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ABSTRACT

Rotational energy levels of axially asymmetric nuclei have been calculated in
the manner of Davydov and Filippov, and a comparison with experiment shows
good quantitative agreement. It is suggested that agreement may be improved
by introducing the Bohr—Mottelson vibration-rotation interaction and a centri-
fugal stretching correction analogous to the type used in molecular spectra. The
D-F method seems to be particularly useful for nuclei in the transition regions
between ‘‘rotational’”’ and ‘‘near-harmonic’” modes of collective excitation.

Bohr and Mottelson (1953) have shown that even—even nuclei with sphe-
roidal shapes may be expected to exhibit rotational states with energy levels
given by

ﬁ2
Em=§§I(I+1), 1=024,8,...
where & is the effective moment of inertia and I the total nuclear angular
momentum. The ratios of the energies represented in this simple level scheme
are, E(4+)/E(2+) = 3.33, E(6+)/E(2+) = 7.00, E(8+)/E(2+) = 12.00.

Davydov and Filippov (1958) have extended the treatment to include
nuclei with ellipsoidal shapes, i.e. nuclei not possessing axial symmetry.
Deviations from axial symmetry may be characterized by the nuclear shape
parameter v, a quantity which varies between 0 and /3. Values of v of 0

and 7/3 characterize prolate and oblate spheroids respectively. The Hamil-
tonian operator for rotational motion is given by

I2
4BB2 ,z_:l 2 sin’{y— (27/3)1)}

where B is the mass transport parameter, 3 is the nuclear quadrupole deforma-
tion parameter, and the I, are operators of the projections of the total angular
momentum along the body-fixed axes of the nucleus. The Hamiltonian is
symmetric about v = /6 and consequently a prolate ellipsoid of deformation
v (<w/6) will exhibit the same rotational spectrum as an oblate ellipsoid of
deformation 7/3—~.

The energy equations of Dennison (1931) for an asymmetric top may be
applied. The symmetry conditions of Bohr (1952) exclude certain energy
levels. Resultant curves of relative energy vs. vy are given in Figs. 1 and 2.
The 24, 44, 64, 84+, ... spin sequence appears and, as long as v is small,
the relative spacing of these levels does not differ appreciably from that of a
spheroidal rotor. New levels, of energy E(2'+), E(3+), E(4'+), . . ., appear,

!Manuscript received June 29, 1959.
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Fi6. 1. Rotational energy levels of axially asymmetric even—even nuclei.
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however, as a direct consequence of axial asymmetry. If, as proposed by
Davydov, v is determined from the ratio E(2’+)/E(2+4+) and the experi-
mental value of E(2+4) assumed, the energies of the remaining levels may be
predicted for even—even nuclei with large quadrupole deformations. A com-
parison of these predictions with experimental data in the range 150 < 4
< 250 is shown in Table I. All spin assignments are those given by the authors
of the reference quoted. In general, agreement is good—especially in the
tungsten—osmium transition region and in the region of heavy nuclei. In
these regions discrepancies are typically of the order 1 to 39, with the
exception of the 4’4 level of Os'®® where the discrepancy is 139%,.

Figure 3 shows the variation of y with mass number 4 for the range
150 < A < 250. Since the 2’4 level is not always known, y has been calcu-
lated from the ratio E(4+)/E(2+) in some cases. v calculated in this manner
is always somewhat larger than that given by the E(2'+)/E(2+) ratio. The
three transition regions from ‘‘rotational’’ to ‘‘near-harmonic’ level schemes
(Scharff-Goldhaber et al. 1958) are clearly shown for A ~ 150, 190, and
220. The samarium—gadolinium group (4 ~ 150) exhibits a very fast transi-
tion, whereas the tungsten—osmium group (4 ~ 190) and the radon-radium-
thorium group show a more gradual transition.

Qualitative arguments indicate that the minimum finite value of v for a
stable deformation cannot be small, since the frequencies of vibration and
rotation would then be comparable, and separation into rotational and
vibrational levels meaningless. The data in Fig. 3 would seem to support
this. However, most of the low values of v were obtained from the E(4+)/
E(2+) ratio. It is well to keep in mind that low values of ¥ obtained from
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ratios of the energies E(2+), E(44), E(6+), E(8+) do not necessarily prove
the existence of a stable deformation of this magnitude. For values of v up
to approximately 15°, the effect of assuming a v is equivalent to introducing
the Bohr—Mottelson vibration-rotation interaction correction of the form
—bI*(I+1)% Values of y obtained from the E(2'4+)/E(2+4) ratio are not
subject to this objection.

Table II gives the results of calculations of energies of what has been
termed the “‘ground state rotational band", 24, 4+, 6+, 84, ... . If v is
determined not from the ratio E(2’4)/E(2+4+) but rather from any two
members of the ‘‘ground state band”, then the energies of the remaining
two levels of this band may be predicted to an accuracy usually well within
19,. However, energies of the 2’4, 3+, 4’4, ... levels cannot then be pre-
dicted with any precision. The data is consistent with assuming a higher
value of v for the ‘‘ground state band’’ than for the 2’4+, 3+, 4’4, . . . levels.

A qualitative argument may help to clarify this point. Two corrections
which may be of importance in the Davydov-Filippov treatment are the
vibration-rotation interaction correction and a centrifugal stretching cor-
rection. As in molecular spectra these corrections have the form —bI2(1+41)2
and become more important as the equilibrium deformation decreases. For
the ‘“‘ground state band” it is the 8 deformation that is important and for the
2’4+, 34+, 4+, ... levels it is the y deformation that is important. The
effect of this correction to the energies of the levels of the “ground state
band” is equivalent to an upward shift of v of several degrees. Since ¥
is relatively insensitive to the ratio E(2’4)/E(24), the correction which
must be applied to the 2’+ level does not appreciably affect vy as determined
from this level. Thus the difference between ~y calculated from the ‘‘ground
state band’’ energies and v calculated from the E(2'+)/E(2+) ratio is quite
naturally accounted for by the type of correction arrived at by analogy with
molecular spectra.

This paper has shown that the Davydov and Filippov treatment can
successfully account for a large number of nuclear energy levels. It cannot,
however, predict all the low-lying excited levels, for it is known that other
0+ and 2+ levels exist which cannot arise as excited states of a rigid asym-
metric rotor. This point has been clearly shown in a recent paper by King
and Johns (1959) concerning the energy levels of Os!®8,
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NOTE ADDED IN PROOF.—The authors are pleased to note that Davydov and Rostovsky
(Nuclear Phys. 12, 58, 1959) in a paper on transition probabilities give energy levels nearly
identical with the above values.









