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Abstract The feasibility of stereoscopic measurements through an unsteady optical interface is investigated. Position

errors produced by a wavy optical surface are determined analytically, as are the optimal viewing angles of the cameras to

minimize such errors. Two methods of measuring the resulting velocity errors are proposed. These methods are applied

to 3D particle tracking velocimetry (3D-PTV) data obtained through the free surface of a water flow within a cavity

adjacent to a shallow channel. The experiments were performed using two sets of conditions, one having no strong

surface perturbations, and the other exhibiting surface gravity waves. In the latter case, the amplitude of the gravity

waves was 6% of the water depth, resulting in water surface inclinations of about 0.2◦. (The water depth is used herein

as a relevant length scale because the measurements are performed in the entire water column. In a more general case,

the relevant scale the maximum distance from the interface to the measurement plane, H, which here is the same as

the water depth.) It was found that the contribution of the waves to the overall measurement error is low. The absolute

position errors of the system were moderate (1.2% of H). However, given that the velocity is calculated from the relative

displacement of a particle between two frames, the errors in the measured water velocities were reasonably small because

the error in the velocity is the relative position error over the average displacement distance. The relative position error

was measured to be 0.04% of H, resulting in small velocity errors of 0.3% of the free-stream velocity (equivalent to

1.1% of the average velocity in the domain). It is concluded that even though the absolute positions to which the velocity

vectors are assigned is distorted by the unsteady interface, the magnitude of the velocity vectors themselves remains

accurate as long as the waves are slowly varying (have low curvature). The stronger the disturbances on the interface

are (high amplitude, short wave length), the smaller is the distance from the interface at which the measurements can be

performed.
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1 Introduction

Optical flow measurement techniques, based on tracking neutrally buoyant particles, have become more popular as

increased computing power and camera capabilities now permit the collection of high-resolution data in both space and

time. As a result, particle tracking velocimetry (PTV) and particle image velocimetry (PIV) have become important flow

measurement techniques in research and other engineering applications. Both methods allow non-intrusive measurements

of three velocity components in three dimensions, producing very large data sets. However, as these techniques become

more elaborate and are also used in increasingly complex flows, measurement validation and error estimation become

more difficult. Reliable validation techniques need to be developed for experiments with greater uncertainty, whose

most common source is optical distortion. Although the ideal configuration for imaging is a planar surface or interface

between the target and the cameras, in certain cases, the images must be obtained through an unsteady interface, e.g.

in the presence of internal gravity waves in a stratified flow, through shock waves, or, as in the present case, through a

free water surface with interfacial gravity waves (e.g. in rivers, oceans, lakes, etc.). Snell’s Law can be used to calculate

errors resulting from optical distortions due to disturbances at the water surface, and these errors increase linearly with

distance from the interface. However, this does not necessarily imply that velocity errors are large, as they are determined

from the relative displacement of particles over a time interval.

In this work, the use of optical velocimetry measurement systems is extended to an application with an unsteady

interface arising from gravity waves. Two simple methods are developed to measure the associated velocity errors. Rec-

ommendations are made regarding the i) optimal camera angles with respect to the unsteady interface, and ii) maximum

magnitude of the water surface disturbance so that the associated errors are negligible.

1.1 Error analysis techniques

In general, four different approaches can be used when undertaking an error analysis: i) benchmarking (i.e. performing a

different experiment with a simple, well-known configuration); ii) comparison with another flow measurement technique;

iii) analysis of all possible sources of error and their propagation into the final results; and iv) measurement of the error.

The first three methods require significant investments of time and/or additional experimental apparatus and/or equip-

ment. In this work, we chose the approach number (iv) and attempt to develop universal and simple tests that estimate the

total cumulative error of the final measured data. Previous work of this kind includes, for example, generating artificial

particle clouds to estimate the total cumulative error of reproducibly simulated movement (either numerically or experi-

mentally). For example, Fincham and Spedding (1997) glued particles onto a turntable with a prescribed angular velocity

to calculate the systematic and random components of the uncertainty as a function of displacement. They also numer-

ically simulated particles and analysed the error as a function of particle size, shape, brightness and seeding density.

Alternatively, Weitbrecht et al (2002) quantified position errors by tracking particle clouds plotted on paper and mounted

on a moving positioning system. Westerweel (2000) derived analytical expression for the sub-pixel displacement error

in PIV and analysed it as a function of particle diameter and image density. Their results were also compared with PIV

measurements performed on synthetic images. These works have resulted in very useful practical recommendations on

how to choose particle diameters, seeding densities, and the time interval (∆ t) between image pairs. These methods are

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Error analysis of 3D-PTV through unsteady interfaces 3

well-suited to the investigation of the dependence of the error on certain parameters. However, as they do not reproduce

the real flow field, they are not ideal for the evaluation of the absolute error for a particular experimental set-up. In

addition, for the cases of flow with an unsteady optical interface, a traversing mechanism disturbs the interface, creating

further complications. In a related study, Elsinga and Orlicz (2015) suggested a model for the estimation of position and

velocity errors introduced by a shock wave in a compressible flow. Even though the effect of a shock wave is somewhat

different, given that the medium has a variable refractive index, this work is the most relevant to the current set-up.

1.2 Measurements through an unsteady interface

Typically, PTV and PIV codes are capable of handling data obtained through an interface (or two) between media with 

different refractive indices (when light rays pass through three different media, e.g. air/glass/water), if all the interfaces 

are flat and stationary by either modelling the interfaces (ex. OpenPTV) or using higher order camera models. This al-

lows, for example, imaging water flow through a plane glass wall accounting for refraction at the two interfaces (air/glass 

and glass/water). Additional methods have also been developed for specific cases of curved or unsteady interfaces, which 

has led to these two principal conclusions:

i) It is possible to correct the distortions of an image if the exact shape of the interface is defined. For example, Levin et al

(2008) estimated the shape of the wavy water surface using an additional camera viewpoint at a low angle that imaged

reflections off the surface. Morris and Kutulakos (2005) showed that one can reconstruct the shape of an interface by

tracking a calibration pattern from two viewpoints. Richard and Raffel (2001) also suggested a method in which optical

distortions of a background pattern were used to visualize the distortion field.

ii) It is possible to reconstruct a still underwater image from an image sequence collected through surface waves. Tian

and Narasimhan (2009) recovered the shape of the water surface from an image sequence by fitting a spatial distortion

model based on the wave equation.

However, if the shape of the interface is unknown a priori, and the imaging is not of a stationary scene behind the

interface, but rather that of a dynamic flow field, no method exists to correct for the image distortions. We therefore

investigate the magnitude of the ensuing error, or, alternatively, to what extent can waves be ignored when performing

PIV or PTV through an unsteady interface.

2 Experimental setup

The data employed herein was obtained from experimental measurements designed to recreate the recirculating flow in

a cavity1 next to a shallow channel (Figure 1). The flume in which the experiments were performed had a 2 m long and

0.4 m wide straight section with a square 0.24 by 0.24 m2 cavity at mid-channel. The bed was flat and the water depth,

h, was 30 mm. Experiments were first performed with a free-stream velocity, U∞, of 0.19 m/s, resulting in a water-depth

Reynolds number (Re = U∞

ν

H ) in the channel of 5400 and a Froude number (Fr = √U∞

gH ) of 0.33. At this free-stream

velocity, a seiche2 forms in the channel spanning the width of the channel and the cavity, resulting in a wavelength of

1 Such a flow is also referred to as a bay or an embayment in different scientific communities.
2 A shallow-water wave
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4 Y. Akutina1,2, L. Mydlarski3, S. Gaskin2, O. Eiff1

Fig. 1: Schematic of the experimental setup. Three cameras are mounted above the recirculating water channel, capturing

the flow in a square cavity.

2(0.24 m + 0.40 m) = 1.28 m. The wave has an amplitude, ∆ z, of about 1 mm (or peak-to-peak amplitude of 2 mm) and

frequency of 0.36 Hz (this data was obtained from the 3D-PTV measurements using the positions of the top particles

in the measurement volume). The maximum surface angles, β , are about 0.2◦, calculated using the half-wavelength of

the seiche, 640 mm, and the amplitude of the wave, 2 mm, (= tan−1(2/640)). A second set of experiments was also

performed, for which the free-stream velocity was 0.13 m/s, such that there were almost no surface disturbances (water

surface angles of 0.02◦ and wave amplitude 0.2 mm) – see Table 1.

3D-PTV was performed using three cameras mounted above the channel. Neutrally-buoyant polyethylene particles

212-250 µm in diameter were seeded into the flow. Trajectories of the particles were simultaneously recorded with the

three cameras at a rate of 600 frames per second. About 9,000 particles were identified and tracked at every frame. Their

3D positions and Lagrangian trajectories were obtained through spatial and temporal stereoscopic matching using the

epipolar line intersection method. These calculations were performed using an open-source 3D-PTV software, that was

initially developed at ETH Zurich (Willneff, 2003), and is supported today by the OpenPTV-Consortium (2014) (Gülan

et al, 2012). The calculation of particle velocities was performed using centred differences with low-pass filtering using

a moving polynomial fitted to 21 trajectory points (Lüthi et al, 2005). The reader is referred to Akutina (2016) for further

Table 1: Flow conditions

U∞ (m/s) h (m) Reh, (-) Fr, (-) ∆z, (mm) β ◦

0.19 0.03 5,400 0.33 1 0.2
0.13 0.03 3,900 0.24 0.2 0.02

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Error analysis of 3D-PTV through unsteady interfaces 5

Fig. 2: Vector field of the horizontal time- and depth-averaged flow velocities for U∞ = 0.19 m/s. Top view of the cavity.

L = 0.24 m.

details of the experiment. The resulting time- and depth averaged flow field for the higher free-stream velocity is depicted 

in Figure 2. These velocities will be used in the estimation of the mesurement errors.

3 Error analysis

Sources of uncertainty in laboratory measurements can be classified as either systematic or random errors. For time-

averaged statistics, the contribution of the random components of the error to the overall uncertainty can be minimized 

by ensuring data sets are sufficiently long. However, for instantaneous data (e.g. measurements of the turbulence), 

the random component of the error must be quantified as well.

The sources of error in 3D-PTV are numerous as it is a multi-step procedure with errors associated with each stage

of the underlying data acquisition and analysis. The first stage is the determination of the particle positions in the image

space of each camera. Uneven lighting of the particles, imperfections in their geometry, digital noise in the cameras, and

discretization noise all lead to errors in the determination of the position of the centre of mass of a particle.

In the second stage, the determination of particle correspondences between cameras relies on the mathematical model

describing the relation between their image space and real space, accounting for the position of the cameras, refraction of

the light rays going through the interface between different media (e.g. water, glass, air), lens distortion, etc. Parameters

of this model are optimized during the calibration procedure, and its imperfections introduce bias into the data. Moreover,

this model assumes a flat, stationary interface at the water surface, whereas the interface position (water surface elevation)

varies in space and time in the present experiments. The unsteady interface significantly complicates this second stage of

the analysis. First, there is a periodic error produced by the surface gravity waves. (This, and all other unsteady errors, are

henceforth considered to be random errors, as their periodicity is not decomposed into different modes.) Second, there

are small surface disturbances generated by Kelvin-Helmholtz vortical structures in the shear zone (Figure 1) between

the cavity and the free stream. These disturbances result in a concave water surface, which, although small in amplitude,

may have steeper surface angles than the gravity waves. Third, there is systematic error due to a concave water curvature
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6 Y. Akutina1,2, L. Mydlarski3, S. Gaskin2, O. Eiff1

generated by the recirculating flow in the cavity. Assuming solid-body rotation and given the maximum rotation rate of

the gyre for the current experiments, the free surface angle due to the centrifugal force can reach up to 0.1◦.

In the third stage, particle trajectories are reconstructed from the three-dimensional positions of the particles in

real space at multiple times. Uncertainty in this stage occurs due to ambiguity in the particle trajectory when paths

cross or get too close. This is minimized by applying additional criteria based on a particle’s characteristic velocity and

acceleration from previous time steps. Malik et al (1993) state that if the ratio of the average particle spacing to the mean

particle displacement during one time step is much greater than unity, then tracking is relatively easy and unambiguous.

Velocities of the particles are calculated as first derivatives of a moving cubic spline fit to a particle trajectory, introducing

a numerical error. Lastly, interpolation of the velocities onto a regular grid for time-averaging purposes is the final source

of error.

It is difficult to estimate the contribution of each of the error sources described above, in addition to their propagation

to the final cumulative error. We therefore circumvent this difficulty in the present work by analyzing test cases with

known properties and statistics to directly estimate the total cumulative error. We then estimate the contributions of

the different sources and find that the quality of the camera calibration and the refraction errors produced by surface

oscillations play key roles.

Given that optical errors in a stereoscopic system are direct functions of camera viewing angles, it is necessary to

make sure that the camera angles are optimally chosen for the current experiment before analysing error sources and

relative contributions of different uncertainties. In Section 3.1, we present a theoretical analysis of position errors as a

function of camera viewing angles. Optimum angles are determined as a function of the average surface disturbance.

In Section 3.2, the errors introduced by the calibration of the cameras is estimated, emphasizing the importance of this

procedure. In Section 3.3, we return to the errors introduced by the unsteady interface. Two methods are proposed to

quantify the error in both position and velocity, but most importantly the latter. Finally, these methods are applied to the

free-surface cavity flow.

3.1 Angle of the cameras with respect to the interface

In stereoscopic or tomographic measurements, it is widely accepted that the half-angle between the optical axes of the

cameras should be greater than 30 degrees. Otherwise, the uncertainty normal to the imaging plane becomes considerably

larger than that within the plane. To equally distribute the uncertainty in space, the half-angle between the cameras should

be increased as much as possible, up to 45◦. However, an unsteady optical interface (such as a free surface of water)

introduces an additional factor that must be taken into account.

In a standard stereoscopic model, it is assumed that the optical interface is flat and stationary. However, when 

taking measurements through a wavy surface, this interface is not flat nor stationary as it exhibits changes in both 

curvature and height. Thus, a measurement error results from the difference between the model and reality. The error 

produced by surface perturbations has two components, the i) error due to the changing inclination of the interface, and 

ii) error due to its changing elevation. We begin by considering the effect of changes in the inclination of the interface. 

Using Snell’s
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law3 we can relate the angle of incidence, θ1, and the angle of refraction, θ2, of the light rays travelling from a particle

to one of the cameras as:
sinθ1

sinθ2
=

n2

n1
= c, (1)

θ1 = sin−1(csinθ2), (2)

where n is the refractive index of the respective media and c is the ratio of refractive indices. However, if the interface is

tilted by an angle β , there will be an error in the predicted values θ1 (Figure 3). The real angle will be equal to:

θ1,real = sin−1[csin(θ2−β )]+β , (3)

and the angular error produced by the surface tilt, ∆θ , can be written as the difference (θ1−θ1,real):

∆θ = sin−1(csinθ2)− sin−1[csin(θ2−β )]−β . (4)

This relationship is illustrated in Figure 4. It is evident that for relatively small camera angles (θ2 < 10◦) the error is

almost independent of θ2 and grows linearly with the surface slope, β .

The position error resulting from the inclination of the surface is proportional to the distance of a particle from the 

interface. Thus, to calculate the maximum horizontal position error, Eβ , one should use the maximum distance from the 

interface, H, (here, the same as the water depth):

Eβ = H(tanθ1− tanθ1,real), (5)

Next, we consider the effect of a change in the elevation of the surface. Figure 5 depicts a schematic of a light ray going

3 Snell’s law is valid for low-curvature interfaces with a wavelength larger than the wavelength of the light. In the case of a wavy 
water surface, this condition is easily satisfied.

Fig. 3: Schematic of the horizontal position error, Eβ produced by an inclined water surface.
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Fig. 4: Error due to the slope of the interface, ∆θ , in degrees.

through the interface elevated by a distance ∆z. Trigonometry leads to the following expression for the resulting position

error, E∆z:

E∆z = ∆z[tanθ2− tanθ1]. (6)

Unlike Eβ , the error E∆z grows both with the camera angle and with the elevation of the surface (Figure 6). The total

horizontal error, Eh, produced by the surface perturbations Eβ and E∆z is:

Eh =
√

E2
β
+E2

∆z, (7)

which is smaller for lower camera angle4. However, it is well-established that a lower camera angle results in a higher

out-of-plane uncertainty due to stereoscopy (out-of-plane here is considered to be the vertical direction). Thus, it is

4 The errors due to the slope and height of the interface are considered here to be uncorrelated due to different wave types. For example, the 
sloshing waves (herein) have very low slopes, but a rather noticeable amplitude, whereas capillary waves have very small amplitude and steep 
slopes. Also, if one considers a single type of wave (imagine a sinus function), the points with the highest ∆ z have zero slope and vice versa. It 
is, therefore, possible that these effects are somewhat negatively correlated and thus, taking their root square sum may only overestimate the 
error.

Fig. 5: Schematic of the horizontal position error, E∆z, produced by an elevated water surface.
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Fig. 6: Horizontal position error due to the surface elevation.

necessary to optimize the camera angle to minimize both effects. The distortions due to the waves, taking into account the

stereoscopic configuration, are depicted on Figure 7. Sketch a shows how different combinations of surface inclinations

for two cameras result in different position errors. When inclination is the same, the apparent particle position (empty

circle) is lower or higher than the true position (solid circle). When the slope is different for the two cameras, the position

error is horizontal. A similar result is shown on sketch b, where different combinations of surface elevations for the two

cameras also result in the area of uncertainty in the form of a rhombus. In both cases, a and b, the relationship between

the vertical and horizontal position errors can be approximated as:

Ev =
Eh

tanθ1 
=

√
∆E

β

2 +E2 
z

tanθ1
. (8)

Fig. 7: Relationship between the vertical and horizontal position errors in a stereoscopic system for a) different combi-

nations of surface inclination, and b) for different combinations of surface elevations.
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Fig. 8: Horizontal, Eh, vertical, Ev, and total, Eh +Ev, error produced by the surface oscillations in the present study, for

the distance from the interface, H = 0.03 m, the maximum surface elevation ∆z = 1 mm, and surface slope β = 0.2◦.

3.1.1 Errors in the present experiment

For the experiments herein, the maximum amplitude of the surface waves is about 1 mm and the resulting surface angle

is ∼ 0.2◦. Figure 8 presents the horizontal and vertical errors as a function of the camera angle for these disturbances.

The vertical error grows rapidly with decreasing camera angles, θ2, below 7◦. The horizontal error increases slowly

(approximately linearly) with θ2 for angles less than 30◦ and more rapidly thereafter. The two graphs cross at the angle

of 45◦, where the vertical and horizontal errors are equal. The selected camera angle should minimize Eh +Ev. For the

current experiments, camera angles of about 7.5◦ were measured from the calibration procedure. The corresponding

position errors for this angle are about 0.04 mm in the horizontal direction and 0.3 mm in vertical (which corresponds

well with the measured position errors obtained in the next sections, 0.1 and 0.3 mm, respectively).

3.1.2 Guideline: How to choose the camera angle in the case of an unsteady interface

The optimum camera angle is that which results in the minimum value of Eh +Ev, which depends upon: the slope of

the interface β , its change in elevation ∆z, and the depth of the flow H. The trends in the variation of the optimum

camera angle, Eh and Ev are presented by keeping H constant (and equal to 30 and 100 mm) and varying the other two

independent variables over physically relevant parameter ranges (β = 0 - 3.5 ◦, ∆z = 0 - 4 mm). Figures 9 a and d depict

the optimum camera angles and the corresponding horizontal (b,e) and vertical (c, f ) errors for the two fixed flow depths.

It is clear that for small depths, the optimum camera angle is more sensitive to the combination of parameters β and ∆z,

while for deeper flows, the error (both vertical and horizontal) becomes almost a linear function of the surface slope.

Considering all these conditions, the optimum camera angle, θ2, lies between 6◦ and 32◦ for different wave properties.

Should it be required, the error magnitudes for specific cases can be calculated using equations (5) to (8).

In the next sections, the errors introduced during the calibration procedure will be compared with errors due to the

surface waves. Then, velocity errors will be calculated based on the position errors and the particular flow field.
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Error analysis of 3D-PTV through unsteady interfaces 11

Fig. 9: a),d) Optimum angle of the cameras (θ2) in a stereoscopic or a tomographic system as a function of the slope

(β ) and change in elevation (∆z) of an unsteady optical interface (i.e. free water surface). b),e) and c), f ) respectively

correspond to the horizontal (Eh) and vertical (Ev) errors produced by this variable interface, given that the optimum

angle is used. Depth of the measurement volume H = 0.03 m (a,b,c) and 0.1 m (d,e, f ).

3.2 Calibration of the cameras

Before making stereo or tomographic measurements with a set of cameras, a camera calibration is undertaken to deter-

mine the exact positions and angles of the cameras in addition to their optical parameters, such as lens distortion. The

calibration consists of an optimization procedure in which these geometric parameters are found using fixed data points

on a calibration object of known geometry (Figure 10) (Maas et al, 1993). However, the result of the optimization is never

perfect and introduces a systematic error. To estimate this error, the stereo-matching algorithm is run on the calibration

object using the new parameters and the calculated positions are compared with the true ones.

The calibration object shape was selected to provide data points within the full 3D volume to be studied without the

need for calibration at different flow depths. Points were machined on the calibration object with a diameter of 0.3 mm

with a position accuracy of 0.03 mm. The systematic error introduced by the calibration is determined by comparing

the true and calculated (post calibration) position of the points on the calibration object, as shown in Figure 11. The
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12 Y. Akutina1,2, L. Mydlarski3, S. Gaskin2, O. Eiff1

Fig. 10: Calibration object of known geometry used to determine the position of the cameras relative to the measurement

domain (defined by 1104 holes 0.3 mm in diameter positioned with the precision of ±0.03 mm and filled with white

silicone) (Akutina, 2016).

r.m.s. values of the error distributions are 0.03 mm, 0.03 mm and 0.20 mm in the x-, y- and z-directions, respectively. In

most locations the x and y errors are below the machining precision and the error in z is below the machining precision

divided by tanθ2 (about 0.3 mm), where θ2 is the angle of the cameras (see Section 3.1). However, near the edges of the

measurement domain, the error can reach 0.15 mm in the horizontal directions and 1 mm in the vertical direction.

It is important to note that the calibration procedure was performed in still water as the calibration object would

disturb the flow rendering the calibration invalid. Thus, the calculated position errors do not account for the effects of the

unsteady interface.

3.3 Estimating cumulative errors in position and velocity

Once the cameras are placed with the optimal angle (as per Section 3.1.1) and an approximate estimation of the position

errors due to the unsteady interface and calibration are obtained, an estimation of the cumulative position error of the

whole procedure and the resulting velocity error is required.
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Fig. 11: Discrete probability density functions (PDFs) of the position error in the x, y, and z-directions (a, b, and c

respectively). The error is measured in the still water by comparing the true and calculated positions of the dots on the

calibration object.
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Error analysis of 3D-PTV through unsteady interfaces 13

Two methods were developed to assess the total measurement errors. In Method 1, a flat thin pane of glass with a

precise pattern of dots was placed at the bottom of the flow. The flow disturbances introduced are negligible, so the total

position error including the influence of the surface waves can be assessed (at the bed where the position error will be

maximal). The velocity error is then calculated from the spatial gradient of the position error, similarly to the approach

of Elsinga and Orlicz (2015).

In Method 2, a so-called “dumbbell” (a little rod with two particles glued onto it) is moved around in the flow. The

relative velocity of the two particles along the vector connecting them must be zero, thus providing a way to measure

velocity error in the experiments. These two methods and their application are described in the following two subsections.

3.3.1 Velocity errors - Method 1: Dot pattern

Assume there are a number of fixed points with known geometrical positions within the measurement domain. These

points can be tracked in time by the PTV/PIV system. In every frame, the measured positions, rm(x,y, t), of every point

are extracted and compared with their true position, r(x,y). A position error vector, r′, associated with every point, for

every frame in the test, is then obtained:

r′(x,y, t) = rm(x,y, t)− r(x,y). (9)

The total error can be divided into systematic and random components, referred to as r′s and r′r. Taking the time

average of r′(x,y, t) yields the systematic error of the position estimate for every point in the pattern:

r′s(x,y) =
1
N

N

∑
i=1

r′(x,y, ti), (10)

where T = N∆ t is the duration of the data set. The standard deviation of r′(x,y, t) quantifies the random component of

the position error:

r′r(x,y) =
√

(r′(x,y, t)− r′s(x,y))
2. (11)

The measured velocity of a particle, um, is the difference in its measured position, rm, over the time interval, ∆ t,

between two frames. Given that the measured position is the true position, r, plus the position error, r′, an expression for

the measured velocity can be derived:

um =
(r(x2)+ r′(x2))− (r(x1)+ r′(x1))

∆ t
= u+u′, (12)

where u is the particle’s true velocity. The error in velocity, u′, is therefore:

u′ =
r′(x2)− r′(x1)

∆ t
, (13)

i.e., proportional to the difference in the errors in the position vectors. Note that, if the position error was the same

everywhere, there would be no error in the velocity. The gradient in the position error over the volume of interest is
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14 Y. Akutina1,2, L. Mydlarski3, S. Gaskin2, O. Eiff1

estimated using a Taylor series expansion (hereafter switching from vector to index notation for clarity):

r′i((x2)i) = r′i((x1)i)+∑
j

∂ r′i
∂x j

((x2) j− (x1) j)+ ... (14)

where i = 1,2,3 and j = 1,2,3. (Note: Einstein summation convention is not implied here.) Substituting (14) into (13)

and neglecting higher order terms, one obtains:

u′i ≈
∂ r′i
∂x j

(x2) j− (x1) j

∆ t
=

∂ r′i
∂x j

u j (15)

Thus, the velocity error at a point can be estimated by the gradient of the position error multiplied by the particle’s

velocity. Dividing both sides by velocity, we obtain an expression for the relative velocity error:

u′i
ui

= ∑
j

∂ r′i
∂x j

u j

ui
. (16)

For an isotropic flow u j
ui

is ≈ 1, so an approximate criterion for the quality of velocity measurements in a relatively

isotropic flow can be given by specifying that ∂r′i
∂x j

be less than a critical value (say, 5%) everywhere. If the flow has

regions of strong shear, as in the present case, the ratio u j
ui

will vary in space and should be included in the calculation

to render this error estimate more accurate. As undertaking this task for the instantaneous data is excessive, the time-

averaged velocity field is used to characterise the anisotropy. Doing so, the relative velocity error can then be expressed

as:

u′i
ūi

=


∂

∂x (r
′
x)+

∂

∂y (r
′
x)

ūy
ūx
+ ∂

∂ z (r
′
x)

ūz
ūx

∂

∂x (r
′
y)

ūx
ūy
+ ∂

∂y (r
′
y)+

∂

∂ z (r
′
y)

ūz
ūy

∂

∂x (r
′
z)

ūx
ūz
+ ∂

∂y (r
′
z)

ūy
ūz
+ ∂

∂ z (r
′
z)

 . (17)

In Method 1, the calibration object is two-dimensional, providing only horizontal derivatives of the position error field.

Thus, the ∂

∂ z r′i components are unknown. However, given that ūz
ūx

or ūz
ūy

are small in the current experiment (as the vertical

velocity is an order of magnitude smaller than the horizontal ones), these terms can be justifiably neglected. Thus, the

final approximation for the absolute velocity error in Method 1 is:

u′x = ∂ r′x
∂x ūx +

∂ r′x
∂y ūy

u′y =
∂ r′y
∂x ūx +

∂ r′y
∂y ūy

u′z =
∂ r′z
∂x ūx +

∂ r′z
∂y ūy.

(18)

Performing these operations on the systematic (r′s) and random (r′r) components of the position error vectors, one obtains

the systematic (u′s) and random (u′r) components of the velocity error:

(u′s)i =
2

∑
j=1

∂ (r′s)i

∂x j
ū j, (19)

(u′r)i =
2

∑
j=1

∂ (r′r)i

∂x j
ū j, (20)

where i = 1,2,3 and j = 1,2.
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Error analysis of 3D-PTV through unsteady interfaces 15

Fig. 12: Systematic position error, r′s, in x, y, and z-directions (plots a, b, and c, respectively) for the lower free-stream

velocity, U∞ = 0.13 m/s. Isocontour lines are plotted in 0.1 mm increments.

This method was implemented using a Cartesian pattern of 512 equally-spaced white dots, 0.3 mm in diameter,

printed on black background on 228 mm by 228 mm by 0.56 mm thick pane of extra rigid “Gorilla” glass. The glass

pane was placed on the bottom of the cavity and tests were run at the two free-stream velocities of (U∞ = 0.13 and 0.19

m/s). The position errors converged after 10 s (6000 images) for positions within the cavity and after 30 s (18000 images)

in the mixing layer, which is the most turbulent region of the flow.

Having acquired the series of images of the dots on the bottom of the flow, the position errors were determined using

equations (10) and (11). Figure 12 presents the systematic position error field in x-, y-, and z-directions for the lower

free-stream velocity. It is clear from the graphs that the error is the largest near the walls of the cavity (up to 0.7 mm),

presumably due to capillary action increasing the surface slope at these near-wall locations. The systematic error in the

rest of the cavity is mostly below 0.1 mm. A small increase in the position error (< 0.2 mm) occurs in Figure 12c, due

to the edge of the glass pane creating a minor flow disturbance. (Note: the calculation of the systematic error can also be

affected by imperfections of the pattern of the dots, of the glass pane, or local flow disturbances generated by the glass

edges, whereas the random component is a fluctuation around the mean, and hence, unaffected by these factors.)

Figures 13 and 14 present the random component of the position error for the lower free-stream velocity (with no

gravity waves) and the higher one (with gravity waves), respectively. In all but one of the cases, for the vertical error at

higher free-stream velocity, the random error, r′r, is significantly smaller than the systematic one, r′s (see Table 2). Since
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Fig. 13: Random position error, r′r, in the x, y, and z-directions (plots a, b, and c, respectively) for the lower free-stream

velocity, U∞ = 0.13 m/s. Isocontour lines are plotted in 0.03 mm increments.
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x, m
0 0.1 0.2

y,
m

-0.05

0

0.05

0.1

0.15

0.2

0.25

(rr0)x, mm
0 0.1 0.2 0.3

mean = 0.03 mmb)

x, m
0 0.1 0.2

(rr0)y, mm
0 0.1 0.2 0.3

mean = 0.18 mmc)

x, m
0 0.1 0.2

(rr0)z, mm
0 0.1 0.2 0.3

Fig. 14: Random position error, r′r, in the x, y, and z-directions (plots a, b, and c, respectively) for the higher free-stream

velocity, U∞ = 0.19 m/s. Isocontour lines are plotted in 0.03 mm increments.

the effect of unsteady surface disturbances is reflected only in the random component, it appears that surface disturbances

are not the most important error source in these measurements. Another important observation is that the smaller scale

Kelvin-Helmholtz vortices in the shear layer created steeper surface slopes, and therefore larger position errors, than the

surface gravity waves with the 2 mm peak-to-peak amplitude.

The propagation of the position errors into the velocity calculation of a moving particle is then computed using

equations (19) and (20), where the spatial derivatives of r′s and r′r were approximated using a central difference scheme.

Fig. 15: First row: Systematic velocity error, u′s, a) absolute value, b) relative to the local velocity. Second row: Vertical

component of the systematic velocity error, (u′s)z, c) absolute value, d) relative to the local vertical velocity. U∞ = 0.19

m/s.
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Error analysis of 3D-PTV through unsteady interfaces 17

Fig. 16: First row: Random velocity error, u′r, a) absolute value, b) relative to the local velocity. Second row: Vertical

component of the random velocity error, (u′r)z, c) absolute value, d) relative to the local vertical velocity. U∞ = 0.19 m/s.

The detailed analysis is presented only for the higher free-stream velocity case with the gravity waves. Specifically,

Figures 15(a,b) present the magnitude of the systematic velocity error, u′s =
√

(u′s)2
x +(u′s)2

y +(u′s)2
z , where Figure 15a

plots the absolute error in units of mm/s, and Figure 15b is the relative error, expressed as a percentage of the local time-

and depth-averaged velocity (u′s/ū). (Note that hereafter the angle brackets, 〈·〉, denote the spatial averages of the error,

which are given on top of some plots to express its overall magnitude.) The regions of higher errors, ranging from 0.3 to

1 mm/s are located at the edges of the cavity (along the walls) and in the mixing layer. However, when divided by the

local time-averaged velocity, these errors become negligibly small (< 1%).

Note that to avoid division by zero/very small values in the calculation of relative error, the velocity data was filtered.

The filter threshold was set to 0.4 and 0.6 mm/s for the U∞ = 0.13 and 0.19 m/s cases, respectively. (These were chosen so

that 95% of the data had a relative velocity error less than 5%.) These values determine the sensitivity of the measurement

method, thus, the experimental data would be similarly filtered.

As was already clear from Figure 12c, the systematic error in the vertical direction is much larger than that in the

horizontal direction. Therefore, one expects the total velocity error also to be dominated by its vertical component. Thus,

the velocity error in the vertical direction must be further quantified. The magnitude of the vertical velocity error, (u′s)z,

is presented on Figure 15c, along with its relative value, (u′s)z/uz, (Figure 15d). These plots show that the vertical error

can reach 1 mm/s or 20% of the local velocity in some regions, which primarily correspond to zones of small vertical

velocity. Nevertheless, 96% of the data has a systematic error of less than 5% of the local vertical velocity.
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18 Y. Akutina1,2, L. Mydlarski3, S. Gaskin2, O. Eiff1

The total random velocity error,

u′r =
√

(u′r)2
x +(u′r)2

y +(u′r)2
z , (21)

given on Figures 16a,b, is smaller than the systematic error; the spatially averaged value decreases from 0.23 to 0.10

mm/s. Again, this indicates that unsteady surface disturbances are not the dominant source of error in this work. Note

that the random velocity error is also dominated by its vertical component, (u′r)z, (Figure 16c,d), its space average is 0.08

mm/s compared to the total 0.10 mm/s. However, relative to the local mean vertical velocity, (u′r)z/uz, it is still within

acceptable limits (Figure 16d).

Overall, the total velocity error, calculated as the sum of its random and systematic components, is 0.16 mm/s for

the case of no surface gravity waves and 0.22 mm/s for the case with waves. Although the surface waves increase the

absolute error by 35%, as the average velocities for this case are larger, and the relative velocity error decreases from

0.4% to 0.3% of the average velocity of the gyre in the cavity (see Section 4). Both the systematic and random velocity

errors are dominated by their vertical components (because the camera angles are small, 7.5◦, and the vertical uncertainty

is expected to be much larger than the horizontal one, see Figure 7). Nevertheless, after normalizing (relatively large)

vertical velocity errors with (relatively low) vertical velocities, the errors are below 5% for 96% of the data.

This method of error analysis allows for the calculation of the spatial distributions of both systematic and random

errors in velocity measurements. From Figure 12c and additional graphs not shown here (see Akutina, 2016), it is clear

that the regions near the walls of the cavity have a large systematic error, most likely due to surface tension effects. Thus,

it is reasonable to exclude the region within 5 mm from the walls from subsequent analyses. There is often a region of

(relatively) larger error in the shear layer. However, the error within that region is nevertheless acceptable (< 5%).

We note, however, that the error analysis of this method does not capture the variation of the position error in the

vertical direction, ∂r′
∂ z , and the errors that appear in the later stages of the PTV analysis. To address these two issues, the

second method of error analysis was developed and implemented.

3.3.2 Velocity errors - Method 2: “Dumbbell”

To calculate the velocity measurement uncertainty of a PTV (or a PIV) system, it is desirable to conduct a test in which

the exact velocities of the tracking points are known. One of the common methods is to measure the velocities of points

on a rotating disk (see, for example, Weitbrecht et al, 2002). However, this method is not ideal for the current set-up

primarily because of the imaging through the free surface. In a rotating-disk test, the points always move on the same

circular trajectories, whereas from the previous section it is clear that the velocity error at a point depends on the direction

in which the particle is moving, as it will go through different regions of the position error field. Also, the rotating disk

is flat and will again be insensitive to the vertical derivative of the position error. A complex, three-dimensional object

could have been constructed, but in that case it would have been impossible to rotate it inside the cavity without creating

significant disturbances to the flow.

An alternate way of testing the quality of the velocity measurements that is more suitable to the experimental con-

ditions is therefore required. There exists a well-known camera calibration technique for PTV systems called dynamic

calibration or a “dumbbell” calibration (Gülan et al, 2012). In the dumbbell calibration, two points, separated by a fixed

distance, are moved within the domain of interest. The calibration parameters are then optimized while maintaining the
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Fig. 17: Example of the trajectories of the 2 particles on the dumbbell target, U∞ = 0.13 m/s.

separation distance. In this study, this method is extended to the assessment of velocity errors by recognizing that two

particles with a constant separation distance must also have zero relative velocity along the vector that connects them. A

dumbbell was created by glueing two particles (polyethylene microspheres 212-250 µm in diameter, the same as those

used for the PTV experiments) onto a piece of black plastic with a separation distance of 9.36 mm. (The separation dis-

tance was calculated as the average distance, d, between the particles measured during the experiments described below.)

A thin handle was attached to the dumbbell to allow it to be moved within the measurement domain (see Akutina, 2016,

for details).

The error estimation was made by recording the trajectories of the two particles on the dumbbell as the latter was

moved within the cavity in a manner that followed the streamlines and approximated the velocities therein. Images were

recorded for the two flow cases, with and without surface gravity waves, over a 30 s duration (to mimic the velocity

errors of the experiments). The imposed motion also had a vertical component to be able to estimate ∂r′
∂ z . An example of

the measured dumbbell trajectory is given in Figure 17. After discarding the data in which one of the dumbbell points

was not visible, 23 seconds of data remained for U∞ = 0.13 m/s case and 14 seconds for U∞ = 0.19 m/s case.

The recordings were post-processed using the same procedure as the actual experiments (Section 2), and the mea-

sured distance between the two particles, d, was calculated as:

d(t) =
√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2,

where x, y, and z are the coordinates of the particles. The distance between the points is constant, so the standard deviation

of d(t) gives us an estimation of the position error of the system.

The velocity of the two dumbbell particles towards or away from each other was calculated as the scalar projection

of the relative velocity between two particles, (u1−u2), onto the vector, k, connecting them:

u1,2 =
(u1−u2) ·k
|k|

.

The deviation of u1,2 from zero is then a measure of velocity error in the experiment.

Figure 18 shows the probability density functions (PDFs) of the difference between the measured and the true d(t)

for the two flow cases, whose standard deviations are 0.011 and 0.012 mm for the cases with no waves and with waves,

respectively. In the previous test (with the stationary pattern) the total position ambiguity (systematic plus random) was

0.32 mm and 0.38 mm under the same conditions. The relative position error between closely spaced points (10 mm
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Fig. 18: Empirical PDFs of the distance, d(t), between the two particles on the dumbbell target. a) U∞ = 0.13 m/s. b) U∞

= 0.19 m/s.

in the dumbbell) is therefore more than an order of magnitude smaller than the maximum absolute position error. This

explains why it is possible to get quite accurate velocity measurements even with relatively large absolute position errors

(0.3-0.4 mm).

Figure 19 presents the probability density functions of u1,2(t), whose standard deviation is 0.39 mm/s without waves

and 0.68 mm/s with waves. This is larger than the errors obtained from the stationary dot pattern whose errors were 0.16

mm/s and 0.22 mm/s, respectively. This difference is mainly attributed to the polynomial fit procedure (used to calculate

velocities along the lagrangian particle trajectory), which was not accounted for in the first tests. This explanation is

confirmed by the observation the error magnitudes in the dumbbell test trajectories increased at the trajectory ends,

where the polynomial fit deteriorates. In addition, a larger error in the polynomial fit occurs since the trajectories of the

dumbbell were considerably less smooth (being moved by hand) than for PTV particles advected by the flow. Thus, even

though, these velocity errors are somewhat overestimated, we have demonstrated that they are nevertheless small, less

than 1 mm/s (or 1−3% of the average velocity in the domain, and less than 0.4% of U∞).

It can be noted that future work could involve moving the dumbbell using a 3D traversing mechanism (rather than 

manually) to avoid additional vibrations. Also, if the flow under consideration is contained in a closed chamber, one 

could consider making the dumbbell out of a neutrally buoyant material so that it could be advected by the flow.
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Fig. 19: Empirical PDFs of the projection of the relative velocity on the separation vector between two points on the

dumbbell target, u1,2. a) U∞ = 0.13 m/s. b) U∞ = 0.19 m/s.
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Table 2: Summary of all the position errors calculated and measured in this work: i) from the experiment with the

stationary pattern (Method 1), ii) using the dumbbell target (Method 2), iii) due to the unsteady interface calculated

theoretically in Section 3.1.1, iv) due to calibration imperfections measured in still water (Section 3.2).

Position error, mm
Absolute Relative Due to Due to

Quantity U∞, mm/s Stationary pattern test Dumbbell test variable calibration;
interface in still water

Systematic Random Total Total (Section 3.1.1) (Section 3.2)

x
130 0.11 0.01 0.12

0.03
190 0.07 0.03 0.10 0.04

y
130 0.06 0.01 0.07

0.03
190 0.09 0.03 0.12 0.04

z
130 0.23 0.07 0.30

0.20
190 0.16 0.18 0.34 0.30

|r| 130 0.26 0.07 0.32 (1.1% of H) 0.011 (0.04% of H) 0.20
190 0.20 0.18 0.38 (1.2% of H) 0.012 (0.04% of H) 0.30

Table 3: Summary of the velocity errors obtained from two error analysis experiments: i) with the stationary pattern

(Method 1), and ii) with the dumbbell target (Method 2). U∞ is the free-stream velocity, and 〈u〉 = 〈u(x,y,z)〉 is the

average velocity in the domain (overbar denotes time averaging, while angle brackets correspond to spatial averaging).

Velocity error, mm/s

Quantity U∞, mm/s Stationary pattern test Dumbbell target test

Systematic Random Total Total

ux
130 0.18 0.01 0.19
190 0.12 0.03 0.15

uy
130 0.10 0.005 0.10
190 0.08 0.02 0.10

uz
130 0.32 0.03 0.35
190 0.17 0.09 0.26

|u| 130 0.38 0.03 0.41 (0.3% of U∞ or 1.1% of 〈u〉) 0.39 (0.3% of U∞ or 1.1% of 〈u〉)
190 0.23 0.10 0.33 (0.2% of U∞ or 0.5% of 〈u〉) 0.68 (0.3% of U∞ or 1.1% of 〈u〉)

4 Discussion

4.1 Position error

Given that the optimal camera angle was used (7.5◦ here), position errors arising from an unsteady optical interface were

first calculated theoretically. For the maximum angle of 0.2◦ and maximum interface elevation of 1 mm, the errors were

0.04, 0.04 and 0.3 mm in the x-, y-, and z-directions, respectively. (See the summary in Table 2.) This is slightly larger

than the average random component of the position error estimated using Method 1 – the stationary dot pattern (0.03,

0.03 and 0.18 mm). The measured error is presumably lower than the theoretically predicted one given that the latter

calculation used maximum surface angles whereas the former resulted from the whole range of surface disturbances

(large and small).
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The errors due to imperfections of the stereoscopic model alone are 0.03, 0.03 and 0.2 mm in the x-, y-, and z-

directions, respectively, which is almost the same as the measured errors due to the waves (0.03, 0.03 and 0.18 mm).

Also, the systematic component of the error is consistently larger than the random component for both the cases with

and without gravity waves, suggesting that the contribution of the error from the surface disturbances is relatively small.

The absolute total position error measured is 0.32 mm or 1.1% of H, for the case of no waves and 0.38 mm or 1.2% of

H for the case of strong surface gravity waves, a difference of only 15%, suggesting that the contribution of the wavy

surface to the total error is again not very large. (Recall that H here is the maximum distance from the interface to

the measurement plane, which in our case is the same as the water depth, h, since the measurements are performed in

the entire water column.) The relative position error determined by the dumbbell method is 30 times smaller than the

absolute error at 0.011 mm for no waves and 0.012 mm with waves, corresponding to 0.04% of H. It is important to

note that the separation distance between the two points on the dumbbell should be chosen to be greater (or equal to)

the maximum displacement of a particle per frame in the given flow field in order to be representative of the relative

position error experienced by the particle during one time step. In this work, the separation distance is much larger than

the particle displacement, so the relative position errors are possibly even smaller than what is estimated.

4.2 Velocity error

The velocity error is similar for the cases with and without gravity waves (Table 3). The error is smaller when the gravity

waves are present (0.33 mm/s or 0.5% of the average velocity in the domain for U∞ = 0.19 compared to 0.41 mm/s or

1.1% of the average velocity for U∞ = 0.13). This is attributed to the the fact that near-wall data was not available for the

case with the higher free-stream velocity, so that the error associated with surface tension effects was underestimated. The

random component of the error is larger for the case with surface waves, however it remains smaller than the systematic

error.

The vertical velocity error is about two to three times larger than the horizontal ones for both cases (with and without

waves). This difference is clearly due to the geometrical arrangement of the stereoscopic system, i.e. the small angle

between the cameras, and this difference does not change with increasing surface curvature.

5 Conclusions

The errors associated with optical measurements made through an unsteady optical interface were investigated. The main

results can be summarized as follows.

An analytical estimation of the i) optimum camera angle with respect to the variable interface, and ii) the resulting

position errors as a function of the interface displacement and inclination are obtained. The estimated position errors

agree with those measured in the current experimental configuration. Practical information about the optimum camera

angles for particular values of surface perturbations can be obtained from Figure 9.

Two methods of measuring velocity errors were proposed. These methods can be applied to setups where an unsteady

optical interface is present, such as a stratified flow with internal gravity waves, a flow with shock waves, or free-surface
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flows such as the one presented herein. Also, these methods can be used to quickly assess the uncertainties in a setup 

with no additional optical disturbances.

In the first method, a planar pattern was used to measure the position errors due to the variable optical interface. For 

a relatively isotropic flow the velocity error can be quickly estimated by taking the spatial derivative of this field and
′
iensuring that 

∂

∂

x
r

j 
is less than a critical value (e.g. 5%). If the flow is highly anisotropic and heterogeneous the full test

will provide the spatial variability of the velocity error. Either way, a quick and simple test to check the quality of the 

velocity measurements is the second method, the “dumbbell” test, where a small rod with two particles glued onto it 

is tracked by the optical system; the deviation from zero of the relative velocity of these two particles along the vector 

connecting them should be small.

These methods of error assessment can be applied to 2D and 3D optical measurements methods (PTV and PIV). 

For PIV where a correlation method is used on a group of particles, a particle cloud can be glued onto the ends of the 

dumbbell.

To the authors’ knowledge, 3D-PTV through an unsteady interface had never been performed prior to this work.

Large errors were thus expected from the changing angles of refraction of the unsteady wavy surface through which

particles are tracked. As a result of this work, it appears that if the waves are slow and long compared to the flow

velocity, it is relatively straightforward to obtain accurate velocity measurements.

This finding can be quite influential in the field of environmental fluid mechanics, where it is often not possible to

take data through a glass wall (for example, wide channels with sediments on the bottom) and the only accessible surface

is the free surface. In these cases, only surface data is usually obtained (by way of floating particles). A similar problem

is faced when internal gravity waves are present at an interface between two media.

In summary, although the absolute positions to which the velocity vectors are assigned is distorted by the unsteady 

interface, the magnitude of the velocity vectors themselves remains accurate as long as the waves are slowly varying 

(have low curvature). To estimate the optimum camera angles the maximum slope and amplitude of the unsteady interface 

should be considered. These two parameters will also determine the position distortion in the measurements. However, 

the velocity errors are solemnly determined by the rate of change of the surface properties (of slope and elevation) in 

space and time. Clearly, the stronger the disturbances on the interface are (high amplitude, short wave length), the smaller 

is the distance from the interface at which the measurements can be performed.

We have demonstrated that measurements should not be immediately deemed infeasible when distortions due to 

surface waves are visible. We have observed that optical measurements are considerably more robust when subjected to 

such distortions than one would have initially thought.
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