel features. Certain of these features are due to the use (If a 16-valued logie 

system for test pattern generation and others come about due to the analysis of necessary 

and nonconflieting assignments. 

A 16-valued logie system signifieantly simplifies the test generation algorithm. as 

there is no need to perform any of the computation related to D-drive. X -path check. 

maintenance of the D-frontier. etc. In addition. there is no need to distinguish between 

sensitization and propagation of the fault-the only operation the algorithm must perform 

is justification of unjustified signal values. It has been noted that. for some untestable 

faults. the fault effect cannot be propdgated to primary outputs. while other faults cannot 

be sensitized [MinRog89]. In order to prove that these faults are untestable with a minimum 

of backtracking using conventlonal algonthms. It is deslrable flrst to attempt propagation 

or sensitization. respectlvely. The effectlveness of the strategy depends on the fault whlch 

is targeted-either will perform better for sorne faults and worse for others. Viewed from 
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tha perspective of a 16-valued logie system. the question becomes not which strategy to 

use. but if the traditional approach to test pattern generation is appropriate. Since both 

sensitization and propagation are required in order to test the fault and both are specIal 

cases of line justification. distinguishing be(ween those assignments made for sensitizatlOn 

and those made for propagation is both arbitrary and counterproductlve. Both sets of 

assignments are necessary. and should not be distinguished. 

The formulation of the test generation problem as a set of justification points makes 

it easy to identify necessary and nonconflicting éJssignments systematically using the tech­

niques presented in chapters 4 and 6. respectively. The systematic identification of neces­

sary assignments replaces a number of operations performed by other algl)rithms such as 

conventional backward implication, dominator identification. and learning. while Identifying 

additional necessary assignments which cannot be found using any of those techniques. 

The identification of nl)nconflicting assignments is novel and is not performed by any other 

general test pattern generation algorithm. At the sa me time. if no necessary or noncon­

flicting assignments can be identified. then any of the heuristics proposed by other test 

generation algorithms can be used by QUEST to choose arbitrary assignments. 
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Chapter 3 Images and inverse images of set funetions 

The mathematical concepts of images and inverse images of set functions form the 

foundation on which the methods to identify necessary and nonconflicting assignments 

developed in this thesis are built. In this chapter. these concepts are defined and applied 

ta algorithmic test pattern generation. 

3.1 Images of set funetions: forward propagation 

During (orward propagation, the set of possible ialues at the output of each gate 

is determined given the sets of possible values al its inputs. The values at the inputs to 

the gate are assumed to be independent-thus the possible output values are simply those 

which can be produced by each of the possible combinations of input values. 

A 

B 

{D.D.1} ___ D~~ ___ {O_.5_,D_.1_1_ 
{O.D.1} . 

Figure 3.1 Images for a 2·input AND gate 

Example 3.1: Consider the 2-input AND gate shawn in Fig. 3.1. The sets of possible 

values on the inputs. are {D,D.l} and {D,D.n Thus the set of possIble values at the 



3.1 Images of set functions: forward propagation 

output is: 

AND({O, D, D}, {a, D, 1}) = {AND(O,O), AND(O, D), AND(O, 1), AND(D,O), 

AND(D, D),AND(D, l),AND(l,O),AND(l, D), 

AND{1, l)} 

= {O,D,D,1} 

This calculation can be formalized using the concept of images of set functions 

[Raj881: 

Definition 3.1: Let 1 : X x Y -+ Z be a function of two variables. and A. B. and C be 

nonempty subsets of X. y, and Z. respectively. A ~ X. B ç Y. C ç Z. The image 

I(A, B) ofAx B under 1 is the set of ail images I(x, y) such that x E A and y f B. 

Using set builder notation: 

I(A,B) = {f(x,y) 1 xE A and y E B}. 

Using the bitwise encoding B~ from Table 2.5. the function of agate can be described 

by tour characteristic equations. The equations determine the presence or absence of each 

possible value at the output of agate given the sets of possible values of its inputs. 

Example 3.2: The characteristic equations for a 2-input AND gate with inputs A and 11 

and output Gare: 

Co = aO + bO + aDb:o + aDbD 

CD = albn+ aDbl + aD~ 
CD = al bD + aDb1 + aDbD 

Cl = albl· 

For example. the equation for ct 5ays that 1 15 a possible value at the output of the AND 

gate only if 1 is a possible value of both mputs Characterrstlc equatlons wlth ,) <'Imilar 

form can be defmed for OR. XOR. etc gates (ac, weil as for larger ftHH tlOlldl blo( k'i. If 

desired). The Imagp. at the output of a 2-input AND gate and a 2-Input OR gate for ail 

256 pOSSible combinations of input valL:es 15 shown in Table 3.1 uSlng the BIG codmg from 
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3.1 Images of set functions: forward propagation 

0 123 4 5 6 7 8 91011 12131415 o 1 2 3 456 7 8 91011 12131415 

0 0 o 0 0 o 0 0 0 0 o 0 0 0 000 0 000 0 o 0 a 0 o 0 0 a o 0 0 0 
1 o 1 1 1 1 1 1 1 1 1 1 1 1 111 1 o 1 2 3 .. 5 6 7 8 91011 12131415 
2 o 1 2 3 113 

, 2 3 2 3 3 333 " 2 o 2 2 2 8101010 81010 la 8101010 
3 o 1 3 3 1 1 3 3 3 3 3 3 3 333 3 o 3 2 3 12151415 81110 11 12151415 

4 0 1 1 1 4 5 5 5 4 5 5 5 4 5 5 5 4 o 4 812 .. 41212 812 812 12121212 
5 0 1 1 1 5 555 5 5 5 5 5 5 5 5 5 o 51015 4 514 J 5 8131015 12131415 
6 0 j 3 3 5 577 6 7 1 7 7 7 7 7 6 o 61014 12141414 8141014 12141414 
7 0 1 3 3 5 5 7 7 7 7 7 7 1 7 7 7 7 o 71015 12151415 8151015 12151415 

8 0 1 2 3 4 5 6 7 8 91011 12131415 8 o 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 
9 0 1 3 3 5 5 7 7 9 91111 13131515 9 o 91011 12131415 8 91011 12131415 

10 0 1 2 3 5 5 7 7 10111011 15151515 la 0101010 8101010 81010 la 8101010 
11 0 1 3 3 5 5 7 7 11111111 15151515 11 0111011 12151415 8111011 12151415 

12 0 1 3 3 4 5 1 1 12131515 12131515 12 012 812 12121212 812 812 12121212 
13 0 1 3 3 5 5 1 1 13131515 13131515 13 0131015 12131415 8131015 12131415 
14 0 1 3 3 5 5 7 7 14151515 15151515 14 0141014 12141414 8141014 12141414 
15 0 1 3 3 5 5 1 1 15151515 15151515 15 0151015 12151415 8151015 12151415 

a) AND gate b) OR gate 

Table 3.1 Gate functions in a 16-valued logic system: B16 x B16 -4 B16 

Table 2.5. Similar tables can be computed for ail other 2-input gate types. at which point 

forward propagation through individual gates ean be performed by table lookup. 

The sets of possible output values of ail gates in the network can be determined in 

linear time in a forward levelized selective trace from primary inputs to primary outputs 

using the sets of possible input values of each gate to find its set of possible output 

values. Sinee gate inputs are assumed to be independent. forward propagation through 

multi-input gates can be performed by forward prCipag"tion through a cascade of 2-input 

gates performing the same function. 

The presence of the fault in the circuit under test is accounted for by changing 

the circuit structure slightly. The point of the fault becomes a new circuit node whose 

propagated value is assigned to {D} or {D} if the fault is stuck-at zero or stuck-at one. 

respectively.6 

6 Multiple faults can be dealt wlth similarly there are several (ault sites. cach of whlch may propagate 
a tault effect The propagated value of each individual so (s1) fault site is {D,O} ({D,l}). as the 
only requirement to generate a test for the multiple fault is that the fault effect trom at least one of 
the component single faults be observed on at least one primary output. 
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3.2 Inverse images of set functlons: backward Implication 

H ,,:ato," 

Figure 3.2 Forward propagation in a circuit 

Example 3.3: Due to the presence of a 81 fault on line a in Fig. 3.2. line a propagates {D} 

to input 1 of AND gate D. The sets of possible signal values of ail nodes in the circuit are 

determined when ail primary inputs are assigned to {O, 1}. For example. the only possible 

output values of gate D are D and 0: D if input B is assigned to 1 and 0 if B is assigned 

to O. Note that the values propagated by the subcircuit driving the point of the fault (in 

this case. input A) do not affect values in the subcircuit driven by the point of the fault. 

as the presence of the fault alters the behavior of the circuit. 

3.2 Inverse images of set functions: backward implication 

Another operation which is required during test pattern generation is backward im­

plication. where the smallest set of values at the inputs of a &ate whith could be combined 

to produce a restricted set of values at the output of the gate is determined-the inverse 

of the image function just described. Backward implication is the generalized analogue of 

conventionallocal implication discussed in section 2.2. and is used to derive the necessary 

input conditions to justify a restricted value at the output of agate. 

A --.!.{Q:.:,.::..:D,.:..!..~J--r_ 
8 l&.e.l! 1 )I-C_{_Q_,i5,_:9;4_~_ 

Figure 3.3 Inverse images for a 2-input AND gate 

Example 3.4: If {D} must be justified at the output of the AND gate ln FIg 3 3 (slgmfled 

in the figure by crossing out the alternate output values). then the value of mput A must 

be {D} and of input B must be il}. If either input carried sorne other value, then the 
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3.2 Inverse images of set funetions: backward Implication 

set of possible values at the output of the gate would not include D and it would not be 

possible to justify the required value. 

The process of backward implication can be formalized using the concept of inverse 

images of set functions [Raj8S]: 

Definition 3.2: Let f : X x Y ~ Z !Je a function of two variables. and A. B. and C be 

nonempty subsets of X. Y. and Z. respectivel~t. A ç X. B ç Y. and C ç Z. The inverse 

image of C on coordinate X under f. restricted ta A x B. which we denote fIA~B(C), is 

the set of ail x E A such that f(x, y) E C for sorne y E B. and similarly for coordinate Y. 

ln set builder notation: 

fiA~B(C) = {x E A 1 f(x,y) E C for sorne y E B} 

fiA~B(C) = {y E B 1 f(x,y) E C for sorne x E A}. 

Example 3.5: ln a 2-input AND gate with inputs A and B a. d output C. consider the 

combinations of input/output values in which A = {D} partidpates: AND(D,O) = O. 

AND(D,D) = D. AND(D,D) = O. and AND(D,l) = D. In order for D to appear in 

A'. the reduced value of input A. it must appear in the original value of input A and sorne 

combination of D on input A with a value at input B must produce a value which appears 

in C'. the reduced value at the output of the gate. Using the bitwise encoding B~. the 

inverse image for agate can be described by four characteristic equations. as was done in 

the previous section for images. For the AND gate. the inverse image A' on input A of the 

reduced or restricted set C' (C' ç C) is: 

, 1 
aO = aoco 

a~ = aD(bl c~ + bDCb + '15c~ + bocb) 

a'v = a[)(b1 c~ + bDC'v + fryjCb + bocb) 

al = al (b1 cl + bDCn + bDc~ + bocb)· 
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3.2 Inverse Images of set functions: backward implication 

Lemma 3.1: Let the power set of set S. denoted PtS). be the set composed of S and ail 

of its subsets (including the ernpty set). Given A. B. C. !iA~B(C), !iA~B{C) defined in 

P(S). then: 

!iA~B(C) = A n fis~B(C) 
= A n {x E S 1 f(x, y) E C for sorne 1/ E B} 

fiA~B(C) = B n fiA~S(C), 
= B n {y E S 1 f(x, y) E C for sorne x E A}. 

Proof: From the definition of the power set. for any X E P(S). X ç S and X n S = X. 

For any general set function 9 with inverse image g-l. g-1[C n D) = g-l(G) n g-l[DJ 

[HrbJec84}. Thus: 

fiA~B(C) = fITIns)xB(G n S) 

= {x 1 x E (A n S) and f(x, y) E (G n S) for sorne 1/ E B} 

= {x 1 x E A and f(x, y) E S for sorne y E B} n 

{x 1 x E Sand !(x, y) E C for some y E B} 

= A n {x 1 x ES and f(x, y) E C for sorne y E B} 

= A n !IS~B(C) 

and similarly for !iA~B(C), • 

Example 3.6: Using lemma 3.1. Tables 3.2. and b are computed for 2-input AND and OR 

gates. respecth'ely. The table gives the generalized inverse image fji;'v,V,l}Xn(C) given G 

(column address) and B (row address). For example. using Table 3.28 to find the inverse 

image on input A of output {D} for the AND gate in Fig. 3.3: table[{D}.{O, D, 1}) ri 

{O, D, 1} = {D} n {O, D, 1} = {D} (table[2.13] n 11 = 2n 11 = 2). To increase readability. 

elements 0 (inconsistency) and 15 (no implication) are replaced by blanks and penods. 
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o 1 2 3 4 5 6 1 8 91011 12131415 0 1 2 3 4 5 6 7 8 91011 12131415 

0 0 
1 1 1 2 3 4 5 6 7 8 91011 121314 
2 510 2 3 12 
3 .10 3 1 3 3 4 5 1 7 1213 1213 

.. 3 12 4 5 10 
5 12 5 1 2 3 5 5 7 7 10111011 
6 710 12 .14 6 3 5 7 14 
1 .10 12 .14 7 1 3 3 5 5 7 7 14 

8 1 2 3 4. 5 6 1 8 91011 121314 8 
9 . 2 4 . 6 8 .10 12 .14 9 1 2 3 4 5 6 7 

10 510 4 514 81310 121314 10 3 
11 .10 .. .14 8 .10 12 .14 11 1 3 3 4 5 7 7 

12 3 2 3 12 14 8111011 12 .14 12 5 
13 . 2 12 .14 8 .10 12 .14 13 1 2 3 5 5 7 7 
14 710 12 .14 8 .10 12 .14 14 3 5 7 
15 .10 12 .14 8 .10 12 .14 15 1 3 3 5 5 1 7 

a) AND gate b) OR gate 

Table 3.2 Inverse images in B16 

H (D;W;e;tJ 

c (tltJ 

Figure 3.4 8ackward implication in the circuit from Fig. 3.2 

respectively. Similar tables can be computed for other gate types and backward implication 

can be performed using table lookup. 

E;cample 3. 7: Fig. 3.4 iIIustrates backward implication for fault aS1 • conlinued from exampfe 

3.3. In order to observe {D} at the primary output. line F must carry {D} and fine G must 

carry {1}. In order for F to carry {D}. line el mu~t carry {l} and line dl {D}. whic;' in 

turn implies that bl must be {l}. Finally. if input B is {l}. then C must be assigned to 

{O} in order to produce {i} at G. 
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3.3 Limitations of set functlons 

3.3 Limitations of set functions 

ln the definition of the image and inverse image set functions for a gate. the inputs 

to the gate are assumed to be independent. If the inputs are correlated by a common 

subcircuit. then the sets of possible values at circuit nodes obtained using images and 

inverse images may be pessimistic in that not ail the values in the sets (and. in particlJlar. 

not ail the combinations of values) can actually be produced. 

Figure 3.5 Pessimism in the forward implication step 

Example 3.8: The circuit of Fig. 3.5 is an implementation of a 2-input MUX with data 

inputs A. C and select B. The select input can be either 0 or 1. but since both data inputs 

are 1. the output value will be 1 regardless of which is selected. However. the set of possible 

values of F found du ring forward propagation using images of set functions is pessimistic. 

containing both 0 and 1. The pessimism arises as a result of the implicit assumption made 

in forward propagation that the values of nodes D and E are independent when. in facto 

the are closely related-they cannot be 1 simultaneously. 

As images and inverse images were defined for 2-input gates whose inputs are inde­

pendent. the characteristic equations extracted from multi-gate circuits containing recon­

vergence may not be exact. 

Example 3.9: Fig. 3.6 iIIustrates that the characteristic equations derived for three different 

implementations of the XOR function are not the same When forward propagation IS 

performed in circuits containing reconvergent fanout. spunous lerms ln ll1(' (harrlctcrlstlC. 

equations brought about by reconvergent fanout cause values whlch cannot attually be 

produced to appear at network nodes. For example. inspection of the equatlon for Co for 
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a) 2-input XOR gate 

c) AND-OR Implementation 

A ____ ~ __________ ~ 
D 

F 

B ____ +-________ ~ 

e) Four NAND implementation 

3.3 limitations of set funetions 

Co = aObO + aïf75 + a Db D + al bl 

CD = aObD + a~O +aDbl + albD 

CD = aObD + a~l +aDbO + albD 
Cl = aObl + aï1'D + aDb D + albO 

b) Charaeteristic equations for a 

c 

Co = aObO + aD" D + a Db D + al bl + 
aOal + bObl 

cD = aOb D + aïl'o + a Db1 + al bD + 
avaD(bD + bD) + bi!D(aD + aD) 

CD = aObD+a:v-hl +aDbo+a1bD+ 

aïjGD(bD + bD) + bit D(aD + aD) 

Cl = aOb1 + avh D + a Db D + al bO + 
bObl (aD + aD) + aOal (b D + b Dl 

d) Charaeteristie equations for c 

co = aObO + aï1ïJ + a Db D + al hl + 
aoal(bD + bD} +bObl(aD + aD} 

CD = aObD +avO +aDhl +albD + 

ajylD(bjJ+ bD) + bï1v(aD + aD) + 

aoajJlll bl + al bOb~l 

CD = aObD +aï1'l + aDbO + albD + 

aïJ<lD(bD + bD) + bVOD(aD + aD) + 
aOa Dal bl + al bOb Db1 

Cl = aOb1 + a71D + aDbD + albO + 
al (aO + b~D) + bl(bO + a OaD) 

f) Chartlcteristic equations for e 

Figure 3.6 Three implementations of the exclusive-or function and correspollding 
characteristic tquations 
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3.3 limitations of set functions 

the circuit in Fig. 3.6c indicates that 0 will appear in the output value if input A carries {O, 1 } 

and input B {D, D}. {D}. or {D}. Methods to overcome the problem of reconvergent stem 
correlation are discussed in section 4.4. 
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Chapter 4 
Reduction list calculation: a method to 

identify necessary assignments 

The key to the necessary assignment identification technique presented in this chapter 

is the concept of reduction which defines the relation between assignments in the circuit 

under test and the values which must be justified. A general theory of reduction based on 

the mathematical properties of images and inverse images of set functions is developed. 

Applied to deterministic test pattern generation. the calculation of reduction lists provides 

a systematic means to identify necessary assignments using set operations and to store 

this information in a concise form. 

Test generation for a particular target fault can be represented by a search tree 

whose nodes represent the state of the test at each instant and whose edges represent 

assignments. leaf nodes represent inconsistent states (backtracks) or valid test patterns. 

If the fault is untestable. then there are only non-solution leaf nodes; if the fault is testable. 

then there may be solution and non-solution leaf nodes. depending on the order in which 

the space is searched. If inconsistent requirements are detected during test generation. a 

backtrack is performed and the state of the circuit is rolled back to that which existed prior 

to the most recent arbitrary assignment: the alternate choice (if an~) is th en explored. The 

fault is untestable if there are no arbitrary assignments which can be reversed. 

Using a 16-valued logie system for test generatlon. the only operation performed is 

justification (section 2.1). The state of the test process at any point (the current node in 

the search tree) is represented by a set of node/value combinations which must be justified 
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Reduction llst calculatlo": a method to Identify necessary asslgnments 

in order for the conditions of the test to be satisfied and a test pattern identified. Given 

an initial set of justification points. others can be derived in two ways: 

• A necessary assignment to an internai no de of the circuit under test is identified and 

applied. Since the assignment is necessary. there is no need to search the space 

defined by alternate assignment(s) to the node. as no test patterns exist there. 

• An arbitrary decision is made to search the tiee in a particular direction and a branch 

node is assigned to a particular value. Unlike a necessary assignment. the decision 

may not be correct and must be reversed (backtracked) if a conflict is detected. 

Figure 4.1 Test pattern generation for 1$1 

EJtample 4.1: ln order to sensitize a 81 fault on line f of the circuit shown in Fig. 4.1. the 

output of the AND gate must be driven to {O}. Since F is a primary output of the circuit. 

propagating the fault effect is trivial. If input A were assigned to {1}. then the value of 

both lines D and E would be {t}-thus. the AND gate output would be {i}. and it would 

not be possible to test the fault. Thus. a necessary assignment (and a second justification 

point) in this example is node A assigned to {O}. 

--------c..7 ........... -...-. ..... ---
/FA Confllct 
VI' (no test exlsts) 

••• 

• • • 

• • • 

Figure 4.2 The search forest 
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Reduction list calculation: a method to Identify necessary assignments 

Necessary assignment identification through reduction list calculation can be under­

stood through the search forest-the graph composed of ail possible search trees for a 

particular target fault. Edges represent assignments made in the circuit ur,der test and 

vertiees represent the state of the test generation process after the assignments have been 

made. From the raot. many initial assignments are possible-for example. in the search 

forest depicted in Fig. 4.2. input A can be assigned to {O} or to {1}. However. input B 

could equally weil be assigned initially. as could any other primary input or internai node 

of the circuit. Once an initial assignment is made. there are again many choiees for the 

next assignment. and 50 on. Individual search trees may overlap. as the test generation 

process lands in the same state (at the same node) after a particular set of assignments 

is made. regardless of the order in which they are assigned-for example. the sa me node 

in the search fore st is reached if the test generator assigns first A = 1 and then B = 0 or 

first B = 0 then A = 1. 

Reduction list ca\culation is equivalent to searching one level deep from the current 

no de in the search forest to identify the f;rst-order necessary assignments. In other words. 

from the node in the search forest: representing the current state of the test. reduction 

lists identify those assignments which immediately terminate at non-solution leaf nodes. 

For example. in Fig. 4.2. the reduction lists would identify that A{Q} and B{t} are non­

solution leaf nodes. and thus that A{l} and B{O} are first-order necessary assignments. On 

the other hand. C {D} would not be identified by the reduction lists as it is a second-Drder 

necessary assignment (found by searching two levels deep in the search forest)-after Cft} 

is assigned. any assignment to D leads to a conflict. Reduction analysis determines the 

effect of a single assignment mët:de to a no de in the circuit and does not recognize conflicts 

whieh appear only after multiple assignments are made. However. applying necessary 

assignments moves the process into a new node in the search forest. Jrom which necessary 

assignments which were not recognized from the previous state may be identified. 

The result of necessary assignment identification is to create a reordered search tree 

where non-solution leaf nodes are placed as near the root as pos~ible. preventmg the test 

generator from wasting time searching areas of the tree in which there are no solutions. 

Ideally. the test generator would identify ail necessary assignments rapidly. and thus find 
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4.1 Reduction lis\ .', "'Y asslgnment Identification 

a test pattern or proye untestability without backtracks. • lever. the test generation 

problem is NP-complete [FujToi82) 50. in general. test generation algorithms are able to 

identify only sorne of the necessary assignments (see section 4.5). 

4.1 Reduction lists and necessary assignment identification 

Reduction lists capture global information about the function of the circuit under test 

through local computations of lists at the inputs and outputs of each gate. GI" ~'al analy­

sis is achieved through the indexation of the assignments which appear on the reduction 

lists. Necessary assignment identification through reduction list calculation is unifying in 

the sense that ail other proposed techniques. including backward implication. dominator 

identification. and learning are special cases of this general method. 

Definition 4.1: An assignment is a pair consisting of a node identifier and a value. The 

a:;,signment of node S to value v is denoted Sv. 

Definition 4.2: For each line l in the circuit and for each possible value v which it could 

take. the reduction list Rt contains those assignments to nodes in the circuit which would 

cause value v to vanish from the set of possible values of 1. An assignment which reduces 

v at 1 is called a reduction assignment for Iv. An assignment which reduces the r'Jquired 

value at a justification point is called a reduction assignment. 

For each possible value of each line in the circuit. the corresponding reduction list 

gives the set of reduction assignments for that line and value. Using a 16-valued logie. 

system for test generation. each line in the circuit has four reduction lists associated wlth 

it. one for each possible value. O. 1. D. and D. 

Example 4.2: ln the circuit shown În FÎg. 4.1. when A is assigned to {1}. the value of 

F becomes {1}; stated equivalently. asslgning .1 to {1} causes 0 to val1l'"h from the set 

of possible values at F. In other words. A{ 1} (read "node A ass/gned to value {1}") 
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4.1 Reduction lists and necessary assignment identific.ation 

reduces F{O}-A{l} is a reduction assignment for F{O}' Thus. reduction list RÔ contains 

assignment A{l}' 

Necessary assignments are derived from the reduction lists at the justification points. 

If C{z} must be justified. then ail assignments which appear on reduction list Rf must be 

eliminated. That is. if p{lJ} is an assignment which would reduce C{z}' then value v must 

be removed from the set of possible values of point P since assigning P to v will cause 

a confliet (it will no longer be possible to justify C{z})' If the set of possible values at P 

remaining after v is removed is empty (represented by {} in PlB~) from Table 2.5). th en 

a confliet exists under current assignments and a backtrack must be performed. 

Example 4.3: From the previous example. if F{O} is a justification point (for example. 

in generating a test for 181)' then assignment A{l} must be eliminated from the set of 

possible assignments at A since assigning A to {1} will lead ta a conflict. Thus. A{1} is 

a reduction assignment and A{O} is a neeessary assignment. 

The set of justification points can be represented by an AND-OR graph. whose 

AND-nodes represent assignments ail of which must be .iustified in order to find a test 

and OR-nodes represent assignments at least one of which must be justified. For example. 

in order to generate a test for a fault. the point of the fault must be driven to a value 

opposite that caused by the fault (sensitization) and D or D must be observed on at 

least one primary output (propagation). A justification point is satisfied if the forward 

propagated value of the corresponding gate is the same as the required value. A test 

pattern is generated when ail justification points are satisfied. Conversely. the justification 

point cannat be satisfied if its forward propagated and required values are disjoint. If an 

AND-node cannot be justified. then no test patterns exist in the space defined by current 

assignments and a backtrack must be performed to reverse the la st arbitrary ac;signment. 

The fault is untestable if there are no arbitrary asslgnments which can be reversed. If an 

OR-node cannot be Justifled. then it is dropped-If none of the OR-nodes can be satlsfled. 

then a backtrack must be performed Lemma 4.1 follows from this reasoning. 
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4.1 Reduction lists and necessary assignment IdentifIcation 

Figure 4.3 The AND-OR graph of justifIcation points 

Lemma 4.1: Given the set of justification points {A~l"'" A~n} ail of which must be 

satisfied (AND-nodes in the AND-OR graph) and points {O~l"'" O::'m} at least one 

of which must be satisfied (OR-nodes in the AND-OR grapr). then the set of reduction 

assignments is: 

Example 4.4: The required value of an AND or OR node may not be unique. For example. 

in order to justify {D} at the output of an ANDgate whose input valLes are {D, D} Ctnd 

{O, 1, D}. it is necessary to justify {D} at the tirst input and {l, D} at the other. In order 

to be a reduction assignment with respect to the second input. an assignment would have 

to reduce both D and 1 there. 

Operations intersection (n). union (u) and difference (\) are performed on the re­

duction lists. 

Example 4.5: Given lists of assignments L1 = {A{O}' BiO}' C{l}}' and L2 = {A{l}' B{O}' 

C{O,D}}: 

L1 n L2 = {B{O}} 

L1 u L2 = {A{O,1}' B{O}' C{O,D,l}} 

LI \ L2 = {A{O}' C{l}}' 

ln order to reduce a value From the output of il gate. It 15 nece55ary to elimmate 

ail combinations of Input asslgnments which could be c.ombmed to producé 1 bat ouI put 

value. For examl-+. in order to reduce value z From the set of asslgnments at the output 

of a 2-input gate, one or the other (or both) input value from ail Input combloatlons whlch 
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4.1 Reduction lists and necessary asslgnment identification 

produce z at the output must vanish. An assignment which would cause this to happen 

belongs to Rf. 

Example 4.6: From the characteristic equations for a 2-input AND gate given in exam­

pie 3.2, value 0 is included in the 5et of possible values at the output of the gate if 0 is 

present at '1ither input. or if D at one input can be combined with D at the other. Thus, 

for an assignment to reduce 0 at the output of the gate, it must reduce: 0 at both inputs, 

either D at input A or D at input B, and either D at input A or D at input B. This can 

be represented as the intersection of reduction lists from the inputs of the gate: in order to 
-+c --+A -+B --+A -+B -+A-+B 

appear on R 0 ' an assignment must appear on R 0' R 0' RD or R D' and R D or RD' 

ln addition, if the output value of the gate were assigned to sorne value other than 0, then 

that would have the effect of reducing 0 at the output of the gate as weil. The reduction 

equations for output C of a 2-input AND gate with inputs A and B are: 

Example 4.7: Similarly, the reduction equations for output C of a 2-input XOR gate with 

inputs A and B are: 

Similar sets of reduction equations can be defined for other gate types. induding 

simple gates such as OR, NAND. NOT, etc. as weil as for rrlore complex blacks such as 

MUX es, adders, etc. More generally, provided that its fi 'nction r.an be described in terms 
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4.1 Reduction lists and necessary assignnlfnt Identification 

Une List Contents 

B (0.11 

A -A 
{A{1}} RO 

--A 
{AfO}} RI 

B -B 
{B{l} } RO 

-B 
{B{O}} RI 

a) Non-minimal example circuit 

~ ----~,----
A L-/ L ~ 

C -+c 
{C{1}} RO 

RG {C{O}} 1 

D '-'D 
{A{1}' B{l}' D{t}} RO 

-D 
{D{O}} RI 

E 
--tE 

{A{1}' C{l}' E{l}} RO 
-+E 

{E{O}} RI 

c) Minimized example circuit 
F -F 

{ A { 1 } , p{ 1} 1 RO 
-F 

{D{Ol' E{Ol' F{O}} R 1 

b) Reduction lists for 8 

Figure 4.4 Reduction Iist calculation in a circuit 

of images and inverse images of set funetions. reduetion equations can be defined for any 

module. 

Example 4.8.' The circuit from Fig. 4.48. taken from [SchAut89]. illustrates reduction list 

calculation in a network of simple gates. As discussed in example 4.2. A{l} appears on 

ïl fi. If F{O} must be justified during test generation. then {1} must be eliminated from 

stem A. Note that the circuit trom Fig. 4.48 is nonminimal. implernenting the sa me function 

as the circuit shawn in Fig. 4.4c. In general. if an assignment ta stem S appears on a 

reduction list at one of its reconvergence gates G when ail inputs are assigned to {D, 1}. 

then S con trois the output value of G. The circuit can be redesigned ta make .') a direct 

input ta G and the intervening unnecessary logic deleted. making the cirfUlt both smaller 

and easier to test (sorne reconvergence has been removed). 

The reduction lists are completely deflOed by the forward propagated values 01 network 

nodes. whic.h are determined by the mjected target f~ult and the asslgnments whlch have 

been made in the circuit under test. Given a target fault and set of Justification palOts. 
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4.1 Reduction lists and necessary assignment identification 

there is one and only one corresponding set of reduction lists. Example 4.9 iIIustrates 

reduction list calculation when circuit values are partially determined. 

Line Ust Contents 

A -A 
{A{l}} Ro 

-A 
{A{O}} RI 

B -B Rl {} 

C -0 RI {} 

D -D 
{A{l}' D{l}} RO 

-D 
{A{O}' D{O}} RI 

E -E 
{A{l}' E{l}} RO 

-E 
{A{O}' E{O}} RI 

a) Example circuit 

F -F 
{A{l}' F{l}} RO 

-F 
{A{O}' F{O}} RI 

G -0 
{A{l}' G{l}} Ro 

-0 
{A{O}' D{O}' E{O}' G fOl} RI 

H -H 
{A{l}' H{l}} RO 

-H 
{A{O}' D{O}' F{O}' H{O}} RI 

b) Reduction lists for a) 

Figure 4.5 Reduction list calculation with partially determined circuit values 

Example 4.9: ln the circuit from Fig. 4.5. A{l} reduces G{O} and H{O} if B = {1} 

and C = {1} have been determined by other assignments du ring test pattern generation. 

However. if A = {O,1}. B = {D, 1}. and (' = {D, 1} (i.e. no assignments have been made). 

then A{1} does not reduce either G{O} or H{O}' 

Reduction lists identify necessary assignments in the region of the circuit reached 

by the D symbol. In addition to other necessary assignments. the reduction lists identify 

dominators (section 2.2) as nodes whose necessary asslgnment is to {D}. {D}. or {D.D}. 

Static and dynamic learning and structure-based sensltlzation (described in [SchAut89J) are 
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4.1 Reduction Iists and necesury asslgnment Identification 

...:..;,;,...z-..... E (11 

Figure 4.6 Necessary assignments in the region of the D symbol 

also special cases of necessary assignments identified by the reduction lists. as iIIustrated 

by the following example. 

EJCample 4.10: The subcircuit in Fig. 4.6 illustrates the generality of necessary assignment 

identification by reduction list calculation. Here. if B = C = D = J = {O,1}. then [{O} 

reduces I{D}' L{D}' M{D}' N{D}' and Z{D,D} (hence 1 is a dominator with respect to 

output Z). In addition. K{O} reduces M{D} and N{D}' No assignments arE" necessary. 

however. as the fault effect does not need to be observed at Z in order to test the fault 

(the fault effect may propagate to another primary output through gate E). However. if 

B{1} is assigned during test generation. Z{D,D} becomes a justification point and [{Dl is 

a necessary assignment. After I{D} is assigned. then F{1} can be identified as a necessary 

assignment by backward implication. Finally. if J{1} is assigned during test generation. 

K{1} is a necessary assignment. as K{O} reduces both D and D al Z. 

Assignment analysis through reduction list calculation is equivalent to ma king as­

signments in the circuit under test and finding the implication of those assignments on 

the values of ail other nodes in the circuit. Assignments are aPlalysed in parallel using 

list (set) operations. rather than serially. as is done by the learning techniques proposed 

in [SchTriSar88. SchAut89]. The key differences between reduction list computation and 

necessary assignment identification by other techniques are the parallel nature of the cal­

culation and the use of a 16-valued logic system Test generatlon ôlgonthms employlng a 
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4.1 Reduction lists and necessary assignment Identification 

1 (D.OI 
C ~--+-+-+-+--t 

o ..a;.&.--+--+--+---t M (D,D,D.l) 

E 1 

F (0.1' 
L (0.01 

Figure 4.7 Test generation for BSQ 

5-valued logic system cannot identify certain necessary assignments in the region of the 

circuit reached by the fault effect. even if structure-based sensitization techniques are used. 

Example 4.11: The 4 x 1 multiplexor from Fig. 4.7 iIIustrates necessary assignment iden­

tification in the region of the network which can be reached from the fault site. Previous 

assignments have set C = D = E = {1}. The reduction lists indicate that A{Q} reduces 

L{D}' K{D}' J{O}. and J{O}. and therefore reduces both D and D at M. Thus A{i} is 

a necessary assignment. After A{l} is assigned. backward implication from M{D} identi­

fies F{O} as another neeessary assignment. Using a 5. 9. or l1-valued logic system. A{l} 

cannot be identified as a necessary assignment because the values of lines J. J. K. and L 

cannot be resolved. 

To partially overcome problems caused by the poor resolution of a 5-valued logie 

system. common logie modules (adder!,. multiplexors. etc.) whose logic dependencies are 

predetermined. have been added to ttw library of building blocks recognized by a modular 

version of SOCRATES [SaMaTrSc89]. However. dependencies between modules and in 

unrecognized structures contÎnue to be overlooked ln addition. before each new module 

can be recognized. implication. unique sensitization. and multiple backtrace procedures 

which take the signal dependencies of the module into account must be derived manually 
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4.2 Log!cal constralnts and propagation of Implications 

Itr~-
• - Z • Iq 

" 
a) n-Input gate b) rn-Output fanout stem 

Figure 4.8 Circuit nodes with associated reduction lists 

and added to the system. Based on the concepts of images and inverse images of set 

functions. reduction lists enjoy complete value resolution and are able to identify necessary 

assignments automatically. without resorting to modular circuit descriptions. 

4.2 Logical constraints and propagation of implications 

By formulating the test pattern generation problem in terms of images and inverse 

images of set functions rather than in terms of logical assignments and their implications. 

the test generation algorithm is able to extract information about the function of the circuit 

under test. This is important. as the logical :.onstraints imposed by assignments propagate 

unconditionally in the circuit under test-from inputs toward outputs and trom outputs 

toward inputs. The result of full implication propagation is to determine ail implications of 

each assignment. both forward and backward in the circuit. 

The circuit under test can be viewed as a graph. with gates represented by nodes 

and lines as edges. Primary inputs and outputs are special types of gales. with no inputs 

and no outputs. respectively. Each edge in the graph has a set of reduction lists associated 

with it. one reduction list for each possible value of the line. Since the constraints imposed 

by assignments propagate both forward and backward in the circuit. it is natural to dis-
-+ -tinguish "forward" (R) and "backward" (R) components of the reduction lists. shown as 

directed arrows in Fig. 4.8. Circuit nodes relate the reduction lists of the edges connected 

to them. For each edge connected to a node. the outward bound reduction IIst component 

(forward or backward if the line is an output from or input to the correspond mg gate. 

respectively) is a functlon of the ,"ward bound reductlon IIst components of .III other edges 

connected to the node. The operation performed when the reductlon Iist cornponents are 

combined depends on the function of the correspondtng gate. 
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4.2 logical constraints and propagation of Implications 

The propagation of reduction lists from the output of agate to its inputs can be 

described by a set of reduction equations. In order to reduce a value from an input of a 

gate. an assignment must reduce ail combinations of values of the output and other inputs 

of the gate in which the reduced input value participates. 

Example 4.12: From the inverse-image characteristic equations for a 2-input AND gate 

with inputs A and B and output C given in example 3.5. value 1 remains in the set of 

possible values at input A of the gate if O. 1. D. or D is present at input Band remains in 

the implied value of the output. In order for an assignment to reduce 1 at input A. it must 

simultaneously reduce: either 0 at input B or 0 at output C. either 1 at input A or 1 at 

output C. either D at input B or D at output C. and either D at input B or D at output 

C. These conditions can be stated in terms of the intersection of reduction lists from the 

output and other input of the gate: in order for an assignment to appear on li t. it must 
-+B +-c -+B +-c --+A'-C -+B +-0 

appear on R 0 or R o. R 1 or R 1 • R D or R D' and R D or R D' As in example 4.6. an 

assignment of input A to a value other than 1 also reduces 1 at the input. The reduction 

equations for input A of a 2-input AND gate are: 

Example 4.13: Similarly. the reduction equations for input A of a 2-input XOR gate are: 
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4.2 Logleal constralnts Ind propagation of Implications 

Figure 4.9 Test generation for fault IsO 

Dependencies between circuit nodes may cause logical constraints at one justification 

point to appear at another. The reduction lists are able to capture these constraints and 

identify additional necessary assignments. 

Example 4.14: ln order to test the fault IsO in the subcircuit shown in Fig. 4.9. F{1} must 

be justified. We note that E{O} requires B{O}' as B{1} reduces E{O}: thus. Ri2 includes 

E{O}' Since E{O} appears on Rt2• it also appears on 'Ri1, and th us propagates to stem 

D and appears on Ji f. Since E {O} appears on both Rf and R il, it reduces F{1)' 

However. F{l} is a justification point-thus E{1} is necessary. A similar argument applies 

to D{O}' which is al50 necessary. It is important to observe that an assignment to stem E 

appears on a reduction list at D despite the fact that D is neither driven by nor drives E. 

o d1 
c1 

E ____ ~~~~--------~~~~H---1~11-

CIO•lI 

Figure 4.10 Value justification of a full adder 

Example 4.15: ln justifying {1} on both the sum and carry outputs of the full adder from 

Fig. 4.10. no necessary assignments are identified by backward implication despite that 

consideration of the function reveals that inputs A. B. and C must ail be assigned to {1} 

However. assignment e{O} appears on R [: smce 11 {1} must be Justlhed. an c1"~lgnrnent 
which reduces F{1} implies that E must carry {1} (1 e. c.:{0} appears on J'Ô'-') Hente L'fO} 

-2 4-
requires that A = B = {1} (i.e. appears on both R 0 and R g2). as E = {1} is reqUired 
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4.3 General theorem of reduction 

if 0 = {O} in order to satisfy H{1}' Thus, C{O} appears on Il p, since it appears on both 

R't/ and Rg1. Finally, since C{O} appearson Rf and ïlf, it appears on Rf. G{1} is 

a justification point, 50 O{O} is a reduction assignment and C{l} is necessary. A similar 

argument can be made for assignments A{O} and B{O}' both of which are also reduction 

assignments. 

4.3 General theorem of reduction 

Reduction lists can be calculated for a general set function f using theorern 4.1. 

Theorem 4.1: Let f : X x Y - Z be a function, and A, B, and C be nonempty subsets 

of X, y, and Z. respectively. A ç X. B ç Y. C ç Z. Let Rt for each x E A, R~ for 

each y E B. be the set of assignments which cause values x. y to vanish from sets A. B 

at coordinates X. Y. respectively. Then the set of assignments which cause value z to 

vanish from set C at coordinate Z. denoted by Rf, is the intersection of ail assignments 

which cause x and/or y to vanish from sets A and/or B for e\'ery x E A, Y E B such that 

f(x, y) = z. For each z E C: 

Il; = (Ze \ Z{x}) u n (Il; u ( n R~) ) 
XE!IA:B(z) YE!I~~B(z) 

= (Ze \ Z{x}) u n (11~ u ( n R;) ). 
YE!IA~B(z) XE!IA:y(z) 

+-
The set of assignments which cause value x to vanish from set A, denoted by R 1. is the 

intersection of ail assignments which cause y and/or z to vanish from sets Band/or C. 

respectively. for every y E B, zEe such that xE fIA:B(z). For each x E A: 

RJ = (XA \ X{:r}) IJ n (R~ u ( 
-, f( r,ll) 
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43 General theOlem of rl'ductlol1 

Similarly. for each y E B: 

Proof: (By construction) ln order to reduce a value at the output of a gate. an asslgnmenl 

must reduce ail input combinations which cause that value to appear To reduce :: al 

output Z. it is sufficient that an asslgnment reduce ail values r at input .\ whlch could be 

combined with sorne value at input Y to produce z at Z By deflllition. the IIlverse Image 

on X of z given Y = B is that set of values at X If the asslgnmenl does nol reduel' .1 

value x in that set. then it must reduce ail values y at II1put }' whlCh could bl' cOlllbm(~d 

with x to produce z at Z-that is. ail values in the inverse Image on} of::: glven thal 

X = x. A similar argument can be made starting with ail values al IIlpul )' whlch C,ln be 

combined with a value at X to produce z. 

To reduce a value at the input of a gate. an assignment must reduce a:1 Input/output 

combinations in which that value participates. For example. to reduce J' aL II1put X. Il IS 

sufficient for an assignment to reduce ail values z at output Z which can be produ<.ed by 

combining x with a value at input Y -by definition. those values in the image on 7, of .r 

given Y = B. If the a~signment does not reduce sorne z 111 that set. then it must redu<.e 

ail values y at input Y which can be combined with x at input X to produc.e z at the 

output-ail values in the inverse image on Y of z given X = x. Similarly. to reduce 11 at 

input Y. • 
Lemma 4.2: For each fanout branch St of stem S carrying value v (Fig 4.8b). 

for each .r 1 11 

For the fanout stem itself. 

ri 

Fi ~ = (S, ." i :) (lJ Il fil' l,If Il , 

;=1 



4.4 Stem correlation 

Example 4.16: Using theorem 4.1 to derive the reduction equations for an AND gate, with 

inputs A = {D, 1, D, D}. B = {O,l, D, D} and output C = {O, 1, D, D}: 

=4,1 
-'C - A r'--~B---+~B-""-""-~B--~-:-B-" ~ A -+ B - B 
Ra = (C{O,D,D,l} \ C{O}) U (Ra U (Ro n RDn R D n R l )) n (R DU (Ra n RD)) 

(j (il'Jy u (R~ n R~)) n (ilt u R~) =t8 

-+A -A -+B -+A -B -B '~A ~""A----:-A-' 
= (C{D,D,l}) U Ra n (R DUR D) n (R DUR D) U (Ro U (R D n RD n Rd) 

-A -B -+A -+B -A -+B 
= (C{D,D,l}) U Ro n Ro n (R D li RD) n (RD U R D) 

-(' -'A -B -+B -+A-tB 
Il [) = (C{O,D,1}) U ( R D U (R D n R 1 )) n (R 1 U R D) 
-;(' -'A -B -tB --~A ~B 
f( D = (C{O,D,l}) U {{ R DU (R D n R 1 )) n (R 1 URl ) 
-'(' -A -B 
R 1 = (C{O,D,D}) URl URl' 

4.4 Stem correlation 

The values at the inputs to agate may be related to each other through the reconver­

gence of a fanout stem. In this case, the set of v~lues at the output of the gate determined 

using images of set functions may be pessimistic in that certain values present in the set 

cannot be obtained. Reduction lists capture the relation between circuit Ilodes and can be 

used to eliminate this pessimism, reducing branching and backtracking as weil as the total 

CPU time required to generate a test. 

Example 4.17: The circuit of Fig. 4.11 is an implementation of a 2-input MUX with select B 

and Inputs A, C. Since both data inputs are {1}, output F will be {1} regardless of which 

is selected Unfortunately, the forward propagated value of F erroneously includes both 

o and 1 (see example 3 8) However, reduction list lit; = {B{O,1}} identifies that either 

assignment to input B reduces 0 at F. indicating that 0 is not an attainable assignment at 

7 SlIlce any slIch asslgnlllcnt wOlild l,HIS\. Il = {} 

8 Since any sllch assignlllent would cause A = {O}. and thus C = {O}-a contradiction 
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•.• Stem correlation 

Une Lllt Contents 
A -tA 

RO {} 

B -tB 
{B{t} } Ro 

-tB 
{B{O} } Rl 

e -te 
Rt {} 

D 
..... D 

{B{t} } RO 
-tD 

{B{O} } Rt 

E ->E 
{B{O}} Ro 

-tE 
{B{l} } Rl 

F ..... F 
{B{O,l} } Ro 

-F {} Rt 
'---

a) 2-input MUX b) Redu.tion Iists for 8 

Figure 4.11 Correlation of assignments 

line F: the forward propagated value of F can be restricted to {1} from {O, 1 }. eliminating 

the pessimism. A stem correlation exists for assignment F{O} caused by B. 

Stem correlation is similar to the identification of uniquely implied signal values pro­

posed in (SchAut89]. except that the use of a 16-valued logic system enables the reduction 

lists to identify stem correlations in the region of the circuit reached by the fault effect. 

Examples 4.18 and 4.19 iIIustrate two important cases of stem correlation in the D-region 

which cannot be identified by 5. 9. or ll-valued logic systems. 

Example 4.18: The set of possible values of node F in Fig. 4.12 determined using images of 

set functions is {O,D,D}. However. as in the previous example. a stem correlation exists 

for assignment F{O} caused by B. The forward propagated value of F can be restricted to 

{D, D}. No further assignments are required to cause the fault effect to propagate to the 

output of the MUX. 

The reductlon IISt5 are determined by the current sets of possible vahw,> 111 tllf' CIrCUIt 

under test. taking into account asslgnments made earher in the test generatlon process 

Stem correlation identified by these reduction lists mdicates that It is not possible to both 
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4.4 Stem correlation 

Line List Contents 

A -A RD {} 

B -B 
{B{l}} RO 

-B 
{B{O}} Ri 

C -c RD {} 

D -D {B{1}} RD 
-D 

{B{O}} Ri 

E -E 
{B{O}} R--+g 

Ri {B{1}} 

F -F 
{B{O,l}} RO 

-F 
{B{O}} R-

-fi RD {B{l}} 

a) 2-lnput MUX b) Reduction lists for a) 

Figure 4.12 Stem correlation in the D-region-propagation of the fault effect 

satisfy the current set of justification points and produce the correlated value. However. if 

the set of justification points were difTerent. it might be possible to obtain the correlated 

value. 

A 10.1) 

8 (DI 

d2 
H IttlJ 

1 IMjl 

h2 

Figure 4.13 Stem correlation in the D-region-no propagation of the fault effect 

E)(ample 4.19: Stem correlation can be used to determine that the fault effect cannot 

propagate to the output of the encoder illustrated in Fig 4.13. Although the value of node 

G found using images of set functions IS {D,O.1}. the reduction hsts show that CID} is 

correlated by stem C-thus, the forward propagated value of G can be restncted to {a, 1}. 

ln this example, it is not possible to both justify H{l} and produce D on the output of 
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4.5 Complexity of test pattern generation and the computation of reductlon Iists 

gate G. However. if I{Ol were the only justification point. then D could be produced at 

the output of gate G by assigning C = D = {1}. 

4.5 Complexity of test pattern generation and the computation of 
reduction lists 

During test generation, node values in the circuit under test are progressively refined 

as the process converges to a test vector. That is, the cardinality of the sets of possible 

values of circuit nodes is a monotonically non-increasing function Thus. reduction hsts 

can only grow during test generation-assignments can be added, never deleted-since 

an assignment must cause a reduction in a more refined system if it caused a reduction 

previously.9 Since the total number of assignments which can appear on any reduction 

list cannot be greater than the number of nodes in the circuit. the reduction lists can be 

computed in polynomial time using selective trace. 

ln a circuit containing llines and n nod .s, there are a total of 41 reduction lists and 4n 

node assignments. An individu al reduction list cannot contain more than 4n assignments. 

and at least one assignment must be added to at least one reduction list in order for further 

computation to be scheduled. The time required to update a reduction list is proportIon al 

to its length. Therefore. the worst case time required to compute the reduction lists is 

O(ln2). 

As discussed above, reduction analysis is equivalent to searching one level deep in 

the search forest to identify first-order necessary assignments. Second-order necessary 

assignments can be identified if double assignment!> are placed on the reduction lists. 

rather than single assignments as has been discussed heretofore ln general. reduction hsts 

will identify ail necessary assignments only if ail assignments are analysed (smgle. double. 

triple, etc.). The p.xponential complexity of test generation arises thlough the exponentlell 

number of assignment combinations which must be considered in arder to Identlfy ail 

9 The reduction lists may decrease in slze on a backtrack. as the tes. generation protess 15 rolled back 
from a later stage to an earlier one where node values were less rehned 
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4.5 Complexlty of test pattern generatlon and the computation of reduction lists 

A ___ -..-_---t E 

H 

Figure 4.14 A 2·input trivial function 

necessary assignments and through backtracks which may occur if an incomplete analysis 

is do ne and sorne necessary assignments are overlooked. 

Example 4.20: The circuit of Fig. 4.14 implements the function AB + ÀB + AlJ + AB = 1. 

Ali primary inputs are assigned to {Q, 1}; the set of possible values of ail nodes determined 

during forward propagation is {Q,l} (not shown in the diagram to increase readability). 

Although it is not possible to produce {O} at the output of the circuit. no correlation is 

detected by the reduction lists (see the preceding section). The uncorrected pessimism 

may result in unnecessary branching and backtracking during test pattern generation for 

faults in a cir-::u!t containing this module. Note. however. that the reduction equations are 

able ta prove that ;"1 is untestable without branching. (In arder to produce {Q} at node 

1. E = F = G = H = {Q} are required. A{1} requires B{O} in order to satisfy E{O}' 

but B{O} requires A{Q} in order to satisfy F{O}' A conflict is detected since A cannot 

simultaneously be assigned to both 0 and 1.) 

The previous example indicates that. at the cost of additional processing. a more 

exact analysis of stem correlation can be done by attempting ta justify each of the possible 

output values of each gate in the circuit at which some fanout 'item reconverges and then 

dropping ail values which cannat be justified. This technique is equivalent to analysing 

the effect of double assignments (i.e. identifying second-order necessary assignments) It 

is not difficult to design a circuit in which the only necessary assignments are third (or 

higher) arder and cannot be identified even if double asslgnments are consldered 
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4.5 Complexlty of test pattern generatlon and the computation of reC:'~ctior lists 

Necessary assignment identification can al50 be performed in terms of conduction 

analysis ln which the assignments that produce values at network nodes are captured. 

Reduction analysis is more concise, however, as 2n conduction lists are required to capture 

the sa me information as is done with n reduction lists. For example, conduction list ctO} 
contains those assignments which cause node A to become {O}. but says nothing about 

assignments which caU5e A to become a non unique set of values containing 0 (for example 

{Ot 1} or {D, 0,1 }-a unique conduction list is required for each possible value. 2n in ail. 

On the other hand. one reduction list is required for each element of the base set of values, 

n in ail. Conduction lists can be formed by the intersection of the corresponding reduction 

lists. 
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Chapter 5 
Exploiting circuit topology in effk!ent 

identification of necessary ~ssignments 

The processing required to compute the reduction lists is proportional to the number 

of assignments which must be analysed and the area of the circuit in which they must be 

propagated. This chapter discusses structural properties of the circuit under test which 

can be used to restrict both while guaranteeing that no first-order necessary assignments 

are overlooked. This information can be found in a preprocessing step and then reused for 

each target fault. 

Certain necessary assignments can be identified by backward implication. Since back­

ward implication can be performed in linear time. an efficient test generator should identify 

as many necessary assignments as possible using backward implication before going to 

more expensive and sophisticated techniques such as reduction list computation. The key 

observation is that only potentially necessary assignments whk" would not be identified 

using backward implication should be analysed using recluction lists. 

5.1 Structural analysis of reconvergence in combinational circuits 

This section presents definitions which are used throughout the chapter to describe 

the topology of the circuit under test in order to formalize reduction list computation. 

Necessary assignment identification represents an ùpphcdtion of the stem reg/on concept 

(MaaRaj90] to a general problem mvolving signal propagation along potentia"y reconvergent 

paths. 



5.1 Structural analysis of reconvergence ln comblnatlonal circuits 

Definitions 5.1 through 5.3 are taken from [MaaRaj90). 

Definition 5.1: If there are two or more disjoint paths between stem A and gate B. then 

A is a reconvergent (anout stem. and B is a primar] reconvergence gate of stem A. 

• If there are no reconvergent fanout stems on t;'e paths from reconvergent fanout stem 

A and its primary reconvergence gates. then A is a narrow reconvergent (anCJut stem. 

Otherwise. A is a wide reconvergent (anout stem . 

• Let C be a narrow reconvergent fanout stem. 1) If C is located on a path between 

reconvergent fanout stem A and a primary reconvergence gate of A. th en ail the 

primary reconvergence gates of stem C that are not primary reconvergence gates of 

stem A are secondary reconvergence gates of stem A. 2) If stem D is located on 

a path between reconvergent fanout stem A and a primary reconvergence gate of A. 

then ail the primary and secondary reconvergence gates of D that are not primary 

reconvergen~e gates of stem A are sccondary reconvergence gates of stem A. 

Primary and s,' ...... ndary reconvergence gates of a stem are referred to collectively as recon­

vergence gate, ~f that stem. 

Definition 5.2: The stem region of reconvergent fanout stem A is composed of ail the cirruit 

nodes (stems and gates) that are both reached by stem A and reach a reconvergence ,ate 

of stem A. and ail the output lines of these nodes. 

Definition 5.3: Let x be a line in the stem legion of A. x is an exit line of stem A if x 

belongs to the stem region of A (x is an output line of a no de in the stem region of A). 

and x in an input to anode which is not in the stem region of A. 

The algorithm given in [MaaRaj90] can be u ~d to identify the reconvergence gates. 

stem region. and exit lines for ail reconvergent fanout stems in the circuit under test 
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5.2 Candidate assignment identification 

5.2 Candidate assigrlment identification 

Definition 5.4: An assignrnent to a network node which may reduce the value of sorne jus­

tification point is caUf d a cérndidate assignment if the corres~;onding necessary assignment 

cannot be identified by backward implication. The node is ca lied a candidate node. 

The time required to <:ompute the reduction lists is proportional to their length. Since 

reduction list calculation is more costly than convention al backward implication. an efficient 

test generator should not use reduction lists to identify necessary assignrnents which can 

be found by other means. This section discusses the impact of reconvergent fanout on 

necessary assignment identification and presents properties related to the structure of the 

circuit under test which can be used to restrict the number of candidate assignments which 

are analysed using the reduction lists. Assignments which do not match the criteria of any 

of the following properties êlre not candidate assignments and need not be considered. 

Definition 5.5: For gate G performing function f : X x Y -+ Z. with inputs A. B nonempty 

subsets of X and Y. respectively. A ç; X. B ç y, x E A is a control/ing input value of 

G if IIBII > 1 and fl~~ B (f(x, R)) = B. Similarly. y E B is a controlling input value 

of G if IIAII > 1 and fiA~y (f(A, y)) = A. C ç Z is a controlling output value of G if 

IIfIA~B(C)1I > 1 and "fIA~8(C)11 > 1. 

ln other words. a controlling value at the input to a gate forces the gate output to 

value v. regardless of the value(s) at the othe' input(s) of the gate. A controlling output 

value of agate is one which can be produced Ly two or more combinations of values from 

its inputs. Note that definition 5.5 is not static. but takes into aç::vünt the current input 

and output values of the gate. 

Lemma 5.1: If no additional necessary assignments can be Identifled by backward impli­

cation. the required value of each JustIfIcation pOlllt IS a controlling output value of the 

corresponding gate. 
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5.2 Candidate ISsIgnment identification 

Proo': If there is only a single input combination which could produce the required output 

value. then backward implication can be used to replace the justification point with other 

requirements closer to primary inputs. Similarly. requirements at the output of any single-

input gate can be replaced by requirements at the input of the gate. • 
If an assignment to a node in the network causes a reductioil at a justification point­

i.e. there is a necessary assignment to the node-then that assignment can be identified 

by conventional backward implication if there is only a single path from the no de to the 

justification point. However. if there are two or more disjoint paths from some no de to the 

justification point, the effect of an assignment to the node may propagate along multiple 

paths and cause a reduction at the justification point. Conventional backward implication 

does not take reconvergent fanout into account and th us could not identify the necessary 

assignment. 

As discussed in the previous chapter. additional necessary assignments may be iden­

tified in the restricted space after the first set of necessary assignments is applied to the 

circuit under test. Thus. backward implication and reduction analysis are performed itera­

tively until no more necessary assignments can be found. To further reduce computation. 

reduction analysis is restricted to those assignments which would not be found after sev­

eral iterations of processing. That is, if an assignment to node A is necessary only if an 

assignment to node B is also necessary. th en the processing of A can be put off until the 

status of B is determined. 

A<-,,~ __ .. - ~ .......... 
- --._~z 

./ 

.. ~-~-: - -........ 

Figure 5.1 Candidate asslgnment idelltiflcatioll 
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5.2 Candidate assignment identification 

EJfample 5.1: Fig. 5.1 depicts a subcircuit containing one justification point. Z. and four 

stems. A. B. C. and D. three of which are reconvergent. There is a single path from 

stem D to Z. so any necessary assignment to D can be found by backward implication 

from Z. On the other hand. stem C reconverges at Z. The effect of an assignment 

to C may propagate along disjoint paths to Z causing a reduction which could not be 

identified by backward implication. Although stem A is reconvergent. ail paths from A to 

Z pass through C. If an assignment to A is necessary. then an assignment to C is also 

necessary-there is no reason to analyse A until necessary assignments to C (if any) have 

been made. Similarly. ail paths from B to Z pass through D. so assignments to B need 

not be analysed as their effect is registered at D. Thus. stem C is the only candidate stem 

in Fig. 5.1. 

Property 5.1 formalizes these conditions: 

Property 5.1: Assignments to stems which reconverge at any justification point are candi­

date assignments. 

Proof: Assume that backward implication cannot be used ta identify any additional nec­

essary assignments from justification point J and that an assignment to no de N reduces 

the required value of J. From lemma 5.1. the required value at J is a controlling output 

value of J. The reductlon assignment to N controls J in the sense that it reduces the 

r .quired value at J regardless of other assignments in the network. There are two cases 

to consider: 

1. A single path from N to J. The êssignment to N must cause controlling value to 

appear at the input to J which is reached from N -otherwise the required value at J 

would not be reduced. This implies that the required val'Je of J can be redueed by an 

assignment to that input. and thus that backward implication can be used to identify 

a necessary assignment to that input-violating the original assumption. This case 

cannot oeeur. 

2. Multiple paths from 1\' to./ An asslgnment to S may change the value of several 

inputs to J. This case cannot be captured by conventional backward implication. 
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5.2 Candidate asslgnment identification 

which does not consider reconvergence. Thus. assignments to N must be explicitly 

analysed . 

3. Multiple paths from N to J which are not disjoint. Since the paths are not disjoint. 

there is a common section. The reduction assignment to N must control (in the sense 

of case 1. ab ove) the gates along the common part of the path. and in particular. the 

common gate closest to J. Cali this gate G. If there is a reduction assignment to 

N then there is also a reduction assignment to G-the value assumed by G when 

the reduction assignment to N is made. However. since G is simply another no de 

in the circuit under test. candidate assignments to Gare also considered. From G. 

there may be either a single path (case 1) or multiple disjoint paths (case 2) to .1: 

in either event. there is no reason to explicitly analyse candidate assignments to N 

until necessary assignments to G (if any) are made. After necessary assignments to 

G are made. then necessary assignments to N will be identified in the next iteration 

of either backward implication or reduction analysis. depending on whether or not 

there are multiple disjoint paths from N to G. In either case. first-order necessary 

assignments to N will not be overlooked. • 
ln a preprocessing step. lists of stems which reconverge at each node in the circuit 

are recorded. During test generation. the union of the lists of reconvergence stems for each 

AND-node of the justification list are marked as candidate stems. 

The set of values which must be justified in order to test the fault can be represented 

by an AND-OR graph. as discussed in chapter 4. OR-nodes arise because the fault may 

be detectable on two or more primary outputs. It is not necessary to justify any individu al 

OR-node-the only requirement is that at least one of them be satisfied. From lemma 4 1. 

an assignment must reduce the desired values of ail OR-nodes (i.e. both D and D at ail the 

reached primary outputs) in order to be a reduction assignment. Thus. only asslgnments 

to stems which reach ail of the OR-nodes of the justification hst are potential redu( tlon 

assignments. 

Property 5.2: Candidate assignments wlth respect to the OR-nodes of the Justlfl<.atlon hst 

are to those stems which reach them ail. 
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5.2 Candidate assignment identification 

Proof: An assignment to a stem cannot affect the value of an OR-node which it does not 

reach. Thus. if a stem does not reach ail of the OR-nodes. it cannot affect ail of them. 

Therefore. assignments to that stem could not be necessary and need not be analysed . 

• 
As the only OR-nodes which arise during test pattern generation are primary outputs 

to which the fault effect may propagate. the list of stems which logically drive each of the 

primary outputs is recorded in a preprocessing step. During test pattern generation. the 

list of reached ·tems for each OR-node of the justification list are intersected to find the 

set of stems which reach themall: these stems are candidates. 

Certain stems are candidates despite that there are only single paths from them to 

justification points. Logic constraints propagate unconditionally in the circuit-both from 

outputs toward inputs and from inputs toward outputs. As was demonstrated in example 

4.14. an assignment to anode may cause a reduction in an area of the circuit which is 

neither driven by nor drives the node. Assignments which reach one justification point may 

correlate the values of other nodes and thus may cause a reduction. These cases arise only 

when two or more justification points lie in the stem region of the node. 

B (0,11 

A 10,11 

C {0,11 

Figure 5.2 Transfer of requirements from one justification point to another 

EJCample 5.2: There are three justification points in the circuit shown in Fig. 5.2: X{o}. 

Y{t}. and Z{O}, A{1} requires B{O} (in order to justify X{o}): B{O} implies Cft} (in 

order to satisfy Y{1}): Cft} requires A{O} (in order to satisfy Z{O}). Since AU} leads 
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5.2 Candidate assignmenl identification 

to a conflitt. A{O} is a necessary assignment.10 A{O} cannot be identified by backward 

implication. thus assignments to stem A must be analysed using the reduction lists. 

Figure 5.3 Premise. No stems exist whose stem regions include Jl and al least 
one other justification point 

Property 5.3: Stems whose stem region includes two or more justification points are can­

didates. 

Proof: (By contradiction) Assume that there exists stem S which has no reconvergence 

gates among the justification points and whose stem region includes only one justification 

point. and that an assignment to S is necessary. Without loss of generality. assume that 

the justification point inc\uded in the stem region of S is J1. as shown in Fig. 5.3. The 

primary outputs reached by J1 are disjoint with those reached by the other justification 

points-otherwise a reconvergent stem driving Ji and at least one other justification pOlOt 

must exist. Since the set of outputs reached by J1 is disjoint with those reached by the 

other justification points. an assignment to S which makes it impossible to observe the 

fault effect on the outputs reached by J1 cannot impede propagation to any of the other 

outputs-S does not reaeh them. The assignment to S is not necessary. contradlcting the 

original hypothesis. 1 

10 A {O} is necessary ln the sense that there IS no test pattern ln the spat.c dchncd I>y A (l} Of tullrse, 

there may be no test pattern in the space deftned by A {O} either, in which case the currcnt sct of 

justification points cannot be satlsfled. and a backtrack must be performed 
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5.2 Candidate assignment identification 

Assignments to certain non-stem nodes are also candidates. Assignments to the 

outputs of multi-input gates may correlate the value of several stems. the effect of which 

may propagate further in the network than a single assignment to any of the stems. In this 

case. the correlated stem assignments are subsumed by the non-stem assignment(s) and 

no longer need be considered. 

Figure 5.4 Propagation of gate assignments 

Example 5.3: ln Fig. 5.4. there are no stem assignments which propagate to the output of 

gate F. However. E{O} CaUtldS both stems A and B to become {O}. the combine~ effect 

of which "bounces back" to F from stem B through line bl and gate D. reducing F{l}' 

The necessary assignment to E may have an impact on justification points elsewhere in 

the circuit. as its effect propagates forward from a2. 

Non-stem candidate assignments can be found using property 5.4 in linear time in a 

levelized forward trace from candidate stems. 

Property 5.4: The set of candidate assignments to the output of gate G performing function 

!. with inputs It, ... , In carrying values vt, ... , vn with candidate assignments v1', ... , vn'. 

respectively (v1' ç vt, ... , vn' ç vn). is Z = {z E !(v1, ... , vn) l "!I~[~ xvn (z)11 = 

1 and !I::~ Xvn (z) ç vj' for sorne j. 1 :5 i ~ n}. The subsumed input candidate as­

signments. ul' for input Ii (vl' ç vi'). are those input assignments uniquely implied by 

the candidate output assignments: vj" = {x E v}' 1 fi-lI} (z) = x for sorne z E Z}. 
tJ X xun 
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5.2 Candidate assignment identification 

01 

o 

c) Minimized circuit 

8) Non-minimal circuit 

Line List Contents List Contents 

A -A {E{1}} 
t-A 

1 {A{O} } RO Rl 
-+A 

{A{O}} RI 

al -tal 
{E{l}} 'R a1 {A{O}} RO 1 

-fal 
{A{O}} R1 

a2 -a2 
{E{l}} 'R a2 {A{O} } RO 1 

-+a2 
{A{O} } RI 

B -B Ra {F{l}} 
t-B 
RI {E{l}} 

hl ..... bl 
Ra {F{l}} 

+-bl 
RI {E{l}} 

b2 -b2 
Ra {F{l} } 

-+b2 
RI {E{1}} 

e lie 
0 {F{l} } 

D -D Ro {E{l}} 
..... D 
Rl {F{ 1}} 

E -+E 
Ra {E{l}} 

<-E 
Ra {E{1}} 

F -F Ra {F{ 1}} 
+-F 
Ra {F{1} } 

G 
-+G 
Ra {E{1},F{I}} -G Ro {A{O}} 

z -z {E{l}} 
1 

R 1 

b) Reduction lists for a (empty reduction lists not shown} 

Figure 5.5 Test generation for zsO 

Proof: From the definition of the image and inverse image of set functions. • 
Example 5.4: The candidate assignments to test zSQ in the CircUit from Fig 5 5a found uSlOg 

property 5.4 are A{O}' E{1}. and F{lf-E{l} subsumes AlI} and }J{O}' and FOI <'lIh~um(>c; 

B{l}' E{l} reduces Z{1}. a Justification pomt-thus "IO} IS li ')p( P"'''',HY .l''''lg,rHlII·n1 

If non-stem candidate assignments are not analysed. then necessary asslgnment Ill!} 

would be overlooked. Note that the circuit 10 FIg 5.5a performs the sa me functlOn as the 
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5.3 Region of propagation 

minimized circuit in Fig. 5.Sc. in which ail necessary assignments can be directly identified 

by backward implication. 

5.3 Region of propagation 

The second major issue in the efficient identification of necessary assignments is the 

area in which reduction analysis must be performed. It is important ta restrict the region 

of the circuit in which reduction lists are computed to avoid r~lculating lists which will not 

be used to identify necessary assignments. 

Definition 5.6: The shadow of the justification points is the region of the network reached 

by tracing backward from the justification points. 

Definition 5.7: The cone of the candidate stems is the region reached by tracing forward 

from the candidate stems (found using properties 5.1 through 5.3). 

The justification points and candidate stems mark boundaries beyond which reduction 

lists need not be computed. However. due to the unconditional nature of reduction list 

propagation. candidate assignments may appear on reduction lists. anywhere in the region 

of propagation. In particular. stem assignments may propagate outside of their stem region. 

fZ2J c:on. of ·lnt ..... tJnct .tem. 

lSS'9 ehodow of ).Ietlflcotlon point. 
~ area of Interest 

Figure 5.6 Property 5 5 the region of reduction list propagation 
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5 3 Region of propagation 

Property 5.5: Reduction lists need not be computed outside the region where the shadow 

of the justification points overlaps the cone of the candidate stems. 

Proof: By definition. there are no justification points outside the shadow at which as­

signments which propagate outside the shadow could cause a reduction or From which 

5uch assignments could "bounce back" to reenter the shadow. By definition. there are no 

candidate assignments outside their cone. Assignments need not be prClpagated backward 

outside of the cone as there are no stems From which such assignments could "bollnce 

forward" to re-enter the cone (any such stem must reconverge at a justification point and 

thus Nould be a candidate). • 

During the course of test generation. justification points are .ldded as assignments 

are made. deleted as they are satisfied. and changed as backtracks occur. The candidate 

assignments and region in which they must be analysed is related to the set of justification 

points. and change as the justification points change. Each time the set o! justification 

points is modified. the candidate assignments and region of propagation must be updated. 

The overhead to update the set of candidate assignments is related to the topology of the 

circuit under test. The region of propagation can be updated in time linear in the size of 

the circuit. 
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Chapter 6 
A method to identify nonconflicting assignments 

based on Boolean function monotonicity 

Nonconflicting assignments have the desirab!e property of vastly and irrevocably re­

ducing the space which must be searched for a test vector while guaranteeing that they will 

never need to be reversed. If a test pattern exists in the search space before the noncon­

tlkting assignment is made. then at least one test pattern exists in the search space after 

the assignment is made (Fig. 6.1a). Conversely. if there is no test pattern in the search 

space after the assignment is made. then there was no test pattern in the original space 

(Fig. 6.lb). 

lC lC @lC)( 

lC )( o~< o 
.) Test pattern exists b) No test pattern exists 

Figure 6.1 Pruning assignments 

ln this chapter. tendency lists are defined for general Boolean algebras in terms 

of images and inverse images of set functions. providing a systematic means to analyse 

funetion monotonicity and identify nonconflieting assignments during deterministic test 

generation. 



6.1 Generalized function monotonicity and tendency lists 

6.1 Generalized function monotonicity and tendency lists 

A Boolean function is sa id to be unate in variable x if x appears in only trLe l'Positive 

unate") or only r.olTlf)lemented ("negative unate") form in the sum-of-products or product­

of-sums form of the function [BrHaMcSa84}. Function monotonicity or unateness can be 

exploited during test generation. 

E)(ample 6.1: ln order to sensitize the So fault at the output of a 2-input MUX performing 

function f = AB + BD. it is necessary to justify a "t" at the circuit output. Justification 

is equivalent ta satisfying the Boolean equation AB,- Bt = l-which can be satisfled by 

making assignments in such a way ttl4it one or the other minterm evaluates to 1. To this 

end. assignments A = 1 and C :; 0 lead in the direction of the goal and cannot confllct 

with it. On the other hand. either assignment to input B. while leadmg one term toward 

the goal. leads the I)ther term away from the goal. sa there is no non<.:onflicting assignment 

to B. 

Function montonicity in networks which do not contain faults can be described ln 

terms of the two-eiement Boolean algebra B~ = {n, 1} and is efluivalent to unateness of the 

Boolean function implemented by the network. There is a direct correspondence between 

the variables in the sum-of-products (product-of-sums) form of the Boolean equations 

describing network node functions and the values assumed by these nodes when test vectors 

are applied. 

ln circuits which may contain faults. however, monotomcity cannot be deftned ln 

terms of B~ as it is not possible to represent the possible presence of faults. Onl solution 

is to use B~ and record function monotonicity separately for the fault-free and faulty 

circuit. This solution is poor. however. as it does not exololt the close relatlonshlp between 

the fault-free and faulty circuits in the reglon reached oy the lault eHeet On the other 

hand. B~ = {O,D,D.l} is sufflclently precise to descrlbe urcuit value", Hl tlw prp<,pn<e 

of potentlal faults and recognlzes the relation h"h'J"Pfl th,· LIlJI! Ire(: dllfl LllJl! Y (If( Illt c,. 

offering a better solutIon ln the reglon of the c.lrcult not reaehed by th(:: I.JUIt f'flf'{.l. 

monotonicity defined in terms of B~ reduces to that defmed ln terms of 1J~ 
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6 1 Generalized function monotonicity and tendency lists 

For general Booleên algebras. theorem 6.1 describes the construction of tendency 

lists at the output of alogie block performing funetion f, given the tendency lists at its 

inputs. Assign:nents whlc.h appear on tendeney list Ti' at node C lead C toward value "­

(an element ln the base set of the power set whieh IS Isomorphic to the Boolean algebra 

in question)-after those asslgnments are made. z will be in the set of possible values at 

C' if it was possible to produce z at C before the assignments were made. In other words. 

tendency IIsts glve. for each element of the base set of the Boolean algebra (power set). 

those assignments whlch lead in the direction of that element and do not eonflict with the 

goal of producing iL 

Theorem 61. Let J X;< Y - Z be a function. X. Y. and Z Boolean algebras. and A. 

/J. and C' be noneml ty subsets of X. Y. and Z. respectively. A ç X. B ç Y. C ç Z. 

Let T}. 7~r for each x E A. Y E B. be the set of assignments which tend toward values 

x. y at input coordmates X. Y. respectlvely. The set of assignments which tend toward 

value z m set (,' at coordinate Z. denoted by Tf. is the union of ail assignments which 

tend toward T at coordinate X. x E A. if J(x, y) = z for sorne y E Band IIJ(A, y)" > 1 

combmed with ail assignments which tend toward y at coordinate Y. y E B. if J(x, y) = z 

for sorne x t- A and II/(x, B) Il > 1. In set builder notation. for each z E C: 

A' = {a E A 1 J(a, b) = z for some b E Band f lA: b (z) #- A} 

B' = {b E B 1 J(a, b) = z for some a E A and fl~~B(z) -:1= B} 

Tf = U T;'< U U T{. 
xEA' r./EB' 

Proof. (By construction) ln order for an assignment appearing on a tendency list at input 

coordinate X ta cause Z ta tend toward z. that assignment must cause input X to tend 

toward a value J' whlch can be combmed wlth a value b at Input Y to produce z at Z. 

However. If the image of li at mput X and b at Input }' on output Z is uniquely :::. then b 

at Input)' 15 the only reqlllrf'lllent ln c;<1tlsfv ': : 1 f' l ,11 \" IS not reqlllrf'd A Slnlilar 

argument ,lppllt.>s to dsslgnllH'lltc., "1'1"'dllllg <1t 11I1,"t 1 • 
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6.2 Tendency lists and nonconflictlng asslgnments 

Theorem 6.1 is used to derive tendency equations for a 2-input AND gate with inputs 

A and B and output C for difTerent combinations of input values in the following eltample. 

Example 6.2: For an A{~D gate. with inputs A 

output C = {a, 1, D, D}: 

{O,l,D,D}. B 

Tf = Tt u T~ U TA u Tt u T.g U TE 
TC = TI

A U TA U T1
B U TB 

D D D 

Tg = Tt U TA U Tf U Tg 

Tf = TtuTf· 

{O.l,D,D} and 

Similarly. for an AND gate with inputs A = {O,D,D,l}. B:= {O,D} and \Jutput C = 

{O,D}: 

Tf = TtuTA 
TC = TA U Tl A U TB. 

D D D 

6.2 Tendency lists and nonconflicting assignments 

Tendency lists can be used to identify nonconflicting assignments during automatic 

test pattern generation. The key observation is that assignments to primary mputs can al­

ways be justified. whereas assignments to internai nodes may not themselves be satlsfiable 

Therefore. primary input assignments only are analysed using tendency !lsts. 

The tendency lists at pumary input nodes are initialized with the correspond,", Input 

assignments. 1 i{o} is added to list Tt} and 1 j {i} is added to list Tf} at each unasslgned 

primary input 1 J. T endency lists in the rest of the cIrcuit can be computed ln Imear tlme 

using theorem 6.1 in a levelized forward pass For each possible value of every node Hl the 

network. the correspondrng tendency !lst contams those Input asslgnments whlch lead ln 

the direction of that value at the node Unique mput asslgnments whlch aPP("lH on that 

tendency list are nonconflicting aS51gnments wlth rp"p~r t 10 that nm\!· and v,slw' 

The tendency lists at the JustIfIcation pomts are used to Identlfy nonLOnfllctll1g a., 

signments. A vote is collected by fmdmg the Unie', .;;f the tendency hsts correspond mg 
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6.2 Tendency lists and nonconflitting assignments 

to the desired value of ail justification points. Unique assignments appearing in this set 

are nonconflicting with respect to ail justification points and can be applied to the network 

under test. l1 

Lemma 6.1: Given the set of justification points {A~l"'" A~n} ail of which must be 

satisfied (ANO-nodes in the AND-OR graph) and {O!l ' ... , O~m} at least one of which 

must be satisfied (OR-nodes in the AND-OR graph). unique assignments appearing in 

are nonconflicting assignments. 

Proo(: From theorem 6.1. such an assignment could not lead any justification point away 

from its desired value(s). • 

The following examples il/ustrate nonconflicting assignment identification during test 

pattern generation. 

EJCample 6.3: CIl} is the only necessary assignment to generate a test for fault Osa in 

Fig. 6.2. Voting at justification points J{D,D} and K{D}' the set of desirable assignments 

is {A{O},B{1},D{1}} U {A{l},B{O}} U {B{l},D{1},E{l}}' resulting in a unanimous vote 

on inputs D and E. yielding nonconflicting assignments D{l} and E{l}' a test vector for 

the fault. Note that CIl} is a nonconflicting asslgnment in addition to being necessary. 

fJCample 6.4: Nonconflicting assignments may be identified when the target fault is untest­

able. In that instance. they restrict the remaining search space. enabling the test generator 

11 Ali nonconfhcting assignments can be made slmultaneollsly as the lIoateness propertles of the IIlpllts 
are independent of each other However assignlll~ them alll1l:1v resliit III an over-slH'clfled test vector­

a vector which contains fewel dol' t cale IIlput J"'~IlI11Cllt' t!JOlIi I11lghl othelWl5f' he the (,15C That 
15. if the nonconflictlllg asslglll11ellts ille made sell,ll1v I<lthel thall Sllllllltëllieollsly the test generator 

may recogl1lze that the fault 15 tested wlth fewer Inputs assigned To nllnlOllZe the llul11ber of assigned 

primary inputs while avoidlng unnecessary branching and backtrackmg. it may be deslrable to make 
nonconfllcting input assignments senally ooly if no necessary asslgnments can be identifled 
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6.2 Tendency lists and nonconfllctlng asslgnments 

A 10,1) f ~.1) 
J fO.1.0.D} 

..;;.....;.~-t--------f--...., H (0.1.01 

a) Example circuit 

Line List Contents Une Lilt Contents 

A TÂ {A{O} } H TH {B{l}' D{O}} 0 0 
TÂ {A{l}} TH {B{1}' D{1}} 1 D 

B TB {B{o}l 
TH {B{O} } 

0 1 

TB {B{l} } 1 r.1 
{D{O}' E{1}} 1 0 

C TC {CIO} } 
TI {D{1}' E{1}} D 0 TI TC {Ct!}} {E{O} } 

1 1 

D TD {D{O}} J r.J 
{A{O}' B{O}} 0 0 r.J 

{A IO}' B{1}' D{l}} TD {D{1}} 1 T9 
E TE {E{O}} D {A{11,B{O}} 

0 TJ {B{1},D{O}} TE {E{l}} 1 
1 

TK 
r.F K {B{O},E{O}l F {A{l} } 0 

T9 r.K 
{B{1}' D{l}' E{1}} 

{A{O}} TR 1 
{B{l}' DtO}' E{1}} 

G r.G {D{1}l 
1 

TB {D{O}} 1 

b) Tendency lists for 8 

Figure 6.2 Test generation for C~O 

lo identify a conflict more quickly (i.e. with fewer branches and backtracks). The CIrCUIt 

in Fig. 6.3 iIIustrates the identification of nonconflicttng asslgnments dunng redundancy 

identification for eOs1. Voting at Justification pomts E{O} (fault sensltlzation) and l'ml 

(fault propagation) identifies nonconflictmg asslgnments A {O}. lJ {1}' C 11)' /JI O}' l'J'lO}' 

and G {1}' reducing the remamtng search space to f; of Its prevlous Sile 

The tendency lists correspond to the values m the network. reflectmg the asslgnments 

which have been made and the values whlch must be justlfled. Asslgl1ments made durtng 
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Une 

A 

B 

C 

D 

E 

F 

G 

H 

1 

List 
T.Â 

0 
TA 

1 

TB 
0 

TB 
1 

TC 
0 

TC 
1 

TP 0 
TD 

1 
T.E 

0 
TE 

1 

T.F 
0 

TF 
1 

T.G 
0 

TG 
1 

T. H 
0 

TH 
1 

Tl 
0 

Tl 
1 

A (0.1) 

8 10,11 

C (0.11 

o (O.tl 

E 10.11 

F (o.!1 
G (o.tl 

Contents 

{A{o}l 

{A{1}} 

{B{O}} 

{B{l}} 

{C{O}} 

{C{t}} 

{D{O}> 

{D{1}} 

{E{O}} 

{E{1}} 

{F{O}} 

{F{t}} 

{G tOI} 

{G{l}} 

{A{l}} 

{A{O}} 

{B{1}} 

{B{O}} 

6.2 Tendency lists and nonconflicting assignments 

lU.1) 

(0,11 

(0,1) 

a) Test generation for eOs1 

Line List Contents 
J Tl {C{l}> 0 

TJ {C{O}> 1 

K T.K {E{l}} 0 
TK {E{O}} 1 

L TI {A{O}' B{l}' F{I}} D 
TI {A{I}' B{O}' F{O}} 1 

M T.M {B{O}' E{t}. D{t}} 0 
TM {B{l}' E{O}' D{O}} 1 

N T.N {D{t,. E{l}'C{O}' F{t}} 0 
TN {D{O}' E{O}.e{I}' F{C}} 1 

0 T.0 
{E {CI},F{1}} 0 

1'0 {E{I},F{O}} 1 
p TP {A{O}' B{t},e{I}' D{O}' E{O}' F{O.l}' G{l}} 

T.P {A{l}' B{O},C{l}' D{O}' E{O,1}' F{O}' G {1}} 0 
TP {C{O}. D{1}' E{o.t}. F{1}.G{O}} 1 

Q T.Q 
{B{l}' CIl}' D{O}' E{O}' F{O,1} , G {l}} 0 

TQ 
{B{O}' Clot' D{1}' E{1}' F{O,l}> G{O}} 1 

R TR {D{l}' E{1}' F{O,1} , (,' {1}} 0 
TR 

{[lIO}·E{O},F{D,1}'(,'{OI} 1 

b) Tendency lists for a) 

Figure 6.3 Nonconflkting assignment identification in redundancy i~entiflcation 
17 
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601 Pesslmlsm ln the tendency Inllysls 

test generation. whether necessary. nonconflicting. or arbitrary. constrain the operation 

of the circuit under test and may lead to the identification of additional nonconflicting 

assignments which could not be identified previously. The tendency lists are updated to 

reflect the possible values in the network each time the values change. 

As the maximum tendency list length for each network node can be predetermined 

(the number of primary inputs which reach it). efficient tendency list computation can be 

implemented easily. Tendency lists need be calculated only in the shadow of the justification 

points (see section 5.3). Incrementai updating of the tendency lists is simple as changes 

originate at and propagate forward from nodes whose value was changed. 

Nonconflicting assignment analysis can take the place of heuristic techniques used by 

other test generation algorithms. For example. required values of "head lines" (FujShi83) 

can be justified by nonconflicting assignments to primary inputs. so there is no need to put 

off their justification. Other techniques such as [SilSpi88) which rank branch assignments 

by theïr likelihood to cause conflicts can be replaced. since those assignments are often 

nonconflicting. 

6.3 Pessimism in the tendency analysis 

Tendency list calculation performed using theorem 6.1 is pessimistic in that some 

nonconflicting assignments which can be identified by exact analysis of the Boolean equa­

tions implemented by the network may be overlookedo However. an assignment which could 

lead to a confliet will never ineorreetly be identified as noneonflictingo 

The following examples illustrates a circuit in which the tendency lists correctly iden­

tif Y ail nonconflicting assignments in one gate-Ievel circuit (exarnple 605). but miss sorne 

in a slightly different gate-Ievel irnplementatson of the sarne functlon (example 66) 

Example 6.5: Although no necessary asslgnments are rdentlhed when targetlllg f.lIllt J.,',! 

in Fig. 6.4. voting at justificatIOn pOints E{O} and L{D} determlnes that desrrable Input 
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6.3 Pessimism in the tendency analys!s 

~ 0.1 

a) Example circuit 

Line List Contents Line List Contents 

A r.A {A{O}} B r.B {B{O}} 0 0 
TA {A{t}} TB {B{1}} 1 1 

0 r.C {O{o}l D r.D {D{O}} 0 0 
TP {C{t}} TD {D{1}} 1 1 

E TE {A{l}' D{1}} F TF {B{1}} 0 0 
TE {A{O}' D{D}} TF {B{O} } t 1 

G r.G {Ott}} H TH {A{l}' B{O}} 0 0 
TG {C{O}} TH {A{O}' B{l}} 1 1 

1 TI {B{t}} J TJ {C{1}} 0 0 
TI {B{O}} TJ {c{O}} D D 

K T.K {c{o}. D{1}} L T.L {A{O}' E{l}' C{l}' D{O}} 0 0 
T.K {C{l}' D{O}} TL {A{t}. E{O}' C{o}. D{1}l 1 TE {A{t}. B{O.1}' C{O.l l' D{1I} 1 

b) Tendency lists for 8 

Figure 6.4 Test generation for ES1 

assignments are {A{l},D{l}} U {A{1},B{O},C{O},D{1}}' resulting in nonconfticting as­

signments A = D = {1}. B = C = {D}. a test pattern for the fault. 

Example 6.6: The function of the C1fcuit 1,1 Fig. 6 5a IS nct affected by expandmg the four­

input NOR gate at its output into a cascade of two-input gates (Fig. 6.5b). However. the 
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6.3 Pessimism ln the tendency analysls 

b) Output gate cascade 

a) Schneider's counter-example 

Line List Contents 

H T.H {A{l}' B{O}} 0 
TH {A{Ol,B{I}} 1 

1 T.I {B{I} } 0 
TI {B{O}} D 

J T.J {C{1}} 0 
TJ {C'{O}} D 

K T.K {C{Ol,D{1}} 0 
T.K {CIl}' D{D}} 1 

X r.X {A{l}' B{O,t}} 0 
r.X {A{O}' B{1}} 1 
T X 

{A{l}' B{O}} D 
y r.Y 

{A{I}' B{O,I}' CIl}} 0 
TY 

{A{Ol,B{I}} 1 
TY {A{1}' B{O,t}, CIO}} D 

L r.L 
{A{O}' B{l}' c{1}' D{O}} 0 

r.L 
{A{1}' B{O,I}' CIO}' D{1}} 

Tf {A{I}' B{O,t}, C {O,I l' D{l}} 1 

c) Tendency lists for b 

Figure 6.5 Test generation for ESt 

tendency lists are modified (compare Tj;in Figs 6 4b and 6.5c). resultmg in a pe,>slmlstlc 

vote and a missed nonconflicting assignment to II1put H 
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6.3 Pesslmism in the tendency analysis 

Pessimism in monotonicity analysis through tendency list computation is brought 

about by incomplete treatment of fanout-free regions. The problem is that the tendency 

lists. by treating individual gates. do es not determine the effect of individual assignments­

the effect is that sorne input Iists are added to the output list more than once. A solution. 

not developed further in this thesis. is to extract the fanout-free regions of the circuit and 

perform tendency analysis for the entire region at once. 
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Chapter 7 The QUEST test pattern generation algorithm 

The objective of the QUEST algorithm is to reduce or eliminate backtracking during 

automatic test pattern generation by delaying arbitrary branching as long as possible. At 

every step. necessary and nonconflicting assignments are applied iteratively until eithel a 

conflict is detected and a backtrack initiated12 . no more algorithmic assignments can be 

identified and an arbitrary branch is made. or a test vector i5 generated. The algorithm 

is complete: the process continues until a test pattern is generated or the target fault is 

proven untestable. 

This chapter also discusses the use of preprocessed information during test genera­

tion. There are tradeoffs between the time taken to identify necessary assignments and the 

number which are overlooked. Unldentified necessary assignments may cause unnetessary 

branching and backtrackmg during test generation: however. dynamic reduction list calcu­

lation may be costly. even when the techniques described in chapter 5 are used to reduce 

the amount of processing performed. Thus. from the point of view of (PU tlme. It may 

be desirable to obtain information which can be used to identify sorne necessary asslgn­

ments quickly and can be reused for each target fault. avoiding the dynamic calculatlon of 

reduction lists completely. 

Finally. experimental results obtained when the QUEST algorithm was used to gen­

erate tests for faults in a variety of benchmark Circuits are presented 

12 Necessary and nonconflicting assignments cannot cause a backtrack unless there IS no test pattern in 
the search space deflOed by the most recent arbitrary brdnch 
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7.1 Organlzation of the test pattern generation system 

7.1 Organization of the test pattern generation system 

for each target fault 
inject fault: 
do 

do 
forward propagation: j* section 3.1 * j 
update justification points: /* section 4.1 * / 
if conflict detected 

elle 

endif 

backtrack: 

calculate reduction lists; 1* chapter 4 *' 
calculate tendency lists: 1* chapter 6 * 1 
make necessary assignments: 
make nonconflicting assignments: 

until no algorithmic assignments identified 
if test vector not yet found 

make arbitrary branch (heuristic): 
endif 

until test pattern found or fault proven untestable: 
endfor 

Figure 7.1 The QUEST test pattern generation algorithm 

Test pattern generation begins with the insertion of the target fault. To account for 

the presence of the injected fault. the line (or fanout stem) associated with the fault is 

broken and a pseudo-primary inputjprimary output pair is created. as described in section 

3.1. Forward propagation is performed to determine the sets of possible values in the 

circuit in the presence of the injected fault. and test pattern generation begins with the 

initial set of justification points that the fault must be sensitized and the fault effect must 

be observed on at least one primary output. 

The reduction and tendency lists are computed (updated) to reflect the forward prop­

agated circuit values. and necessary and nonconflicting assignments are identified from the 

reduction and tendency lists at the jU5tification points. Necessary assignments become new 

justification points. slnce thelr values must be Justlfled ln arder for the fault ta be tested. 

Forwaro propagation is performed to update Circuit values ta reflect the asslgnments which 

83 



7.2 Preprocessed information 

were made. and the cycle is repeated until a conflict is detected or no more necessary or 

nonconflicting assignments are found. 

Necessary and nonconflicting assignments may be identified in the restricted space 

after an arbitrary assignment which were not necessary or nonconflicting before the branch 

On a backtrack. ail assignments which were made after the most recent arbitrary branch 

must be retracted along with the branch assignment itself. A convenient method ta do 

this is to keep track of the set of justification points (including assigned primary mputs) 

which existed prior to the arbitrary branch and roll back ta it. A change ta the justification 

points initiated by a branch or backtrack can be treated in the sa me manner as any other 

justification point modification-node values and reduction and tendency lists must be 

updated to reflect the new set of justification points. 

7.2 Preprocessed information 

Two types of reusable information can be recorded during preprocessing and used 

to reduce the amount of computation performed by the test generator when targeting a 

particular fault. Topological information can be used to limlt the work done to caleulate 

reduction lists while guarant~eing that no first-order necessary assignments are overlooked 

(chapter 5). However. the dynamic computation of reduction lists may be cost/y. even if 

these techniques are used. Generic reduction information can be used to identlfy a subset 

of the necessary assignments. avoiding dynamic reduction hst calculation. Two classes 

of generic reduction information. generic reduction lists and propagate assignments. -'!re 

presented in this section. Dominator identification. although not generic. IS used to trigger 

the application of propagate assignments and is also discussed. 

7.2.1 Generic reduction lists 

Generic reduction lists are analogous to "statl<. leiunlng" defln('d 10 IS( Il TnSM88j 

The generic reductlon lists are computed wlth ail the pnmary r"Dub d'i~rgll(·d [0 ~ 0.1 f 

and no injected faults. Due to the conditions under which the IIsts are cOlllputed. the 
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1.2 Preprocessed Information 

assignments they contain are reduction assignments only for justification points and nodt's 

not reachable from the point of the fault. 

For each stem in the circuit. assignments to both 0 and 1 are added to the generic 

reduction lists. along with candidate gate assignments found using property 5.4. Subsumed 

stem assignments are not dropped. however. as the gate may be inside the D-region 

while the subsumed stem is outsid~ for sorne target fault-there would be no reduction 

assignment to the gate. despite that the stem assignment is still valid. If subsumed stem 

assignments are dropped. necessary assignments may be overlooked. 

Similar to the discussion presented in chapter 5. memory requirements can be reduced 

l>y pruning the generic reduction lists to remove implications which can be captured by 

backward implication. Property 7.1 formalizes the conditions under which the implication 

of an assignment to a network node (either a fanout stem or gate) must be stored on the 

generic reduction list of another node. 

Property 7.1: Let f: X x Y ~ Z be a function. and A. B. and C be nonempty subsets 

of X. Y. and Z. respectively. A ç X. B ç Y. C C Z. For each zEe. generic reduction 

list Gf contains ail assignments Sv such that Sv E Rf and either IIfl:4:B(z)1! # 1 or 

IIfiA~B(z)1I # 1. 

Proo': From theorem 4.1 and the definition of Înverse images. only these implications 

cannot be identified by backward implication. • 
ln order to avoid storing implications which can be found by sever al iterations of 

backward implication and generic rE:ductions (see property 5.1). stem assignments need be 

retained at a network node only if there are multiple disjoint paths trom the stem to the 

node-in other words, the no de must be a reconvergence gate of the stem This implies 

that. in computing generic reduction lists. assignments to a stem nee~ not be propagated 

out~ide its stem reg!on. Similarly. candidate gate assignments need not be propagated 

outside the area defined by the union of the stem reglons of stems for whlch the gate 

subsumes at least one assignment. 
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1.2 Preprocessed information 

7.2.2 Circuit dominators 

Dominators-nodes through which the fault effect must propagate in order to reach 

any primary output-are necessary assignments to {D, D}. and can be identified either by 

backward implication or reduction analysis. T 0 avoid overlooking necessary assignments 

if the reduction lists are not updated dynamically. dDminators not found by backward 

implication can be identified in linear time using th~ algorithm from (CoxRaj881. outlined 

below. 

Viewing the circuit as a graph. with vertices and edges corresponding to gates and 

lines respectively. dominators can be identified by considering only the subgraph whose 

vertices: al reach a justific~t:on point whose required value includes D and/or D. and h) 

whose set of possible v~!ues includes D and/or D. Vertices whose removal would result in 

an unconnected subgraph correspond to dominators. 

One method to find such gates is to trace backward in reverse ~evelized order from 

justification points whose required value includes D and/or D. The inputs "0 a gate are 

placed on a list if D or D at that input can be combined with the other input values to 

produce D or D at the gate output. Gates are removed from the list when their inputs 

are checked. If the list contains a single gate at any point. then that gate is a dominator. 

Individual justification points are scheduled when their level is processed (OR-nodes are 

treated as a single justification point). 

7.2.3 Propagate assignments 

The basis of the identification of propagate assignments is that. i:l order for the fautt 

effect to propagate from a reconvergent stem to a primary output. it must first reach at 

least one of the stem' s exit lines. 

Example 1.1: If stem 5 from FIg. 7 2 is a dOl11l1lator. the fautt effect must propagate 

through e1. e2 or e3 (its exit lines) in order to be observed at any pnmary output. If 

assignments made earlier in the test generation process makE' it impossible to propagate 
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7.2 Preprocessed Information 

Figure 7.2 Propagate assignment identification 

the fault effect through e2 (i.e. neither D nor D is in the set of possible values at e2). then 

it must propagate through el and/or e3-an assignment which eliminates D and D From 

both el and e3 is a reduction assignment. 

Definition 7.1: An exit line of a dominant stem is active jf it Îs within the shadow of the 

justification points. and its set of possible values includes D and/or D. 

A {0,1} 

8 {0,1} F [D,D,'} 
1 (0,' .0,01 (Q,1,0,0) K C (O,H G {D,O,l} 

D {O,o} J (O,1,O,OI 
H (D,O,1} E {0,1} 

a) 
A (0,1} 

8 (0,1) F (D,D,t) 
1 10,1,0,0} (0.1.0.01 K C (O,tI G (D,D,l) 

o 10,0) J (0,1,0,01 
H (D,D,l) E (O,l} 

b) 

Figure 7.3 Propagate assignments example 

Example 7.2: ln order to propagate the fault effect from D. an identified dOmlniltor, to any 

primary output in the subcircUit shown in Fig. 7.3a. It must propagate through .12 or I{. 

the exit lines of D. A necessary condition to observe the fault effect on either eXit li ne is 
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7.2 Preprocessed information 

A = {1}. If NAND gate J from Fig. 7.38 is replaced by a NOR gate (Fig. 7.3b). there are 

no necessar}' assignments-the required value of A to propagate the fault effett through 

exit lines K is A = {1} and through j2 is A = {1}. If. however. B = {O} and C = {1} are 

assigned earlier during test generation. tl'-en the only active exit line of Dis i2. so A = {O} 

is a neces5ary aS5ignment. 

Propagate assignments for each exit line of each reconvergent fanout stem in the 

circuit can be found dliring preprocessing by: 

1. Injecting {D, D} at the stem and calculating the reduction lists inside its stem re­

gion. Only assignments to fanout stems are placed on the reduction li5ts. and only 

"forward" reduction lists are computed. 
-+ -+ 

2. Recording the intersection of reduction lists R D and R D at each exit line of the 

stem. 

When a .econvergent stem is identified as a dominator during test generation. the 

p.opagate assignments for each of its active exit lines are intersected to find the set of 

assignments which make fault propagation from that stem impossible. 

Propagate assignments for nonreconvergent fanout stems can be defined similarly. 

If a nonreconvergent stem is a dominator. the fault effect must propagate to at least 

one primary output reached by the stem in order for the fault to be te5ted. In effect. 

the "exit lines" of a nonreconvergent stem are its reached primary OI.tputS. Making this 

assumption. its propagate assignments can be identified during preprocessing and used 

during test generation as described above. 

Propagate assignments are similar to those found by SOCRATES using "instructions 

1 and 2" [SchTriSar88] and "dynamic instructions 1 and 2" [SchAut89]. except that they 

are identified once during preprocessing. rather than dynamically during test generation. 
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7.3 Experimental results 

The algorithms presented in this paper were implemented to investigate the behavior 

of a test generation system which uses necessary and nonconflicting assli .... ments and. in 

particular. to determine the extent to which backtracking can be reduced using algorithmic 

rather than heuristic techniques. 

Faults can be di"ided into classes depending on the relative difficulty of findtng a test 

pattern for them. For example, many faults are "random testable" because it is easy to find 

a test vector for them by fault simulating random input vectors. In addition. experimen­

tal results indicate that a test can be generated for many faults using only preprocessed 

information. However. faults exist-particularly certain untestable faults-which are aban­

doned unless ail necessary assignments are identified using dynamically updateti reduction 

lists. This observation leads to the conclusion that no test generation system is ideal for 

"III target faults. An algorithm which finds ail necessary assignments may take excessive 

CPU time because the dynamic calculation of reduction lists is costly. yet an algorithm 

which uses only preprocessed information will abandon or spend excessive time branching 

and bacJ.;tracking needlessly on sorne difficult faults. On the other hand. a multi-phase 

algorithm can combine the best features of ail its components. 

Complete test pattern generation experiments were run on the ISCAS'85 benchmark 

circuits (BrgFuj85]. Although the circuits are smal\. they contain examples of interesting 

faults which are abandoned by many test generation systems [GoelB1. FujShi83. KirMer87. 

Cheng88). In order to test the deductive power of the QUEST algorithm. ail faults were ex­

plicitly targeted-no fault simulation was performed. Experimental results were generated 

as follows: 

Oeterministic test pattern generation: A two-ph~se algonthm was used. wlth a back­

track limit of 10 for each pass. In or der to determine the effect of algonthmJC as­

signments on test generation in the absence of "intelligent" heuristlcs. the results 

presented in this section were produced by asslgnmg to {a} the flr<;t un.l<,slgned 

primary input which could have an effect ln the fmal test pattern 
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7.3 Experimental results 

a) Phase 1: Test generë:tion using preprocessed information only. but using domi­

nators and propagate assignments. 

b) Phase 2: Test generation using dynamically updated reduction Iists.13 

Circuit 
Testable Untestable CPU Time(sl· 

Flts Abd. Undet. Flts Abd Avg. Max. Pre. 

C432 520 0 0 4 0 0.22 0.45 6.63 

C499 750 0 0 8 0 0.21 0.66 358 

C880 942 0 0 0 - 0.13 0.41 451 

C1355 1&66 0 0 8 0 0.73 1.36 11.81 
C1908 1870 0 0 9 0 0.61 1.49 31 75 
C2670 2630 32 0 117 0 0.44 2.61 2688 

C3540 3291 2 0 137 0 0.95 2.58 104.68 
C5315 5291 2 0 59 0 034 1.67 4802 
C6288 7710 71 0 34 0 3.45 6.74 43218 

C7552 7419 28 0 131 0 0.79 3.35 86.24 

... Sun 4/SlC 

Table 7.1 Experimental results 

Table 7.1 summarizes the results obtained. differentiating between test~ble and untest­

able faults in the benchmark circuits. For example. C2670 contains 2630 testable faults 

(after prime fault collapsing [Cha79]). of which 32 were abandoned after the backtrack 

limit was exceeded. These faults were covered by test patterns generated for other faults. 

however. 50 no faults were undetected in the experiment. Further. in ail circuits. ail of the 

faults which were abandoned after phases 1 and 2 of the test pattern generation algorithm 

were covered when less than 1000 random vectors were fault simulated. and thus would 

not have been targeted in a conventional test pattf~rn generation experiment which begins 

with random vector fault simula~ion. C2670 also contains 117 undetectable faults. ail of 

which were proven to be untestable in the experiment. The table also reports the average 

time required to target a faiJlt êfnd the maximum time required for any target fault in the 

experiment. The preprocess time includes the time required to perform a" operations up to 

the injection of the first target fault-read the netlist and crea te data structures. analyse 

the topology of the network. extract generic reduction information and identify propagate 

assignments. etc. 

13 The implementation used here does not take advantage of the techniques described in chapter 5 
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7.3 Experimental results 

No untestable faults were abandoned. Furthermore. phase 2 of the test generation 

algorithm (full reduction list propagation) was required to proye redundancy only in (432-

three faults were abandoned (after 10 backtracks each) by phase 1. after which two of the 

three were proven untestable with no backtracks and the third was proven untestable with 

one backtrack in phase 2. Circuit C2670 contains eight faults which each required one 

backtrack (in phase 1) to prove redundancy: circuit (7552 contairrs 6 faults which were 

backtracked. the "worst" of which required 3 backtracks (phase 1). This result indicates 

that QUEST is particularly efficient at redundancy identification. which is often a problem 

for convention al test pattern generation algorithms. 

Table 7.28 details the branching and backtracking activity during the test generation 

experiments summarized in Tablt> 7.1. For each pha:;e of the test generation experiment. 

the table gives the number of faults for which branches (backtracks) were performed. 

~he total number of branches (backtracks) performed in that phase. and the number of 

faults abandoned in that phase after the backtrack limit was exceeded. Branch~s and 

backtrar.ks are not counted for faults which were abandoned. Ali faults (b0th testable and 

untestable) were targeted by phase 1: faults abandone~ in phase 1 were targeted in phase 

2. For example. 26 of 5350 total faults in C5315 were abandoned by phase 1. Of 5324 

faults successfully targeted. arbitrary branching occurred for 4053 of them. 2 faults were 

abandoned by phase 2: a test pattern was generated for the remaining 24. 

Table 7.2b summarizes the results of a second series of experiments. performed to 

determine the effect of nonconflicting assignments on branching and backtracking durin{, 

test pattern generation. Ali faults were targeted a second time using the conditions de­

scribed above. but without identifying nonconflicting assignments. Applying nonconflicting 

assignments reduces the amount of branching and backtrackmg performed during test pat­

tern generation. In addition. one untestable fault in C432 and 11 un testable faults ln (2670 

are abandoned if nonconflicting assignments are not identifled. 

Despite the simplistlc heuristic used to choose arbitrary asslgnments. il tpc,t 15 gen· 

erated for the vast majority of faults wlthout backtrac.kmg Of partlcul,lr Intf re~t IS the 
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Phase J Phase 2 Un---
Circuit Branch Badtrack Abd. Branch Backtrack Abd. Det 

Flts Tot. Flts. 1 Tot. Flts. Flts. Tot. Flts. Tot. Flts. Flts. 
C432 458 5064 0 0 3 1 1 1 1 0 0 
(499 686 22131 31 ;)t 0 - - . - - 0 

C880 706 8423 0 - 0 - - - - - 0 

C1355 1566 50368 86 109 0 - - - - - 0 
Cl908 1810 37453 23 29 7 5 68 0 0 0 0 
(2670 2074 60225 184 238 34 2 112 2 12 32 0 
0540 2747 43243 250 356 19 11 265 12 29 2 0 

U
5315 4053 65248 201 318 26 24 538 22 44 2 0 

C6288 7624 133835 2155 2587 74 2 19 0 0 71 0 
C7552 7085 231477 783 13~2 75 17 370 14 14 28 0 

.. ) Nonconflicting assignments identified 

Phase 1 Phase l Un-
Circuit Branch Backtrack Abd. Branch Backtrack Abd. Det. 

Flts. Tot Flts Tot Flts Flts Tot Flts. Tot. Flts. Flts 
C432 520 9802 0 0 3 0 0 0 0 1 1 
C499 686 22817 33 38 0 - - - - - 0 
C880 867 16952 0 - 0 - - - - - 0 
C1355 1566 52517 94 125 0 - - - - - 0 
C1908 1860 41399 88 100 7 7 10 0 0 0 0 
C2670 2199 73791 184 238 45 2 a4 2 12 43 11 
0540 3070 49192 258 383 19 17 300 12 29 2 0 
C~315 4754 84044 229 346 27 24 563 22 50 3 0 
C6288 7631 131483 2155 2587 14 2 19 0 0 11 0 
C7552 7119 291952 797 1358 77 44 592 16 18 28 0 

b) Nonconflicting assignments not identified 

Table 7.2 The effect of nonconflictin& assignments 

number of faults for which a test is generatecl without branching. a result which is inde­

pendent of heuristics and is heavily influenced by nonconflicting assignment identification. 

Missed necess~ry assignments cause backtracking in test generation. For ex ample. 

for sevE"ral faults abandoned by phase 1 of the algorithm. a test was generated without 

branching by phase 2. Although the number of abandnned faults is reduced by nonconfllct­

ing assignment identification. the greatest gains come from the identification of necessary 

assignments. If ail necessary asslgnments were identlhed by full reductlon IIst propagation. 

even fewer backtracks would be performed ThiS approach 15 practlcal If reductlon analysis 

is implemented efficient/y. explOltmg the propertles developed in chapter 5. 
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reduction analysis is implemented efficiently. exploiting the properties developed in chapter 

5. 

ln practice. the heur;"tic used to d.oose arbitrary branches has a huge impact on the 

number of branches and backtracks performed for both testable and untestable fau/ts and 

affects the number of abandoned faults. It wou/d be interesting to investigate the effect of 

various heuiistics on QUEST. In addition. new heuristics based on algorithmic measures 

(reduction list '·!ngths. etc.) are promising. 
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Chapi:er 8 Conclusions 

This thesis characterizes three types of assi&nments made during the course of de­

terministic test pattern generation. Necessary assignments are those which must be made 

in order to find a test pattern-the search is guaranteed to fail if they are not made. Non­

conflicting assignments lead in the direction of a test and never need to be backtracked. 

vastly and irrevocably reducing the space whic" must be searched for a test pattern. Re­

maining assignments are arbitrary-they may or may not lead to a test pattern and must 

be reversed is a test cannot be found after they are assigned. 

A complete mathematlcal basis for the idp.ntification of n.:cessary and nonconflicting 

assignments has been developed and algorithms to identify them presented. Issues relating 

to the efficient implementation of these algorithms have been discussed from both a the/)­

retical and practical point of view. Structural properties of the circuit under test are used to 

reduce the processing performed to identify necessary and nonconflicting assignments. In 

addition. several classes of generic reduction information are exploited to identify necessary 

assignments while avoiding dynamic reduction list computation. 

The identification of necessary and nonconflicting assignments IS the core of the 

QUEST test pattern generation algorithm. Experimental results show that QUEST is 

able to reduce or eliminate backtracking in test pattern generation through algorithmic 

rather than heuristic means. Results also indlcate that QUEST is partlcularly efficient at 

redundancy identifIcatIon. whlch IS often a problelll for cOllventlonal test pattern generatlon 

algorithms. 
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