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ABSTRACT 

" This thesis concerns the assessment of the validity of statistical 

fUQctions that describe t~e scatter,in fatigue data and the reliability of 

components subjected to fatigue loading situations. Attention is particularly' 

focused on -the "Provan law" which has been derived based upon' a probabil iisti c 
.t) 

description of the microstructural fatigue crack growth processes. The 

statistical laws are first succinctly described fol10wed'by the description 

and results of an experimental program specifical1y developed to ascertain 

their applicability, especially in relation ta the "Provan law". This 

program consisted of performing strain controlled fatigue experiments on 

specially prepared oxygen-free-high-conductivity copper specimens. This 

was followed by a scanning electron microscope investigation of the fracture 

surfaces of a selected nûmber of specimens in order ta d~termine the basic 

material crack growth intensity parameter, À, required for ,the implementation 

of the IIProvan law ll
• Secondl~, the laws are compared both on the basis of 

computer generated curve fits of the fatigue âata and on the results of the 
. 

Komolgorov-Smirnov and Cramer-Von Mises statistical tests. In addition, a 

theoretical À is evaluated and compared with its empirical (curve fit) and 

experimenta,l counterparts. Finally, the applicability of the statistical 
;., 

functions in fatigue reliability is discussed. 
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RESUME 

La présent~ thèse a pour objet l'évaluation de l'applicabilité 

de certaines fonctions statistiques à la représentation de la dispersion 

des résultats en fatigue et au calcul de la fiabilité de' co~posantes 

mécaniques soumises à la fatigue. Une attent~on particulière est 

accordée à la "loi de pr.ovan" qui a été récemment dérivée à partir d'un 

modèle pr9babilist~ du prdcessus de propagation d'~ne fissure en fatigue. 

, Les principales caractéristiques de chacune des fonctions sont 

premièrement présentées,-suivies d'une description du programme expérimental 

qui a permis d'évaluer leur validité. Ce programme consistait, en premier 
, 

lieu, à effectuer des tests de fatigue en contrôle de déformation sur des 

éprouvettes de cuivre pur spécialement préparées à cet effet. La seconde 

partie du programme fut d'observer au mic~oscope électronique à balayage 

" 
les surfaces de fracture d'u~ombre choisi d'éprouvett;s. Le but de ses' 

observations était de détermine~, pour l~ matériau étudié, l'intensité de 

propagation d'une fissure de fatigue, À, paramètre nécessaire à la 

vérification de la "loi de Provan". 

Les fonctions sont ensuite comparées en se basant sur leur 

degré d'ajustement aux données expérimentales ainsi q~e sur les résultats 

des tests d'hypothèses de Komolgorov-Smirnov et de Cramer-Von Mises. De 

plus, une valeur théorique pour À est calculée ~t comparée aux valeurs 
cr 

expérimentale et empirique obtenues à partir de l'analyse des résultats 

expérimentaux. Finalement, des conclusions sont tirées concernant 
1 

l'utilisation des fonctions statistiques pour évaluer la fiabilité en 

fatigue. 
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CHAPTER 1 
,t 

INTRODUCTION 

J.1' MOTIVATION 

It ois nowadays recognized that the greatmajor1ty of mechanical 

failuresrresult from fatigue related degradation processes. In recent 

yea~s, therefore, design engineers have shawn an increasin~ concern about 

fatigue of materials in order to maintain an acceptable level of structural 

integrity for modern large structures and complex components subjected to 

more and more demanding service conditiohs. But, complexity and size 

beèome major obstacles when one has ta perfarm real life tests to assess 

designs and design parameters. The required tests are either too costly or 

simply not feasibl'e wh_ich forces the engineer to œJy on data obtained by 
. ' 

fatigue testing simple laboratory specimens. Besides, it is generally 
~ 

observed that these data exhibit a relatively large amount of scatter. 

ThiS is true for constant as well as variable amplitude (and frequency) ... · 

loading and for all materials. 

The scatter in fatigue data has long been thought to be only 

attributable ta the xariations in test conditions. However, the test 

variables being severàl Y controlled, there still remains an appreciable 

residual dispersion in the results that must consequently be associated 

with the material microstructure itself, that is, with the random . 

distribution of lattice defects and impurity aloms on the submicroicoPic 

scale, and with the variation in crystal size and orientation in the 
/ 
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material at the microscopie level. This attests to the random nature of' 

'fatigue and suggests a probabilistic rather than a deterministic approach 

to the problem. Thus, it is more appropriate to talk about the probability 

that a component will not fail instead of merely saying that it is not 

expected to fail. The evalu~tion of this probability.of non-failure, mor~ 

conmonly known as reliability, becomes., then, one of the (if not the most 

important) critical design conditions, recalling that high reliability is 
J 

synonymous of low overall costs. Therefore, there is an urgent need to 
, 

provide the design engineer with ready-to-use probabi~istic methods for 

assessing the reliability of large structures and components. '. 
Most of the fatigue reliabilit~ models that have been'proposed 

and successfully used sa far are more or less based on empiricism. That 

is, little or no effort has been made to describe the fatigue mechanisms in 

deriving th~se models. They usually require a substantial amount of test 

data to be confidently used which therefore restricts their application. 

In recent years, new models that are based on a prObabi~j~tic 

descript}on of the fatigue crack growth process have been developed. Of 

course, these modéls still require refinement and improvement before they 

emerge as "re liable" design tools. but they constitute a promising avenue 

of research that is certainly worthwhile exploring. It is the author's 

/ ~ hope that the fruits of this advanced design philosophy'will gain more and 

more acceptance in the engineering field. 
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-1.2 PRËVIOÙS STUDIES 

-Q 

The study of scatter in fatigue data was p1aced on a sound footing 
) 

by the work of Weibu11 [1] who, in 1949, presented a statistica1 function 

derived from a probabilistic characterization of t~e breaking strength of 

materia1s. 'Since then, the Weibull function has been frequently suggested 

as a time7to-failure model based on empirical grounds, and satisfa~tory 

representatiors have been obtained by Leiblein and Zelen [2], Kao [3] and 
.:; 

Perry [4J in their studies on ball-bearings, electron tubes and transistors, ù 

respectively .. (_ 

As fatigue became a more crucial prQblem in design, several other 

research ~ngineers followed in Weibull 's footsteps and proposed statistical 

models to des~ribe the reliability of mechanical components. systems and 

structures that were constantly growing in size and complexity. Among the 

most familiar of these models are the exponential, normal, log normal, 

gamma, and Gumbe 1 . 

An acceptable justification for the assumption of an exponential 

distribution to life studies was initially discussed by Epstein [5] and by 

Davis [6]. Later, the exponential model was mathematacally assessed as a 

failure law for comp1ex equipment [7J. 

Few applications of the normal distribution as a reliability model 

,are reported in the literature, the main reason being that, for a given set 

"of fatiguè data, one generally prefers to use more flexible (the normal 

distribution does not have a shape p'ar~meter) distributions, such as the 

gamma and Wei bull , that adequately describe the scatter. 
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Until recently, the ~pplicabi1ity of the log normal distribution 

has been 1imited to rare situations in small-partic1e statistics, economics 

and biolbgy [8J. However, Howard and Dobson [9J and Peck~[10J have extended 

its use to fracture problems. Its applicability as a failure dïstribution 

has been a1so indicated by the 1ife-test sampling plans deve10ped far it 

by Gupta [11]. 

Extensive1y used in the study of floods, aeronautics, geology 

and' naval engineering [12] the Gumbe1 distribution can a1so be app1ied to 
1 

1ife test and reliabi1ity situations where failure of components of systems 

are 1inked to extrema1 phenomena as discussed by Hahn and Shapiro [13J and 

also by Mann, Schafer and Singpurwalla [14]. 

In- the past few years, more research effort has been devoted to 

the derivation of re1iabi1ity models based on probabi1istic interpretations 

of the fatigue process. Thus, 8irnbaum and Saunders [15J have proposed a 

life distribution to characterize fai1ures due to the extension of a fatigue 

crack. They have further used it. [16], to offer a probabilistic interpre-

tation of Miner's ru1e. Birnbaum and Saunders have a1so found experimental 

support to their law from the work of Freudenthal and Shinozuka [17J who 

have presented a similar law substantiated by severa1 sets of fGtigue data. 

Subsequently, Payne [18] introduced a statistical re1iability mode1 for 

assessing the fatigue strength of aircraft structures. This model evaluates 

the random variabi1ity in crack propagation rates and the residual strengths 

of éracked structures at any stage of their life. More recently, Provan [19] 
1 

has derived a re1iability distribution based on probabilistic micromechanics 

concepts applied tù the fatigue of po1ycrystalline metals. The theoretica1 
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foundati ons. of thi s mi crostructura 1 i nterpretati on of the scatter in fatigue 

data are given in [20] and have been experimenta11y assessed in [21]. 

1.3 THESIS DESÇRIPTION' 

This thesis begins with a chapter reviewing the fami1iar empirical , . 
and semi-empirical 1aws used in fatigue reliabi1ity, name1y, the exponential, 

normal, log normal, gamma, W~ibull and Gumbel extremè value, cumulative 

distribution functions. The not so familiar theoretical laws of Birnbaum-

Saunders and Provan are a1so presented. A more comprehensive description 

of the Irprovan law ll is given since the assessment of its validity is the 

prime interest of the current investigation. The main characteristics of 

each distribution and their range of applications are discussed. 

Chapter 3 is concerned with the experimental part of the thesis 

that consisted of two separate inve~tigations: the fatigue experiments and 

the scanning electron microscope observations. A description of the specimen 

machining and preparation is first given. Then, the major components of the 

experimental equipment and a1so the experimental procedure are described. 

The resu1ts of the experimental investigations are presented and 

analyzed in Chapter 4. Two methods of analysis, namely, the curve fitting 

and the statistica1 tests are applied to assess the adequacy of the above­

mentioned reliabilify functions with respect to the collected fatigue data. 

The additional method for verifying the validity of the "Prbvan law" through 

the results of the microscope observations is also explained. 

_.1 
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The final chapter presents the conclùsions and proposals for 

further research. 

In arder ta lighten the text, çomplementary information such as 

definitians, computer programs, and detailed procedures are given in the 

appendices. 
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CHAPTER 2 

REVIEW OF FATIGUE RELIABILITY THEORIES 

The number of continuo~s distributions available which empirically 

describe the scatter in fatigue data is considerable. This chapter deals 

both with the most common and two recently derived theoretical functions 

pertaining to fatigue reliability. In describing the distributions, the 

emphasis is put on the principal characteristics and on the domain of 

applicabil ity. 

2.1 THE EXPONENTIAL DISTRIBUTION 

The exponential probability density function (p.d.f.) is undoubtedly 

the most commonly used time-to-failure distribution. It is as important in 

reliability as the normal distribution is in other fields of statistics. 

Unfortunately, in many ~ases, the choice of the exponential distribution as 

a failure model is based on the fact that it is easy to apply rather than on 

the understanding of the physical problem. 

given by: 

The p.d.f. for an exponentially distributed random variable x is 

\ 

f ( x ; 6) = ~ e -xl ô x>O 6>0, (2. l ) 

where the parameter 1/6 is referred to as the hazard rate (see Appendix C). 

This parameter being constant, the exp~nential model is characterized (and, 

in a certain way, limited) by the property known as complete "lack of memory". 

-7-
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Thus, assuming an exponenti~11y dis~ributed time-to-failure, the probability 

of failure of a given unit during a specifie time interval depends only on 

the length of the interval ard is therefore the same irrespective of whether 

the unit has previously survived 100 hours or 1000 hours. 

The exponential distribution has been found more appropriate as a 

reliability model for complex systems or assemblies. However, it is also 

applicable for components in cases where replacement is carrie~ out during 

the in-usage portion of the component life, that is, before wear out occurs. 

The cumulative distribution function can be obtained fram the·p.~.f. 

through the familiar relation: 

x 
CDF ; F(x) = f p.d.f. dx (2.2) 

-co 

which yields a rather simple expression for an exponential variable, namely; 

F(x) = l_e-x/ 8 , 

Fi~ally, it should be mentioned that the expanential distribution 
-

;s a special case of both the Weibull and the gamma distributions that are , 

further discussed in this chapter. 

2.2 THE NORMAL DISTRIBUTION 

The normal or Gaussian distribution is the best known and most 

frequently used statistical model. It owes its popularity principally to 

• 

____ J 
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<J 
the fact that it conforms approximately ta the observed distribution of many 

physical quantities. It was first introduced in 1733 through the work of 

De Moivre who derived it as a limiting case of the binomial distribution. 

The normal distribution was also known ta Laplace no later than 1774, 

'" however, through historical mistake, its discovery has been attributed ta 

Gauss whose first published reference to it appeared in 1809. 

A random variable is said to be norma1ly distributed if its p.d.f. 

has the form: 

f(x) = _1 - exp[ _ l (~:J:!/ ] 
11'- 2 a 
Y~7T a ' 

(2.4) 

_00 < x < 00 ; _00 < ~ < 00 ; a > 0 ~ 

This simple shape distribution 1S symmetric about its mean ~ and its degree 

of dispersion is represented by the para~eter a that is also known as the 

standard deviation. 

The associated CDF ta (2.4) is ~iven by: " 

f(x) =-

x 
1 S 11 2 f exp[- - (---) Jd 's 2 r:J' 

~hose evaluation is far from straightforward. But, by simply making the 
() 

,< 

chànge of variable z = (x-11)/a, (2.5J becomes: 
J 

z 
F( ) l (S2) wl'th s = ~ z = Itrr J exp - '2 ds, , a 

_00 

(2.5) 

(2.5a) 
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<f) 

pler function that i~ tabu1ated in~pny fundamental book on statistics. 
\J 

.,. 
called the standard normal variate and fo1lows a 

distribution with ~ :: 0 and a ::- l [14]. 

The validity of the normal distribution as a time-to-failure model -

is questionable since the normal variate'x includes negati·ve values. However, 
'/' 

when p ~ 30, the basic requirements for any life model ta be acceptable, 

,1. 
00 

J f(x)dx = 1 

o 

<> 

(2.6) 

is satisfactorily met (error -0.14%). For the other cases, ~he distribution 

is truncated ta: 

- l 1 (X-li 2 f(x) = -- exp[- - ~) ] 
71'i:::: 2 cr 

KOyt;7f 

o <'x < co , 

• . where K is the normalizing constant such that: 

00 

J f(x)dx:: 
o 

2.3 THE LOG NORMAL DISTRIBUTION 
/ 

/ 

(2.7) 

(2.6a) 

A random variate x is said to be log normally distributed if its 

logarithm follows a normal distribution with parameters pl and al. The p.d.f. 
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of x is then given by: 

(2.8) 

o < x < 00 0 < ~I < 00 al > 0 
f 

and its CDF by: 

x 
1 1 1 tn ~_~ 1 2 

F(x) = -- f "F exp[ - "2 ( a' ) ]dt,; 
a l /27T <" o 

(2.9) 

, 

The log normal distribution has various shapes and is charactertzed 

by a right skewnes~ as shown in Table 2.la). Note that ~I and al represent 

here the scale and shape parameters, respectively, and not the location and 

scale parameters as for the normal distribution. 

Setting y = ~n x in (2.9) we obtain: 

F(y) = (2.10) \ 

Iwhich is very similar to ( 2.5) and can therefore be evaluated using the 

same tables after putting it into the form of (2.5a). 

The fundamental derivation of the logarithmic normal distribution 

is carried out by consigering a physica1 process wherein fai1ure i~ due to 

the growth of a fatigue crack. For this reason, the utilization of this 

distribution for fatigue failure problems seems fu11y justified. 

\ 1 \ 
_J 
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Let Xl < X2 < ••• < Xn b~ a sequence of random variables denoting 

the size of a fatigue crack at different stages of its growth. If we assume 

a proportional effect, [22], for the growth of these cracks, it follows that 

the crack growth at stage i, X;-Xi _1, is randomly proportional to the size 
" 

of the crack, Xi -1' and the component fa il s when the crack l ength reaches Xn . 

Let Xi -Xi _1 = 'TT i Xi_l' i = l, 2, ... , n, where TI; is a constant ~.f 

proportionality varying in a random manner with i. The initial crack size 

Xo is interpreted as the size of minute flaws, voids and the like in the 

components. F;na11~, the 'TT i ~re assumed to be independent1y distributed 

.random variables having not necessarily the same distribution for all ;IS. 

Hence: 

/' 
/ 

X.-X. 1 
1 1 -

X. l 1-
= 'TT. 

l 
i=1,2, .•• ,n (2.11) 

or: 
n n . 

b.x. 1 
! TI. = k ,-

l X. 
;=1 . 1 ' -1 1= 

(2.12) 

where b.xi_l = X;-X i _1. For the limit case, name1y, b.x i _1 + 0 and n becomes 

large, we get: \ 

or 

n Xn 

k 'TTi = j, t dX = 1pg Xn-log Xo 
i = 1 Xo 

n 

log Xn = k 'TT i +1 og Xo 
i =1 

(.:.. 

(2.13) 

(2.14) 
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Since the ITi , by assumption, are independent1y distributed variates, 

by the central limit theorem (see Appendix C), they converge to a normal 
p 

distribution. Therefore, log Xn is asymptotically normally distributed and 

hence X has a logarithmic normal distribution. 
n 

2.4 THE GAMMA DISTRIBUTION 

The gamma distribution is a natural extension of the exponential 

distribution, being the appropriate model for the time required for a total 

of exactly n independent events to take place if events occur at a constant 

rate a, i.e., each event is exponentially distributed. In reliability terms, 

this means that a system or assemb1y time to failure is gamma distributed if 

the system failure occurs as saon as exactly n subfailures have taken place " 

and if subfai1ures occur independently at a constant rate a. 

The gamma p.d.f. is: 

x > 0, ct, n > 0 

where r(nJ is the well-known gamma function, namely: 

n-l -x r(n) = f x e dx 
o 

and n and ct are the shape and scale parameters respectively. 

(2.15) 

(2.16) 

The wide variety of gamma distribution shapes certainly accounts 
, 

for the frequent use of this model, especially in reliability. Thus, many 
o 

phenomena that cannat be justified theoretically as gamma variates, have, 

l 
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nevertheless, been found empirical1ytobe well approximated by the galJll1a 

p.d.f. 

The gamma CDF is written as: 

F(x) 

x 
= ~ f t n-1e-atdt r\nJ 

? 
which is also known as the'incomp1ete gamma function and can be evaluated 

through the tables of the function 1 (u,p) [23] where u and pare defined 

as follows: 

ax 
U = - and, p = u-l 

Iii" 

2.5 THE WEIBULL DISTRIBUTION 

(2.17) 

In 1949, a Swedish research engineer named Wa10ddi Wei bull proposed 

a probability density function [1] for the interpretation of fatigue data. 
e ' 

Since then, however, the application of,this failure distribution has been ) ~ 

extended to many other engineering prob1ems. The great versatility of the 

Weibull distribution stems from the possibility to adjust it to fit the many 

cases where the hazard rate either increases or decreases. The Weibull 

d~stribution is a1so known to statisticians as the Fisher-Tippet Type III 

asymptotic distribution of the smallest extreme., that is to say that it 

can also be derived fram the extreme-va1ue theory [14J. 

.. 

Il) , , 

_J 
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2.5.1 Two-Parameter Weibull 

l , 

For certain statistical phenomena, one can reasonably assume that 

the lower bound of the associated'random variable is equal to zero. Fo'r 

those cases, the..Weibull p.d~f. is' written·as: 

and the CDF as: 

6-l' 6 
f(x) =' ex, exp[-(~) ] 
,,' aB, e __ 

13, a > 0 ;' x > 0 

x S 
F(x) = l-expr -(-) ] 

- 1" a 

(2.19) 

(2.20 ) 

where, a is the characterîstic value corresponding to the (e-l)/e or 63% 

probability point, and is known as, the scale parameter, and B is the shape 

parayreter. 

2.5.2 Three-Parameter Wei bull 

The more general form of the Weibull distribution takes into account 
• 

an arbitr~ry origin for the random variable by introducing a location 

parameter, say 60. This is ,needed, for instance, in life testing when 

compQnents are designed tH last "at least" a éertain-t-ime. The p.d.f. a,f'!d 
, 

CDF then respective1y become: 

f(x) (2:~1 ) 

- -"--,,--,-----_J' 
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x 8 f3 

F(x) = l-exp[- (~) ] 
- 8-60 

2.6 THE GUMBEL (EXTREME-VALUE) DISTRIBUTIONS 

(2.22) , 

Failure of components or systems may frequently be related to 

causes that depend directly on either the sma1lest or the largest value in 

a particular sample distribution. For example, in fatigue tests at a constant 

stress, failure may be dependent on the strength of the weakest of many 

"elements" in a given material, or it may be dependent on the size of the 

largest flaw. In those cases we are interested in the distribution of the 

smallest value (minimum element strength) or the largest value (maximum 

flaw size) in a sample from sorne '(generally unknown) initial distribution. 

The smallest or largest element distribution will, in general, be a function 

of the sample size, n, and on the nature of the initial distribution. However" 
, 

if n bêcomes large and if the initial distribution t"s of the "exponential type" 

(such as exponential, normal, and log-normal d'istributions) Cramer hgs shown , 

[24] that the cumulative distribution of the smallest (or largest) value 

-converges asymptotically towards the so-called Type l extreme value for the 

smallest ~or largest) extreme di\~ribution. Because this distribution was 

extensively used by Gumbel [25J in his study of extremal phenomena, it is also' 

known as the Gumbel distribution. Thus, if the initial distribution is of <?~ 

such a form that it tends to zero,.exponentially as the associated random 

variable tends to _00, the limiting cumulative distribution is referred to âs 
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the Gumbel distribution for the smallest extreme and is ~~itten as: 

F(x) = l-èxp[,-exp(x~a)] 
(2.23) 

1· 
_00 < x < 00 ; 0 > 0 ;" _00 < a < 00 " 

and its related p.d~f.- as: 

, , ,-- f(x) = 1 exp[ 1 (x-a)- exp (x-a)] o 0 . 0 

1 

(2.24)' 

1 

Similarly, if the initial distribution tends to zero exponentially 

as the random variable tends to +00, we obtain the Gumbel distribution for 

the largest extreme, given by: 

/ F(x) = exp{-exp[- (x-a)]} . 0 (2.25) 

and the p.d.~. by: 

f(x) = 1 [_1 (x-a)-.exp (x-a)] 
ô ô 0 (2.26 ) 

1 
1 

b 

The two Gumbel density functions, that'is, Equations (2.24) and 
1 • 

(2.26) are mirror images of each other as depicted in rabl!) 2.2c. One should 

also note that although the preceding results are asymp!otic Ci ... e., they are 
1 

derived from ~ + 00) the extent to which they are applicable for moderate 
. - - ) 
size n, or in other words the rate of convergence, __ ~ends on the initial 

distribution. For example, fewer observations are required for the distri-

bution of the largest valu~ to approach the Gumbel distributio~-if the 

initial distribution is exponential than if it~;s normal. 



, 

+ 

--1 
'-

fi 

, , 

~18-

2.7 THE BIRNBAUM-SAUNDERS DISTRIBUTION 

The Birnbaum and Saunders fatigue-life model, proposed in 1979 [15J, 

assumes that fatigue failure is due to the growth and ultimate éxtension of a 

crack past a critical length. At each oscillation of the imposed load, this 

crack is extended by a random amount, the randomness being the result of 
-', 

variation in the material, the magnitude of the stress, the specimen geometry 

and other such factors. The extension of the fatigue crack is then represented 

by a nonnegative random variable whose two-parameter cumulative distribution 

function, namely, the Birnbaum-Saunders distribution, will now be derived. 

In their approach, Birnbaum and Saunders first consider a specimen 

that ;s subjected to ident;cal sequences (i.e., cycles) of m loads, {~.} i = 
l 

1,2, ... , m, e~ch load causing a deformation of the specimen, thereby 
" 

imposing a stress on it. The loading scheme can be seen as follows: 

.R.1 , ~2' ... , ~m }cycle l 

~m+l' ~m+2' "" ~2m }cycle 2 

. 
.R.jm+l , ~jm+2' .. -, 2jm+m }cycle (j+l) 

'1 

with ~jm+i = ~km+i for'all j 1 k. Then, it is assumed that the loading is 

continuous which implies that for all i = 1, 2, _ .. , m 

]/,'+1 (0) = R,. (1) = J/,. 1(0) 
l l 1-

Having established the physical framework, two fundamenta1 

assumptions a~e next made. The first one is that the incremental extension 

Xi due to the load ~i in the cycle j is a random variable whose distribution 
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is governed by all the loads i j , j < i, and the actual crack extensions that 

have preceded it in cycle j atone. The second -assumption concerns the total 
th .-----

crack extensio~ Yj due to the j lyc1e that is taken as a random variable 

with mean ~ and variance 0 2 , for 4 = l, 2, Thus, we have 

Yj+l = Xjm+1 + Xjm+2 + (. .. + Xjm+m 
) 

\ '" -for cycle (j+l) and under a repeated'ftprn~ation o~~y~les, 
, :' 

the total 

extensi on of a crack in a specimen i s writt~n. as/ " 
..... 1/ ..... --. _ _._-

n 
l ' 

Wn = :E Yj (2.27) 
j=l 

The first assumption is rath~r restrictive in the sense that it 

ensures that the total random crack extensions, Yjls ' are independent from 

cycle to cycle. This hypothesis is certainly not valid for several appli­

cations although Birnbaum and Saunders have found it plausible in many 

aeronautical fatigue studies [15]. 

Finally, pefining C as the integer random variable that denotes the 

number of cycles at which Wn exceeds a critical value, W, the 8irnbaum­

Saunders fatigue failure law is expressed as: 
o 

'n 

P(C.::. n) = P(Wn ':::' w) = l-P(:E Yi .::.w) 
j=l 

(2.28) 

" 
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But, from the second assumptian we know that the Yjls have a mean 

~ and a variance a2
; thus, the Yjls can be standardized ta yield: 

P(C .2 n) 
n y ._~ 

= 1-P( I~ ~ < w-n~) 
am -am j=l 

(2.29) 

Next, from the assumption on the independence of the Yjls and 

using the central 1imit theorem and the symmetry of the normal distribution, 

(2.29) can be rewritten as 

where 

P(C'.2 n) 

= cp (~- ~) 
am am 

, cp(x) 

Final1y, defining 

cr 
(l = - and w 8 = -

l.I liiW 

the recognizable form of the Birnbaum-$aunders law is obtained, name1y 

(2.30) 

(2.31 ) 

(2.32) 
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The parameters a and S ~an be interpreted as shape and sca1e, respectively. 

Now, from the above derivation it follows that: 

l (!!)1/2 _ \(f)1/2] 
Z=a[ 13 N (2.33) 

is distributed normally with mean 0 and variant land hence the probability 

density function associated with (2.32) is inferred as: 

fN(n;a,S) = ----
212TT a2e n2 

x exp [- ~ (~+ f - 2)J 
2a S n 

2.8 THE"PROVAN"OISTRIBUTION 

(2.34) 

The "Provan"fat;gue reliability function results from a probabilistic 

micromechanics approach to the description of fatigue failure of poly­

crystalline metals [20J. Based on this approach, a statistical model 

describing the fatigue crack initiation process was first developed to 

evaluate the number of cycles, NO' required ta initiate a crack. Subse­

quently, a linear pure birth Markov stochastic process was used as a model 
., 

to describe the scatter in the number of cycles involved in the propagation 

stage. In this analysis, the crack front is characterized at each cycle 

by the Gaussian pair (~a;Va) which are the mean and the variance of the 

crack length, respectively. Specifically, this pair ;s expressed as shown 

in [20] by: 
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o < i < N - P 

q,)1a 
À= N ~~ is the crack growth intensity 

, 0 Xl 

)1ao\1s the mean of the initiated crack length, and 

~Xl is the experimental accuracy of the crack measuring 
technique (see Section~.3.2). 

The constant ~ in the above expression for À is a material 

(2.35) 

parameter numerically determined from experimental results by means of an 

iterativ~ computer program described in [26]. Once this ~arameter is known, 

t one can infer the crack growth characteristics given by (2.35) for any cycle i. 

An experimental program detailed,in [21J was conducted in order ta 

check on the va1idity of expression (2.35). This study, involving fatigue 

experiments as wel1 as microscopie observations of the fracture surfaces, 

showed satisfactory agreement as far as the mean, )1 , is concerned but - a -
clearly indicated that the expressions for the variance in (2.35ii) yielded 

an overestimate of the scatter in crack growth. From the results of the same 

study, it was also observed that the variance of the crack length distri­

bution tends to a stabil;zed~ue, Vac ' near the final fracture zone. This, 

suggests the change of (2.35;;into: 

( Ài = )1 e ao 0<; < N - p (2.36) 



1 
! 
1 • 
1 

( ) 

IJ 

-23-

The above relation was chosen for the derivation of th~micro­
mechanic reliability law since the latter is rather related to what happens --

to the crack near the final fracture than to what occurs at, the initiation 

zone. 'The progression of the crack length density function represented by 

(2.36) is illustrated in Fig. 2.1. Here. the density function is assumed 
/ 

to be Gaussian ta simplify the mathematical manipulations. However, this 
1 -, 

is not a limitati\n since any other ?istribution defined by the basic 

variables (Jla;Va) \could ,in theory be used. . 
, 

As shown\in Fig. 2.1, the crack length distribution translates 

until it interferes with the critical crack length distribution represented 

by the pair (ll ;Va ) which is a material characteristic. The JaÙ'9 af f 
distribution is taken as a delta function at llaf' again for simplif'ca ion 

purposes. The amaunt of (lla;Va) overlapping llaf as i increases is 1 

essentially the basis of the "Provan reliability lawl~. This atmt can be 

written as: 
_~/ 1 

-
00 (Xl 

2 1 s. 
Qi = f Pa(i)da = - f exp[- +Jd5 i 

/27T Z. ,~ 
,~ 

(2.37) 

where (2.38) 

and Zi = (2.39) 

i5 the failure coupling coefficient which itself i5 normally distributed with 
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mean 0 and varianc~ l [14J. But, since Zi = (~af-~ai)/~ is a known 

functian of i, and knowing that ai is Gaussian distributed with parameters 

given by (2.36), it follows from the fundamental relationship [27J: 

(2.40) 

that the reliability density function, ln terms of i, becomes: 

(2.41) 

". 

The associateçl cumulative form to (2.41) is then derived as: 
~ 

j Ài 
1 ~ e -~ ].laf 

P Np (j) = J PNP(i)di = "2 {erf ( ao af) +erf(--)} 
/2Vac /2Vac _0::> 

(2.42) 

1 and hence the "Prova~ reliability law" is simply expressed as Rj = l-PNp(j) 

which is a monotonically deèreasing function of j . The detailed derivation 

of (2.42) is given in Appendix D. 

" 2.9 SUMMARY 

A few brief comments and a listing of each of the statistical 

models discussed in this chapter are given in Tables 2.1 a) and b). Plots 

of the probability density funcdons associated with these models are shawn 

in Tables 2.2 a) through c). These plots are to illustrate the inrluence of 

the different parameters an the distribution shape. Finally, the cumulative 

distribution functions introduced in the previous sections are summarized in 
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Tables 2.3 a) and b). In the latter tables, -erfc stands for the 

complementarycerror function which js defined as 

00 

and 1 is the incomplete gamma function tabulated in [23J. 

2.10 THESIS OBJECTIVES 

The-main objective of the present work is, then. to assess the 

validity of the reliability laws presented in this chapter by means of the 

experimental program further described in Chapter 3. Special attention is 
1 

given to the "Provan law" that, 1..6 expeJUmentaUy l.Jubl.J:tantia,ted, will enable 

the d~sign engineer to estimate the reliability of large structures or 

components based upon stochastic and probabilistic interpretations of the 

microstructural fatigue degradation processes. This, in fact, constitutes 

the long term aim of the research program of which this thesis is only a 

stage. 

\ . 
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3.1 MATERIAL 

CHAPTER 3 

~ 
EXPERIMENTAL INVESTIGATIONS 

, ' 

The prime concern for selecting the matg,~ial was obviously to find -
, ,è, 1." 

a metal whose fatigue fracture surface exhibits distinct stria~ion profiles. 

This important feature has been observed in a previous experimental study [21] 

carried out on oxygen - free-high-conductivity (OFHC) brand copper. Therefore, 

this material was aga;n chosen for the fatigue experiments reported ;n this 

chapter. 

Specifications and some average properties of OFHC copper pr;or to 

test specimen preparation are presented in Table 3.1. For more information 

the reader is referred to [28]. 

3.2 SPECIMEN DESIGN 

The design of the specimens was carried out as per the requirements 

of the ASTM E466 standard [29]. Based on those requirements and also on the 

form of available meta1 stock, the specimen dimensions given in Fig. 3.1 were 

ca1~ulated. A circular configuration was chosen for the specimen cross 

sections to minimize the machining time. 

3.3 SPECIMEN PREPARATION 

The specimen preparation is recognized to be the most crucial part of 

a fàtigue test program since it strongly influences the resulting fatigue data, 

especial1y when a statistical study is performed. Therefore, the fatigue test 

specimens were prepared with great care and utmost precision following the 

general procedure outlined in the ASTM E466 standard. In this section the 

-26-
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main stage~ in the spe.cimen preparation are~ succinctly described in chrono-

10gical order. /' 

3.3.1 Machining 

The specimens were first cut into 13 x 1.6 x 1.6 cm squ~re bars from 

a 40.2 x 30.-5 x 1.6 cm OFHC copper plate supplied by Amax Inc'., New Jersey. 

These bars were then made circular (1.3"cm dia.) by turning them on a lathe. 

Next, the ends of the specimens were faced to bring down their length to 12.7 cm. , 

Fi na.ljy , the blending fîllet radii and the test section were machined on a 

numerically control1ed (NIC) lathe to the dimensions shown in Fig. 3.1. The_ 

program used for this last machining step i? given in Appendix A. 

3.3.2 Annealing 

Annea1ing of the specimen was necessary in order. to avoid any , 

deleterious effect of the residual stresses introduced during the machining 

process. Ihe specimens were put into a Lindberg Hevi-Duty furnace with some 

charcoa1 to prevent them from oxydizing. They were then progressively heated 

to 500°C, he1d at this temperature for half an hour and f~ee-coo1ed to the 

ambient temperature. 

3.3.3 P01ishing 

Since the great majority of fatigue failures originate at the 

surface, tao much emphasis cannot ~e placed on the importa~ce of surface 

finish. Any incrusted dirt, flaws or geometrical discontinuities must, 
-, 

therefore, be eliminated to minimize the possibility of premature crack 

initiation. 
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In our case, the specimens were covered by a thin layer of "carbon 

as a result of the annealing process. This layer as well as the scratches 

causéd by machining were removed by hand-polishing with successively finer 
o ' 

grade abrasive papers, namely, 200, 400 9nd 600,grit standard silicone carbide 

papers. Polishing was always performed in the specimén's longitudinal direc-
/. ' 

tion and visual inspections at 20x were conducted on all specimens to ensure 
ç 

that, at this magnification, no cracks or machining marks approximately 

perpendicular to the length of the specimens were present. 

After polishing, the test section uf the specimens was measured at 

fbur different locations by means of a Nikon' V-16 profile projector. The , 

statistics of these measurements are presented in Table 3.2. 

3.3.4 Storage 

. 
Prior to storage the specimens were cleaned with acetone using a 

~ 

soft piec~ of cloth and they were afterwards numbered at one end with metal 

punches. Specimens were then stored in airtight transparent plastic con­

tainers with sorne dessicant (BDH-Drierite-8 mesh) to prevent moi sture from 

altering their surface before the actual fatigue tests. 
" 

3.4 TEST EQUIPMENT 

3.4.1 The MTS Test Facility 

., , 

The fatigue tests were performed on a MTS closed-loop elêctro 
\ 

hydraulic tësting system. A black diagram of the MTS system is shown in 

Fig. 3.2,:' The major ~nits of the system. name ly ~ th~ hydraul i c power supply. 

the loadi'ng and the control units are briefly describtd in the next sub­

sections. A more comp,rehensive description may be obtained from [2l,30J. 

• 
'\ 

\ 

-=::. J 
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3.4.1.1 Hydraulic Power Supply 

ïhe hydraulic power supply (HPS),' illustrated in Fig. 3.3, uses a 

37.3 kW~(50 HP) motor to drive a fixed-volume (76 ~/min) pump that provides 

~ the hydrualic power to the loading unit. The output pressure of the pump 
o > 

can be either low(0.2MPa)or high and adjustable up to a,continuous pressure 

of 20 MPa depending on the selection made on the remote control panel (see 
-\ 

sections 3 A. 1-. 3). 

The HPS incbrpo~ates a fluid-to-water he~t e~changer to maint~tn 

the working fluid' temperature below a ~aximum safe value that corresponds 

to an optimum system performance. If the fluid temperature exceeds a preset 
\ 

1 imi t, a· tempera ture-sens i ti ve swi tch wi 11 open an..d turn the' HPS off. 

3.4.1.2 Loading Unit 

'The 'loading unit, shown in Fig. 3.4, ;s mainly composed of the load 0 

frame, the hydra~lic actuator, the servovalves, the transducers, and the grips. 

" 

'Supporting the loading 'components' is, the load frame which is 

rated at ±lO~ kN ln static loading. This structure consists of two vertical 

columns that join a movable crosshead and a fixed platen. The crosshead may 

be raised or lowered by means of hydraulic lifts to accomodate specimens of 

various lengths. Once in position, the cro'sshead is hydraulically"-locked to' 
l, 

prevent slippage or backlas~. 
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The servovalve is an electro-mechanical device that controls the 

actuator movement. It converts the control signal from the servocontroller 
J, -\ 

(see next sub-section) to a mechanical movement of an internal spool. This 

allows the high-pressure fluid to flow into the cYlinder and ta act on 
c, 

either side of the piston, depending on the polari'ty,of the control signal. 

On the present test rig, two servovalves are mounted in parallel, using a 

dual manifold, to double the flow rating and to increase the system respon~e. 

The load applied on the specimens was monitored by means of a 

resistive bridge load cell having a static and a dynamic loading capacity 

of respectively ±lOO kN and ±75 kN. This transducer proyides an output, 

voltage directly proportional to applied force. The load cell calibration 

was checked using a Morchouse Proving Ring #843 (91 kN capacity). The 

deviation from linearity was found to be within acceptable limits for the 

load range used in the experiments (i.e.,·±20 kN). 
'. 

Mounted on the hydraulic actuator is a linear variable differential 

·tra,nsformer (LVOT) that generates an A-C output voltage in direct proportion 

to displacement of t~e actuator piston. 

The gage section strain of the specimens was measured through a ~ 

uniaxial extensometer shawn in Fig. 3.5. This contacting type sensor is 

, ~gain of the resistive .bridge category and is characterized by good stability 
" 

and reliability. The linearity of the extensometer output was checked by 

means of a micrometer having a 2.54 ~m accuracy. The absolute pe~cent error 
o 

was found to be less than 2% for the four str~in ranges of the O-C conditioner 

(see next sub-section). 

1 
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For our fatigue tests, a pair of self-aligning grips wa~ ~sed to 

clamp the specimens in the load train. Both grips are hydraulically 

actuated to provide a constant specJmen gripping force independent of test 

load. But, the most interesting particularity of the grip design is its 

hydraulically lacked spherical seat arrangement that allows the grip he ad 

ta compensate for up to 0.01 radians (0.5 degrees) angular specimen mis-

~ alignment. Bending due to a poorly,machined specimen, misaligned test 

fixtures or other causes can thus be minimized by the swivelling action of 

_ the spheri ca l sea ts. 

3.4.1.3 Control Console 

a 
This unit precisely contrals the'test program and performs the 

readout of test data. The various modules incorporated in the control unit 

are presented in '{ig. 3.6. The function and important features of these .... 

modules are summarized below. 

The master control panel central izes the electrical power distribution 

to all system compone~ts, thus eliminating the need to turn each of them on 

and off individually. An interlock built-in circuit automatically removes 

hydraulic power if any abnormal condition, such as fluid over-temperature or 

low levels in the HPS reservoir, occurs. 

The controll er constitutes the "brai n modul ell of the MTS system. 

It performs the closed loop control functions and contributes to the system 

programming, failsafe, and readout functions through plug-in sub-modules. 

These are the feedback selector, the servacontroller, the valve driver, the 

limit detector, and the A-C and two D-C transducer conditioners. 

1 
1 -, 

, l 
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, 

While a mechanical input is applied on the specimen by the hydraulic àctuator, 
/ 

the transducer conditioners supply the excitation voltage to their respective 

transducer (A-C for the LVOT and D-C for the load cell and the extensometer) 

and condi~ions the output voltages to be fed into the feedback selector. The 

latter selects the output of a particular transducer as a feedback signal 

that is processed by the servocontrol1er (the se1ected input is then ca1led 

the contro1led variable). Next, the servocontroJler compares the feedback 

and the command signals and generates a correction or control signal that 

operates the servovalves after having been amplified by the valve driver 

sub-module. The command signal is ,a combination of a static signal generated 
\ 

by the control 1er and adynamie programming signal supplied by the function 

generator. 

A1though, for our fatigue tests, only a sine function was used as 

Rart of the command signal, the digital function generator oJtput is not 

limited to this particular waveform. It can actually generate other cyclic 

functions such as haversine and haversquare, with frequency variation from 

.00001 to 990 Hz, or programmable and adjustable ramp functions such as ramp, 

dual slope, triangle, saw toolh, and trapezoid. The ramp functions are 

adjustable fram 0.001 ta 990,000 seconds. A11 these waveforms start from 

zero and may be positive or negative going when started; 

~ 

The fatigue test cycles were monitored by means of an electro-

mechanica1 counter. This module is prov;ded with three registers: the 

preset count register that ~nables the operator to set a desired number of 

cycles, the actual count register that reads the number of cycles already 

applied to the specimen for a given test run, anduthe total count register 
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that accumulates counts from test run to te~t ~un. When the actual count 

reaches the preset count the test run is automatically stopped (i.e., the 

programmer and the HPS are shut off). If the test is interrupted due to 

specimen failure, electrical power failure, or any action of the operator, 

the'number of cycles to stop will be retained in the registers. 

Another component that adds ta the possibilities as well as to the 

safety of the MTS system is the limit detector. This sub-module monitors the 

three test variables (i.e., load, strain and stroke) simultaneously and, when 

any of these variables exceeds preset limits, initiates one of the following 

outputs: 

- An upper or lower limit indicator (on the control 1er front 
-
panel) lights. 

- Same as above plus an interlock opens, stopping the test 

and shutting off the HPS. 

- The function generator output level changes to a preprogrammed 

level. 

Throughout the experiments, ~est data could be visualized on a 

microprocessor-based data display. At the onset of each test. the strain 

applied on the specimen (i.e., the controlled variable) was adjusted from 

the readout of this module. Data were either displayed in volts or in pre­

defined engineering units (load in pounds, strain in percent and stroke in 

inches) that had been previously stored in the random access memory (RAM) of 

the module. 
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As a complementary piece of equipment, a X-Y plotter was used to 

draw the load versus strain curves (hysteresis loops) periodically during 

the fatigue experiments. 

3.4.2 The Scanning Electron Microscope 

6 

The second part of the experimental work was to observe the micro-

morpholùgy of the specimen fracture surfaces in order tojdetermine an experi­

mental value for the crack growth intensity, À, previously discussed i~. 
/" 

Se~tion 2.8. These microscopie observations were~erformed by means of a 

scanning electron microscope (SEM) whose pho~ograph is shown in Fig. 3.7. 

The SEM is one of the most versatile instruments available for the 

examination and analysis of the microstructural characteristic of solid 
d ' 

objects. The most appreciated features of the SEM are a high resolution, a 

large depth of focus which results in a three dimensional appearâfice of the 

SEM images, and a capability to observe specimens at very low magnification. 

The major SEM components are schematically represented in Fig. 3.8. 

These are the electron gun, the magnetic lens system, the electron collector, 

the visual and recording cathode ray tubes (CRT's) and the electronic console 

controlling them. Refer~ing to"this schema,-the basic operating principles 
. 

of the SEM can be summarily described as follows. 

CI 

The electron gun provides a beam of electrons with energy adjustable 

between land 30 kV. The condenser and objective lens system are used to 
" demagnify the electron image formed at crossover in the electron gun into a 

small-diam~ter probe which \S tfien scanned over the specimen. The condenser 
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lens determines the beam current that impinges on the sample, whereas the 

objective lens determines the final spot size of the.electron beam:-~ 

Scanning of the specimen with the probe is performed through the scan coils 

that deflect the beam in a rectangular pattern. The scan generator which 

produces sweep signals to the scan coils, at the same time; operates the 

deflection coils of the CRT's .. This synchronizatlon results in a one-to­

one correspondance between the position of the electron beam on the fracture 

surface and that of the spot on the cathode ray tubes. 

The beam-sample interaction'produces three main signals, namely, 

secondary electrons, primary back scatter electrons and X-rays that are 

processed through the SEM's electronics. The first two are mostly used when 

information about the specimen topography isneeded, whereas the latter 

provides useful information about the composition of the specimen surface. 

~ From the control console, the electron Igun àccelerating voltage, 

the lens current, the magnification and many other observation parameters 

can be adjusted. 

3.5 TESTING PROCEDURE 

3.5.1 Fatigue Experiments 

After having gained experience with the operation of the MTS machine 

through several preliminary runs, a test protocol was estab1ished for the 

fatigue experiments. The highlights of this protocol are given below, with 

the detai1ed steps being enumerated in Appendix B. 
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Prior to the experiments, a general calibration check of all the 

electronic modules was performed following th~ procedures described in the 

MTS owner's reference manuals. Then, the recommended optimum hydraulic 

fluid temperàture was reached by warming up the HPS unit with a low frequency 

low amplitude sine command signal sent to the actuator. Next the extenso­

meter was installed on the specimen whose test section had been previousty 

protected with sorne adhesive copper tape at the contacting points of the 

extensometer's knife edges. This was to prevent the fatigue 'crack from 

occurring at the knife edges due ta indentation. The specimen installation 

in the load train was carried out in the load control mode, since it is 

recognized to be the safest mode for specimen mounting. A 3kN tensile load 

was then applied on the specimen for alignment purposes. After releasing 

this load, the system was switched to strain control and a programmed ±O.30 

percent strain at a frequency of l Hz was applied on the specimen. The test 
, 

was stopped when complete fracture occurred. An electronic device (Fig. 3.9) 

was built and coupled with the limit detector module in order to switch the 

HPS unit off (and so doing, to stop the cycle counter) when separation of 

the specimen was detected. The broken specimens were finally put back in 

the plastic containers prior to the fractographic studies. 

3.5.2 SEM Observations 

The procedure-for the SEM observations is only briefly described 

below. A detailed description as well as initial settings can be obtained 

from the user's manual [31]. 



1 

1 
! , 

( ) 

J_ 

-37-

~ 
For the microscopie observation, the samp1e was glued on a standard 

12.7 mm diameter aluminum stub by means of a special non-volatile conductive 

cement and it was p1aced in the SEM vacuum chamber. -5 A 1 x 10 torr vacuum 

was then created in the chamber and a 20 kV acce1erating voltage was seleeted 

in the e1ectroA source module. 

Starting at low magnification, the best image of the fracture 

surface was obtained by manipu1ating the focus and condenser contro1s, by 

adjusting contrast and brightness on the viewing CRT with the appropriate 

control buttons, and by adjusting the vertical position (Z-axis) of the 
1 

specimen through the'micrometric screw mounted on the vacuum chambér. Once 

a region of interest was found on the specimen surface, contrast and brightness 

on the recording CRT were separately adjusted with the aid of the corresponding 

controls and a picture was taken using the camera provided with the SEM. 
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, CHAPTER 4 

EXPERIMENTAL RESULTS AND THEIR INTERPRETATION 

4.1 DATA PRESENTATION 
\ 

At the end of the fatigue experiments, specimens that fai1ed due 

to abnorma1 testing conditions such as excessive bending stress or fatigue 

cracks initiating in the vicinity of the c1ip-on-gage's knife edges, were 

e1iminated. Thus, the resu1ts from 18 tests were retained for further 

ana1ysis. 

A median ranking [32] of the fatigue data was then performed since 

it was decided to fit the previous1y described cumulative distribu~ion 
"< -

functions to the experimenta1 data. The reasons for this choice are 

exp1ained in the next section. 

The test conditions are resumed in Table 4.1 as per the AS TM 

E468-76 standard, whi1e the ranked experimenta1 resu1ts are presented in 

Table 4.2 and p10tted in Fig. 4.1. 

4.2 STATISTICAL INTERPRETATION OF DATA 

When one has to assess the reasonab1eness of a se1ected re1iabi1ity 

model, two different approaches are usually considered: probability p10tting 

and statistical tests. 

Probability plotting is a simple visual method that shows how well 

the assumed distribution fits the data. It requires the use of probability 
\~n:..1ê-

paper ~s~eci~lly designed for the distribution unde~ examination. Since 

-38-
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this graph paper was not available for sorne of the investigated CDF's and 

because its construction would have been a very involved (if not impossible) 

task, it was decided to analytically curve fit the CDF's, except the "Provan 

law", to' the fatigue data by estimating their respective parameters through 

whichever of the following methods was most appropriate; the matching moment 

method, the maximum~likelihood method and the least square method. These 

are 
\ 
,-

the 

briefly described in the Appendix C. In the case of the "Provan lawll,o 

function parameters were successively computer optimized to yield the 

best fit. The curve fit and plotting program listings are presented in the 

Appendix F. 

The second approach, namely, the statistical tests, provides a 

probabilistic framework in which to evaluate the adequacy of the model and 

supplements the probability plots (CDF's eurve fits in this case) when the 

latter fails_ta provide a c~ear eut decision. Statistical tests used in 

this investigation are further discussed in Section 4.3.1. 

The following sections describe the partieular method used ta 

obtained each of the CDF fits. 

4.2.1 Exponential 

Recalling Eq. (2.3), we have for the exponential distribution: 
-

\ 

CDF = l-eN/ a 
or: 

1 - CDF = ëN/ o 

where N represents the number of cycles to failure. Taking the logarithm 
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we obtai n: 

R-n (l-CDF) ( 4.1) 

which is the recognizable equation of the straight line Y = AX, with Y = 
!n(l-CDF) and A = -1/0. A preliminary plot of the data points on a semi-log 

paper showed a very poor agreement with Equation (4.1). Therefore, a 

location parameter was included in the equation to get the best possible fit. 

This yielded' 

or: ' 

R-n (l-CDF) = :li + .<! o 0 

y = AX + B 

(4.2) 

with A and B being evaluated by the method of least squares. The exponential 

fit is shawn in Fig. 4.2 a). 

4.2.2 Normal 

The-normal CDF given by Eq. (2.5), namely: 

N 
l l .c- _11 2 

CDF = ---- J exp[- 2 (~) ]d~ 
al27T 

_00 

can also be expressed in terms of the complementary error function [26] as: 

D l f (~ C F = 2 er c vI'!: (4.3) 

After having evaluated the maximum likelihood unbiased estimators for ~ and 
( 

cr, name ly: 
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n n N.-O 1/2 
o = 11: N. , 8 = (1: -'-) n l n-l cJ 

l 

°J~e normal curve fit depicted in Fig. 4.2 b) was' computed by means of 

Eq. (4.2). 

4.2.3 Log Normal 

The method used to obtain the log normal fit illustrated in 

(4.4) 

Fig. 4.3 a) i5 essentially the sami as the one Just described for the normal 

fit, except that the Nils in Eqs. (4.3) and (4.4) were replaced by their 

logarithm. 

/ 

4.2.4 Gamma 

A1though there exist several methods ta estimate the gamma 
, 

parameters, for most engineering problems, especia11y when there are 20 or 

1ess data points, the matching moment method is-simpler to apply and yields 

fairly good estimates. In this case, the expressions for the estimators 

are: 

where: 

Â = NC n-1) ; f\ = ÂN , 
1:(N. -NP , 

n N. 
- l N = 1:­

n 
1 

From these and using Eq. (2.17), the gamma fit shawn in Fig. 4.3 b) was 

p1otted. 

(4.5) 
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4.2.5 Wei bull (2-parameter) no ,~ • 

," 

A first plot of the data points on Wei bull paper showed that they 
~\ 

werè)rela~iyely well described by a straight line. Therefore, these was no 
l ' ,. 

neéd to include a location parameter, that is, ta use the 3-parameter Weibull 

CDI~-' gi ven b,y Eq. (2.22). 

we get: ' 

Hence, taking twice the lagarithm of Eq. (2.2D), namely: 
{, 

(3 
CDF = l-exp[- (~) ] 

, !) 

" 

'-. 1 
~~ ~n ~l-CDF) = S ~n N - B. ~n e 

which is again theJ'equatian of the straight line, -y = AX 0+ B, with: 

l 
Y = ~n R-n (l-CDF) 

A = f3 ., 
.1, 

<, 

X =: -tn N 

and: B = - B R.n e 

(4.6) 

The parameters 13 and e were evaluated by the least square method to 

obtain the 2-parameter Weibull CDF plot shown in Fi~~ ~.4 a). 

4.2.6 Gumbel (Largest and Smallest Values) 

In a similar pro~edure as for the Weibull fit, Eqs. (2.23) and 

(2.25), namely: 
, , 

, ... 
.. 

\ 

,/ 
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CDF = l-exp[-exp (N~a)] 

- , N-a 
CDF = e~p {-exp[- (-ô-)]} 

'are convernd 1nto the following straight 1 ine forms: 
/ 

'1 _ N ex-
tn R.n - - - - + -CDF ô ô 

(4.7) 

(4.8) 

From these, the parameters ô and a were camputed wh;ch then yie1ded 

the p1a(s of the Gumbel largest value and sma11est value fits, i11ustrated 

in Figs. 4.4 b) and 4.~ a), respectively . 

." 4.2.7 Birnbaum-Sa'unders 

Defining: 

) 
\ 

n 

S = l ~ Ni n 
1 

n 
1 1-1 

and R = (- ~ -) 
n N·' 

1 1 

--'~ 

(4.9) 

~ 8irnbaum and Saunders find [33] that far small values of a, the relation: 

yields an estimate of S close-ta the maximum-likelihood estimator. Then, 

a can be inferred fram: 

J 

A 1/2 
d = (~+ i - 2) 

6 
(4.10) c) 

J _______________ _ 

f 
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The estimators S and ci were usecf in' Eq. (2.32) to get the Birnbaum.l. 

Saunders CDF plot presented in Fig. 4.5 b). 

4.2.8 "Provan" 

The parameters, 11a
o 

' V~c and À of the "Provan" cumulative­

distribution function, name1y: 

ÀN 
l 11 e -l1af 

CDF = - {erf ( ao ) 
2 nç 

. 11af 
+ erf (--)} 

1 l2Ç" 

wete optimized by means of an iterative procedure to minimize the RMS error. 

Starting values for llaoand Vac were taken from the results oflprevious 

experiments [2'1]. The value for )laf' the fi na 1 mean crack l ength, was set 

equal to the specim~"diameter since the fatigue tests were stopped when 

complete separation of the specimen occurred. The "Provan" CDF plot is 
- '" 

shown in Fig. 4.6. 

4.3 COMMENTS AND COMPARISONS 

4.3.1 CDF Curves 

4.3.1.1 Curve Fitting 

As a comparison criterion, a root mean square error was calculated 

for each fit by means of the' relation: 

n 

ERROR RMS = [*:E (E i ) 2 ] 
l 
/2, 

1 

(4.11) 

1 
\ 



1 
r 
1 

t 

( .) 

J._ 

-4'5-

Cl 
o 

where n is the }umber of data points (i.e., n = 18) and Ei is the error 

for the d~ta point i and is given by the differences between the observed 

(i.e."ranked) probability and the computed (i.e., best fit) probability 

• of fai1ure. 

The nine investigated laws are listed in Table 4.3 with their 

computer-estimated parameters and their corresponding error given by 

Eq. (4.11). One can see from this table that the exponential law yields 

à poor fit compared ta the other laws. The normal COF appears to give 

the best fit and the log normal, the gamma, th~ 2-parameter Weibull and 

the Birnbaum-Saunders 1aws fo11ow with roughly the same error. Finally, 

the Gumbell latgest and smallest values laws and the "Provan 1aw" describe 

the data with approximate1y the same degree of goodness-of-fit, the "Provan" 

fit being relative1y poor at the tai1s of the distribution. The above 

observations can be visua1ized from the çurves shown in Fig. 4.2 through 

4.6. 

4.3.1.2 Statistica1 Tests 

In addition ta the curve fitting method, two statistica1 tests 

name1y, the Ko1mogorov-Smirnov test [34] and the Cramer-Von Mises test 

[35] were performed oh the assumed COF'~ to assess their va1idity as 

fai1ure models with respect ta the available data. 

follows: 

Before app1ying the tests, th~ nul1 hypothesis was defined as 

Ho: the set of data is a-samp1e from the assumed 
distribution 
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Furthermore, the level of significance, a. that is, the probability of 

rejecting the null hypothesis when the latter is true, was chosen to be 

.os. 

with: 

where 

The Komolgorov-Smirnov test statistic was first calculated 

F(N i ) = the assumed cumulative distribution function, and 

,S(Ni ) =--Îhe sample cumulative distribution function 
(i.e., the rank) at N = Ni. , 

(4.12) 

The test statistic given by Eq. (4.12) was then compared with a 

critical (maximum al1owable) value obtained from [36J and referenced by the 

sample size and the chose~ level of significance. 

After having arranged the sample data in increasing arder, the 

Cramer-Von Mises test statistic was evaluated through: 

n 
2 _ 1 ~ [2;-1 F( )]2 

nw - 12 n +... 2n Nj 
l 

(4.13) 

which is an approximat4on,-~r a smal1 sample of size n, of ~he exact test 

statistic defined by: 

00 

(4.14) 

\ . J 
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Again the test statistic was compared to a critical value [36] 

corresponding to a .05 level of significance. 

The results of the statistical test are presented in Tab)e 4.4. 
( 

This table shows that the hypothesis of exponential distribution is rejected 

by both tests whereas the null hypothesis for all the other distributions is 

accepted which, however, does not imply that they are verified. This only 

means that because of a limited number of data, one cannot dismiss the 

possibili.ty_ that the assumed underlying statistical failure model be, 

with the exception of the exponential law, any of the reliability laws 

under investigation. 

4.3.2 The Fatigue Transition Intensity (À) 

In this section are briefly described three different methods 

used to determine the major parameter of the "Provan law", namely, the 

transition intensity, À. The resulting À1s were compared in order to 

ascertain the applicability of the "Provan law" as a fatigue reliability 

model which was ,the prime inferest of the current study. 

A theoretical interpretation of the transition intensity, Àt~ was 

first determined through an iteration procedure detailed in [20 J. This 

procedure essentially utilizes two points on the Whoehler liS-Nil curve 

pertaining to the polycrystalline metal under investigation. In the present 

study of OFHC copper, one of these points corresponded to a 0.003 strain 

amplitude while the other was taken as corresponding to the mean value of 

the results of two fatigue tests performed at a strain amplitude of 0.0015. 
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Second, an experimenta l,va l ue, Àexp ' was eva l ua ted for the 

transition intensity using a proce,dure again detailed in [20 J. Thi s 

experimental evaluation mainly consists ofcounting the fatigue striations 

and their spacings on a fractograph of the specimen surface and in evalu­

ating the transition intensity from the resulting statistics. These are 

the mean crack 1 ength, llai' for a gi ven cyc1 e and the correspondi ng crack 
d11a' 

growth rate --' which are related to the transition intensity as follows: 
di 

djJa' l 
---al = À 11a i 

Ty~ical fractographs used-for striation counting are shown in Figs.4.7 

to 4.9. 

(4.15) 

Fina1ly, an empirical transition intensity, Àemp ' was determined 

by curve fitting the "Provan law" to the fatigue 'data using the optimization 

procedure previously described in Section ~.2.8. 

The three resulting values for the transition intensity are given 

in Table 4.5. The discrepancy between the theoretica1 and exper;mental 

values, already noted in [20J, is again observed here whi,ch tends to indicate 

the inadequacy of the Markovian crack growth model in describing the fatigue 

mechanism. This is further discussed in the conclusions. 

One a1so finds a disparity of almost an order of magnitude between 

the experimenta1 and empirical values for À. However, during the fatigue 

J experiments itlwas generally observed that the crack initiation'period 

represented near1y 80% (and up to 90% in sorne cases) of the total life of 

_J 
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the specimens. ,Thus, \mp being calculated for the total number of cycles 

to failure, one should expect, for a similar curve fit of Eq. (2.42), a 

transition intensity much cl oser ta the experimental ·value if only the 

number of cycles for propagation is considered. 1his inability of dis­

tJnguishing between fatigue cycles involved in initiating a crack from those 

involved in its propagation is further discussed in the recommendations for 

further research section of this thesis. 



CHAPTER 5 

CONCLUSIONS 

5 . 1 CONCLUD l NG· REMARKS 

This thesis aimed at experimentally evaluating the adequacy of 

certain fatigue reliability laws with the attention being focused on the 

IIProvan law ll that has recently been derived based upon a probabilistic 
" 1 ~l!, 

micromech~riics representation of th~ fatigue crack qrowth in polycrystalline 

metals. From the analysis of the resulting data the following conclusions 

are drawn: 

" 

, 
, 

1. All the reliability laws tested in the present investigation, with the 

exception of the ~xponential law, appear to give a fairly good descrip­

tion of the scatter in the available fatigue data. However, the number 

of these data being small, the statistical tests used in the analysis 

fai1 to identify which of the re1iability distributions is (or are) the 

most appropriate. Furthermore, it was observed that the empirical and 

semi-empirical laws fit the data as adequately as (if not better than) 

the Birnbaum-Saunders and the "Provan" laws which both ensued from micro-

structural modelling of the fatigue degradation process. This tends to . 

support the assertion that in some cases, although there is no theoretical 

justification for using a particu1ar reliability model, the latter can be 

considered acceptable based only on the empirical approximation it pro­

vides. Nevertheless, we should a1ways keeD in mind that the most suitable 

reliability law is obtained when the failure data and the understanding of 

the physical processes causing failure, complement-each other. 

-50-
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2. The IIProvan ll fatigue rel iabi l ity law can be used in an empvuc.al ncuJuon, 

that is, without any reference to any microstructural information, pro-

vided one is not particularly concerned about what happens at the tails 

of~the distrib~tion. This is certainly a positive conclusion from the 

engineer's point of view but a rather unsatisfactory one from the 

researcher's. In fact, a comparison of the different values obtained 

in the present investigation for the crack grOl'/th transition intensity, À, 

clearly indicates that the Markov linear birth model, the theoretical 

basis of the IIProvan law ll
, underestimates the crack growth rate and, 

therefore, does not provide an adequate description of,the fatigue process. 

5.2 PROPOSALS FOR FURTHER RESEARCH 

In the light of the results presented in this thesis there is an 

obvious need to seriously review the ,theoretic,al development leading to the 

"Provan law ll before it can be confidently applied to fatigue reliability. 

In that sense, Markov stochastic processes other th an the linear pure birth 

process should be investigated, recalling"that the main disadvantage of the 

latter is that it does not take into consideration the spatial correlation 

of the material points along the crack front. 

It is also the author's hope that an im~roved probabilistic micro­

mechanics fatigue model will enable one to solve the age old problem as to 
" 

r.'correctly assess the number of cycles involved in the crack initiation 

process and in the subsequent propagation process. This was, indeed, the 

main reason for the discrepançy between the three values of À evaluated in 

the present investigation. 
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During ,the last few years we have seen an increasing use of\ 

probabilistic mo1els for predicting the performance of components and large 

engineering systems. The "Provan law ll ensues from one of these models and 

when it becomes operational, fram the design point of view, one will be able 

to perform a fatigue reliability analysis o~,the basis of a Markovian law, 

material properties obtained in a laboratory, and only a few fatigue tests. 

Thus, cumbersome and expensive experiments that are currently used and often 

yield unsatisfactory results will no longer be required. 

1 
1 
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Fig. 2.1 Crack interference model leading to the 
"Provan" reliability law. 
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Fig 3,.3 Hydraulic power unit of the 'MTS ~est;ng system. 
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Final Fracture Zone 

, Initiation Zone 

o 

Fig. 4.7 Typical fractograph for OFHC copper. 
(Region at 2.9 mm from the initiation 
zone. ) 
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o 

Fif. 4.8 Fractograph for OFHC copper. 
(Region at 1.7 mm from the 
initiation zone.) 
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Fig. 4.9 Fractograph for OFHC copper. 
(Region near the final fracture 
zone.) 
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Corrments -

-, probability distri b ution of life when a constant 
conditional failure (or hazard) rate, ~, i5 assumed 

- more appropriate for complex systems or assemblies 
- special case of Weibull and Gamma distributions 

- appllcable as a time to failure model if u ~ 30 
otherwjse, density function must be truncated 

- symmetric distribution without shape parame ter 

- deri,ved from the consideration of analytical process 
wherein failure Is due to the growth of a fatigue 
crack 

- time-to-failure distribution of a system if system 
failure occurs as soon as K Independent subfailures 
have taken place at a constant rate a. 

- widest applicability of aIl failure distributions 
- more appropriate to represent the life distribution 

of parts or components 

- same corrments as for 2-parameter Weibull 
- also known as the Type III asymptotic distribution 

for minimum values 
- for cases where the lower bound life is non-zero. 

- also known as the Type 1 asymptoti'c distribution for 
maximum (largest) or for minimum (smallest) values 

- applicable whenever failure depends on the largest 
or smallest value of a variable (e.g., strength or 
flaw size) whose distribution is of the exponential 
type, such as normal, gamma, or exponential. 

- no shape parame ter 

a} Common reliability laws 

Conments 

- probabilistic model based on the restrictive 
assumption that fatigue crack growth is 
fndependent of crack length. 

0 

- derived from a probabilistic micromechanfcs 
model of fatigue crack propagation 

- more applicable for compone~ts 

- no shape parame ter , 

b) Fatigue crack gr9wth reliability laws. 

Table 2.1 Main characteristics of the reliability laws. 

_1 
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Probability Density Function 

f(x) 1 6" exp (-x) 
- 6 

f(x} = exp [-~ (X~)J)2J 
a/27T 

f(x) l 
1 exp [=1 (tn X-)J' 

a x/2iT 2 a')] 

Table 2.~a) Exponential,normal and log normal probability density functions. 
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Distribution Name 
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) l l ) x-a)] f(x = - [- - (x-a -exp (---
cS Ci cS 
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ô cS 6 

Table 2.2b) Gamma, Weibull and Gumbel probability density functions .. 
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Table 2.2c) Birnbaum-Saunders and Provan 
probability density'functions . 
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Distribution Parameters ' Cumulative Distribution Function Mean Vari ance 

L 
Exponenti a 1 6 > 0 F(x) = 1 _ e-x/o ô 1)2 

Nonnal 
_00< )J <œ 

F(xf = l erfc[.:!. (~)] 0 
a > 0 2 12 a 

Il 
-
D oo<lJ1<œ F(x) " ~ erfc[.:!. ('zn X~}l')] Il'+0,212 211 '+a'2 

Log Normal a' > 0 e e 
12" cr 0'2 

x{e -1) 

Gamma CI > 0 F(x) = I[ClX , (n-1) ] .!! n 
fi > 0 Iii CI ;;T 

Wei bull a > 0 B 
er(t+ 1) 62{r{~ + 1) 

(2 parameters) 6 > 0 F(x) = l-exp[-(~) ] 6 B 
-

-[r{l+ 1)]2} , B 
\ 

BO+ (e-60)2{r(~ + 1) l; 

Wei bull 9>0, 90>0 B 
(9+eo)r{1 +1) F(x) ,. l_exp[_(x-e O) ] _[r{l + 1]2} (3 parameters) B > 0 6-60 6 8 

Gumbel _CIO<a<c:o X-a 
CI + 0.57766 1.645 62 

(largest value) ô > 0 F{x) • exp{-exp[-(--ô--)]} 

Gunbel -CII<a<ao F{x) ~ l_exp[_exp(x-a)] a - 0.57766 " - (smallest val ue) ô > 0 , ô 

,a) Common reliability laws 

f 

j 
Parameters Cumulative Distribution Function Mean Variance 

1 • 

Distribution 

Birnbawn- 1 1 X 1/2 x -1/2 J 2 
"(';'S)2{1 + ~2) a > 0 F(x) • '2 erfc{--- [(-) -(-) ]} 6(1 + '2 ) Saunders Il > 0 a.12 B 6 

! 
î 
1 

1 
1 

1 

L 

'provan' 

() 

- • , 

Ale " Il e -Il 
1 ao af 

> 0 
F(x) • 2" {erf( ) Imown known 

A ,12 Vac complex complex 
Vac > 0 lIaf 

expression expression 

+ erf (12 )} 
, 

Vac 

b) Fatigue crack growth reliability laws. 

Table 2.3 -Re11ability laws and their basic statistics. 
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Designation: Certified Grade OFHC 
Copper corresponding to ASTM 
Specification B170, Grade1 

Specifi cati on Grain Size (avg.): 0.025 mm 

He_at Treatment: Annealed 
~ 

Yie1d Strength: 68.8 MPa 

Tensi1e Strength: 200.0 MPa 
Average > 

Mechanica1 Modulus of E1asticity: 117,169 MPa 
Properties* t 

Elongation (50.amm): 
, 

45% 

Shear Strength: 137.8 MPa , 
Hardness: Rockwe11 F45 

, 

·*-F1at products, 6.35 mm thick. 

Table 3.1 Specification and ïnechanica1 properties 
of OFHC brand copper. 
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1-.-' 
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-~--------------~-- ~-

A 

:8 ~ 
A B 

Mean (mn) 9.40 9.41 

Standard 
Deviation {mn} 0.026 0.022 

Table 3.2 Statistics of the specimen 

',.' 

-----~ ~~ ~- .. _.~ ~ .... .....,-

~~ 

C 

1[' -Ô-B,D 

C 0 Overall 

9.41 9.40 9.40 1 
00 

0.027 0.026 0.025 
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FATIGUE SPECIMEN 
Material 

Dimensions 

Stress Concentration Factor 

Preparation 

Thermal Treatment 

Surface Treatment 

Remarks 

FATIGUE TESTS 
Fatigue TestingMachine 

\ ' 

Type of Test ' 

Test Frequency" 

Strain Amplitude 

Strain Ratio (R) 

Strain Monitoring Deviee 

Failuré Criterion 

Number of Specimens Tested 

y 
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OFHC Brand Copper 

see Fig. 3.1. 

unnotched 

rough turning on a conventional lathe, 
finish turning on NIC lathe 

stress relief annealing 

hand polishing (average surface 
roughness: 0.5 um) 

specimens stored in moisture-free 
containers before testing 

100 kN MTS closed-loop e'lectro 
hydraulic testing machine 

strain-controlled axial 

l Hz 

0.003 

-1 

2.5 cm MTS axial extensometer 
( 

complete frac~ure 

30 

(' 

Table 4.1 Summary of, the fatigue test conditions . 

.. 
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Specimen # Li fe, N Probability of Failure (Rank) 
-

J Cycles % 

1 13622 3.8 
0 

2 14980 9.2 

3 15926 14.6 

4 17361 20.1 

5 18013 25.5 

6 18997 31.0 

7 19120 36.4 .. 
8 19128 a1.S' . 
9 20271 47.3 " 

, ' 10 20536 52.7 

11 20616 58.2 
~-12 21729 63.6 

13 21740' 69.0 

n 22560 74.5 

1-5 23241 ' 80.0 

16 , 23312 85.4 

17 2~150 90.8 -

18 27725 96.2 
i 

. , Table 4.2 Ranked fatigue data 
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Distribution Parameters 
{~ 

Error = l 
(iB 

Exponenti al Ct = 16,060 cycles 

" 0.222 
15 = 4419 Il 

1 

, . .. , -
"Normal 

~ = 20,280 cycles 0.029 
cr = 3,65~ Il 

)lI = 9.902 0.036 Log Normal cri = 0.184 

GalTllla à = 0.OO152/cycle 0':032 
TI = 30.82 

" 

Wei bull a = 21 ,770 cycles 0.037 
(2 parameters) 8 = 6.269 

J 

Gumbel Ct = 18,550' cycles 
0.049 (largest value) 15 ::; 3,187 Il 

", 

Gumbel . Ct-= 22,030 cy~les 0.053 (s'mallest value) 15 = 3,228 1 

-

Birnbaum~ 8 = 19,960 cycles 0.036 Saunders Ct = 0.179 
, , 

/"ovan' À = 2.0E-4/c~cle 
Vac = 1. 8E-5 m 0.048 

...---' ? 

Table 4.3 Curve-fit root mean square er~or~. 
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,'"' o 
Distribution Namê 

.' 
Statistical Test 

.1 -

0 Cramer-Von Mises , Komo1gorov-Smirnov . 
~. - - -~ 

JCritJçal va1 I.le:.0.3Q9J* (C~iticat Y~ÙJe: P._~61)* 
, 

Exponential 0.775 (rejected). 0.871 (rejected) 

Nonna1 0.057 (a~ceptedl 0.022 (accepted) 
-

Log Normal 0.084 Il 0.029 1/ 

Gal1l11a .- 0.073 -
Il ~ 0.024 Il 

J 

Wei bull ,.'0.073 " 0.032 Il 

(2 parameters) 
n 

Gumbel .. , O. )09 Il 1 0.049 Il 

(largest value) " . 

Gumbel 0.106 Il 0.058 Il 

(smallest value) 
-

0.08k Birnbaum- l' -

0.029 Il 

Saunders 
, 

.. 
Provan 0.09T \11 '0.046 Il 

. 
* for a sampl~ size of '-8 and a level of signiffcance 'Of 0.05 

(- . 

ol 
1 

L 

, . 

Tab,le4.4 Results of the statistical te,sts. 
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~\ , r 

'c, 

" 

• 

O.F.H.C. Copper 

0.003 

.17,-36L 

... 0.12 x 10-3 

1.87 x 10-3 

0.20 x t 

1 
, 1 

i 

1 

1 
1 
[ 

,) 

:'\ 
1 

1 

Table 4.5 Theoretical, experimental and 
empi rica 1 values for the crack 
growth transition intensity 
parameter of the "Provan 1 aw". 
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APPENDIX A 

NUMERICALLY CONTROLlED MACHINING STEPS, 

, .--- - - - - ---- ..... _----- - - - -- '- _.--- --
1 
1 6 L_.:.. ___ ~ 

.. 

:- - - --1 
1 
J 

_1 

Starting Pe-i nt 

'. 

Step # Description 

NZ101, SJé 1 <Î 1 1 
N002 X-17000 FI t0 
N033 X-0<:1400 F335 
N304 X-J0625 Z-06Z9ill 129375 K-'~6091â 
N~~5 2-11250 
Ne;~6 Y.,Ji}625 Z-062)93 130000 
M:HH X~10J0 F100 
N02J8 Z23430 F UV.; 
N0:i:19 X-01100 F""o04 
N004 X-;:J'-3625 Z-06'll9Cil 129375 K-06090 
N0054 Z-1125.o 
N006' Y.:à0525 2-06'690 13000til 

., 

C'J007' X17500 Z2343';1 F'l Z~ 

~ _ ..... _____ ..........--_ w , -

: 

. \ 
l 
i 
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APPENDIX B 

. ~ 

STEP-BY-STEP TESTING PROCEDURE FOR THE FATIGUE EXPERIMENTS 

l 

Assuming that the static and dynamic (if necessary) calibratJons 

and the pre1iminary adjustments have been performed for all electronic, 

modules in accordance with'the procedures described in the MTS own~rls 

reference m~nu~ls, the test protoco1 reads as follows: 

Step 1: Turn on the CONSOLE POWER. 

Step,2: Select the 100% STROKE control mode and adjust' SE~ POINT 

i· until the OC ERROR indicated on the control 1er METER is 

zero. 

Step 3: Pres~ INTERLOK RESET and RESET switches. 
. ' 

Step 4: Select ~ 1 Hz sinewave on the function generator and put it 

on REMOTE CONTROL MODE. 

Step 5: Supp1y the ppwer to the HPS uflit and open the water circuit 

90ing through the heat exchanger. 

Step 6: Press the HYDRAULIC PRES~URE switch twice and adjust the SET 

POINT ta 500. 

Step 7: Depress the PROGRAM AND RECORD switch and slo~y set the SPAN 1 

dia1 ta 1. Let the system warm-up for about 30 minûtes. 

Step 8: Set back the SPAN 1 to zero and press again the PROGRAM AND 

RECORD switch. 

. Step 9: 

STEP 10: 

,_. 

Press once the HYDRAULIC PRESSURE switch before pressing the 

HYDRAULIC OFF red button. 

Select the 20% LOAD control mode and null the DC ERROR djsplayed. 

on the front panel METER by turning the ZERO potentiometer of the 
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> 

load a.c. c'end; ti OAer. This zero can a1so be set from the readout 

of the,data display module. 
1 

Press the RESET switch and then the HYDRAULIC PRESSURE switch 

twice. If necessary, readjust the dual servovalve BALANCE (~n 

the va~ve driver module) to stabi1ize actuator piston. 

St;p 12: Before f~ing the extensome~er on the specimen, stick two 1ayers 

of adhesive copper.tape on the specimen test section at the knife 

edge contact points . 

. Step 13: Set the hydraulic pressure to 6.9 MPa ~1000 psi) using the main 

pressure control va1ve"on the HPi u~it (see Fig. 3.4). 

Note: At this pressure, the gripping force was found sufflcient 
" 

to avoid specimen slippage while specimen crushing was minimized. 

Step 14: Clamp the upper part (the one with the punched number at the top) 

of the specimen by 'turning the appropriate valve on the grip 

control unit. 

Step 15: Co'nnect the extensometèr, remove its 1 ocki ng pi n and adj us t to zero 

the output of the strain d.c~' condtioner by means of the ZERO 

1 

Step 16 : 

Step 17: 

Step 18: 

. , 

potentiometer. 

Clamp the lower part of the specimen and progressive1y app1y a 3kN 

tensile load on the specimen for a1ignment . 
. 

Lock the grips and re1ease trua load. 

Rezero the strain d.c. condtio,ner output, 'Tf necessary, before 

pressing on the HYDRAULIC PRESSURE switch. Then, shut off the 

system. 

U 
~ , 

", 
t~ 
l 

X 
1 

iL. 
, 

,j 

_f 
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Step 19: Select the 10% STRAIN control mode and press the RESET button 

before pressing the HYDRAULIC PRESSURE switch t~ice. Remove 
-

the load, on the specimen, if any, by turning the ZERO dia1 of 

the strain d.c. conditioner. 

Step 20: Reset bath the ACTUAL COUNT and the TOTAL COUNT registers. 

'" Set the PRESET COUNT reg~ster; ta 3,000,000 and the counter input 

~elector to OSCILLATORY. 

Step 21: Press the PROGRAM AND RECORD swi.tch and set gradua lly SPAN 1. to 

a ±.30% strain which must be read on the data disp1ay module. 

Step 22: Set STROKE LIMIT DETECTOR according to the PEAK TO PEAK readout 

of the data display unit t~~n put in an INTERLOCK mode. 

Step 23: Set the upper limit to 10 and the lawer 1imit ta 0.2 an the LOAD 

LIMIT detector aQd select the INTERLOCK mode. 

Note: The laad ~ectifier circuit (Fig. 3.8) has been previously 

connected ta this limit detector. 

, Step 24: After specimen failure remave the extensameter (HPS unit being 

off). Then perform step 11 again far releasing the specimen. 

When manipula~ing the specimen, great caution must be taken ta 

prevent any damage ta the fatigue 'fracture surfaces. 
" 

Remark: ~he IND mode must be selected an all limit detectars 

before restarting the HPS unit. 

Step 25: If another test is to be performed immediately, return to step 12 

and carry on the procedure. If not, shùt off the system and 

start from step l for the subsequent test. 

) 

. 
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1 
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APPENDIX C 

'"' COMPLEMENTARY INFORMATION 

C.l THE HAZARD-RATE-CONCEPT 
), 

The concept of hazard rate is often referred to in reliability 

in arder ta choose, among the possible distribution functians for a given - l' 

problem, the more appropriate failure model, on the basis of physical 
t 

consi derati ons. 

Let F(t) be the cumulative distribution function of the time-to­

failure random variable T. and let f(t) be its probability density function. 

The probability of failure in a given time interval [t l • t 2 ] is then 

expres sed as 1 

t 2 t 2 tl 
! f(t)dt = ! f(t)dt ~ f f(t)dt = F(t2 ) - F(il ) 

_00 

The rate at which failure occurs in the same time interval is called the 

failure rate during that inte~al and is specifically defined as the 

probability that a failure per unit time occyrs in the interval, given that 

a failure has not occurred prior to t 1 • the beginning of the interval. Thus', 

the failure rate is written as: 

,< 

! 
/ 

- --------. 
1 

(C.l) 

which is a function of time. Redefining the time interval as [t, t+~t] .. 

Equation (C.l) becames: 

....... 

F( t+~t) - F~ t) 
lit [l-F( t) < 
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Hence, the hazard rate i5 defined as the limit of the failure 

rate as the time in~erval approaches zero. In other words, the hazard 

rate is the instantaneous failure ra~d iS expressed by: 

h(t) = ti~m. F(t+~t) - F(t) = -::-'--=lF~(t,-.-) [dFd(tt) ] 
~t4Û ~t [l - F(~)] 1 

t\ 
1 

_ f(t~ 
- 1 - F t) 

" -

(C,.2) 

A classiéal hazard function is the so-called bathtub curva shawn 

in Fig. C.l. In this curve appears the three major types of failures that 

generally assist the choices of h(t). First, there is the burn-in period 

that represents the early fatlure 'often attributable to manufacturing defects. 

Subsequently, h(t) remains approximatel,y constant until time t 1 and corresponds 

ta the "chance fa il ure" that resul ts from unpredi ctabl e conditions occurr; ng 

during the operating time of the device. The third type, called the wear-out 

failure, is associated with a gradual material deterioration caused by an 

,accumulation of shocks, fatigue, and 50 on. 

, ' 

h(t) 

Chance Wear-out Burn-Jn 
;,,).-

to t-t 

Fig. C.l The bathtube curve. 
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C.2 THE CENTRAL LIMIT THEOREM 
( 

One of the most important results of mathematical statistics is 
l , 

the central limit theorem that provides the theoretical justification for 

the important rol~plaYed bY the normal distributlon in statistics. This 

theorem states th.at the distribution of the mean of n independen\ObSèrvations 

from any distribution, or even from n different di~ibU~S' wiJh finite 

mean and variance approaches a normal distribution as~ number of obser­

'vations n appro~ches infinity. 

The central limit theorem is also apPlk"'âble-for relatively small 
\ 

samples as long as no single element or small group of elements has a 

dominant variance and the element distributions do not deviate too much 

" from a normal distribution. 

C.3 PARAMETER ESTIMATING METHODS FOR THE CDF 

C.3.l Method of Matching Moments 

Let x be a random variable with a density function fx (X;El' 

Ei, ... ,Ek)~ where Ei's are the p~meters to estimate. Next, let us 

define the tth moment of fx about zero as: 

00 

-00 

From this equation one can see that Ut is a function of the k parameter . 
. , 

(C.3) 

Now, if Xl, X2, ..• Xn represents a random sample of size n from 

f Xt the first k sample moments are defined as: 

• 1 

--~-J 
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fi, 
1 t .' " . 

mt ,= il ~ .xi "t = 1, 2 .... ,~ (C.4) 
i=l .. 

" 

" Hence" the moment estimators ~i' i = l, ••. , k of the Ei's.are obtained by 
~ ,~ l, 1 

sOlving the fo11owing equations for the,Ei's: 

" 
Jlt = mt t = 1,2.;., ~ 

/ 
C.3.2, Method of Maximum-Likelihood 

i 

The method of maximum-likelihood ,invo1ves taking,'as the estimate 

for each unknown parameter, the value that appears most probable on the 

bas;s of the given data~ Thus, the likelihood 'function 'of random samPle~ 

"~l' X2' •.. , xn' drawn from a mu1tiparameter density function fx (x; YI' '12' 
~ 

""'Yk) is defined as the joint densiJY of the n random variables, xi's, and 

is written as: 

n 

L = II f x.(xi;Yl,Y2'''Yk) 
. 1 l 1= 

(C.5) 

Hence, the maximum-likelihood estimators\~f ~he Yi'S, say Yi = 
hi(XI, ~2,' .,xn~ i = 1~2, ... ,k, are the values of ihe ~i's that maximize log 

L and are obtained- by solving: 

i = 1,2, ... ,k 

,'. 
~--. -- •• _ •• '"---.-'-'.--... -.--~ J 
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î. 
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/!) 

. C.3.3 -·the Method of least Squares 

The method of least squares is used'tQ determine the best fit of 

an assumed implicit'function to t~e experimental data. Thi~ is done by mini~ 

mi zi ng the sum of the squares of the devi a ti on in the y di recti on of the data 

points from the most ~obable curve. For the case where one desires to fit a 

straight line say y = Ax + ~ to the data points (xi' Yi)' the problem 

'resumes to minimize: 

n 

E = ~ (Yi - AXi - 8)2 

;=1 

by finding 'the appropriate values for A and ,B. These values are simply 

obtained by deriving (C.6) with respect to A and Band by setting the 

result equal to zero, name1yY-

n 

2I= -2 X (y. - Ax. - B}X. ~ aA 1 1 1 
, 

i =1 

'" n 
àE _ 

~ (Yi - ~x. B) - - -2 -aB 1 
J 

i=l ," 

SOlving the above equations for A and B, one finally obtains: 

A = nx(xy~ - (Ix) ~IY) 
n~(x ) ;; (Ix 2 

B '= ~y ~ (x 2) -; ~ x X (Xy) 
n ~ (x 2 J - (Ix)2 

(C.6) 

(C.7) 

\ . 
1 

(c.a) 

(C.g) 

(C.10) 

n n, n 
1 where ~x = ~. Xi , Xy = X Yi' and ~xy = ,I x;Yi· 

L_ .... _______ .. 1 1 ____ . ___ ~ __ 
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,DERIVATION OF THË "PROVAN" CDF 
\ . 

By definition, the cumulative distribution function ;s'expressed 
1 

as 

x 
~ q, , 

CDF(x) = r p.d.f.(a)da 

Hence, fr~Eq. (1.41) we have: 

j 

PNP (j1 = f PNP(i)di , . 
-co 

(0.1) 
lla ~ j 

= 0 f expD.i 
~_oo 

,. 

Now, the change of variable: 

Z2 = (llaoexP[Ài]-llaf)2 
'2Vac ' (0.2 ) 

~yields: ~ Z = llaoexP[Ài]-llaf' and deriving we get: 

1 

(0.3) 
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~ Looking it the limi'ts of integration, we have f~om (0".2) that: 

" 

when i = _00 , 

-l.1af 
.' Z =--

., .) , _ _ 00 m-:-: 
ac 

and whèn ; = j 
-
- ~aDexp[Àj]-l.1af 

z - ----'~-..:... 

j-,ov'21Ç 

,Substituting equations (0.3), (0.4) and (0.5) into Jo.l), we obtain: 

o 

l· 
1 J 

PNP(j) = '- f 
t'TI ,l 

-00 

But, knowing that 

1 

2 e -z dl 

is-by definition the error function,"(O.6) becomes: 

L ···.~--o _..::_-- , ' '-:-,~.------~ __ --_~I • 

.' . . ! If .. 1 '( .'_ ". "\.-r: ,1 ~ 

.. 

(0.4)" 

(0.5) 

(0.6) 

(D.7) 

- . 

, .~ , -

1 . i . 

l 
! ' 

1 

" 1 

1 
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o c , 

'Final1y~ su~stituting back equatton (0.5) for z we get: 

.. 

= t {erf + erf ( llaf )} 

~ 
(0.8)' 

wh;ch recQvers'equation (2.42). 

" 
,l 

) 
. ' 

"-", 

" 
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APPENDIX E 

CURVE FITTING PROGRAMS 

E.1 OPTIMIZING PROGRAM FOR THE "PROVAN LAW" 

C 
C 
C 
C 

•••••••••••••••• **.* •• * ••••••••••••••••••••••••••••••••••••••••••• 
• PRO" MI'S CDF • ................... * ••••••••• ** •••••••••••••• ** •• * •••••••••••••••• 
REAL *4- L AMBO A. MUAF ,MUAO 
OIMEfliSlON pp, lS".X'lSI.ERRI 1SI.Z' lS' 
DATA X/13622 •• 14980.,15~6 •• 17361 •• 18013 •• 18997 •• 

.19120 •• 19128,.20271,.20536,.20613.,21729.,21740 •• 
*22560 •• 23241.,233IZ •• 26150 •• 2772S./.P/,038 •• 09Z • 
•• 146, • ZO 1 •• 255 •• 31 •• 364 ""'18 •• .-73 •• 527 •• 582. 
*.636 •• 69 •• 745 •• 8 •• 854.,908 •• 962/ 
~R' lE'6.1001 
MUAF=9.53E-3 
MUAQ=1.55E-4 
VAC=2.IE-5 
LAM80À=1.7E-4 
DO 25 1(=1.6 

'. L.AM8DA=LAMBOA+. U:-4 
DO 20 Il:1.5 
VACaYAC-.1E-S 
DO 15 1=1.1S 
l' 1)= (MU.v:-M'J AQ.EXP(LAMBDA*XI l" '.l'SQR T(2.V4C, 

15 ERR",=ABS'(l.+ERFt-Z"J/SQRT(Z.II,/ZI 
E=RN5(ERR, 

20 
25 

100 
105 

.110 

~RITE'6,110, LAMBOA.VAC.E 
WRITE(6,105' ERR 
CONTINUE 
CONTINUE 
FORMAT'!'/I" PROVAN CDF'///' 
FOR~AT'lX,E15.6/) 
FORMA1(lX.3E15.6;/' 

" 

c -
SIOP 
END 

FtUNCTION RN S, ERR"~~, 
DIMENSION ERRl18' \/ 
SUM=O. 
DO 5 1=1.IS 

5 SUM~SUM+ERR(I)*.Z 
RMSaSQRT'SUN/lS' 
RETURN 
END 
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E.2 ESTIMATING PROGRAM FOR THE OTHER INVESTIGATED LAWS --c ~ -
c ••••• * •••••• * •• * •••••••••••••• * ••• ***** •• ***************** ••• *** •• 
c 
c • 

'* • 
11 SEST COF THROUGH A SET OF LII='E DATA 4< 

c • • .**** ••• *.** •• * ••••••••••••• *...... * 
c '* '* C •••••••••••••• * •••••••••••••••••••••••••• *** .......... * ••••• * ••••• 
C - IMPLICIT ~E4L.8'A-H.M-Z) 

REAL .4 ZET.T ••• PROS 4 

C 
C 
C 

c 
c 
C 

c 
C' 
C 

01 ME'" SION N ( 1 8 J t P ( 1 8 •• E RR ( 1 8) • y ( 1 8 J • X ( 18 t, 
DA TA N.l13622. 00.14980.00.13926.00.17361.00 .l8013 .00. l8991.00. 

*19120.00. 19128. 00.20211.00, 20536.00,20613.) O. 21729.00 ,21740.00, 
*22560. 00.2324 r .00.23312.00.26150.00, 27725 .O~/ .P/. 03800, .09200, 
•• 14600,.20100,.25500 •• 3100 •• 36400,.41800 •• 47300 •• 52700 •• 58200. 
'*;63600 •• 6900 •• 74500 •• 800, .85400,.90800, .96200/ -Ii' 

2-PARAMETER WE[BULL 

){) 5 1 = 1, 18 
X (1)= OLOG (N ( [) ) 

5 YU t=OLOG(OlOG( 1/0 .OO-P( It.») 
CALL SaFITtx,Y.SLOPE.CJ 
NA=OEXP{-C.ISLOPE) 
DO 10 1=1.18 , 

1 0 ~~:~~ ~~~~~S ( 1 .0 O-OE XP (- (NU J .INA •• -*SLOPE'-P( 1 J J 

WRITE(6,100J 
IIIR 1 TE( 6,105) SLOPE. NA.E 
II/RITE (6,106 )ERR 

'. NORfI1AL 

"'EAN:O. CO 
00 Il (=1.18 

Il "'EAN= (MEAN. ( 1-1 HN( [)/ 1 
SUM5=0.OO 
00 15 1=1.18 , 

15 SUM5=SUM5+(N(I)-ME~N) •• 2 
SlG=QSORT(SUM5/11' 
00 20 1=1.18 

20 ERR'l': CABS(OERFC(MEAN-N( It '.ISIG/OSQRT(2.00,,/2-P({'J 
E=R"S{E~R' 
III R ITE (6. 110) 
IIIRITE(6.105, MEAN.SIG.E 
IIIRI TE( 6.1 06'ERR 

LOG-NORMAL 

"'EANLN=O.OO 
00291=1.18 

29 ME_ttLN=(ME~NLN* ((-1 ,+OLOG(N C( JI)/' 
SUM6=O .00 

'00 30 1 =1.18 
30 SUM6=SUM6+(oLOG(N(I "-MEAN.N •• *2 

SIGLN=OSORT(SUM6/17) 
00 35 1=1.18 , 

'-' 

", 

35 ERR'lJ=DABS()ERFC([MEANLN-)LOG(~(IJ)J/SIGLN.lDSQRT(2.DO' ).I2-P(IJ' 
E.:rR"S (ERR) 
III RITE { 6 • 1 1 5 , 
WRITE(6.10?' MEANLN.StGLN.: 
~RITE(6.106tERR 
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EXPONENTI AL 

DO 40 1=1.18 
40 Y([)=OLOG(I-P(I» 

, ...... ' l , l'" '" t 
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CALL SQFIT(N.Y.SLOPE.C' 
00 4S 1=1,18 

45 E;:RR ( 1) =OA E5 ( 1 .DO-OEXP (SLOPS: *N (1 "'C'-P ( 1 » 
Et =R ~ 5 ( ERR J 

~ WRITE(6.120J 
WRITE(6.105. 5LOPE.C.E 
IIIRI TE(6.106,ERR 

C GAMM~ 
C 

C 

ELA M=MEAN/5 IG **2 
ZET ~=EL AM*MEA N 
00 !SO [=1.18 
ZET=ZETA 
T =EL j" .. *N( 1 • 
Ct\LL MDGA~'T.ZET.PR08.IER' 
.=P(,) 

50 ERR (1 J=A8S( PRo8-W' 
E=RMS( ERR' 
lIIRITE(6.125 ) 
IIIRITE(6.105' ELAM.ZETA.E: 
WRITE(6.106) ERR 

C GUM6EL(SMALLEST' 
C 

C 

DO 55 (=1.18 
55 Y(IJ=OLOG(OLOG{l/(l.DO-P(,'"J 

CALL SQFIT(N,Y.SLOPE.C) 
00601=1.18 -

~ ERRC(.=OA8S(P(['71.00+0EXP(-OEXPCNClt*SLOPE+C", 
E=RMS(ERR) 
WRITE(6.13Q--, 
WR(TE(6.10S,SLOPE.C.E 
i1I RITE C 6.106 )ERR 

C GUMBELCLARGEST) 
C 

c 
c 
c 

65 

70 

75 

80 

00651=1.18 
YCI,=OLOGCOLOG(I/P(()', 
CALL SQFIT(N.Y.SLOPE,C) 
JO 70 1=1 .18 
ERR([)=OA8S(PCI)-OEXP(-OEXPCSLOPE*NC['+C'J, 
E=RMS (ERR) 
WRITE(6.1~5' 
WRITE(6.105'SLoPE,C.E 
W R [ TE ( 6 .1 06 ) E RR 

BIRNBAUM-SAUNDERS 

5=0.00 

t 

RR=O.DO. ~ 
DO 15 1=1.18 
5=(S*( (-1 )+N( n '/1 
RR= U( R * CI -1 • + 1/ N ( U J/ 1 
R=l/RR 
BETA=OSQRT (S*R) , 
ALPHA=OSQRTCS/8ETA+BETA/R-2.00, 
DO 80 1:::1.18 
W=OSG~T (N ( [ )' 8ET A) 
Z=l/"LPHA*'W-l/W' " 
ERRCI'=DA8S(DERFC(-Z/OSQRT(2.DO)./2-P([.' 
E=RMS (ERR) 
WRITE(6.140, 
W R (TE C 6.105' ALP HA t B ET A • E 
III R ( TE ( 6 .1 06 • ERR 

\ 

4 

Q 
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100 FORMAT(///' 2-PARAMEtER WEIBULL'///) 
105 FORMAT (lX.3020.12//, 
106 FORMAT( lX.020.12/l 
110 FORMAT(///' NORMAL'///» 
115 FORM_T(///' LOG-NORM4L'///' 
120 FoRMAT(///' ;XPONENTIAL'///' 
125 =ORMATC///' GAMMA'///' 
130 FoRMAT(///' GUMBELCSMALLEST,,///, 
135 FORMAT(///' GUMBEL(LARGEST"///' 
140 FORMAT (///' BIRNBAUM-SAUNDERS'///' 

STOP 
END 

FUNCTION RMS(ERR' 
1 MPL le 1 T REAL*8 ( A-H .o-z ) 
OIMENSICN ERR(18. 
5UM=0.00 
00,5 1-=1.18 

5 SUM:SUM+ERRII •• *2 
RMS=OSQRT(SUM/18) 
RETURN 
END 

SUBRCUT INE SCFIT (X. Y. SL OPE, C) 
(~PLICIT RE~L .B'~~H,O-Z, 
DIMENSION X(18"Y(18t 
SUM 1=0.00 
SUM2=0 .. 0'0 
SUM~=O.OO 
SUM4::::0 .. 00 
DO 5 1::::1.18 
SUM1=SUI41 +V (1) • 
SUM2=SUM2+X ([ , 
SUM3=SU~J+Y(I).X(I' 

5SUM4=SUM4+X(I,**2 

." 

J 

SLOPE= ( 18.00. 5UM3-SUM2.SUMl ./ (18. OO*SUM.-.-SJM2 •• 2) 
C=( SUM 1*SUM4-SUM2*SUM3) /( IB.D O. ~UM4-SUM2*.2» 
RETURN 
END 
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APPENDIX F 

PlOTIING PROGRAM 

EXTERN4L EXPO.NORM.LOGN.GAN,GU~S.GUML.PROV.WEIB,BS 
OIME~SION V(20) ,X(20) .XX( 201. YY(20' 
DATA X/13622 •• 14980 •• l5926.,17361 •• 18013 •• 18997.,1~120., * 1 9128. , 2027 1 •• 2 ° 536 •• 2 0616. ,2 17 29 •• 21 740 •• 22560. ,2324 1 •• 

*23312 •• 26150 •• 27725.,O.,O./,Y/.038 •• 092 •• 146,.201 •• 255 •• 31, 
*.,364,.418,.473 •• 527 t. 582 •• 336 ... 69 •• 745, .8 •• 854 •• 908; .962. 
*0 •• 0./ 

Co\LL PLGTCN 
CALL PLOT(1.0.2.,-3' _ 
CALl AXSCO.OtO.0.16H...IFE X E3 CYClES.-16,-6.,O.0.10 •• 5., *- 1 .0 •• 1.5) 
CAlL AXS(O.O,O.,3HCOF.3,-5 •• 90 •• 0 •• 0.2.1.0 • .1.0) , 
CALL AXSC6 •• 0 •• Il HREL IA81LITY .-11,-5 •• 90 •• 1 •• -.2.1. 0 •• 1., 
CAlL PLCT(O •• 5 •• 3) . 

. CAlL PLOT(6.,5.,2) 
)0 5 1:1 .18 
XX, IJ:( XC IJ-l.E4,/SOOO.*1.5-.045 
y y ( 1 ):Y ( 1 J'" 5- • 0 4 5 , 
CALL SYI'rtBCL 'XX~ l', YY( 1 t., 0; tl .0" -1 ) 

5 :ONTINUE 
C 4L l F N PL 0 T (1 .8 2 ,6 •• 1 • E XP 0 ) 
CALL SYMBOL (O •• 5.5 •• 15. Il H~ XPONENTI AL, O. ,Il ) 
CALL SYMBOL(.S,4.2 •• 12,21HlE_TA= 4,41<;E3 CYCLES.0 •• 2l' 
CALL $'YMBOL(.5.4.5 •• 12.21H4LPHA= 1.606E4 CYCLES.O •• 2--l, 
CALL FNPLOT(0 •• 6 •• 1.NORM) 
C AlL SY MBOL (o •• 5.5 •• 15, 6HNJ RM 41... .0 •• 6 t 
C~LL SY~BCL(.5.4.5 •• ,12.18HMU= 2.02BE4 CYCLES.O •• la, 
CALL SYMBOL(.5.4.2,.12,21HSIGMA= 3.653E3 CYCLES.0.,2l' 
CAll FNPLCT (0.,6 •• 1 .LOGN. 
CALL SYMBOLCO •• 5.5 •• 15.l0HLOG-NORMAL.O •• 1 0' 
CALL SYMBOL(.5.4,.5 •• 12.l0HIIlU'= 9.902.0 •• 10) 
C AL L 5 Y M8 OL { .5 .4. 2 •• 1 2 • 16 HS 1 G M ~ • = 1. a 39 E-l • 0 •• 16 J 
CALL FNPLOT(0 •• 6 •• 1,GAM' 
CALL SYM80LeO •• 5.5 •• 15i5HGAM~A.O •• 5t 
CALL SY"'BOL{.5.4.5,.12.22H~LPHA= 1.520E-3/CYCLES.O •• 22' 
CALL SYMBOL(. 5'. 4.2 •• 12. 12H: TA'= ::. 082E 1. O •• 12) 
CALL FNPLOT (0 •• 6 •• 1 .GUMS' 
CALL SYMBOLe o. ,,5. 5,.15.16HGUMBEL( SMALLEST). o •• 16 J 
CALL SYMBOle .5.4.2, .12. 2lH)E_ TA:: 3.22SE3 CYCLES.O •• 21 J 
CALL SYMBOLC .5,4.5 •• 12.21 HALPHA= 2.203E4 CYCLES"O •• 21) 
CALL FNPLOTCO •• 6 •• 1 ,GUML) . 
ClLL SYMBOLeo •• 5.5 •• 15. 15HG'\JMBEL(LARGEST',O •• 15J 
CALL SY"'BOL(.5.4.2".12.2lHOElr4= 3.187E3 CYCLES.O .. 2l, 
CALL SYMBOL(.5.4.5 •• 12.21HALPHA= 1.8~5E4 CYCLES.0 •• 2I' 
CAlL FNFLOT(0 .. 6 •• 1 .PROV' 
CALL SYMBOL (0-•• 5.5 •• 15, 6HPROVAN.0 •• 6' 
CALL SYMBOLe .5.4.5 •• 12, 21H_ AI480A= 2.0E-4I'CYCLES.0 •• 21 J 
CALL SYMBOL(.5.4.2 •• 12.13HVAC= 1.BE-5 M.0 •• 13) 
CALL FNPLOTCO •• 6 •• 1.WEIBJ 
C AL L S y M B DL ( 0 •• 5 • 5. • 1 5. 7H WE 18 LI... L • O. ,7 J 
CALL SY~BOL(.5,4.5 •• 12.21HTHETo\= 2.177E4 CYCLES.O .. 21J 
CALL SYMBOL(.5.4.2 •• 12,IIH9ETA= 6.269.0 •• 11) 
CALL FNPlOT(O .. 6 •• 1,BS, 
CALL SYMBOL(O •• 5.5 •• 15.17HBIRNBAUM-SAUNDERS,O •• 17' 
CALL SYMBOLe .5.4.5 •• 12. 15HAL::JHA= 1.794E-I,O •• 15, 
CALL SY,",80L( .5.4.2 •• 12.20HBETO\= 1.996E4 CYCLES.O •• 20) 
C At..L E NDPL T 
STOP 
END 
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FUNCT ION' EXPO (X) 

SCA=X*SOOO.1'1.5+1.E4 
A=- .226~ 14E-3 
B=. 3E3S2-1 E 1 
EXPO=( l-EXP(A*SCA+BJ).S 
RETURN 
END 

FUNCTICN NORM(X) 
RE4L *4 ME&\N 

SCA=X*5000.1'1.5+1.E4 
ME &\ N= • 2 02 79 1 E 5 
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SIG=.36!2EIE4 
NORM=ERFCCCMEAN-SCAJI'SIG/SQRT(2."/2*S 
RETURN 

. END 

F UNCT [ON LOGN ( X J 
REAL *4 MEANLN' 

SCA,=X* 5000./1.5+1 .E4 
MEANLN= .990 16 5E 1 
5 IGLN= .183944 
L.OGN=ERFC«MEANLN-ALOG( SCA. J/SIGLNI'SQRT(2.) '1'2*5 
RETUnN 
END 

FUNCTION GAM( Xl 

SC4=X*50~O./l.5+1.E4 
ETA: .308242E2 
ALPHA=.151999E-2 
T=4LPHA*SCA 
CALL MOGAM(T.ETA.PROB,[ER) 
G AM=PROe*5 

~, RETURN 
'~ND 

/~UNCTION .EIB{X) 

SCA=~*5000./1.5+1.E4 
/lfA=.217t:61E5 
SLOPE= .62t-93E 1 
WEIB=tl.-EXPC-(SCAI'NA.J*.SLOPE)'*S 
RETURN 
END 

FUNéT ION GUMS (X J 

(SC4'.1fX* 50~O. l' 1.5+1 .E4 
/- ___ 1 A=.~097e3E-3 . 

'} ~=-682415El 
\ GU S=( 1 .-EXP( -E XP' A*SCA+SJ) )* 5 
" TURN 
\ END 

... __ "~_ .. _~ fi_ "" __ .. ~_~_ ..... ~\ ____ '" 
- A. ~ • • 

~ --



o 

Co 

·C 

c 

C 

C 

FUNCTION GUML(Xa 

SC~=X*50l0./1.5+1.E4 
A=-.Jl~7a3E-3 , 
8=.562075El 
GUML=EXP(-EXP(A*SCA+B,,*5 
RETURN 
END 

FUNCTION PROV(X' ~ 
RE~L *4 MUAF. MUAO.L AMBDA 

-
SCA=X* 500 0./1.5+ 1.E4 
L AMSDA=. 20E-3 
VAC=.18E-4 
MUAF=.C;53E-2 
MUAO=. 155 E-3 
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Z=( MUAF-MUAOt EXPU.AMaOA*SCA , J /SQR TC 2* YAG' ... ".. .•. 
PROY=( 1.+ERF(-Z/SQR TC 2.)' '/2*5 -' 
RETUf;lN 
END 

FUNCTION as(X, 

SCA=X*5000./1.5+1.E4 
ALPHA= .179406 
BETA=.199S79E5 
III=SQRT (SCI\/BETA' 
Z=l/.LPH~*(W-l/W) s 
BS=ERFC(-Z/SQRT(2.' )/2*5 
RET U" fil 
END 
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