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. ABSTRACT

-

‘ Thiggthesis concerns the assessment of the validity of statistical
functions that describe the scatter in fétigue data and the reliability of
components subjected to fatigue loading situations. Attention is particularty
focused on-the "Provan law" which has been derived based upon a probabi]i&tic
description of the micrgltructural fatigue crack growth proEesses. The
statistical laws are first succinctly described followed’ by the description
and results of an experimental program specifically developed to ascertain
their applicability, egpecia]]y in relation to the "Provan law". This
program consisted of performing strain controllied fatigue experiments on
specially prepared oxyden-free-high-cqnducgivity copper specimens. This
was fo]]owed‘by a scanning electron micro§cope investigation of the fracture
surfaces of a selected number of specimens in ocder to determine the basic
material crack growth intensity parameter, A, required for the implementation
of the "Provan Taw". Secondly, the laws are compared both on the basis of
computer generated curve fits of the fatigue data and on the results of the
komo1gorov-$mirnov and Cramer-Von Mises statistical tests. In addition, a
theoretical X is evaluated and compared with éts empirical (curve fit) and

experimegtal counterparts. Finally, the applicability of the statistical

functions in fatigue reliability is discussed.
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RESUME
La présente th@se a pour objet 1'évaluation de 1'applicabilité
de certaines fonctions statistiques # la représentation de la dispersion
des résultats en fatigue et au calcul de la fiabilité de‘coﬁposantes
mé;aniques soumises 3 la fatighe. Une attention particuliére est
accordée a la "loi de P:pvan" qui a 8té& récemment dérivée i partir d'un

modéle probabiliste du prscessus de propagation d'une fissure en fatigue.

' Les principales caractéristiques de chacune des fonctions sont

premiérement présentées, -suivies d'une description du programme expérimental

qui a permis d'@valuer leur validité. Ce programme consistait, en premier
lieﬁ, a4 effectuer des tests de fatigue en contr6¥e de déformation sur des
éprouvettes de cuilvre pur spécialement préparées 3 cet effet. La seconde
partie du programme fut d'observer au micrgscope électronique 3 balayage
les sgrfaces de fracture d'uﬁ\gomhre choisi d'épréuvettgé. Le but de ses:
observations était de déterminer, pour le matériau &tudié, 1l'intensité de

propagation d'une fissure de fatigue, A, paramétre nécessaire 3 la

vérification de la "lol de Provan'.

Les fonctions sont ensuite comparées en se basant sur leur
degré d'ajustement aux données expérimentales ainsi qhe sur les résultats

des tests d'hypothéses de Komolgorov-Smirnov et de Cramer-Von Mises. De

plus, une valeur théorique pour A est calculée et comparée aux valeurs
expérimentale et empirique obtenues & partir de 1l'analyse des résultats
exgérimentaux. Finalement, des conclusions sont tirées concernant

1'utilisation des fongctions statistiques pour &valuer la fiabilité en

fatigue. P
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CHAPTER 1

INTRODUCTION

o

J.7 MOTIVATION

e

It -is nowadays recognized that the great majority of mechanical
failures rresult from fatigue related degradation processe;. In recent
;ea;s, therefore, design eﬁgineers have shown an increasing concern about
fatigue of materiafs in order to maintain an acceptable level of structural
integrity for modern large structures and complex components subjected to
more and more demanding service condftiohs. But, complexity and size
betome major obstacles when one has to perform real life tests to assess
designs and design parameters. The required tests are either too costly or
simply not feasible which forces the engineer to rely on data obtained by

ﬁfatigue tésting simple laboratory specimens.' Besides, it is géner%11y
observed that these data exhibit a relatively large amount of scatter.

This is true for constant as well as variable amplitude (and frequency)+

Toading and for all materials.

The scatter in fatigue data has long been thought to be only
attributable to the (griations in test conditions. However, the test

variables being severaly controlled, there still remains an appreciable

residual dispersion in the results that must consequently be associated

v

with the material microstructure itself, that is, with the random
!
distribution of lattice defects and impurity aLoms on the submicroscopic

scale, and with the variation in crystal size and orientation in the

——
~

o

=
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material at the microscopic level. This attests to the random nature of

"fatigue and suggests a probabilistic rather than a deterministic approach

to the problem. Thus, it is more appropriate to ta]k about the probability
that a component will not fail instead of merely saying that it is not
expected to fail. The evaluation of this probability of non-failure, more
commonly known as reliability, becomes, then, one of the (if not the most
important) critical design cenditions, recalling that high reliability is
synonymous of Tow overall costs. Therefore, there is an urgent need to
provide the design engineer with ready-toluse probabilistic methods for —

assessing the reliability of large structures and components.

Most of the fatigue reliability models that have been proposed
and successfully used so far are more or less based on empiricism. That
igz_litt1e or no effort has been made to describe the fatigue mechanisms 1in
deriving these models. They usually require a substantial amount of test

data to be confidently used which therefore restricts their application.

In ;ééént years, new models that are based on a probabigﬁstic
descript%on of the fatigue crack growth process have been developed. Of
course, these mode€ls still require refinement and improvement before they
emerge as "reliable" design tools, but they constitute a promising avenue

of research that is certain]y'worthwhile exploring. It is the author's

.. hope that the fruits of this advanced design philosophy 'will gain more and

more acceptance in the engineering field.
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-1.2 PREVIOUS STUDIES '

e The study of scatter in fatigue data was placed on a sound footing

bf the wérk of Weibull [1] who, in 1949, presented a statistical function

derived from a probabilistic characterization of the breakfng strength of

materials. ‘Since then, the Weibull function has been frequently suggested
as a time-to-failure model based on empirical groumds, and satisfactory

representatiops have been obtained by Leiblein and Zelen (2], Kao [3] and

Perry [4] in their studies on ball-bearings, electron tubes and transistors, « —

respectively. -

As fatigue became a more crucial problem in design, several other

'gresearch4gngineers followed in Weibull's footsteps and proposed statistical

models to desqribe the reliability of mechanical components, systems and
structures that were constantly growing in size and complexity. Among the
most familiar of these models are the exponential, normal, log normal,

gammé,and Gumbel .

An acceptable justification for the assumption of an exponential
distribution to life studies was initially discussed by Epstein [5] and by
Davis [6]. Later, the exponential model was mathematically assessed as a

failure law for complex equipment [7].

1

Few applications of the normal distribution as a reliability model
are Feported in the literature, the main reason being that, for a given set
of fétigﬁé data, one generally prefers to use more flexible (the normal
distribution does not\have a shape parqmeter) distributions, such as the

gamma and Weibull, that adéquately describe the scatter.

N
\
~

Pl
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Until recently, tﬁe applicability of the log normal distribution
has been limited to rare situations in small-particle statistics, economics
and biolbgy [8]. However, Howard and Dobsan [9] and Peck [10] have extended
its use to fracture problems. Its applicability as a failure distribution

has been also indicated by the life-test sampling plans developed for it

by Gupta [11].

Extensively used in the study of floods, aeronautics, geology
and naval engineering [12] the Gumbel distribution can also be applied to
life test and reliability situations where failure of components of s}s%ems
are linked to extremal phenomena as discussed by Hahn and Shapiro [13] and

also by Mann, Schafer and Singpurwalla [14].

In the past fewlyears, more research effort has been devoted to
the derivation of reliability models based on probabilistic interpretations
of the fatigue process. Thus, Birnbaum and Saunders [15] have proposed a
life distribution to characterize failures due to the extension of a fatigue
crack. They have further used it, [16], to offer a probabilistic interpre-
tation of Miner's rule. Birnbaum and Saunders have also found experimental
support to their law from the work of Freudenthal and Shinozuka [17] who
have presented a similar law substantiated by several sets of fatigue data.
Subsequently, Payne [18] introduced a statistical reliability model for
assessing the fatigue strength of aircraft structures. This model evaluates
the random variability in crack propagation rates and the residual strengths
of cracked structures at any stage of their 1ife. More recently, Provan [19]
has derived a reliability distribution based on probab11i§tic micromechanics

concepts applied to the fatigue of polycrystalline metals. The theoretical
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foundations of this microstructural interpretation of the scatter in fatigue

data are given in [20] and have been experimentally assessed in [21].

1.3 THESIS DESGRIPTION-

1

\ This thesis begins with a chapter reviewing the familiar empirical

and semi-empirica]klaws used in fatigue reliability, namely, the exponential,
normal, log normal, gamma, Weibull and Gumbel extrema value cumulative
distribution functions. The not so familiar theoretical Taws of Birnbaum-
Saunders and Provan are also presented. A more comprehensive description

of the "Provan law" is given since the assessment of its validity is the
prime interest of the current investigation. = The main characteristic§ of

s

each distribution and their range of applications are discussed.

Chapter 3 is concerned with the experimental part of the thesis
that consisted of two separate investigations: the fatigue experiments and
the scanning electron microscope observations. A description of the specimen
machining and preparation is first given. Then, the major components of %he

experimental equipment and also the experimental procedure are described.

The results of the experimental investigations are presented and
analyzed in Chapter 4. Two methods of analysis, namely, the curve fitting
and the statistical tests are applied to assess the adequacy of the above-
mentioned reliabi]if& functions with respect to the collected fatigue data.
The additional method for verifying the validity of the "Prbvan 1aw" through

the results of the microscope'observations is also explained.
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The final chapter presents the conclusions and proposals for

further research.

In order to lighten the text, complementary information such as

definitions, computer programs, and detailed procedures are given in the

appendices.
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CHAPTER 2

REVIEW OF FATIGUE RELIABILITY THEORIES NS

The number of continuous distributions available which\empirica11y
describe the scatter in fatigue data is considerable. This chapter deals
both with the most common and two recently derived theoretical functions
pertaining to fatigue reliability. In describing the distributions, the

emphasis is put on the principal characteristics and on the domain of
applicability.

: "i
2.1 THE EXPONENTIAL DISTRIBUTION

The exponential probability density function (p.d.f.) is undoubtedly
the most commonly used time-to-failure distribution. It is as‘important in
}eliability as the normal distribution is in other fields of séatistics.
Unfortunately, in many cases, the choice of the exponential distribution as
a failure model is based on the fact that it is easy to apply rather than on

the understanding of the physical problem.

The p.d.f. for an exponentially distributed random variable x is

given by: A

1 _-x/8

ge x>0;6>0. (2.1)

f(x;68) =

where the parameter 1/8 is referred to as the hazard rate (see Appendix C).
This parameter being constant, the exponential model is characterized (and,

in a certain way, limited) by the property known as complete "lack of memory",
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Thus, assuming an exponentially distributed time-to-failure, the probability

of failure of a given unit during a specific time interval depends only on

the length of the interval and is therefore the same irrespective of whether

the unit has previously survived 100 hours or 1000 hours.

The exponential distribution has been found more appropriate as a

reliability model for complex systems or assemblies. However, it is also

applicable for components in cases where replacement is carried out during

the in-usage portion of the component life, that is, before wear out occurs.

The cumulative distribution function can be obtained from the p.d.f.

through the familiar relation:

X

CDF = F(x) = [ p.d.f. dx ,

=00

(2.2)

which yields a rather simple expression for an exponential variable, namely;

(2.3)

Finally, it should be mentioned tha; the exponential distribution

is a special qase—bf both the Weibull and the gamma distributions that are

further discussed in this chapter.

2.2 THE NORMAL DISTRIBUTION

The normal or Gaussian distribution is the best known and most

frequently used statistical model.

It owes its popularity principally to

‘
v

vl
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the fact that it conformgﬁapproximately to the observed distribution of many
physical quantities. It was first introduced in 1733 through the work of

De Moivre who derived it as a Iimiping case of the binomial distribution.
The normal distribution was also known to Laplace noc later than 1774,
however, thfaugh historical mistake, its discovery has been attributed to

Gauss whose first published reference to it appeared in 1809.

A random variable is said to be normally distributed if its p.d.f.

has the form: )

1 T x=py2
f - - — (—E) ;
(x) — gxp[ 5 (5) ]

(2.4)

-0 < X <oy ~o< <oy g>0,

This simple shape distribution is symmetric about its mean u and its degree
o?idispersion‘is represented by the parameter o that is also known as the

standard deviation.

The associated CDF to (2.4) is given by: -

. X
- 2 ' . ) v
Flx) = fexpl- & E22) 1 C O (2.5)
0»'211' o .

whose evaluation is far from straightforward. But, by simply making the

a

change of variable z = (x-u)/o, (2.5) becomes:

S

¥4

o 2 "
F(z) = —— s exp(- %—st‘, with s = &8 | (2.5a)
T

- OO
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; 4
ca simpler function that is tabulatgg in,any fundamental book on statistics.
The random variable z is called the ‘standard normal variate and follows a

normgl distribution with u = 0 and o =1 [14].

The validity of the normal distribution as a time-to-failure model "
is quea}ionab]e since the normal variate 'x includes negative values. However,

when p > 30, the basic requireménts for any life model to be acceptable,

namely, »
¥
/,/- - o oo
[ f(x)dx = 1 ‘ (2.6)
0 . ‘

.
is satisfactorily met (error ~0.14%). For the other cases, ‘the distribution

is truncated to:

F(x) = ——expl- L (52)7

Kaven
(2.7)
0<IX<°°,
.where k is fhe normalizing constant such that:
L , b
JOFx)dx = 1. © (2.6a)
0

-

2.3 /THE LOG NORMAL DISTRIBUTION

A random variate x is said to be 1og normally distributed if its

logarithm follows a normal distribution with parameters u' and o'. The p.d.f.
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of x is then given by:

F(x) = ——exp [- 3 (LX)
G /2" .

XYem —

0<x<m;0<u'<m§g'>0

and its CDF by:

2

]

(2.8)

(2.9)

The Tog normal distribution has various shapes and is characte}ized

by a right skewness as shown in Table 2.1a). Note that u' and ¢' represent

here the scale and shape parameters, respectively, and not the location and

scale parameters as for the normal distribution.

Setting y = &n x in (2.9) we obtain:

y
‘ Fly) = —~= 7 expl- 5 (&5)2]da
o'Vom __

iwhich is very similar to ( 2.5) and can therefore be evaluated using the

same tables after putting it into the form of (2.53).

(2.10)

The fundamental derivation of the logarithmic normal distribution

is carried out by considering a physical process wherein failure is due to

the growth of a fatigue crack. For this reason, the utilization of this

distribution for fatigue failure problems seems fully justified.

\
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Let X; < Xz < ... < Xn be a sequence of random variables denoting

the size of a fatigue crack at different stages of its growth. If we assume
a proportional effect, [22], for the growth of these cracks, it follows that
the crack growth at stage i, Xi'xi-]’ is randomly proportional to the size

of the crack, Xi—1’ and the component fails when the crack length reaches Xn'

Let X,-X; m X3_121= 15 2, ..., n, where m; is a constant of

1T i

proportionality varying in a random manner with i. The initial crack size _
X0 is interpreted as the size of minute flaws, voids and the like in the

_ components. Finally, the wi‘are assumed to be independently distributed
.random variables having not necessarily the same distribution for all i's.

Hence: . ,

A e, s i=1,2, . .., (2.11)

or:

n n . .
3 o= T b (2.12)

where Ax; ; = X;-X;_;. For the limit case, namely, Ax; ; - 0 and n becomes

large, we get: ’ \
(2.13)

or

n
Tog X, = 2 m; +log Xy (2.14)
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Since the s by assumption, are‘independently distributed variates,
by the central limit theorem (see Appendix C), they converge to a normal
distribution. Therefore, log Xn is asymptotically normally distributed and

hence Xn has a logarithmic normal distribution.

2.4 THE GAMMA DISTRIBUTION

The gamma distribution is a natural extension of the exponential
distribution, being the appropriate model for the time required for a total
of exactly n independent events to fake place if events occur at a constant
rate o, i.e., each event is exponéntia]]y distributed. In reliability terms,
this means that a system or assembly time to failure is gamma distributed if

the system failure occurs as soon as exactly n subfailures have taken place

and if subfailures occur independently at a constant rate a.
The gamma p.d.f. is:

n-1

f(x) = a" %TEY e”

X S x>0,a,n>0 (2.15)

where TI'(n) is the well-known gamma function, namely:

r(n) = f x"e¥dx | - (2.16)
0

and n and o are the shape and scale parameters respectively.

e

The wide variety of gamma distribution shapes certain]y'accounts
for the frequent use of this model, especially in reliability. Thus, many

phenomena that cannot be justified théoretica]]y as gamma variates, have,
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nevertheless, been found empirically tobe well approximated by the gamma

p.d.f.

The gamma CDF is written as:

glgmatyy (2.17)

TN

F(X "—(—)-f

7
which is also known as the” incomplete gamma function and can be evaluated
through the tables of the function I (u,p) [23] where u and p are defined

as follows:

and, p=n-1 . ‘ (2.18)

%

2.5 THE WEIBULL DISTRIBUTION

In 1949, a Swe&ish research engineer named Waloddi Weibull proposed,
a probability density function [1] for the interpretation of fatigue data.
Since then, however, the application of this failure distribution has been o
extended to many other engineering problems. The great versatility of the
Weibull distrfbution stems from the possibility to adjust it to fit the many
cases where the hazard rate either increases or decreases. The Weibull
distribution is also known to statisticians as the Fisher-Tippet Type III
asymptotic distribution of the smallest extreme, that is to say that it

can also be derived from the extreme-value theory [14].

N
/
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2.5.1 Two-Parameter Weibull . _ ‘ ;

For certain statistical phenomena, one can reasonably assume that

the lower bound of the associated random variable is equal to zero. For

| those cases, the Weibull p.d.f. is written as: - -
K
) gB-1 B
’ f(x) =B —exp[-(3) ] ;
6 ! e~
f (2.19)
- B, 86>0 ;5 x>0, , -
7T , ‘
and the CDF as: « " - 1
) - g .
X g 0
F(x) = 1-epr-(5) 1., (2.20)

where, 6 is the characteristic value corresponding to the (e-1)/e or 63%
' probability point, and is known as the scale parameter, and B is the shape

¢
parameter.

. 2.5.2 Three-Parameter Weibull

jhe more general form of the Weibuli distribution takes into account
an arbitrary origin for the random variable by introduc{ng a2 location
parameter, say 8q. This is needed, for instance, in life testing when
components are designed t§ 1ast "at least" a certain time. The p.d.f. and

CDF then respectively become:

B v ( 0 .
s - f = —_ - 5 .
) | (x) S e P exp [-(gz52) 1 5> (2.21)

' e e S o e e i o o e % e e e e e o an
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and: -
. - x-eo B
F(x) = 1-E§P[- (5:55) 1, (2.22)

nw1th ?O Z.O-

2.6 THE GUMBEL (EXTREME-VALUE) DISTRIBUTIONS

Failure of components or systems may frequently be related to .
causes that depend directly on either the sma]]esf or the largest value in
a particular sample distribution. For example; in fatigue tests at a constant
stress, failure may be dependent on the strength of the yeakest of many
"elements" ina given materiaf, or it may be dependent on the size of the
largest flaw. In those cases we are interested in the distribution of the
smallest value (minimum element strength) or the largest value (maximum
flaw size) in a sample from some (generally unknown) initial distribution.
The smallest or largest element di;}ribution will, in general, be a function
of the sample size, n; and on the nature of the initiai diétribution. However, .
if n bécomes large and if the inifia] distribution ¥s of the "exponential type"
(such as exponential, normal, and 1og-norma1\dﬁstributions) Cramer has shown
[24] that the cumulative distribution of the smallest (or largest) value
—converges asymptotically towards the so-ﬁa]]ed Type I extreme value for the
smallest (or largest) extreme diiéribution. Because this distribution was
extensivef& used by Gumbel [25] in his study of extremal phenomena, it is a]s&
known as the Gumbel distribution. Thus, if the initial distribution is of
such a form that it tends to zero,exponentially as the assaciated random

variable tends to ~», the 1imiting cumulative distribution is referred to as
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the Gumbel distribution for the smallest extreme and is written as:

\

F(x) = T-exp[-exp(55H)]

— | (2.23)
<X <@ §>0y-0<qg< oo, '
and its related p.d.f. as:
\ 1 X0, R
- = fx) = 5 exply (x-a)-exp (FH)] - . o (2.24)

“ {
Similarly, if the initial distribution tends to zero exponentially

as the random variable tends to +~, we obtain the Gumbel distribution for

the largest extreme, given by:

F(x) = expleexp[- (5591} , (2.25) ,

and the p.d.f. by:

i

fx) = § [-3 (x-a)-exp (X9] . (2.26)

The two Gumbel density functions, that 'is, Equations (2.24) and
(2.26) are mirror images of each other as depicted in Tab17}2.2c: One should
also note that although the preceding results are asymp}otic (i.e., they are
derived from n + «) the extent to which they are app]jéab]e for moderate
size n, or in other words the rate of convergence, 9¢bends on the initial
distribution. For example, fewer observations aréxrequired for the distri-
bution of the 1argest_va1ue to approach the Gumbel distribution-if the

initial distribution is exponential than if it,is normal.
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2.7 THE BIRNBAUM-SAUNDERS DISTRIBUTION

, The Birnbaum and Saunders fatigue-1ife model, proposed in 1979 [15],

assumes that fatigue failure is due to the growth and ultimate éxtension of a
crack past a critical length. At each oscillation of the imposed load, this

crack is extended by a random amount, thg randomness being the result of

variation in the material, the magnitude of the stress, the specimen gecmetry

and other such factors. The extension of the fatigue crack is then represented
by a nonnegative random variable whose two-parameter cumulative distribution

function, namely, the Birnbaum-Saunders distribution, will now be derived.

In their approach, Birnbaum and Saunders first consider a specimen
that is subjected to jdentical sequences (i.e., cycles) of m loads, {zi} is=

1, 2, ..., m, each Toad causing a deformation of the specimen, thereby

1

imposing a stress on it. The loading scheme can be seen as follows:

ey & teycle 1 :

L
m

‘l’ 9’2’

£m+1’ Lopos wees £2m }cycle 2

. ij+], ij+2’ s 2jm+m leyele (§+1)
for all j # k. Then, it is assumed that the loading is

‘ -—
.

jm+i T Ry
continuous which implies that for all i =1,2, ..., m

with 2

24 (0) = 45(1) = 2;4(0)

| Having established the physical framework, two fundamental
assumptions are next made. The first one is that the incremental extension

Xi due to the load zi in the cycle J is a random var{able whose distribution
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is governed by all the Toads lj, J < i, and the actual crack extensions that

have preceded it in cycle j alone. The second -assumption concerns the total

th

s
crack extension Yj due to the j Eyc1e that is taken as a random variable

with mean p and variance o2, for j =1, 2, ... . Thus, we have

- ' /
Y301 7 Kgmer * gz * 00 Xy
\

\
for cycle (j+1) and under a repeated‘aﬁpﬂﬁqgtion of fitycles, the total

extension of a crack in a specimen is written.as;

N S

n
W= Y. . ‘ (2.27)

The first assumption is rather restrictive in the sense that it
ensures that the total random crack extensions, Yj's’ are independent from
cycle to cycle. This hypothesis is certainly not valid for several appli-
cations although Birnbaum and Saunders have found it plausible in many

aeronautical fatigue studies [15].

Finally, defining C as the integer random variable that denotes the
number of cycles at which wn exceeds a critical value, w, the Birnbaum-

Saunders fatigue failure law is expressed as:

P(C<n) = P(wn >w) =1-P( 2 Y, <w) - (2.28)
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But, from the second assumption we know that the Yj's have a mean

u and a variance o?; thus, the Yj's can be standardized to yield:

n Y.-u -n -
P(C<n)=1-P(Z L <&Hy (2.29)
F]oﬁ' a/n -

Next, from the assumption on the independence of the Yj's and
using the central Timit theorem and the symmetry of the normal distribution,

(2.29) can be rewritten as \

P(C'< n) = 1-¢ (LMK

- a/n
= @ (_n__}i - _w._) R . (2.30)
o/n o/
where
X 2
a(x) = ;A ey (2.31)
o Vom
Finally, defining )
o=—2 and B =2 ,
Viw H

the recognizable form of the Birnbaum-Saunders law is obtained, namely

BT VN VZ :
y(nss) =o(1 LA - @) 1 (2.32)
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The parameters o and 8 .can be interpreted as shape and scale, respectively.

Now, from the above derivation it follows that: ®

V2, e
[(%) S (2.33)

is distributed normally with mean 0 and variant 1 and hence the probability

density function associated with (2.32) is inferred as:

1 ( 2_ 21
fy(nsa,B) = n_-8
N 2/21 a?gn? (n/ﬁ)]/z—(ﬁ/‘n)]/2
x exp [~ ?%T (%-+ %—— )] . (2.34)
2.8 THE "PROVAN' DISTRIBUTION \ P

The "Provan"fatigue reliability function results from a probabilistic
micromechanics approach to the description of fatigue failure of_poly-
crystalline metals [20]. Based on this approach, a statistical model

_describing the fatigue crack initiation process was first developed to
evaluate the number of cycles, NO’ required to initiate a crack. Subse-
quently, a linear pure birth Markov stochastic process was used as a model
to describe the scatfér in the number of cycles involved in the propagation
stage. In this analysis, the crack front is characterizeh at each cycle i
by the Gaussian pair (ua;va) which are the mean and the variance of the
crack length, respectively. Specifically, this pair is expressed as shown

in [20] by:
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AL P A, STy a
(Ua9va) = (uaoe sUaOAxle (e ) )
(2.35)
0<i §_Np ’ ‘
where,
U, ‘ .
A= ==L is the crack growth intensity
— NOAXI
\ .
u \is the mean of the initiated crack length, and

ay
Ax; is the experimental accuracy of the crack measuring
technique (see Section 4.3.2).

The constant ¢ in the above expression for A is a material
parameter numerically determined from experimental results by means of an
iterative computer program described in [26]. Once this parameter is known,

" one can infer the crack growth characteristics given by (2.35) for any cycle i.

An experimental program detailed in [21] was conducted in order to
check onlthe validity of expression (2.35). This study, involving fatigue
experiments as well as microscopic observations of the fracture surfaces,
shqyed satisfactory agreement as far as the mean, ua,MTS concerned but
clearly indicated that the expressions for the variance in (2.35i1) yielded
an overestimate of the scatter in crack growth. From the results of the same
study, it was also observed that the variance of the crack length distri-
bution tends to a stabilized palue, Vac, near the final fracture zone. This,

suggests the change of (2.35¥ into:

"

Mooy )y 0<i<n . . (2.36)

(hysVy) = (uy e ac < i<,

a a
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The above relation was chosen for the derivation of thé\micro—

mechanic reliability Taw since the latter is rather related to what happens

to the crack near the final fracture than to what occurs at. the initiation

zone. "The progression of the crack length density function represenfed by

(2.36)/15 illustrated in Fig. 2.1. Here, the density function is assumed

to be Gaussian to simplify the mathematical manipulations. However, this

|

is not a 1imitatiYn since any other ﬁistriﬁbtion defined‘by the basic

variables (ua;Va) fould in theory be used.

As shown\in Fig. 2.1, the crack length distribution translates

until it interferes with the critical crack length distribution represented

by the pair (uaf a

;V. ) which is a material characteristic. The datt

distribution is taken as a delta function at uas, again for simpliflicattion

purposes. The amount of (ua;va) over]apping Haf as i increases is

essentially the basis of the "Provan reliability law".

1

written as: N

oo «©

Q.

i

™
Uaf ! Z.}c

where §, = =t

and = Zi

. ] i
= [ pa(i)da = — [ exp[- ——lds; ,
; /T 2 =

f
This amouynt can be

._)k/ 3
P
P

2

(2.37)

T

s : (2.38)

, (2.39)

is the failure coupling coefficient which itself is normally distributed with
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mean O and variance 1 [14]. But, since Z; = <uaf-uai)/¢vac is a known

function of i, and knowing that a; is Gaussian distributed with parameters

given by (2.36), it follows from the fundamental relationship [27]:
i
py =Py (Z:)|—] (2.40)
Np Zi ! ldi .

that the reliability density function, in terms of i, becomes:

Ay exwDiTugg)?
Py (i) = —=2— exp{Ai - 0 57 )}, (2.41)
p VZWVaC “'ac

. ] Ha,®  Mar Haf
Papl3) = S pyp(i)di = 5 ferf ( ) +erf( ) (2.42)
-0 2VaC Zvac

and hence the “Provay reliability Taw" is simply expressed as Rj

H
-
1
-
=
he
—
[}
~—

which is a monotonically decreasing function of j. The detailed derivation

of (2.42) is given in Appendix D.

2.9 SUMMARY

A few brief comments and a Tisting of each of the statistical
models discussed in this chapter are given in Tables 2.1 a) and b). Plots
of the probability dehsity functions associated with these models are shqwn
in Tables 2.2 a) through c). These plots are to i]]ﬁstrate the influence of
the different parameters on the distribution shape. Finally, the cumulative

distribution functions introduced in the previous sections are summarized in
'
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Tables 2.3 a) and b). In the latter tables, erfc stands for the

complementary, error function which is defined as

and I is the incomplete gamma function tabulated in [23].

2.10 THESIS OBJECTIVES

The main objective of the present work is, then, to assess the
validity of the reliability laws presented in this chapter by means of the

experimental program further described in Chapter 3. Special attention is

given to the "Provan Taw" that, {f experimentally substantiated, will enable .

the design engineer to estimate the reliability of large structures or
components based upon stochastic and probabilistic interpretations o%\the
microstructural fatique degradation processes. This, in fact, constitutes
the Tong term aim of the research program of which this thesis is only a

stage.
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CHAPTER 3

1]

R
EXPERIMENTAL INVESTIGATIONS

3.1 MATERIAL

The prime concern for sg]ecting the ma%gﬁia] was obviously to find -
a metal whose fatigue fracture surface exhibits df;£Qﬁct striation profiles.
This important feature has been observed in a previo;s experimental study [21]
carried out on oxygen- free-high-conductivity (OFHC) brand copper. Therefore,

this material was again chosen for the fatigue éxperiments reported in this
chapter.

Specifications and some average properties of OFHC copper prior to
test specimen preparation are presented in Table 3.1. For more information

the reader is referred to [28].

-

3.2 SPECIMEN DESIGN

The design of the specimens was carried out as per the requirements
of the ASTM E466 standard [29]. Based on those requirements and also on the

form of aVai]ab1e metal stock, the specimen dimensions given in Fig. 3.1 were

calculated. A circular configuration was chosen for the specimen cross

sections to minimize the machining time.

3.3 SPECIMEN PREPARATION

The specimen preparation is recognized to be the most crucial part of
a fatigue test program since it strongly influences the resulting fatigue data,
especially when a statistical study is performed. Therefore, the fatigue test
specimens were prepared with great care and utmost precision following the

general procedure outlined in the ASTM E466 standard. In this section the

-26-
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main stages in the specimen preparation are succinctly described in chrono-

logical orher. ;aA)

3.3.1 Machining

3

The specimens were first cut into 13 x 1.6 x 1.6 cm square bars from
a 40.2 x 30.5 x 1.6 cm OFHC copper plate supplied by Amax Inc., New Jersey.
These bars were then made circular (1.3*cm dia.) by turning them on a lathe.
Next, the ends of:the specimens were faced to bring down their 1enéth u;lZ.Zcﬁ. )
Fina;jy, the blending fﬁ]]eﬁ radii and the test section were machined on a
numerically contrdlled (N/C) lathe to the dimensions shown in Fig. 3.1. The

program used for this last machining step is given in Appendix A.

3.3.2 Annealing
Annealing of the specimen was necessary in order. to avoid any ‘
deleterious effect of the residual streéées introduced dufing the mach%ning
process. The specimens were put into a Lindberg Hevi-Duty furnace with some
charcoal to prevent them from oxydizing. They were then progressively heated
to 500°C, held at this-temperat;re for half an hour and f?ee-coo?ed to the

ambient temperature.

3.3.3 Polishing

Since tﬁe gfeat majority of fatigue failures originate at the
surface, too much emphasis cannot he placed on the importaqce of surface
finish. Any incrusted dirt, flaws or geometrical discontinuities must,
therefore,jbe eliminated to minimize the possibi]ity of premature crack

initiation.
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In our case, the specimens were covered by a thin layer of carbon
as a result of the annealing process. This layer as well as the scratches
caused by machining were removed by hand-polishing with successively finer
grade abrasive papers, namely, 200, 400 and 600-.grit standard silicone carbide

papers. Polishing was always performed in the specimén's longitudinal direc-

. . . . 7 ) .
» tion and visual inspections at 20x were conducted on all specimens to ensure

that, at this magnificat?on, no cracks or machining marks approximately

»

perpendicular to the length of the specimens were present.

After polishing, the test section of the spec1mens was measured at
four different Tocations by means of a Nikon V-16 prof11e projector. The

statistics of these measurements are presented in Table 3.2.

° «

3.3.4 Storage

Prior to storage the specimens were cleaned yith acetone using a

. Soft piece of cloth and they were afterwards numbered at one end with metal

punches. Specimens were then stored in airtight transparent plastic con-
tainers with some dessicant (BDH-Drierite-8 mesh) to prevent moisture from

altering their surface before t@e actual fatique tests.

t

3.4 TEST EQUIPMENT

|
i

3.4,1 The MTS Test Facility

The fatigue tésts were performed on a MTS closed-Toop electro
hydrau]ic\tésting system. A block diagram of the MTS system is shown in
Fig. 3.%: The major ﬁnits of the system, namely, the hydraulic power supply,
the 1oédfng and the control units are briefly described in the next sub-

sections. A more comprehensive description may be obtained from [21,30].



3.4.1.1 Hydraulic Power Supply , —

The hydraulic power supply (HPS); illustrated in Fig. 3.3, uses a
37.3 kW (50 HP) motor to drive a fixed-volume (76 2/min) pump that provides

_the hydrualic power to the Toading unit. The output pressuré of the pump

can be either Tow (0.2 MPa) or high and adjustable up to a.continuous pressure
of 20 MPa depending on the selection made on the remote control panel (see

, - !
sections 3.4.1.3). ‘
\ The HPS incorporates a'fluid-to-water heat exchanger to maintain
the working fluid temperature below a maximum safe value that corresponds
to an optimum system performance. If the fluid temperature exceeds a preset

| , .
1imit, a-temperature-sensitive switch will open and turn the HPS off.
2
3.4.1.2 Loading Unit
" The "loading unit, shown in Fig. 3.4, is mainly composed of the Toad .

frame, the hydraulic actuator, the servovalves, the transducers, and the grips.

'Supporting the Toading ‘components is. the Toad frame which is
rated at r]OQ KN in static loading. This structure consists of two vertical
columns that join!a movable crosshead and a fixed pﬁaten. The crosshead may
be raised or lowered by means of hydraulic 1ifts to accomodate specimens of

various lengths. Once in position, the crosshead is hydraulically“-locked to’

prevent slippage or backlash.

The axial load function is applied to test.specimens through a
hydraulic linear actuator. The piston of this actuator has a 15 cm stroke
and a 47.3 cm?® effective area which, times the maximum_avai]ab]e pressure \

(i.e., 20 MpPa), gives a limit static load capacity of #100 kN..

- S ————
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The servovalve is an electro-mechanical device that controls the
actuator movement. It éonverts the control signal from the servocontroller
(see&ﬁéxt sub-section) to a mechanical movement of an internal spool. This
allows the high-pressure fluid to flow into the cylinder and to act on
;ither side of the piston, depending on the polarity of the control signal.

On the present test rig, two servovalves are mounted in parallel, using a

dual manifold, to double the flow rating and to increase the system response.

The 1oad applied on the specimens was monitored by means of a
resistive bridge load cell having a static and a dynamic loading capacity
of respective]& 100 kN and +75 kN. This transducer proyides an output:
voltage directly proportional to applied force. The load cell calibration
was checked using a Morchouse Proving Ring #843 (91 kN capacity). The
deviation from linearity was found to be within acceptable 1imitsﬂfor the

load range used in the experiments (i.e.,'+20 kN).

Mounted on the hydraulic actuator is a linear variable differentia1‘

‘transformer (LVDT) that generates an A-C output voltage in direct proportion

to displacement of the actuator piston.

The gage section strain of the specimens was measured through a .

uniaxial extensometer shown in Fig. 3.5. This contacting type sensor is

"again of the resistive .bridge category and is characterized by good stability

and reliability. The 11néarity of the extensometer output was checked by
means of a micrometer having a 2.54 um accuracy. The absolute percent error

was found to be less than 2% for the four strain ranges of the D-C conditioner

(see next sub-section).



()

<31~

For our fatigue tests, a pair of sé]f-a]igning grips was used to
clamp the specimens in the load train. Both grips are hydraulically
actuated to provide a constant specimen gripping force independent of test
lToad. But, the most interesting particularity of the grip design is its

/

hydraulically locked spherical seat arrangement that allows the grip head

. to compensate for up to 0.01 radians (0.5 degrees) angular specimen mis-

alignment. Bending due to a poorly machined specimen, misaligned test

fixtures or other causes can thus be minimized by the swivelling action of

_the spherical seats.

3.4.1.3 Control Console

[
This unit precisely controls the test program and performs the
readout of test data. The various modules incorporated in the control unit

are presented 1n'{jg. 3.6. The function and important features of these

modules are summarized below.

The master control panel centralizes the electrical power distribution
to all system components, thus eliminating the need to turn each of them on
and off individually. An interlock built-in circuit automatically removes
hydraulic power if any abnormal condition, such as fluid over-temperature or

Tow levels in the HPS reservoir, occurs.

The controller constitutes the "brain module" of the MTS system.

© It performs the closed loop control functions and contributes to the system

programming, failsafe, and readout functions through plug-in sub-modufes.

These are the feedBack selector, the servocontroller, the valve driver, the

[

1imit detector, and the A-C and two D-C transducer conditioners.
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.
While a mechanical input is applied on the specimen by the hydraulic actuator,
the transducer conditioners supply the excitatién voltage to their respective
transducer (A-C for the LVDT and D-C for the load cell and the extensometer)
and conditions the output voltages to be fed into the feedback selector. The
latter selects ;he output of a particular transducer as a feedback signal
that is processed by the servocontroller (the selected input is then called
the controlled variable). Next, the servocontroller compares the feedback
and the command signals and generates a correction or control signal that
operates the servovalves after having been amplified by the valve driver
sub-module. The command signal is a combination of a static signal generated

by the controller and a dynamic programming signal supplied by the function

generator.

Although, for our fatigue tests, only a sine function was used as
part of the command signal, the digital function generator ojtput is not
limited to this particular waveform. It can actually generate other cyclic
functions such as haversine and haversquare, with frequency variation from
.00007 to 990 Hz, or programmable and adjustable ramp functions such as ramp,
dual slope, triangle, saw tooth, and trapezoid. The ramp functions are
adjustabie from 0.001 to 990,000 seconds. All these waveforms start from

zero and may be positive or negative going when started:

?
—
The fatigue test cycles were monitored by means of an electro-

mechanical counter. This module is provided with three registers: the
preset count register that enables the operator to set a desired number of
cycles, the actual count register that reads the number of cycles already

applied to the specimen for a given test run, and.the total count register
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that accumulates counts from test run to test run. When the actual count
reaches the preset~count the test run is automatically stopped (i.e., the
programmef and the HPS are shut off). If the test is interrupted due to

specimen failure, electrical power failure, or any action of the operator,

the 'number of cycles to stop will Be retained in the registers.

Another component that adds to the possibilities as well as to the
safetx of the MTS system is the 1imit detector. This sub-module monitors the
three test variables (i.e., load, strain and stroke) simultaneously and, when
any of these variables exééeds preset Timits, iniéiates one of the following
outputs: |

- An upper or Tower limit indicafor (on the controller front

—bane1) Tights. '

- Same as above plus an interlock opens, stopping the test

and shutting off the HPS.

- The function generator output Tevel changes to a preprogrammed

level.

Throughout the experiments,‘;est data could be visua]ized.on a
microprocessor-based data display. At the onset of each test, the strain
applied on the specjmen (i.e., the controlled variable) was adjusted from
the readout of this}module. Data were either displayed in volts or in pre-
defined engineering units (load in pounds, strain in percent and stroke in

inches) that had been previously stored in the random access memory (RAM) of

the module.

An
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As a complementary piece of equipment, a X-Y plotter was used to
draw the load versus strain curves (hysteresis loops) periodically during

the fatigue experiments.

3.4.2 The Scanning Electron Microscope

The second part of the experimental work was to observe the micro-
morphology of the specimen fracture surfaces in order to determine an experi-
mental value for the crack growth intensity, A, previously discussed 129
Section 2.8. These microscopic observations were-performed by means of a

scanning electron microscope (SEM) whose photograph is shown in Fig. 3.7.

The SEM is one of the most versatile instruments available for the
examinétion and analysis of the microstructural characteristic of solid
objects. The most appreciated features of the SEM are a high Fesolution, a
large depth of focus which results in a three dimensional appearance of the

SEM images, and a capability to observe specimens at very low magnification.

The major SEM components are schematically represented in Fig. 3.8.
These are the electron gun, the magnetic lens system, the electron collector,
the visual and recording cathode ray tubes (CRT's) and the electronic console
controlling them. Refer?ing to this schema, the basic operating principles

of the SEM can be summarily described as follows.

The electron gun providesma beam of electrons with energy adjustable
between 1 and 30 kV. The condenser and objective lens system are used to
demagnify the electron image formed at crossover in the e1ect;on gun into a

small-diameter probe which is then scanned over the specimen. The condenser
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lens determines the beam current that impinges on the sample, whereas the
objective Tens determines the final spot size of the electron beam.
Scanning of the specimen with the probe is performed through the scan coils
that deflect the beam in a rectangular pattern. The scan generator which
produces sweep signals to the scan coils, at the same time; operates the
deflection coils of the CRT's. This synchronization results in a one-to-

one correspondance between the position of the electron beam on the fracture

surface and that of the spot on the cathode ray tubes.

The beam-sample interaction‘produces‘three main signals, namely,
secondary electrons, primary back scatter electrons and X-rays that are
processed through the SEM's electronics. The first two are mostly used when
information about the specimen topography is-needed, whereas the latter

provides useful information about the composition of the specimen surface.

From the control console, the e]ectron’gun accelerating voltage,
the lens current, the magnification and many other observation parameters

can be adjusted.

3.5 TESTING PROCEDURE

3.5.1 Fatigue Experiments

After having gained experience with the operation of the MTS machine
through several preliminary runs, a test protocol was established for the
fatigue experiments. The highlights of this protocol are given below, with

the detailed steps being enumerated in Appendix B.
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Prior to the experiments, a general calibration cheék of all the
electronic modules was performed following the procedures described in the
MTS ownér's reference manuals. Then, the recommended optimum hydraulic
fluid temperéture was reached by warming up the HPS unit with a low frequency
lTow amplitude sine command signal sent to the actuator. Next the extenso-
meter was installed on the specimen whose test section had been previous@y
protected with some adhesive copper tape at the contacting points of the
extensometer's knife edges. This was to prevent the fatigue crack from
occurring at the knife edges due to indentation. The specimen installation
in the lToad train was carried out in the Toad control mode, since\it is l
recognized to be the safest mode for specimen mounting. A 3kN tensile load
was then applied on the specimen for alignment purposes. After releasing
this load, the system was switched to strain control and a programmed 0.30
percent strain at a frequency of 1 Hz was applied on the specimen. Thg test
was stopped when complete fracture occurred. An electronic device (Fig. 3.9)
was built and coupled with the limit detector module in order to switch the
HPS unit off (and so doing, to stop the cycle counter) when separation of
the specimen was detected. The broken specimens were finally put back in

the plastic containers prior to the fractographic studies.

3.5.2 SEM Observations

The procedure- for the SEM observations is only briefly described
below. A detailed description as well as initial settings can be obtained

<

from the user's manual [31]. .

|
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For E;;/ﬁicroscbpic observation, the sample was glued on a standard
12.7 mm diameter aluminum stub by means of a special non-volatile conductive
cement and it was placed in the SEM vacuum chamber. A 1 x 10'5 torr vacuum
was then created in the chamber and a 20 kV accelerating voltage was selected

in the electron source module.

4

Starting at Tow magnification, the best image of the fracture
surface was obtained by manipulating the focus and condenser controls, by
adjusting contrast and brightness on the viewing CRT with the appropriate
coptrol buttons, and by adjusting the vertical position (Z-axis) of the
specimen through the micrometric screw mounted on the vacuum chambér. Once
a region of iﬁterest was found on the specimen surface, contrast and brightness
on the recording CRT were separately adjusted with the aid of the corresponding

controls and a picture was taken using the camera provided with the SEM.



" CHAPTER 4

~ EXPERIMENTAL RESULTS AND THEIR INTERPRETATION

o

4.1 DATA PRESENTATION

1

At the end of the fatigue experiments, specimens that failed due
fo abnormal testing conditions such as excessive bending stress or fatigue
cracks initiating in the vicinity of the clip-on-gage's knife edges, were

eliminated. Thus, the results from 18 tests were retained for further

analysis.

A median ranking [32] of the fatigue data was then performed since
it was decided to fit the previously described cumulative distribution

functions to the experimental data. The reasons for this choice are

explained in the next section.

The test conditions are resumed in Table 4.1 as per the ASTM
E468-76 standard, while the ranked experimental results are presented in

Table 4.2 and plotted in Fig. 4.1.

4.2 STATISTICAL INTERPRETATION OF DATA

When one has to assess the reasonableness of a selected reliability

model, two different approaches are usually considered: probability plotting

and statistical tests.

Probability plotting is a simple visual method that shows how well .

the assumed distribution fits the data. It requires the use of probability

I
paper especially designed for the distribution under examination. Since

v
- i,

L

-38-
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this graph paper was not available for some of the investigated CDF's and
because its construction would have been a very involved (if not impossible)
“task, it was decided to analytically curve fit the CDF's, except the "Provan
law", to the fatique data by estimating their respective parameters through
whichever of the following methods was most appropriate; the matching moment
method, the maximum-1ikelihood method and the least square method. These
a%e briefly described in the Appendix C. In the case of the "Provan law",.
thg function parameters were successively computer optimized to yield the
best fit. The curve fit and plotting program 1istings are presented in the

Appendix F.

The second approach,lname]y, the statistical tests, provides a
probabilistic framework in which to evaluate the adequacy of the model and
supplements the probability plots (CDF's curve fits inlthis case) when the
latter fails.to provide a clear cut decision. St;tistical tests used in

this investigation are further discussed in Section 4.3.1. L

The following sections describe the particular method used to

obtained each of the CDF fits.

4.2.1 Exponential

Recalling Eq. (2.3), we have for the exponential distribution:

\

COF = 1-&V/°

or:
1 - coF = &V/¢

where N represents the number of cycles to failure. Taking the Togarithm
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we obtain:

- 2n (1-CDF) = - (4.1)

which is the recognizable equation of the straight Tine Y = AX, with Y =
&n(1-CDF) and A = -1/6. A preliminary plot of the data points on a semi-log
paper showed a very poor agreement with Equation (4.1). Therefore, a

Tocation parameter was included in the equation to get ‘the best possible fit.

This yielded:

an (1-CDF) = %+% , (4.2)

or:
Y=AK+B

A

with A and B being evaluated by the method of least squares. The exponential

fit is shown in Fig. 4.2 a).

4.2.2 Normal

The -normal CDF given by Eq. (2.5), namely:

N
oy 2
CDF = 1 J exp[- %-(égg) lde

avem

can also be expressed in terms of the complementary error function [26] as:

_1 u-N
CDF = 5 erfc (oﬂf . (4.3)

B

After having evaluated the maximum likelihood unbiased estimators for u and
«
g, namely: ‘



gtpe normal curve fit depicted in Fig. 4.2 b) was computed by means of

Eq. (4.2).

4.2.3 Log Normal

The method used to obtain the log normal fit jllustrated in
Fig. 4.3 a) is essentially the same as the one just described for the normal
fit, except that the Ni's in Eqs. (4.3) and (4.4) were replaced by their

logarithm.

o
e
/

4.2.4 Gamma

Although there exist several methods to estimate the gamma
parameters, for most engineering problems, especially when there are 20 or
less data points, the matching moment method is-simpler to apply and yields

fairly good estimates. In this case, the expressions for the estimators

are:
X=M;ﬁ=)tﬂ', (4.5)
E(N]--N')2 .
— " Ni '
where: N=2 —
‘I -

From these and using Eq. (2.17), the gamma fit shown in Fig. 4.3 b) was

'

plotted.




4.2.5 Weibull (2-parameter) \ T : L

A first plot of the data points on Weibull paper showed that they
A
were)relatively well described by a straight Tine. Therefore, these was no
o ‘ - .
need to include a location parameter, that is, to use the 3-parameter Weibull

CDF given by Eq. (2.22).

-

Hence, taking twice the ]ogaritpm of Eq. (2.20), namely:

N B
CDF = t-exp[- (3) 1 . .

e
«
- - i

we get: - - a

£

. ,
n, &n {T:%BF) =g N-82n8 : (4.6)

which is again the’equation of the straight line, Y = AX + B, with:

1

_ 1 .
Y = 2n in (T:EBF) R
A=B8 .,
X?(lnNs -
. ’ ‘
and: B=-82n¢6.

The parameters B and 6 were evaluated by the least square method to

obtain the 2-parameter Weibull CDF plot shown in Fig. 4.4 a). .

4.2.6 Gumbel (Largest and Smallest Values)

In a similar procedure as for the Weibuil fit, Eqé. (2.23) and

(2.25), namely: , .
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©

CDF = 1-exp[-exp (ﬂég)] , i3

* o « N-a
CDF = explexpl-(5H]}

are conver;gg into the following straight 1ine forms:
) ¥ ~ -
1 v N_¢a ’
Ln in (T:ﬁ)'r:') =373 ’ . (4.7)
n g‘n;_]_-_--ﬂ.-f-g_— (4.8)
cD § ¢

From these, the parameters & and a were computed which then yielded

the p1oﬁ$ of the Gumbel largest value and smallest value fits, illustrated

in Figs. 4.4 b) and 4.5 a), respectively.

4,2.7 éirnbaum-Saﬁnders

Defining: . h -
n n -

- s=izN ;adr=(zly) (4.9)
s } n n N-i

peys

Birnbaum and Saunders find [33] that for small values of o, the relatioﬁ:

B =Sk ,
yields an estimate of B close—to the maximum-1ikelihood estimator. Then,

o can be inferred from:

1/2
(4.10)

&
]
N
+
oo >
i
)
S

e e Rt hinh
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v

The estimators B and o were used in Eq. (2.32) to get the Birnbaum:

Saunders CDF plot presented in Fig. 4.5 b).

4,2.8 "Provan"

Ner

The parameters,lj% R Véc and A of the "Provan" cumulative

distribution function, namely:
AN_

Uaf

H, e =u . )
CDF = % {erf (—92—-——31) +erf (——)} ,
vov_

ac / ac

were optimized by means of an iterative procedure to minimize the RMS error.
Starting values for uaoand Vac were taken from the results of}previous
experiments [21]. The value for Mafs the final mean cgéck length, was set
equal to the specimefi-diameter since the fatigue tests were stopped when -

complete separation of the specimen occurred. The "Provan" CDF plot is

—_— <
3

shown in Fig. 4.6. : 3

4.3 COMMENTS AND COMPARISONS

4.3.1 CDF Curves - ;

" 4.3.1.1 Curve Fitting

As a comparison criterion, a root mean square error was calculated

for each fit by means of the relation:

.,w n
_rl ,11/2
ERROR e = [n z (E;) 175, (4.11)

i ) 1 ‘ j
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where n is the number of data points (i.e., n = 18) and Ei is the error
fbr the data point i and is given by the differences between the observed
(i.e., ranked) probability and the computed (i.e., best fit) probability

» of failure,

The nine investigated laws are listed in Table 4.3 with their
computer-estimated parameters and‘their corresponding error given by
Eq. (4.11). One can see from this table that the exponentialt law yields
a poor fit compared to the other laws. The ngrmal CDF appears to give

the best fit and the log normal, the gamma, the 2-parameter Weibull and

.. the Birnbaum-Saunders laws follow with roughly the same error. Finally,

the Gumbell Targest and smallest values laws and the "Provan law" describe

the data with approximately the same degree of goodness-of-fit, the "Provan
fit being relatively poor at the tails of the distribution. The above

observations can be visualized from the curves shown in Fig. 4.2 through

i

4.6.

4.3.1.2 Statistical Tests

i

In addition to the curve fitting method, two statistical tests

i/

namely, the Kolmogorov-Smirnov test [34] and the Cramer-Von Mises test

[35] were performed on the assumed CDF's to assess their validity as

failure models with respect to the available data.

Before applying the tests, the null hypothesis was defined as

follows:

- Ho: the set of data is a sample from the assumed
distribution
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Furthermore, the level of significance, a, that is, the probability of

rejecting the null hypothesis when the Tatter is true, was chosen to be

.05.
The Komolgorov-Smirnov test statistic was first calculated
with:
3 B :
D= Maxa]] 1.|(F(N1-) - 5(N1)| , (4.12)
where '

F(Ni) = the assumed cumulative distribution function, and

| S(Ni) = the sample cumulative distribution function
(i.e., the rank) at N = Nio

The test statistic given by Eq. (4.12) was then compared with a
critical (maximum allowable) value obtained from [36] and referenced by the

sample size and the chosen level of significance.

After having arranged the sample data in increasing order, the

Cramer-Von Mises test statistic was evaluated through:

n .
2 o 1 2i-1 2 .
nw- = ]21’1+E [ 2n F(N')] P : (4-13)
I -

which is an'approximatibn,’?a; a small sample of size n, of *he exact test

statistic defined by: "
w? = S [F(N) - S(N)I2dF(N) , (4.14)
-cb

i



gy e o

e r—— TR TR

-47-

Again the test statistic was compared to a critical value [36]

corresponding to a .05 level of significance.

~—

The results of the statistical test are presented in Tabge 4.4,
This table shows that the hypothesis of exponential distribution is rejected
by both tests whereas the null hypothesis for all the other distributions is
accepted which, however, does not imply that they are verified. This only
means that because of a limited number of data, one cannot dismiss the
possibility that the assumed underf}ing statistical failure model be,
with the exception of the exponential law, any of the reliability Taws

under investigation.

4.3.2 The Fatigue Transition Intensity (A)

a

In this section are briefly described three different methods
used to determine the major parémeter of the "Provan law", name]y,'the
transition intensity, X. The resulting A's were compared in order to
ascertain the applicability of the "Provan law" as a fatigue reliability

model which was .the prime interest of the current study.

A theoretical int?rpretation of the transition intensity, AtH was
first determined through an iteration procedure detailed in [20 ]. This
procedure essentially utilizes two points on the Whoehler "S-N" curve
pertaining to the polycrystalline metal under investigation. In the present
study of OFHC copper, oné of these points corresponded to a 0.003 strain
amplitude while the other was taken as corresponding to the mean value of

the results of two fatigue tests performed at a strain amplitude of 0.0015.

e
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Secgnd, an experimental wvalue, Aexp’ was evaluated for the
transition intensity using a procedure again detailed in [20 ]J. This
experimental evaluation mainly consists of counting the fatigue striations
and their spacings on a fractograph of the specimen surface and in evalu-
ating the transition intensity from the resulting statistics. These are
the mean crack 1ength,‘uai, for a given cycle and the corresponding crack
growth rate Eggi-which are related to the transition intensity as follows:

di

duai
di =>\Ua.i . ’ (4.15)

Typjcal fractographs used “for striation counting are shown in Figs. 4.7

to 4.9,

Finally, an empirical transition intensity, xemp’ was determined
by curve fitting the "Provan law" to the fatigue\data using the optimization

procedure previously described in Section 4.2.8.

The three resulting values for the transition intensity are given
%n Table 4.5. The discrepancy between the theoretical and exﬁerimenta]
values, ;i;eady noted in [20], is again observed here which tends to indicate
the inadequacy of the Markovian crack growth model in describing the fatigue

mechanism. This is further discussed in the conclusions.

One also finds a disparity of almost an order of magnitude between
the experimental and empirical values for A. However, during the fatigue
experiments it/was generally observed that the crack initiation period

represented nearly 80% (and up to 90% in some cases) of the total 1ife of
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the specimens. Thus, Aem being calculated for the total number of cycles

p
to failure, one should expect, for a similar curve fit of Eq. (2.42), a

transition intensity much closer to the experimental .value if only the —
number of cycles for propagation is considered. This inability of dis-
tinguishing between fatigue cycles involved in initiating a crack from those

involved in its propagation is further discussed in the recommendations for

further research section of this thesis.



CHAPTER 5

CONCLUSIONS

5.1 CONCLUDING: REMARKS

This thesis aimed at experimentally evaluating the adequacy of
certain fatigue reliability Taws with the attention Being focused on the
"Provan 1a@" that has recently been derived based upon a probabilistic
micromechééﬁcs representation of thé fatigue crack growth in polycrystalline

metals. From the analysis of the resulting data the following conclusions

are drawn:

1. A1l the reliability laws tested {% the present investigation, with the
exception of the exponential Taw, appear to give a fair]y.good descrip-
tion of the scatter in the available fatigue data. However, the number
of these data being small, the statistical tests used in the analysis
fail to identify which of the reliability distributions is (or are) the
most approoriate. Furthermore, it was observed that the empirical and
semi-empirical laws fit the data as adequately as (if not better than)
the Birnbaum-Saunders and the "Provan" laws which both ensued from micro-
structural modelling of the fatigue degradation process. This tends to -
support the assertion that in some cases, although there is no theoretical
justification for using a particular reliability model, the latter can be
considered acceptable based only on the empirical approximation it pro-
vides. Nevertheless, we should always keep in mind that the most suitable
reliability law is obtained when the %ai]ure data and the understanding of
the physical processes causing failure, complement-each other.

"y
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2. The "Provan" fatigue reliability law can be used in an empirnical gashion,
that is, without any reference to any microstructural information, pro-
vided one is not particularly concerned about what happens at the tails
of«the distribytion. This is certainly a positive conclusion from the
engineer's point of view but a rather unsatisfactory one from the
researcher's. In fact, a comparison of the different values obtained
in the present investigation for the crack growth transition intensity, 1,
clearly indicates that the Markov linear birth model, the theoretical
basis of the "Provan Taw", underestimates the crack growth rate and,
therefore, does not provide an adequate description of the fatigue process.

&‘b\ﬁ

5.2 PROPOSALS FOR FURTHER RESEARCH

In the light of the results presented in this thesis there is an
obvious need to seriously review the theoretical development leading to the
"Provan law" before it can be confidently applied %o fatigue reliability.
In that sense, Markov stochastic processes other than the Tinear pure birth
process should be investigated, recalling’that the main disadvantage of the
latter is that it does not take into consideration the spatial correlation

of the material points along the crack front.

|
It is also the author's hope that an improved probabilistic micro-

mechanics fatigue‘model will enab1gvone to solve the age old problem as to

“correctly assess the number of cycles involved in the crack initiation

process and in the subsequent propagation process. This was, indeed, the
main reason for the discrepancy between the three values of A evaluated in

the present investigation.
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During 'the last few years we have seen an increasing use of,
probabilistic moﬁe]s for predjfting the performance of components and\large
engineering systems. The "Provan law" ensues from one of these models and
when it becomes operational, from the design point of view, one will be able
to perform a fatigue reliability analysis on. the basis of a Markovian law,
material properties obtained in a Taboratory, and only a few fatigue tests.
Thus, cumbersome and expensive experiments that are currently used and ofteh

yield unsatisfactory results will no longer be required.
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Fig. 3.8 Schematic of the scanning electron microscope.
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K k . Threshold

|

Input from //f\\ ’ ) ’
the Load @ —— ) RN S  Output to

‘ . : —— * the Load
DC Conditioner | \/ v t t | Load Detector

@ Dpiode

(® Ccapacitor (1 uF)

() Resistor (4.9 M) -

As the fatigue crack propagates the load input signal decreases.

The rectified output signal decreases accordingly until it
reaches the threshold of the limit detector. ‘.

3. The HPS unit is immediately shut off.
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Operation:
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Fig. 3.9 Filtering circuit to detect specimen failure.
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Fif. 4.8 Fractograﬁh for OFHC copper.
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initiation zone.)
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Fig. 4.9 Fractograph for OFHC copper.
(Region near the final fracture

zone.)
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Distribution

Comments

'

Exponential

. probability distrib ution of Tife when a constant

conditional failure (or hazard) rate, », is assumed

~ more appropriate for complex systems or assemblies
- special case of Weibull and Gamma distributions

Normal

applicable as a time to failure model if v > 3o
otherwise, density function must be truncated
symmetric distribution without shape parameter

Log Normal

derived from the consideration of analytical process
wherein failure is due to the growth of a fatigue
crack

Gamma

time-to-failure distribution of a system if system
failure occurs as soon as K independent subfailures
have taken place at a constant rate a.

Weibull
(2 parameters)

- widest applicability of all failure distributions

more appropriate to represent the life distribution
of parts or components

Weibull
(3 parameters)

- same comments as for 2-parameter Weibull

also known as the Type IIl asymptotic distribution

for minimum values .
for cases where the Tower bound 1ife is non-zero.

Gumbel
(1argest value) -

Gumbe]

(smallest value)

also known as the Type I asymptotic distribution for
maximum (largest) or for minimum (smallest) values
applicable whenever failure depends on the larges
or smallest value of a variable (e.g., strength or
flaw size) whose distribution is of the exponential
type, such as normal, gamma, or exponential.

no shape parameter

-

.
v

a) Common reliability laws

.

Distribution

Comments

Birnbaum-
Saunders

probabilistic model based on the restrictive
assumption that fatigue crack growth is
independent of crack length.

'Provan’

derived from a probab111st1cnm1cromechan1cs
model of fatigue crack propagation

- more applicable for componeﬁts

no shape parameter

b)

Fatigue crack growth reliability Taws.

[«
™
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Distribution Name Plots Probability Density Function
fix)
- _ 1 -X
Exponential f(x) = 5 exp (%
°° =z
fix) o
o 1 =1 X-py?
f(x) = exp [ (522) ]
Normal o, A S > \75
i -
fix), fx,
o orr _ 1 i (Zn X-H')]
Log-Normal oo o f(x) = ———exp [ oL
> o o'x/en

Table 2.2a)

Exponential,normal and log normal probability density functions.
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Distribution Name

Plot

S

Probability Density Function

. Gamma «

fix) 16

12
10
08

06

02

04 H

AS
]
w

60

Weibull

0

OB

04

0z

fix) 12}

o6}

B=1/2

e
05 o

Gumbel

fix) 04

03

02

01

Smallest element
Type 1 extreme
value distribution

Largest element
Type I extreme
value distribution

' !

I S|
1 2 3 4 5 6

7 8 9 10

X

Largest:

(00 = L1 L oo (59)
Smallest:

f(x) = %—exp [%'(X’a)‘exp (5@2)]

’

-

Table 2.2b) Gamma, Weibull and Gumbel probability density functions.
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Distribution Name . Plots Probability bensity Function
10 T T T T T '
8 -1
. s X a =1 .
Birnbaum-Saunders fix) .L B =1 ] f(x) = Eq. (2.34)
2 -
* 1] 1 'D 210 3]0 410 ﬁS.O 6.0
~r A= 2.3
Provan - f(x) = Eq. (2.41)
RS
>
e
u_..'
Ay
o : %0

20
LIFE X E3 CYCLES

%
¢

Table 2.2c¢) Birnbaum-Saunders and Provan
probability density functions.
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Distribution Parameters * | Cumulative Distribution Function Mean Variance
Exponential 6§>0 F(x) =1 - e X/ s §?
~=< y <o o eppefcl (ton
Nonna} e >0 F(x) = 5 eY‘fC[/f (=) W g
° w<y e - ' ! ' 2 12
Log Normal af‘: 8 F(x) = %.erfc[_l (M)] oH +g'2/2 e2u1+a
/Z g g'2
: x{e” -1)
Gama e Fix) = 12, (n-1)] D .
'/n‘ a
Weibull 8 >0 - x,P 1 2
(2 parameteps) >0 F(x) = T-exp[-(3) ] or(z + 1) 02(r(z + 1)
: ) -G+ D)
Welbull 0, 9450 8 " (6-00)"(r(5: + 1)
eibu 6>0, 8g> - 1. _(X-8p 1
(3 parameters) 3>0 F(x) = 1-exp[ (9-90) ] (6+90)r (3 +1) -[I‘(%+ 1%
(larestevatue) | 3 5% Fix) = expl-exp[-(52)]) a + 057765 1.605 62
Gumbel ~a<g <o X-a "
- (smallest value) §>0 LF(X) = 1-exp[-exp(57)] a - 0.57768
~a) Common reliability laws
Distribution Parameters Cumulative Distribution Function Mean Variance
~ _ 1/2 -1/2 2 . 2
g;:gg::{‘: a>0 F(x) = %-erfc{-1 [(_’é‘,) _(_;_) 1 g(1 + ‘E—) (a8)2(1 + %E‘.)
g>0 a2
- .
Ak »
F(x) '{ef:iii—zzf)
=z leri— = knawn known
'Provan’ » >0 2 Vac complex complex
Vac > 0 Ha expression | expression
+ erf ( } >
Vac
b) Fatigue crack growth reliability laws. »

Table 2.3 “Reliability laws and their basic statistics.
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Designation: Certified Grade OFHC
Copper corresponding to ASTM
Specification B170, Gradel

Specification Grain Size (avg.): 0.025 mm
Heat Treatment: Annealed
/
Yield Strength: 68.8 MPa
Tensile Strength: 200.0 MPa
Average
Mechanical Modulus of Elasticity: 117,169 MPa
Properties* . .
Elongation (50.8mm): 45%
Shear Strength: 137.8 MPa
Hardness: Rockwell F45

14

i

-*-Flat products, 6.35 mm thick.

Table 3.1 Specification and ‘inechanical properties
of OFHC brand copper.
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A B C D ° Overall
Mean (mm) 9.40 9.41 9.41 9.40 9.40 .
[ee]
Standard !
Deviation (mm) 0.026 0.022 0.027 0.026 0.025
—

Table 3.2 Statistics of the specimen test section medsurements.
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FATIGUE SPECIMEN

Material
Dimensions
Stress Concentration Factor

Preparation

Thermal Treatment

Surface Treatment

Remarks d

OFHC Brand Copper
see Fig. 3.1.
unnotched

rough turning on a conventional lathe,
finish turning on N/C lathe

stress relief annealing

hand polishing (average surface
roughness: 0.5 um)

specimens stored in moisture-free
containers before testing

/
FATIGUE TESTS |

Faiigue TestinQ'Machine

Type of Test

Test Frequency *

Strain Amp]{tuae

Strain Ratio (R)

Strain Monitoring Device
F?i1uré Criterion

Number of Specimens Tested

4

=

100 kN MTS closed-Toop electro
hydraulic testing machine

strain-controlled axial

1 Hz

0.003

-1

2.5 cm MTSraxia] extensometer
complete fracpure

30

\

Table 4.1

Summary of the fatigue test conditions.
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Specimen # Life, N Probability of Failure (Rank)
) 3 Cycles %

1 13622 3.8
2 14980 9.2
3 15926 14.6
4 17361 20.1
5 18013 25.5
6 18997 31.0
7. 19120 36.4
8 19128 41.8
9 20271 47.3
10 20536 52.7
1 20616 58.2

12 21729 63.6
13 21740° 69.0
12 22560 74.5
15 23241 © 80.0
16 23312 85.4
17 26150 90.8
18 27725 96.2

Table 4.2 Ranked fatigue data
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18 '1/2
Distribution Paramete?§ Error = (%g z E;)
. 1
. o = 16,060 cycles ‘ .
Exponential 5 = 4419 n A ?.222
= 20,280 cyc]éﬁ
u E)
-Normal 5= 3.653 0.029
' = 9,902
u 3
Log Normal 51 =0.188 0.036
« = 0.00152/cycle 3
Gamma ‘n = 30.82 0.032
Weibull 8 = 21,770 cycles” 0.037
(2 parameters) B =6.269 ’
Gumbe1 a = 18,550 cyctles 0.049 B
(largest value) §= 3,187 " .
. Gumbel . a-= 22,030 cycles
(smallest value) 6 = 3,228 i 0.053
Birnbaum- B = 19,960 cycles '
Saunders a= 0,179 0.036
A = 2.0E-4/cycle : '
1///5:ovan‘ Vac = 1.8F5 12 0.048
: * P

e

2

Table 4.3 Curve-fit root mean square errorg.

[



PP TR  T Ae A 1o

3?1 pEY I - ® s L e
“ /
i -85-
N , _
Distribution Namé ‘ Statistical Test
) . Komolgorov-Smirnov ’ Cramer-Von Mises
- - ~__l{ctritical value: 0.309)* |(Critical Value: 0.461)*
Exponential . 0.775 (rejected) . 0.871 (rejected)
Normal 0.057 (accepted) 0.022 (accepted) .
Log Normal 0.084 w 0,029 "
Gamma A g.073 . " & 0.024 ‘"~
Weibull »0.073 " 0.032 "
(2 parameters) ’
5 Gumbel -+ 0.]09 "ﬂ ' 0.049 "
' (1argest value) .
Gumbe1 0.106 " 0.058 n
(smallest value)
Birnbaum- 0.08& " 0.029 "
| Saunders
I Provan 0.097 " *0.046 wo

* for a sample size of 18 and a level of significance of 0.05

Table 4.4 Results of the statistical tests.
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\\ \
\\ ‘ i
\‘ / ;
. & 1
- ‘ \ € [
' K[ . A o i
. N f
o |
. . % + |
. o l
‘ i
’ |
. . |
Maj;rial 0.F.H.C. Copper |
x |
|
Strain [ 0.003 sl
. Amplitude 1

1

Cycles to
failure

.

exp

X emp

f

. 0.2 x10°3
1.87 x 1073

0.20 x 1

\

]
1
{
|
1

Table 4.5 Theoretical, experimental and
empirical values for the crack
growth transition intensity

parameter of the "Provan Taw".
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APPENDIX A

ONTROLLED MACHINING STEPS.
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N4 92 X=17383 Flav
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Nemq Z-11252
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. APPENDIX B

STEP-BY-STEP TESTING PROCEDURE FOR THE FATIGUE EXPERIMENTS

L
Assuming that the static and dynamic (if necessary) calibrations

and the preliminary adjustments have been performed for all electronic
modules in accordance with the procedures described in the MTS owner's
reference manuals, the test protocol reads as follows:

Step 1{  Turn on the CONSOLE POKER. _

Step 2: Select the 100% STROKE control mode and adjust SET POINT

F

until the DC ERROR indicated on the controller METER is
zero. )

Step 3: Press INTERLOK RESET and RESET switches.

Step 4: Select a 1 Hz sinewave on the function genefator and put it
on REMOTE CONTROL MODE. - J

Step 5:  Supply the power to the HPS unit and open the water circuit |
going through the heat exchanger. -

Step 6: Press the HYDRAULIC PRESSURE switch twice and adﬁust the SET
POINT to 500. c '

Step 7:  Depress the PROGRAM AND RECORD switch and slowly set the SPAN 1
dial to‘l. Let the system warm-up for about 30 mindtes.

Step 8:  Set back the SPAN 1 to zero and press agaigvthe PROGRAM ANQ
RECORD switch. \

" Step 9:  Press once the HYDRAULIC PRESSURE switch before pressing the

HYDRAULIC OFF red button. '

STEP 10: Select the 20% LOAD control mode and null the DC ERROR displayed
on the front panel METER by turning the ZERO potentiometer of the

" _88- -

P AN

o W A e



=t v .
: ]
' »

o * ;
) -89- :
. . ) 5
1
¢ | j
{ Toad d.c. conditioner. This zero can also be set from the readout g
of the_data display module. ) -
i . ; . : .
{ Step 11: Press the RESET switch and then the HYDRAULIC PRESSURE switch |
Lo twice. If necessary, readjust the dual servovalve BALANCE (on _;
the valve driver module) to stabilize actuator piston. }
Step 12: Before féx1ng the extensome?er on the specimen, stick two layers .
of adhesive copper .tape on the specimen test section at the knife }
3 \‘ d 'i:
1 edge contact points. = }
.Step 13: Set the hydraulic pressure to 6.9 MPa (]000 psi) using the main :
_ pressure control valve on the HPS unit (see Fig. 3.4).
Note: At this pressure, the gripping force was found sufficient
! : to avoid specimen slippage while specimen crushing was minimized. i)

Step 14: Clamp the upper part (the one with the punched number at the top) ' o

of the specimen by turning the appropriate‘Va]ve on the grip

LY

* control unit. ‘ \\\\%

Step 15: Connect the extensometér, remove its locking pin and adjust to zero
the output of the strain d.c. condtioner by means of the ZERQ
potentiometér:
Step 16: Clamp the lower part of the specimen and progressively apply a 3kN
J ) tensile load on the specimen for alignment. . -
Step 17: Lock the grips and release the load.
Step 18: Rezero the strain d.c. condtiqner output,‘?f necessary, before
pressing on the HYDRAULIC PRESSURE switch. Then, shut off the

system.




Step 20:

Step 21:
Step 22:

» Step 23:

, Step 24:

Step 25:

-90-

-

3y

Select the 10% STRAIN control mode and press the RESET button
before pressing the HYDRAULIC PRESSURE switch twice. Remove
the load on the specimen, if any, by turﬁing the'ZERO dial of
the strain d.c. conditioner.

Reset both the ACTUAL COUNT and the TOTAL COUNT registers.

Set the PRESET COUNT registex to 3,000,000 and the counter input
selector to OSCILLATORY. i

Press the PROGRAM AND RECORD switch and set gradually SPAN 1 to
a *.30% strain which mus% be read on the data display module.
Set STROKE LIMIT DETECTOR according t6 the PEAK TO PEAK readout
of the data display unit then put in an INTERLOCK mode.

Set the upper Timit to 10 and the lower Timit to 0.2 on the LOAD
LIMIT detector and select the INTERLOCK mode.

Note: The load rectifier circuit (Fig. 3.8) has been previously
connected to this limit detector. '

After specimen failure remove the extensometer (HPS unit being
off). Then per%orm step 11 again for releasing the spepimen.
When manipulating the specimen, great caution must be taken to
pre;ent any damage to the fatigue fracture surfaces.

Remark: The IND mode must be selected on a11b1imit.detectors
before restarting the HPS unit. 7 ;
If another test is to be performed immediate]y,‘return to step 12

and carry on the proéedure. If not, shut off the system and

start from step 1 for the subsequent tést.
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. APPENDIX C

<]

COMPLEMENTARY INFORMATION

o

Tt

C.1 THE HAZARD-RATE-CONCEPT L. .

The concept of hazard rate is often referred to in re]iabi]ity
in order to choose, among the possible distribution functions for a given
problem, the more appropriate failure model, on the basis of physical

considerations.

Let F(t) be the cumulative distribution function of the time-to-

failure random variable T, and let f(t) be its probability density function.

The probability of failure in a given time interval [t;, t,] is then

/ +
expressed as :
t, t2 t:
S f(t)dt = 5 F(t)dt « s Ff(t)dt = F(t,) - F(t;)
tl 00 -0

A

The rate at which failure occurs in the same time interval is called the
failure rate during that interval and is specifically defined as the
probability that a failure per unit time occurs in the interval, given that
a failure has not occurred prior to t,, the beginning of the interval. Thus,

the failure rate is written as:

- F(t :
to-t1) (1-F(ty (.1

which is a function of time. Redefining the time interval as [t, t+At],

Equation (C.1) becomes:

F(t+At) - F(t
At [1-F(t) ] « °

. -91-
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Hence, the hazard rate is defined as the limit of the failure
) rate as the time interval approaches zero. In other words, the hazard
T . - _rate is the instantaneous failure ra?s/and is expressed by:
L F(tat) - F(8) .1 dF(t) )
o)+ i B - e )
s Ot [1 - F(t 1 - F(t) -dt |
% ' (c.2)
- . . t .
] - F t ’

i . A classical hazard function is the so-called bathtub curve shown
> in Fig. C.1. In this curve appears the three major types of failures that
generally assist the choices of h(t). First, there is the burn-in period

that represents the early failure often attributable to manufacturing defects.
Subsequently, h(t) remains approximate}y constant until time t; and corresponds
to the "chance failure" that results from unpredictabie conditions occurring
during the op$rating time of the device. The third type, called the wear-out

failure, is associated with a gradual material deterioration caused by an

,accumulation of shocks, fatigue, and so on.

h(t) -

(“) _ Burn—ig Chance °| Wear-gut

to él . <t
Fig. C.1 The bathtube curve.
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( C.2 THE CENTRAL LIMIT THEOREM o :
g

One of the most important results of mathematical statistics is

T e St A e e 2 v B
7 & Pt

,

the central 1imit theorem that provides the théoreticé] justification for

the important rolefplayed by the normal distribution in statistics. This

1
\ N theorem states that the distribution of the mean of n independent observations
' from any distribution, or even from n different di{?iibu ons, w;;h finite
1

mean and variance approaches a normal distribution as the number of obser-

‘'vations n approaches infinity.

The central limit theorem is also app1f6§b1e for relatively small
N
samples as long as no single element or small group of elements has a

dominant variance and the element distributions do not deviate too much

t - " - -
from a normal distribution.

*
]

C.3‘ PARAMETER ESTIMATING METHODS FOR THE CDF '
. . f

: " €.3.1 Method of Matching Moments

Let x be a random variable with a density function fx (X351, )

eg}...,ek); where ei's are the pafameters to estimate. Next, Tet us

define the tth moment of fx about zero as:

i

=]

u% = f.xtfx(x;el,ez,...,ek)dx (C.3) i

’
-00

From this equation one can see that u% is a function of the k parameter.

Now, if x1, X2, ... X represents a random sample of size n from

~

fy, the first k sample moments are defined as:

O m

T RS - )
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i ..
n - 1
' 1 t-
m£,=i- Z\Xi . 1, 2 ..o5k (C.4)
1.=] ’ A « ‘%
- \ ‘ ’ g-
s ¢4
Hence, the moment est1mators e, i=1, ..., k of the e 's. are obtained by i
" solving the following equat1ons for the. g;'ss T ' : eé
e e ]
W= my t=1,2...,k .. L . 2
, o = 8
- — ‘ - T ) ) B
" (.3.2. Method of Maximum-Likelihood ‘ : L
£ The method of maximum-Tikelihood .involves taking, as the estimate %
for each unknown parameter the value that appears most probab]e on the g
P
i

basis of the given data. Thus, the Tikelihood funct1on ‘of random samp]e/'/ff
X1s Xz25 eees X drawn from a multiparameter density function f (X3 Y1 Yas s
\""Yk) is defined as the joint dens1ty of the n random variables, X; 's, and

is written as:

e a o

. n ! ‘
L = }2 Fg (gmsTaem) . (c.5)
1= ! ' ’ ’ ;

'

Hence, the maximum-1ikelihood est1mators\of the Y; 's, say ?i =

hi(xl, ) ST .,xn),1 = 1,2,...,k, are the values of the Yi 's that maximize log

L and are obtained by solving:

Aogb g 41,2, .4k o ?
Byi y

N e,
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"C.3.3 ~The Method of Least Squares

b The method of least squares is used'tq determine the best fit of
an assumed implicit function to the experimental data. Thils is dohe by m?hif

) mizing the sum of the squares of the deviation in the y direction of the data

‘
!
§
i
!
5
{
N

l
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points from the most probable curve. For the case where one desires to fit a

straight line say y = Ax + B to the data points (xi, yi), the problem

‘resumes to minimize:

n .
E= Z (y; -Ax -B)* , ~ (C.6)
i=] .

[§

—rt
|

by fiﬁding‘the approﬁriate values for A and B. These values are simply

obtained by deriving (C.6) with respect to A and B and by setting the

- - resutt equal to zero, namely:

n ' . :

Lo - ’ ] .
R ) =2 Z (y; - Ax - Bl ¥ ~ (C.7)
h ] : i N i=] "
n A |
8.2 3 (y, -4X, - B) (c.8) |
aB i i . ' J X * ;
i=] d ‘ |

Solving the above equations for A and B, one finally obtains:

_ nZ{xy) - (Zx)(Z ; ) ‘ @
A= S3TXIT = (3x : (C.9) i
oo : l : P
o C _Zy Z(x%) -ZTx Z(xy) ' '
() S T R L ’ (c.10)
) ! n - N . n )
where Zx = Z-xj, Zy = Z Ys and Zxy =.3 Xiyi. ) cute. B
1 1 1 T

y S e
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. | APPENDIXD \ .

DERIVATION OF THE “PROVAN" CDF

A »

By definition, the cumulative ‘distribution function is-expressed
| . N

as - A ’ I .- ' .
, X - . .
CDF(x) = f p.d.f.(a)do :
-0 B . C _

~~\
Hence, from Eq. (2/.41) we have:

R SR 5 U

o
Q

[SURO .
ey P, . e
[ b S o e b RN MR S et

Ty v B

J
% o . . :
Pyp(3) = pyp(i)di { _ ‘ L
. , g (0.7)
. d ‘ . Y2
u (v, exp[Ail-uac) '
- o [ exp{ni - —20 A f i, v
™ac -~ ac R i
Now, the change of variable: ’ ’ ;
, o . 3
2. (ny exPIAT]-ug ) (0.2)
ZVaC ’ :
- - . - ) -
. yields: ‘}Wac Z= “aoef‘p[“]'“af , and deriving we get:
- Vo - !
—— 4z = exp[Aildi | ‘ (D.3)
Uao
E
. -96~
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LooKing %t the 1imits of integration, we have from (D.2) that:

. ) ' . . . _uaf ‘2
when i = -w 22 = (wa—c)u s _
- | ~Ua o
2 —t , (D.4)
: e

and when i = j -

—  va,exp[A;]-uac
z, =

! ¢ ‘mac

-~

(D.5)

_Substituting equations (D.3), (D.4) and (D.5) into (D.1), we obtain:

J
()T A e
Z

-

But, knowing that o

. ’ 2
—_ --2-fe'7“dz

i , . ) ,
v 0 - . .
is by definition the error function, *(D.6) becomes:

PNP(j) = ]f [erf (zJ.) - erf (zros)] . _ ~, (D.7)

O - o
I

.
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C} Lo, " - S Coor
' - Finally, substituting back equation (D.5) for Z we get:

.

>
i
H
[
-
N

—
o
-
(=2

—_

' S - Ha EXPD-]-uaf uaf .
. P .\ = = {erf (.—Q—_L_?.) + erf (_..._...... Yo,
NP(j) 2 o N )

' ac

k1 e S AL B et S o B e et e e 4 Y hatieg

.
.
which recovers equation (2.42). . :
.
&
| T t
; .
» 15.
hy
; EA
. _ A
. ’ g
.
: ]
a A f
_ { 7 L -
) . ’ - )
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APPENDIX E

i
&

) : CURVE FITTING PROGRAMS

E.1 OPTIMIZING PROGRAM FOR THE "PROVAN LAW"

A et i 8 e mg il ;a.\uvwwa’._’

tt*ttt*tt*tt*#ttt*t*&#*tt*ctt*##ttttttt*tttttttt*t*#ttttt*tttt*#**
PROV AN 'S CDF *
ttttttttt:ttt*t*ttttt*t*:ttttt*tttttttt:tttttattt:*t#ttttttw#tt*t#
REAL %4 L AMBD As MUAF +MUAD
OIMENSION PP{18)0)eX{18).ERR{18).2(18)
DATA X/ 136224+1 498040159264 317361 +¢180134,18997., -

¥1912042191280420271 4920536492001 3292172949217404 v
$225600 9232410 9233124261504 92772547¢P/ 403844092, . .

+ LAMBDA=LAMBDA+. LE~4

B0 1864020102550 03102364:2081 80 4732052720582
$20036 2069067459080 ¢854+ ¢908, 962/
WRETEL6:100) ‘
MUAF=9 ,S3E~3 .
MUAC=] «55E—%
VAC=24 LE~S
LAMBDA=1,7E~4 A ‘
DO 25 K=1 +6

P

DO 20 [(I=1.5
VAC=VYAC=s 1E-S

00 1S I=lL,18
ZL1)=(MUAF—-MJ ADSEXP (L AMBDAXXI 113 )/SQRTLI2%VAC)

15 ERR((O-ABS!(I.+ERF&—ZII)ISQRT(Z-DJ)/ZJ

E=RMS(ERR)
SRITE(6+110) LAMBDAWVACLE
WRITE{(6,105) ERR

20 CONT INVE

25 CONTINUE

100 FORMAT(//7/% PROVAN CDF?//7)
105 FORMAT (IXsE1546/)

, 410 FORMAT{1X»3E15.67/)

O

sSI1I0P

ENO -
FUNCTIGON RMSIERR) - )

D IMENSION ERR(18)

SUM=0.
00 S I=1,18

5 SUMSSUM+ERRI(I ) %2

RNSSSQRT(SUMIIBJ -
RETURN
END

[+
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E.2 ESTIMATING PROGRAM FOR THE OTHER INVESTIGATED LAWS !

5
f

LIRS SRR

¢ - - N \
o c ; o R
(o *t;##**tt**t*t*******t*#*;tt*******#**#**#******************#*#***
C L : *
C o L ' BEST COF THROUGH A SET OF LIFE DATA *
C ’ L B o e ok ak ok ke dkoleeok koo dkok ok sk e e sk ok ok ko ok kakok ko *
C * .
C FSREEEE R ERR R R RK KRk ik & i g ok ok ek ok koRok ok ok ok ok ook ok o dkokok ok ok kok Kok ok ok c o
C

IMPLICIT REALXB{A-H M~2Z)
REAL %4 ZET.T.¥w,PROB i

- DIMENSION N(18),P(18):ERRI(18),Y(18B),X ({18

DATA N/13622.00,14980.D23,15926.D0,17361 .00018013-00918997 DO,
¥19120.,00,19128.D0,20271.D0, 20536.D0,20613.30,21729.D00,21740.D0,
*22560.00-23241o00o23312000026l50 D0, 27725 D3/ 4P/ . 038D0, »092D0,
- *-l4600.o20100.a255D0..3IDOo.36400;-418001-47300--527000.582000

- ‘HeOIBD0 4 669DV, o 745D0,4 8D 0y 854D09e 908D 0, «962D0/

¢

|

4

ahitoe w17 ey wdd

i

*

2-PARAMETER WEIBULL

570 S I=1,18 .
, X(I)= DLOG(N(I)) - . .
) " S5 Y{(I)=DLOG(DLOG(1/ (1 .D0=P(I1))) :
- CALL SQFIT(X,Y,SLOPE,C)
NA=DEXP(-C/SLOPE)
DO 10 I=1,18
- 10 ZRR{1)=0ABS(1.D0-DEXP (= (NI )/NAI*$SLOPEI~P( 1)} —
E=RMS (ERR) > |
~ WRITE(6,100) - , .
WRITE( 6+4105) SLOPE,NAE ‘ .
WRITE(6,106 )ERR - . - ‘

NORMAL

Nl

[2TaY ]

BN

e

ann

- MEAN=0,.CO . . ) ;
| DO 11 [=1,.,18 . ’ ne
; 11 MEANS(MEAN®(I-1)+N{ D))/ 1
: SUMS=0 .00

DO 15 I=1,18
| ' - 15 SUMS=SUMS +{N{1)-MEAN)#%2

SIG=DSQRT{SUMS5/17)

. DO 20 I=1.,18
20 ERR(I)= S(DERFC{ (MEAN-N([) }/SIG/DSQRT(2.D0 1)/ 2-P(I))

EANS IGE
R

LOG-NORMAL ;

MO0

MEANLN=0.D0
DO 29 I=1,18

29 MEANUN=(MEANLN& { 1-1)+DLOG(NCI 1)/ 1 '
SUM6=0+D0 :
‘DO 30 I=1,18 ‘

30 SUM6=SUM6+(DLOG {N(L )) ~MEAN_ N) ®%2
S IGLN=DSQRT{SUM6/17)
DO 35 I=1,18

35 ERR{1)=DABS(DERFC({MEANLN-DLOGIN(11))/SEGLN/DSORT (24D0) )/2=P (1))
E=RNS { ERR)
WRITE(6.115)

WRITE(64105) MEANLN +SIGLN 3
() WRITE (6,106 )ERR .

e

s R P v e -
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TR o LT ot

/
EXPONENTI AL
DO 49 I=1,18
40 Y([)‘DLOG(I—P(I)’
CALL SQFIT(NsY»SLOPE,C)

a5 ERR(I)= 1 JDO-DEXP (SLOPZ #N ([)+C)-P(I)) ' .. \

an
i
e

-
e

’
WRITEL(6,
WRITE{( 6,

GAMMA
Y

SLOPE,CHE
ERR

'
Co A s anf e R

onNn

ELAM=MEAN/SIG *%2
1 ZETA=ELAMXMEAN ‘ o . H
Y i DO SO0 I=1,18 . ‘ ‘ :
ZET=ZETA \ g .
T=ELAMXN( L) ;
CAL% rocauxr.zer.pnoa.tsn» ’ ) \ \
W=pP{I : ;
50 ERR(I)=ABS({PROB-W)
E=RMS{ERR) -
ARITE(64,125) . ,
: WRITE{6.105) ELAMZETALE -
. WRITEL{ 6,106) ERR .

GUMBEL { SMALLEST)

© DO 55 I=1,18 .
55 Y{I)=DLOG{DLOG{1/{1+DO=P{[)))) : : {

CALL SQFIT{(Ns Yy SLOPE.C)

DO 60 [=1,18 . ;
60 ERR{I)=DABS(P(I)—1.D3+DEXP(~DEXPINLI)ISLOPE+C))) / :

E=RMS (ERR) . .

WRITE(6,130) '

WRITE{ 6,105)SLOPE ,CE ~

WRITE(6,106)ERR .

GUMBEL(LARGEST)

DO 65 I=1,18

© 65 Y{I1)=DLOG{DLOG(1/P([))) : g
CALL SQFIT(N,Y,SLOPE,C) ,
20 70 I=1,18 .

70 ERR{1)=DABS(P(1)=-DEXP{-DEXP (SLOPESN(I)I+CI))_ -

E=RMS ( ERR)
WRITEL(6,125) , ;
WRITE(6,105)SLOPECE
WRITE (6,106 )ERR . , N

B IRNBAUM-SAUNDERS

2 1alsl

e b b

(R SPFEEN

[a1als]

[

noo
T Wamabrkckdes SIS RO LI ot o

S=0.D0 - _
' RR=0400 .
DO 75 I=1,18 - ’
S={Skx([~1)+N
75 RR=(RR%(I[~1)
R=1/RR
BETA=DSQRT(S*R)
ALPHA=DSORT(S/BETA+BETA/R~2 .D0)
DO 80 I=1,18 _
W=DSQRTIN(I )/ BETA) o,
Z=1 /Z7ALPHAX{ W—-1/W)
80 ERR(I)=DABS(DERFC(~- Z/DSQRT(?.DO)}IZ-P(I!) \
E=RMS { ERR) - . ;
WRITE{6+149) ' }
( WRITE (6,1 05)ALPHABETAVE
WRITE(6,106 1ERR

SERVA ‘ )
+1/NCDY I/ T ‘ ,

S ehaes
!

b sebed YIE e omr

|
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FORMA * 2-PARAMETER WEIBULL'///)

3020s1277) . 1
D20412/) : 3
* NORMAL'//7) - L
/% LOG-NORMAL?®*///) . ‘ :

/7% SXPONENTIAL///) * .
SORMAY (///* GAMMA'///) s .
FORMAT{//7/' GUMBEL( SMALLEST)'///) '
FORMAT(///* GUMBEL (LARGEST)*///) . ;
FORMAT (/77 BIRNBAUM-SAUNDERS"///) o3
sTOP ‘ :
END _ . -

FUNCTICON RMS{ERR)
IMPLICIT REAL*8(A-H.0-2)
DIMENSICN ERR(18) %
SUM=0,D0
. DO,S 1I=1,18 ’ ) -
S SUM=SUM4ERR{I 1%%2
RMS=DSORT{(SUM/1 8) ) .
RETURN / N
END .

SUBRCUT INE SQFIT{ X, YsSLOPE,C)
IMPLICIT REAL *B{A~H,0-2) iy
DIMENSION X(18),Y{18) .
SUM1=0.D0
SUM2=0.D90 . ,
SUM3=0.D0
SUMA=0 .00
DO S I[=1,18
SUMI=SUMIL #Y
SUM2=SUM2 +X
SUM3I=SUN3+Y

S SUMA=SUM4+X
SLOPE={18.D0% SUM3-5UM2%*SUM]1 )/ {1
C={SUM 1 *SUM&-SUM2%SUM3) /{ 18.D 0*

-t RETURN -

END -

Ne o N\
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APPENDIX F ,

PLOTTING PROGRAM

1

EXTERNAL EXPO,NORMsLOGN sGAMsGUMS, GUML ,PROV,WE IB,8S

DIMENSION Y(20)+sX(20)XX(20)s¥Y(20)

DATA X/136224014980 0159262917361 «918013:.,18997«+1G1200,

%1 91288 92027 16 9205364920616+ 9217299217400 1225602232414

2233120926150 927725090e90e/3Y/74038100929¢14610201442559031

*.364--4150.473-0527vl582.¢5369b69g-745..8..854-.908..962.

%0 e00s/
o i —

! CALL PLOTCN

CALL PLOT(1.042¢,~3)

CALL AXS(0.0, 0-0 16HLIFE X E3 CYCLES, - 169s=603060310e95¢»

¥=130001e5)

CALL AXS(0e0s0es3HCDF 43 +=5¢990000e10e251+0e+1.0)

CALL AXS(6e4+0 45 11 HREL IABILITY s—11,~ 5-19000!00'.20100.01.)

CALL PLCT{O4s0¢5e1»3)

_CALL PLOT(6es5e+2)

JO S [=1.,18

XX{II=({X{1)=1 E4)/5000s%1.5~4045
y i YY(I)=Y(1)%5=-,045
3 ’ CALL SYMBCL(XX{I)sYY{(IreeD9sl eDes-1)
1 S CTONTINUE
- CALL FNPLOTI(1 «82:6esl1:EXPO
CALL SYMBOL( D6 1SeSeelSy 1LHIXPONENTIAL »0s11)
CALL SYMBOL( 2594629 012y 21HIE. TA= 44,41SE3 CYCLES,0es21)
CALL SYMBOL(eS+14059e12921 HALPHA= 1.606E4 CYCLESsDer21)
CALL FNPLOT{0Oes64+s 1l +NORM) .
CALL SYMBOL (D e35s5s «15, 6HNIRMAL ,0.96)
CALL SYNMBCL( 2594¢55¢12,18HMU= 2 ,02B8E4 CYCLES:+0e+18)
CALL SYMBOL(eS5e4e29¢12321HSIGMA= 3,653E3 CYCLESs0e»21)
CALL FNFLCT (O e36s 391 +LOGN?
CALL SYMBOL(OD. 185451159 10HL OG=NORMAL » D¢ »1 O)
CALL SYMBOL(eSs4+5s 12, 10HAU?'= 9,902, 0.,10)
CALL SYMBOL{+5¢4429012,16HSIGMA'= ] ,839E~-1,+04e4¢16)
CALL FNPLOT(Oe9v6e9r1 »GAM)
CALL SYMBOL(D e95e5s ¢15ySHGAMMA. Qe 5
CALL SYMBOL{ e5+4e51e12:,22HALPHA= 1,520E-3/CYCLES ) 0+022)
CALL SYMBOL( 59462212, 12HETA= 2« 082E1 .0, +12)
CALL FNPLOT(D+9s6es1 4GUMS) .
CALL SYMBOL(Ds2+95s5ve1S5316HGUMBEL({ SMALLEST)»0es16)
CALL SYMBOL( e504e20 012, 21HDE_TA= 3.228E3 CYCLES:0++21)
CALL SYMBOL( eS5+4eS5S3¢12,21 HALPHA= 2,203E4 CYCLES,0.»21)
CALL FNPLOT{Oesr6asl,GUML) .
CALL SYMBOL(0es5e5s ¢15, 1ISHGUMBEL ( LARGEST) »0 4, 159
CALL SYMBOL{ eS5s4e¢2+»s12:21 HDELTA= 34,187E3 CYCLES+0D+4+21)
CALL SYMBOL(eS593¢59912:s21HALPHA= 1.885E4 CYCLES+0e:21)
CALL FNFLOT(0s+644+1 ,PROV)
CALL SYMBOL{( D% 9565515y 56HPROVAND «46)
CALL SYMBOL(eS50405e 12, 21H. AMBDA= 2,0E~4/CYCLESs0s121)
CALL SYMBOL({ 2S5 918e29012, 13HVAC= 18BE~5 M,0+s13)

pa—

OODANA[ONADDADOANNNOANOAND

C CALL FNPLOT{Oss6aet + WEIB) !

C CALL SYMBOL{O0esS5e5s ¢15, 7THWE IBWLL » 0e»7)

C CALL SYMBOL{+534e59s12,21HTHETA= 2,177E4 CYCLES,0ey21)

(o CALL SYMBOL(+504¢212¢12,11H3ETA= 6¢2695044s11)

- C CALL FNPLOT(O+e6ss1 ¢BS)

C CALL SYMBOL{(0:13525+15:,17THBIRNBAUM~SAUNDERS y0e+17)

C CALL SYMBOL(+:504¢55 012, 1SHALIHA= 1.794E-1,0.» 15)

C CALL SYMBOL{ 2509235+ 12,20HBETA= 1 +996E4 CYCLES+De020)
CALL ENDPLT P :
5T0P
E ND

s -103- /
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FUNCT {ON’ EXPO (X))

SCA=X*S5000./1.5+1.E4
A=—-,226314E-3 :
=, 363521E1 , ,
EXPO=( 1-EXP (AXSCA+B8))*5 _ ‘
RETURN A . .
E ND .

FUNCTICN NORM(X) ‘ .
REAL *4 MEAN ‘.

SCA=X%5000e/1.5+1 £E4

MEAN=,202791E5 .

SIG=.3652€1E4 ;
NORM—ERFC((MEAN—SCA'/S[G/SQRT(Z.)’/2*5 . . i
RETURN "}
. END <

FUNCTION LOGN{X)
. REAL *®4 MEANLN g .

SCA=X%50004/15+]1 sE%
MEANLN= 4990165E1
S IGLN=.183944
LDGN-ERFC((MEANLN—ALDG(SCA)I/SlGLN/SGRT(Z-)’/Z*S
) SEEURN
N -

FUNCTION GAM( X) ’ ‘

SCAz=X®¥S000./1.5+1 4E4
ETA= ,308242E2
ALPHA=+151999E~2

E T=ALPHA*SCA

LS

CALL MOGAM(T,ETA,PROB,IER)
G AM=PROB*S
~ RETURN -

(g

END
,FUNCTION welIB {X) *

. SCA=X%¥5000e/1 sS5+1 «E4
/ NA=«217E61ES
- SLOPE= .62693E 1] - N _
'EIB-‘lo'EXP(‘(SCA/NA’**SLOPE,’*5
RETURN
END

C ) .
’ c FUNCTION GUMSI(X)

/;gzx X$5000./1.5+1 .E4
. A=<309783E-3 , :

=/ B=-4682415E1 '
\\ggu§=(1.-EXP(-EXP(A#SCA+B)))*5 . )
TURN -
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FUNCTICN GUML (X}

SCA'—‘X#'.SODO./I o5+] JES

A== ¢213783E-3
B=4582075E1

GUML=EXP{ ~EXP{A*SCA+B)) %5
RETURN

END

FUNCTION PROV{X) he
REAL *4 MUAF, MUAO,L AMBD A

SCA=X*¥5000./1.5+1.E4

L AMBDA=,20E-3

VAC=, 18E-4

MUAF=.GS3E-2

MUAQ=,155€E-3

Z={ MUAF=-MUAO¥EXP{LAMBDASSCA ) } /SQRT (2% VAL)
PROV=({1++ERF{-2Z/SQRT( 2 )} )/ 2%S

RETURN

END

FUNCTION BS(X)

SCA=X%50004/1.5t1.E4
ALPHA= 4179406
BETA=.199E79ES

W=SQRT (SCA/BETA)
Z2=1/7ALPHA*(W-1/W)
BS=ERFC({—-Z/SORT(2.) ) /2%5
RETUERN

END
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