On Necessary and Nonconflicting
Assignments in Algorithmic Test Pattern
Generation

Henry Cox
B. Eng.. McGill University, 1986

Department of Electrical Engineering
McGill University

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfiliment of the requirements for the degrea of

Doctor of Philosophy

April 1991
© Henry Cox

&

Abstract

Necessary. nonconflicting, and arbitrary assignments can be distinguished during
algorithmic test pattern generation. A necessary assignment is one which must be made in
order to find a test—there is no test in the half-space defined by the opposite assignment.
Certain other assignments are nonconflicting in the sense that they narrow the search space
and never lead to backtracking—if the fault is testable, then there is at least one test vector
in the half-space defined by the assignment. The remaining assignments are arbitrary—
they may or may not lead in the direction of 2 test and may or may not cause backtracking.
Since necessary and nonconflicting assignments do not lead to backtracking, an efficient
test pattern generation algorithm should determine and apply them prior to any arbitrary

branching.

This thesis presents algorithms based on the mathematical properties of images and
inverse images of set functions to identify necessary and nonconflicting assignments in com-
binational logic circuits. Issues relating to the efficient implementation of these algorithms,
are addressed from both a theoretical and practical perspective. Experimental results ob-
tained on a variety of benchmark circuits show that algorithmic assignment identification

can be used to reduce or eliminate backtracking in automatic test pattern generation.

Résumé

L.'on peut discerner trois types d’allocations lors de la production d'échantillons pour
fin de test: nécessaires. non-conflictuelles, et arbitraires. Une allocation nécessaire est
une allocation qui doit étre faite pour résulter en un test. C'est-a-dire qu'il n'y a pas de
test possible dans l'espace défini par I'allocation inverse. D'autres allocations sont non-
conflictuelles dans le sens qu'elles diminuent I'espace de recherche pour un vecteur de test
et qu’'elles ne requitrent pas de réajustements une fois I'allocation décidée. Si une faute est
vérifiable par test, alors il existe au moins un vecteur de test dans le sous-espace défini par
une allocation non-conflictuelle. Les allocations arbiraires sont incertaines. Il est possible
qu'elles in2nent 3 des réajustements (une revision de l'allocation dans un temps futur)
Etant donné que les allocations nécessaires et non-conflictuelles ne nécessitent jamais de

réajustements, un algorithme efficace pour la production de vecteurs de test devrait les

considérer avant les allocations arbitraires.

Cette theése présente des algorithmes basés sur les propriétés mathématiques des
images et des images inverses des fonctions sur les ensembles. Ces algorithmes s’ appliquent
pour identifier les allocations nécessaires et non-conflictuelles dans les circuits de logique
combinatoire. La réalisation efficace de ces algorithmes, du point de vue théorique et
pratique, est étudiée. Des résultats expérimentaux sont donnés pour plusieurs circuits
étalons. Ces résultats démontrent que I'on peut réduire ou éliminer les réajustements dans

la production automatique d’échantillions pour fin de test.

Rtk

Lid

Acknowledgements

I would like to thank my supervisor, Janusz Rajski, for his assistance and guidance
throughout my studies. His vision and enthusiasm are greatly appreciated and cannot be

overemphasized.

| am also grateful for the assistan .e and support of my friends in both the VLS| Design
Lab arlld the Robotics Lak at McGill. It particular, | would like to thank Mike Parker (der
Mouse)., who seems to know an efficient way to code any algorithm and whose knowledge
of the UNIX environment is legendary. Rch Aitken and Fadi Maamari have been sources of
many useful ideas and discussions. | would also like to thank all the other members of the
lab, past and present, for making it both a stimulating and epjoyable place to work over

the last 5 years.

| would like to acknowledge the generou.: financial support provided me by the Nat-
ural Sciences and Engineering Research Council of Canada and the Centre de recherche

informatique de Montréal.

Finally, | would like to thank Sally Duscha foi putting up with a lot while | was coding
the algorithms and preparing this manuscript as well as for proofreading above and beyond
the call of duty. | have it on reliable authority that it is not much fun to be around me
when | am debugging. | would also like to thank Dudley and Clara for giving me an excuse

to stop work and go to the park for a few minutes.

Claim of Originality

The author claims originality for the following contributions of this dissertation:

The new concept of reduction lists, based on the mathematical properties of images
and inverse images of set functions, is introduced. The properties of reduction lists are
studied and algorithms to compute them are presented. Applied to the problem of automatic
test pattern generation, the reduction lists are used to identify necessary assignments
Necessary assignments are those assignments which must be made in order to generate a
test pattern—no test exists in the space defined by the alternate assignment(s). Reduction
analysis is unifying in the sense that all other methods of identifying necessary assignments,
including conventional backward implication, dominator identification, and learning, are

special cases of this general concept.

The new concept of tendency lists, based on mathematical properties of monotonic-
ity (unateness) of Boolean functions, is defined and algorithms to compute them are pre-
sented. The tendency lists are used to identify a novel class of algorithmic assignments
during automatic test pattern generation termed nonconflicting assignments Nonconflict-
ing assignments lead in the direction of a test pattern by narrowing the remaining space

which must be searched, but are guaranteed never to need to be backtracked.

These algorithmic assignment identification techniques imply that a global analysis
of the effect of assignments to nodes in the circuit under test cari be performed by a local
computation at individual gates in the network. This information can be used to identify
several classes of algorithmic assignments during test pattern generatior.. The global nature
of the computation is achieved through the indexation of the nude assignments analysed.

which then propagate throughout the network on locally computed lists

Structural properties of the circuit under test determined by an analysis of reconver-
gent fanout are exploited to limit the number of assignments which are analysed and the
area of the circuit which is processed in order to reduce the amount of computation required

to identify necessary and nonconflicting assignments The use of preprocessed reduction

Ciaim of Originality

information including generic reduction lists and propagate assignments to further reduce

required computation is discussed.

A new test pattern generation algorithm is developed. The core of QUEST algorithm
is the identification of necessary and nonconflicting assignments. Arbitrary branching is
delayed as long as possible to avoid making assignments which may lead to backtracking.
Necessary and nonconflicting assignments are extracted iteratively until a test pattern is
generated or no more algorithmic assignments can be found, at which point an arbitrary
branch is made. If a conflict is detected. then a backtrack is performed to reverse the
most recent arbitrary assignment. After each arbitrary branch or backtrack, algorithmic
assignments are again identified. The algorithm is complete; the process continues until a

test pattern is generated or the target fault is proven to be untestable.

Table of Contents

Table of Contents

Chapter 1 Introduction
1.1 The role of test pattern generation

1.2 OQutline of dissertation

1.3 Notation CONVENLIONSottt ittt it e e

1.4 Publication history

............................

Chapter 2 An overview of algorithmic test pattern
generation

2.1 Logic systems for test generation
2.2 Necessary assignment identification techniques
2.3 Developments in nonconflicting assignment identification

2.4 Deterministic test generation algorithms

......................................

...........................

.....................................

..

............................

........

......................

.......

.....

Chapter 3 Images and inverse images of set functions..

3.7 Images of set tunctions: forward propagation

3.2 inverse images of set functions: backward implication

3.3 Limitations cf set functions
Chapter 4 Reduction list calculation: a methoi to identify
necessary assignments

4.1 Reduction lists and necessary assignment identification

4.2 Logical constraints and prcpagation of implications

4.3 General theorem of reduction

4.4 Stem correlation

4.5 Complexity of test pattern generation and the computation of
reduction lists

................

Chapter 5 Exploiting circuit topology in efficient
identification of necessary assignments
5.1 Structural analysis of reconvergence in combinational circuits
5.2 Candidate assignment identification

5.3 Region of propagation

..................

...........

.................................

...........................

.........

.............

................................

...

.......

.....

.......

......

10
18
22
23

27
27
30
34

37
40
48
51
53

56

59

61
69

vi

PR

Ay

Table of Contents

Chapter 6 A method to identify nonconflicting assignments

based on Boolean function monotonicity 4!

6.1 Generalized function monotonicity and tendency lists 72

6.2 Tendency lists and nonconflicting assignments 74

6.3 Pessimism in the tendency analys:scciutiviiiriiiennenn. 18
Chapter 7 The QUEST test pattern generation algorithm........ 82
7.1 Organization of the test pattern generation system 83

7.2 Preprocessed information. ittt 84

7.3 Experimentalresults............ ittt 89
Chapter8 Conclusions, 94
Chapter 9 References i i 95

vil

List of Figures

1.1 Notation conventions

.....................................

2.1 Test pattern generation using a 5-valued alphabet

.............

2.2 Test pactern generation using a 9-valued alphabet

.............

2.3 Test pattern generation using the SPLIT circuit model

.........

2.4 Test pattern generation using a 16-valued alphabet

............

2.5 Classical backward implication

............................

2.6 Unique sensitization in the FAN algorithm

....................

2.7 Learning in SOCRATES i
3.1 Images for a 2-input AND gate

.............................

3.2 Forward propagation in a circuit

...........................

3.3 Inverse images for a 2-input AND gate

3.4 Backward implication in the circuit from Fig. 3.2

..............

3.5 Pessimism in the forward implication step

....................

————

List of Figures

.......

........

.......

3.6 Three implementations of the exclusive-or function and corresponding

characteristic equations

4.1 Test pattern generation for f31

4.2 The search forest

..

4.3 The AND-OR graph of justification points

4.4 Reduction list calculation in a circuit

.......................

4.5 Reduction list calculation with partially determined circuit values
4.6 Necessary assignments in the region of the D symbol

4.7 Test generation for B\,o e

4.8 Circuit nodes with associated 7_!*rtion lists

4.9 Test generation for fault fq; ..

.......................

4.10 Value justification of a full adder

411 Correlation of assignments

412 Stem correlation in the D-region—propagation of the fault effect

...

........

........

.......

1
12
13
15
18
19
20
21
30
30
33
34

35
38

38
42
44
45
46
47

48
50
50
54
55

viii

-
g

List of Figures

4,13 Stem correlation in the D-region—no propagation of the fault

effeCt .. L e 55
414 A 2-inputtrivial function e 57
5.1 Candidate assignment identification i 62
5.2 Transfer of requirements from one justification poi~t to another 65
5.3 Premise: No stems exist whose stem regions include J1 and at least
one other justification point it i e 66
5.4 Propagation of gate assignments i, 67
5.5 Test generation for T T R 68
5.6 Property 5.5: the region of reduction list propagation 69
6.1 Pruning assiZnments i it i e i e 71
6.2 Test generation for Coyo 76
6.3 Nonconflicting assignment identification in redundancy
identification i 77
6.4 Test generation for E31 ... 79
6.5 Test generationfor Eoy ... 80
7.1 The QUEST test pattern generation algorithm 83
7.2 Propagate assignment identification it 87
7.3 Propagate assighmentsexample, 87

2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
7.1
1.2

List of Tables

List of Tables

Gate functions: B x B — B} o 10
Gate functions in a 5-valued algebra o 11
Gate furv2ions in a 9-valued algebra........... 12
Gate functions in an 11-valued algebra. 13
Three codings of a 16-element alphabet 15
Comparison between algebras 16
Gate functions in 5 16.-valued logic system: Byg x Big—Big........... 29
Inverse images in Byg 33
Experimental results.................... ... 90
The effect of nonconflicting assignments 92
X

1-————-“

Chapter 1 Introduction

With the increasing complexity of VLSI circuits and the growing demand for very
high shipped product quality and reliability, test has become one of the most important
and costly phases of integrated circuit production. Test pattern generation, whether manual
or automatic, is a key part of any test methodology. Extremely high quality requirements,
measured in single defective parts per million, have made it essential to find test patterns
for all testable faults while identifying all untestable faults in order to guarantee complete

coverage by the test set.

The processes used to fabricate integrated circuits are both very complex and im-
perfect. Only some of the circuits produced work correctly. as random defects introduced
during the fabrication process cause a portion of them to fail. These failures may be logical
in that they change the function of the faulty circuit, or parametric in that some operat-
ing parameter of the circuit, such as current drive capability, output voltage level, etc., is
affected [Ravi87, ShMaFe85, McCMou87]. The goal of testing is to screen out defective
circuits so that only fault-free ones remain. This goal can be very difficult to achieve, as
the circuits may contain hundreds of thousands or millions of potentially faulty individ-
ual devices yet have only a few hundred signals which can be directly stimulated and/or

observed,

Testing is performed by applying a set of input patterns to the circuit. a test set,
which differentiates between fault-free and faulty circuits—r.e. a faulty circuit will behave

differently than a fault-free circuit when the test set is applied. For the purposes of this

Introduction

discussion, it is assumed that the circuit design is correct in the sense that if perfectly

fabricated, the circuit would perform exactly according to specifications.

Techniques for obtaining a test set can be broadly categorized as functional or struc-
tural testing. Functional testing attempts to verify that the circuit under test performs
properly, without reference to the way the circuit itselt was designed and fabricated or the
defects it is subject to [ThaAbr80, LaiSie83, AbBrFr90]. Although functional tests for cer-
tain types of regular structures such as memories thoroughly test the devices [NaThAb78],
functional tests for less regular designs often cover an unacceptably low number of phys-
ical defects [Klug88, AbBrFr90]. Structural testing attempts to verify that the individual
devices within the circuit work properly and that their connectivity is correct, and thus that
the circuit as a whole is fault-free [AbBrFr90].

Structural testing usually makes use of a fault mode! which is intended as a high-level
abstraction that represents the actual defects which the circuit under test may experience.
Many different fault models have been proposed, of which the most common is the single
stuck-at (SSA) model, originally proposed in [EId59]. in which it is assumed that all fab-
rication defects can be modeled by a single line in the circuit which permanently carries a
logic O or logic 1. Many authors have questioned the applicability of the stuck-at mode! and
have proposed alternate fault models—among them, MOS stuck-open and stuck-on faults
[Wad78]. bridging faults [Mei74], transition faults [WaLiRoly87} and crosspoint faults in
programmable logic arrays [Smith79}—which may more accurately represent device failures.
The most common justification for the continued use of the stuck-at fault model is that
test sets developed under the stuck-at fault model tend to be excellent tests for other types
of faults as well (termed “windfall coverage”) [WilPar83]. Once a particular fault model is
chosen, the quality (or goodness) of the test set is measured by the fault coverage—the
proportion of faults from the fault model which are detected by the test—and has a direct

impact on the defect fevel—the number of faulty circuits which are incorrectly declared
good [WilBro81].

Digital logic circuits can be divided into two classes. combinational circuits, whose

output depends only on their current input, and sequential circuits, whose output depends

1.1 The role of test pattern generation

on both their cu~rent input and internal state, determined by previously applied input
patterns. Sequential circuits perform a iich set of useful tasks which often cannot be
performed by combinational circuits. Consequently. most circuits which are produced are
sequential. Unfortunately, testing sequential circuits is significantly more difficuit than
testing combinational ones, as their memory must be considered [Kautz68, BoHsPuT1].
This implies that the entire sequence of test patterns must be treated as a whole in
sequential tsting, rather than a single vector at a time in combinational testing. In addition,
changes to the internal states and the transitions between them due to the presence of faults

must be taken into account.

To cope with the complexities of analysing sequential circuits, structured design for
testablility techniques have been used to convert sequential circuits into pseudo-combina-
tional circuits during test mode by making the memory elements directly controllable and
observable [Ando80. FuKaYa89. Stew77, WilAng73, EicWil77]. At the same time, scan de-
sign techniques have created a new set of extremely large “combinational” circuits, prompt-

ing a great deal of interest in efficient tools for combinational circuit testing.

1.1 The role of test pattern generation

Within the context of structural testing with a given fault model. there are two
basic methods to obtain test: methods based on fault simulation of a set of patterns—
for example, a set of random or pseudo-random patterns with [ScLiCa75, MuAgND90] or
without input weighting [BaMcSa87, Golomb87, HorMcL89}—and methods based on test
pattern generation [Roth66. Goel81, FujShi83, KirMer87, SchAut89]. Regardless of the

chosen technique, however, deterministic test pattern generation plays a vital role.

it is sufficient to find a test pattern for each testable fault using any available
technique—for example. either deterministic test generation or random pattern fault sim-
ulation can be used. However, in order to prove that a fault is untestable, it is necessary
to prove that no test pattern exists for the fault. Redundancy identification cannot usually
be done using fault simulation-based techniques in an acceptable amount of time, as the

number of patterns which have to be fault simulated in order to exhaust the search space is

1.1 The role of test pattern generation

huge—2" patterns for an n-input combinational circuit. for example. In addition, testable
faults which are extremely unlikely to be covered by random test patterns exist {Wun88|;

generally, tests for these faults must be found deterministically.

The goal of deterministic test pattern generation is to find a test vector {or sequence
of test vectors) for a given target fault from the fault model which will distinguish between
a fault-free circuit and a circuit which contains the fault—i.e. the output of the circuit
under test will differ depending whether or not it contains the fault. The target fault is

untestable if no such test vector (test sequence) exists.

Test pattern generation can be viewed as a branch and bound problem [Goel81];:
test generation algorithms usually search for a test pattern by systematically branching
and bounding until either a vector is discovered or the search space is exhausted. Even for
combinational circuits, the test generation problem is MP-ccmplete [FujToi82, GarJoh78]—
in the worst case, all known test pattern generation algorithn.s will require exponential time

to find a test vector or prove that none exist.

Deterministic test pattern generation is a process of progressively translating a set
of required values at some nodes in the circuit to a new set of requirements at other node:
which satisfy the original requirements, but are closer to primary inputs. A test pattern has
been successfully generated when all requirements are satisfied by assignments to primary

inputs. The fault has been proven untestable if no test pattern exists which will satisfy the

requirements.

This thesis characterizes three types of assignments made during the course of de-
terministic test pattern generation. A necessary ussignment to a node (also termed a
“mandatory assignment” in [KirMer87] and “single pruning” in [RobRaj88]) is one which
must be made in order to find a test—there is no test pattern in the space defined by
alternate assignment(s) to the node. Viewed as a branch decision, assigning any other
value to the node is equivalent to branching into an area of the search space which does
not contain a test pattern, guaranteeing that a bound step must eventually be taken A
nonconflicting assignment (termed “monotone pruning” in [RobRaj88)) 1s one which leads

in the direction of a test by restricting the space which remains to be searched. but never

gy

1.2 Outline of dissertation

needs to be backtracked. If the fault is testable, then a test vector is guaranteed to be
found in the space defined by the nonconfiicting assignment. The remaining assignments
are arbitrary or branch assignments—they may or may not lead to a test pattern, and

must be backtracked if a test cannot be found after they have been assigned.

A general theory describing the identification of necessary and nonconflicting assign-
ments, based on the mathematical concepts of images and inverse images of set functions,
is developed in this thesis. New techniques to identify necessary and nonconflicting as-
signments in deterministic test pattern generation are presented. The identification of
necessary and nonconflicting assignments is algorithmic in the sense that there is no ele-
ment of choice or luck in the computation, no reliance on heuristics, and no possibility of

these assignments causing a backtrack if the fault is testable.

Issues relating to the efficient in,..ementation of the algorithms are presented from
both a theoretical and practical point of view. In particular. the concept of stem regions
[MaaRaj90] is applied v the problem of necessary and nonconflicting assignment iden-
tification to reduce both the memory and processing time required to find them in an

implementation-independent fashion.

The goal of this research is to reduce or eliminate backtracking during test generation
for any target fault in any circuit using algorithmic techniques rather than heuristics. To
this aim. necessary and nonconflicting assignments are extracted iteratively until either
the fault is tested. proven to be untestable, or no more algorithmic assignments can be
found. at which point an arbitrary assignment (branch decision) is made. By making
as few arbitrary assignments as possible through putting off branching, the potential for

backtracking is reduced.

1.2 OQutline of dissertation

The body of this thesis is divided into six chapters, as follows:

Chapter 2 reviews developments in test pattern generation over the last two decades in

light of the work presented in this thesis. The review focuses on four topics: logic systems,

5

-

~ e

1.2 Outline of dissertation

identification of necessary assignments, identification of nonconflicting assignments. and

deterministic test pattern generation algorithms.

Chapter 3 reviews the theory of images and inverse images of set functions, the basis
of the algorithms to identify necessary and nonconflicting assignments presented in this
thesis. Although the concepts of images and inverse images themselves are not new, the
application to deterministic test pattern generation is novel. Throughou' t'i's thesis, the
discussion and examples use a 16-valued algebra to describe the steps of a test pattern
generation algorithm. However, the definitions and theorems developed are independent of
the logic system in use, and are valid for any other algebra as well, including conventional
5. 9, and 11-valued systems. Using a different logic system enhances or restricts the ability
of the algorithm tc distinguish cases which arise during test pattern generation, but does

not change the nature of the problem—the underlying theory is valid in all cases.

Chapter 4 generalizes and formalizes necessary assignment ideni fication using the
concept of reduction lists, The work is unifying in the sense that all other proposed
necessary assignment identification techniques, including classical implication. dominator

identification and “learning” are special cases of this general concept.

Chapter 5 addresses issues relating to the efficient implementation of the algorithms
to identify necessary assignments. The use of structural properties of the circuit under
test to reduce the computation and memory required to identify necessary assignments is

discussed.

A generalized theory of Boolean function monotonicity is developed in chapter 6 and an

algorithm to compute tendency lists, from which nonconflicting assignments are identified.

is presented.

Finally, a new test pattern generation algorithm, QUEST, which exploits necessary
and nonconflicting assignments is described and experimental results obtained by the al-

gorithm when run on a variety of benchmark circuits are presented n chapter 7

Chapter 8 concludes the dissertation.

1.3 Notation conventions

1.3 Notation conventions

Throughout this thesis, primary inputs and gates are labeled with capital letters:
fancut branches are labeled serially with lower case letters corresponding to their stem.
For non-stem circuit nodes, gates are referred to by their label (upper case letters) whereas

their output lines are referred to by the corresponding lower case letters.

The stuck-at fault model, used throughout this thesis, assumes that faults in the
network are represented by a line (or lines) in the circuit under test which permanently
propagate a constant logic value—0 for a “stuck-at zero” (sg) fault and 1 for a “stuck-at
one” (sq) fault—regardless of the signal applied to the line. The fault “line ! stuck-at 1" is
represented by "l,l": fault "l stuck-at 0" is represented by “lso". Multiple stuck-at faults

are represented by the list of their component single stuck-at faults.
=Dl

‘ F
B— ™

b2 D,E_J_D)_——
C———]

Figure 1.1 Notation conventions

Example 1.1: The 2-input MUX in Fig. 1.1 illustrates the notation conventions used in

this thesis. Two faults are present in the network: bl,1 and dao.

1.4 Publication history

The material contained in the chapters of this thesis discussing the 16-valued logic
system for test generation (chapter 3). the identification of necessary assignments (chapter
4), and the experimental results obtained by the QUEST test pattern generation algorithm
(section 7.3) have been published in the Proceedings of the 1990 International Test Con-
ference [RajCox90]. A comprehensive paper discussing necessary and nonconflicting as-

signment identification, properties relating to an efficient implementation, and the QUEST

4_4

1 4 Publication history

algorithm has been submitted to /EEE Transactions on Computer-Aided Design [CoxRaj91]
and is currently under review.

In addition, several papers discussing the application of a 16-valued logic system to
the problems of multiple fault coverage analysis for test pattern generation and failure diag-
nosis have been published [RajCox86a, RajCox86b, CoxRaj87]. of which the most complete
discussion is found in [CoxRaj88]). The logic system used is isomorphic to the one pre-
sented in chapter 3. The algorithm to identify dominators described in section 7.2.2 was
first presented in [CoxRaj87].

FE

Ly
S HBR

Chapter 2 An overview of algorithmic test pattern generation

Test pattern generation has been studied widely for the past three decades or more.
Since Roth’s classic paper [Roth66], many test pattern generation algorithms have been
proposed. In this chapter. key developments in algorithmic test pattern generation for com-
binational circuits are reviewed from the perspective of their relation to the ideas presented

in this thesis: the identification of necessary and nonconflicting assignments.

The choice of logic system (or alphabet) used by a te.: pattern generation algorithm
has a major impact on its organization and efficiency. Therefore, it is necessary to review
the logic systems for test generation which have been proposed before the algorithms
themselves can be discussed. Section 2.1 reviews conventional 5 [Roth66]. 9 [Muth76].
and 11-valued [Cheng88] logic systems. In order to take advantage of formal concepts
developed for Boolean algebras. a 16-valued logic system [Akers76. Raj88] is used by the
algoriti:ms for combinational test pattern generation presented in this thesis. The benefits
of a 16-valued system are demonstrated through examples of faults which are not properly

handled by other logic systems.

The algorithmic assignment identification techniques used by various test pattern
generation algorithms are reviewed in sections 2.2 and 2.3, while the heuristics used by
the algorithms are ignored. The categorization of assignments made during test pattern
generation into necessary, nonconflicting. and arbitrary assignments and methods used for
their identification is the basis for the differentiation between test generation algonthms

found in seztion 2.4,

2.1 Logic systems for test generation

2.1 Logic systems for test generation

The two-element Boolean algebra B% = {0,1} is widely used to analyse switching
circuits, and is sufficiently precise to describe the behaviour of a fault-free combinational
circuit. However, in order to describe the behavior of a possibly faulty circuit, a four-element
Boolean algebra. B% = {0(0),0(1),1(0).1(1)}. where a(b) indicates that the response in
the fault-fres circuit is a and in the faulty circuit is b, is required. Using the D-symbols
[Roth66), B% = {0,D, D,1}. The function of a 2-input gate is described as a mapping
B2 x B2 — B3. The functions AND and OR are shown in Table 2.1.

0D v 1 0 D D1
0/0 0 0 O olo D D 1
Dio D o0 D DID D1 1
pDlo o D D D|D 1 D 1
10 D D 1 11 1 1 1
a) AND gate b) OR gate

Table 2.1 Gate functions: B% x B% — B%

The symbols 0, 1. D. and D describe the logic values at nodes in potentially faulty
circuits in response to an applied input vector. During the course of test generation,
however, these values can appear at circuit nodes in various combinations. For example,
each primary input may be assigned to either 0 or 1 in the final test vector which 1s
generated, but before the test pattern is determined. it is not known to which of the
possible values it will be assigned. Logic systems differ in the way they represent the
combinations of signal values which arise during test generation and in their abilty to

distinguish between them.

The use of an appropriate algebra can aid the test generation algorithm: similarly.
an inappropriate algebra can hinder it. Comparisons between algebras typically focus on
the number of elements each contains, the space required to store circuit values, and the
time required to manipulate them A better companson is the ability of the logic system to

resolve circuit values during test pattern generation [ncreased resolution may reduce the

10

2.1 Logic systems for test generation

amount of branching and backtracking performed by the test generation algorithm, reducing

both CPU time and storage requirements despite using more values.

2.1.1 5-valued logic system

0D D 1 X 0 D D1 X
0{0 0 0 0 O B_P_T)_DIX
Dio D o D Xx DID D11 X
D 0 0 D D X DI\D 1 D1t X
i{0 DD 1 X 111 1 111
Xi0 X X X X XX X X1 X

a) AND gate b) OR gate

Table 2.2 Gate functions in a 5-valued algebra
A
x z |
B
ol D G d z
s
(;lo“2 F o5 Y K x
>o H I
X J
D r
E

Figure 2.1 Test pattern generation using a 5-valued alphabet

In the 5-valued alphabet A5, the basic symbols 0. 1. D, and D are each represented
individually, while the combinations of values are all represented by the same symbol, X
(unknown). The 5-valued alphabet, A5 = {0,1, D, D, X}, has been used in many ATPG
algorithms [Roth66. FujShi83, Goel81, SchAut89]. Table 2.2 illustrates the function of 2-
input AND and OR gates, giving the output value for each possible combination of input
values. When targeting (attempting to generate a test for) Cs, in the circuit from Fig. 21.
most circuit values are quickly determined to be X. Aside from C = 1, required to sensitize
the fault. no necessary assignments can be identified. Several arbitrary branch decisions,

each of which may or may not lead to a backtrack. must be made before a test vector can
be found.

11

21 Logic systems for test generation

00 10 01 11 z0 Oz =1 1z zzx 00 10 01 11 0 Ox =1 1z zr
0000 00 00 00 00 00 OO0 00 00 00100 10 01 11 20 Oz z1 1z zz
10100 10 00 10 z0 00 =0 10 =zQ 10110 10 11 30 10 iz z1 iz z:z
0100 00 O1 01 00 Oz Ot Oz Oz 01]01 11 01 11 =1 01 z1 11 xt
11{00 10 01 1! z0 Oz =1 1z =zx 11111 11 11 11 41 11 11 11 11
2000 20 00 20 z0 00 0 z0 =20 20 {20 10 z1 11 z0 rz z1 1z zr
0z{00 00 Oz Oz 00 Oz Ox Oz Ox 0z]0z 1z 01 11 zz Oz z1 1z zr
21100 z0 01 =zl z0 Ox z1 zz zz z1lzl 11 21 11 21 =1 21 11 2t
12{00 10 Oz 1z 20 Oz zz ir zz 1zji1z 1tz 11 11 10 12 iz 11 1z
2|00 20 Oz zz z0 0z zx zz 22 rrxlzxz 1z zz 11 zz 7z 21 1z 22

a) AND gate b} OR gate

Table 2.3 Gate functions in a 9-valued algebra

x/xA xx |
B o) ¢ nldd
I/X So 1z K
¢ * w2 J‘>CF oN H o/ x/x)-———-—ﬂ
D x/x X /
E

Figure 2.2 Test pattern generation using a 9-valued alphabet

2.1.2 9-valued logic system

The 9-valued alphabet A9 = {00,11,10,01,20,0z,1z,z1, zz}, where ab indicates the
value in the fault-free circuit is ¢ and in the faulty circuit is b and “z” indicates unknown—
the value in the fault-free (faulty) circuit may be either 0 or 11—has also been proposed for
test pattern generation (Table 2 3) [Muth76]. Compared to A5, A9 has a unique symbol
to represent four additional combinations of signal values. A test generator employing A9
[ChaDon0zg78. JaMoChHa89, KirMer87] encounters a similar problem when generating
a test for Cy (Fig. 2.2) as do those which use A5 no necessarv assignments can be

identified, and several arbitrary branches must be made before a test jsacttern can be found

1 Note that the z symbol used by 49 1s not the same as the X used by AS In A9 5 denotes that the
value in the fault-free {fauity) machine 1s unknown. independent of the value in the faulty {fault free)
machine, whereas ir A5 “X denoies that the combination of possible logic values cared by the
node in the potentialty faulty circuit is unknown~—see Table 2 6

12

Ty

21 Logic systems for test generation

00F 10D 01D 11F 20U OzU ziU 1zU 22D zzFE zzU
00E {O0E OOE 00FE Q0OE OOE 00F OOFE OOE OOFE OOF OOF
10D |00F 10D 00F 10D 20U O0F zOU 10D z0U z0U 20U
01D |00F OOFE 01D 01D Q00F 0zU 01D 0zU 0xU 0zU CzU
11E{00F 10D 01D 11 F z0U 0zU z1U 1zU zxD zz L 22U
z0U [00F zQU O00F 20U zO0U O0F zOU z0U zO0U zOU zOU
0zU |00F O00F 0zU 0zU OOFE OzU 0zU 0zU 0zU 0zU 02U
z1U |00F zO0U 01D AU z0U 0zU z1U zzU zzU zzU zzU
1zU 00F 10D 0zU 1zU 20U 0zU zzU 12U zz2U zzU z2U
zzD (00F 20U 0z zzD z0U 02U z2U zzU zzU zzlU 22U
zzE (O0F 20U QzU zz E 20U 0zU zxxU zzU 22U zzE zzU
zzU |00F £0U 02U z2U 20U 0zU zzU zzU zzU zzU z2zU

a) AND gate

00F 10D 01D \1E 20U 0zU 21U 1zU zzD zzF 2zU
C0E{00F 105 01D 11E 20U 0zU 21U 12U zzD zz2E z2zE
10D110D 10D {1E 11F 10D 12U 11E 12U 12U 12U 12U
01D{01D 11E 01D \1E z1U 01D 21U 11E 21U z1U 21U
UE|IE 11F 1E 11E 1AE UE 11E 11F 11FE 11F 11F
z0U 20U 10D z1U 11E 20U zzU 21U 1zU rzU zzU zzU
0zl |0zU 1zU 01D 11E zzU 02U 21U 12U 22U z2U 22U
21 (21U 11F 21U \1F 21U =AU 14E 11E 24U iU 21U
1zU 12U 1zU 11E 11E 1zU 12U 11E 12U 12U 12U 1zU
zzD|zzD 12U 21U \1E zzU zzU AU 12U z2U zzU 22U
zzElzzE 12U 21U 1 E 22U zzU z1U 12U xzU zzE 22U
zzUlzzl 12U z1U 115 zzU zzU z1U 1zU zzU zzU 22U

b) OR gate

Table 2.4 Gate functions in an 11-valued algebra

A X/X/E
|
B x/x/3 G IAM
ol 10/ /xn K
X/x/% 8g
€= {>cF oA/ H omp X/ Xxn
D x/x/x J
E X/x/&

Figure 2.3 Test pattern generation using the SPLIT circuit model

2.1.3 11-valued logic system

As in A9. circuit values in the good and faulty machines are treated separately in
the 11-valued logic system for test generation proposed in [Cheng88]—each value can be
0. 1. or z (ether 0 or 1). independent of the value in the other machine in addition, the

relation between the values in the good and faulty machine is recorded—the values may

13

44“

2.1 Logic systems for test generation

be Equivalent, Different, or the relation between them may be Unknown. Signal values in
A1l are identified by the triple GFR. where G is the value in the good machine, F is
the value in the faulty machine, and R is the relation between the values in the good and
faulty machines. For example, the value zzE means that the values in ihe good and faulty
machine are unknown—the values could be either 0 or 1—but are the same—either both
are zero or both are 1. Circuit values in the 11-valued logic system are taken from the set

A11 = {00E,11E,zzE,10D,01D, zzD,0..U, 20U, 12U, 21U, 221" } .

Compared to A9. A1l is able to distir.guish the values zzE and zzD (represented
by {0,1} and {D, D} in the 16-valued alphabet discussed below). both of which are repre-
sented by zz in A9. Distinguishing these two values is particularly useful in circuits con-
taining XOR gates. However, A11 does not distinguisn the value combinations {0,1, D},
{0,1,D}, {0,D,D}. {D,D,1}. and {0,1, D, D} of Byg. all of which are represented by
zzU. The inability of the model to resolve these values may lead to unnecessary branching
and backtracking during test pattern generation. For example, in Fig 2.3. A11 1s unable
to determine whether D, D. or both can be observed on the primary output of the circuit,

and so must make several arbitrary assignments before a test pattern can be found.
2.1.4 16-valued logic system

As a response to an applied input vector, each node in the potentially faulty circuit
will carry one of the four possible values from B%. However, during test generation for
a particular fault, the final test pattern is not known. Any of the 16 subsets of the set
{0, 1, D, D} is a possible node value during test generation:? therefore, a complete alphabet

for test pattern generation contains 16 values.3

Since the subsets of B% are used to represent i e sets of possible values which anse

at network nodes during test generation, it is natural to introduce the power set 1’(B§)

2 Tpe empty set, {}. indicating inconsistency, is one of the possible assighments—ng test pattern exists
with the current set of assignments

3 The general mathematical theory which leads to the 16-vali.ed alphabet 1s presented in chapter 3

14

2.1 Logic systems for test generation

of Bg to represent them. The power set of the basic D symbols has been used by Akers

for test generation [Akers76]: as it is a Boolean algebra, it is isomorphic to the 16-vaiued

system used in [CoxRaj88, Raj88] for fault diagnosis. Three possible codings of P(B%)

are shown in Table 2.5: the elements of P(Bg) themselves, natural numbers from 0 to 15

(Bi¢ in Table 2.5). and bitwise encoded quadruples describing the presence or absence of
elements of Bg (B; in Table 2.5).

By P(B) B}
1 ZDIFT0
0 {} 0000
1 {0} 0001
2 {D} 0010
3 {0, D} 0011
4 {D} 0100
5 {0, D} 0101
6 {D, D} 0110
7 {0, D, D} 0111
8 {1} 1000
9 {0,1} 1001
10 {D,1} 1010
11 {0,D,1} 1011
12 {D,1} 1100
13 {0,D,1} 1101
14 (D, D, 1} 1110
15 {0,D, D, 1} 1111

Table 2.5 Three codings of a 16-element alphabet

A Y
B 61
o« __©
c ol 8o
—* 1 F
b -{>o- ol H b
E_B1)

Figure 2.4 Test pattern generation using a 16-valued alphabet

(&%}

@5

15

—

2.1 Logic systems for test generation

During test generation for C,o in Fig. 2.4, the 16-valued logic system is able to identify
that assignments A = {0}, B = C = {1} are necessary in order to observe {D} at the
circuit output. Similarly, in order to observe { D} at the output, assignments A = D = {1},
E = {0} are necessary. In both cases, a test is found with no arbitrary branching. As
shown in Figs. 2.1-2.3, the 5, 9, and 11-valued logic systems are unable to determine if
D, D, or both can be propagated to line L. Therefore. test generation systems using
these algebras cannot reason about necessary conditions for fault effect observation, and

are forced to make several arbitrary branches, each of which may lead to a backtrack.
2.1.5 Comparison between logic systems

The fundamental difference between the logic systems presented in this section is the
number of signal value combinations which arise at circuit nodes during test generation
which are distinguishable.

Byg P(B2) Al | A9 | 45
0 {} - - | =
1 {0} 00E | 00 0
2 {D} 01D 01 D
3 {0,D} 0zU 0z | Xx*
4 {D} 100 | 10 D
5 {0, D} 20U | 0 | X*
6 {D, D} zzD | zz* | X*
7 {0, D, D} zzU* | zz* | X*
8 {1} e | 1 1
9 {0,1} zzE | zz* | X*
10 {D,1} z1U z1 X*
11 {0,D,1} zzU* | zz* X+

12 {D,1} 12U | 1z | x*

13 {0, D, 1} zzU* zz* X

14 {D, D,1} zzU* | zz* | X*

15 {0,D,D,1} | zzU* | zz* X*

* indicates values which cannot be distinguished

Table 2.6 Comparison between algebras

16

o,

21 Logic systems for test generation

Table 2.6 compares the values represented by By [Raj88. Akers76] with those of
A1l [ChengB8], A9 [Muth76]. and A5 [Roth66]. There are five elements of Bjg which
cannot be distinguished by A11—all are represented by zzU. For example, if a primary
output carries value zzU, it is not possible to determine whether D, D. or both D and
D can be observed there. Resolution is progressively worse if A9 (seven indistinguishable
values) or A5 (eleven indistinguishable values) is used. Element ‘0" ({}) of Bjg indicates

inconsistency, and has no representation in any of the other algebras.

The major advantage of a 16-valued logic system is better resolution of signal val-
ues. The value combinations which arise at circuit nodes during test generation are not
compacted. but are represented as distinct sets of possible node values. Thus there is less
loss of information with a 16-valued logic system than with the logic systems described
above.* The increased resolution offered by a 16-valued logic system may lead to a more
efficient search for a test pattern. In particular, it is possible to identify necessary and
nonconflicting assignments in the region of the circuit reached by the fault effect, which is
not possible using A5 and is restricted using A9 and A11. At the same time, the use of a
16-valued logic system does not increase the time required for logic system computations
such as forward propagation and backward implication, as they can be performed in linear

time using table lookup, regardless of the logic system in use.

A 16-valued logic system has a number of advantages in addition to increased value
resolution. Value justification is the only operation required by a test generation algorithm
which uses a 16-valued logic system—it need not perform “D-drive” or “X-path check”
operations and need not maintain a “D-frontier". Forward propagation determines the set
of possible values which could be carried by each line in the circuit, including those reached
by the fault effect. The set of primary outputs to which the fault effect may propagate
is known after forward propagation (those outputs whose set of possible values includes
D and/or D). There is no need to distinguish between sensitization and propagation of

the fault, as both can be represented in terms of justification. The test generation process

4 See section 3.3 for discussion of information loss in a 16-valued logic system, and section 4 4 for a
technique to recover the lost information.

17

4

2.2 Necessary assignment identification techniques

begins with the initial set of justification points (node/value combinations which must be
justified) that the point of the fault must be driven to a value opposite that caused by the
fault (sensitization) and the fault effect must propagate to at least one primary output—
either D or D must be observed on at least one of the outputs whose set of possible values

includes D and/or D (propagation).

2.2 Necessary assignment identification techniques

In 1966, Roth proposed the D-algorithm [Roth66]. The contribution of this paper
was the 5-valued calculus described in the previous section—the singular cover describing
the forward propagation of the D symbols and encoding the conditions required to justify
each symbol at the output of a gate. The assignments which are implied by the values
which must be justified are necessary—no test pattern will be found if these implied values

are assigned any other way.

?

- ‘ :
fpe o
a) Noncontrolling value b) Controlling value

Figure 2.5 Classical backward implication

Example 2.1: Fig. 2.5 illustrates two important cases of classical local implication which
arise during test generation. In a, the requirement at the output of the AND gate is uniquely
translated to its inputs as there is only one combination of input values which can produce
the required output. On the other hand, in b the requirement is not uniquely translated
to the inputs, as there are several input combinations which could be used to produce the
required output. In arbitrarily choosing to use one of the possible input combinations to
produce the required output in b, conflicts may occur due to reconvergent fanout Excessive
time may be required to generate a test or prove redundancy as. in the worst case. all of

the input combinations must be explored.

18

Py

2.2 Necessary assignment identification techniques

Classical backward implication is powerful, yet simple: the computation moves from
the output of a gate to its inputs. However, since the computation is local, relating to
a single logic gate. global information which could aid the test generation process is not
recognized. The inputs to the gate whose value must be justified may be correlated in that
they are driven by overlapping input cones. Since backward implication does not identify
the correlation, the input combination arbitrarily chosen to justify the required output value

of the gate may lead to a conflict.

This weakness was partially overcome in the FAN algorithm [FujShi83], which uses
structural information about the circuit under test to identify an additional class of neces-
sary assignments which cannot te found by backward implication. When the D-frontier
consists of a single gate, the “unique sensitization” step is performed. A topological search
is done to determine those lines through which the fault effect must pass in order to ap-
pear on any primary output. As FAN uses a 5-valued algebra, it is unable to represent that
these lines must be assigned to D and/or D. Instead, unique sensitization identifies those
assignments to noncontrolling values which are necessary to propagate the fault effect from
the inputs to the output of the gate at which the fault effect must be observed. In the
TOPS algorithm [KirMer87]. the unique sensitization assignments of FAN were formalized
using the concept of dominators and found using the algorithm in [Tarjan74). originally

proposed to find dominators in flow graphs.

Figure 2.6 Unique sensitization in the FAN algorithm

Example 2.2: No necessary assignments are identified by local implications in generating at
test for Fso in Fig. 2.6. However, in order for the fault effect to be observed at the primary
output. it must propagate through J. implying that A = I = 1 are necessary assignments.

After A is assigned to 1. the fault cannot propagate through G. so D = 1 is also a necessary

19

2.2 Necessary assignment identification techniques

assignment. To justify J = 1 after D = 1 is assigned, necessary assignment C = 0 is
identified by local implication. and a test pattern is generated. Note that if a2 16-valued
logic system for test generation is used in this example then all necessary assignments can
be identified by backward implication from justification points F = 1 (sensitization) and

J = D (propagation), without explicit dominator identification.

Dominator identification is a powerful technique and can be performed efficiently using
the linear-time algorithm proposed in [Harel86], rather than the O(nlog(n)) algorithm from
[Tarjan74). However, dominator analysis can be used to find necessary assignments only
in the region of the circuit reached by the faul 2ffect, and not in the rest of the circuit.

Further, there may be no necessary assignments to noncontrolling input values even if
dominators exist.

The contribution of SOCRATES [SchTriSar88. SchAut89] was to take advantage of
information about the function of the circuit under test to identify additional necessary
assignments which could not be found using classical implication or dominator analysis.
SOCRATES identifies necessary assignments through “learning” —finding the effect of ev-
ery assignment to every node in the circuit by injecting and determining the implications of
each assignment individually (one at a time). If an assignment would make it impossible
to justify a required value, then that assignment must be disallowed.

g lod}
A fot
¢ foi

Figure 2.7 Learning in SOCRATES

Example 2.3: The effect of assigning input A4 to 1 in the circuit from Fig. 2 7 is to produce
1on D, E, and F. When justifying F = 0 (for example, when generating a test for J+4). no
necessary assignments can be identified by local implication Having determined through

learning that assigning A to 1 causes F = 1, however, A = 0 s identified as a necessary

assignment.

20

8y

2.2 Necessary assignment identification techniques

SOCRATES uses a 5-valued algebra, and thus cannot resolve values or identify nec-
essary assignments through learning in the region of the circuit reached by the fault effect.
The effect of assignments to 0 or 1 only can be learned, and only in the 'region not reach-
able by the fault. To partially overcome this problem, SOCRATES performs additional
processing steps, similar to dominator identification, to identify necessary assignments in
the D-region.® In [JaMoChHa89] a version of SOCRATES using a 9 rather than 5-valued
logic system was presented; due to increased resolution of signal values, that algorithm is

able to identify some necessary assignments in the D-region.

A different approach to test pattern generation achieving similar results in terms of
necessary assignment identification was taken in the NEMESIS test generation system
[Lar89]. The function of the good and faulty circuits are expanded into product-of-sums
equations in terms of primary inputs and internal network nodes, the Boolean difference
is taken [SeHsBe68]. and the resultant equation is solved using techniques developed for
Boolean satisfiability problems. The number of terms in a clause of the satisfiability equa-
tion is determined by the number of inputs of the gate to which it is related, with n-binate
factors and 1 (n + 1)-ate factor for each n-input gate. The 2SAT problem (all clauses have
two or fewer terms) is equivalent to test pattern generation in fanout-free circuits, and can

be solved in linear time: the 3SAT (and higher order) problem is NP-complete.

In NEMESIS, necessary assignment identification (termed “nonlocal implication”) is
performed in a manner similar to learning in SOCRATES by determining the effect of each
assignment on the satisfiability equation. Since the NEMESIS algorithm is based on the
Boolean difference rather than D-calculus, it does not suffer the disadvantages of 5, 9, or
11-valued alphabets and is able to identify necessary assignments in the region reached by
the fault effect.

5 These techniques and their limitations are discussed more fully in chapter 4.

21

ﬁ

2.3 Developments in nonconflicting assignment identification

2.3 Developments in nonconflicting assignment identification

Nonconflicting assignments restrict the space remaining to be searched for a test
pattern and cannot cause a backtrack. Thus, they need never be retracted. That is. if there
was a test pattern in the search space before the nonconflicting assignment was made, then
there is at least one test pattern in the subspace remaining after the assignment has been
made. Conversely, if no test pattern exists in the search space after the nonconflicting
assignment is made, then there were none in the unrestricted search space either. These
assignments are extremely useful because they vastly and irrevocably reduce the space

which must be searched in order either to find a test vector or prove the fault untestable.

The guarantee that they will never have to be backtracked is the distinguishing feature
of nonconflicting assignment identification. Although analysis of the polarity of reconver-
gent paths has been used in LAMP2 [AbrKul85] and other test generation systems, this
information was used to guide the test generator heuristically rather than algorithmically.
Similarly, the multiple backtrace heuristic of FAN [FujShi83] implicitly uses a form of po-

larity analysis to find desirable arbitrary assignments, although again. these assignments

may lead to backtracks.

Properties of nonconflicting assignments were first used in the PLANET test genera-
tion system [RobRaj88] to find algorithmic assignments during test pattern generation for
crosspoint and delay fauits in programmable logic arrays (PLA's). In two-level structures,
monotone pruning is used to make irrevocable assignments to primary inputs. A vote is
collected for all inputs connected to those product lines whose value is required in order
to generate a test, and those inputs for which the vote is unanimous are assigned. For
example. in order to test for a missing device fauit at the crosspoint of a product line and
an output line, the product line must carry a "1 and all other product lines connected to
that output line must carry “0": in order to produce a "0" on a product line, the desired

value of inputs connected to it in true (complemented) form is “0" ("1")

Recently. function montonicity in general multi-level structures has been used to find

desirable assignments in a test generation system based on Boolean difference and tech-

22

pE,

<7

2.4 Deterministic test generation algorithms

niques developed to solve satisfiability problems [Lar89]. Clauses which contain variables
that appear in only true or only complemented form in all clauses of the expression are
removed, resulting in a drastic pruning of the search space. "Clause removal” is a similar to
nonconflicting assignment analysis, except that there is no guarantee that the assignments
made in this step can be justified since there is no restriction on the variables assigned. If

the assignment used to prune a clause is not justifiable, then a backtrack will occur.

2.4 Deterministic test generation algorithms

Test pattern generation algorithms can be distinguished based on the methods they
use to identify necessary. nonconflicting, and arbitrary assignments. Much work in the area
of test pattern generation has focussed on finding better heuristics for test generation—
methods of identifying branch decisions which are most likely to lead to a test vector or
redundancy proof in the least amount of time. This thesis is concerned with algorithmic
test pattern generation rather than with heuristics. Key algorithms differentiable on the
basis of the algorithmic techniques they employ are discussed in this section and compared
to the QUEST test pattern generation algorithm, proposed in this thesis and presented in
chapter 7.

Four major test pattern generation algorithms are discussed in this section: the D-
algorithm, PODEM, FAN, and SOCRATES. The algorithms are presented in the way they
were originally proposed by their authors, presuming that they use a 5-valued logic system.
As discussed earlier in this chapter, the use of an appropriate logic system has a major
impact on the efficiency of the test pattern generation algorithm—for example. the number
of necessary assignments it can identify. In addition, the choice of logic system influences

the way the algorithm works—the order and type of operations it must perform.

The two basic requirements of any test pattern are that it must sensitize the fault and
that the fault effect must be observed on at least one primary output. These requirements
are referred to as sensitization and propagation. and are traditionally treated separately.

The sensitization condition requires that the point of the fault be driven to a value opposite

23

2.4 Deterministic test generation algorithms

that caused by the fault (a line which is sy is driven to 0. and vice versaj; the propagation

condition requires that either D or D be observed on at least one primary output.

In addition to backward implication, the D-algorithm [Roth66] introduced the con-
cepts of the “D-frontier” and “D-drive” to monitor and promote the propagation of the
fault effect, respectively. The D-frontier consists of those gates whose output value 1s
either D or D which drive gates whose output value is X. The D-frontier represents the
extent to which the fault propagation requirement has been fulfilled—the limits of the region
of the circuit in which it is known that the logic values in the fault-free and faulity circuits
are different. D-drive is performed to advance the D-frontier toward primary outputs—to
propagate the D symbol one step closer to primary outputs. At each stage. backward

irnplication is performed to identify necessary assignments which appear after an arbitrary

assignment is made.

The PODEM algorithm [Goel81] is similar to the D-algorithm, except that arbitrary
assignments are made to primary inputs only. Since assignments to primary inputs can
always be justified, this restriction has the effect of ensuring that “unjustified nodes” (other
than the sensitization requirement at the point of the fault) do not occur in the PODEM

algorithm, making it considerably easier to implement than the D-algorithm.

PODEM aiso introduced the “X-path check” step, which ensures that the fault effect
can propagate to some primary output. The X-path check step is performed to identify
those gates on the D-frontier from which it is not possible to propagate the fault effect to
any primary output. That is, if there are no X-paths from a node on the D-frontier to at
least one primary output (i.e. all paths are blocked by 0's and/or 1's), that node can be
dropped from the D-frontier. If no gates remain on the D-frontier, the fault effect cannot
propagate to any primary output, and a backtrack must be performed |If the X-paths
are not checked, the test generation system will not recognize that the fault effect cannot

propagate until much later, after unnecessary branching and bounding has occurred

The FAN algorithm [Fu;Shi83] 1s an extension of the PODEM algorithm with two ma-

jor modifications, intended to address weaknesses of PODEM. The restnction of branch

24

2.4 Deterministic test generation algorithms

assignments to primary inputs is removed, making FAN more difficult to implement (un-
justified values caused by branch assignments to internal circuit nodes must be taken care
of). However, by allowing branching at internal nodes, FAN is able to identify conflicts
by exploring all node assignments in cases where exhausting input combinations affecting
those nodes is not practical. In addition, FAN identifies dominators. a class of necessary
assignments which cannot be found by conventional backward implication and not igentified
by either the PODEM or D-algorithms. By identifying additional necessary assignments,
FAN is able generate a test or prove that none exist for certain difficult faults with fewer

arbitrary branches and backtracks than PODEM or the D-algorithm.

Using the learning techniques described above, SOCRATES [SchTriSar88, SchAut89)
is able to identify additional necessary assignments which are not found by either the D-
algorithm, PODEM, or FAN, including certain necessary assignments in the region of the
circuit reached by the fault effect (see chapter 4). SOCRATES itself is an extension of the
FAN algorithm, performing the same steps as FAN, but identifying additional necessary

assignments, and thus finding a test pattern or proving redundancy more efficiently.

Compared to other test pattern generation algorithms, the QUEST algorithm has a
number of novel features. Certain of these features are due to the use ¢* a 16-valued logic
system for test pattern generation and others come about due to the analysis of necessary

and nonconflicting assignments.

A 16-valued logic system significantly simplifies the test generation algorithm. as
there is no need to perform any of the computation related to D-drive, X-path check.
maintenance of the D-frontier, etc. In addition, there is no need to distinguish between
sensitization and propagation of the fault—the only operation the algorithm must perform
is justification of unjustified signal values. It has been noted that. for some untestable
faults. the fault effect cannot be propagated to primary outputs, while other faults cannot
be sensitized [MinRog89]. In order to prove that these faults are untestable with a minimum
of backtracking using conventional algonthms. i1t is desirable first to attempt propagation
or sensitization, respectively. The effectiveness of the strategy depends on the fault which

is targeted—either will perform better for some faults and worse for others. Viewed from

25

2.4 Deterministic test generation algorithms

the perspective of a 16-valued logic system, the question becomes not which strategy to
use, but if the traditional approach to test pattern generation is appropriate. Since both
sensitization and propagation are required in order to test the fault and both are special
cases of line justification, distinguishing between those assignments made for sensitization
and those made for propagation is both arbitrary and counterproductive. Both sets of

assignments are necessary, and should not be distinguished.

The formulation of the test generation problem as a set of justification points makes
it easy to identify necessary and nonconflicting assignments systematically using the tech-
niques presented in chapters 4 and 6, respectively. The systematic identification of neces-
sary assignments replaces a number of operations performed by other algarithms such as
conventional backward implication, dominator identification, and learning, while 1dentifying
additional necessary assignments which cannot be found using any of those techniques.
The identification of nonconflicting assignments is novel and is not performed by any other
general test pattern generation algorithm. At the same time, if no necessary or noncon-
flicting assignments can be identified, then any of the heuristics proposed by other test

generation algorithms can be used by QUEST to choose arbitrary assignments.

26

Chapter 3 Images and inverse images of set functions

The mathematical concepts of images and inverse images of set functions form the
foundation on which the methods to identify necessary and nonconflicting assignments
developed in this thesis are built. In this chapter, these concepts are defined and applied

to algorithmic test pattern generation.

3.1 Images of set functions: forward propagation

During forward propagation, the set of possible salues at the output of each gate
is determined given the sets of possible values at its inpuis. The values at the inputs to
the gate are assumed to be independent—thus the possible output values are simply those

which can be produced by each of the possible combinations of input values.

A 003 C {0,0,D,13

oo |)

Figure 3.1 Images for a 2-input AND gate

Example 3.1: Consider the 2-input AND gate shown in Fig. 3.1. The sets of possible
values on the inputs. are {0.D,1} and {0, D.1} Thus the set of possible values at the

ﬁ

3.1 Images of set functions: forward propagation
output is:
AND({0,D,D},{0,D,1}) = {AND(0,0), AND(0, D), AND(0,1), AND(D,0),
AND(D, D), AND(D,1),AND(1,0), AND(1, D),
AND(1,1)}
= {0,D, D,1}

This calculation can be formalized using the concept of images of set functions
[Raj88]:

Definition 3.1: Let f : X x Y — Z be a function of two variables, and A, B, and C be
nonempty subsets of X, Y, and Z, respectively, A C X, BC Y, C C Z. The image
f(A,B) of A x B under f is the set of all images f(z,y) such that z € A and y ¢ B.

Using set builder notation:

f(A,B)={f(z,y) |[zr€ Aand y€ B }.

Using the bitwise encoding Bg from Table 2.5, the function of a gate can be described
by tour characteristic equations. The equations determine the presence or absence of each

possible value at the output of a gate given the sets of possible values of its inputs.

Example 3.2: The characteristic equations for a 2-input AND gate with inputs A and B
and output C are:

¢g = ag + by + apby + apbp
ey = albl—)- + a,-D-bl + aﬁbb-
¢cp =athp +apby +apbp
€y = a1b1.
For example. the equation for ¢y says that 1 is a possible value at the output of the AND

gate only if 1 is a possible value of both inputs Characteristic equations with a similar

form can be defined for OR, XOR. etc gates (as well as for larger functional blocks, f
desired). The image at the output of a 2-input AND gate and a 2-input OR gate for all

256 possible combinations of input values 1s shown in Table 3.1 using the B coding from

28

<

3.1 Images of set functions: forward propagation

0123 4567 8 91011 12131415 0123 4567 891011 12131415
00000 0000 O0O0CO0 0000 00000 0000 0000 O0O0DODOO
tfjo0111 1111 1111 1111 110123 4567 891011 12131415
200123 1132 2323 33133 21022 2 8101010 8101010 8101010
30133 1133 3333 33133 3j03 23 12151415 8111011 12151418
40111 4555 4555 4555 4/ 0 4 812 4 41212 812 812 12121212
50111 5555 5555 5555 5(0 51015 4 51415 8131015 12131415
6/0 133 5577 6717 7T177 6/ 0 61014 12141414 8141014 12141414
710133 5577 77711 711 710 71015 12151415 8151015 12151415
8/0 123 4567 8 91011 12131415 B(0888 8888 8888 888 8
9/ 0133 5577 9 91111 13131515 91 0 91011 12131415 8 91011 12131415
1000 123 5577 10111011 15151515} {10 0101010 8101010 8101010 8101010
111 0 1 33 55 7 7 11111111 15151515) 111) 0111011 12151415 8111011 12151415
1210 1 33 4 5 77 12131515 12131515 (12} 012 812 12121212 812 812 12121212
130133 5677 13131515 13131515 |13} 0131015 12131415 8131015 12131415
14/ 0 1 33 55 77 14151515 15151515| 114) 0141014 12141414 5141014 12141414
15/ 0 1 33 55 77 15151515 15151515] |15] 0151015 12151415 8151015 12151415

a) AND gate b) OR gate

Table 3.1 Gate functions in a 16-valued logic system: By¢ x Byg — Byg

Table 2.5. Similar tables can be computed for all other 2-input gate types, at which point

forward propagation through individual gates can be performed by table lookup.

The sets of possible output values of all gates in the network can be determined in
linear time in a forward levelized selective trace from primary inputs to primary outputs
using the sets of possible input values of each gate to find its set of possible output
values. Since gate inputs are assumed to be independent, forward propagation through
multi-input gates can be performed by forward prupagetion through a cascade of 2-input

gates performing the same function.

The presence of the fault in the circuit under test is accounted for by changing
the circuit structure slightly. The point of the fault becomes a new circuit node whose
propagated value is assigned to {D} or {D} if the fault is stuck-at zero or stuck-at one.

respectively.?

6 Muitiple faults can be dealt with similarly there are several fault sites, each of which may propagate
a fault effect The propagated value of each individual s (sq) fault site is {D,0} ({D,1}). as the
only requirement to generate a test for the multiple fault is that the fault effect from at least one of
the component single faults be observed on at least one primary output.

29

3.2 Inverse images of set functions: backward implication

ABID B~pun o F

8 Joyj L. H ©boy

]
d2
o o1 b2 E o0 155 DQ__

Figure 3.2 Forward propagation in a circuit

Example 3.3: Due to the presence of a sy fault on line a in Fig. 3.2, line a propagates { D}
to input 1 of AND gate D. The sets of possible signal values of all nodes in the circuit are
determined when all primary inputs are assigned to {0,1}. For example, the only possible
output values of gate D are D and 0: D if input B is assigned to 1 and 0 if B is assigned
to 0. Note that the values propagated by the subcircuit driving the point of the fault (in
this case, input A) do not affect values in the subcircuit driven by the point of the fault,

as the presence of the fault alters the behavior of the circuit.

3.2 Inverse images of set functions: backward implication

Another operation which is required during test pattern generation is backward im-
plication, where the smallest set of values at the inputs of a gate which could be combined
to produce a restricted set of values at the output of the gate is determined—the inverse
of the image function just described. Backward implication is the generalized analogue of
conventional local implication discussed in section 2.2, and is used to derive the necessary

input conditions to justify a restricted value at the output of a gate.

A ie'oﬁv"'} 4 —
| \C {6,055}
B {68,134)

Figure 3.3 Inverse images for a 2-input AND gate

Example 3.4: If {D} must be justified at the output of the AND gate n Fig 3 3 (sigmfied
in the figure by crossing out the alternate output values). then the value of input A must

be {D} and of input B must be {1}. If either input carried some other value, then the

30

e a

pach

A

3.2 lnverse images of set functions: backward implication

set of possible values at the output of the gate would not include D and it would not be

possible to justify the required value.

The process of backward implication can be formalized using the concept of inverse

images of set functions [Raj88]:

Definition 3.2: Let f : X xY — Z Le a function of two variables, and A, B, and C be
nonempty subsets of X, Y, and Z, respectively. AC X, BCY,and C C Z. Theinverse
image of C on coordinate X under f, restricted to A x B, which we denote fl}f B(C’). is
the set of all z € A such that f(z,y) € C for some y € B. and similarly for coordinate Y.

In set builder notation:

f|1§3(0)= {z € A|f(z,y) € C for somey € B}
fll’;B(C)z{y € B| f(z,y) € C for somez € A}.

Example 3.5: In a 2-input AND gate with inputs A and B aird output C, consider the
combinations of input/output values in which A = {D} participates: AND(D,0) = 0,
AND(D,D) = D, AND(D,D) = 0, and AND(D,1) = D. In order for D to appear in
A', the reduced value of input A, it must appear in the original value of input A and some
combination of D on input A with a value at input B must produce a value which appears
in C!, the reduced value at the output of the gate. Using the bitwise encoding Bg, the
inverse image for a gate can be described by four characteristic equations, as was done in
the previous section for images. For the AND gate. the inverse image A’ on input A of the
reduced or restricted set C! (C' C C) is:

a'o = agc6

I /] ! /
a-D- = aﬁ(bl C-D-+ bDCO + bb_cﬁ + boco)
dp = ap(bic’D +bpch + bﬁcb + bgcb)

ay = qy(byey + bpcp + bﬁcfﬁ-i- bocp)-

31

3.2 Inverse Images of set functions: backward implication

Lemma 3.1: Let the power set of set S, denoted P(S), be the set composed of S and all
of its subsets (including the empty set). Given 4, B, C, flj{;‘(5(C). fl:‘}; g(C) defined in
P(S). then:

leB(C) A”ﬂfs'fs(c)
=An{zx €S| f(z,y) € C for somey € B}
|AxB(C) Bﬂfuxs(c)
=Bn{yeS|f(z,y) eC for somezc A}.

Proof: From the definition of the power set, for any X € P(S). X C Sand X NS = X,
For any general set function g with inverse image g1, g~1[C n D] = g~1[C] n ¢~} D)
[HrbJecB4]. Thus:

SiaxB(C) = Fi{455)x5(C N S)
={z|z€(ANS)and f(z,y) € (C N S) for someye€ B}
={z|z€Aand f(z,y) € S forsome y € B} N
{z|z€Sand f(z,y) € C forsome y € B}
=AN{z|z€ S and f(z,y) € C for somey € B}

= AN fi3X5(C)

and similarly for fﬁ; g(C). "

Example 3.6: Using lemma 3.1, Tables 3.2a and b are computed for 2-input AND and OR
10.0. D4} x B(C) given C
(column address) and B (row address). For example, using Table 3.2a to find the inverse
image on input A of output {D} for the AND gate in Fig. 3.3: table[{D}.{0, D,1}}
{0,D,1} ={D}n{0,D,1} = {D} (table[2.13]n11 = 2n11 = 2). To increase readability.

elements 0 (inconsistency) and 15 (no implication) are replaced by blanks and periods,

gates, respectively. The table gives the generalized inverse image f

32

3.2 Inverse images of set functions: backward implication

B

0123 4567 8 91011 12131415 0123 4567 891011 12131415

0 0
1 . 1 123 4567 891011 121314
2 510 2 3 12 .
3 .10 3 133 4577 1213 . . 1213
4 3 12 . 4 5 10
5 . 12 . 5 123 5577 10111011
6 710 . 12 .14 6 3 5 7 14
7 10 . 12 .14 4 133 55717 44
8 123 4567 891011 121314 8
9 .2 . 4 .6 . 8 .10 . 12 .14 99 123 45617
10 510 . 4 514 . R1310 . 121314 10 3
1 A0 0 4 14 . 8 10 . 12 .14 11 133 4571
12 323 12 14 . 8111011 12 .14 12 5
13 L2012 14 . 8 10 . 12 .14 13 123 5571
14 710 . 12 14 . 8 .10 . 12 .14 14 3 5 7
15 10 . 12 .14 8 .10 . 12 .14 15 133 55771

a) AND gate b) OR gate

Table 3.2 (nverse images in Byg
Alda - _Bli~pwb_ ¢ F
L/ &
g lel B T \H_bBey

o]
cleu b2 E w1} DG__

Figure 3.4 Backward implication in the circuit from Fig. 3.2

respectively. Similar tables can be computed for other gate types and backward implication

can be performed using table lookup.

Example 3.7: Fig. 3.4 illustrates backward implication for fault sy continued from example
3.3. Inorder to observe { D} at the primary output, line F must carry {D} and line G must
carry {1}. In order for F to carry {D}, line el must carry {1} and line d1 {D}. whica in
turn implies that b1 must be {1}. Finally, if input B is {1}, then C must be assigned to
{0} in order to produce {1} at G.

33

——«

3.3 Limitations of set functions

3.3 Limitations of set functions

In the definition of the image and inverse image set functions for a gate, the inputs
to the gate are assumed to be independent. If the inputs are correlated by a common
subcircuit, then the sets of possible values at circuit nodes obtained using images and
inverse images may be pessimistic in that not all the values in the sets (and. in particular,

not all the combinations of values) can actually be produced.

bl D

0,1

011 |

b2
c. E

Figure 3.5 Pessimism in the forward implication step

Example 3.8: The circuit of Fig. 3.5 is an implementation of a 2-input MUX with data
inputs A, C and select B. The select input can be either 0 or 1, but since both data inputs
are 1, the output value will be 1 regardiess of which is selected. However, the set of possible
values of F found during forward propagation using images of set functions is pessimistic,
containing both 0 and 1. The pessimism arises as a result of the implicit assumption made
in forward propagation that the values of nodes D and E are independent when, in fact,

the are closely related—they cannot be 1 simultaneously.

As images and inverse images were defined for 2-input gates whose inputs are inde-
pendent, the characteristic equations extracted from muiti-gate circuits containing recon-

vergence may not be exact.

Example 3.9: Fig. 3.6 illustrates that the characteristic equations derived for three different
implementations of the XOR function are not the same When forward propagation 1s
performed in circuits containing reccnvergent fanout, spurious terms in the charactenstic
equations brought about by reconvergent fanout cause values which cannot actually be

produced to appear at network nodes. For example, inspection of the equation for ¢; for

33

5=

a) 2-input XOR gate

A D
"“DOFﬁ
B Po—2 E

€) AND-OR implementation

D,___

€) Four NAND implementation

Figure 3.6 Three implementations of the exclusiv

characteristic equations

E

3.3 Limitations of set functions

g = “060+“'ﬁbf)'+“DbD +°1b1
CB= aob-D-+ a—D-bo +an1 + albD
tp= aobD +“ﬁb1 +an0 + aibﬁ
g = aobl +a'§bD +an—D-+ 61b0

b) Characteristic equations for a

%0 = agbo + apdp+ apbp + agby +
apaq +bob1
c-D-= “Obﬁ"’ a-b-bo +an1 + a’lbD +
GFOD(bB-F bD)+bD-bD(aD-+ aD)
cp= aobD +aﬁb1 + ano + a1b5+
opeplby +bp) +bpbplag+ap)
¢ = apby + a—D-bD+ an—D--i- aqyby +
bobl(a-b--i- “D)"""O“I(bﬁ"’bD)

d) Characteristic equations for ¢

= aob0+ a-D-b—D—+ anD + albl +
aoal(bﬁi- bD) + bobl(ab--i' aD)

oy = aob§+a-D—b0 +aphy +aybp +
aD-aD(bD'-l- bp)+ bl—)—bD(aD—+ ap)+
aO“D‘“lbl +albob-D—b1

cp= aobD +a-561 + ano <+ alb-D--}-
af)'“D“’ﬁ"’ bp)+ b-b-bD(aE'l- ap)+
aga paqby +a1b0bDb1

¢q = agby + a~D—bD + an-D-+ aqbg +
al(ao + b-D—bD) + bl(bo + a—D-aD)

f) Characteristic equations for e

e-or function and corresponding

35

3.3 Limitations of set functions

the circuit in Fig. 3.6¢ indicates that 0 wili appear in the output value if input A carries {0,1}

and input B {D, D}, {D}, or {D}. Methods to overcome the problem of reconvergent stem
correlation are discussed in section 4.4.

36

s

Reduction list calculation: a method to
Chapter 4
identify necessary assignments

The key to the necessary assignment identification technique presented in this chapter
is the concept of reduction which defines the relation between assignments in the circuit
under test and the values which must be justified. A general theory of reduction based on
the mathematical properties of images and inverse images of set functions is developed.
Applied to deterministic test pattern generation, the calculation of reduction lists provides
a systematic means to identify necessary assignments using set operations and to store

this information in a concise form.

Test generation for a particular target fault can be represented by a search tree
whose nodes represent the state of the test at each instant and whose edges represent
assignments. Leaf nodes represent inconsistent states (backtracks) or valid test patterns.
If the fault is untestable, then there are only non-solution leaf nodes: if the fault is testable,
then there may be solution and non-solution leaf nodes, depending on the order in which
the space is searched. If inconsistent requirements are detected during test generation, a
backtrack is performed and the state of the circuit is rolled back to that which existed prior
to the most recent arbitrary assignment: the alternate choice (if any) is then explored. The

fault is untestable if there are no arbitrary assignments which can be reversed.

Using a 16-valued logic system for test generation, the only operation performed is
justification (section 2.1). The state of the test process at any point (the current node in

the search tree) is represented by a set of node/value combinations which must be justified

e PN

T

T T TR

e

o e e T

Reduction list caiculation: a method to identify necessary assignments

in order for the conditions of the test to be satisfied and a test pattern identified. Given

an initial set of justification points, others can be derived in two ways:

e A necessary assignment to an internal node of the circuit under test is identified and
applied. Since the assignment is necessary. there is no need to search the space
defined by alternate assignment(s) to the node, as no test patterns exist there.

e An arbitrary decision is made to search the tree in a particular direction and a branch
node is assigned to a particular value. Unlike a necessary assignment, the decision
may not be correct and must be reversed (backtracked) if a conflict is detected.

p ot
A foi]
c fon

Figure 4.1 Test pattern generation for fsy

Example 4.1: In order to sensitize a s4 fault on line f of the circuit shown in Fig. 4.1, the
cutput of the AND gate must be driven to {0}. Since F is a primary output of the circuit,
propagating the fault effect is trivial. If input A were assigned to {1}, then the value of
both lines D and E would be {1}—thus, the AND gate output would be {1}, and it would

not be possible to test the fault. Thus, a necessary assignment (and a second justification
point) in this example is node A assigned to {0}.

@ Conflict
(no test exists)

L N)
o~
\\\
e s e
7\
// \
[N)

Figure 4.2 The search forest

38

iy

Reduction list calculation: a method to identify necessary assignments

Necessary assignment identification through reduction list calculation can be under-
stood through the search forest—the graph composed of all possible search trees for a
particular target fault. Edges represent assignments made in the circuit urder test and
vertices represent the state of the test generation process after the assignments have been
made. From the root, many initial assignments are possible—for example. in the search
forest depicted in Fig. 4.2, input A can be assigned to {0} or to {1}. However, input B
could equally well be assigned initially, as could any other primary input or internal node
of the circuit. Once an initial assignment is made, there are again many choices for the
next assignment, and so on. Individual search trees may overlap. as the test generation
process lands in the same state (at the same node) after a particular set of assignments
is made, regardless of the order in which they are assigned—for example, the same node
in the search forest is reached if the test generator assigns first A =1 and then B = 0 or
first B=0 then A= 1.

Reduction list calculation is equivalent to searching one level deep from the current
node in the search forest to identify the first-order necessary assignments. In other words,
from the node in the search forest representing the current state of the test, reduction
lists identify those assignments which immediately terminate at non-solution leaf nodes.
For example, in Fig. 4.2, the reduction lists would identify that Ao and By, are non-
solution leaf nodes. and thus that A(yy and Byq) are first-order necessary assignments. On
the other hand. C(5) would not be identified by the reduction lists as it is a second-order
necessary assignment (found by searching two levels deep in the search forest)—after Cl1}
is assigned, any assignment to D leads to a conflict. Reduction analysis determines the
effect of a single assignment made to a node in the circuit and does not recognize conflicts
which appear only after multiple assignments are made. However, applying necessary
assignments moves the process into a new node in the search forest, from which necessary

assignments which were not recognized from the previous state may be identified.

The result of necessary assignment identification is to create a reordered search tree
where non-solution leaf nodes are placed as near the root as possible, preventing the test
generator from wasting time searching areas of the tree in which there are no solutions.

Ideally. the test generator would identify all necessary assignments rapidly. and thus find

39

P

41 Reduction list . *y assignment ldentification

a test pattern or prove untestability without backtracks. . sever, the test generation
problem is ANP-complete [FujToi82] so, in general, test generation algorithms are able to

identify only some of the necessary assignments (see section 4.5).

4.1 Reduction lists and necessary assignment identification

Reduction lists capture global information about the function of the circuit under test
through local computations of lists at the inputs and outputs of each gate. Gl.™al analy-
sis is achieved through the indexation of the assignments which appear on the reduction
lists. Necessary assignment identification through reduction list calculation is unifying in
the sense that all other proposed techniques, including backward implication, dominator

identification, and learning are special cases of this general method.

Definition 4.1: An assignment is a pair consisting of a node identifier and a value. The
assignment of node S to value v is denoted S,.

Definition 4.2: For each line [in the circuit and for each possible value v which it could
take, the reduction list R., contains those assignments to nodes in the circuit which would
cause value v to vanish from the set of possible values of /. An assignment which reduces
v at [is called a reduction assignment for l,. An assignment which reduces the required

value at a justification point is called a reduction assignment.

For each possible value of each line in the circuit, the corresponding reduction list
gives the set of reduction assignments for that line and value. Using a 16-valued logic
system for test generation, each line in the circuit has four reduction lists associated with

it, one for each possible value, 0, 1, D, and D.

Example 4.2: In the circuit shown in Fig. 4.1, when A is assigned to {1}, the value of
F becomes {1}: stated equivalently. assigning .1 to {1} causes 0 to vamish from the set

of possible values at F. In other words. Afqy (read “node A assigned to value {1}")

40

s

4.1 Reduction lists and necessary assignment identification

reduces Fygy—A(y) is a reduction assignment for F(o). Thus, reduction list R{f contains

assignment Ay).

Necessary assignments are derived from the reduction lists at the justification points.
If C{z} must be justified, then all assignments which appear on reduction list Rf must be
eliminated. That is. if P,) is an assignment which would reduce Cy,}, then value v must
be removed from the set of possible values of point P since assigning P to v will cause
a conflict (it will no longer be possible to justify C{z}). If the set of possible values at P
remaining after v is removed is empty (represented by {} in P(B%) from Table 2.5), then

a conflict exists under current assignments and a backtrack must be performed.

Example 4.3: From the previous example, if F{o} is a justification point (for example,
in generating a test for f’i)' then assignment A{1} must be eliminated from the set of
possible assignments at A since assigning A to {1} will lead to a conflict. Thus, A{l} is

a reduction assignment and Aoy is a necessary assignment.

The set of justification points can be represented by an AND-OR graph. whose
AND-nodes represent assignments all of which must be justified in order to find a test
and OR-nodes represent assignments at least one of which must be justified. For example,
in order to generate a test for a fault, the point of the fault must be driven to a value
opposite that caused by the fault (sensitization) and D or D must be observed on at
least one primary output (propagation). A justification point is satisfied if the forward
propagated value of the corresponding gate is the same as the required value. A test
pattern is generated when all justification points are satisfied. Conversely, the justification
point cannot be satisfied if its forward propagated and required values are disjoint. If an
AND-node cannot be justified, then no test patterns exist in the space defined by current
assignments and a backtrack must be performed to reverse the last arbitrary assignment.
The fault is untestable if there are no arbitrary assignments which can be reversed. If an
OR-node cannot be justified, then it is dropped—if none of the OR-nodes can be satisfied,

then a backtrack must be performed Lemma 4.1 follows from this reasoning.

41

4.1 Reduction lists and necessary assignment identification

=
Oy, OG,

Figure 4.3 The AND-OR graph of justification points

Lemma 4.1: Given the set of justification points {A},l,...,A',}n} all of which must be
satisfied (AND-nodes in the AND-OR graph) and points {O,{l,...,O"‘"m} at least one

of which must be satisfied (OR-nodes in the AND-OR graph). then the set of reduction

(UCn =)o (AN =)

=1 Vzey, =1 ‘v’yeu]

assignments is:

Example 4.4: The required value of an AND or OR node may not be unique. For example.
in order to justify {D} at the output of an ANDgate whose input values are {0, D} and
{0,1, D}. it is necessary to justify {D} at the first input and {1, D} at the other. In order
to be a reduction assignment with respect to the second input, an assignment would have

to reduce both D and 1 there.

Operations intersection (N). union (U) and difference (\) are performed on the re-

duction lists.

Example 4.5: Given lists of assignments Ly = {Aq}, B;}, C(1}}. and Ly = {A(q), By,
Cio,n}}:

LynLy = {Bg)}

Lyu Ly = {A0,1}- B{o}: C{o0,0,1}}

L1\ Ly = {A(g). Cy1y}-

In order to reduce a value from the output of a gate, it i1s necessary to elimmnate
all combinations of input assignments which could be combined to produce that output
value. For examp'-, in order to reduce value =z from the set of assignments at the output

of a 2-input gate, one or the other (or both) input value from all input combinations which

42

4.1 Reduction lists and necessary assignment identification

produce z at the output must vanish. An assignment which would cause this to happen

belongs to RS,

Example 4.6: From the characteristic equations for a 2-input AND gate given in exam-
ple 3.2, value 0 is included in the set of possible values at the output of the gate if 0 is
present at ~ither input, or if D at one input can be combined with D at the other. Thus,
for an assignment to reduce O at the output of the gate, it must reduce: 0 at both inputs,
either D at input A or D at input B, and either D at input A or D at input B. This can
be represented as the intersection of reduction lists from the inputs of the gate: in order to
appear on —ﬁg an assignment must appear on _}?6‘ -ﬁg ﬁg or ﬁ% and ﬁ% or -ﬁg
In addition, if the output value of the gate were assigned to some value other than 0, then
that would have the effect of reducing O at the output of the gate as well. The reduction

equations for output C of a 2-input AND gate with inputs A and B are:

— -—) —p - - - g
R§ = (R§n RG n(RGURBN(RHURE)) U{Cp p)}
RS = (R{uRE n(RAUED) n(RAURE) U {Cppyy)
— — = - = - o
RG=((R{uRE)N(RAURP)N(RH0U RB))U{C{O,EU}
RS =RAuRBu{c

i1 = Ry URj

Example 4.7: Similarly, the reduction equations for output C of a 2-input XOR gate with
inputs A and B are:

{
!

R§ =(R{uEHN(REVED n(EHu RPN (RPVED) uicp pyy)
RS = (REu RN (RAVED) n(RAURPn(RLUTRE) uiCp)
EG =((RAuEE)n (Tz'%u RP)n(RHuRE)n(Fiu R3)) v{C 51y}
RS = ((RAUERB)n (ﬁ%u RB)n(R4u ﬁ%) (R{uRE)u {Cp.0)}

{

!

!
w

!
|

Similar sets of reduction equations can be defined for other gate types. including
simple gates such as OR, NAND. NOT. etc. as well as for more complex blocks such as

MUXes. adders, etc. More generally, provided that its fi'nction <an be described in terms

4

4.1 Reduction lists and necessary assignment identification

Line | List Contents
A fé: {4g3))
Ry {40y}
B ﬁ(’g {Byy))
Ri (B(g)}
c ’fg N
RS (C1o)

D | RY | (ay By D)
Ri {Dyop)

£ | Ry | tapCuyB
R (E(qp)
=F ,

c) Minimized example circuit F f,% {414), FU)}

By | Doy Eqop Frop)

b) Reduction lists for &

Figure 4.4 Reduction list calculation in a circuit

of images and inverse images of set functions, reduction equations can be defined for any

module.

Example 4.8: The circuit from Fig. 4.4a, taken from [SchAut89)]. illustrates reduction list
calculation in a network of simple gates. As discussed in example 4.2, A (1) appears on
—}—Z’g A F{o) must be justified during test generation. then {1} must be eliminated from
stem A. Note that the circuit from Fig. 4.4a is nonminimal, implementing the same function
as the circuit shown in Fig. 4.4c. In general, if an assignment to stem S appears on a
reduction list at one of its reconvergence gates G when all inputs are assigned to {0,1}.
then S controls the output value of G. The circuit can be redesigned to make S a direct
input to G and the intervening unnecessary logic deleted. making the circuit both smaller

and easier to test (some reconvergence has been removed).

The reduction lists are completely defined by the forward propagated values of network
nodes, which are determined by the injected target fault and the assignments which have

been made in the circuit under test. Given a target fault and set of justification points,

44

4.1 Reduction lists and necessary assignment identification

there is one and only one corresponding set of reduction lists. Example 4.9 illustrates

€
4 reduction list calculation when circuit values are partially determined.
Line | List Contents
A R 6: {(A(1))
Rl {A{O}}
RP {
Y 0
Ry (A(ap Piay)
Ry {40y Do)
B | g 4y Eqry)
Ry 0y Bioy}
Pl Eg Ay Fap)
. Fi {40y Fop}
a) Example circuit p 7‘53 “{1}’0{1}}
By | (A1) Broy Sop)
Aol Ry ey Hap)
: RY 1 A0y Doy Froy Hiop)

b) Reduction lists for a)

Figure 4.5 Reduction list calculation with partially determined circuit values

Example 4.9: In the circuit from Fig. 4.5. A(yy reduces Gy and Hyp, if B = {1}
and C = {1} have been determined by other assignments during test pattern generation.
However, if A = {0,1}. B = {0,1}, and C = {0,1} (i.e. no assignments have been made).
then A(q) does not reduce either G (g or Hypy.

Reduction lists identify necessary assignments in the region of the circuit reached
by the D symbol. In addition to other necessary assignments, the reduction lists identify
dominators (section 2.2) as nodes whose necessary assignment is to { D}, {D}. or {D.D}.

Static and dynamic learning and structure-based sensitization (described in [SchAut89]) are

85

4.1 Reduction lists and necessary assignment identification

J— YT

4 TN
K.t NQ
‘N—D!.E.QL-- \: y 3]
7
v
2 Nedt 7

Figure 4.6 Necessary assignments in the region of the D symbol

also special cases of necessary assignments identified by the reduction lists, as illustrated

by the following example,

Example 4.10: The subcircuit in Fig. 4.6 illustrates the generality of necessary assignment
identification by reduction list calculation. Here, if B = C = D = J = {0,1}. then oy
reduces Itpy. Lepy. Mypy. Nypy. and Z{D,'ﬁ} (hence I is a dominator with respect to
output Z). In addition, K (g} reduces M{py and N,p). No assignments are necessary.
however, as the fault effect does not need to be observed at Z in order to test the fault
(the fault effect inay propagate to another primary output through gate E). However, if
B(l} is assigned during test generation, Z{ DD} becomes a justification point and I{ D) is
a necessary assignment. After I{D} is assigned, then F{l} can be identified as a necessary
assignment by backward implication. Finally, if J{x} is assigned during test generation,

K4} is a necessary assignment. as K) reduces both D and Dat Z.

Assignment analysis through reduction list calculation is equivalent to making as-
signments in the circuit under test and finding the implication of those assignments on
the values of all other nodes in the circuit. Assignments are analysed in parallel using
list (set) operations, rather than serially. as is done by the learning techniques proposed
in [SchTriSar88, SchAut89]. The key differences between reduction list computation and
necessary assignment identification by other techniques are the parallel nature of the cal-

culation and the use of a 16-valued logic system Test generation algorithms employing a

46

bk

Filisiy,

4.1 Reduction lists and necessary assignment identification

A o4

B ?\;
% ?1 "
o| 2
“h
=\ | 6o
c J
B\ ea
o1 M (501
@
e 1 I—=1 \Kbo
o3
- 3517 YL bo
F |/

Figure 4.7 Test generation for By,

5-valued logic system cannot identify certain necessary assignments in the region of the

circuit reached by the fault effect, even if structure-based sensitization techniques are used.

Example 4.11: The 4 x 1 multiplexor from Fig. 4.7 illustrates necessary assignment iden-
tification in the region of the network which can be reached from the fault site. Previous
assignments have set C = D = E = {1}. The reduction lists indicate that Aqgy reduces
L{py. K{—ﬁ}. Jio}. and Ifg}. and therefore reduces both D and D at M. Thus Agyy is
a necessary assignment. After A {1} is assigned, backward implication from M (D) identi-
fies F{o} as another necessary assignment. Using a 5, 9. or 11-valued logic system, A{l}
cannot be identified as a necessary assignment because the values of lines I, J, K, and L

cannot be resolved.

To partially overcome problems caused by the poor resolution of a 5-valued logic
system, common logic modules (adders, multiplexors, etc.) whose logic dependencies are
predetermined, have been added to the library of building blocks recognized by a modular
version of SOCRATES [SaMaTrSc89]. However. dependencies between modules and in
unrecognized structures continue to be overlooked In addition. before each new module
can be recognized, implication, unique sensitization, and multiple backtrace procedures

which take the signal dependencies of the module into account must be derived manually

47

4.2 Logical constraints and propagation of implications

LR Z b
>o= s—= o

1,7 X by
a) n-Input gate b) m-Output fanout stem

Figure 4.8 Circuit nodes with associated reduction lists

and added to the system. Based on the concepts of images and inverse images of set
functions, reduction lists enjoy complete value resolution and are able to identify necessary

assignments automatically, without resorting to modular circuit descriptions.

4.2 Logical constraints and propagation of implications

By formulating the test pattern generation problem in terms of images and inverse
images of set functions rather than in terms of logical assignments and their implications.
the test generation algorithm is able to extract information about the function of the circuit
under test. This is important, as the logical ocnstraints imposed by assignments propagate
unconditionally in the circuit under test—from inputs toward outputs and from outputs
toward inputs. The result of full implication propagation is to determine all implications of

each assignment, both forward and backward in the circuit.

The circuit under test can be viewed as a graph, with gates represented by nodes
and lines as edges. Primary inputs and outputs are special types of gates, with no inputs
and no outputs, respectively. Each edge in the graph has a set of reduction lists associated
with it. one reduction list for each possible value of the line. Since the constraints imposed
by assignments propagate both forward and backward in the circuit, it is natural to dis-
tinguish “forward” (ﬁ) and “backward” (?) components of the reduction lists. shown as
directed arrows in Fig. 4.8. Circuit nodes relate the reduction lists of the edges connected
to them. For each edge connected to a node, the outward bound reduction Iist component
(forward or backward if the line is an output from or input to the corresponding gate,
respectively) is a function of the inward bound reduction list components of all other edges
connected to the node. The operation performed when the reduction list components are

combined depends on the function of the corresponding gate.

48

Jo iy

4.2 Logical constraints and propagation of implications

The propagation of reduction lists from the output of a gate to its inputs can be
described by a set of reduction equations. In order to reduce a value from an input of a
gate. an assignment must reduce all combinations of values of the output and other inputs

of the gate in which the reduced input value participates.

Example 4.12: From the inverse-image characteristic equations for a 2-input AND gate
with inputs A and B and output C given in example 3.5, value 1 remains in the set of
possible values at input A of the gate if 0, 1, D, or D is present at input B and remains in
the implied value of the output. In order for an assignment to reduce 1 at input A, it must
simultaneously reduce: either 0 at input B or 0 at output C, either 1 at input A or 1 at
output C, either D at input B or D at output C. and either D at input B or D at output
C. These conditions can be stated in terms of the intersection of reduction lists from the
output and other input of the gate: in order for an assighment to appear on TZ‘{‘ it must
appear on ﬁg or Eg’ ﬁf’ or 41?10 ﬁﬁ or ‘Eg and ﬁ% or E% As in example 4.6, an
assignment of input A to a value other than 1 also reduces 1 at the input. The reduction

equations for input A of a 2-input AND gate are:

‘S A S0

R4 =((RFURGn(RPU Rg)n(R%U R%)n(Rgu R§)) u{App1}
— — — — — —_ -— — —

R =((RPUu RGN (REURY) n(R%u RN (RE U RY)) U {454y}
— - =0 —_ — — - —p —

R{ = (R{URD)n(ERURE) n(REUES N (EF UERY)) U {4 5,0y}

[l

Example 4.13: Similarly, the reduction equations for input A of a 2-input XOR gate are:
—
A

- — — - Y By) B
Rf = (R§URHn(RGUEG n (RGUED) (R uEP) Ui pyy)
— — = ™) 5 ‘B R
Ry = (R§ U BB n(RGURD) N (REUED) 0 (BT UED) U A)
4 = (RSURB n(RQU R n(RGURE) N (RS Uﬁ%)) V{40543
- — =5 —_ — -—
Rf = (R§URDIN(RGUER) N (REU RS 0 (R LR 0 ldop0))-

49

S

4.2 Logical constraints and propagation of implications

Figure 4.9 Test generation for fault fsg

Dependencies between circuit nodes may cause logical constraints at one justification
point to appear at another. The reduction lists are able to capture these constraints and

identify additional necessary assignments.

Example 4.14: In order to test the fault f,o in the subcircuit shown in Fig. 4.9, F{1) must
be justified. We note that E{o} requures Byg). as B{l} reduces E(): thus. R includes
E{O} Since E{O} appears on R . it also appears on R”1 and thus propagates to stem
D and appears on R{). Since E{o} appears on both R1 and R;l. it reduces F{l}.
However, F{l} is a justification point—thus E{l} is necessary. A similar argument applies
to D{o}. which is also necessary. It is important to observe that an assignment to stem £

appears on a reduction list at D despite the fact that D is neither driven by nor drives E.

A‘otﬂ

o D s o
| B

d2
clon c E

Figure 4.10 Value justification of a full adder

Example 4.15: In justifying {1} on both the sum and carry outputs of the full adder from
Fig. 4.10. no necessary assignments are identified by backward implication despite that
consideration of the function reveals that inputs A. B. and C must all be assigned to {1}
However, assignment Cg) appears on .ﬁf since Hyqy must be justified. an assignment
which reduces Fiy) implies that E must carry {1} (1e. C{o) appears on K 6) Hence (g,
requires that A = B = {1} (i.e. appears on both 72_82 and ‘Egz) as E = {1} is required

50

-

4.3 General theorem of reduction

if ¢ = {0} in order to satisfy Hyyy. Thus, C(g; appears on —ﬁ? since it appears on both
Pl B g . 7D BC TG :
Ry" and R. Finally, since C{O} appears cn Rj" and R it appears on R . G{l} is
a justification point, so C{O} is a reduction assignment and C{l} is necessary. A similar
argument can be made for assignments A{o} and B{o}. both of which are also reduction

assignments.

4.3 General theorem of reduction

Reduction lists can be calculated for a general set function f using theorem 4.1.

Theorem 4.1: Let f: X x Y — Z be a function, and A, B, and C be nonempty subsets
of X, Y, and Z, respectively, ACX, BCY,C C Z. Let Rg(for each z € A, R;’ for
each y € B, be the set of assignments which cause values x, y to vanish from sets A, B
at coordinates X, Y, respectively. Then the set of assignments which cause value z to
vanish from set C' at coordinate Z, denoted by ﬁf . is the intersection of all assignments
which cause z and/or y to vanish from sets A and/or B for every z € A,y € B such that

f(z,y) = z. For each z € C:

RZ=(2c\Zpu) (ﬁfu(N ﬁz};)

IEf]?éB(z) yEf[;z(’B(z)
= (Ze\Za)u) (Tz’;'u(n =¥
Vel pe gl S

. 3 - (-— *
The set of assignments which cause value z to vanish from set A, denoted by R4, is the
intersection of all assignments which cause y and/or z to vanish from sets B and/or C,

respectively, for every y € B,z € C such that z € f&{B(z). For each = € A:

RY = (x,4\ Xt ﬂ (71"32 ¥ (ﬂ 73,,))
- ¥y

- f(r.B) } I;")

51

4 3 General theotem of reduction

Similarly, for each y € B:

RY = (Yg\Ypu) <Efu (N 7{’?)).

z€f(A,v) xeflA{y(z)
Proof: (By construction) In order to reduce a value at the output of a gate, an assignment
must reduce all input combinations which cause that value to appear To reduce = at
output Z, it is sufficient that an assignment reduce all values r at input A which could be
combined with some value at input Y to produce z at Z By definition, the inverse nnage
on X of z given Y = B is that set of values at X If the assignment does not reduce a
value z in that set, then it must reduce all values y at input Y which could be combined
with £ to produce z at Z—that is, all values in the inverse image on } of : given that
X =z. A similar argument can be made starting with all values at input ¥ which can be
combined with a value at X to produce z.

To reduce a value at the input of a gate, an assignment must reduce al input/output
combinations in which that value participates. For example, to reduce r at nput X, 1t s
sufficient for an assignment to reduce all values z at output Z which can be produced by
combining = with a value at input Y—by definition, those values in the image on 7 of r
given Y = B. If the assignment does not reduce some z in that set, then it must reduce
all values y at input Y which can be combined with = at input X to produce = at the
output—all values in the inverse image on Y of z given X = z. Similarly. to reduce y at

input Y. [

Lemma 4.2: For each fanout branch s, of stem S carrying value v (Fig 4.8b).

_1—?-);1 = ﬁf U (Sy \ S{z}) \J (U *EZJ) for each r¢ v

I
For the fanout stem itself,
n)
R‘: = (5, S :) (l Lo forcach o+

4.4 Stem correlation

Example 4.16: Using theorem 4.1 to derive the reduction equations for an AND gate, with
inputs A = {0,1, D,D}. B ={0,1, D, D} and output C = {0,1,D,D}:

=¢7
R§ = (Cop,0,0y \ Crop) U (K¢ U(REn BENRENEP)n(RA4U(RENED)
n(Rpu(REnEL)n(EPuED) =8
= (Cppn) U REN (REVEDN(REAHURE) U (RF U (RANRAn ED)
=(Cpp1y) VU Ed N E§n(RHUER) n(RHu Y
(Clo,p,) U (B U (R0 EY) n (R UEE)
(D (C(0,7,13) (RHU(REnEP)n(REVEP)
R{ =(Cop.py)V EL UR?P.

4.4 Stem correlation

The values at the inputs to a gate may be related to each other through the reconver-
gence of a fanout stem. In this case, the set of vclues at the output of the gate determined
using images of set functions may be pessimistic in that certain values present in the set
cannot be obtained. Reduction lists capture the relation between circuit nodes and can be
used to eliminate this pessimism, reducing branching and backtracking as well as the total

CPU time required to generate a test.

Example 4.17: The circuit of Fig. 4.11 is an implementation of a 2-input MUX with select B
and inputs A, C. Since both data inputs are {1}. output F will be {1} regardless of which
is selected Unfortunately. the forward propagated value of F erroneously includes both
0 and 1 (see example 3 8) However, reduction list ﬁg = {Bjo,1)} identifies that either

assignment to input B reduces 0 at F', indicating that 0 is not an attainable assignment at

T Since any such assignment would cause 8 = {}
8 Since any such assignment would cause A = {0}. and thus C = {0}—a contradiction

53

4.4 Stem correlation

Line | List Contents
A | B¢ 0
B f,(i {Bgy)
Rt {Bjop)
c 3% 0
D ﬁ‘g (B1y}
Rl {B{O}}
E R {,; {B{o)}
K {By1y)
F _’Ei {Bo,1y}
R 0
a) 2-input MUX b) Reduction lists for a

Figure 4.11 Correlation of assignments

line F: the forward propagated value of F can be restricted to {1} from {0,1}, eliminating

the pessimism. A stem correlation exists for assignment F{o} caused by B.

Stem correlation is similar to the identification of uniquely implied signal values pro-
posed in [SchAut89], except that the use of a 16-valued logic system enables the reduction
lists to identify stem correlations in the region of the circuit reached by the fauit effect.
Examples 4.18 and 4.19 illustrate two important cases of stem correlation in the D-region

which cannot be identified by 5, 9, or 11-valued logic systems.

Example 4.18: The set of possible values of node F in Fig. 4.12 determined using images of
set functions is {O,D,—Ij}. However, as in the previous example, a stem correlation exists
for assignment F{o} caused by B. The forward propagated value of F can be restricted to

{D,D}. No further assignments are required to cause the fault effect to propagate to the
output of the MUX.

The reduction lists are determined by the current sets of possible values in the crcunt
under test, taking into account assignments made earlier in the test generation process

Stem correlation identified by these reduction lists indicates that it is not possible to both

54

4.4 Stem correlation

Line | List Contents
A R4 0
B | Rf {B())
RP {B(g)}
c | E§ R}
p | BB {81y}
RP | By
E _‘fff {Bg}}
R {B(1))
F | B} {B(o,1}}
_ij—? {Byoy}
¥p | By
a) 2-input MUX b) Reduction lists for a)

Figure 4.12 Stem correlation in the D-region—propagation of the fault effect

satisfy the current set of justification points and produce the correlated value. However, if

the set of justification points were different, it might be possible to obtain the correlated

value.
{01}
A o\ | foxB)
]
g bl F oo G oy g2
E ‘
ol ot o2
§ B) >

Figure 4.13 Stem correlation in the D-region—no propagation of the fault effect

Example 4.19: Stem correlation can be used to determine that the fault effect cannot
propagate to the output of the encoder illustrated in Fig 4.13. Although the value of node
G found using images of set functions 1s {D,0.1}. the reduction hists show that G{D} is
correlated by stem C—thus, the forward propagated value of G can be restricted to {0,1}.
In this example, it is not possible to both justify H{l} and produce D on the output of

55

45 Complexity of test pattern generation and the computation of reduction lists

gate G. However, if I{o} were the only justification peint, then D could be produced at
the output of gate G by assigning C = D = {1}.

4.5 Complexity of test pattern generation and the computation of
reduction lists

During test generation, node values in the circuit under test are progressively refined
as the process converges to a test vector. That is, the cardinality of the sets of possible
values of circuit nodes is a monotonically non-increasing function Thus, reduction lists
can only grow during test generation—assignments can be added, never deleted—since
an assignment must cause a reduction in a more refined system if it caused a reduction
previously.® Since the total number of assignments which can appear on any reduction
list cannot be greater than the number of nodes in the circuit, the reduction lists can be

computed in polynomial time using selective trace.

In a circuit containing [lines and n nod .s, there are a total of 4/ reduction lists and 4n
node assignments. An individual reduction list cannot contain more than 4n assignments,
and at least one assighment must be added to at least one reduction list in order for further
computation to be scheduled. The time required to update a reduction list is proportional

to its length. Therefore, the worst case time required to compute the reduction lists is
O(In?).

As discussed above, reduction analysis is equivalent to searching one level deep in
the search forest to identify first-order necessary assignments. Second-order necessary
assignments can be identified if double assignments are placed on the reduction lists,
rather than single assignments as has been discussed heretofore [n general, reduction hists
will identify all necessary assignments only if a/l assignments are analysed (single. double.
triple, etc.). The exponential complexity of test generation arises thiough the exponential

number of assignment combinations which must be considered in order to 1dentify all

9 The reduction lists may decrease in size on a backtrack, as the test¢ generation process is rolled back
from a later stage to an earlier one where node values were less refined

56

4.5 Complexity of test pattern generation and the computation of reduction lists

A

F

F
|
o ol Dot

H

;

[

Figure 4.14 A 2-input trivial function

necessary assignments and through backtracks which may occur if an incomplete analysis

is done and some necessary assignments are overlooked.

Example 4.20: The circuit of Fig. 4.14 implements the function AB+ AB+ AB+ AB =1.
All primary inputs are assigned to {0,1}; the set of possible values of all nodes determined
during forward propagation is {0,1} (not shown in the diagram to increase readability).
Although it is not possible to produce {0} at the output of the circuit. no correlation is
detected by the reduction lists (see the preceding section). The uncorrected pessimism
may result in unnecessary branching and backtracking during test pattern generation for
faults in a circuit containing this module. Note, however, that the reduction equations are
able to prove that i, is untestable without branching. (In order to produce {0} at node
I.E=F =G = H = {0} are required. Ay} requires B(q) in order to satisfy Eq).
but Byq) requires A(q) in order to satisfy F(g). A conflict is detected since A cannot

simultaneously be assigned to both 0 and 1.)

The previous example indicates that, at the cost of additional processing, a more
exact analysis of stem correlation can be done by attempting to justify each of the possible
output values of each gate in the circuit at which some fanout stem reconverges and then
dropping all values which cannot be justified. This technique is equivalent to analysing
the effect of double assignments (i.e. identifying second-order necessary assignments) It
is not difficult to design a circuit in which the only necessary assignments are third (or

higher) order and cannot be identified even if double assignments are considered

57

4.5 Complexity of test pattern generation and the computation of red.ctior lists

Necessary assignment identification can also be performed in terms of conduction
analysis in which the assignments that produce values at network nodes are captured.
Reduction analysis is more concise, however, as 2" conduction lists are required to capture
the same information as is done with n reduction lists. For example, conduction list C {AO}
contains those assignments which cause node A4 to become {0}, but says nothing about
assignments which cause A to become a nonunique set of values containing 0 (for example
{0,1} or {D,0,1}—a unique conduction list is required for each possible value, 2" in all.
On the other hand, one reduction list is required for each element of the base set of values,
n in all. Conduction lists can be formed by the intersection of the corresponding reduction

lists.

58

Exploiting circuit topology in effi’ant
Chapter 5
identification of necessary assignments

The processing required to compute the reduction lists is proportional to the number
of assignments which must be analysed and the area of the circuit in which they must be
propagated. This chapter discusses structural properties of the circuit under test which
can be used to restrict both while guaranteeing that no first-order necessary assignments
are overiooked. This information can be found in a preprocessing step and then reused for

each target fault.

Certain necessary assignments can be identified by backward implication. Since back-
ward implication can be performed in linear time, an efficient test generator should identify
as many necessary assignments as possible using backward implication before going to
more expensive and sophisticated techniques such as reduction list computation. The key
observation is that only potentially necessary assignments whic.: would not be identified

using backward implication should be analysed using reduction lists.

5.1 Structural analysis of reconvergence in combinational circuits

This section presents definitions which are used throughout the chapter to describe
the topology of the circuit under test in order to formalize reduction list computation.
Necessary assignment identification represents an application of the stem region concept

[MaaRaj90] to a general problem involving signal propagation along potentially reconvergent

paths.

5.1 Structural analysis of reconvergence in combinational circuits

Definitions 5.1 through 5.3 are taken from [MaaRaj90].

Definition 5.1: if there are two or more disjoint paths between stem A and gate B, then
A is a reconvergent fanout stem, and B is a prirmary reconvergence gate of stem A.

o If there are no reconvergent fanout stems on t.'e paths from reconvergent fanout stem
A and its primary reconvergence gates, then A is a narrow reconvergent fanout stem.
Otherwise, A is a wide reconvergent fanout stem.

o Let C be a narrow reconvergent fanout stem. 1) If C is located on a path between
reconvergent fanout stem A and a primary reconvergence gate of A, then all the
primary reconvergence gates of stem C that are not primary reconvergence gates of
stem A are secondary reconvergence gates of stem A. 2} If stem D is located on
a path between reconvergent fanout stem A and a primary reconvergence gate of A,
then all the primary and secondary reconvergence gates of D that are not primary
reconvergence gates of stem A are sccondary reconvergence gates of stem A.

Primary and so.cndary reconvergence gates oi a stem are referred to collectively as recon-

vergence gate. ~f that stem.

Definition 5.2: The stem region of reconvergent fanout stem A is composed of all the circuit
nodes (stems and gates) that are both reached by stem A and reach a reconvergence ,ate

of stem A, and all the output lines of these nodes.

Definition 5.3: Let z be a line in the stem iegion of A. z is an exit line of stem A if r
belongs to the stem region of A (z is an output line of a node in the stem region of A).

and z in an input to a node which is not in the stem region of A.

The algorithm given in [MaaRaj90] can be u 2d to identify the reconvergence gates.

stem region, and exit lines for all reconvergent fanout stems in the circuit under test

60

et

<

5.2 Candidate assignment identification

5.2 Candidate assignment identification

Definition 5.4: An assignment to a network node which may reduce the value of some jus-
tification point is called a candidate assignment if the corresj.onding necessary assignment

cannot be identified by backward implication. The node is called a candidate node.

The time required to compute the reduction lists is proportional to their length. Since
reduction list calculation is more costly than conventional backward implication, an efficient
test generator should not use reduction lists to identify necessary assignments which can
be found by other means. This section discusses the impact of reconvergent fanout on
necessary assignment identification and presents properties related to the structure of the
circuit under test which can be used to restrict the number of candidate assighments which
are analysed using the reduction lists. Assignments which do not match the criteria of any

of the following properties are not candidate assignments and need not be considered.

Definition 5.5: For gate G performing function f : X xY — Z, with inputs A, B nonempty
subsets of X and Y, respectively, A C X, B C Y, z € A is a controlling input value of
G if |B|| > 1 and fl';rB(f(z,B)) = B. Similarly, y € B is a controlling input value
of G if |4l > 1 and fl:‘{y(f(A,y)) = A. C C Z is a controlling output value of G if
% 5O > tand 5T g0 > 1.

In other words, a controlling value at the input to a gate forces the gate output to
value v, regardless of the value(s) at the othe' input(s) of the gate. A controlling output
value of a gate is one which can be produced by two or more combinations of values from
its inputs. Note that definition 5.5 is not static. but takes into account the current input

and output values of the gate.

Lemma 5.1: If no additional necessary assignments can be identified by backward impli-
cation, the required value of each justification point 1s a controlling output value of the

corresponding gate.

61

5.2 Candidate assignment identification

Proof: If there is only a single input combination which could produce the required output
value, then backward implication can be used to replace the justification point with other
requirements closer to primary inputs. Similarly, requirements at the output of any single-

input gate can be replaced by requirements at the input of the gate.)

If an assignment to a node in the network causes a reduction at a justification point—
i.e. there is a necessary assignment to the node—then that assignment can be identified
by conventional backward implication if there is only a single path from the node to the
justification point. However, if there are two or more disjoint paths from some node to the
justification point, the effect of an assignment to the node may propagate along multiple
paths and cause a reduction at the justification point. Conventional backward implication

does not take reconvergent fanout into account and thus could not identify the necessary

assignment.

As discussed in the previous chapter, additional necessary assignments may be iden-
tified in the restricted space after the first set of necessary assignments is applied to the
circuit under test. Thus, backward implication and teduction analysis are performed itera-
tively until no more necessary assignments can be found. To further reduce computation,
reduction analysis is restricted to those assignments which would not be found after sev-
eral iterations of processing. That is, if an assignment to node A is necessary only if an

assignment to node B is also necessary, then the processing of A can be put off until the

status of B is determined.

AT D
— __}EZ

rd
—_— ~
BT
\.Q

Figure 5.1 Candidate assignment identification

62

5.2 Candidate assignment identification

Example 5.1: Fig. 5.1 depicts a subcircuit containing one justification point, Z, and four
stems, A, B, C, and D, three of which are reconvergent. There is a single path from
stem D to Z, so any necessary assignment to D can be found by backward implication
from Z. On the other hand, stem C reconverges at Z. The effect of an assignment
to C may propagate along disjoint paths to Z causing a reduction which could not be
identified by backward implication. Although stem A is reconvergent, all paths from A to
Z pass through C. If an assignment to A is necessary, then an assignment to C is also
necessary—there is no reason to analyse A until necessary assignments to C (if any) have
been made. Similarly, all paths from B to Z pass through D, so assignments to B need
not be analysed as their effect is registered at D. Thus. stem C is the only candidate stem
in Fig. 5.1.

Property 5.1 formalizes these conditions:

Property 5.1: Assignments to stems which reconverge at any justification point are candi-

date assignments.

Proof: Assume that backward implication cannot be used to identify any additional nec-
essary assignments from justification point J and that an assignment to node N reduces
the required value of J. From femma 5.1, the required value at J is a controlling output
value of J. The reduction assignment to N controls J in the sense that it reduces the
r.quired value at J regardless of other assignments in the network. There are two cases
to consider:

1. A single path from N to J. The assignment to N must cause controlling value to
appear at the input to J which is reached from N—otherwise the required value at J
would not be reduced. This implies that the required vaise of J can be reduced by an
assignment to that input. and thus that backward implication can be used to identify
a necessary assignment to that input—uviolating the original assumption. This case
cannot occur.

2. Multipie paths from N to .J An assignment to .\ may change the value of several

inputs to J. This case cannot be captured by conventional backward implication,

63

5.2 Candidate assignment identification

which does not consider reconvergence. Thus, assignments to N must be explicitly
analysed.

3. Multiple paths from N to J which are not disjoint. Since the paths are not disjoint,
there is a common section. The reduction assignment to N must control (in the sense
of case 1, above) the gates along the common part of the path. and in particular, the
common gate closest to J. Call this gate G. If there is a reduction assignment to
N then there is also a reduction assignment to G—the value assumed by G when
the reduction assignment to N is made. However, since G is simply another node
in the circuit under test, candidate assignments to G are also considered. From G,
there may be either a single path (case 1) or multiple disjoint paths (case 2) to J;
in either event, there is no reason to explicitly analyse candidate assignments to N
until necessary assignments to G (if any) are made. After necessary assignments to
G are made, then necessary assignments to N will be identified in the next iteration
of either backward implication or reduction analysis, depending on whether or not
there are multiple disjoint paths from N to G. In either case, first-order necessary

assignments to N will not be overlooked. [|

In a preprocessing step, lists of stems which reconverge at each node in the circuit
are recorded. During test generation, the union of the lists of reconvergence stems for each

AND-node of the justification list are marked as candidate stems.

The set of values which must be justified in order to test the fault can be represented
by an AND-OR graph, as discussed in chapter 4. OR-nodes arise because the fault may
be detectable on two or more primary outputs. It is not necessary to justify any individual
OR-node—the only requirement is that at least one of them be satisfied. From lemma 4 1,
an assignment must reduce the desired values of all OR-nodes (i.e. both D and D at all the
reached primary outputs) in order to be a reduction assignment. Thus. only assignments

to stems which reach all of the OR-nodes of the justification list are potential reduction

assignments.

Property 5.2: Candidate assignments with respect to the OR-nodes of the justification st

are to those stems which reach them all.

64

=Y

P

5.2 Candidate assignment identification

Proof: An assignment to a stem cannot affect the value of an OR-node which it does not
reach. Thus, if a stem does not reach all of the OR-nodes, it cannot affect all of them.

Therefore, assignments to that stem could not be necessary and need not be analysed.

As the only OR-nodes which arise during test pattern generation are primary outputs
to which the fault effect may propagate, the list of stems which logically drive each of the
primary outputs is recorded in a preprocessing step. During test pattern generation, the
list of reached ‘tems for each OR-node of the justification list are intersected to find the

set of stems which reach them all; these stems are candidates.

Certain stems are candidates despite that there are only single paths from them to
justification points. Logic constraints propagate unconditionally in the circuit—both from
outputs toward inputs and from inputs toward outputs. As was demonstrated in example
4.14, an assignment to a node may cause a reduction in an area of the circuit which is
neither driven by nor drives the node. Assignments which reach one justification point may
correlate the values of other nodes and thus may cause a reduction. These cases arise only

when two or more justification points lie in the stem region of the node.

g_o1 D_x_i‘l
ALY Ly~ T

c_ou Z 10}

Figure 5.2 Transfer of requirements from one justification point to another

Example 5.2: There are three justification points in the circuit shown in Fig. 5.2: X {0y
Y4y, and Zyp). Aqyy requires Bygy (in order to justify X(q): Bygy implies Cyqy (in
order to satisfy Y(3y): Cyy requires Ay (in order to satisfy Zyy). Since Ayy leads

65

5.2 Candidate assignment identification

to a conflict, A‘o} is a necessary assignment.10 A{o} cannot be identified by backward

implication, thus assignments to stem A must be analysed using the reduction lists.

; 2
1 3
: o
J 3
2 (o)

| o

. O
Jn £
| -

Q

Figure 5.3 Premise. No stems exist whose stem regions include J1 and at least
one other justification point

Property 5.3: Stems whose stem region includes two or more justification points are can-
didates.

Proof: (By contradiction) Assume that there exists stem S which has no reconvergence
gates among the justification points and whose stem region includes only one justification
point, and that an assignment to S is necessary. Without loss of generality, assume that
the justification point included in the stem region of S is J1, as shown in Fig. 5.3. The
primary outputs reached by J1 are disjoint with those reached by the other justification
points—otherwise a reconvergent stem driving J1 and at least one other justification point
must exist. Since the set of outputs reached by J1 is disjoint with those reached by the
other justification points, an assignment to S which makes it impossible to observe the
fault effect on the outputs reached by J1 cannot impede propagation to any of the other
outputs—S does not reach them. The assignment to S is not necessary, contradicting the

original hypothesis.]

10 A{O} is necessary wn the sense that there 1s no test pattern in the space defined by A{ 1) Of course,
there may be no test pattern in the space defined by A{O} either, in which case the current set of

justification points cannot be satisfied, and a backtrack must be performed

66

5.2 Candidate assignment identification

Assignments to certain non-stem nodes are also candidates. Assignments to the
outputs of multi-input gates may correlate the value of several stems, the effect of which
may propagate further in the network than a single assignment to any of the stems. In this
case, the correlated stem assignments are subsumed by the non-stem assignment(s) and

no longer need be considered.

Figure 5.4 Propagation of gate assignments

Example 5.3: In Fig. 5.4, there are no stem assignments which propagate to the output of
gate F. However, E(g) causes both stems A and B to become {0}, the combinec effect
of which "bounces back” to F from stem B through line b1 and gate D, reducing F{l}-
The necessary assignment to E may have an impact on justification points elsewhere in

the circuit, as its effect propagates forward from a2,

Non-stem candidate assignments can be found using property 5.4 in linear time in a

levelized forward trace from candidate stems.

Property 5.4: The set of candidate assignments to the output of gate G performing function
f. with inputs I1, ..., In carrying values v1,..., un with candidate assignments v1' ... vn/,

oo =

respectively (v1’ C vl,..,vn' C un). is Z = {z € f(v1,..,vm) | ||f|;1x <on

1 and f,;lli >wn(z) C vy’ for some 7.1 < j < n}. The subsumed input candidate as-
signments, vy” for input I (v;” C vj’), are those input assignments uniquely implied by

the candidate output assignments: vj" = {z € vj' | f‘;{i <onl?) = x for some z € Z}.

67

5.2 Candidate assignment identification

= D

c) Minimized circuit

a) Non-minimal circuit

Line List Contents List Contents

A 36‘ {Ey) R {40}
R t400))

o | Bl Eg) | R)
R {4(0))

a2 | RE (E(gy) R§? {440p)
REE |)

B | R§ | trup | RP | By

b1 Y {Fyp) R4 (Eq))

b2 &Y (Fay) R42 (Eqqy)

c RS (Fip)

p | RY | By | FP | Ry

E R (B()) RE (Eqy))

PR | g | RE Ry

¢ | F§ | BupFuy} | B | 4

z | Ff {Eqyy)

b) Reduction lists for & (empty reduction lists not shown)

Figure 5.5 Test generation for 24,

Proof: From the definition of the image and inverse image of set functions.]

Example 5.4: The candidate assignments to test Zsq in the circunt from Fig 5 5a found using
property 5.4 are A{O)- E{l}- and F{”—E{l} subsumes Ay, and]3{0}, and iy subsumes
B{l}- E{l} reduces Z{i}' a justification point—thus I/{U} 15 @ Necessary assignment
If non-stem candidate assignments are not analysed. then necessary assignment [y,

would be overlooked. Note that the circuit in Fig 5.5a performs the same function as the

68

5.3 Region of propagation

minimized circuit in Fig. 5.5¢, in which all necessary assignments can be directly identified

by backward implication.

5.3 Region of propagation

The second major issue in the efficient identification of necessary assignments is the
area in which reduction analysis must be performed. It is important to restrict the region
of the circuit in which reduction lists are computed to avoid c2lculating lists which will not

be used to identify necessary assignments.

Definition 5.6: The shadow of the justification points is the region of the network reached

by tracing backward from the justification points.

Definition 5.7: The cone of the candidate stems is the region reached by tracing forward

from the candidate stems (found using properties 5.1 through 5.3).

The justification points and candidate stems mark boundaries beyond which reduction
lists need not be computed. However, due to the unconditional nature of reduction list
propagation, candidate assignments may appear on reduction lists, anywhere in the region

of propagation. In particular, stem assignments may propagate outside of their stem region.

cone of "interssting” stems

shodow of Jstificotion points
[XX3 area of Interest

Figure 5.6 Property 55 the region of reduction list propagation

69

5 3 Region of propagation

Property 5.5: Reduction lists need not be computed outside the region where the shadow

of the justification points overlaps the cone of the candidate stems.

Proof: By definition. there are no justification points outside the shadow at which as-
signments which propagate outside the shadow could cause a reduction or from which
such assignments could “bounce back” to reenter the shadow. By definition, there are no
candidate assignments outside their cone. Assignments need not be propagated backward
outside of the cone as there are no stems from which such assignments could “bounce

forward” to re-enter the cone (any such stem must reconverge at a justification point and

thus would be a candidate). "

During the course of test generation, justification points are added as assignments
are made, deleted as they are satisfied, and changed as backtracks occur. The candidate
assignments and region in which they must be analysed is related to the set of justification
points, and change as the justification points change. Each time the set of justification
points is modified, the candidate assignments and region of propagation must be updated.
The overhead to update the set of candidate assignments is related to the topology of the

circuit under test. The region of propagation can be updated in time linear in the size of

the circuit.

10

A method to ideatify nonconflicting assignments
Chapter 6
: based on Boolean function monotonicity

Nonconflicting assignments have the desirable property of vastly and irrevocably re-
ducing the space which must be searched for a test vector while guaranteeing that they will
never need to be reversed. If a test pattern exists in the search space before the noncon-
flicting assignment is made, then at least one test pattern exists in the search space after
the assignment is made (Fig. 6.1a). Conversely, if there is no test pattern in the search

space after the assignment is made. then there was no test pattern in the original space

. (Fig. 6.1b).
— ® ©<== O

a) Test pattern exists b) No test pattern exists

Figure 6.1 Pruning assignments

In this chapter. tendency lists are defined for general Boolean algebras in terms
of images and inverse images of set functions, providing a systematic means to analyse
function monotonicity and identify nonconflicting assignments during deterministic test

generation.

o™

6.1 Generalized function monotonicity and tendency lists

6.1 Generalized function monotonicity and tendency lists

A Boolean function is said to be unate in variable z if = appears in only true (‘positive
unate”) or only comnlemented { “negative unate”) form in the sum-of-products or product-
of-sums form of the function [BrHaMcSa84]. Function monotonicity or unateness can be

exploited during test generation.

Example 6.1: In order to sensitize the s fault at the output of a 2-input MUX performing
function f = AB + BC., it is necessary to justify a “1" at the circuit output. Justification
is equivalent to satisfying the Boolean equation AB +- BC = 1—which can be satisfied by
making assignments in such a way that one or the other minterm evaluates to 1. To this
end, assignments A = 1 and C == 0 lead in the direction of the goal and cannot confhict
with it. On the other hand. either assignment to input B, while leading one term toward

the goal, leads the other term away from the goal. so there is no nonconflicting assignment
to B.

Function montonicity in networks which do not contain faults can be described in
terms of the two-elecient Boolean algebra B% = {0,1} and is equivalent to unateness of the
Boolean function implemented by the network. There is a direct correspondence between
the variables in the sum-of-products (product-of-sums) form of the Boolean equations
describing network node functions and the values assumed by these nodes when test vectors

are applied.

In circuits which may contain fauits, however, monotonicity cannot be defined in
terms of B% as it is not possible to represent the possible presence of faults. Onc solution
is to use B% and record function monotonicity separately for the fault-free and faulty
circuit. This solution is poor, however, as it does not exoloit the close relationship between
the fault-free and faulty circuits in the region reached by the lault effect On the other
hand, B% = {0,D,D.1} is sufficiently precise to describe circuit values in the presence
of potential faults and recognizes the relation between the faull free and fanlty arcmts,
offering a better solution In the region of the circuit not reached by the faull effect.

monotonicity defined in terms of B% reduces to that defined in terms of lf%

12

P

6 1 Generalized function monotonicity and tendency lists

For general Booleen algebras, theorem 6.1 describes the construction of tendency
lists at the output of a logic block performing function f. given the tendency lists at its
inputs. Assigiiments which appear on tendency list Tz(' at node C' lead C toward value 2
(an element in the base set of the power set which is isomorphic to the Boolean algebra
in question)—after those assignments are made, z will be in the set of possible values at
(' if it was possible to produce 2z at C before the assignments were made. In other words,
tendency lists give, for each element of the base set of the Boolean algebra (power set),
those assignments which iead in the direction of that element and do not conflict with the

goal of producing it

Theorem 61. Let f X xY - Z be a function, X, Y, and Z Boolean algebras, and A,
B, and (be nonemj ty subsets of X, Y, and Z, respectively, A C X, BCY, C C Z.
Let TX. ’I'VY for each £ € A, y € B. be the set of assignments which tend toward values
x. y at input coordinates X. Y, respectively. The set of assignments which tend toward
value z 1n set (' at coordinate Z. denoted by Tf is the union of all assignments which
tend toward r at coordinate X, = € A, if f(z,y) = 2 for some y € B and ||f(A,y)]| > 1
combined with ali assignments which tend toward y at coordinate Y. y € B, if f(z,y) = 2

for some r « A and || f(z, B)|| > 1. In set builder notation, for each z € C:

A'={aec A| f(a,b) = z for some b € B and fljéb(z);éA}
B' = {be B f(a,b) = z for some a € 4 and f|;>}<,B(z)¢B}
7=y o 1

ze Al yeB!

Proof. (By construction) In order for an assignment appearing on a tendency list at input
coordinate X to cause Z to tend toward z, that assignment must cause input X to tend
toward a value r which can be combined with a value b at input ¥ to produce z at Z.
However, if the image of 4 at input X" and b at input }" on output Z is uniquely =, then b
at input Y s the only requirement to satisfv ", 1o 1 ot \as not required A similar

argument applles to assignments appeaning at mpat 2

73

6.2 Tendency lists and nonconflicting assignments

Theorem 6.1 is used to derive tendency equations for a 2-input AND gate with inputs

A and B and output C for different combinations of input values in the following example.

Example 6.2: For an AiD gate, with inputs A = {0,1,D,D}. B = {0,1,D,D} and
output C = {0,1, D, D}:

C __TA A A B B B
18 = TduTAUTAUTE UTE U TS
C _ A A B B
¢ = TfuTAUTP UTE
TS =T uTpuTfuTE
¥ =1f LTS
Similarly, for an AND gate with inputs A = {0,D,D,1}, B = {0,D} and vutput C =
{0,D}:
7§ =Tf uTh

C __ 1A A B
TS = TAUTAUTE.

6.2 Tendency lists and nonconflicting assignments

Tendency lists can be used to identify nonconflicting assignments during automatic
test pattern generation. The key observation is that assignments to primary inputs can al-
ways be justified, whereas assignments to internal nodes may not themselves be satisfiable

Therefore, primary input assignments only are analysed using tendency lists.

The tendency lists at primary input nodes are initialized with the corresponding input
assignments. Ij{o} is added to list TOIJ and Ij{l} is added to list T{’ at each unassigned
primary input I7. Tendency lists in the rest of the circuit can be computed n linear time
using theorem 6.1 in a levelized forward pass For each possible value of every node in the
network, the corresponding tendency hst contains those input assignments which lead in
the direction of that value at the node Unique input assignments which appear on that

tendency list are nonconflicting assignments with respect to that node and value

The tendency lists at the justification points are used to identify nonconflicting as

signments. A vote is collected by finding the unii of the tendency lists corresponding

74

6.2 Tendency lists and nonconflicting assignments

to the desired value of all justification points. Unique assignments appearing in this set
are nonconflicting with respect to all justification points and can be applied to the network

under test.11

Lemma 6.1: Given the set of justification points {A{,I,...,AL‘"} all of which must be
satisfied (AND-nodes in the AND-OR graph) and {O,l‘l,. ..,Ofr, } at least one of which
must be satisfied (OR-nodes in the AND-OR graph). unique assignments appearing in

(UCu =)+ (0(U 2))

=] Vzey, 1=1 ‘v’yEuJ

are nonconflicting assignments.

Proof: From theorem 6.1, such an assignment could not lead any justification point away

from its desired value(s). .

The following examples illustrate nonconflicting assignment identification during test

pattern generation.

Example 6.3: 0{1} is the only necessary assignment to generate a test for fault Csg in
Fig. 6.2. Voting at justification points J (D.D) and K (D} the set of desirable assignments
is {Aq0), B{1)- (1)} U { A1y, Bjoy} U {By1), Dy1}, B4} }. resulting in a unanimous vote
on inputs D and E, yielding nonconflicting assignments D{l} and E{l}. a test vector for

the fault. Note that Cuy is a nonconflicting assignment in addition to being necessary.

Example 6.4: Nonconflicting assignments may be identified when the target fault is untest-

able. In that instance, they restrict the remaining search space, enabling the test generator

11 A nonconflicting assignments can be made simultaneously as the unateness properties of the inputs
are independent of each other However assigning them all may result in an over-specified test vector—
a vector which contains fewer don t care input asmiznment< than might othetwise be the case That
15, if the nonconflicting assignments arc made senially rather than simultaneously the test generator
may recognize that the fault 1s tested with fewer inputs assigned To mininuze the number of assigned
primary inputs while avoiding unnecessary branching and backtracking, it may be desirable to make
nonconflicting input assignments serially only if no necessary assignments can be identified

75

6.2 Tendency lists and nonconflicting assignments

A fo4 F O
B!O-"
% ip}
o cnem) LS
E!ooﬂ
a) Example circuit
Line | List Contents Line | List Contents
A T‘i {41y} H TOI”; {B(1). Dyo))
T {414y} D {B{1y. Dgay)
B TOB {B{O}} T] {B{O}}
o By | 1T Doy Eqay)
c |15 | (cy T D1y Eqry)
7 | {ogy g {Eqo)}
|1 | e | Y| B | MerBo)
D {D()) 7 {410 By Ppay)
E | TE (Eqor} Tp {441y, Boy}
0 {0} TJ B\ D
tf | By i B Peoy)
F | TF {Agy) K TOI;, {B{oy E{op)
oF {Agy) | BuyLuy Eay
1 {0} o {Byyy Digrs Eqpy}
P R T i (1 Proy Eyy
R {1}
Ty {Dgoy}

b) Tendency lists for a
Figure 6.2 Test generation for Cag

to identify a conflict more quickly (i.e. with fewer branches and backtracks). The circut
in Fig. 6.3 illustrates the identification of nonconflicting assignments during redundancy
identification for €0y, . Voting at justification points Eoy (fault sensitization) and I'm}
(fault propagation) identifies nonconflicting assignments Aqy. Hyy. Cyyy. Dioy. Byoy.

and G1)- reducing the remaining search space to 517, of its previous size

The tendency lists correspond to the values in the network, reflecting the assignments

which have been made and the values which must be justified. Assigninents made during

16

6.2 Tendency lists and nonconflicting assignments

A 03] JI;icto,n
e P)o-B
| {o) . =
—M Q)i
C lo.“ yo.“ [‘0.1’ ‘ ="
ploy o
£ o4 éc {0} 01 R
0 P__' J

Floy
G {o.11

a) Test generation for eQs,

Line | List | Contents | Line | List Contents
Al ey | | T (Cpay)
T (A1)} d {C(gp}
B | 12 | (B} | K | T {Bry)
8 | (By)) T (B}
clm | e | LT {40y By Fray)
T | €y T {41y Bioy Froy)
D T(g {D(g)} M Té: {Bgo} Eqyy. Ppay)
Ty Nty i {81y Ejoy Dyoy!}
E | Ty | {Bg) | N | TP (Dpays Ba).C o). Fiay)
| (B T Droy: BoyCrsy- Fio)
A B TV I B (Egop Fray)
| Uy 2y (Eqy Floy)
ST | G | P T | Uy By oy Doy By Flaay Casy)
T | Gy To | gy By Cy Loy oy Flop Sy
g {lop Di1y Brogy Fray Spop)
oo Ay | e | 1f {BL1y Cay Proy Eqop Frop Sy
T | Uy Ty tBioy: Clop Piay Py Froay oy
Pl T | By | R T iy Ea) Fiogy Gy
T {B(o}) T P10y Eqoy Floy- Chop!

b) Tendency lists for a)

Figure 6.3 Nonconflicting assignment identification in redundancy identification

71

6.3 Pessimism In the tendency analysis

test generation, whether necessary, nonconflicting, or arbitrary, constrain the operation
of the circuit under test and may lead to the identification of additional nonconflicting
assignments which could not be identified previously. The tendency lists are updated to

reflect the possible values in the network each time the values change.

As the maximum tendency list length for each network node can be predetermined
(the number of primary inputs which reach it), efficient tendency list computation can be
implemented easily. Tendency lists need be calculated only in the shadow of the justification
points (see section 5.3). Incremental updating of the tendency lists is simple as changes

originate at and propagate forward from nodes whose value was changed.

Nonconflicting assignment analysis can take the place of heuristic techniques used by
other test generation algorithms. For example, required values of “head lines™ [FujShi83)
can be justified by nonconflicting assignments to primary inputs, so there is no need to put
off their justification. Other techniques such as [SilSpi88] which rank branch assignments

by their likelihood to cause conflicts can be replaced. since those assignments are often

nonconflicting.

6.3 Pessimism in the tendency analysis

Tendency list calculation performed using theorem 6.1 is pessimistic in that some
nonconflicting assignments which can be identified by exact analysis of the Boolean equa-
tions implemented by the network may be overlooked. However, an assignment which could

lead to a conflict will never incorrectly be identified as nonconflicting.

The following examples illustrates a circuit in which the tendency lists correctly iden-
tify all nonconflicting assignments in one gate-level circuit (example 6.5), but miss some

in a slightly different gate-level implementation of the same function {example 6 6)

Example 6.5: Although no necessary assignments are identified when targeting fault Io\l

in Fig. 6.4, voting at justification points E{oy and 1’{5} determines that desirable input

78

6.3 Pessimism in the tendency analysis

j0.1}
A 153 0,1

B o1 | 003

—— > | e
¢ lo4 __—DM— |

G {0,
0 o 0.1 K {0
a) Example circuit
Line | List Contents Line | List Contents
A T4 {440)) B TP (B(oy}
B
5y {(401)) Ty {B(1))
c 7§ {Cq0)) D T(P (Dyoy}
49 c D D
1 {Ciny) 1 {Dg1y}
E T‘i {41y D1y F TO§ {B{1y}
Ty | Ay Dyoy) T {Boy}
e} Tog {cqy) H Tg; {4(1) B{oy)
Ty {Cloy} Ty {4(0): By1y}
I T! {Bg4y} J Td {Ciy}
9 {1} ?, {1}
K | f |{cpppyy | L | 7F {A{o} Bty Cp1y Do)
it | (Cuy Doy T;f;— {4¢1) B0y Cop Py}
Ty | (44) B0y Cpo,) Diyyl

b) Tendency lists for a
Figure 6.4 Test generation for Egy

assignments are {A(y},D(3}} U {4(1}, B0}, Cfo}, Dy1)}. resulting in nonconflicting as-
signments A =D = {1}, B = C = {0}. a test pattern for the fault.

Example 6.6: The function of the circuit 1n Fig. 6 5a 1s not affected by expanding the four-
input NOR gate at its output into a cascade of two-input gates (Fig. 6.5b). However, the

79

A o

p loi

c fodl

p o4

tendency lists are modified (compare Tjg—in Figs 6 4b and 6.5c), resulting in a pessimistic

6.3 Pessimism in the tendency analysis

H
g Loy x
::: J)} '\.-'-—"._Y
- 1
:::(}K S p

b) Output gate cascade

Line | List Contents

2T (40 Biop)
T {40} B(1)}

I T(}I {B(1}}
TD {B{o}}

J T('); {Cuy)
TD {(‘{0}}

K T"ﬁ {Ciop D1y
Ty {C(1) Doy}

X T(i {41y Bo.13}
T1X {40 Byay)
™D {41y B(o}}

Y Toi {401}, 80,1} C(1))
le {4(0p By}
TH {4{1y Bo,1) (o))

L ch; {40y Bi1y Cpay Ppop)
T-f- {4{1) Bro,1) Crop D1y}
T {41} B{o,1} €01 P(1)}

c) Tendency lists for b

Figure 6.5 Test generation for Eg,

vote and a missed nonconflicting assignment to input H

':{&-‘

6.3 Pessimism in the tendency analysis

Pessimism in monotonicity analysis through tendency list computation is brought
about by incomplete treatment of fanout-free regions. The problem is that the tendency
lists, by treating individual gates, does not determine the effect of individual assignments—
the effect is that some input lists are added to the output list more than once. A solution,
not developed further in this thesis, is to extract the fanout-free regions of the circuit and

perform tendency analysis for the entire region at once.

81

Chapter 7 The QUEST test pattern generation algorithm

The objective of the QUEST algorithm is to reduce or eliminate backtracking during
automatic test pattern generation by delaying arbitrary branching as long as possible. At
every step, necessary and nonconflicting assignments are applied iteratively until either a
conflict is detected and a backtrack initiated!?, no more algorithmic assignments can be
identified and an arbitrary branch is made. or a test vector is generated. The algorithm

is complete; the process continues until a test pattern is generated or the target fault is

proven untestable.

This chapter also discusses the use of preprocessed information during test genera-
tion. There are tradeoffs between the time taken to identify necessary assignments and the
number which are overlooked. Unidentified necessary assignments may cause unnecessary
branching and backtracking during test generation; however, dynamic reduction list calcu-
lation may be costly, even when the techniques described in chapter 5 are used to reduce
the amount of processing performed. Thus, from the point of view of CPU time, 1t may
be desirable to obtain information which can be used to identify some necessary assign-

ments quickly and can be reused for each target fault, avoiding the dynamic calculation of

reduction lists completely.

Finally, experimental results obtained when the QUEST algorithm was used to gen-

erate tests for faults in a variety of benchmark circusits are presented

12 Necessary and nonconflicting assignments cannot cause a backtrack unless there 1s no test pattern in
the search space defined by the most recent arbitrary branch

P}

7.1 Organization of the test pattern generation system

7.1 Organization of the test pattern generation system

for each target fault
inject fault;
do
do
forward propagation: /* section 3.1 */
update justification points; /* section 4.1 */
if conflict detected
backtrack:
else
calculate reduction lists; /* chapter 4 */
calculate tendency lists: /* chapter 6 */
make necessary assignments:;
make nonconflicting assignments;
endif
until no algorithmic assignments identified
if test vector not yet found
make arbitrary branch (heuristic);
endif
until test pattern found or fault proven untestable;
endfor

Figure 7.1 The QUEST test pattern generation algorithm

Test pattern generation begins with the insertion of the target fault. To account for
the presence of the injected fault, the line (or fanout stem) associated with the fault is
broken and a pseudo-primary input/primary output pair is created, as described in section
3.1. Forward propagation is performed to determine the sets of possible values in the
circuit in the presence of the injected fault, and test pattern generation begins with the
initial set of justification points that the fault must be sensitized and the fault effect must

be observed on at least one primary output.

The reduction and tendency lists are computed (updated) to reflect the forward prop-
agated circuit values, and necessary and nonconflicting assignments are identified from the
reduction and tendency lists at the justification points. Necessary assignments become new
justification points, since their values must be justified in order for the fault to be tested.

Forwara propagation is performed to update circurt values to reflect the assignments which

83

‘_—M

1.2 Preprocessed information

were made, and the cycle is repeated until a conflict is detected or no more necessary or

nonconflicting assignments are found.

Necessary and nonconflicting assignments may be identified in the restricted space
after an arbitrary assignment which were not necessary or nonconflicting before the branch
On a backtrack, all assignments which were made after the most recent arbitrary branch
must be retracted along with the branch assignment itself. A convenient method to do
this is to keep track of the set of justification points (including assigned primary inputs)
which existed prior to the arbitrary branch and roll back to it. A change to the justification
points initiated by a branch or backtrack can be treated in the same manner as any other
justification point modification—node values and reduction and tendency lists must be

updated to reflect the new set of justification points.

7.2 Preprocessed information

Two types of reusable information can be recorded during preprocessing and used
to reduce the amount of computation performed by the test generator when targeting a
particular fault. Topological information can be used to limit the work done to calculate
reduction lists while guarant<eing that no first-order necessary assignments are overlooked
(chapter 5). However, the dynamic computation of reduction lists may be costly, even if
these techniques are used. Generic reduction information can be used to identify a subset
of the necessary assignments, avoiding dynamic reduction hst calculation. Two classes
of generic reduction information, generic reduction lists and propagate assignments. are
presented in this section. Dominator identification. although not generic, 1s used to trigger

the application of propagate assignments and is also discussed.

7.2.1 Generic reduction lists \

Generic reduction lists are analogous to “static learning” defined n [SchTnSar88]
The generic reduction lists are computed with all the primary rputs assigned to 0.1}
and no injected faults. Due to the conditions under which the hsts are computed. the

1

84

7.2 Preprocessed information

assignments they contain are reduction assignments only for justification points and nodes

not reachable from the point of the fault.

For each stem in the circuit, assignments to both 0 and 1 are added to the generic
reduction lists, along with candidate gate assignments found using property 5.4. Subsumed
stem assignments are not dropped. however, as the gate may be inside the D-region
while the subsumed stem is outside for some target fault—there would be no reduction
assignment to the gate, despite that the stem assignment is still valid. i subsumed stem

assignments are dropped. necessary assignments may be overlooked.

Similar to the discussion presented in chapter 5. memory requirements can be reduced
by pruning the generic reduction lists to remove implications which can be captured by
backward implication. Property 7.1 formalizes the conditions under which the implication
of an assignment to a network node (either a fanout stem or gate) must be stored on the

generic reduction list of another node.

Property 7.1: Let f: X xY — Z be a function, and A, B, and C be nonempty subsets
of X.Y. and Z. respectively, AC X, BCY.C C Z. For each 2 € C, generic reduction
list G contains all assignments S, such that S, € 72)9 and either ”fi:l)iB(z)“ #1 or

1) # 1.

Proof: From theorem 4.1 and the definition of inverse images, only these implications

cannot be identified by backward implication. [

In order to avoid storing implications which can be found by several iterations of
backward implication and generic reductions (see property 5.1), stem assignments need be
retained at a network node only if there are multiple disjoint paths from the stem to the
node—in other words, the node must be a reconvergence gate of the stem This implies
that, in computing generic reduction lists, assignments to a stem need not be propagated
outside its stem region. Similarly, candidate gate assignments need not be propagated
outside the area defined by the union of the stem regions of stems for which the gate

subsumes at least one assignment.

85

ey

7.2 Preprocessed information

7.2.2 Circuit dorininators

Dominators—nodes through which the fault effect must propagate in order to reach
any primary output—are necessary assignments to {D, D}, and can be identified either by
backward implication or reduction analysis. To avoid overlooking necessary assignments
if the reduction lists are not updated dynamically, dominators not found by backward
implication can be identified in linear time using th» algorithm from [CoxRaj88]. outlined

below.

Viewing the circuit s a graph, with vertices and edges corresponding to gates and
lines respectively, dominators can be identified by considering only the subgraph whose
vertices: a) reach a justification point whose required value includes D and/or D. and b)
whose set of possible values includes D and/or D. Vertices whose removal would result in

an unconnected subgraph correspond to dominators.

One method to find such gates is to trace backward in reverse !evelized order from
justification points whose required value includes D and/or D. The inputs *o a gate are
placed on a list if D or D at that input can be combined with the other input values to
produce D or D at the gate output. Gates are removed from the list when their inputs
are checked. If the list contains a single gate at any point, then that gate is a dominator.
Individual justification points are scheduled when their level is processed (OR-nodes are

treated as a singie justification point).

71.2.3 Propagate assignments

The basis of the identification of propagate assignments is that, in order for the fault
effect to propagate from a reconvergent stem to a primary output, it must first reach at

least one of the stem’s exit lines.

Example 7.1: If stem S from Fig. 7 2 is a domnator, the fault effect must propagate
through el, e2 or e3 (its exit lines) in order to be observed at any primary output. If

assignments made earlier in the test generation process make it impossible to propagate

86

1.2 Preprocessed information

)

Figure 7.2 Propagate assignment identification

the fault effect through €2 (i.e. neither D nor D is in the set of possible values at €2), then
it must propagate through el and/or e3—an assignment which eliminates D and D from

both el and e3 is a reduction assignment.

Definition 7.1: An exit line of a dominant ster is active if it is within the shadow of the

justification points, and its set of possible values includes D and/or D.

A {001!
5001} D B
B_._..___{ | ——\F 0.0 _ | {0..0.5} K 101,05}
c o G 0.5 HE
D {0.0} F‘_‘:D‘—'__ = J {0,1,0,D}
E-{a—;—"« H {0,D.1j—2
a)
A lot}
B {013 F 0,01} = 5
R0 R - } {0,1,D,D} 1.0,
= } g { D k {0.1,0,5}

c o G 0,01}
Dm—_' ———S“: J 0,05}
—i=]

£ o1 43 }H {0,0,1}

b)

Figure 7.3 Propagate assignments example

Example 7.2: In order to propagate the fault effect from /2, an identified dominator, to any
primary output in the subcircurt shown in Fig. 7.3a, it must propagate through ;2 or K,

the exit lines of D. A necessary condition to observe the fault effect on either exit line is

87

i

7Y

7.2 Preprocessed information

A = {1}. If NAND gate J from Fig. 7.3a is replaced by a NOR gate (Fig. 7.3b). there are
no necessary assignments—the required value of A to propagate the fault effect through
exit lines K is A = {1} and through 52 is A = {1}. If. however, B = {0} and C = {1} are
assigned earlier during test generation, then the only active exit line of D is 32, so A = {0}

is a necessary assignment.

Propagate assignments for each exit line of each reconvergent fanout stem in the
circuit can be found during preprocessing by:

1. Injecting {D, D} at the stem and calculating the reduction lists inside its stem re-
gion. Only assignments to fanout stems are placed on the reduction lists, and only
“forward” reduction lists are computed.

2. Recording the intersection of reduction lists R p and _ﬁﬁ at each exit line of the

stem.

When a veconvergent stem is identified as a dominator during test generation, the
propagate assignments for each of its active exit lines are intersected to find the set of

assignments which make fault propagation from that stem impossible.

Propagate assignments for nonreconvergent fanout stems can be defined similarly.
If a nonreconvergent stem is a dominator, the fauit effect must propagate to at least
one primary output reached by the stem in order for the fauit to be tested. In effect,
the “exit lines” of a nonreconvergent stem are its reached primary outputs. Making this
assumption, its propagate assignments can be identified during preprocessing and used

during test generation as described above.

Propagate assignments are similar to those found by SOCRATES using “instructions
1 and 2" [SchTriSar88] and “dynamic instructions 1 and 2° [SchAut89], except that they

are identified once during preprocessing, rather than dynamically during test generation.

88

7.3 Experimental results

7.3 Experimental results

The algorithms presented in this paper were implemented to investigate the behavior
of a test generation system which uses necessary and nonconflicting assignments and. in
particular, to determine the extent to which backtracking can be reduced using algorithmic

rather than heuristic techniques.

Faults can be divided into classes depending on the relative difficully of finding a test
pattern for them. For example, many faults are “random testable” because it is easy to find
a test vector for them by fault simulating random input vectors. In addition. experimen-
tal results indicate that a test can be generated for many faults using only preprocessed
information. However, faults exist—particularly certain untestable faults—which are aban-
doned unless all necessary assignments are identified using dynamically updated reduction
lists. This observation leads to the conclusion that no test generation system is ideal for
all target faults. An algorithm which finds all necessary assignments may take excessive
CPU time because the dynamic calculation of reduction lists is costly, yet an algorithm
which uses only preprocessed information will abandon or spend excessive time branching
and backtracking needlessly on some difficult faults. On the other hand, a multi-phase

algorithm can combine the best features of all its components.

Compiete test pattern generation experiments were run on the ISCAS'85 benchmark
circuits [BrgFuj85]. Although the circuits are small, they contain examples of interesting
faults which are abandoned by many test generation systems [Goel81, FujShi83, KirMer87,
Cheng88]. In order to test the deductive power of the QUEST algorithm. all faults were ex-
plicitly targeted—no fault simulation was performed. Experimental results were generated
as follows:

Deterministic test pattern generation: A two-phase algorithm was used. with a back-

track limit of 10 for each pass. In order to determine the effect of algonthmic as-

signments on test generation in the absence of “inteligent” heuristics. the results
presented in this section were produced by assigning to {0} the fust unassigned

primary input which could have an effect in the final test pattern

89

sl

7.3 Experimental results

a) Phase 1: Test generction using preprocessed information only. but using domi-

nators and propagate assignments.

b) Phase 2: Test generation using dynamically updated reduction lists.13

Testable Untestable CPU Time (s)*
Fits | Aba. | Undet. | Fits | Abd { Avg. | Max. | Pre.

Circuit

C432 | 520 0 0 4 0 |022]045 | 6.63
C499 | 750 0 8 0 021,066 | 358
C880 | 942 0 0 - 0.13 1041) 451
C1355 | 1566 0 8 073) 136 | i1.81
1908 | 1870 0 9 06110149 | 3175

044|261 | 2688
0.95 | 2.58 | 104.68
034167 | 4802
345 (674 ;43218
0.79 | 3.35 | 86.24

C2670 | 2630 | 32
C3540 | 3291 2
C5315 | 5291 2
C6288 | 77110 T1
C7552 | 7419 | 28

[« 2 =l e B o R B B = B o R
[l o
w
~N ~

oo coo0ooo

131
* Sun 4/SLC

Table 7.1 Experimental resuits

Table 7.1 summarizes the results obtained, differentiating between testable and untest-
able faults in the benchmark circuits. For example, C2670 contains 2630 testable faults
(after prime fault collapsing [Cha79]). of which 32 were abandoned after the backtrack
limit was exceeded. These faults were covered by test patterns generated for other faults,
however, so no faults were undetected in the experiment. Further, in all circuits, ali of the
faults which were abandoned after phases 1 and 2 of the test pattern generation algorithm
were covered when less than 1000 random vectors were fault simulated, and thus would
not have been targeted in a conventional test pattern generation experiment which begins
with random vector fault simulazion. C2670 also contains 117 undetectable faults, all of
which were proven to be untestable in the experiment. The table also reports the average
time required to target a fault and the maximum time required for any target fauit in the
experiment. The preprocess time includes the time required to perform all operations up to
the injection of the first target fault—read the netlist and create data structures, analyse
the topology of the network, extract generic reduction information and identify propagate

assignments, etc.

13 The implementation used here does not take advantage of the techniques described in chapter 5

90

1.3 Experimental results

No untestable faults were abandoned. Furthermore, phase 2 of the test generation
algorithm (full reduction list propagation) was required to prove redundancy only in C432—
three faults were abandoned (after 10 backtracks each) by phase 1. after which two of the
three were proven untestable with no backtracks and the third was proven untestable with
one backtrack in phase 2. Circuit C2670 contains eight faults which each required one
backtrack (in phase 1) to prove redundancy; circuit C7552 contains 6 faults which were
backtracked, the “worst” of which required 3 backtracks (phase 1). This result indicates
that QUEST is particularly efficient at redundancy identification. which is often a problem

for conventional test pattern generation algorithms.

Table 7.2a details the branching and backtracking activity during the test generation
experiments summarized in Table 7.1. For each phase of the test generation experiment,
the table gives the number of faults for which branches (backtracks) were performed.
the total number of branches (backtracks) performed in that phase, and the number of
faults abandoned in that phase after the backtrack limit was exceeded. Branches and
backtracks are not counted for faults which were abandoned. All fauits (both testable and
untestable) were targeted by phase 1. faults abandoner in phase 1 were targeted in phase
2. For example, 26 of 5350 total faults in C5315 were abandoned by phase 1. Of 5324
faults successfully targeted, arbitrary branching occurred for 4053 of them. 2 faults were

abandoned by phase 2: a test pattern was generated for the remaining 24.

Table 7.2b summarizes the results of a second series of experiments. performed to
determine the effect of nonconflicting assignments on branching and backtracking during
test pattern generation. All faults were targeted a second time using the conditions de-
scribed above, but without identifying nonconflicting assignments. Applying nonconflicting
assignments reduces the amount of branching and backtracking performed during test pat-
tern generation. In addition, one untestable fault in C432 and 11 untestable faults in C2670

are abandoned if nonconflicting assignments are not identified.

Despite the simplistic heuristic used to choose arbitrary assignments. a test 1s gen-

erated for the vast majority of faults without backtracking Of particular interest 1s the

91

7.3 Experimental results

Phase 1 Phase 2 Un-
Circuit Branch Backtrack | Abd. Branch Backtrack | Abd. | Det
Flits Tot. | Fits. | Tor. | Fits. | Flits, | Tot. | Fits. | Tot. | Fits. | Fits.
CA32 | 458 5064 0 0 3 1 1 1 1 0 0
C499 | 686 | 22131 31 3¢ 0 - - - - - 0
€880 | 706 8423 0 - 0 - - - 0
C1355 | 1566 { 50368 | 86 | 109 0 - - . - - 0
C1908 | 1810 | 37453 | 23 29 7 5 68 0 0 0 0
C2670 | 2074 | 60225) 184 | 238 | 34 2 112 2 12 | 32 0
C3540 | 2747 | 43243 | 250 | 356 19 17] 265 | 12 29 2 0
5315 {4053 | 65248 { 201 | 318 26 24 | 538 22 | 44 2 0
C6288 | 7624 | 1338352155 12587 | T4 2 19 0 0 71 0
C7552 | 7085 | 231477 | 783 (1352 | 75 17 [370 | 14 14 | 28 0
a) Nonconflicting assignments identified
Phase 1 Phase 2 Un-
Circuit Branch Backtrack | Abd. Branch Backtrack | Abd. | Det.
Fits. Tot Fits | Tot | Fits | Fits | Tot | Fits. | Tot. | Fits. | Fits
CA32 1t 520 | 9802 0 0 3 0 0 0 0 1 1
C499 | 686 | 22817 | 33 38 0 - - - - - 0
C880 | 867 | 16952 0 - 0 - - - - - 0
C1355 | 1566 | 52517 | 94 | 125 0 - - - - - 0
C1908 | 1860 | 41399 | 88 | 100 7 7 70 0 0 0 0
C2670 } 21991 73791 | 184 | 238 45 2 |14 2 12 43 13|
C3540 | 3070) 49192 | 258 | 383 19 i7 1300 12 | 29 2 0
Ch315 | 4754 1 84044 | 229 | 346 27 24 563) 22 | 50 3 0
C6288 | 7631 [137483 {2155 | 2587 | 74 2 19 0 0 n 0
C7552 | 7119 | 291952 | 797 [1358 | 77 44 | 592 | 16 | 18 28 0

b) Nonconflicting assignments not identified

Table 7.2 The effect of nonconflicting assignments

number of faults for which a test is generated without branching, a result which is inde-

pendent of heuristics and is heavily influenced by nonconflicting assignment identification.

Missed necessary assignments cause backtracking in test generation. For example,
for several fauits abandoned by phase 1 of the algorithm. a test was generated without
branching by phase 2. Although the number of abandcned faults is reduced by nonconflict-
ing assignment identification, the greatest gains come from the identification of necessary
assignments. If all necessary assignments were identitied by full reduction hist propagation,
even fewer backtracks would be performed This approach is practical if reduction analysis

is implemented efficiently, exploiting the properties developed in chapter 5.

92

7.3 Experimental results

reduction analysis is implemented efficiently, exploiting the properties developed in chapter
5.

In practice, the heuiistic used to choose arbitrary branches has a huge impact on the
number of branches and backtracks performed for both testable and untestable faults and
affects the number of abandoned faults. It would be interesting to investigate the effect of
various heuristics on QUEST. In addition, new heuristics based on algorithmic measures

(reduction list i2ngths, etc.) are promising.

93

Chagter 8 Conclusions

This thesis characterizes three types of assignments made during the course of de-
terministic test pattern generation. Necessary assignments are those which must be made
in order to find a test pattern—the search is guaranteed to fail if they are not made. Non-
conflicting assignments lead in the direction of a test and never need to be backtracked.
vastly and irrevocably reducing the space which must be searched for a test pattern. Re-
maining assignments are arbitrary—they may or may not lead to a test pattern and must

be reversed is a test cannot be found after they are assigned.

A complete mathematical basis for the identification of n..cessary and nonconflicting
assignments has been developed and algorithms to identify them presented. Issues relating
to the efficient implementation of these algorithms have been discussed from both a theo-
retical and practical point of view. Structural properties of the circuit under test are used to
reduce the processing performed to identify necessary and nonconflicting assignments. In
addition, several classes of generic reduction information are exploited to identify necessary

assignments while avoiding dynamic reduction list computation.

The identification of necessary and nonconflicting assignments is the core of the
QUEST test pattern generation algorithm. Experimental resuits show that QUEST is
able to reduce or eliminate backtracking in test pattern generation through algorithmic
rather than heuristic means. Results also indicate that QUEST is particularly efficient at
redundancy identification, which i1s often a problem for conventional test pattern generation

algorithms.

Chapter 9 References

[AbrKul85] M. Abramovici, J.J. Kulikowski, P.R. Menon, and D.T. Milier, “Test Generation
in LAMP2: Concepts and Algorithms.” Proceedings International Test Conference,
Philadelphia, PA, Sept. 1985, pp. 49-56.

[AbBrFr90] M. Abramovici. M.A. Breuer, and A.D. Friedman, Digital Systems Testing and
Testable Design, W.H. Freeman and Co.. New York, 1990

[Akers76] S.B. Akers, "A Logic System for Fault Test Generation,” /EEE Transactions on
Computers, vol C-25, no. 2, June, 1976, pp. 620-630.

[Ando80] H. Ando. “Testing VLS| With Random Access Scan,” Proceedings COMPCON,
Spring 1980, 1980, pp. 50-52.

{BaMcSa87] P.H. Bardell. W.H. McAnney, and J. Savir. Built-In Self-Test for VLS|, Wiley-
Interscience, New York, 1987.

[BoHsPu71] W.G. Bourictus, E.P Hsieh, G.R. Putzolu. J.P. Roth, PR Schneider, and C J
Tan, “Algorithms for Detection of Faults in Logic Circuits.” IEEE Transactwons on
Computers, vol. C-20, no. 12, Nov. 1971, pp. 1258-1264

[BrHaMcSa84) R.K. Brayton. G D Hachtel, C. McMullen, and A Sangiovanmi-Vincentelis,
Logic Minimization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Bos-
ton MA, 1984,

[BrgFuj85} F. Brglez, and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran,” Proceedings International Symposium on
Circuits and Systems, Special Sesson on ATPG and Fault Simulation, Kyoto. Japan,
June, 1985.

[ChaDonﬁzg?S] C. Cha, W. Donath, and F Ozginer. “9-V Algorithm for Test Pattern
Generation of Combinational Digital Circwits " /EEE Transactions on Computers, ve!
C-27, no. 3. March 1978, pp 193-200

[Cha79) C.W Cha. "Multiple Fault Diagnosts in Combinational Networks ™ Proceedings
16th Design Automation Conference San Diego CA, June 1979, pp 149 155

[Cheng88] W.T Cheng. "Sphit Circuit Model for Test Generation * Proceedngs 25th Design
Automation Conference, Anaheim, CA. June, 1988, pp 96-101

L4

References

[CoxRaj91] H. Cox. and J. Rajski. “On Necessary and Nonconflicting Assignments in Al-
gorithmic Test Pattern Generation,” IEEE Transactions on Computer-Aided Design.
under review

[CoxRaj87}] H Cox. and J. Rajski, "A Method of Test Generation c.ad Fault Diagnosis
in Very Large Combinational Circuits” Proceedings International Test Conference.
Washington, D.C.. September, 1987, pp. ©32-943

[CoxRaj88] H. Cox, and J. Rajski, “A Method of Test Generation and Fault Diagnosis.”
IEEE Transactions on Computer-Aided Design, voi. 7, no. 7, July, 1988, pp 813-833.

[EicVil77] E.B. Eichelberger. and T.W. Williams. “A Logic Design Structure for LS| Test-
ing,” Proc. 14th Design Automation Conf., June 1977, pp 4062-468.

[EId59] R.D. Eldred. “Test Routines Based on Symbolic Logical Statements,” Journal of
the ACM., vol. 6, 1959, pp. 33-30.

[FujToi82] H. Fujiwara, and S. Toida. "The Complexity of Fault Detection Preblems in
Combinational Logic Circuits,” IEEE Transactions on Computers, vol. C-31, no. 6,
June, 1982, pp. 555-560

[FujShi83] H. Fujiwara, ad T Shimono. "On the Acceleration of Test Generation Algo-
rithms,” /EEE Transactions on Computers, vol. C-32, no 12, December, 1983, pp
1137-1144

[FuKaYa89] S. Funatsu, M. Kawai. and A Yamada, "Scan Design at NCC.” /EEE Design
and Test of Computers, vol 6, no. 3, June 1989, pp. 50-57

|[GarJoh78] M.R. Garey. and D S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, WH Freeman and Co , New York, NY, 1978.

[Goel81] P Gael. "An implicit Enumeration Algorithm to Generate Tests for Combinational
Logic Circuits,” /EEE Transactions on Computers, vol. C-30, no 3, March, 1981. pp
215-222

[Golomb87] S.W. Golomb, Shift Register Sequences, Holden-Day inc.. San Francisco. CA,
1967.

[Harel86] D Harel, “A Linear Time Algorithm for Finding Dominators in Flow Graphs
and Related Problems,” Proceedings of the 18th ACM Symposium on the Theory of
Computing, 1986, pp. 185-194

[HorMcL89] P.D Hortensius, R D Mcleod, W. Pries. D.M. Miller, and H C. Card, "Cellu-
lar Automata-Based Pseudorandom Number Generators for Built-In Self-Test,” /EEE
Tranactions on Computer-Aided Design, vol. 8, no 8. Aug. 1989, pp 842-859.

[HrbJec84] K. Hrbacek. and T Jech, Introduction to Set Theory, 2nd ed , Pure and Applied
Mathematics, Marcel Dekker, inc , New York. 1984

[JaMoChHa89] R Jacoby. P Moceyunas. H Cho, and G Hachtel, “New AT PG Techniques
for Logic Optimization,” Proceedings International Conference on Computer-Aided De-
sign, Santa Clara, CA, November 1989, pp 540-551

[Kautz68] W H Kautz. “Fault Testing and Diagnosis in Combinational Digital Circuits.”
IEEE Transactions on Computers, vol C-17, no 4, April 1968, pp 352-366

9%

References

[KirMer87] T. Kirkland, and M R. Mercer, “A Topological Search Algorithm for ATPG,”
Proceedings 24th Design Automation Conference, Miami Beach, FL, June, 1987, pp
502-508.

[Klug88] H.P. Klug, “Microprocessor Testing by Instruction Sequences Derived From Ran-
dom Patterns,” Proceedings IEEE Internationai Test Conference. Washington DC.
Sept. 1988, pp. 73-80

[LaiSie83] K.W. Lai, and D.P. Siewiorek “Functional Testing oi Digital Systems,” Pro-
ceedings 20th Des’gn Automation Conference, Miami FL, June 1933, pp. 207-213.

[Lar8G) T. Larrabee, “[Efficient Generation of Test Patterns Using Boolean Difference.”
Proceedings International Test Conference, Washington DC, August 1989, pp. 795-
801.

[MaaRaj90] F. Maamari, and J Rajski, “A Method of Fault Simulation Based on Stem
Regions,” IEEE Transactions on Computer-Aided Desigr.. vol. 9. no. 2, February
1990, pp. 212-220.

[McCMou87] E.J. McCluskey, and S Mourad. “Comparing Causes of IC Failure.” Devei-
opments in IC Testing, edited by D.M. Miller, Academic Press, London, 1987, pp.
13-46.

[Mei74] K.C.Y. Me.. “Bridging and Stuck-At Faults.” [EEE Transactions on Computers.
vol. C-23. ro. 7, July 1974, pp. 720-727.

[MinRog89] H.B. Min. and W.A. Rogers. “Search Strategy Switching: An Alternative to
Increased Backtracking.” Proceedings International Test {onference, Washington DC,
August 1989, pp. 803-811.

[MuAgND¢O] F. Muradal, V.K Agarwal. and B. Nadeau-Dostie. “A New Procedure for
Weighted Random Built-ir Self-Test.,” Proceedings IEEE International Test Confer-
ence, Washington DC, Sept. 1990, pp. 660-669.

[Muth76] P. Muth. “A Nine-Valued Circuit Model for Test Generation.” JEEE Transactions
on Computers, vol. C-25, no. 6. june 1976, pp. 630-636

[NaThAb78] R. Nair. SM Thatte. and J.A. Abraham, “Efficient Algornthms for Testing
Semiconductor Random-Access Memories.” [EEE Transactions on Computers, vol.
C-27, no. 6, June 1978, pp 572-576.

[RajCox86a] J. Rajski. and H. Cox, "On the Application of a Transition Logic System to
VLS| Fault Analysis " Proceedings International Symposium on Circuits and Systems,
San Jose, CA, May, 1986, pp. 1265-1268

[RajCox86b] J. Rajski. and H Cox. "Stuck-Open Fault Testing in Large CMOS Networks by
Dynamic Path Tracing,” Proceedings International Conference on Computicr Design,
Rye Brook. NY, October, 1986, pp 252-255

[Raj88] J. Rajski. "GEMINI A Logic System for Fault Diagnosis Based on Set Functions.”
Digest 18th International Symposium on Faull Tolerant Computing Systems Tokyo,
Japan, June, 1988, pp 292-297

97

#

—

References

[RajCox90] J. Rajski. and H. Cox, “A Method to Calculate Necessary Assignments in Algo-
rithmic Test Pattern Generation,” Proceedings International Test Conference, Wash-
ington, D.C., September, 1990. pp. 25-34.

[Ravi87] K.W. Ravi, Imperfections and Imputities in Semiconductor Silicon, John Wiley
and Sons, New York, NY, 1987.

[RobRaj88] M. Robinson, and J. Rajski, “An Algorithmic Branch and Bound Method to PLA
Test Pattern Generation,” Proceedings International Test Conference, Washington,
D.C.. September, 1988, pp. 784-795.

[Roth66] J.P. Roth, “Diagnosis of Automata Failures: A Calculus and a Method.” /BM
Journal of Research and Development, vol. 10, July, 1966, pp. 278-291.

[SaMaTrScB9) T.M. Sarfert, R. Markgraf, E. Trischler, and M.H. Schulz. “Hierarchical Test
Pattern Generation Based on High-Level Primitives.” Proceedings International Test
Conference, Washington DC, August 1989, pp. 470-479.

[ScLiCa75] H.D. Schnurmann, E. Lindbloom, and R.G. Carpenter, “The Weighted Random
Test Pattern Generator,” /EEE Transactions on Computers, vol. C-24, no. 7, July
1975, pp. 695-700.

[SchTriSar88) M.H. Schulz, E. Trischler, and T. Sarfert, “"SOCRATES: A Highly Efficient
Automatic Test Pattern Generation System.” /EEE Transactions on CAD, vol. 7, no.
1, January 1988, pp. 126-137.

[SchAut89] M.H. Schulz, and E. Auth, “Improved Deterministic Test Pattern Generation
With Applications to Redundancy ldentification,” /EEE Transactions on CAD, vol. 8,
no. 7, July 1989, pp. 811-816.

[SeHsBe68] F.F. Sellers, M.Y. Hsiao. and L.W. Bearnson, “Analysing Errors With Boolean
Difference,” /EEE Transactions on Computers, vol. C-17, no. 7, July 1968, pp. 676-
683.

[ShMaFe85] J.P. Shen, W. Maly, and F.J. Ferguson, “Inductive Fault Analysis of MOS
Integrated Circuits,” Design and Test of Computers, Dec. 1985, pp. 13-26.

[SilSpi88] G.M. Silberman, and |. Spillinger, “G-Riddle: a Formal Analysis of Logic De-
signs Conducive to the Acceleration of Backtracing,” Proceedings International Test
Conference, Washington, D.C., September, 1988, pp. 764-772.

[Smith79] J.E. Smith, “Detection of Faults in Programmable Logic Arrays,” /EEE Trans-
actions on Computers, vol. C-28, no. 11, Nov. 1979, pp. 845-852.

[Stew77] J.H. Stewart. “Future Testing of Large LSI Circuit Cards.” Proceedings 1977
Semiconductor Test Symposium, Oct. 1977, pp. 6-15.

[Tarjan74] R. Tarjan, “Finding Dominators in Directed Graphs.” SIAM Journal on Com-
puting, vol. 3, no. 1, 1974, pp. 61-89.

[ThaAbr80] M.S. Thatte. and J.A. Abraham, “Test Generation for Microprocessor,” IEEE
Transactions on Computers, vol. C-29, no 6. June 1980. pp 429-441

[Wad78] R.L. Wadsack, “Fault Modeling and Logic Simulation of CMOS and MOS In-
tegrated Circuits,” Bell System Technical Journal, vol. 57, May-June, 1978, pp.
1449-1474.

98

References

[WaLiRoly87] J.A. Waicukauski, E. Lindbloom, B.K. Rosen, and V.S. lyengar, "Transition
Fault Simulation,” /EEE Design and Test of Computers, vol. 4, April 1987, pp. 32-38.

[WilAng73] M.J.C. Williams, and J.B. Angell. “Enhancing Testability of Large-Scale Inte-
grated Circuits Via Test Points and Additional Logic." /EEE Transactions on Comput-
ers, vol. C-22, no. 1, Jan. 1973, pp. 46-60.

[WilBro81] T.W. Williams, and N.C. Brown, “Defect Level as a Function of Fault Coverage.”
IEEE Transactions on Computers, vol. C-30, no. 12, Dec. 1981, pp. 987-988.

[WilPar83] T.W. Williams, and K.P. Parker. “Design for Testability—A Survey.” Proceed-
ings IEEE, vol. 71, Jan. 1983, pp. 98-112.

[Wun88] H.J. Wunderlich, “Multiple Distributions for Biased Random Test Patterns.” Pro-
ceedings IEEE International Test Conference, Washington DC,, Sept. 1988, pp. 236-
244,

99

