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ABSTRACT

The design problem of liquid waste treaiment plants in a multi-
plant system along a stream entails the selection of a sequence of unit
operations for each plant, as well as the determination of each operation's
waste removing efficiency, so that -the dissolved oxygen standards along the
stream are met at minimum cost. The suggested solutions have so far been
partial and suboptimal since they consider only the efficiencies on a fixed
sequence of unit operations, neglecting the question of choice among them.
This paper outlines an efficient two-phase procedure for completely solving
this multi-plant system problem by determining for each plant both the best
set of operations and their efficiencies. First, a network algorithm is
developed for generating concave cost-efficiéncy curves for each plant such
that each plant efficiency level corresponds to the optimal rather than to a
pre-specified fixed sequence of operations, Second, a Tinear programming
model with concave and separable objective function is employed for allocating
treatment requirements among the plants. The procedure is compared with
existing ones through an application to a real case.



A SOLUTION PROCEDURE FOR THE DESIGN PROBLEM
OF A MULTIPLE TREATMENT PLANT SYSTEM ALONG A STREAM

by D. Panagiotakopoulos, Ph.D.1

1. Introduction

Wastes can in general be looked upon as undesirable but unavoidable
loads or burdens on various environmental media while waste treatment
essentially entails reduction of these loads. With regard to liquid wastes,
for which the underground or surface bodies of water receiving them constitute
normally the burdened environmental media, one or several different forms of
loads can be recognized and dealt with through various, eften load-specific,
treatment processes. Depending upon the level of the system one is dealing
with, a waste treatment process might refer to a particular unit operation
within a waste treatment plant (e.g., secondary clarifier), the whole treatment
plant consisting of a number of unit operations in series, or even a system of
such plants along a stream. The level of load reduction attained by a treatment
process is a measure of the efficiency of the process.

Figure 1(a) shows a treatment process k which reduces an incoming
waste load of I units by ekI units (o = ek<1) while ku waste units are retained.

An arc representation of this process is shown in Figure 1(b) where a waste inflow
of I units at node i is reduced to ku units along arc k; Xy is called the
transformation coefficient of process k. Either e, or X provides a measure of

the process'’ efficiency. Typical cost-efficiency curves for a treatment process,
whether it be a singie unit operation or a system of plants, is shown in Figure 2;
the process cost Ck(eg is, in general, a nondecreasing function of e -

The design and management of a waste treatment plant along a stream
involves two questions: first, the choice of the unit operations in series
whichi will constitute the piant; second, the choice of efficiency level for each
of these unit operations. The objective is to attain some desirable overall plant
efficiency, with regard to a particular type of waste load, at minimum cost.
A treatment process consisting of a number of operations in series is shown in

Figure 3; if tq is the transformation coefficient of operation q, the load

1 The author wishes to thank Professor J. A. Buzacott and an anonymous referee

for their helpful comments on revising an eariier draft of this paper.
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fraction removed is 1-t1t2t3 = 1-xk while the process cost is
Ck(xk) = C](t]) + Cz(tz) + C3(t3). Figure 4 shows a network model of a

plan for a Tiquid waste treatment plant; the waste load is in terms of
bjochemical oxygen demand (BOD). As described in Table 1, this plan i5
identical to that studied by ECKER(T), ECKER AND MCNAMARA(Z), and SHIH

and KRISHNﬁN(7), and is also employed as an example in this work. Each

path from node 1 to node 6 corresponds to a specific set of unit operations
or, equivalently, to a specific plant design; the alternatives of "no plant"
and "only primary treatment" correspond to paths along arcs 13 and 1-12,
respectively. For a particular path (i.e., design) p, plant coefficient

Vp is defined as,
V=TT t, (1)

p
rep

whereupon the plant efficiency is T-Vp

The derivations of the cost functions for the unit operations
listed in Table 1 are based on the work by SMITH(S) while they are further
discussed and refined by Shih and Krishnan(7) and Ecker and McNamara(z).
The development of the cost-efficiency curve for a treatment plant requires
the identification of the unit operations and their efficiencies which would
attain various plant efficiencies at minimum cost. {In case of an existing
plant which consists of a fixed set of operations, only the operations'
efficiencies are to be selected.) A mathematical model for this problem is
as follows:

4 rrom a network plan outlining all feasible
plant designs, and for a minimum desirable
plant efficiency 1-R, choose a path p and
determine each t. on it in order to

Minimize C (V) = 2 Cp(t,)

rep
e
such that
: (Vp=)]];£p t. £R . (2)
and crr 2its
o<t €t £t761 for each t, (3)

where [t;.t:] is the feasible range of trva1ues.
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The above problem has attracted the interest of many analysts
over the last decade and it will continue to do so in the future as the
need for more and better-designed waste treatment plants keeps growing.

In 1964, LYNN(S) simplified (I) into a linear programming network flow

problem by assuming piece-wise linear cost functions; although highly
unrealistic, that work provided a base ior future applications of mathematical
programming techniques to the problem. A few years later, Shih and Krishnan(7)
employed dynamic programming for solving (I) in an attempt to deal with
realistic cost functions. The major drawback of their approach is that the
plant must be broken into sequential stages — a potentially complex exercise
when more than one operation must be grouped into a single stage; for
instance, arcs 2 to 6 in Figure 4 comprise stage 2 while arcs 7 to 11 comprise
stage 3. Clearly, this is not a straightforward dynamic programming case

and there can be no generalized solution scheme for any network plan. Finally,
Ecker and McNamara(z) used geometric programming to solve {I); the disadvan-
tages of this technique are, first, that the Cr(tr) curves must be smooth and
continuous {as given in Table 1) when in reality they are discrete, and second,
that a separate geometric program needs to be formed and solved for each and
every path p of the network plan.

A simpler, more efficient, and generalized dynamic programming
scheme for solving {I) without any of the drawbacks of the above mentioned
methods is presented in this paper as a step towards the solution of the
broader multi-plant problem that follows.

2. The Multi-Plant System Along a Stream

When several liquid-waste-discharging activities are operating along
a stream, a need arises to allocate treatment requirements in order to meet
stream dissolved oxygen (DO) standards along the stream at minimum cost; that
is, an authority responsible for maintaining D0 standards along the stream needs
to specify the required level of waste load removal from each polluter's effluent.
(Although DO is not the only measure of stream quality, it is the only one
considered in this work whose scope is the improvement of existing solutions for
~a classical DO-related problem). Waste discharges are measured in terms of BOD;
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accordingly, the waste treatment plant plan of Figure 4 can be considered as
constituting all feasible choices of treatment operation combinations available
to each polluter {with "no treatment" a possible alternative).

In order to develop a plan for BOD removal efficiencies by each
treatment plant, it is necessary to relate 80D effluents with DO levels along
the stream. The dissolved oxygen sag equation established by the pioneering
work of STREETER AND PHELPS(10) provides such a relationship between BOD and
DO. Essentially, this equation expresses the fact that a BOD discharge
reduces the DO in the stream and that there isfnatura1 replenishment of stream

DO over time through reaeration or absorption from the airjobviously, a
reduction of BOB discharge, through treatment, would result in an improvement
of DO levels downstream. Several recent studies, such as those by REVELLE
f}_flﬂe) and Ecker(l) have developed more refined and exact relationships
between BOD discharges and DO levels. By dividing the stream into sections,
called reaches, on the basis of stream characteristics, stream quality standard
variations, and locations of effluent discharges, and by applying the dissolved
oxygen sag equation to each reach, the minimum DO Tevel at each reach can be -
expressed as a function of the 80D discharges and stream characteristics of every
reach upstream. Thus, as outlined in detail by Ecker(1), the requirement

that DO at reach i should not fall below a specified level can be reduced to
the form )

aq;(1-e7) + ayc (T-ehe e vy (1-€5) S 1 | (4)
where
dji is a positive constant depending on the specific
parameters for reach j {namely, stream characteristics,
DO and BOD levels at the top of the reach, and DO
standard),
and ey is the waste load reduction efficiency at reach j;

that is, if T units of BOD would be discharged into the
jth reach in case of no treatment, only (I-ej)l units
are discharged when treatment takes place. Clearly,
waste treatment may not be necessary for every reach.
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Letting Vj =1 - eys 2 mathematical programming model for

the design problem facing the authority above is as follows:

i

For each reach j choose a plant design pj (i.e., a path
p; on the network plan) and determine each t. on it
in order to,
Minimize g CJ(VJ) (5)
Jj=1
such that
< '
a-I]V-I‘]
o a <
121 *F V2 < s (©)
o' a a <
T T T L
Vo= T t., J=1,2,...,0n (7)
j rEpj r
e < < ,+ < . .
o<t 4 - tr - tr,j - 1, for each r in every plant j (8)
L Qy < Vs < S; b d= 1,2,.0.,0 (9)

where:
n is the total number of reaches; [f;’j, t:’j] is the
feasible range of t. for plant j;
and [Q »S ] is the feas1b1e range for the plant coeff1c1ent
in reach J .

A typical constraint of type (8) could be a technical limitation
on the efficiency attainable 5, a primary clarifier; of type (9), a
rcquirement that the plant at reach j must attain a specified minimum
efficiency imposed by local authorities.

To date, there exists no successful analytical scheme for solving
(II), even though the problem has arisen and solution plans have been
developed and implemented. In a number of studies, solutions have been
obtained for a simplified version of (II) where each plant j is treated
as a "black-box" characterized by a Cj(Vj) function corresponding to a
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fixed plant design pj . This simplification amounts to solving & “"reduced"

problem (11}, without {(7) and {8}, for establishing the least-cost set of

plant efficiencies; the manager of each plant J is then faced with problem

(1) where the design path is fixed and ® is the established level of Vj.

The obvigus drawback of this approach is that, in order to determine the best

plant design P for each plant j, one "reduced” problem (II) and n problems (I)

must be sn]vef for each and every combination of pj's for the n-plant system.
The rediced problem of determining a least-cost set of plant efficiencies for

maintaining 00 standards along a stream was solved by SCLEE'LW:J and REYELLE

et a'l‘:53 using linear programming; LIEBMAH{H} and FUTRGAMI (3) solved the

problem using dynamic programming and they applied their method to Willameter

River in Oregon and Todo River System in Japan, respectively. Recently, ECkEF{T}

considered this problem for several reaches of the Upper Hudsoen River; he

employed geometric programming and proceeded 2 step further by determining not

only plant efficiencies but also, simultanecusly, the efficiencies of all unit

operations on the plant design paths {in other words, he reintroduced {7} and (8)

into problem {II}. However, Ecker{1} sti11 does not sglve (11} since his paths

pj are fixed and pre-specified, not decision variables; as he clearly states,

a combinatorial scheme s needed for choosing the best pj for each of the n plants.

In this paper: 1. An efficient solution procedure for sglving {(I[I)
1s cutlined which is based on a dynamic programming scheme for solving (1} and
generating the Cj(?j} cost functions; and 2. This procedure is applied to the
(13

real case considered by Ecker

3. The Solution Procedure

The major drawback of all existing procedures for solving (Il) is the
reed for & combinatorial scheme <o choose the best |:|j for each af the n plants.
In this work this drawback is compTetely eliminated through the following
two-phase strategy:

Phase I: For each plant j, solve (I) and obtain cj{vj] va lues for all

plant efficiency levels 1-R such that Q3 £R £ 5§ -

A cost-efficiency curve can thus be generated qiving the

minimum cost Cj(ej} for attaining a plant efficiercy not

Tess than e; - The crucial characteristic of this Ej(ej}

curve is that each point corresponds to the least-cost

plant design Pj for attaining that particular efficiency.



-7 -

This is accomplished via a Least-cost Plant Coefficient (LPC)
algorithm.

Phase 11: Using the Cj(ej) curves just derived, and noting that
V‘j =] - e » solve (II) by linear programming techniques
considering only constraints (6) and (9), since (7) and (8)
have already been considered in Phase I. Each chosen V.

J
corresponds to an already determined best design for plant j.

A. Development of the LPC Algorithm

An acyclic network corresponding to @ plan for a treatment plant
is given with nodes 1,2,...,M and each arc (i,k) corresponding to a specific
unit operation. A unit operation (i,k) is characterized: 1. by a feasible
range [t;k, t:K] for the transformation coefficient to s and 2. by a function
Cik(t) giving the minimum cost for attaining a removal efficiency not less than
1-t. A realistic property of C; (t) is that, for tle t2

Ty > 2
< t5, Cik(t ) - C1k(t ) .

The following notation needs to be introduced:
A; : the set of all nodes s connected with 1 through (i,s)
W; 1t a sequential product of feasible values of transformation
coefficients, one for each arc, on a path from i to N.

H;/H; : The minimum/maximum possible value of W,

Zi(w) : minimum cost for attaining a W; not greater than w.
Thus Z](R) is the optimal value of the objective function
in (I), while Phase I calls for a calculation of
21(w) over values Qj SwSs,, for each plant j .

According to the definition of w; and N: , if H; and M: are known
for every keAi s then

W, = minimm { t7 W ] (10)
kSAi .
and
+ . + ot
Wy = maximum { tiﬁdk} (11)

keA,I
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In view of (9), {10) and (11} the values of w for which Z,(w)
should be computed are those such that max{Qj; w;} = min {S N }.

Moreover, since tik <7 for any {i,k), it follows that on a path through

arc (i,k) at optimality,

- < < < <
and the range of w values for Zk(w) should be
Y; Sws wk for any k>1 (13)
where Y, = max{ Qj ; wk} (14)

Assuming now that all Zkﬁx) values have been obtained for some
node k which is the only node in A; » then
Z.(w) = minimum {Z (w/t) + C. (t)} (15)
i t k ik

- <, <+ -< + .
where tik -t - tik and Yk -‘w/t N Wk s Or equivalently,

max{th s WS t S min (8,5 wYR) . | (16)
When several arcs leave node i, then
Z; (w) = minimum {m1n1mum [Z (w/t) + C1k(t)]} \(17)
keA t -

where, for each (i,k) ,
[t - a1 <, € L (. F -
m1n{t1.k 3 max[tik; w/wk]} -t = m1"{t1k : w/Yk} (18)

The modification of the lower bound of (16) into that of (18)
is necessary for cases where, for some k in A1 s wi wkt1k’ then, for values
of W >th1k , the Tower bound on tik would have been w/wk which is greater

than f:k rendering (16) meaningless.

Thus, it appears that an algorithm can be developed whereby one
proceeds from node N to node 1, in decreasing order, at each node k computing
Zk(w) according to (TB), (17), and (18). This resembles a shortest-route
algorithm, Zk(w) being the label assigned to each node k; it is also a
dynamic programming procedure where at each stage {node) a minimum cost is
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computed as a function of the portion of w1 "remaining to be allocated"
on the arcs from k to N. At the end of such an algorithm for plant j,
curves Cj(Vj) and Cj(ej) will be obtained from the 21(w) values; repeating

the algorithm for each plant completes Phase I of the solution procedure
whereupon Phase II can be performed.

B. The Algorithm

- +_ _
Step 1: Let NN = NN = 1 and ZN(1) =0

Step 2: Proceeding from node N-1 to 1, in decreasing order, at each node 1i:

(a) Let W =minimum { t3, W}
keAi

E
-—e
[}

maximum [t¥k N: ]
keAi

Ys rmx{%;wg}

<

VA

(b) For w values: Y; Sw S W) for if1 and Y7 S w < min{S:; Wi}
i i 1 i’ ™M

- for i =1, compute

Zi(w) = miggﬂ?m {Wgn [Zk(w/t) + Cik(t)]} , where for each (i,k)
min{t;k; max[t;k; w/wI]} S¢ s min{t;k ; w/Y;} )

(c) Check that, for W< Wy s Zi(w1) 2 Zi(wz); if not,
Tet Zi(wz) = Zi(w1) .

(d) For each w considered, record the arc (i,k) and the value
of ty, corresponding to Zi(w) .

C. Accuracy vs. Efficiency

Like in other dynamic programming procedures with continuous state
variables, a grid method is used here for the computation of Zi(w)‘s . Ftach
cik(t) curve is replaced by Mik cost-coefficient pairs (Cm’tm)ik ,

m = 1’2""'Mik 3 if arc (i,k) is the rth arc of the network, an equivalent



-10 -

notation is (cm'tm)r y M= 1.2.;...Mr. For a real problem, this replacement
is not a 'simplifying assumption' since it was from data sets in the form of

(c ot )1k pairs that Cik(t) functions were derived in the first place. The

cost functions of Table 1 for the example case considered here are replaced
by the (c ot ) pairs of Table 2.

Regarding the range of w values, Z {w) will be computed for a
number of w values from Y to w . Accord1ng to the definition of 21( W) o,

if only Zi(a) and Zi(b) are computed in the interval a Swib » then for

any afw<b , Z, (w} is assumed to equal Zi(a); this,however, could result
in cost overestimation., Clearly, the Targer the number of w values for which
Zi(w) is computed, the greater the accuracy. Moreover, since marginal costs
increase as transformation coefficients decrease, the size of intervals in
which the range [Y;, w;] is broken should be smaller near Y; than near w? .

A possible consequence of large intervals in the w-range is to obtain values
21(w]) < Zi(wz) for Wi<W, 3 by the definition of Zi(w), this is unrealistic

and Step Zc of the algorithm corrects it.

4. An Application

The case study on the Upper Hudson River reported by Ecker(‘)
now considered and solved., The problem is of the form in (II) involving the
design of a treatment plant, if there is a need for one, in each of six
reaches along the river so as to meet the physical stream quality constraints
implied by the o5 values of Table 3. The design alternatives for each plant

are as in F1gure 4 and Table 2. As an added feature of the geometric program-
ming approach, Ecker(1) imposes and handles constraints requiring the product
of t 's over on]y part of a design path to be within spec1f1ed bounds

{e, g.. 1 2 6 20. 15). Although such a requirement can be eas11¥|gons1dered in

the LPC algorithm, it was left out of this work for simplicity. Thus, the
example solved here is slightly different than that treated by Eckertl) |
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In Phase I, the LPC algorithm is applied to the network plan
for each of the six possible plants. For the network of Figure 4 {which
is the plan for all six plants), and for a plant efficiency range from O
to 0,970, the algorithm yields the Zi(w) values Tisted in Table 4 (this
table is condensed from one of 60 w-intervals). The cost-efficiency curve
for each plant is shown in Figure 5.

Turning to Phase II of the solution procedure, the IBM's MPSX
option for linear programs with separable, concave objective functions is
employed to solve the model which consists of (5), (&), and (9) with Vj
replaced by 1-ej. (For the case here, there are no type (9) constraints).
The convexity of the plant's Cj(ej) curve for ej<0.05 may reguire a

translation of the origin to point (18,0) and an adjustment of any solution

ej such that ej<0.5; in reality, however, this possibility does not

arise since, if e is not zero, it will be required to be much greater than
0.05. Extensive investigation with similar problems has shown that the
optimal e values are rather insensitive to minor varia tions in the slopes
of the segments of the approximated piecewise linear cost functions, especially
when these functions are jdentical for several plants; this clearly reduces
the desirability of a very fine w-grid in the LPC algorithm.

The optimal design is shown in Table 5; with the MPSX-generated

ej value for plant j, the optimal w-interval in 21(w) is identified along

with the already recorded best tr values. The insignificant difference
between e from MPSX and 1-w1 becomes even smaller as the w-grid in the LPC

algorithm gets finer. A requirement that a plant, if built, should operate

at.%i%95 yields e5=0 and'ej= .95 for j#5 corresponding to t1 = .60, t, = .80,

ts = .10, and t{; = 1.0 for a cost of 182.3 per plant. As a final comment,
the single-plant design obtained by the LPC algorithm for ej 20.971 is
aTmost identical to that obtained by Ecker and McNamara(z) and Shih and

Krishnan(7) for the same problem.
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TABLE T+ The Waste Treatment PTant

re In Fia-g Cost Function
{r} Unit Operation e (t)
' i i -1.,47
1 Primary {larifier {PC) 19.4 1,
2 Trickling Filter (7F) 6.8 té1‘55
3 Activated Sludge after TF (AS/T) - 91‘5't5n.3n
4 Activated Sludge after PC (AS/P) 86.0 tEﬂ-33
5 Aerated Lagoon after PC [AL/P) a5.9 tgn.45
6 Aerated Lagoon after TF {AL/T) - 27.4 tgﬂ'53
7 Coagulaticn /Sedimentaticn /Filtration 152.0 t;n'z?
after AS  (CSF) o33
8 Carbon Adsorption after AS (CA) 120,0 t;™
10 Coaqulaticn /fSedimentation /Filtration 173.0 t;gljy
after AL

Arcs @, 17, 12, 13 correspond to Mo Treatment (NT) with

tr = 1 and ¢, ° ]



TABLE 2:

Cost-Coefficient Pairs (c,t)r

r= r=2 r=3 r=4 5
C t c t c t C t of t
53.74 (.50 39.02 0.60 182.57 0.10 206.30 0.10 129.36 0.1¢
41,11 0.60 34.20 0.65 161.66 Q.15 176.84 0.15 107.79 0.15
32.77 0.70 30.26 0.70 148.29 0.20 158.53 0.20 94,70 0.20
26,33 0.80 27.01 0.75 131.35 0.30 135.89 0,30 85.65 0.25
22.65 0.90 ?4.28 0.80 120.44 0.40 121.82 0.40 78.91 0.30

20.92 0.95
r==5 r=17 r=28 = 10

c t o t c t ¢ t

116.88 0.10 174.48 0.60 178.54 0.30 216.24 0.60
g0.53 0.15 170.75 0.65 169.68 0.35 209.93 0,65
75.53 0.20 167.37 0.70 162.37 0.40 204.25 0.70
58.50 0.30 164.28 Q.75 156.18 0.45 199.10 0.75
48,80 0.40 161.44 0.80 150.84 0.50 194.41 0.80

42.40 0.50

37.80 0.60




TABLE 3: Coefficients aj'i for Problem (II)
3 i 1 2 3 4 5 6
1 4.266
2 3.975 4.78)
3 4.356 10.57  ,5055
4 1.710 8.812 6592  .7926
5 1.186 6.434 4870 .6009 .0168
6 0.6272 3.792 - .2932 .3792 .0289  1.254



TABLE 4: Zi(w) Values from the LPC Algorithm

W i=1 i=2 i=3 i=4 i=5

0.030 | 389.96 371.95 361.11
0.034 1381.22 365.75 361.11
0.038 [197.01 360.42 352,25
0.042 {189.65 365,29 344.94
0.046 §183.85 351.04 388.75
0.052 }178.01 344.85 333.41
0.060 [165.84 155,50 324.03
0.068 {157.50  151.08 317.84
0.080 |147.38 141.16 310.66
0.100 }138.54 124.73 116.88
0.150 {115.77 102.54 90.53

0.200 {109.71 92.70 75.53

0.300 | 93.61 75.81 58.50 178.54

0.400 | 87.46 66.68 48.80 162.37

0.500 | 53.74 66.68 42.40 150.84

0.600 | 41.11 66.68 37.80 150.84 216.24
0.700 | 32.77 66.68 150.84 204.25
0.800 ! 26.93 66.68 150.84 194.41
0.900 | 22.65 6€.68 150.84 194.41

1.000 0 0 0 0




TABLE 5:

Pldant

The Optimal Design for the Example Case

MPSX
%5

S N Ea W N

.930
.960
.454
.789

.573

Actual Efficiency

Unit Operation Design Plant
Y ot te ity by 1 -4 Cost
.70 .65 .15 1 932 157.5
.60 .65 .10 1 .961 192.2
.50 1 .500 53.7
.70 .75 .40 1 .790 108.6
1 0 0.0
.95 .75 .60 1 .573 85.7

597.7
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FIGURE 1: A Treatment Process Representation
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FIGURE 3: Treatment Process k as a Combination of Processgs
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FIGURE 4: A Plan For a Waste Treatment Plant
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FIGURE 5: Cost-Efficiency Curve For the Example Case,



