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Gel-electrophoresis has been demonstrated in recent decades to successfully sort a great variety of
nanoparticles according to their size, charge, surface chemistry, and corona architecture. However,
quantitative theoretical interpetations have been limited by the number and complexity of factors that
influence particle migration. Theoretical models have been fragmented and incomplete with respect
to their counterparts for free-solution electrophoresis. This paper unifies electrokinetic models that
address complex nanoparticle corona architectures, corona and gel charge regulation (e.g., by the
local pH), multi-component electrolytes, and non-linear electrostatics and relaxation effects. By
comprehensively addressing the electrokinetic aspects of the more general gel-electrophoresis
problem, in which short-ranged steric interactions are significant, a stage is set to better focus
on the physicochemical and steric factors. In this manner, it is envisioned that noparticle gel-
electrophoresis may eventually be advanced from a nanoparticle-characterization tool to one
that explicitly probes the short-ranged interactions of nanoparticles with soft networks, such as
synthetic gels and biological tissues. In this paper, calculations are undertaken that identify a
generalized Hückel limit for nanoparticles in low-conductivity gels, and a new Smoluchowski limit for
polyelectrolyte-coated particles in high-conductivity gels that is independent of the gel permeability.
Also of fundamental interest is a finite, albeit small, electrophoretic mobility for uncharged particles
in charged gels. Electrophoretic mobilities and drag coefficients (with electroviscous effects) for
nanoparticles bearing non-uniform coronas show that relaxation effects are typically weak for
the small nanoparticles (radius ≈ 3–10 nm) to which gel-electrophoresis has customarily been
applied, but are profound for the larger nanoparticles (radius & 40 nm in low conductivity gels) to
which passivated gel-electrophoresis experiments have recently been applied. To demonstrate
its practical application, the model is applied to (pH charge regulating) carboxylated polystyrene
nanospheres in low-density passivated agarose gels (weak steric effects). This furnishes a new
theoretical interpretation of literature data for which a finite diffuse-layer-thickness, pH-charge
regulation, high charge, and relaxation effects dominate over the steric influences.

1 Introduction
Nanoparticle gel-electrophoresis has been applied in the last
decade to sort many kinds of nanoparticles9,10,23,27,28. Exper-
iments are conducted by depositing nanoparticle dispersions into
the wells of a hydrogel slab (often agarose for nanoparticle gel-
electrophoresis) to which a longitudinal electric field is applied.
Nanoparticles migrate into the gel, and acquire an average trans-
lational velocity that generally reflects a complex coupling of
electrical, hydrodynamic (long-range), and steric (short-range)
interaction forces.

Gels are selected to adjust the balance of long- and short-range
forces and, thus, optimize separation efficiency. In the limit where
the particles are small compared to the gel pores (and the particles
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do not adhere to the gel), the gel serves to eliminate macroscale
advection, thus enabling separations that reflect the free-solution
electrophoretic mobility, which varies with nanoparticle architec-
ture, e.g., size and charge, as imparted by a core and/or macro-
molelcular coatings9,10. However, in gels where the pore and
particles sizes are comparable (again in the absence of adhesive
interactions), hydrodynamic interaction hinders the mobility ac-
cording to particle size.

Decreasing the pore size strengthens interaction with the gel
so that particle dynamics may become intimately coupled to spa-
tial and temporal fluctuations in the pore network. For example,
Zhu and Mason 27 quantified how varying the mesh size of pas-
sivated agarose gels arrests electrophoretic migration above a
threshold gel concentration that varies systematically with the
particle size. Similar steric arrest has been gleaned from the the
dynamic mobility (measured at MHz frequencies using electroa-
coustic spectroscopy) of silica nanoparticles in agarose gels1.
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Initiatives have been taken to minimize or completely eliminate
steric the influences. This can been achieved by systematically
changing the gel concentration, and using Ferguson analysis to
extrapolate mobilities to zero gel concentration, thus expedit-
ing quantitative interpretation of the data using theory for free-
solution electrophoresis23, i.e., without steric or hydrodynamic
interaction. However, systematically varying the gel concentration
is time intensive, and may not be feasible for samples that are
expensive or available in limited quantities. Thus, theories have
been developed to model the long-range interactions, which tend
to hinder electrophoretic migration3,9. Another approach is to
passivate gels by incorporating uncharged polymers or surfactants
according to the specific nanoparticle surface chemistry. Passivated
agarose gels have expedited nanoparticle separations on the basis
of size27 and surface charge28.

This paper addresses the electrokinetic and hydrodynamic
factors that contribute to the more general nanoparticle gel-
electrophoresis problem, using a continuum framework that
adopts the Brinkman model for the hydrodynamic interaction.
A comprehensive theory that unites electrokinetic and steric influ-
ences in a theoretically meaningful and practically useful manner
is presently unavailable, and is likely to remain so for some time.

Steric influences have been studied in the literature on solute-
diffusion in hydrogels, e.g., as reviewed by Amsden 4 . One such
model, which accounts for the gel concentration and segment size
and shape, was integrated into the gel-electrophoresis electroki-
netic model of Allison et al. 3 In the more recent work of Allison
et al. 2 , this manifests as a force that adds to the hydrodynamic
drag (proportional to the mean translational velocity). When this
force is expressed as a ratio of the hydrodynamic drag, γ � 1,
the electrophoretic mobility without steric friction can be conve-
niently multiplied by a steric factor 1/(1+ γ)≈ 1− γ < 1. Doane
et al. 9 proposed a friction model for PEGylated gold nanoparti-
cles that attempts to capture friction between PEG chains and an
agarose skeleton due to dynamic entanglement. For polystyrene
nanospheres in agarose gels, Zhu and Mason 27 recently proposed
a thermally-driven hopping model to describe the time-average
translation manifesting from the electrical force and fluctuating
voids. Interestingly, this describes experimentally observed tran-
sitions from a mean velocity that is linear in the electric-field
strength at low field strengths to one that becomes highly non-
linear at high field strengths, albeit with a mechanical compliance
factor that changes sign with the particle size. However, high
electric-field strengths also manifest in non-linear electrokinet-
ics7, and it is presently unknown when and how to distinguish
these. Yet another body of work has addressed the electric-field-
induced dynamics of particles that are permanently adhered to or
entrapped in hydrogel networks1,18,26; these studies complement
an extensive microrheology literature25.

To close the gap between gel-electrophoresis models (reviewed
below), which are presently fragmented, and more advanced
models for free-solution electrophoresis, this paper unites bare-
particle gel-electrophoresis and free-solution electrophoresis mod-
els, accommodating charge-regulating coronas and gels, multi-
component electrolytes, non-linear electrostatics, and polarization

and relaxation effects∗. These attributes tremendously simplify
the interpretation of experiments with weak steric forces, because
the overall model has a well-defined and complete set of parame-
ters, and is not subject to untested simplifying assumptions. Such
a model may expedite experiments using low-conductivity gels
in which the signal-to-noise ratio can be maximized, and Joule
heating and particle aggregation minimized.

The first nanoparticle gel-electrophoresis electrokinetic model
was developed by Allison et al. 3 for bare spherical particles in
uncharged gels, accounting for non-linear electrostatics and re-
laxation effects. As highlighted above, this model also accounted
for steric friction. The theory was motivated by experiments23

in which the hydrogel was assumed to bear zero charge, thus
enabling the ion and charge distributions around a nanoparticle
to be approximated by those that prevail in an electrolyte without
gel. Moreover, when subjected to an electric field, electroosmotic
flow (also termed electroendoosmotic flow) in the gel is driven
only by the nanoparticle counter charge. As amply demonstrated
by the challenges in solving similar equations for free-solution
electrophoresis15,19,20, the mathematical solution of the model
equations was obtained via a numerical method having a rigorous
analytical foundation.

More recent experiments of Doane et al. 9 with polymer-coated
gold nanoparticles furnished evidence of agarose gels bearing a net
negative charge, as evidenced by an uncharged molecular tracer
(vitamin B12) attaining a finite positive electrophoretic mobility.
Despite the nanoparticles bearing a negative charge (on the gold
surface), positive electrophoretic mobilities where registered with
high-molecular weight uncharged grafted polymer (PEG) coro-
nas. Doane et al. 9 developed an analytical-approximate theory
to model how charge on the gel (and its counter charge in the
electrolyte) controls the nanoparticle mobility. This theory did not
explicitly model the PEG coronas, but approximated the soft parti-
cles using a bare-sphere model with a modified surface potential.
Since the relatively thick, uncharged coronas significantly reduce
the apparent surface potential, the electrostatics were treated in
the linear Debye-Hückel approximation under conditions where
the Debye length is large compared to the nanoparticle radius.
This theory also modelled a steric friction between the particle
and gel, furnishing a gel-concentration dependent electrophoretic
mobility that captured a mobility reversal with respect to the PEG
molecular weight.

Subsequent theoretical studies removed restrictions on the rel-
ative magnitudes of the Debye length and particle size, also ex-
plicitly accounting for soft (albeit perfectly uniform) coronas17.
These furnished a strong foundation for testing more intricate
computations that account for non-linear electrostatics and re-
laxation effects. For example, Bhattacharyya et al. 7 adopted a
direct discretization methodology (finite-volume) to capture the

∗ “Polarization and relaxation" is customarily used to identify the consequences of
ion-electromigration and diffusion causing the ion-concentrations to deviate from
their equilibrium values. Such perturbations cause the free-charge density to deviate
from its equilibrium value, thereby perturbing the equilibrium electrostatic potential,
e.g., modifying the induced electrostatic dipole moment. This perturbs the forces
acting on a particle, generally decreasing its electrophoretic mobility.
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polarization and relaxation effects for bare particles in uncharged
gels, also addressing non-linear effects arising from strong electric
fields. A very similar study, using the same direct-solution method-
ology, was undertaken by Bhattacharyya and De 6 for charged gels
and strong electric fields.

While the foregoing direct-solution methodologies have the
obvious benefit of furnishing solutions without simplifying the
governing equations (e.g., based on symmetry and linearity con-
siderations), the computational cost may be unnecessarily high
for applications where the applied electric field is weak. Such
computations are also unnecessarily expensive for parametric stud-
ies and fitting model parameters to experimental data, although
they will be essential for experiments in which the electric-field
strengths are particularly high (possibly requiring external cooling
to eliminate Joule heating). Direct-solution methods have been
critiqued for imprecise application of far-field boundary conditions
(i.e., forcing the disturbances to zero at a finite radial position).
Allison et al. 2 noted that direct solutions of the electrokinetic
equations for gel-electrophoresis in the literature have furnished
erroneous results.

Using methods developed specifically for free-solution elec-
trophoresis, Hill 11 examined the non-linear electrostatics and
relaxation effects for bare spheres in charge regulating gels, i.e.,
gels in which the charge on the skeleton is coupled to the local
electrolyte ion concentrations. In this model, particular attention
was given to the electrolyte composition and identity of the hydro-
gel counterions. Hill considered primary and secondary ion- and
charge-density perturbations, showing that the primary perturba-
tions (furnished by the equilibrium state) are the most important.
The dominant counterion, which can change with the addition of
salt (e.g., NaCl) to a gel that has H+ counterions, for example,
was demonstrated to profoundly influence the electroviscous and
relaxation effects. Moreover, the electrophoretic mobility in the
reference frame that translates with the bulk electroosmotic flow
in the gel (hereafter termed the relative electrophoretic mobility)
is practically independent of the gel charge. Hill also identified the
relative electrophoretic mobility as being very closely related to
the free-solution mobility, as furnished by the well-known theory
of O’Brien and White 19 , but reduced according to the hydrody-
namic interaction with the gel. For bare particles in gels, the
hydrodynamic hinderance factor is furnished by Brinkman’s the-
ory8, depending only on the ratio of the particle radius to the
square-root of the hydrogel permeability.

Most recently, Allison et al. 2 addressed non-linear electrostatics
and the relaxation effects for spheres bearing uniform coatings
in charged gels; this, in some sense, completed the general elec-
trokinetic problem pioneered by Allison et al. 3 for bare particles
in uncharged gels. Similarly to bare particles, the electrophoretic
mobility of polyelectrolyte-coated particles in the reference frame
that translates with the bulk electroosmotic flow in a gel was
found to be practically independent of the gel charge. Allison
et al. also identified strong relaxation effects at intermediate ionic
strengths when the electrostatic potential on the particle surface
is fixed. By varying the hydrogel permeability, it can be seen that
the relative electrophoretic mobility in a gel is closely related to
its free-solution mobility.

Many of the soft polymeric coronas used to sterically stabilize
or functionalize nanoparticles are far from being uniformly perme-
able or uniformly charged. Thus, theoretical interpretations of the
free-solution electrophoretic mobility of soft nanoparticles have
benefitted from models of the corona architecture11,14. Nanopar-
ticle coronas reflect the polymer attachment mechanism (e.g.,
physical adsorption versus terminal grafting), surface curvature
(nanoparticle radius is generally comparable to ligand size), and
a non-uniform distribution of ligand charge (e.g., PEG ligands
bearing charged end groups10). Thus, while intricate models for
free-solution electrophoresis have reached a relatively advanced
state, it is unknown how the mobility is affected when particles
are transferred to a gel.

This rest of this paper is organized as follows. After setting
out the theory in section 2, its is validated, in part, by direct
comparisons with analytical theory and independent computa-
tions (sections 3.1–3.2). Section 3.1 addresses the mobility of
uncharged bare spheres in charged gels, highlighting that a small
but finite mobility reflects the particle dielectric constant, even
when polarization effects are accounted for. This section also
provides a direct validation of an analytical theory that captures
relaxation effects. Section 3.2 provides direct comparisons with
independent calculations of Allison et al. 2 for particles with uni-
form (step-like) coatings. The low-ionic-strength (Hückel) limit
in which the electrophoretic mobility and diffusion coefficient
furnish the net particle charge is revealed. Also identified is a high-
ionic-strength limit for polyelectrolyte-coated spheres in which
the mobility is independent of the gel permeability. The model
is applied in section 3.3 to study how corona architecture affects
the electrophoretic mobility and the degree to which a perfectly
uniform coating might approximate more realistic inhomogeneous
coatings. Section 3.4 applies the model to gold nanoparticles
bearing inhomogeneous (PEGylated) coronas bearing peripheral
charge. Highlighted is how the polarization and relaxation effects
depend on nanoparticle size and charge. Interestingly, polarization
and relaxation are found to reflect the charge, which scales with
the square of the particle size. Thus, small nanoparticles exhibit
weak polarization and relaxation effects, whereas larger nanopar-
ticles exhibit profound relaxation effects. Finally, section 3.5 inter-
prets experiments of Zhu and Mason 28 to separate carboxylated
polystyrene nanoparticles using passivated gels. These calcula-
tions demonstrate surface-charge regulating aspects of the more
general electrokinetic model. Quantitative interpretations of the
experiments are proposed, and several recommendations are sug-
gested for reporting and interpreting gel-electrophoretic mobilities.
Conclusions are summarized in section 4.

2 Theory

The fundamental equations, applied outside the particle core with
radius a, surface charge density σ , and dielectric constant ε0εp,
comprise the Poisson, ion-conservation, and fluid momentum and
mass conservation equations. These are well known, and, in the
notation of Hill 11 , are

−ε0εs∇
2
ψ = ρm +ρ f ,
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0 =−~∇ ·
(

ni~u−Di~∇ni− zie
Di

kBT
ni~∇ψ

)
(i = 1, ...,N),

0 = η∇
2~u−~∇p− η

`2
c
(~u−~V )− η

`2
g
~u−ρm~∇ψ,

~∇ ·~u = 0

with

ρm =
N

∑
j=1

z jen j and ρ f =
N

∑
j=1

ρ f , j.

Here, ψ is the electrostatic potential, ~u and p are the fluid velocity
and pressure, and n j are the mobile-ion concentrations with each
ion having its distinct charge z je and mobility D j/(kBT ), where
D j is a diffusion coefficient, kBT is the thermal energy, and e is
the fundamental charge. Furthermore, ρm and ρ f denote the
mobile (in the electrolyte) and immobile (on the corona and
gel skeletons) charge densities . Physical properties include the
solvent/electrolyte dielectric constant ε0εs and shear viscosity η .

The Brinkman screening length for the corona or gel, `c/g, is re-
lated to number densities of Stokes resistance centers ns,c/g, which
exert a drag force (per unit volume) on the fluid −6πηFsas,c/g(~u−
~us), where Fsas,c/g is the hydrodynamic radius of a center with
physical radius as,c/g, Fs ≥ 1 is a dimensionless function of the total
resistance-center volume fraction φ = (ns,ca3

s,c +ns,ga3
s,g)4π/3, and

~us is the segment velocity. It follows that `−2
c/g = 6πFsas,c/gns,c/g. For

segments that form the corona, ~us =~V (particle velocity); whereas
~us = 0 for segments that form the (stationary) gel.

Solutions of the foregoing equations are sought when the parti-
cle and gel are subjected to a uniform electric field ~E in the absence
of a far-field pressure gradient. Under these conditions, the par-
ticle attains a steady translational velocity ~V , which, based on
linearity and symmetry considerations, is co-linear with ~E. Charge
on the gel also drives an electroosmotic flow in the far field with
fluid velocity12

~U = ~Ueo ≡
ρ0

m`
2
g

η
~E,

where ρ0
m is the equilibrium mobile charge density in the gel

(minus the equilibrium fixed-charge density ρ0
f ). To satisfy the

model equations, boundary conditions, and the particle equation
of motion, the equations are first solved at equilibrium (~E =~V =
~U = 0), furnishing an equilibrium electrostatic potential ψ0, mobile
ionic concentrations n0

j , and fixed charges ρ0
f , j (complimentary to

each mobility-ion species). This requires solutions of a non-linear
Poisson-Boltzmann equation, which are obtained using Newton
iteration with an adaptive finite-difference grid. The equilibrium
variables are then linearized about their equilibrium values and
computed when the particle is translated at a velocity ~V (forcing
vector ~X =~V ) or subjected to an electric field ~E (forcing vector ~X =
~E). The linearized equations for the so-called E- and V - problems
are then superposed to satisfy the boundary conditions and particle
equation of motion. Technical details, including those accounting
for charge-regulation chemistry, are available elsewhere14, and
so only essential modifications to the earlier formulations are
highlighted here.

In this paper, the model is applied with N = 4 electrolyte-ion
species (indices j = 1, ..., 4) corresponding to H+, Cl−, Na+ and

OH−. Unless stated otherwise, fixed charge on the corona and
gel comes from the complete dissociation of H+ (index j = 1).
Thus, the equilibrium dissociation constants for the underlying
charge-regulation models are generally set to values that eliminate
charge regulation; under these conditions, it follows that the total
fixed charge ρ f (from the corona and gel) equals the equilibrium
contribution from the dissociation of H+, i.e., ρ f = ρ0

f ,1.
The forces on the core-corona composite are from electrical

and hydrodynamic tractions and body forces, obtained by adding
those recently derived for soft spheres in Newtonian electrolytes11

to those for bare spheres in gels12 and subtracting the common
terms, giving

~FX = −(4/3)πa2~X [η( f̂rrra+ f̂rr−6 f̂ra−1 +6 f̂ a−2)−ρ
0
m(ψ̂−aE/X)]

− σ(4/3)πa2~X [ψ̂r +2ψ̂a−1−3E/X ]+ (4/3)πa3~V η`−2
g

+ (4/3)π~X
∫

∞

r=a
{ρ0

f [3r2E/X− (ψ̂r2)r]−
N

∑
j=1

ρ̂ f , jr2
ψ

0
r }dr

+ (4/3)πη~X
∫

∞

r=a
`−2

c [2( f̂ r2)r +3r2(U−V )/X ]dr. (1)

The hatted variables are radial functions furnishing the pertur-
bations to the fluid velocity, ~u(~r) = ~∇× [ f (r)~X ×~er] + ~U , electro-
static potential, ψ(~r) = ψ0(r)+ ψ̂(r)~X ·~er−~E ·~r, electrolyte ion con-
centrations, n j(~r) = n0

j(r)+ n̂ j(r)~X ·~er, and fixed charge densities,

ρ f , j(~r) = ρ0
f , j(r)+ ρ̂ f , j(r)~X ·~er

11,12. All the functions in Eqn. (1)
not in the integrands of the two radial integrals are evaluated on
the core surface (radial position r = a).

The (dimensional) absolute electrophoretic mobility†

M =V/E

is obtained by solving (i) a so-called V -problem in which the
particle translates with velocity~V in an electrolyte that is stationary
in the far field (~U = 0) with no applied electric field (~E = 0),
furnishing a force ~FV = FV~V ; and (ii) a so-called E-problem in
which the particle is stationary (~V = 0) when subjected to an
electric field ~E, furnishing a force ~FE =FE~E. In both problems, the
far-field pressure gradient is taken to be zero. Then, applying the
principle of linear superposition, the particle equation of motion
~FV +~FE = 0 furnishes a mobility

V
E

=−FE

FV ,

which is valid when the applied electric field is sufficiently weak.
A careful comparison of the foregoing equations and boundary

conditions with those underlying the MPEK package, for example,
reveals that they can be solved with modifications to the com-
puter code that solves the soft-sphere electrokinetic model of Hill
et al. 15 . In particular, these modifications entail: (i) introduction
of separate Stokes-resistance-center and fixed-charge density pro-
files for the corona and gel phases; (ii) adding these contributions

† Note that variables V , E, U , Ueo are the signed magnitudes of the respective (co-linear)
vectors; so, for example, ~E = E~ez, where~ez is a unit vector in the z-direction.
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to the appropriate entries of the global matrix of finite-difference
coefficients; (iii) changing the exponents for the far-field power-
law decay of the fluid velocity to reflect Brinkmanlets (rather than
Stokeslets); and (iv) evaluating the forces directly, using Eqn. (1),
rather than via the asymptotic coefficients for the far-field decay
of the fluid velocity. In both the foregoing V - and E-problems, the
far-field velocity disturbances decay as r−3 (Brinkmanlet) rather
than the more familiar r−1 (Stokeslet) as r→ ∞13.

The computer code was thoroughly tested by making direct
comparisons with: (i) analytical theory for uncharged spheres in
gels, including relaxation effects; (ii) independent calculations
from recent literature addressing core-shell particles with perfectly
uniform coronas, without charge regulation; (iii) previously cal-
culated mobilities and drag coefficients for bare spheres in gels,
with and without charge regulation; and (iv) previously calculated
free-solution mobilities and drag coefficients for core-shell parti-
cles bearing complex, charge regulating coronas. All the results
presented below, with the exception of a theoretical interpretation
of experiments reported by Zhu and Mason 28 , neglect charge
regulation.

3 Results and discussion
We will focus primarily on the particle velocity relative to the
bulk electroosmotic flow, thus motivating the dimensionless rela-
tive/intrinsic electrophoretic mobility

M∗−M∗eo =
3ηe

2εsε0kBT
(V −Ueo)

E
.

In the next two subsections, the coronas have a Stokes-resistance-
center density profile (three parameters ns,c,0, L and δ)

ns,c(r) = ns,c,00.5erfc[−(r−L−a)/δ ], (2)

as depicted in figure 1. Note that this becomes a step-like distri-
bution (as adopted in the soft-sphere model of Allison et al. 2 and
others) when δ/L→ 0. For these coronas, the fixed charge density
is taken to be proportional to ns,c(r), so (three parameters n f ,c,0, L
and δ)

ρ f ,c(r) =−en f ,c,00.5erfc[−(r−L−a)/δ ]. (3)

A more sophisticated Stokes-resitance-center and fixed-charge
density profiles are adopted below to model nanopaticles bearing
uncharged ligands with charged end-groups, otherwise termed
peripheral charge14.

While the fixed charge densities in this paper mostly correspond
to the complete dissociation of H+, the computer program devel-
oped permits the user to prescribe, for all of the N ion species
(indices j = 1, ...,N), a radial number density ns,c/g, j(r) of Stokes
resistance centers, each having Stokes radius as,c/g, j, and a radial
number density of binding sites n∗f ,c/g, j(r) with valence −z j, and
equilibrium dissociation constants (two for each species) K1/2,c/g, j.

For simplicity, the gels are prescribed to be uniform, so ns,g and
ρ f ,g are constants, and all the equilibrium dissociation constants
are set so that there is either zero or complete dissociation of
H+, and zero dissociation or association of all other ions from the
corona and gel. It follows that the total Stokes-resistance-center
and fixed-charge densities are ns(r) = ns,c(r) + ns,g and ρ f (r) =

Fig. 1 Schematic of a charged polyelectrolyte-coated nanoparticle under-
going electrophoresis in a charged hydrogel (with prototypical core-shell
architecture) according to Eqns. (2) and (3). Here, negative charge is im-
mobilized on the core surface (surface charge density σ ) and throughout
the corona and gel (fixed charge density ρ f = ρ0

f ,1 from the dissociation
of H+) with the corona segment density ns predominantly uniform within
a distance L of the core surface. Moreover, fixed charge comes from
the dissociation of H+ with the dominant ions (here at high bulk ionic
strength) within the corona being Na+ (equilibrium concentration n0

3) and
Cl− (equilibrium concentration n0

2). Streamlines depict fluid motion (on the
symmetry plane) during force-free electrophoretic translation, co-linear
with a horizontal applied electric field.

ρ f ,c(r)+ρ f ,g with r ≥ a.

The model and its numerical solution are complex, motivating a
thorough testing of the newly developed computer code by direct
comparison to independent analytical and numerical solutions,
albeit in limited regions of the parameter space. The next two
subsections undertake such tests, also uncovering new physical and
mathematical insights into the more general gel-electrophoresis
problem; these include a finite mobility for uncharged dielectric
spheres in charged gels, Hückel and Smoluchowski limits for soft
spheres in gels, and a quantitative interpretation of passivated
gel-electrophoresis data for charge-regulated nanospheres (with
weak steric interaction).

3.1 Uncharged dielectric spheres in charged gels

An interesting test case, for which an exact analytical formula
is available to capture relaxation effects, is the electrophoretic
translation of an uncharged sphere in a charged gel. Mohammadi
and Hill 18 derived an exact analytical formula for the electric-
field-induced force on such a sphere (radius ah) immobilized in
a charged, compressible gel (charge density ρ f and permeability
`2). For the incompressible gels of interest here, the electric-field-
induced force is

~FE
MH = −6πa`2

ρ f [1+a/`+(a/`)2/3]~E

+
2πa3ρ f [(κa+1)2 +1]~E

(κa+1)2 +1+(εp/εs)(κa+1)
,
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which becomes independent of the ionic strength when the di-
electric contrast between the particle and electrolyte is very large,
and otherwise varies with the ionic strength because of relaxation
effects. Whereas the free-solution electrophoretic mobility of bare
spheres is independent of the particle dielectric constant when the
relaxation effects are accounted for19, the theory of Mohammadi
and Hill shows that the electrical force in charged gels actually
depends on the dielectric contrast. This interesting result seems to
have been overlooked in the literature, and the theory has yet to
be verified by an independent numerical calculation.

To make such a comparison, note that drag force on an un-
charged sphere translating in a gel is13,22

~FV
B =−6πηaFB(a/`)~V ,

where the Brinkman factor

FB(a/`) = 1+a/`+(a/`)2/9. (4)

Thus, from the particle equation of motion, ~FE
MH +~FV

B = 0, a (di-
mensional) absolute electrophoretic mobility is predicted:

M =−
ρ f `

2

η


1+a/`+(a/`)2/3− (1/3)(a/`)2[(κa+1)2+1]

(κa+1)2+1+(εp/εs)(κa+1)

1+a/`+(a/`)2/9

 . (5)

The relative mobility, which is small but finite, is shown in figure 2
with particle dielectric constants εp = εs/2 (a) and 2εs (b). These
furnish mobilities that vary with the ionic strength because of re-
laxation effects. There is clearly excellent agreement between the
numerical and analytical solutions at all ionic strengths, thereby
(i) independently validating the analytical theory of Mohammadi
and Hill 18 and (ii) verifying, in part, the present numerical solu-
tion. Calculations undertaken with εp/εs→ 0 and εp/εs→ ∞ (not
shown) were indeed independent of the ionic strength, as pre-
dicted by Eqn. (5), attaining negative (positive) relative mobilities
when εp/εs→ 0 (∞). In figure 2, the numerical calculations under-
taken without the ion-concentration perturbations (dashed lines)
are independent of the ionic strength; these also show that the re-
laxation effects vanish at low ionic strength (κa→ 0). Interestingly,
the calculations with and without relaxation effects asymptote to
distinctly different limits at high ionic strength, agreeing only at
vanishing ionic strength.

3.2 Step-like coronas

Rarely addressed is that the mobility should asymptote the ana-
logue of the well-known Hückel mobility for free-solution elec-
trophoresis of bare particles (when neglecting steric friction in
gels) at vanishing ionic strength. This limit holds irrespective of
the particle charge, and is generally difficult to resolve numeri-
cally, because the Debye length must be very large compared to
the particle radius. Under these conditions, an extremely high
electrostatic potential (at fixed particle charge) may prevail, neces-
sitating solutions of the non-linear Poisson-Boltzmann equation.
Such challenges were highlighted by Allison et al. 2 , who noted
that their computational method is limited to κa varying over a
several decades centred on κa ∼ 1. As demonstrated below, the
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Fig. 2 Gel-electrophoretic mobilities for uncharged bare spheres (a =

43.2 nm) with dielectric constant εp = εs/2 (a) and 2εs (b) in charged gels
(ρ f =−4 kC m−3): `= 10, 23.5 and 100 nm (top to bottom). Solid (dashed)
lines are numerical calculations with (without) the relaxation effects, and
dashed-dotted lines are from Eqn. (5).

Hückel limit is generally not realized for nanoparticles with the
(small) size and charge considered by Allison et al. until κa . 10−2.
Moreover, we will see that for larger and more highly charged
nanoparticles, the Hückel limit is realized only when κa . 10−4.

In the Hückel limit, the bare Coulomb force ze~E balances the
hydrodynamic drag −6πηah(~V − ~Ueo) (both irrespective of the
nanoparticle architecture), furnishing a (dimensional) relative
electrophoretic mobility‡

M−Meo =
ze

6πηah
(κa→ 0), (6)

‡ The symbol Meo =Ueo/E denotes an electroosmotic mobility for the gel, so M−Meo =

(V −Ueo)/E is the particle’s relative electrophoretic mobility, i.e., the mobility in a
frame of reference translating with velocity Ueo.

6 | 1–20Journal Name, [year], [vol.],



where ah/a = F(L/a, `c/a, `g/a) ≥ 1 is the ratio of the effective
hydrodynamic radius ah to the core radius a. Note that ah de-
pends on the corona thickness L, corona Brinkman length `c, and
medium/gel Brinkman length `g

13. In this study, the net particle
valence (arising from charge on the core and corona) is conve-
niently ascertained by numerically evaluating the integral16

z =
N

∑
j=1

n∞
j z j

∫
∞

a
(e−z jeψ0/(kBT )−1)4πr2dr. (7)

The resulting mobilities furnished by Eqn. (6) are shown in the
figures below as horizontal dashed lines at low ionic strength.
When compared to the full calculations, for which the smallest
values of κa are limited by the solubility product of water to ionic
strengths ≥ 10−4 mM, these provide compelling asymptotic limits
that also validate, in part, the full calculations.

The mobility ionic-strength relationship for nanoparticles with
charged cores, bearing various fixed surface charges and un-
charged coronas, is shown in figure 3. With a few minor ex-
ceptions (set out in the figure caption), the parameters are the
same as prescribed by Allison et al. 2 in their figure 4. Here, how-
ever, their calculations have been extended (from κa ∼ 0.1) to
much lower ionic strengths where the foregoing Hückel limits are
reached: abscissa 2+ log10(κa). 1 for the most weakly charged
particle (valence z ∼ −10); and 2+ log10(κa) . 0 for the most
highly charged particle (valence ∼ −40). Thus, whereas Allison
et al. noted that their theories with and without the relaxation
effects converge to the same values at high ionic strengths, we
now see that these also converge to the same values at vanishing
ionic strength.

Calculations undertaken with (solid) and without (dashed)
the relaxation effects show that these are significant only for
the most highly charged particles at intermediate ionic strengths
(2+ log10(κa)∼ 0.5–2). At the higher ionic strengths for which mo-
bilities were reported by Allison et al. 2 , the independent solutions
are readily verified to be in almost perfect agreement. There is
one ostensible discrepancy between the mobilities for the highest
charged particle (valence z≈−40) without the relaxation effects
at low ionic strengths.

A clue as to the source of the foregoing discrepancy comes from
the limiting mobilities at vanishing ionic strength, reported by
Allison et al. 2 to be ≈ −0.91, −1.86, and −3.73 for the particles
with valences z =−9.8, −19.6, and 39.2, respectively. In figure 3,
the limiting mobilities (horizontal lines) were independently calcu-
lated from Eqn. (6) using the valences prescribed by Allison et al.
and the hydrodynamic size for these core-shell nanoparticles in the
gel furnished by the exact theory of Hill and Li 13 , F = ah/a≈ 1.694.
The resulting mobilities are ≈−0.915, −1.83, and −3.66, whereas
the limiting values from the full calculations, at the lowest ionic
strength available (10−4 mM), are ≈ −0.913, −1.83, and −3.65
(with relaxation effects, and therefore with smaller mobility mag-
nitude than without relaxation effects), and ≈−0.913, −1.83, and
−3.65 (without relaxation effects).

As to be expected, the full calculations undertaken here without
the relaxation effects all fall slightly short of the exact limiting
values, since the full calculations approach the limits with an

increasing mobility magnitude. In contrast, the limits of Allison
et al. 2 , also without relaxation effects, have magnitudes that
slightly exceed the exact values. Thus, while these discrepancies
have negligible practical significance, they do identify subtleties
that need to be resolved, presumably for highly-charged particles
without the relaxation effects. These may reflect the low-charge
approximation that Allison et al. 2 used to compute mobilities at
the lowest ionic strengths§.
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Fig. 3 Gel-electrophoretic mobilities for spheres (a = 4.05 nm) bearing
different surface charge densities (valences z =−9.8, −19.6, 39.2) and a
uniform uncharged coating (L = 2 nm, `= 1 nm). Particles are dispersed
in uncharged (ρ f = 0, `= 14.33 nm) and charged gels (ρ f =−5 kC m−3,
`= 14.33 nm): the lower limit on κa (abscissa ≈ 0.75) identifies charged
gels with vanishing added salt. Parameters are as prescribed in figure 4
of Allison et al. 2 , except: (i) perfectly uniform (step) coatings are approxi-
mated here using a complementary error function (with δ/L = 1/100); and
(ii) the electrolyte here contains H+ counterions of the charged gel with
added NaCl and OH− with [H+][OH−] = 10−14 M2. Red dashed lines are
calculations without ion-concentration perturbation (“relaxation") terms.
Horizontal lines are the Hückel mobility furnished by Eqn. (6). All mobilities
(calculated without steric friction) have been multiplied by the steric factor
1/(1+0.1139) prescribed by Allison et al. 2

A more challenging test is to calculate the mobilities of nanopar-
ticles with a fixed core surface potential at high ionic strengths.
In this limit, the Debye length becomes very small compared to
the particle as the particle charge increases with increasing ionic
strength. Despite a divergence of the charge with increasing ionic
strength, the mobility remains finite, because the electrical force is
balanced by a viscous shear force. Such calculations were demon-
strated by Allison et al. 2 in their figure 7, again for very small
nanoparticles bearing uncharged coronas. These data are repro-
duced in figure 4 using the present model. Again, it is readily
verified that the independent computational methods (with relax-
ation effects) are in excellent agreement. At high ionic strengths

§ Mobilities calculated without the relaxation terms depend on the core dielectric con-
stant. Here and elsewhere in this paper, the dielectric constant for the core εp� εs

when excluding the relaxation terms; this generates an electric-field-perturbation
that drives electromigration fluxes that are tangent to the core surface, thus avoid-
ing the requirement for normal diffusion fluxes (and therefore ion-concentration
perturbations) to maintain a constant surface charge (and zero ion fluxes) at r = a.
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(2+ log10(κa)& 4), both solution methods breakdown before the
high κa asymptotes (analogues of the Smoluchowski limit for
bare spheres) can be reached. For such small particles, however,
the ionic strengths and accompanying surface charge densities
(with fixed surface potentials) become so high as to be grossly
unphysical.

A final point to be made from figure 4 concerns the relaxation
effects, which are evidently very significant. However, a fixed
particle charge (as applied in figure 3) generally furnishes a much
more physically acceptable approximation, in which case relax-
ation effects impacting the interpretation of experiments with very
small nanoparticles are much less significant than suggested by
plots such as figure 4. This is because increasing the ionic strength
while maintaining a fixed charge is accompanied by a decreasing
electrostatic potential, placing all calculations in a regime where
non-linear electrostatics and ion-concentration perturbations even-
tually become negligible. The relaxation effects for larger and,
thus, generally more highly charged particles, are much more
important, as discussed in the sections below.
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Fig. 4 Model and computational validation by reproduction of figure 7 of
Allison et al. 2 for spheres (a = 1 nm) bearing different surface ζ -potentials
(ζ ∗ =−1,−3,−5) and a uniform, uncharged coating (L= 0.5 nm, `= 1 nm).
Here, particles are dispersed in uncharged gels (ρ f = 0, ` = 38.38 nm).
Dashed lines are calculations without ion-concentration perturbation (“re-
laxation") terms. Parameters are the same as Allison et al. 2 , except:
(i) their perfectly uniform (step) coatings are approximated here using a
complementary error function (with δ/L = 1/100); and (ii) the electrolyte
here contains H+ counterions of the charged gel with added NaCl and
OH− with [H+][OH−] = 10−14 M2. All mobilities (calculated without steric
friction) have been multiplied by the steric factor 1/(1+0.0042) prescribed
by Allison et al. 2

3.3 Polyelectrolyte coronas

Having now verified the computational methodology, in part, by
comparing results for core-shell nanoparticles having perfectly
uniform coronas with previous literature, we turn to the gel-
electrophoretic mobilities of nanoparticles with more complex
and, therefore, more realistic coronas. For the polyelectrolyte-
coated particles in this section, we will consider, in addition to the

Hückel limit at low ionic strength, the limiting mobility at high
ionic strength. Based on the well-known free-solution mobility
for polyelectrolyte-coated particles at high ionic strength15,20, the
limiting (dimensional) relative mobility in a gel is found to be

M−Meo =
ρ f ,c`

2
c

η
(κa→ ∞, `c/L� 1, `c/`g� 1). (8)

The gel permeability does not explicitly enter this formula, be-
cause the gel attenuates the external flows in the so-called V -
and E-problems in exactly the same way. In the V -problem, the
disturbance is that in a Brinkman medium with velocity ~V at the
hydrodynamic radius ah. In the E-problem, the electroosmotic
flow disturbance generated by the particle at high ionic strength is
one where the velocity at the hydrodynamic radius is the electroos-
motic flow velocity ~Ueo =−ρ f ,c`

2
c~E/η . Since the net forces on the

particle in both problems arise from the external hydrodynamic
disturbances (Brinkman flows), which only differ by the velocity at
the particle surface, the particle equation of motion may be writ-
ten without having to prescribe the gel-permeability-dependent
prefactors, i.e., −V +ρ f ,c`

2
cE/η = 0, which is Eqn. (8).

In this section, we also evaluate an hypothesis of Hill 12 that
permits the gel-electrophoretic mobility for any nanoparticle archi-
tecture to be predicted from knowledge of its free-solution mobility
and its diffusion coefficient in a gel. This approximation can be
written

M−Meo ≈
M(`g/ah� 1)

FB(`g/ah)
(κa� 1, `g/ah & 1), (9)

where M(`g/ah� 1) is the free-solution mobility, e.g., measured
using a commercial light-scattering electrophoresis instrument or
calculated theoretically with `g � ah, and FB is the ratio of the
drag coefficient (reciprocal Brownian diffusivity) in the gel to the
drag coefficient in pure electrolyte.

The mobility of nanoparticles bearing uniformly charged coro-
nas is shown in figure 5. Note that the coronas are not perfectly
uniform, but have a diffuse periphery with δ = 0.1L. For simplicity,
they are fully charged, in the sense that the fixed charge density
is proportional to the polymer segment density with no charge
regulation. Six principal curves are shown for gels that are either
highly permeable (`g = 100 nm) or weakly permeable (`g = 10 nm)
with three charge densities ρ0

f ,g = 0, −1, −4 kC m−3. The curves
span the range of electrolyte ion concentrations from as low as
10−4 mM in uncharged gels containing pure water (and higher in
charged gels with counterions) to 10 M (from added NaCl).

Approximations of the limiting mobilities at vanishing ionic
strength are furnished by Eqn. (6) with z ≈ −68 from Eqn. (7)
and FB from the theory of Hill and Li 13 for core-shell particles
with perfectly uniform coronas. Since δ/L > 0, FB according to
the theory of Hill and Li 13 is expected to be slightly higher than
from the full calculation. Nevertheless, the approximation clearly
provides a satisfactory extrapolation of the full calculations to
vanishing ionic strength, highlighting that the differences in the
mobilities reflect the different hydrodynamic drag coefficients
in low- and high-permeability gels. At high ionic strength, the
mobilities in the low- and high-permeability gels converge to the
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value predicted by Eqn. (8), and are therefore independent of the
gel charge and permeability, reflecting only the charge density and
permeability of the nanoparticle corona. Finally, the three dashed
curves in figure 5 are the mobilities in the low-permeability gel
predicted using Eqn. (9), here using the relative mobilities from the
high-permeability gels and FB according to the theory of Hill and
Li 13 . This clearly provides an increasingly accurate approximation
with decreasing ionic strength, as predicted by Hill 12 .
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Fig. 5 Gel-electrophoretic mobilities of spheres (a = 2.5 nm, σ =

−1.5 µC cm−2) bearing uniformly charged coronas (L = 5 nm, δ = 0.5 nm,
`c,0 = 1 nm, ρ0

f ,c =−nse/100, ns,0 ≈ 5.87 M, as = 0.15 Å) in gels with charge
densities ρ0

f ,g = 0, −1, −4 kC m−3, and `g = 10, 100 nm. Dashed curves
are mobilities in the low permeability gels (`g = 10 nm) approximated using
the mobilities in high-permeability gels (`g = 100 nm) according to Eqn. (9)
for κa� 1. Horizontal lines are the low- and high-κa asymptotes accord-
ing to Eqns. (6) and (8). The lower limit of κa for each curve identifies
the ionic strength at vanishing added salt (10−7 M for uncharged gels
containing pure water, and higher for charged gels containing pure water
and counterions).

The approximate theories augmenting figure 5 were evaluated
using the drag coefficient for core-shell particles (with perfectly
uniform coronas) in gels. The exact drag coefficients, which ac-
count for the specific nanoparticle architecture, electroviscous
effects, and the gel are provided in figure 6. The most significant
influence is, of course, the hydrogel permeability. The electro-
viscous effects, which manifest as an ionic-strength dependent
drag coefficient, vary with the hydrogel charge. For bare parti-
cles in gels, this has previously been attributed to the mobility of
the dominant counterion. Here, the dominant counterion is the
gel counterion H+ when the added salt (NaCl) concentration is
very low, and is otherwise Na+. Because H+ has an unusually
high mobility, the electroviscous effects practically vanish as the
concentration of Na+ becomes small compared to that of H+.

Figure 6 also shows the drag coefficient from the hydrodynamic
theory (no electroviscous effects) of Hill and Li 13 for particles
bearing perfectly uniform coronas. These furnish a lower bound
on the exact drag coefficient, since (i) electroviscous effects are
neglected, and (ii) the diffuse corona periphery (here δ = 0.1L)
increases its hydrodynamic thickness. Similarly to figure 5, the
three dashed curves in figure 6 are obtained by multiplying the

drag coefficient in the highly permeable gel by the ratio of the drag
coefficient in the low-permeability gel to the value in the high-
permeability gel, both approximated according to Hill and Li 13 .
This shows that the electroviscous effects in the low-permeability
gel are reasonably well captured by those in the high-permeability
gel, and are therefore the same as in pure electrolyte (with the
same dominant counterion).
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Fig. 6 Drag coefficients accompanying the mobilities in figure 5. Horizon-
tal lines are for perfectly uniform, uncharged coronas (δ/L = 0) according
to Hill and Li 13 .

The dimensionless electrostatic potential at the core surface is
shown in figure 7. As expected, this increases in magnitude with
decreasing ionic strength. With the prevailing (like signed) surface
and corona charge densities, the transition from the Debye-Hückel
region to the non-linear Poisson-Boltzmann domain, i.e., when
|ψ|≈ kBT/e occurs when I ∼ 100 mM. This corresponds to the
growth of electroviscous effects in the drag coefficients (figure 6)
and relaxation effects in the mobilities (figure 5). Charge on the
gel (weakly) impacts the electrostatic potential to a similar degree
as the relative mobilities.
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Fig. 7 Core surface potentials ζ ∗ = ζ (r = a)e/(kBT ) accompanying the
mobilities and drag coefficients in figures 5 and 6.
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To gain a better understanding of the role that finer details of the
corona segment density profile have on the relative mobilities and
drag coefficient, figures 8 and 9 show how these quantities vary
with the parameter δ that controls the rate at which the corona
segment and charge densities decay from their nominal values
(ns,c,0 and ρ f ,c,0) to zero at the radial periphery r− a ≈ L. Here,
the relative mobility and drag coefficient are plotted versus δ/L at
three concentrations of added NaCl, Is = 10−3, 1, and 103 mM (in
uncharged gels).

Whereas the drag coefficients increase significantly with δ/L,
in a manner that is practically independent of the ionic strength,
the relative mobilities decrease with increasing δ/L, in manners
that diminish with increasing ionic strength. Note that δ/L must
be . 0.1 to reasonably approximate a perfectly uniform corona
(δ/L = 0). These calculations therefore elucidate the degree to
which the results presented in figures 3 and 4, undertaken with
δ/L = 10−2, compare with those of Allison et al. 2 (δ = 0). There
are no discernible difficulties in resolving a corona that has very
rapid changes in segment and charge density. This is not surprising,
perhaps, given that the methodology resolves large gradients in
the fluid velocity, electrostatic potential, and ion concentrations
when κa� 1. Note that the exact drag coefficient agrees exactly
with the hydrodynamic theory of Hill and Li 13 when (i) δ/L is
sufficiently small (δ � 0.1L) and (ii) the ionic strength is high
enough to fully attenuate the electroviscous effects (Is� 1 mM).
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Fig. 8 Gel-electrophoretic mobilities with the same parameters as figure 6,
but here varying δ/L with fixed Is = 10−3, 1, and 103 mM (increasing
upwards).

3.4 Uncharged coronas with peripheral charge

The electrokinetic model is now applied to examine how the ionic
strength of the bulk electrolyte impacts the electrophoretic mobility
and drag coefficient of nanoparticles bearing terminally anchored
ligands with charged end-groups. Following Hill et al. 14 , the
number densities of the Stokes resistance centers and charged
end-groups are specified using Gaussian functions, as depicted in
figure 10. These can model a variety of PEG ligands that have
been used to functionalize gold and silver nanoparticles10,11. In

10
−2

10
−1

10
0

4

5

6

7

8

9

10

11

F

δ/L

Fig. 9 Drag coefficients accompanying the mobilities in figure 8 (ionic
strength increasing downward). Dashed line is the exact friction coefficient
for a perfectly uniform, uncharged corona δ/L→ 0 according to Hill and
Li 13 . The offsets as δ → 0 reflect electroviscous effects, as highlighted in
figure 6.

this paper, the Stokes-resistance-center density is

ns,c(r) = ns,c,1e−(r−L1−a)2/δ 2
1 +ns,c,2e−(r−L2−a)2/δ 2

2 (10)

with a fixed charge density (proportional to the second Stokes-
resistance-center density)

ρ f ,c(r) =−en f ,c,2e−(r−L2−a)2/δ 2
2 . (11)

Letting Na denote the aggregation number, and Ns the number
of Stokes resistance centers in a ligand, it follows that (taking
Ns� 1)

NsNa =
∫

∞

a
ns,c(r)4πr2dr ≈ 4πa3ns,c,1 f (δ1/a,L1/a = 0)

and
Nc =

∫
∞

a
n f ,c(r)4πr2dr = 4πa3n f ,c,2 f (δ2/a,L2/a),

where

f (x,y)= x2e−(y/x)2
(y+2)/2+x(1/2)

√
π(y2+2y+x2/2+1)[1+erf(y/x)].

The number of end groups Nc = Na, since each ligand is taken
to bear one terminal resistance center with valence −1 from the
dissociation of H+. In this paper, all Stokes resistance centers are
prescribed the same radius as.

Note that the Stokes-resistance-center density in Eqn. (10) is
implemented within a much more general model framework by
assigning the uncharged portion (with parameters ns,c,1, L1 and
δ1) to the Cl− ion ( j = 2 with zero fixed charge), and the charged
portion (with parameters ns,c,2, L2 and δ2) to the H+ ion ( j = 1).

The specific parameters adopted for the calculations presented
below are as follows: a = 2.7 nm, ns,c,1 ≈ 19.8 M, L1 = 0 nm and
δ1 ≈ 4.0 nm; ns,c,2 ≈ 0.178 M, L2 ≈ 4.0 nm and δ2 ≈ 1.33 nm;
Na = Nc ≈ 146, Ns = 100, and as = 0.15 Å, σ = −1.5 µC cm−2.
The net particle valence furnished by Eqn. (7) is z ≈ −154; as
to be expected, this agrees with the sum of the corona valence
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Fig. 10 Schematic of the core-corona architecture used to model function-
alized nanoparticles (e.g., carboxymethylated-PEG grafted to a gold core)
according to Eqns. (10) and (11). Here, negative charge is immobilized
on the core surface (surface charge density σ ) and in the corona periphery
and gel (fixed charge density ρ f = ρ0

f ,1 from the dissociation of H+) with
the corona segment density ns decaying monotonically with distance from
the core surface. Moreover, fixed charge comes from the dissociation of
H+ with the dominant ions within the corona (here at bulk ionic strength
I ∼ 1 mM) being H+ (equilibrium concentration n0

1) and Na+ (equilibrium
concentration n0

3).

−Nc =−146 and the core valence 4πa2σ/e≈−8.6.
The absolute gel-electrophoretic mobilities are shown in fig-

ure 11 for low- and high-permeability gels with three gel charge
densities. For the low-permeability gels (`g = 10 nm), the elec-
troosmotic flow velocity is practically zero, and so the fixed charge
density has a negligible influence on the particle mobility. For the
high-permeability gels, however, the electroosmotic flow velocities
in the gel are two orders of magnitude higher than in the low-
permeability gels. This varies the particle mobilities in proportion
to the fixed charge density (with fixed permeability). Note that the
fixed charge on the gels is negative, which drives a positive elec-
troosmotic flow in the opposite direction to the intrinsic/relative
particle mobility.

The dimensionless equilibrium electrostatic potential at the core
surface is shown in figure 12. This is somewhat higher than in
figure 7. As depicted in figure 10, the magnitude of the equilib-
rium electrostatic potential has a local maximum in the corona
periphery due to the fixed charge there. This peripheral charge
clearly increases the potential at the core surface more than for
the polyelectrolyte-coated particles in figure 7. This reflects a
much higher, and more compact, corona charge. Recall, the va-
lence of the polyelectrolyte-coated nanoparticles in figure 7 is
z≈−68, whereas the valence for the functionalized nanoparticles
in figure 12 is z≈−154.

The relative mobilities are shown in figure 13 with predictions
of the mobilities at vanishing ionic strength according to Eqn. (6)
with z =−154 from Eqn. (7), and F = 3.5 for the high-permeability
gels (`g = 100 nm) and F = 6.5 for the low-permeability gels (`g =

10 nm). These drag coefficients are taken from plots of the exact
drag coefficients F plotted in figure 14. The high-permeability gel
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Fig. 11 Absolute gel-electrophoretic mobilities for core-corona nanoparti-
cles in gels with charge densities ρ0

f ,g = 0, −1, −4 kC m−3. Solid (dashed)
lines are for gels with high (low) permeability: `2

g = 104 or 102 nm2. The
lower limit of I for each curve identifies the ionic strength at vanishing
added salt (10−7 M for uncharged gels containing pure water, and higher
for charged gels containing pure water and counterions).

furnishes a hydrodynamic radius ah ≈ 3.5a≈ 9.5 nm at high ionic
strength, which increases by a factor ≈ 6.5/3.5≈ 1.9 when placed
in the low-permeability gel.

Unlike the much more uniform polyelectrolyte coronas exam-
ined above, there is no independent theory available to predict
these drag coefficients. Nevertheless, a simple approximation is
to take the hydrodynamic radius in a pure electrolyte, ah ≈ 3.5a,
which could be determined experimentally using dynamic light
scattering, and to multiply by the Brinkman factor from Eqn. (4).
Accordingly, for the gel with `g = 10 nm, FB ≈ 2.04 furnishing
a drag coefficient in the gel F ≈ 2.04× 3.5 = 7.1, shown as the
horizontal dashed line in figure 14. This clearly over-estimates
the actual drag coefficient, but is still a very reasonable approx-
imation given its straightforward calculation. The red dashed
lines in figure 13 are the relative mobilities predicted from the
high-permeability/free-solution mobilities (`g = 100 nm) by divid-
ing by the foregoing Brinkman factor (FB ≈ 2.04). Slightly better
predictions (green dashed lines) are obtained by dividing the
free-solution mobilities by the drag coefficient from the exact cal-
culations, i.e., 6.5/3.5≈ 1.9. To obtain this factor experimentally,
however, one must measure the hydrodynamic diffusion coefficient
in a gel, which may be subject to steric influences.

A final point concerns the relaxation effects, which are evidently
much weaker than suggested by many literature calculations for
soft spheres undergoing free electrophoresis. The mobilities in
figure 8 of Hill et al. 15 , for example, exhibit much more signif-
icant influences of the polarization and relaxation phenomena.
These mobility versus ionic strength relationships often exhibit an
intermediate mobility minimum when κa∼ 1, and all appear to
increase monotonically with vanishing ionic strength. An explana-
tion for the much weaker roles of polarization and relaxation for
nanoparticle electrophoresis rests on two important factors: one is
the net particle charge, and the other is the particle size.
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Fig. 12 Core surface ζ -potential for the core-corona nanoparticles in
figure 11.

To better understand the polarization and relaxation influences,
mobilities for the nanoparticles bearing coronas in figures 11–14
are compared in the top panel of figure 15 with and without the
relaxation terms (ion-concentration perturbations); here in un-
charged gels with low and high permeability. This clearly shows
the polarization and relaxation effects manifesting when the ionic
strength I . 100 mM, which coincides with the core surface po-
tential ζ passing through ≈−25 mV (right panel). For these very
small nanoparticles (core radius ac = 2.7 nm), the mobilities with
and without the relaxation effects are qualitatively similar, in-
creasing monotonically with decreasing ionic strength, in a similar
manner to the surface potential.

The bottom panel of figure 15 shows the result of increasing
the core radius by a factor of 16 (ac = 43.2 nm), maintaining the
same corona structure. Increasing the core radius by a factor of 16
increases the hydrodynamic size by a factor of approximately 16,
and the surface area by a factor of 162 = 256. The net valence is
now z≈−39.5×103, which is indeed a factor 162 higher than for
the smaller particles in the top panel. Now, despite the particles
having the same surface charge density and corona architecture,
the weaker surface curvature manifests in a slightly higher sur-
face potential, but profoundly stronger relaxation effects. Without
relaxation effects, the larger particles have higher mobility magni-
tudes at low ionic strength, since the net charge has increased by
a factor 162 that is much larger than the increase in hydrodynamic
size (in the high-permeability gels). In the low-permeability gel
(`g = 10 nm), the relaxation effects yield a mobility magnitude that
decreases with decreasing ionic strength. Despite the high charge
and electrostatic potential, the mobility is still predominantly a
monotonic function of the ionic strength.

Removing the charged coronas from the particles in figure 15
furnishes the mobilities and core surface ζ -potentials shown in
figure 16. Now the smallest particles (a = 2.7 nm) have a net
charge that places the electrostatics mostly in the Debye-Hückel
regime. The relaxation effects are now very weak with the mobil-
ities at low ionic strength according to the Hückel limit Eqn. (6)
(M∗ = ζ ∗ in solution without gel), and the mobilities at high ionic

10
−4

10
−2

10
0

10
2

−12

−10

−8

−6

−4

−2

0

ℓg/a = 100/2.7

ℓg/a = 10/2.7

M
∗
−

M
∗ e
o

κa

Fig. 13 Relative gel-electrophoretic mobilities for the core-corona
nanoparticles in figure 11 (solid lines). Red dashed lines are obtained
from the mobilities in high-permeability gels (relative mobilities approx-
imately equal to the free-solution mobility) by dividing by the Brinkman
factor 1+ah/`g+(ah/`g)

2/9≈ 2.04 (with ah ≈ 3.5a, see figure 14), whereas
the green dashed lines are obtained by dividing the free-solution mobility
by the actual drag coefficient ≈ 6.5/3.5≈ 1.9 (at high ionic strength, see
figure 14). Horizontal lines are the Hückel mobilities furnished by Eqn. (6).

strength according to the Smoluchowski limit (M∗ = 3ζ ∗/2 in so-
lution without gel). The large particles, despite having the same
surface charge density, have a much higher surface ζ -potential at
low ionic strength, and a lower ζ -potential at low ionic strength.
These are also subject to very strong relaxation effects, with the
particles in low- and high-permeability gels all having a local
mobility magnitude maximum when I ∼ 1 mM.

The free-solution mobilities (dashed lines) are also shown in
the left panels of figure 15 according to the well-known Henry
formula, which can be written

M∗ = ζ
∗H(κa) (ζ ∗� 1), (12)

where the Henry function H(κa) transits from 1 when κa→ 0
to 3/2 when κa→ ∞. At very low ionic strengths, the Henry
formula is in excellent agreement with the calculations for highly
permeable gels without relaxation effects, but is a poor model
for larger spheres at low ionic strengths, because the relaxation
effects are significant. The the practical consequences of these
observations are underlined below when applying the model to
interpret gel-electrophoresis experiments performed on similarly
sized nanoparticles in passivated agarose gels.

3.5 Passivated gel-electrophoresis: nanoparticles with pH
charge-regulated surfaces

Zhu and Mason 28 recently separated polystyrene nanoparticles
bearing different surface charge densities in passivated agarose
gels, to which polyethylene glycol is added to prevent particle
adhesion27. Here, the surface charge moieties are small enough
for the particles to be considered bare spheres. With a radius
a≈ 42 nm, and a buffer furnishing κa≈ 10 (5 mM ionic strength,
Debye length κ−1 ≈ 4.0 nm), Zhu and Mason reported the mobility
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2/9≈ 2.04 and ah/a≈ 3.5 with `g = 10 nm.

(at high pH where the particles are fully charged) to be −4.2×
10−7 m2 s−1 V−1. When expressed as a dimensionless mobility,
this is M∗ ≈ −32, which is extraordinarily high. As highlighted
by Zhu and Mason, Palanisami and Miller 21 reported the free-
solution mobility of larger polystyrene spheres (radius a≈ 228 nm)
in buffer having ionic strength ≈ 63 mM (with pH ≈ 7.4) to be
−3.07×10−8 m2 s−1 V−1, which is M∗ ≈−2.9.

Zhu and Mason used the Hückel formula to convert their mo-
bilities to a particle valence, which we have seen is questionable
for highly charged particles at ionic strengths where (i) the dif-
fuse double layer has a finite thickness, and (ii) polarization and
relaxation effects are significant. Despite the potential pitfalls,
the Hückel formula furnishes z ≈ −1900 or σ ≈ −1.3 µC cm−2,
which is physically acceptable and superficially compatible with
literature. For example, studies that have carefully analyzed the
free-solution electrophoretic mobilities of latex spheres5, using the
non-linear Poisson-Boltzmann equation and the theory of O’Brien
and White 19 to account for relaxation effects, find surface charge
densities 1–8 µC cm−2 (where 1 µC cm−2 ≈ 0.06e nm−2). Thus,
when interpreted using the Hückel formula, the surface charge
density emerging from an anomalously high mobility appears to
be physically acceptable. As demonstrated below, this reflects a
cancellation of errors.

In an attempt to account for the finite thickness of the dif-
fuse double layer (still neglecting relaxation effects), applying the
Henry formula (with κa ≈ 10) to the mobility of the particles in
Zhu and Mason’s experiments furnishes ζ ≈−650 mV, which leads
to a surface charge density (from the LOW tables for κa > 0.5,
Russel et al. 24) σ ≈−8000e nm−2. These are both extraordinarily
high and physically unacceptable. On the other hand, the Henry
formula (with κa≈ 190) applied to the mobilities of the particles

in Palanisami and Miller’s experiments furnishes ζ ≈−50 mV and
(from LOW tables) σ ≈−0.21e nm−2, both of which are physically
acceptable and compatible with the foregoing literature interpre-
tations of free-solution mobilities.

Because Henry’s formula neglects relaxation effects, calculations
with the relaxation effects (e.g., furnishing the mobilities in the
bottom panel of figure 16 at I ≈ 5 mM) would demand even higher
surface charge densities. Interestingly, the particles in Zhu and
Mason’s experiments are reported (by the manufacturer) to have
approximately 6000 surface charge groups28, so Zhu and Mason’s
estimate of the particle valence, −1900 (from the Hückel formula)
would suggest incomplete deprotonation at the highest pH val-
ues where their mobilities (and by inference the charge/valence)
plateau to limiting values.

To address the foregoing anomalies, let us now turn to an
interpretation of Zhu and Mason’s data using the present gel-
electrophoresis model, which will account for the non-linear elec-
trostatics (high charge), pH-regulation, and relaxation effects. The
following interpretation is undertaken with an assumption that the
mobilities of Zhu and Mason 28 are proportional to the measured
velocities, but inversely proportional to an (unknown) electric-field
strength that will be ascertained by fitting their reported veloc-
ities/mobilities to the theoretical model (via a constant scaling
factor). Following Zhu and Mason 28 , it will also be assumed that
the electroendoosmotic flow in their gels is negligible.

The carboxylated polystyrene spheres with nominal radius a =

42 nm are reported to have −z0 ≈ 6000 carboxyl surface moieties.
Thus, if these were fully dissociated (at high pH), the surface
charge density σ0 ≈ −0.271e nm−2 ≈ −4.34 µC cm−2. Note that
the average charge separation is ≈ 1.9 nm, which is small, but still
larger than the Bjerrum length (≈ 0.7 nm) so we might still expect
to achieve complete deprotonation at high pH.

Zhu and Mason 28 interpreted their data assuming that the mo-
bilities are proportional to a surface charge density that varies with
the buffer pH according to an acid-dissociation model, furnishing

z =
z0

1+10pKa−pH (13)

with pKa = 4.6 providing the best fit to their mobility data. This
charging relationship is shown as the dashed line in figure 17(b).

To model a pH charge-regulating surface, a bare uncharged
sphere is now endowed with a very thin pH charge-regulating
polyelectrolyte surface layer. The radial distribution of carboxyl
moieties is prescribed with a distribution of Stokes resistance
centres

ns,c(r) = ns,c,1e−(r−a)2/δ 2
(14)

with a fixed charge density

ρ f ,c(r) =
−ens,c(r)

1+10pKa(r)−pH(r)
. (15)

While the charge-dissociation model is the same as adopted by
Zhu and Mason, here it is applied locally, so [H+](r) = 10−pH(r) =

[H+]∞e−ψ(r)/kBT with ψ(r) the local electrostatic potential and
[H+]∞ the bulk hydronium concentration. Calculations reported in
figure 17 have δ = 0.2 nm and as = 0.15 Å, with ns,c,1 in Eqn. (14)
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according to

−z0 =
∫

∞

a
ns,c(r)4πr2dr = 4πa3ns,c,1 f (δ/a), (16)

where
f (x) = x2 + x(

√
π/2)(x2/2+1).

Note that the electrokinetic model should primarily reflect the
net charge z0, not details of the radial charge distribution, via
the model parameters δ , as and ns,c,1 in Eqn. (14). This was
indeed verified to be the case (see the appendix for mobilities
calculated with a more diffuse surface charge layer, δ = 1 nm).
With such a thin layer, the hydrodynamic resistance of the Stokes
segments/fixed charge moieties is weak compared to the resistance
from the no-slip surface to which these moieties are attached.
This requires κδ . 1, which is readily verified to prevail here.
Moreover, the bulk electrolyte contains a prescribed hydronium
concentration [H+]∞ = 10−pH M with [OH−]∞ = 10−14+pH; and
[Na+]∞ and [Cl−]∞ are set to either Is = 5 mM or the value that
ensures bulk electroneutrality (according to whether the pH is
greater or less than 7). It follows that the bulk ionic strength
increases as the bulk pH deviates from 7.

As shown in figure 17, κa ≈ 10 with pH = 4–10, increasing to
κa ≈ 100 at low and high pH. Figure 17(b) compares the parti-
cle valences according to Eqn. (13) and the non-linear Poisson-
Boltzmann equation. This clearly demonstrates how the finite
electrostatic potential at the particle surface increases the con-
centration of hydronium ions with respect to the bulk, therefore
protonating a larger fraction of the carboxyl groups, reducing the
valence. Accordingly, the effective pKa is somewhat larger than
the prescribed value (pKa = 4.6), e.g., z/z0 = 1/2 when pH≈ 6.

Figure 17(c) shows the surface potential according to the non-
linear Poisson-Boltzmann equation. This increases with pH at low
pH, because of the decreasing degree of potonation, reaching a
maximum at pH≈ 7. A further increase in pH continues to increase
the surface charge, but this is accompanied by an increase in ionic
strength, which decreases the surface potential (while maintaining
a fixed charge). Also shown is the free-solution mobility for bare
spheres according to the Henry formula (12) when assuming the
ζ -potential equals the surface potential ζ ∗ =ψ∗(r = a) (reasonable
when κδ ≈ 0.0048κa� 1).

Zhu and Mason assumed that M∗ ∝ z, which according to the
Henry model (M∗ ∝ ζ ∗) implicitly demands z ∝ ζ ∗, occuring only
when |ζ ∗|. 1 and pH . 4. However, the Henry theory does
not include relaxation effects or hydrodynamic interaction with
the gel. Figure 17(d) shows mobilities with the relaxation ef-
fects for several uncharged/passivated gels having greatly vary-
ing permeabilities (`g = 10–1000 nm). Whereas the free-solution
Henry mobility reaches values as large as M∗ ≈ −5 at pH ≈ 9,
the maximum free-solution mobility with relaxation effects is
M∗ ≈−3.5. Note that the Hückel limit in the fully charged state
(z = z0 =−6000) furnishes an extremely high mobility, M∗ ≈−102
(M = z0e/(6πηa) ≈ −1.3× 10−6 m2 s−1 V−1). This is two orders
of magnitude higher than predicted by the Henry formula with the
ζ -potential prescribed by the non-linear Poisson-Boltzmann equa-
tion [dashed-dotted lines in figures 17(c) and (d)]. The Hückel

mobility is also an order of magnitude larger than reported by Zhu
and Mason.

The full calculations (solid lines) exhibit the same mobility ver-
sus pH relationship as measured by Zhu and Mason, albeit at
pH values less than ≈ 10. At higher pH values (not achieved
experimentally), the plateau mobility increases, because of an at-
tenuation of the relaxation effects, bringing the mobilities closer to
the Henry limit (dashed-dotted line). Also shown in figure 17(d)
are the experimental data (circles) and model (dashed line) of Zhu
and Mason. Note that these have been multiplied by a scaling fac-
tor that brings their plateau mobility (−1.85) into correspondence
with the full theory with `g = 10 nm (neglecting steric friction).
Note that when scaled in this manner, the data and model are in
excellent correspondence over the full range of pH.

The gel-electrophoretic model (applied here to data where steric
effects are weak) captures very well the manner in which the gel-
electrophoretic mobilities of Zhu and Mason change with respect
to pH. However, there remains the question as to how the absolute
mobility magnitudes reported by Zhu and Mason could be so
large, thus requiring an arbitrary scaling factor correction. To this
end, in a private communication, Professor Mason kindly advised
that preliminary indications (based on measuring the electrical
conductivity and considering the sample geometry) are that the
electric-field strengths are likely ≈ 40× higher than reported. This
amounts to rescaling their reported mobilities by a factor 1/40≈
0.025, thus bringing the plateau mobility in figure 17 (red dashed
line) to M∗ ≈ −2.6 from the previously estimated M∗ ≈ −1.85.
Without a steric force, the theory then suggests a gel permeability
closer to `g ≈ 20 nm. Interestingly, allowing for a steric force (as an
empirical fitting parameter) increases the permeability to a value
that is closer to the free-solution electrophoresis limit achieved
when `g & 100 nm. This seems plausible when considering the very
low agarose concentration used in these experiments (0.6 wt%).
For example, figure 6 of Zhu and Mason 27 suggests that the mesh
size in such gels is ≈ 150 nm. Based on these considerations,
figure 19 in the appendix compares the theoretical model with
rescaled experimental mobilities when `g = 1000 nm (mimicking
free-solution electrophoresis). This clearly furnishes a satisfying
fit, but now with a steric factor as the fitting parameter (steric
friction force γ = 0.2× the hydrodynamic drag force) rather than
the foregoing rescaling of the electric-field strength.

In future experimental studies, particular attention should be
given to converting the applied voltage on the electrodes to the
electric-field strength in the sample where the particle velocities
are measured. Complementary measurements of particle mobil-
ities in free solution would also be extremely beneficial, as the
theory for free-electrophoresis is much better understood, as are
the experimental methods. A concerted application of experiments
and the electrokinetic model presented herein will hopefully en-
able steric influences to be isolated and theoretically modelled
according to specific nanoparticle and gel architectures.

4 Conclusions
A comprehensive electrokinetic model has been developed for a
very broad-class of spherical nanoparticles in gels. This model
accommodates soft charged coronas with charge regulation, multi-
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component electrolytes, and ion-concentration perturbations (of-
ten termed “relaxation” or “polarization and relaxation" effects).
In this paper, the model was carefully tested by several direct
comparisons to recent literature calculations, albeit for particles
with core-shell architecture2.

New results were presented for nanoparticles bearing coronas
with inhomogeneous architectures, including those with peripheral
charge, elucidating how the particle size and charge influence
mobilities in gels with different permeabilities and charge densities.
Several interesting physical insights were gained from mobilities at
high and low ionic strengths: analogues of the well-known Hückel
and Smoluchowski limits for free-solution electrophoresis of bare
spheres.

Also identified was a small but finite relative mobility for un-
charged bare spheres that depends on the particle dielectric con-
stant when particles are dispersed in charged gels. Here, numerical
calculations independently verified the theoretical prediction of
Mohammadi and Hill 18 , which furnished an exact analytical cal-
culation of the electric-field induced force, including relaxation
effects.

This paper also highlighted the important role of particle size
(and thus charge) on the relaxation effects. Whereas these have
often been attributed to the magnitudes of κa and ζ , it was demon-
strated here that the relaxation effects can be assessed by reference
to the particle charge (often scaling with the square of the radius).
Thus, small nanoparticles with radii ∼ 1–10 nm tend to exhibit
relatively weak relaxation effects, whereas relaxation effects for
particles with radii & 10 nm exhibit much more substantial mobil-
ity attenuation by polarization.

A quantitative theoretical interpretation of the gel-
electrophoretic mobilities of charge-regulating polystyrene
spheres reported by Zhu and Mason 28 was undertaken. Particles
were endowed a very thin charge-regulating polyelectrolyte
surface layer. Accounting for relaxation effects, non-linear
electrostatics, and hydrodynamic interaction with the gel, the
theory furnished a mobility versus pH relationship that is
remarkably close to the experiments in which steric friction is
weak.

It was recommended that future experimental gel-
electrophoresis studies pay special attention to the electric
field, which depends on the electric current and sample/electrode
geometry. Such studies will also benefit from reporting of
free-solution mobilities in electrolytes having the same (or very
similar) pH and ionic strength as in the gels (e.g., as indicated by
the electrolyte and gel conductivities).

The theoretical model developed here is a powerful simulation
tool. Free-solution mobilities can be now be interpreted sepa-
rately, accounting for specific core-corona architectures. Then,
gel-electrophoretic mobilities can be measured and theoretically
interpreted to furnish deeper insights into the short-ranged and
poorly understood nanoparticle-gel interactions.
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This appendix comprises figures 18 and 19.
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Fig. 15 Gel-electrophoretic mobilities (left panels) and core surface ζ -potentials for core-corona nanoparticles in uncharged gels (ρ0
f ,g = 0 with `g = 10,

23.5, 100 nm) highlighting the role of particle size on the relaxation effects: (a) a = 2.7 nm and (b) a = 16×2.7 = 43.2 nm. Nanoparticles have the same
surface charge density (σ =−1.5 µC cm−2) and corona properties as in figures 11–14. Solid (dashed) lines are calculations with (without) the relaxation
effects.
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Fig. 16 Gel-electrophoretic mobilities (left panels) and surface ζ -potentials (solid lines, right panels) for bare nanoparticles in uncharged gels (ρ0
f ,g = 0

with `g = 10, 23.5, 100 nm) highlighting the role of particle size on the relaxation effects: a = 2.7 nm (a) and a = 16×2.7 = 43.2 nm (b). Nanoparticles
have the same surface charge density (σ =−1.5 µC cm−2) as in figures 11–14. In the left panels, solid (dashed) lines are calculations with (without) the
relaxation effects. In the right panels, dashed-dotted lines are the Henry mobility obtained by multiplying the dimensionless ζ -potential (solid lines) by the
Henry function H(κa).
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Fig. 17 Analysis of passivated gel-electrophoresis of carboxylated polystyrene nanoparticles (radius a = 42 nm) conducted in buffers with prescribed
pH and Is = 5 mM added salt (NaCl): pKa = 4.6, z0 =−6000, δ = 0.2 nm, as = 0.15 Å. (a) κa versus pH. (b) Particle valence z versus pH. Solid line is
according to the non-linear Poisson-Boltzmann (PB) equation, and the dashed line is according to the dissociation equilibrium Eqn. (13) of Zhu and
Mason 28 . (c) Solid line is the surface ζ -potential according to the non-linear PB equation. Dashed line is the free-solution mobility according to the
Hückel formula M = ze/(6πηa) with z according to Eqn. (13), but multiplied by an arbitrary scaling factor (1.85/102≈ 0.018, see the main text for details
on this rescaling). Dashed-dotted line is the free-solution mobility according to the Henry equation with ζ -potential according to the PB equation (solid
line). (d) Solid lines are mobilities according to the full-electrokinetic model with gel permeabilities `g = 10, 23.5, 100 and 1000 nm. Dashed-dotted line is
the Henry mobility, as also shown in panel (c). Circles are experimental mobilities from Zhu and Mason 28 [rescaled as in panel (c)]. Dashed line is the
mobility according to the phenomenological model of Zhu and Mason 28 [mobility proportional to valence from Eqn.(13)].
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Fig. 18 The same as figures 17(b) and (c), but with a more diffuse surface charge layer, δ = 1 nm. The most significant changes occur at high pH, when
the surface charge density is high and the ionic strength is high enough to achieve κδ = 0.024κa∼ 1 at very high pH.
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Fig. 19 Theoretical interpretation of the gel-electrophoretic mobilities reported by Zhu and Mason 28 when taking the electric-field strength to be a factor
of 40× higher than reported (mobilities a factor 40× smaller than reported). Model parameters are the same as in figure 17(c), but here `g = 1000 nm
(mimicking the free-solution mobility) with a steric factor 1/(1+0.2)≈ 0.83 (i.e., the steric drag force is 0.2× the hydrodynamic drag force) as an adjustable
model parameter. Dashed line is the mobility according to the phenomenological model of Zhu and Mason 28 [mobility proportional to valence from
Eqn.(13)] (with the same correction to the electric-field strength as applied to the data). Dashed-dotted line is the free-solution mobility according to the
Henry equation, but now with a steric factor 1/(1+0.2)≈ 0.83.
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