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Abstract 

The field of spinal cord MRI is lacking a common template, as existing for the brain, 

which would allow extraction of multi-parametric data (diffusion-weighted, 

magnetization transfer, etc.) without user bias, thereby facilitating group analysis and 

multi-center studies. This paper describes a framework to produce an unbiased average 

anatomical template of the human spinal cord. The template was created by co-registering 

T2-weighted images (N=16 healthy volunteers) using a series of pre-processing steps 

followed by non-linear registration. A white and gray matter probabilistic template was 

then merged to the average anatomical template, yielding the MNI-Poly-AMU template, 

which currently covers vertebral levels C1 to T6. New subjects can be registered to the 

template using a dedicated image processing pipeline. Validation was conducted on 16 

additional subjects by comparing an automatic template-based segmentation and manual 

segmentation, yielding a median Dice coefficient of 0.89. The registration pipeline is 

rapid (~15 min), automatic after one C2/C3 landmark manual identification, and robust, 

thereby reducing subjective variability and bias associated with manual segmentation. 

The template can notably be used for measurements of spinal cord cross-sectional area, 

voxel-based morphometry, identification of anatomical features (e.g., vertebral levels, 

white and gray matter location) and unbiased extraction of multi-parametric data. 

 

Keywords:  spinal cord | mri | template | group analysis | registration 
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1. Introduction 

 Magnetic resonance imaging (MRI) of the spinal cord has tremendous potential for 

improving diagnosis/prognosis in traumatic, inflammatory and other causes of diseases, 

as well as for evaluating the effect of new drugs. In particular, multi-parametric MRI, 

combining several quantitative techniques (e.g., diffusion-weighted imaging, 

magnetization transfer, functional MRI) provides a variety of biomarkers sensitive to 

white matter damage and neuronal function in the spinal cord (Wheeler-Kingshott et al., 

2014). However, spinal cord MRI faces two major challenges: data acquisition and data 

processing. Although recent developments in phased-array coils (Cohen-Adad et al., 

2011b), and pulse sequences (Dowell et al., 2009; Finsterbusch et al., 2012) help 

overcome the numerous artifacts associated with spinal cord imaging, only modest efforts 

were directed towards the development of publicly-available processing tools dedicated 

to spinal cord MRI data.  

In particular, the lack of a common template makes it difficult to process multi-

parametric data within a standard framework, because extraction of metrics requires the 

user to manually draw binary regions of interests (ROIs) based on the perception of the 

underlying anatomy (e.g., location of the spinal cord gray matter or corticospinal tract). 

These approaches are subject to inter- and intra-rater variability and bias, and cannot 

easily be ported to large-scale studies. A template is an image of a given structure 

averaged across multiple individuals, and used as a frame of reference for image 

registration and atlas-based MR signal quantification. For example, the introduction of 

common MRI brain templates (e.g., the MNI template) (Collins et al., 1994) 

revolutionized neuroimaging by enabling group analysis and allowing researchers to 

share, compare and validate their results. With brain templates, extraction of metrics 

within specific areas (e.g., motor cortex) can be computed, providing a robust and 

objective analytical framework. Currently no such template exists for spinal cord, de 

facto preventing researchers and clinicians to systematically and robustly study the 

association between structure and function in the healthy spinal cord, or microstructural 

damages in the spinal cord and clinical symptoms for example. 

Some groups have tackled this issue by creating templates specific to their research 

experiments. Stroman et al. created a template from 1×1×2 mm
3
 T2-weighted (T2w) fast 

spin echo data of 8 subjects for application in functional MRI (Stroman et al., 2008). 

They manually delineated the anterior edge of the spinal cord from the caudal edge of the 



4/37 

pons to the C7/T1 intervertebral disc to straighten the cord, then performed a 

stretching/compression of each individual cord to register them together. They later used 

an absolute distance from the ponto-medullary junction (Stroman et al., 2012), in order to 

obtain a more accurate representation of the spinal level—as opposed to the vertebral 

level—as supported by anatomical studies (Lang, 1993). One limitation of this approach 

is the need to manually identify the edge along the cord. Later, Valsasina et al. proposed a 

normalization procedure, which consists in segmenting the cord using a semi-automated 

method (Horsfield et al., 2010) and then registering the cords using manually-identified 

landmarks at C1 and C7 vertebral levels (Valsasina et al., 2012). The authors applied this 

method for voxel-based morphometry analysis and demonstrated its sensitivity for 

detecting significant changes of cord tissue with aging. A limitation inherent to the two 

previously-cited methods is the absence of a single deformation (warping field) that 

registers the anatomical data of a given subject to the template, and that is bijective (i.e., 

enables forward and backward transformation). Such a warping field would be useful for 

registering multi-parametric data to a common space for subsequence quantification of 

image-derived metrics. This approach is commonly used by standard brain processing 

pipelines (e.g., SPM, FSL, AFNI, MincTools). Another study introduced a method for 

creating a spinal cord template from axial T2w images (Tozer et al., 2012). In their 

framework, the authors: (i) cropped the data around the cord, (ii) performed an affine 

intra-subject registration with FLIRT (Jenkinson et al., 2002), (iii) non-linearly registered 

the data across subjects with FNIRT (part of FSL) and (iv) averaged all registered data. 

One limitation of this approach is that a subject has to be arbitrarily selected as the 

reference for non-linear registration, which introduces bias towards a specific anatomy in 

the final template. In another study by Eippert et al., the authors created a template by 

using the normalization algorithms from SPM (including both affine and non-linear 

terms) to register T1w images from 15 healthy subjects (Eippert et al., 2009). Again here, 

one subject was selected as the reference subject. Another recent development proposed a 

framework for creating a generic template of the spinal cord (Chen et al., 2013). This 

approach however is based on the generation of a study-specific template (which notably 

depends on a particular image contrast)—yet, it would beneficial to develop a universal 

template for comparing studies across groups. An additional limitation shared by all 

previous attempts was that the generated templates were not readily accessible to the 

community. 
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In light of the previous developments, there is a need for a processing pipeline to 

create a template of the spinal cord and to register new subjects to it, with the following 

conditions: (i) to generate the template, no subject should be arbitrarily selected as the 

reference subject, (ii) the registration procedure should be based on a bijective 

deformation that is estimated using a robust and automatic procedure suitable for large-

scale studies, (iii) the template creation and registration pipeline should be based on 

platform-independent and freely available software and scripting environment and (iv) 

the template itself should be freely available.  

In addition to the generation of a common template, it would be useful to be able to 

obtain morphological measures of the spinal cord gray matter. For example, measuring 

the gray matter cross-sectional area (CSA) at a given spinal level would improve the 

specificity over the whole spinal cord CSA measure in motor-neuron diseases such as 

amyotrophic lateral sclerosis. Identifying the cord gray matter would also be useful for 

interpreting functional MRI results. Although segmenting the spinal cord gray matter has 

always been a challenge due to its small size and lack of contrast in most sequences, some 

groups have recently showed the feasibility to segment the gray matter using manual 

(Sigmund et al., 2012; Taso et al., 2014b; Yiannakas et al., 2012) and automatic (Asman 

et al., 2014) methods. Hence, an additional useful feature for the generation of a common 

spinal cord template would be the integration of a probabilistic gray matter (and white 

matter) atlas. This atlas could be used to initialize label fusion segmentation methods 

(Asman et al., 2014) or to study gray matter morphology (Fradet et al., 2014). A white 

and gray matter probabilistic atlas of the spinal cord was recently developed (Taso et al., 

2014b), and is an ideal candidate for integration into a new common spinal cord template. 

The aims of this study were to (i) create an unbiased symmetric T2w template of the 

human spinal cord, (ii) merge the created template with an existing probabilistic gray and 

white matter atlas (Taso et al., 2014b) and (iii) propose a semi-automatic pipeline to 

register new subjects to the template. The methods section details the pre-processing and 

registration steps to generate the T2w template, integration with the probabilistic atlas and 

the pipeline is validated against manual segmentations. The results section presents the 

new template and atlas, the validation of registration to the template, measures of CSA 

along the spinal cord and shows an example of multi-modal registration. The discussion 

addresses limitations, applications and future works.   
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2. Material and Methods 

2.1. MRI acquisition 

This section describes the acquisition protocol used for collecting data used for (i) 

creating the T2-weighted template, (ii) creating the gray/white matter probabilistic 

template and (iii) validating the registration pipeline. Note that these three acquisition 

protocols used different groups of subjects and different scanners.  

2.1.1. Data for T2 template creation 

To create the spinal cord T2 template, 16 subjects were recruited (mean age: 26 ± 3 

y.o., 7 men and 9 women). Data were acquired on a 3T MRI system (TIM Trio, Siemens 

Healthcare, Erlangen, Germany) at the Pitié-Salpêtrière Hospital (Paris, France). The 

local ethics committee approved all experimental procedures and written informed 

consent was obtained from each participant. The body coil was used for excitation and 

signal reception was achieved using a combination of 12-channel head-coil, 4-channel 

neck coil and a 24-channel spine matrix array.  

The imaging protocol included a T2-weighted 3D fast spin echo (FSE) with slab 

selective excitation sequence with the following parameters: sagittal orientation, one slab 

of 52 slices, field of view (FOV) = 280 mm, TR = 1500 ms, TE = 120 ms, voxel size = 

0.9×0.9×0.9 mm
3
, flip angle = 140°, parallel acquisition with R=3 (GRAPPA 

reconstruction), phase encoding direction head-foot, phase oversampling 80%, slice 

oversampling 7.7%, bandwidth = 744 Hz/pixel, turbo factor = 69, acquisition time 6 min. 

2.1.2. Data for gray/white matter probabilistic template 

To create the gray/white matter probabilistic template, 15 other subjects were used 

(mean age: 27 ± 5 y.o., 9 men and 6 women) as part of an already-published study (Taso 

et al., 2014b). Data were acquired on a 3T MRI system (Verio, Siemens Healthcare, 

Erlangen, Germany) at the CEMEREM, La Timone Hospital (Marseille, France). The 

local ethics committee approved all experimental procedures and written informed 

consent was obtained from each participant. The body coil was used for excitation and 

signal reception was achieved using a combination of 12-channel head-coil, 4-channel 

neck coil, 24-channel spine matrix array and flexible 6-channel body coil for thoracic and 

lumbar levels.  
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The imaging protocol included a multi-echo gradient echo sequence with the 

following parameters: axial orientation (each slab perpendicular to the spinal cord), five 

echoes, effective TE = 27 ms, flip angle = 28°, FOV = 180×135 mm
2
, in-plane resolution 

0.46×0.46 mm
2
, 2 slabs (C1–C7, T1–T7) of seven non-contiguous transverse slices (one 

slice per vertebral level), slice thickness 5 mm, ECG synchronization (trigger delay 300 

ms), parallel acquisition with R=2 (GRAPPA reconstruction) and three signal averages. 

2.1.3. Data for validation 

Validation was assessed from additional 16 healthy subjects (mean age: 25 ± 6 y.o., 6 

men and 10 women). These subjects were different from the subjects used to produce the 

T2 template and the gray/white matter template. In order to remove biases associated with 

scanning at the same institution (e.g., patient handling, sequence parameters, scanner), 

these subjects were scanned at another institution (Functional Neuroimaging Unit, 

CRIUGM, Université de Montréal, Montreal, Canada). Data were acquired on a 3T MRI 

system (TIM Trio, Siemens Healthcare, Erlangen, Germany) using the commercial 12-

channel head-coil, 4-channel neck coil and a 24-channel spine matrix array.  

Sequence used for registration to the template was a T2-weighted 3D FSE, sagittal 

orientation, 52 slices, FOV = 384 mm, voxel size = 1×1×1 mm
3
, TR = 1500 ms, TE = 119 

ms, flip angle = 140°, bandwidth = 723 Hz/pixel, parallel acquisition with R=3 (GRAPPA 

reconstruction).  

To illustrate the feasibility to register images with other contrasts and resolution, 

additional sequences were run on a subject (M, 23 y.o.). These included (i) a T1-weighted 

multi-echo MPRAGE (TR=8.6ms, TE={2,4,5.8}ms, flip angle=20°, FOV=264×384mm
2
, 

176 slices, 1×1×1mm
3
), (ii) a 2D gradient echo sequence with magnetization transfer 

(MT) pulse (TR/TE=600/4.83ms, flip angle=25°, FOV=162×162mm
2
, 5 slices, 0.8×0.8×5 

mm
3
, Gaussian MT pulse), (iii) diffusion-weighted EPI with 2DRF excitation 

(Finsterbusch, 2009) (TR~2200ms with pulse-oxymeter cardiac gating, TE=87ms, 

FOV=175×35mm
2
, 0.8x0.8x5mm

3
, bandwidth=925Hz/pixel, 24 diffusion-encoding 

directions, b=800s/mm
2
), (iv) T2*-weighted EPI (TR/TE=1130/26ms, flip angle=90°, 

FOV=65×65mm
2
, 1×1×3mm

3
, bandwidth=1021Hz/pixel, 20 repetitions). 

2.2. Image pre-processing 

T2-weighted image pre-processing on each subject consisted of the following steps:  

1. Image denoising using adaptive non-local means (Manjon et al., 2010). This filter 

uses a blockwise approach in comparison with the standard voxel-based non-local 
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means algorithm, and also takes into account both the Rician nature of the MR 

data and the spatially varying noise patterns introduced by multichannel array 

coils and parallel imaging reconstruction. 

2. Intensity non-uniformity correction using N4ITK (Tustison et al., 2010). This 

filter uses a fast and robust B-spline approximation routine and a modified 

hierarchical optimization scheme for improved bias field correction over the 

original non-parametric non-uniform intensity normalization (N3) algorithm. The 

following parameters were used: spline distance 100 mm (length of a B-spline 

mesh element), shrink factor 2 (image downsampling), convergence threshold 

0.001, maximum number of iterations 100 (maximum iteration was reached every 

time). 

3. Approximate spinal canal segmentation and spinal cord straightening using the 

following procedure: 

a. Manual identification of the center of spinal cord corresponding to the 

vertebral disk between C2 and C3. This is the only manual step required, all 

other processing steps are automated. 

b. Segmentation of the spinal canal (spinal cord and CSF) on a single 2D axial 

slice is achieved using a graph-cut image segmentation algorithm (Boykov 

and Funka-Lea, 2006), where the pixel at the center of the spinal cord 

identified in step (a) is used as a  “S” node (foreground) and all pixels located 

further then 20mm from the center are set to be “T” nodes (background). 

Using equation 1 to set asymmetric capacities of the links between adjacent 

pixels a and b: 

  𝑊𝑎,𝑏 =
1

𝑑𝑖𝑠𝑡(𝑎,𝑏)
{

𝑒𝑥𝑝 (−
(𝐼𝑎−𝐼𝑏)2

2𝛿2 ) ,  𝐼𝑎 < 𝐼𝑏

1, 𝐼𝑎 ≥ 𝐼𝑏

  (1) 

where Ia is the intensity of pixel a; Ib is the intensity of pixel b; dist(a,b) is the 

geometrical distance between pixel a and b, here pixels immediately adjacent 

to each other receive distance of 1 and diagonally adjacent ones receive 

distance √2; 𝛿 is the smoothing coefficient estimated using median absolute 

deviation (Huber and Ronchetti, 2009) of the gradient magnitudes within the 

slice.  

c. In order to estimate the spinal cord center of the next adjacent axial slice 

(z+1), both slices are co-registered using cross-correlation cost function and 3 
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parameter transformation (shift in x,y and z-rotation). To increase robustness, 

the transformation is estimated within the mask of the spinal canal identified 

at step (b). Linear registration is performed using the hierarchical registration 

framework implemented in ITK as MultiResolutionImageRegistrationMethod 

and RegularStepGradientDescentOptimizer. Note that z-rotations are not 

problematic because the goal of this step is only to estimate the spinal cord 

centerline (single point per slice), not the in-plane orientation of the cord. 

d. Iterate through consecutive slices by repeating steps b and c until the most 

inferior and the most superior axial slices are reached, producing an estimation 

of the location of the center of spinal cord for each slice: X(z),Y(z) 

e. Resulting per-slice segmentations of the spinal canal are then used to calculate 

median per-slice intensity in the spinal cord I(z) 

f. Gaussian smoothing is applied to X(z), Y(z) and I(z) with σ=8mm (chosen 

empirically based on preliminary results).  

g. Dense non-linear transformation fields are calculated by mapping extracted 

centers of the spinal cord to a straight vertical line (spinal cord straightening). 

The interface between C2 and C3 is manually identified, then landmarks are 

automatically generated as follows: one in the center of the spinal canal and 

four more in the slice perpendicular to the detected centerline. These 

landmarks are created for each slice. A non-linear transformation is then 

calculated between the curved landmarks and the straight landmarks. The 

transformation is represented as thin-plate splines, as implemented in ITK as 

LandmarkDisplacementFieldSource. 

h. A second intensity-inhomogeneity correction is performed by linearly 

normalizing intensities of slices based on I(z). The reason for doing this step in 

addition to the N4ITK (step 2) is that here, the intensity is normalized based 

on the mean intensity within the spinal cord (per slice), whereas the N4ITK 

filter was applied to the whole image.  

i. The overall intensity range is linearly scaled so that mean intensity within the 

spinal canal is 1000. This value was chosen arbitrarily. 

j. The resulting intensity-normalized image volume was resampled into a 

common space on a 0.5x0.5x0.5mm voxel grid, using 2
nd

 order B-spline 

interpolation, applying non-linear transformation calculated at step (g).  
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2.3. Template creation  

2.3.1. Creation of the T2 spinal cord template (MNI-Poly) 

An unbiased left-right symmetric spinal cord template was constructed using 

hierarchical group-wise image-registration method described in (Fonov et al., 2011) by 

using results of the image-preprocessing steps described in 2.2 as input to the template 

creation process. This method is based on the nonlinear registration engine of Automatic 

Nonlinear Image Matching and Anatomical Labeling (ANIMAL) (Collins et al., 1995). 

The overall steps are to perform nonlinear registration of each subject’s spinal canal into 

an average space, and repeat the procedure several times using finer grid step size and 

blurring kernel. The following hierarchical schedule was used: 4 iterations at 16mm 

resolution, 4 iterations at 8 mm, 4 iterations at 4mm, 4 iterations at 2mm and 8 iterations 

at 1mm. After the final iteration, and in order to obtain a straight spinal cord, the center of 

mass of the spinal cord was calculated at each slice and then mapped to fit a straight 

vertical line (as in step 2.2.3.g). The resulting template was centered in the antero-

posterior and in the right-left direction in order to have the spinal cord centered in the 

middle of the volume. The final resolution of the template was set to 0.5×0.5×0.5 mm
3
 for 

a size of 120×120×600 voxels. 

Masks and labels associated with the average template were created from the average 

of the graph cut segmentation: mask and boundaries of the spinal cord, mask of the CSF, 

boundaries between the CSF and the spine, label of vertebral level (incremental value, 

starting at mid-C1 and ending at T6).  

The ensemble of the T2-template, masks and labels forms the Montreal Neurological 

Institute - Polytechnique Montreal (MNI-Poly) T2 template. 

2.3.2. Creation of the white and gray matter probabilistic template (AMU) 

The white matter (WM) / gray matter (GM) probabilistic template used here was 

previously created by Taso et al (Taso et al., 2014b) using gradient echo images acquired 

in 15 subjects (see section 2.1.2) and is referred to as the Aix-Marseille University (AMU) 

template. Each voxel of the AMU template represents the proportion of subjects with that 

tissue label (white or gray matter) at that voxel position. Since the AMU template 

contains one slice per vertebral level from C1 to T12, it must be resampled into a 3D 

volume for proper fusion with the average MNI-Poly T2 template created in section 2.3.1. 

Resampling the AMU template was done as follows:   
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1. The 2D native AMU template slices were resampled from 0.46x0.46 mm in-plane 

sampling to 0.5 mm isotropic sampling so as to match the spatial resolution of the 

MNI-Poly T2 template.  

2. Since the MNI-Poly T2 template is left-right symmetric, the AMU template must 

be made symmetric as well. The 2D native AMU template slice images were 

centered in the AP and RL directions.  Symmetrized images were thus obtained by 

flipping the native images in the RL direction and by averaging the flipped and 

non-flipped images.  

3. In order to match the superior-inferior slice spacing of the MNI-Poly T2 template 

(0.5mm), it was necessary to interpolate slices between the AMU template 

images. This was achieved with pairwise linear interpolation to create a 3D 

isotropic volume.  

2.3.3. Fusion between the MNI-Poly and the AMU templates  

After resampling the AMU template into the voxel grid of the MNI-Poly T2 template, 

it is still necessary to register the two datasets so that anatomical features are aligned. Co-

registration between MNI-Poly and AMU templates first involved two scaling factors in 

the x and y directions (i.e., no z-translation nor rotations were considered given the R-L 

symmetric nature of the MNI-Poly T2 and AMU templates). The transformation was 

estimated slice-wise using regularization constraints along z (smoothing of scaling factors 

along z). A second step consisted in non-linear co-registration using ANTs (Avants et al., 

2008). Parameters were: SyN transformation (symmetric image normalization method for 

estimating diffeomorphic functions), 0.2 mm gradient step (characterizes the gradient 

descent optimization), mutual information metric, constrained in the x-y plane, 100x100 

iterations (i.e., 100 iterations at each level, with a total of two levels) using 2x1 shrink 

factor (upsampling of the image at each level) and 1x0 mm smoothing. The ensemble 

comprising the integrated MNI-Poly T2 and AMU templates forms the MNI-Poly-AMU 

template (see Figure 2).  

2.4. Framework for registering new data to the template 

The goal of this procedure is to register a new subject to the template and to warp 

template objects (spinal cord segmentations, white/gray matter maps, etc.) into the 

subject’s native space. This is achieved using the following steps:  

1. Pre-processing of subject’s anatomical image as described previously in section 

2.2: denoising, intensity inhomogeneity correction and straightening. 
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2. After pre-processing, the resulting spine volume is non-linearly registered to the 

MNI-Poly-AMU T2 template using ANTs with cross-correlation cost function, 

with the following parameters: cross-correlation cost function with radius of 2; 

Gaussian regularization of gradient field σ=4 and deformation field sigma=1, SyN 

transformation model with gradient step length of 0.125 and number of time-steps 

4 and number of iterations: 200×200×200×100. 

3. Warping of the segmentation priors (spinal cord, CSF and white/gray matter 

masks, vertebral labeling) back into the native space of the subject, by 

concatenating the straightening deformation field calculated as part of pre-

processing and the non-linear transformation field calculated at the previous step. 

The output of the registration pipeline is a series of 3D volumes representing 

segmentation of spinal cord and CSF, probabilistic maps of white and gray matter and 

labeling of vertebral levels. These segmented structures can be used as ROIs for multi-

parametric MRI techniques (e.g., diffusion imaging, magnetization transfer, functional 

MRI). Along with these volumes are the forward and backward warping fields, which can 

register data from and to the template, respectively.  

To provide maximum flexibility for the user to integrate the pipeline into his/her 

environment, we propose two versions of the pipeline: pipeline #1 is based on the MINC 

file format using the Minc Tool Kit
1
 and pipeline #2 is based on NIFTI file format using 

Python
2
 scripts and FSL

3
 software and is part of the Spinal Cord Toolbox (Cohen-Adad et 

al., 2014a). Both pipelines use ANTs
4
 for registration. 

2.4.1. Calculation of CSA by improving local deformation with graph cuts 

Following registration to the template, the pipeline also produces continuous 

measurements of the axial spinal cord area (CSA). This is achieved by further improving 

the spinal cord segmentation using graph cuts as described below:  

1. A discrete parametric curve describing the center of the spinal cord of the MNI-

Poly-AMU is warped to the subject’s native space using non-linear transformation 

defined above. The curve is a series of points (x,y,z,t) where x,y,z are spatial 

coordinates and t is a parametric coordinate along the spinal cord. These points are 

                                                 
1
 http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC 

2
 https://www.python.org/ 

3
 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 

4
 http://sourceforge.net/projects/advants/ 
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equally spaced in the template space along the spinal cord, but then warped to 

match the subject so they are not equally spaced anymore. 

2. 3D Gaussian smoothing with FWHM kernel of 0.5 mm is applied to reduce 

aliasing artifacts. For each point on the curve (at 0.5mm intervals) a slice 

perpendicular to the curve is extracted from the subject's T2 scan using 2
nd

 order 

B-spline interpolation with an in-plane resolution of 0.2 mm.  

3. Extracted slices are stacked together as a 3D volume and a graph-cut segmentation 

is performed to refine spinal cord segmentation results. The implementation is 

similar to that one described at section 2.2.3.b, with the difference that comparison 

signs are inverted ( 𝐼𝑎 > 𝐼𝑏), so that graph-cut segmentation procedure will find 

the edge corresponding to the transition from the darker (spinal cord) pixels to 

brighter ones (CSF).  

4. After graph-cut segmentation the CSA of the spinal cord is calculated by counting 

pixels in the cord and multiplying by the voxel area. 

Note that since this procedure does not produce warping field (only local non-

bijective deformations are estimated), it is currently not possible to estimate an inverse 

warping field and concatenate it with the output of section 2.4. This will be part of future 

investigations. Also note that currently the procedure is optimized for T2-weighted 

images, but can easily be adapted to T1-weighted images with inversion recovery 

preparation (e.g., MPRAGE sequence, yielding inverted contrast between spinal cord and 

CSF) by inverting the comparison sign of equation (1) on the graph-cut segmentation.  

2.5. Validating registration of anatomical data to the template 

The registration pipeline described above was applied to the validation data (see 

section 2.1.3). To validate registration to the template, the spinal cord of each subject was 

semi-manually segmented on the 3D T2-weighted sequence, between C1 and T3 vertebral 

levels. Segmentation was done with Osirix
5
 on 12 slices (one per vertebral level), and 

then the parametric ROIs (2D parametric spline curves representing the contour of the 

spinal cord) were interpolated across slices to generate 3D ROIs in voxel space. This 

approach is justified by the small variation of spinal cord cross sectional shape between 

two vertebral levels. However, this approach can minimize the difference between the 

manual and the semi-automatic approach and thus does not make a fair comparison for 

the 3D DICE calculation. To check the validity of this approach, manual segmentations 

                                                 
5
 www.osirix-viewer.com 
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were performed on three random subjects from C1 to T3, without any interpolation (about 

160 slices per subject). The 3D DICE coefficient was computed between the semi-manual 

ROI and the manual ROI. Results gave 3D DICE of 0.994, 0.985 and 0.997 for each 

subject respectively, suggesting that the semi-manual approach is an acceptable ground 

truth for assessing registration accuracy with the template. The semi-manual 

segmentations from the validation data (15 subjects) were then used to calculate 

following metrics describing goodness of the spine cross-section measurement:  

 Differences between the spinal cord cross-section areas, for each perpendicular 

slice along the length of the cord from C1 to T3. 

 3D Dice Kappa overlap coefficient (Dice, 1945), comparing the manually-

segmented cord and the template-based segmentation warped to the native space 

of the subject’s anatomical data. 

 2D Dice Kappa overlap coefficient calculated at each slice perpendicular to the 

extracted spinal cord. 

 Distances between centers of mass for each perpendicular slice along the length of 

the cord from C1 to T3. 

 

To illustrate the feasibility to warp template objects on an image with different 

contrast than the T2 anatomical data and acquired with non-isotropic resolution, the 

template was registered to the following other sequences in one subject (here we call 

them multi-parametric data): a 3D T1-weighted MPRAGE, an axial MT-weighted 

gradient echo, an axial diffusion-weighted sequence (mean diffusion weighted image was 

used for registration) and an axial T2*-weighted sequence typically used for fMRI (the 

average of 20 volumes was used for registration). See section 2.1.3 for sequence details. 

In order to produce robust and accurate registration between the template and the multi-

parametric data, the template registered to the T2 anatomical data of the subject served as 

an intermediate step. Hence, the registration consisted of the following two-step 

approach: 

1. The T2 template was registered to the T2 anatomical data using the pipeline 

described above. The outputs were the T2 template in the anatomical space 

(template2anat) and the associated warping field (warp_template2anat).  

2. The image template2anat was registered to each contrast using ANTs (SyN 

deformation, mutual information, constrained in z), producing the T2 template in 
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each contrast native space (template2data) and the associated warping field 

(warp_anat2data). The deformation fields from this step and from the previous 

step were then concatenated to produce the global deformation 

warp_template2data (and its inverse, warp_data2template) that warps any 

template object (e.g., spinal cord segmentation, white matter atlas) to and from the 

multi-parametric data, respectively. 
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3. Results 

Figure 1 shows the MNI-Poly T2 template with overlay of the vertebral labeling. The 

spinal cord is straightened with respect to its centerline and is symmetric in the L-R 

direction. The signal intensity was normalized within the spinal cord and within the CSF. 

Note that the straightening process involving thin plate splines (i.e., similar to the bending 

of a structure) ensured consistency in the rostro-caudal structure of the spinal cord, which 

can be qualitatively assessed by the quasi-perpendicular intervertebral disks with respect 

to the spinal cord.  

 

 

Figure 1. MNI-Poly T2-weighted template with vertebral labeling. Panel on the right shows axial 

views across vertebral levels, with overlay of spinal cord and CSF contours (vertebral levels from C1 

to T5 are displayed from left to right, then top to bottom).  
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Figure 2 shows the fusion between the MNI-Poly and the AMU template. The white 

and gray matter templates are probabilistic, i.e., their value between 0 and 1 represents 

the proportion of subjects with that tissue label at that voxel position. This information 

can be useful to weight metrics extraction in the white matter from diffusion-weighted or 

MTR protocols, for weighting statistical results in the gray matter for fMRI protocols or 

for initializing gray matter segmentation algorithms (see discussion).  

 

 

Figure 2. Fusion between the MNI-Poly template and the AMU white and gray matter probabilistic 

map. This ensemble forms the MNI-Poly-AMU template. The axial view corresponds to C7 vertebral 

level. 
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Figure 3 illustrates the various steps for registering new subjects to the template. First, 

the user defines a single voxel within the spinal cord center at the C2-C3 level (this 

procedure takes less than a minute). Then, the spinal cord centerline is automatically 

identified, followed by a straightening of the spinal cord, a rough linear registration to the 

template followed by a finer deformation using non-rigid transformation (ANTs SyN). 

All transformations are then concatenated into a single forward and a single backward 

transformation, which can be applied conveniently to any data from the template space or 

from the native space. The whole registration pipeline takes about 15 minutes to run (Intel 

i7 quad-core 3.4GHz, 8GB RAM). 

 

 

Figure 3. Steps for registering a subject to the template. A: Manual identification of anatomical 

marker (one point in the spinal cord at C2-C3 vertebral level). B: Automatic reconstruction of the 

spinal cord centerline. C: Spinal cord straightening using thin-plate spline interpolation. D: 

Registration to the template and warping back data to the native space (here labeling of vertebral 

level).  

 

  



19/37 

Figure 4 shows segmentation results in the fifteen subjects used for validation. Visual 

inspection suggests good registration between the template and the anatomical T2 volume 

for all subjects, in terms of local boundary matching (spinal cord / CSF interface) and 

vertebral level matching. 3D Dice coefficient assessing overlap between manual 

segmentation and registration-based segmentation (before graph-cut segmentation) 

ranged within [0.76-0.88] (mean: 0.84 ± 0.03) for pipeline #1 and [0.80-0.88] (mean: 0.83 

± 0.03) for pipeline #2. These values were calculated for the 15 subjects from C1 to T3 

vertebral levels. 

 

 

Figure 4. Results of registration, evaluated by warping the template labels onto the native data for 

each of the fifteen subjects (other than the ones used to generate the template). Each panel shows the 

sagittal T2-weighted anatomical image, with an overlay of the warped spinal cord segmentation and 

labeling of vertebral level. In order to facilitate the visualization, volumes were “flattened” by 

straightening the spinal cord in the R-L direction, using information from the centerline. Note that in 

some subjects, the vertebral labeling does not appear orthogonal to the spinal cord, which is due to 

the nearest neighbor interpolation used to bring the label into the subject’s native space.  
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Figures 5, 6 and 7 show a more detailed analysis of pipeline #1, per vertebral level. 

Analysis was done between C1 and T3 (because T4-T6 levels were not fully covered in 

some subjects). Figure 5 shows the difference between the spinal cord CSA estimated 

from registration and from manual segmentation. Results are shown after non-linear 

registration (ANTs, intermediate step) and after graph-cut segmentation (GC, final step). 

The GC segmentation further improved the quality of CSA estimation, reducing the 

average CSA area difference across vertebral levels from -13.9 mm
2
 (ANTs alone) to -7.0 

mm
2
 (ANTs+GC). CSA was underestimated by 16%, which could be attributed to the 

slightly darker contour of the T2-weighted image, accentuating partial volume effects 

with the surrounding CSF (see discussion). Figure 6 shows the 2D Dice coefficient 

between the manual and the automatic segmentation. The Dice coefficient was calculated 

for each slice and then averaged within each vertebral level. The median Dice coefficient 

was 0.85 (ANTs alone) and 0.89 (ANTs+GC) and 5-95 percentiles were [0.77-0.92] 

(ANTs alone) and [0.82-0.94] (ANTs+GC), suggesting good overlap between the manual 

and the automatic segmentation for all vertebral levels. Figure 7 shows the absolute in-

plane distance between center-of-mass of the spinal cord segmentation from registration 

and from manual results. Average Pythagorean distance between the manual and 

estimated center of mass was 0.37 +/- 0.24 mm (ANTs alone) and 0.24 +/- 0.18 mm 

(ANTs+GC), suggesting low registration error (less than 0.5 mm for all vertebral levels). 
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Figure 5. Difference (in mm
2
) between the estimated spinal cord cross-section area and manual 

results. “ANTs” corresponds to the results after non-linear registration and warping and “GC” 

corresponds to the final results obtained after graph-cut segmentation. The box plots represent the 

median (horizontal line in the middle), the 25-75 percentiles (edge of the box), the 5-95 percentiles 

(vertical lines) and outliers (dots).  
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Figure 6. 2D dice overlap between manual and automatic segmentation results. “ANTs” corresponds 

to the results after non-linear registration and warping and “GC” corresponds to the final results 

obtained after graph-cut segmentation. 
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Figure 7. Absolute in-plane distance (in mm) between centers-of-mass of segmented spinal cord and 

the manually segmented one. “ANTs” corresponds to the results after non-linear registration and 

warping and “GC” corresponds to the final results obtained after graph-cut segmentation. 
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Figure 8 illustrates the outputs provided by the registration: spinal cord centerline, 

vertebral labeling, binary mask of the spinal cord, probabilistic masks of the white and 

gray matter, binary mask of the CSF with spinal cord and continuous measurements of 

CSA along the spinal cord. Here the centerline is represented as a binary mask but it is 

also accessible as a parametric spline function. The CSA is calculated from the fine-

segmentation of the spinal cord, after non-linear registration of the anatomical data to the 

template. Note that the apparent gray matter voxels outside the spinal cord are simply due 

to partial volume effect—in fact, the probabilistic values of gray matter voxels outside the 

spinal cord are typically less than 0.1. 

 

 

Figure 8. Outputs of the template-based analysis: spinal cord centerline, labeling of vertebral levels, 

binary mask of the spinal cord, probabilistic masks of the white and gray matter, binary mask of the 

spinal canal and continuous measurements of cross sectional area (CSA) along the spinal cord. The 

white bars intersecting the cord on the sagittal image correspond to the selected axial views. 
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Figure 9 shows the registration between the template and multi-parametric data 

acquired with different sequences: T1-weighted MPRAGE, T2-weighted FSE, MT-

weighted gradient echo, diffusion-weighted EPI (mean DWI was used for registration), 

T2*-weighted EPI (mean EPI was used for registration). The template was first registered 

to the T2 anatomical data of the subject, and then registered to each multi-parametric data 

using non-rigid deformation constrained in the axial plane (non-rigid deformation was 

necessary due to the slight subject motion between scans and distortions in EPI data). All 

transformations (affine and non-rigid) were then concatenated to produce a single 

transformation, which was subsequently applied to the template objects (e.g., white and 

gray matter atlases, as shown in the figure).  

Despite the different contrasts and levels of distortions across sequences, all images 

were successfully registered to the template, as assessed qualitatively. The red grid 

overlaid on images enables to appreciate the spatial correspondence within each sequence 

(between native and template), and the slight deformation/motion between sequences. 

The use of mutual information criterion for registration with SyN deformation ensured 

robustness and fast convergence of images with very different contrasts, such as the T1-

weighted MPRAGE and the diffusion-weighted image. Such multi-modal registration is a 

first step towards automated and bias-free group analysis of multi-parametric MRI of the 

spinal cord.  

 

 

Figure 9. Multi-parametric registration to the template. Images are centered at C2 vertebral level. 

The first group or three lines (native space) includes the image in the native space (native), the 

registered template (template) and the white and gray matter atlas warped to the native space using 
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the estimated transformation (atlas). The second main line shows all registered images in the 

template space. A red grid is overlaid to appreciate the inter-modality distortions and the accuracy of 

template registration within each sequence.  
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4. Discussion 

This paper presented a framework to produce an unbiased average anatomical 

template of the human spinal cord: MNI-Poly-AMU. It also described an image 

processing pipeline to register new subjects to the template that requires only one simple 

manual intervention to identify a single landmark that is used to vertically align the spinal 

cords. The procedure is rapid, robust and reduces bias associated with manual processing.  

4.1. Unbiased template creation and registration pipeline 

While several studies have proposed methods to create a spinal cord template, most of 

these studies were based on the arbitrary selection of a reference subject for non-linear 

registration of other subjects to it (Eippert et al., 2009; Tozer et al., 2012). This can 

introduce a bias in the final template, as some morphological features (e.g., spinal cord 

position within the spinal canal, cross-sectional area, length, curvature) do not represent 

the average morphology, and hence subsequent registration would be prone to lower 

robustness and potentially larger errors. Here, the proposed framework produces an 

unbiased average anatomical template of the human spinal cord, because it iteratively 

constructs the template using the information from all input subjects. The non-rigid 

registration algorithm used to create the template is based on the symmetric image 

normalization method (SyN) implemented in ANTs (Avants et al., 2008) and was ranked 

the top registration procedure in a comparative study of nonlinear registration methods 

(Klein et al., 2009). This method ensures the recovered transformation to be 

diffeomorphic (satisfying the smoothness, bijective and invertible), criteria required for 

building a template. A similar template creation procedure has been used for the brain 

(Fonov et al., 2011), basal ganglia and deep brain structures (Haegelen et al., 2013) and 

cerebellum (Weier et al., 2014). While the current study only used 16 subjects to generate 

the template, the same method can be applied to a larger population. This will be the 

subject of future investigation. 

In addition to the template creation, this paper proposed a semi-automatic image 

processing pipeline that can be used to register new subjects to the template. The overall 

procedure consists in (i) manually identifying a single point at C2-C3 vertebral level 

followed by automatic steps for (ii) finding the spinal cord centerline, (iii) straightening 

the spinal cord, and (iv) registering the straightened spinal cord to the template. Hence, 

the only manual procedure is the identification of an anatomical landmark, which takes 



28/37 

less than a minute. This procedure ensures robustness towards the registration of the 

spinal cord at the right vertebral levels, given the repetitive pattern of the vertebral 

bodies, which otherwise would cause mis-registration. The registration was validated in 

15 new subjects acquired at another imaging center, and the median Dice coefficient 

against manual segmentation of the full spinal cord was 0.89. In an additional subject, 

other sequences were acquired to demonstrate the feasibility to register the template to 

data with different contrasts and levels of distortions than the template (see Figure 9).  

4.2. Limitations 

One limitation of the current version of the MNI-Poly-AMU template is that it only 

covers C1 to T6 vertebral levels, preventing users from registering data below T6. 

Moreover, the template is based on a T2-weighted image and is therefore sub-optimal for 

registering T1-weighted data (e.g., MPRAGE sequence). It should be mentioned however 

that registering T1-weighting data to the template is still possible, using mutual 

information metric for non-rigid deformation, or by inverting the image contrast. Also, 

the template is based on young adults (25-30 y.o.), and it has been shown that the 

morphology of the spinal cord (cross-sectional size, length and proportion of the cord in 

the spinal canal and ratio of gray and white matter volume) changes with age (Fradet et 

al., 2014; Kato et al., 2012). However, the non-rigid registration procedure ensures 

adaptability to different morphology, although this must be further tested in a wider 

population age in the future. The work presented here is a proof-of-concept to show that, 

in principle, the proposed framework can be applied to any vertebral level, image contrast 

and population age. A future version of the MNI-Poly-AMU template will include the 

brainstem and full spinal cord in T1- and T2-weighted contrasts. Moreover, any researcher 

can produce their age-specific template using these techniques and publically available 

software, e.g. for studying pediatric population (Mulcahey et al., 2012).  

CSA was under-estimated by 16%. This under-estimation of CSA could be attributed 

to the slightly darker contour of the T2-weighted image, accentuating partial volume 

effects with the surrounding CSF (El Mendili et al., 2014). Using the MPRAGE 

sequence, over-estimation of 14% was observed using the active contour method 

(Horsfield et al., 2010) and under-estimation of 4.5% using a semi-automatic contour 

detection method (Losseff et al., 1996). Sensitivity of image contrast to CSA measures 

have already been reported in a study comparing T2-weighted SPACE and T1-weighted 

MPRAGE sequences (De Leener et al., 2014) and in another study comparing T1-
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weighted MPRAGE (3D-TFE) and 3D phase sensitive inversion recovery (PSIR) 

sequences (Kearney et al., 2014). Discrepancies in CSA measures between sequences can 

be caused by differences in CSF/cord contrast, T2* blurring, Gibbs, motion and flow 

artifacts. These differences would thus change the appreciation of the cord boundaries by 

the user (in case of manual segmentation) or by the algorithm (in case of automated 

segmentation). It is worth noting that the type of MRI contrast can also impact the 

physical appearance of the boundaries. For example, the dura mater has a relatively short 

T2* value and hence its apparent location varies with the choice of TE in gradient echo 

sequences (Fujimoto et al., 2014). Moreover, age-related increase of iron deposition in 

the dura mater would be another factor of CSA under-estimation caused by T2* reduction, 

which can be a confounding factor in longitudinal studies.  

4.3. Applications and Perspectives 

The outputs of the registration pipeline include two warping fields: one to register the 

template to the subject’s anatomical data (forward) and the other to register the subject’s 

anatomical data to the template (backward). Moreover, other useful data associated with 

the template are provided in the subject’s anatomical space, such as spinal cord and CSF 

binary masks, white and gray matter probabilistic masks and labeling of vertebral level. 

For example, the CSF mask can be used to estimate a physiological noise regressor in 

fMRI experiments (Brooks et al., 2008), which otherwise has to be performed manually. 

The probabilistic white matter template, once registered to the subject’s space, 

represents useful information to automatically quantify multi-parametric data sensitive to 

white matter microstructure, such as DTI and magnetization transfer. Moreover, given 

that the white matter template is probabilistic, it is possible to weight quantitative values 

(e.g., from DTI data) based on the amount of partial volume effect, as previously 

suggested using fuzzy logic methods (Ellingson et al., 2007). Quantification of WM 

metrics using the proposed template has been demonstrated in a preliminary multi-center 

DTI study (Cohen-Adad et al., 2014b). Also, quantification of DTI metrics based on the 

WM/GM probabilistic template has been compared to manual delimitation of the white 

and gray matter in another preliminary study (Taso et al., 2014a). 

In the current framework, the gray matter probabilistic boundary estimate provided 

with the MNI-Poly-AMU template is warped onto the subject’s space using the 

deformation estimated from the T2-weighted volume, and hence does not represent the 

subject’s exact gray matter contour. As mentioned previously, the size and shape of the 
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gray matter varies across individuals (Fradet et al., 2014). Notably, the proportion of 

gray/white matter decreases with age and the width of the posterior horns varies with 

gender. A preliminary use of the GM template has been proposed to investigate gray 

matter atrophy in elderly people using voxel based morphometry (Taso et al., 2014a). 

Despite this variability, mapping the gray matter probabilistic contour can be useful for 

several purposes. For example, it can be used as an initial step for automatic segmentation 

methods (Asman et al., 2014; Asman et al., 2013). It can also be used to produce an atlas-

based parcellation of the spinal cord gray matter into functional units, which would guide 

functional MRI experiments.  

Labeling of vertebral levels is another feature provided by the template. This 

information can be used to report level-specific values of CSA along the spine. Having 

access to vertebral labeling under a quasi-automated framework opens the door to large-

scale group studies, focusing on understanding the pathophysiology of diseases by 

looking at the evolution of CSA at specific vertebral levels, such as in MS (Klein et al., 

2011; Valsasina et al., 2012) or in ALS (Cohen-Adad et al., 2013). In future work, we 

will evaluate the robustness of the pipeline to pathological data in different diseases.  In 

addition, vertebral level information can be coupled with multi-parametric data, obtained 

from DTI or magnetization transfer imaging, to obtain normative values along the spine 

(Ellingson et al., 2008; Smith et al., 2010). Similarly to CSA, these level-specific 

normative data can be used to assess the state of individual patients or to evaluate the 

efficacy of new treatments. Finally, knowing the location of vertebral levels is useful to 

infer the location of the spinal levels (nerve rootlet entries), which are otherwise difficult 

to observe in standard anatomical scans. Knowing the location of spinal levels is 

particularly useful for fMRI experiments, in order to assess task-related activations or to 

perform group analysis. It should however be mentioned that the position of the nerve 

rootlets relative to the corresponding vertebral level can vary across individuals, as been 

shown by Cadotte et al. (Cadotte et al., 2014) where the authors built a probabilistic map 

of nerve rootlet location based on vertebral levels. Hence, an exciting avenue would be to 

integrate this probabilistic map into the proposed template. 
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5. Conclusion 

This paper presented an unbiased average anatomical template of the human spinal 

cord, as well as a quasi-automatic image processing pipeline that registers new subjects to 

the template. The template can notably be used for measurements of spinal cord cross-

sectional area, voxel-based morphometry, identification of anatomical features (e.g., 

vertebral levels, white and gray matter location) and unbiased extraction of multi-

parametric data. The MNI-Poly-AMU template and image processing software are freely 

available for MINC (http://www.bic.mni.mcgill.ca/ServicesAtlases) and for NIFTI file 

format (http://sourceforge.net/projects/spinalcordtoolbox/). 

 

http://www.bic.mni.mcgill.ca/ServicesAtlases
http://sourceforge.net/projects/spinalcordtoolbox/
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