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Abstract

One of the important research problems in the area of speech coding is to deter­

mine the sound qud1ity of coded speech signais. This quality can best be evaluated

by a subjective assessment which is often difficult to administer and time-consuming.

An objective measure which is consistent with subjective assessrnent could play a

vital role in the evaluation as weil a:; in the design of a low bit-rate speech coder. In

this dissertation, we introduce two distortion measures for speech coder evaluation.

Since the perceptual abilities of a human being determine the precision with which

speech data must be processed, we consider the details of cochlear (inner car) and

other auditory processing. Using Lyon's auditory model, the time-domain speech

signal is mapped onto a perceptual-domain (PD). Any speech utterance is commu­

nicated to the brain through a series of all-or-none e1ectrical spikes (firings) and the

PD representation provides information pertaining to the probability-of-firings in th.e

neural channels. Our first measure, namely the cochlear discrimination information

(CDI), evaluates the cross-entropy of the neural firings for the coded speech with

respect to those for the original one. With this measure, we also compute the rate­

distortion function determining the lowest bit-rate required for a. specified amonnt

of distort,ion. In the second rneasure, narnely the cochlear hidden Markovian (CHM)

measure, we attempt to capture the high-Ievel processing in the brain with simple hid­

den Markov models (HMMs). We characterize the firing events by HMMs where the

order of occurrence of PD observations and correlations among adjaccnt observations

are modeled suitably. For cornputing the coder distortion, the PD observations of the

coded speech are matched against the I-IMMs derived from the PD observations of the

original speech. Experimental results show that these measures conforrn to subjective

evaluation results in majority of the cases. Finally, the introduced measures are also

applied in speech coder analysis, e.g., in the pitch frequency determination and the

evaluation of noise weighting schemes.
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Sommaire

L'un des problèmes de recherche importants dans le domaine du codage de la

parole est de déterminer la qualité de son des signaux de parole codés. Cette qualité

est évaluée à son meilleur par un jugement subjectif, ce qui est souvent difficile à
organiser et assez long. Une mesure objective consistente avec l'évaluation subjective

pourrait jouer un rôl~ vital dans la conception de codeurs de parole à bas ta.ux de

bits ainsi que dans le jugement quailitatif de la parole. Nous introduisons dans cette

dissertation deux mesures de distortion pour l'évaluation de performance de codeurs

de parole. Etant donné que la précision avec laquelle les données de parole devraient

être traitées est déterminée par les capacités perceptuelles de l'être humain, nous

considérons les détails du traitement de signaux par la cochlea (intérieur de l'oreille),

ainsi que d'autres traitements par le système autitif. En utilisant le modèle auditif

de Lyon, le parole dans le domaine temporel est transformée dans le dom"ine per­

ceptuc1 (PD). Chaque phrase parlée est communiquée au cerveau à travers une série

d'impulsions électriques sur une base de tout ou rien, et la représentation PD offre des

informations pertinent à la probabilité d'envoi des impulsions dans les canaux neu­

ronaux. Notre première mesure, plus exactement la discrimination de l'information

par la cochlea (CDI), évalue l'entropie croisée des impulsions envoyées pour la pa­

role codée avec ceux de la parole originale. Avec cette mesure, nous calculons aussi

une fonction taux-distortion pour déterminer le plus bas taux de bits requis pour

un niveau de distortion donné. Dans la seconde mesure de distortion, la Markovi­

enne cachée de la cochlea (CHM), nous essayons de capturer le traitement de haut

niveau dans le cerveau à travers de simples modèles de Markov cachés (HMM). Nous

caractérisons les événements d'envoi d'impulsions par des HMM où l'ordre de lieu

d'observations PD et la correlation entre observations adjacentes sont proprement

représentés. Pour calculer la distortion du codeur, les observations PD de la parole

codée sont comparées aux HMMs dérivés des observations PD de la parole d'origine.

Les résultats expérimenta'lx démontrent que ces mesures sont conforme à l'évaluation

subjective dans la majorité des cas. Finalement, les mesures introduites sont ap­

pliqués à l'analyse dans le codage de la parole, par exemple, pour la détermination

de la fréquence fondamentale et l'évaluation de modèles de pondération bruités.
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Chapter 1

Introduction

In a typical source coding problem, a continuous-time continuous-amplitude bandlim­

ited signal is sampled in the time domain at or above the minimum sampling rate

required. This time-discretized signal with amplitude having continuous probability

density function has an infinite entropy. '1'0 transmit the output of such a source

and recover it exactly, a communication channel of infini te capacity is required. In

practice, every channel, due to perturbation by noise, has a finite capacity. Thus, it

is not possible to transmit the output of a continuous source over any channel and

recover it exactly [1]. Accepting the fact that there will inevitably he sorne distor­

tion, a typical source coder minimizes it by removing deliberately sorne informat;ion

which is deemed 'not very important' to the destination. The extent to which the

information should be removed depends on the bit-rate of the coder; the lower the

bit-rate, the more information is needed to be removed.

In speech communication, the ultimate recipient of information is a human

being and hence his/her perceptual abilities govern the precision with which speech

data must be processed and transmitted. Thus, to reduce the amount of distortion,

the speech data can be modified by an intentional removal of sorne information in

accordance with the limitations of the auditory system. Determining 'what is not

very important' to the auditory system and 'how the auditory system assesses' the

relative importance of information is the primary task involved in devising a distortion

measure for speech coders.

The sound quality of a given speech coder can best be evaluated by listening to

1



• il. However, an extensive subjective testing of speech coders is difficult to administer

and also time-consuming. Orten, it is found to give inconsistent result due to the

inhcrent non-repcatability of human responses. Moreover, it does not provide much

insight into the factors which may lead to an improvement of the speech coding

system. It is obvious that an objective quality measure, if suitably defined, could

play an important role in thc evaluation as weil as in the design of low bit-rate speech

codcrs. One important advantage of an objective quality measure is that its repeated

application at different time under different environment gives the same performance.

Defining an apph.lpriate objective quality measure for coded/distorted speech

has thus become one of the pressing tasks to maintain a 'good' speech quality with low

bit-rate coding or to assess the perceptual quality of any speech coder. We provide

a brief overview of speech coding techniques in Section 1.1. The utility of having

a 'good' objective measure is discussed in Section 1.2 and the motivation for our

rcscarchis explained in Section 1.3. We present an outline of the thesis in Section 1.4

and state our contribution to original knowledge in Section 1.5.

• 1.1 Brief Overview of Speech Coding Techniques

•

The primary objective in speech coding research is to determine strategies for gen­

erating synthesized signaIs with as high quality as possible and at the same time

adhering to other constraints such as bit-rate and coding delay. Many coding tech­

niqucs exist for rates starting from 64 kilobits per sec (kbps) ail the way down to

2.4 kbps (or even lower). Speech coding algorithms vary from the high-rate/low­

complexity waveform coders to the medium- to low-rate/high-complexity vocoders or

hybrid coders [2]. Their variations are primarily in the following four aspects: (i)

selection of information (features) to be encoded, (ii) representation of features by

appropriate parameters for encoding, (iii) quantization technique adopted for param­

ctcr discretization and (iv) distortion measures applied for estimating quantization

loss.

Waveform coders analyze, code and reconstruct speech on a sample-by-sample

basis. Time-domain waveform coders exploit waveform redundancies, e.g., the peri­

odicity and slowly varying intensity while the spectral-domain waveform coders take

advantage of the nonuniform distribution of speech information across different fre-

2
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quencies [3]. On the other hand, source coders or vocoders utilize speech-specific

mode!. They generally identify certain aspects of the speech spectrulll as being im­

portant to model and generate speech with good reproduction of these aspects [4]. ln

speech production, the source may be either periodic generating a voiccd spœch or

noisy and aperiodic resulting in an unvoiced speech. The fundamental frcqucncy of

the vocal cord vibration, in the utterance of a voiced speech, is tcrmed as the pitch

frequency. The resonanccs, termed as the formants, oceur due to the poles of the

vocal tract frequency response while the spectralnulls (anti-resonances) occur due to

its zeros. Currently, the code-excited linear prediction (CELP) algorithm is the most

widely used speech coding method and a typicallow or medium bit-rate such coder

encodes the formant, pitch and residual information separately [5].

An ail-pole linear prediction filter synthesizes formant information and the filler

parameters are determined by autocorrelation or covariance method. These param­

eters may be encoded directly or may be expressed in other forms such as refiedion

coefficients, area ratio parameters, Hne spectral frequency parameters etc. and then

coded. They differ from each other from the perspectives of computational efliciency,

quantization sensitivity etc. [2]. A pitch prediction filter is generally characterized by

the pitch gain and lag value parameters. Depending on the bits available, the llumber

of pitch predictor taps and the codebook size for the pitch parameters are decided [6].
For sending information about the residual signal, a random excitation codebook or

often a structured algebraic codebook is used [7] and an appropriate codebook entry

is selected from it.

While designing a speech coder, once the parameters pertaining to different

features are appropriately selected, they are quantized. The quantization may be

scalar, vector (single- or multi-stage) and scalar-vector. For example, V.S. federal

standard 4.8 kbps CELP coder [5J has formant filter with scalar quantization of line

spectral frequency parameters. However, vector quantization provides a substantial

bit reduction for the same speech quality at the expense of higher memory and com­

putational complexity. Different variations and hybrid forms of scalar and vedor

quantizations are used for different coder rates [8]. Similarly, the pitch predictioll

parameters can also be quantized in various ways [9]. The residual signais are usually

vector-quantized and stored in a stochastic codebook [5].

In an analysis-by-synthesis type speech coder, the selection of appropriate in­

dices for different codebook entries requires minimizing a distortion criterion. Il is

3
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possible to define different types of distortion measures for different features. How­

ever, selecting a codeword with respect to a global distortion measure could yield

better results as such a selection could even take care of interactions among the fea­

tures. The overall perceptual quality of a given speech coder could be evaluated

subjectively or by a properly defined objective measure. In this research, we have

primarily concentrated on the formulation of distortion measures using an auditory

model in the front-end. We have not attempted to use the measure in the coding

process, but only in the evaluation of speech coder performances.

1.2 Utility of Objective Measure

In thi~ section, we explain the utility of deriving an objective quality measure. Ob­

taining a suitable distortion measure could olfer several advantages such as (a) its

use in evaluating speech coder performances, (b) its application in a rate-distortion

analysis which could indicate the lowest possible bit-rate required for a particular

speech quality and (c) its use in the design procedure of speech coders.

1.2.1 Evaluation of Coder Performance

Speech coders of several standardized data rates are designed to 'match' to the capac­

ities of different communication channels. These encoders vary from each other from

the view point of the coder architecture, the type of features encoded, the number of

bits allocated to the features and so on. A wide variety of encoding algorithms intro­

duces a broad range of !inear and nonlinear coder distortions. Ali of these distortions

are not equally perceived by the auditory system. As a consequence, if we can devise

a distortion measure incorporating the human perception procedure, then that can

appropriately be used to evaluate the performances of dilferent speech coders.

1.2.2 Rate-Distortion Analysis

The need for a strong mathematical foundation for the field of data compression has

resulted in the development of rate-distortion theory. The performance achieved by

various data compression systems can be compared with absolute bounds derived from

4
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rate-distortion theory. With a particular source and a defined distortion measure, it is

possible to draw a rate-distortion curve which determincs the lowest possible rate for

allowing a particular amount of coder distortion. However, if the distortion measure

is not properly defined, this limit may not portray the real picture. Deiining an

appropriate distortion measure would facilitate the determination of the coder rate

limit for attaining a particular speech quality.

1.2.3 Design of Speech Coders

A distortion measure can help the design procedure of speech coders in three ways:

(1) In an analysis-by-synthesis type speech coder, from a stochastic codebook,

ail innovation sequence entries (in the case of an 'optimal' coder) or selectively chosen

entries (in the case of a 'suboptimal' coder) are used along with the formant and pitch

synthesis filters to generate several coded speech signais. Finally, the index of that

codebook entry is transmitted which results in the minimum distortion as measured

by the defined fidelity criterion. The distortion measure can thus be instrumental in

selecting an 'appropriate' codebook entry.

(2) With a limited number of bits available per second, a strategic allocation

of bits to different feature parameters becomes very important. The bit allocation

strategy adopted for an 8 kbps coder can neither be scaled down directly for a 4 kbps

coder nor he scaled up for a 16 kbps coder. The relative importance of the information

to be transmitted plays a significant role. In the design phase, the defined distortion

measure can be used for improving the bit allocation policy of a particular speech

coder, be it a waveform coder, an analysis-by-synthesis coder or a vocoder.

(3) While designing a speech coder, an appropriate distortion measure not only

helps in making a sound bit allocation policy, but also in 'populating' (also called

'training') the codebook. In the training phase, determining the ccntroid for each dass

with the defined distortion measure results in the design of an 'optimum' (at Icast in

the local sense) codebook. If the distortion measure properly refiects the perccptual

importance of information, then a fixed size codebook designed in this way will also

be filled up with the entries which contain perceptually important information.

5
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Over the last two decades, several objective measures have been suggested in the

l:terature (references are in Chapter 2). It is a weIl-known fact that the time-domain

objective measures such as the signal-to-noise ratio and the segmental signal-to-noise

ratio do not perform weIl in the assessment or in the design of a low or medium bit-rate

speech coder. Spectral measures, e.g., the log likelihood ratio measure, the log area

ratio measure, the log spectral distortion measure and the Itakura-Saito measure,

exhibit a better performance. However, most of these measures are based on the

parameters of linear prediction filter modeling the formant structure and thus do

not adequately feature the perceptual phenomena. Only about 80% of the perceived

degradation in speech quality can be explained by the distortions of the spectral peaks

or speech formants [10]. Therefore, it is important for a 'good' quality measure to

consider distortion not only in the formant information, but aIso in the pitch and the

residual information.

A few psychoacousticaIly-motivated measures such as the information index and

the Bark spectral distortion measure has also be,;n studied. In the recent literature,

several auditory models have been proposed and investigated (references are in Chap­

ter 3). Sorne of these models emulate the psychoacoustic observations fairly weIl, at

least at the level of auditory periphery. Thus, an application of one such auditory

mode! in the formulation of a distortion measure could result in good performance.

This may, to sorne extent, increase the complexity of computing the measure value.

Nevertheless, we believe that the measure could be used widely in practice as the com­

putationa! burden is eased with further progress in the signal processing technique and

the VLSI technology. Keeping this view in mind, we have conducted research on the

topic of Auditory Distortion Measures for Speech Coder Evaluation. We emphasize

accuracy over computational considerations in the evaluation of speech coders.

1.4 Outline of the Thesis

The format of the dissertation is as foIlows. Chapter 2 reviews the existing time­

domain, speetral-rlomain as weIl as perceptuaIly-motivated distortion measures. Chap­

ter 3 discusses psychoacoustic observations relevant to speech perception, describes

6
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Lyon's auditory (cochlear) model and defines a perceptual-domain. Chapter 4 pro­

poses a cochlear discrimination information measure which compares the set of percep­

tual-domain parameters for the oribinal and the coded speech signais. With this mea­

sure, performance of several speech coders is eva1uated objectively and also a rate­

distortion-theoretic analysis is pursued. Chapter 5 puts forward another distortion

measure methodology which uses hidden Markov mode!s. This measnre is computa­

tionally more inten~:ve, but captures the basics of high-Ieve! proccssing in addition

to the signal processing at the auditory periphery. Chapter 6 outlines sorne otller

applications of the measures, for example, in the pitch extraction or in the evaluation

of perceptual weighting scherr.<:s usually incorporated in a speech coder. Chapter 7

concludes this dissertation with relevant remarks and future research directions.

1.5 Our Contribution

In this thesis, we consider an auditory mode! and suggest two distinct approaches for

devising distortion measures for coded speech. The fundamental differencc between

our approaches and the existing perceptually-motivated measures is in addressing the

issue of the 'cause' rather than that of the 'effect' involved in speech perception. In

other words, instead of merely considering the important perccptual effects observed,

we emulate the auditory system as it is and use it in the formulation of our distortion

measure.

Our primary contribution is in the processing of neural information obtained

at the output of Lyon's auditory mode\. As explained in the dissertation, in reality,

a series of electrical spikes (firings) is transmitted from the auditory periphery to

the brain through the neural pathways. Here, we treat the neural pathways to be

communication channels with an input alphabet of size two, i.e., firing and non-firing.

Our first distortion measure deals with the neural firing probabilities and evaluates

the neural firing cross-entropy of the coded speech with respect to that of the original

one. With this measure, we compute the rate-distortion function for speech coder

determining the lowest bit-rate required for a given arnount of distortion. Speech

coders with rates ranging from 4.8 kbps to 32 kbps arc studied from the viewpoint of

their performance with respect to the rate-distortion limits. In the second measure,

a two-state (one each for firing and non-firing events) fully-connected hidden Markov

model (HMM) is associated with each of the neural channels and various model
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parameters are derived with the pertinent neural firing information of the original

signal. For computing the coder distortion, the neural firing observations from the

coded speech are matched against the derived HMMs. We believe that the second

measure is more powerful as it utilizes the contextual information present in the neural

firing pattern. Experimental results show that these measures conform to subjective

evaluation results in m"jority of the cases. The int.oduced measures are also applied

in speech coder analysis, e.g., in the pitch frequency ddermination and the evaluation

of noise weighting schemes usually incorporated in a low bit-rate coder.

8
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Chapter 2

Distortion Measures for Speech

Corling

2.1 Introduction

A distortion measure for speech quality is a measure which can be compüted directly

from an original speech waveform and its coded/distorted version; and which conforms

ta the results of a subjective measure of speech quality [11]. Regression analysis

establishes a quantitative re1ationship between an objective quality measure and a

subjective evaluation method. A correlation coefficient (p), defined as [12]

p = [I:k(Sk - SFf/2 [I:k(Ok - O)2t
2
'

is often used as a figure-of-merit to measure the degree of correlation bdween a stan­

dard subjective measure and an objective measurf'·. In (2.1), Sk and Ok, respectively,

are the subjective and objective measure values for the k-th speech utterancc in a

particu1ar databasej and Sand 0 are the corresponding average test. scores, aver­

aged over ail the utterances of the database. One major disadvantage of applying

the regression ana1ysis technique is the neccssity of knowing the form of the regres­

sion equation a priori. An alternative method [13] uses Baye~ian estimation and a

nonlinear re1ationship is automatically determined during the training.

.\ Severa1 subjective as weil as objective measures have been proposed in the litera-

ture. For many such subjective and objective measure pairs, the degrees of correlation
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have also been determined. In Section 2.2, sorne of the standard subjective evalua­

tion procedures are outlined. We -.!escribe a major class of time-domain distortion

measures in Section 2.3 and a few spectral distortion measures in Section 2.4. Sorne

of the perceptually-motivated distortion measures are discussed in Section 2.5.

2.2 Subjective Quality Measures

Subjective quality measures can be classified into two primary categories [14]: uti/­

itarian and ana/ytie. The utilitarian quality measures are found to be reliable and

reasonably efficient in the test administration. These measures are based on a unidi­

mension.,ï'scale and the result is provided by a single number so that the coded speech

qualities can be directly compared. On the other hand, the analytic measures typi­

cally use more than one dimension for assessing the speech quality and are directed

towards characterizing the underlying psychological components that determine the

perceived quality. With either of the classes, an extensive listener training procedure

is needed to ensure the reliability of these tests under different test environments.

2.2.1 Utilitarian Tests

Subjective measures very often address the speech intelligibility and the articulation

aspects separately. The intelligibility tests are scored by the percentage of correct

understanding of the meaning conveyed by the transmitted speech while the articula­

tion tests are evaluated by the percentage of correct recognition of the sounds, words

or sentences. Fletcher and Steinberg [15] have constructed, for their articulation test,

random lists of nonsense monosyllables (nullifying the associated semantic memory)

in the form of consonant-vowel-consonant (C-Y-C). Later, Fairbanks [16] has modified

this test by specifying the trailing vowel-consonants to the listeners and asking them

to choose the leading consonant based on his/her interpretation of the test speech.

Many refined versions of such rhyme tests have subsequently been suggested where

the listener responses are restricted in different manners (e.g., the choice being limited

to a finite set of rhyming words).

These tests are found to be appropriate for speech coding systems that generate

moderately to severely distorted speech [11]. However, for highly intelligible systems,
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other perceivable attributes (e.g., pleasantness, naturalness) become important. In

an isopreference evalualion procedure [1 i], test speech signais each having a differ­

ent speech level and contaminated with different levels of additive noise are passed

through the test transmission system. Test results are usually reported as 'isoprefer­

ence contours' in the tW'l-dimensional parameter space of speech le'lel vs. noise level.

Listeners usually judge the test speech in terms of a referencc speech; hencc, they are

often compelled to consider a small~r perceptual descriptor spacc than that might be

desired. The most widely used utilitarian type subjective evaillation 1l1ethod is the

mean opinion score (MûS) [18] if' which the listeners rate the speech distortion under

test on a fivp·point absolute scale (Rate 5: imperceptible; Rate 4: jllst perceptible,

but not annoying; Rate 3: perceptible and slightly annoyingj Rate 2: annoying, but

not objectionable; Ratel: very annoying and objectionable). Since the listeners have

freedom to interpret the scale 'ratings' in their own way, the MûS score provides an

agglomerative measure value for different types of coder distortions.

2.2.2 Analytic Tests

An alternative subjective evaluation approach is to rate tlte test speech on a mul­

tidimensional scale. ûne such popular multidimensional measure is the diagnostic

acceptability measure (DAM) [19]. The DAM evaillates a speech signal on sixteen

separate scales (covering the signal quality, the background quality and the overaIl

quality) , ail of which have a range from ato 100 points. In a multidimcnsional perccp­

tuai space, the distorted speech signais are representcd as points so that the relation­

ship between an individual )?reference and an acoustic distortion can be studied [201.
Signal degradations such as )Juttering (amplitude.modulated speech), thin (high-pass

speech), rasping (peak-clippf'd speech), interrupted (packetized speech with 'glitches'),

nasal; background noise such as hissing (noise-masked speech), buzzing (tandemmed

digital system), babbling (narrowband system with errors), rurnbiing (Iow-frequency

noise-masked speech); and overall qualities such as intcliigibility, picasantncss, ac­

ceptabilityare considered in the DAM test [11]. This measure attempts to minimize

the errors involved in the measurement process as weIl as that associated with the

human variability.

11



• 2.3 Time-Domain Objective Measures

The most popular class of the time-domain measures is the signal-to-noise ratio (SNR)

with its varied forms (e.g., the segmental SNR, the granular segmental SNR).

2.3.1 Signal-ta-Noise Ratio

The signal-to-noise ratio (SNR), for measuring the coded speech quality, is defined as

(2.2)

•

where x[n] and yIn] are the n-th original and coded speech samples, respeetively.

Numerous studies [l1J have exhibited that the SNR measure does not correlate weil

with subjective evaluation results. In praetice, any phase distortion with a delay

variation limited to a few milliseconds has such a small effeet on the signal quality that

it can be disregarded in the context of most synthetic speech quality [21]. However,

the SNR measure degrades drastically with any time misalignment of {x[n]} and

{y[n]}. The correlation coefficient (with the MOS score) for the SNR measure has

bccn found to be 0.24 correlated only across the waveform-coder distortions [11] where

it is cxpccted to perform relatively weil.

2.3.2 Segmental SNR

12

(2.3)dB.N

I: (y[n +Nm] - x[n +Nm])2
n=l

10 M-l

SNR..g = M I: loglO
m=O

A major drawback of the SNR measure is that it treats the entirc speech utterance

as a single vector thereby presuming an unrealistic idea of a single comparison made

by the listcner after listening to the entire utterance. A better measure, usually

reCerred to as the segmental SNR (SNR,;eg), is an average measure of the SNR values

in dB. The averaging is done over the M speech 'segments' present in an utterance,

each segment being of the order of 16 ms long (i.e., N =128 samples with 8,000 Hz

sampling rate). Mathematically, this measure can be written as [22]

N

I:x2 [n +Nm]
n-l
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The correlation coefficient associated with this measure has been dctermined to be

0.77 across a wide range of waveform coder distortions [l1J. Though SNR.eg provides

better accuracy than the SNR measure, it also can not be considered as a reliable

measure for the speech quality. In segments where an original speech has almost

no s;gnal components, a little noise could give rise to a large negative SNR for that

segment which in turn causes a considerable bias in the overalI measure of SNH.eg.

A threshold-adjusted or frequency-weighted SNR.eg measure could be used which

alleviates this problem to a great extent [11]. Another variation of the SNH.eg measure

is the granular SNR.eg which has been found to be appropriate only for the evaluation

of delta modulation or differential waveform coders [23J.

2.4 Spectral Objective Measures

Several spectral distortion measures have been proposed in the literature including the

log likelihood ratio measure, the log area ratio measure, the line spectral frequency­

based measure, the log spectral distortion measure, the ccpstral distance, the Itakura­

Saito measure and the coherence function. These distortion measures are generalIy

computed using speech segments typically between 15 and 30 ms long. They arc

much more reliable than the SNR measure and are less sensitive to the occurrence of

time misalignments between the original and the coded speech [11].

2.4.1 Log Likelihood Ratio

The log Iikelihood ratio (LLR) distance for a speech segment is defined based on the

assumption that samples of a speech can be represented by a p-th order alI-pole linear

predictive coding (LPC) model of the form

p

x[nJ = L amx[n - mJ +Gxu[nJ,
m=l

(2.4 )

•

where x[n] is the n-th speech sample, am (for m = 1,2,···, p) are the coefficients

of an alI-pole fil ter I/Ax(z) which models the resonanccs of the speech production

mechanism, Gx is the gain of the lilter and u[nJ is an appropriate excitation source

13



• for the filter. The LLR measure then can be defined as [24]

(2.5)

•

where a" is the LPC coefficient vector [1, -ai, -a~,···,-a~] for the original speech

{x[n]} and ay is the LPC coefficient vector [1, -aL -a~,···,-a~J for the coded speech
{y[n]}. Ry, the correlation matrix of {y[n]}, has elements as

N-IHI
ry(i,j) = L: y[n]y[n + li - jl], for i,j = 0,1,··· ,p, (2.6)

n=l

where N is the number of samples used in the analysis. The denominator in (2.5) mea­

sures the prediction residual energy when {y[n]} is filtered with its ali-zero analysis

filter Ay(z), whereas the numerator measures the same when {y[n]} is passed through

the filter A,,(z). A correlation coefficient of 0.59 is achieved with this measure [11].

2.4.2 Log Area Ratio Measure

The reflection coefficients {km}, another representation of the LPC coefficients {am},
are spectrally less-sensitive to quantization than their counterparts. However, the

reflection coefficients can be sensitive to quantization errors when their magnitudes are

near unity (Le., they represent narrow-bandwidth poles). To reduce the sensitivity, a

sui table nonlinear transformation expanding the region near 1km 1 = 1 can be followed

based on which a log area ratio (LAR) distortion measure is defined as [11]

p [ (l-k) (l-kl )]2LAR = L: log 1 km - log 1 k';' ,
m=l + m + m

(2.7)

•

where p is the number of predictor coefficients and km, k~ (for m = 1,2,' .. ,p) are the

reflection coefficients corresponding to the original and the coded signaIs, respectively.

A correlation coefficient (.f the order of 0.62 is attained with this measure [11].

2.4.3 Line Spectral Frequency-based Measure

The Hne spectral frequency (LSF) coefficients are derived by mapping the p-zeros

of an ali-zero analysis LPC filter A(z) onto the unit circle through two orthogonal

14



• polynomials P(z) and Q(z) of (p + l)-st order as [2J

P(z) - A(z) + z-lpHlA(z-l)

Q(z) = A(z) - z-lpHlA(z-l).

(2.8)

(2.9)

•

The resulting polynomials, P(z) and Q(z), have their roots in conjugate pairs. A
multiobjective functional measure is formulated by using the L5F transformation in

determining the spectral peak locations and the spectral peak bandwidths for the

original and the distorted speech frames. This measure compares six parameters

which are (a) a shift in peak location, (b) a change in peak bandwidth, (c) a change

in peak energy, (d) differences in inter-frame peak movement, (e) lost peaks and (r)
distortion-induced extra peaks. This measure has exhibited a correlation coefficient

of 0.78 [10].

2.4.4 Log Spectral Distortion Measure

The notions of one-step prediction error and spectral factorization are two important

properties using which an L p norm-based log spectral distortion (LSD) measure is

defined between two log spectral densities as [25]

where

{
• dw}l/P

LSD = LlV(w)IP 21l' ' (2.10)

(2.11 )

with Gr and Gy as the LPC gain coefficients; and Ar(ciW) and Ay(c;W) as the LPC

model polynomials corresponding to the original and the coded speech signais, re­

spectively. The most common choices in (2.10) for p are l, 2 and 00 giving rise to the

mean absolute, the root mean square and the maximum deviation, respectively. A

computational form of frequency-weighted log spectral distortion (FWL5D) measure

is often given as

•
FWLSD =

M IIp

L: IX(v)l"120 log X(v)JY(v) IP
v=!

M

L: [X(vW
LI=!
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where M is an integer corresponding to M -point discrete Fourier transform (DFT),

v is the discrete frequency variable; and X(v) and Y(v) are the LPC spectra of

{x[n}} and {y[n}}, respectively. With p = 2 and "Y = 0.5, a magnitude correlation

coefficient of 0.60 is obtained [U). Another version of this measure has recently been

proposed in [26J where the kernel of the measure is not the original and the coded

signal spectra, but the coded signal spectrum and the spectral representation of the

nonlinear distortions incurred in the coding process.

2.4.5 Cepstral Distance

The basic problem with the LSD measures is the Fourier transform and logarithm

computations involved in obtaining sufficient values of V(w) in order to approximate

the integral of (2.10) by summation. Computational efficiency and a high correlation

with the root mean square LSD have thus made another measure, namely the cepstral

distance (CD), popular [27]. The CD is a measure of the overall difference between an

original and a corresponding coded speech cepstra. A cepstrum computed from the

LPC coefficients, unlike that computed directly from the speech waveform, results in

an estimate of the smoothed speech spectrum [28J. This can be written as

(2.13)

where A(z) is the LPC analysis filter polynomial and c[kJ denotes the k-th cepstral

coefficient. Accordingly, a CD measure is defined as

10 L
CD = -110 2 ~=<cx[kJ - ey[kJ)2,

og k=l
(2.14)

•

where cx[kJ and ey[k] are the k-th cepstral coefficients of the original and the distorted

speech, and L is the number of the cepstral coefficients used. Although the sequence

of the cepstral coefficients is infinite in (2.13), limiting it to three times the number of

LPC parameters shows almost no deterioration in the result. A correlation coefficient

of 0.80 has been obtained with this measure [UJ. The quefrency-weighted CD [29J,

the liftering window-based CD [30J are sorne examples of weighted CD measures. A

unifying framework for viewing different distortion measures in the cepstral domain

has been laid out in [31J.
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• 2.4.6 Itakura-Saito Distortion Measure

With a maximum likelihood formulation of linear prediction, Itakura and Saito have

defined a dIS measure as [32]

dIS = ~j~ [eV(w) - V(w) -1] dw,
271" -~

.' (2.15)

where V(w) is as given in (2.11). The assumptions used in deriving the integral

form of (2.15) are that the speech is generated by a Gaussian process, the result

of uncorrelated noise passed through an ali-pole LPC filter and that the analysis

interval is much longer than the ali-pole fil ter order. It has been shown in [25] that

the PŒ' iTieasure is twice the <lSymptotic discrimination information under the above.' '

, ." ." '''assumption. A frequency-weighted version of the Itakura-Saito measure has been

found in [33] to give a better performance. The dco'h measure, a symInetrical version

of dIS, is orten defined as

It has been found in [27] that the dco'h measure bounds the LSD measure from above,

and in [25] that it becomes one haU of the generalized Ornstein distance bctween two

Gaussian processes. Computational costs for evaluating the diS and dco'h measures

are given in [34].

•
1 j~dco'h = - {cosh[V(w)]-I} dw.

271" -~
(2.16)

2.4.7 Coherence Function

In this method, the speech frames are first divided into four groups based on the four

amplitude quartiles. The original and the coded signal power spectra as weil as the

cross-power spectrum are computed and averaged for ail the frames in each quartile.

The respective average spectra, denoted by Srr(J), Syy(J) and Sxy(J), arc used to

compute the squared coherence function ,2(J) as [35]

(2.17)

•
which can he interpreted as the correlation between the original and the coded signaIs

at a frequency f. Next, the signal power C(J) and the distortion power D(J) are
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• estimated from ,2(J) and used to develop a modified signal-to-distortion ratio (SDR)

for each quartile as

C(J)

DU)

SDR

- 7].,2(J) 1Syy(JW ,

= 7].[1-,2(J)]ISyy(JW,
C(J).wM)

= D(J).W2(J) +W1 (J)"

(2.18)

(2.19)

(2.20)

•

In (2.18) and (2.19), 7] is a scale factor. W1(e) and W2(e) in (2.20) are the weight­

ing functions related to the hearing threshold and the handset receiver sensitivity.

The regression-analyzed MûS value is calculated using a frequency-weighted quartile­

weighted nonlinear function; the details are given in [35].

2.5 Perceptually-Motivated Objective Measures

Coder distortions can be perceived if the magnitude of the distortion is greater

than the resolution of the human auditory system. The nature of the distortion

is also important from the perception point of view. In the following, we discuss two

perceptually-motivated distortion measures.

2.5.1 Information Index

An information index (II) measure which accounts for loss, noise and distortion in

speech transmission over a telephone network has been proposed in [36]. The auditory

system effect is roughly modeled by dividing the spectrum into sixteen critical bands

and applying empirical frequency weights and hearing thresholds for each band. At

first, a signal-to-distortion ratio for each critical band, denoted as R(i), is compute<!

by
l: jX(WjW

R(i) = 1010 jE!; dB
glO Il: IX(wj)12 - l: IY(wj)j2

1
'

jebi iebj

(2.21)

•
where j ranges over ail the frequencies specified for the i-th band bi. Here, X(w)
and Y(w) are the Fourier transforms of an original and a corresponding coded speech
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• frame. Assuming the bands to be independent, the II measure is computed as

16. 3
II = E W2(1) •..,.....,...-~~~:-:-:

;=1 0.1 + 10-!R(;)+IV,(;)!1O]' (2.22)

where R(i) is the average of R( i) over ail the frames and W1(i) and W2 ( i) are the ap­

propriate weighting functions accounting for the hearing threshold aud the perceptual

importance of the i-th frequency band, respectively.

2.5.2 Bark Spectral Distortion

In [21J, Schroeder et al. have described a method of calculating an objective measure

for signal degradation based on the measurable properties of the auditory perception.

Motivated by this work, a series of psychophysical experimental curves has been in­

voked in [37J to define a Bark spectral distortion (BSO) measure. At first, a Bonlinear

frequency transformation from Hertz f to Bark b is made via the relation [21 J

which transforms the original power spectral density function X(J) to a critical band

density function Y(b). The function Y(b) is 'smeared' by a prototype critiealband

filter F( b) given as [38]

10 log10 F(b) = 7 - 7.5(b - a) - 17.5[0.196 + (b - a)2]'!2 (2.24)

•
f = 600 sinh(b/6) (2.23)

with Cl< = 0.215. The smearing is conceived of as a convolution operation between

F(b) and Y(b) which yields a continuous spectrum D(b). The fact that the ear is not

equally sensitive to the amount of energy at different frequencies is exploited next.

The well-known equalloudness level curves [39J have been used to translate the sound

pressure levels (SPL) in dB to the loudness levels in phons. The increase in phons

required to make the subjective loudness double depends on the loudness level and

thus finally a phon-to-sone conversion is performed using [38J

(2.26)

(2.25)

N
BSO(k) = E[S~k)(i) - S~k)(iW,

i=l

19

{

2(P-40)!10 if P > 40'S- - ,
- (P/40)2.642 if P < 40

to generate a Bark spectrum S(i). The BSO measure is defined in [37J as the average
of BSO(k) with
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•

where N is the number of critical bands; and S~k}(i) and S~k)(i) are the Bark spectra

in the i-th critical band for the k-th speech segment corresponding to the original and

the coded speech, respectively.

The success of the BSD measure has demonstrated the advantage of consider­

îng important perceptual events while formulating a distortion measure. Recently,

a software package, named PERCEVAL, is introduced in [40] which computes the

probability of detection of the noise as a function of time for noise-corrupted audio

and music signais.

2.6 Summary

In this chapter, we have reviewed sorne of the existing subjective and objective mea­

sures used in the speech coding area. The mean opinion score and the diagnostic ac­

ceptability measure are two of the widely used subjective measures. The most popular

class of the time-dnmain measures is the SNR with its variants such as the segmental

SNR, the granular segmental SNR etc. Among the spectral distortion measures, the

log likelihood ratio measure, the log area ratio measure, the log spectral distortion

measure, the cepstral distance and the Itakura-Saito distortion measure are quite

well-known. Sorne of the existing objective measures have placed emphasis on the

aspects which are perceptually important. Two such psychoacoustically-motivated

measures are the information index and the Bark spectral distortion measure. The

merit of considering important perceptual events has been demonstrated by the suc­

cess of these measures.
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Chapter 3

Auditory Representation of

Speech

3.1 Introduction

The formulation of any distortion measure requires resolution of two important issues:

(i) defining a suitable domain where the signal parameters should be compared and

(ii) comparing them in a meaningful sense. This chapter is concerned with the first

issue as relevant to speech signais. It has been observed that even the repeated

utterances of a sentence by a speaker often differ considerably in the time-domain. In
this regard, a spectral representation of speech has appeared to be a rclatively steady

one. However, we argue that neither the time-domain nor the frequency-domain, in

isolation, is a good representation for speech signai. Since a human auditory system

is the final information processor in speech communication, it would be meaningful

to represent the speech signal in a perceptual-domain (PD). In this work, we use an

auditory model for mapping the time-domain speech signal onto its corresponding

PD representation.

The present chapter is organized as follows. Section 3.2 brieOy studies the

mechanism of the auditory system. Section 3.3 presents various well-established psy­

choacoustic observations pertinent to speech perception. Section 3.4 discusses four

broad classes of analogous electrical model featuring primary auditory processing. In

particular, we describe Lyon's auditory (cochlear) model which is used to define the
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PD representation for the present work.

3.2 Mechanism of Auditory System

An ear consists of three sections-the outer ear, the middle ear and the inner car.

Speech pressure variations, directed towards the eardrum by the outer ear, are trans­

formed into mechanical motion by the middle ear. Finally, the inner ear converts

these mechanical vibrations into electrical firings (impulses) which are sensed by the

hair cells and propagated to the brain following an ascending auditory pathway over

nerve fibers [2, 41, 42J. In the following subsections, we concisely describe anatomy

and functions of the prime components of the auditory system.

3.2.1 Outer and Middle Ear

The pinna which is the visible part of the outer ear channelizes sound waves into the

ear canal (meatus) and finally hits the eardrum (tympanic membrane). This 2.7 cm

long canal with about 0.7 cm diameter behaves as a quarter-wavelength resonator

and amplifies energy between 3 kHz and 5 kHz by up to 12-15 dB. The middle ear

which contains three tiny, dense bones (mal/eus, incus and stapes) transmit the sound

wave vibrations to the oval window membrane of the inner ear. This way, it acts as

an acoustic transformer matching the airborne-sound impedance of the outer ear to

the lluid-borne sound impedance of the inner ear. The transformer action is due to

the ratio of the area of the active parts of the eardrum to the area of the footplate of

the stapes. The acoustic impedance of the inner ear lluid is about 4,000 times that of

air and this impedance mismatch is such that, without the transformer effect of the

ossides, ail but 0.1% of the pressure waves hitting the eardrum would be rellected

back allowing very little energy to enter the inner ear. Additionally, the middle ear

also helps in protecting the inner ear against very intense sounds.

3.2.2 Inner Ear (Cochlea)

The cochlea, a liquid-filled tube coiled in a snail-shaped spiral, converts mechanical

vibrations at its oval window input into electrical excitation on its neural fiber outputs.
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It has a cross-sectional area of about 4 mm2 at its base near the stapes and tapers

gradually to about 1 mm2 at its apex. The interior of the cochlea is divided into thrcc

chambers-the scala vestibuli, the scala media and the scala tympalli. Betwccn the

latter two chambers is the basilar membr·alle (BM) which increases from a width of

0.04 mm at its base to 0.50 mm at the apex. The stiffness of the BM varies smoothly

over its length. It is stiff and thin at the basal end, but compliant and massive at the

apical end (the ratio of stiffness between ends exceeds 100). Therefore, the cochlea

near its base is most sensitive to high frequency sounds and as the wave travcls

down the cochlea, lower and lower frequencies are sensed. The prime feature of the

cochlea is that energy in the acoustic wave is separated by frequet:cy and each Iliace

in the cochlea responds best to one frequency, termed as its chameteristie frequeney.

This way, it maps the spectral components of the signal onto the place domain and

maintains a tonotopie organization.

3.2.3 Inner and Outer Hair Cells

On the top of the BM (within the organ of Corti), there are about 30,000 sensory

hair eells arranged in several rows along the length of the coehlea. The endings of

the auditory nerve terminate on these hair cells and each of them has about 40-140

hairs. The tips of the outer hair cells, placed in three or four rows, are embedded in

the teetorial membrane. These cells usually do not send any information about the

sound to the brain. Rather, they function as part of an active amplifier and signal­

level controller. On the other hand, the single row of 3,500 inner hair cells that runs

along the length of the BM is the primary source of the ncrvc pulses that travc\ 1.0

the eoehlear nucleus and on up to the brain.

3.2.4 Neural Pathways

The chemical stimulation of the nerve endings attached to the hair cells produces

an all-or-none electrical firings. The auditory firings paBS via the cochlear nerve to

the ventral and dorsal cochlear nuclei in the medulla. Subsequently, they traverse

through the superior olivary eomplex, the lateral leminseus, the inferior eol/ieulus

and finally the medial genieulate body before entering the bmin cortex. The stimuli

received at the two ears may intera"t both at the medulla and mid-brain levels. The
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exact neuro-electrical representation of sound stimuli at these various levels is not

sufliciently understood.

3.3 Psychoacoustic Observations

Auditory system has been studied from different viewpoints by researchers in the

field of psychoacoustics, physiology of hearing and speech processing [2, 42, 43]. We

note here sorne of the psychoacoustic phenomena believed to be important in the

p"rccptual event. This description, although supplementary to [44J, is quite self­

contained.

Observation 1 (Ear Canal as an Organ Pipe): The ear canal, about 1 = 2.7
cm long, is an air-filled cavity open at one end (at the pinna) and c10sed at the other

(at the eardrum) [41J. To a rough approximation, the ear cana! can be considered

as a uniform pipe and it has normal modes of vibration which occur at frequencies

where the pipe length is an odd multiple of a quarter wavelength. The first resonance

thercfore occurs at the frequency f.e, given by

f.e, = V,ound::::: 330 mis ::::: 3,000 Hz (3.1)
41 4 x 0.027 m

which aids the ear's sensitivity in this frequency range.

Observation 2 (Impedance Transformation in Middle Ear): The lever action

of the ossicles provides a force amplification (G) of about 1.3 [45]. Moreover, the

vibrating area of the eardrum (Aeardrum) is approximate1y 55 mm2 , compared to the

stapes area (A"op..) of 3.2 mm2• Therefore, the ratio (F) of pressure applied at the

oval window to that applied at the eardrum is given by

F = GAeardrum = 1.3 x ~ ::::: 22. (3.2)
A,tope, 3.2

This impedance transformation (throngh pressure transformation) leads to an increase

of about 20 loglO 22 dB ::::: 27 dB in sound pressure leve1 (SPL) [Note: 0 dB SPL =

10-16 WIcm2] within the middleear [2]. When low-frequency sounds of more than 85­
90 dB SPL reach the eardrum, the middle ear provides sorne automatic gain control

effect via stapedial reflex [46].

Observation 3 (Motion of BM in Cochlea): The motion of the BM in cochlea

is quite complicatedj however, its total volume displacement at any instant of time
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is equal to the volume displacement of the stapes or of the round window membrane

[46]. The velocity of sound (Vcoch) in cochlear fiuid is 1,600 mis and the length of

the cochlea (Lcoch ) is around 35 mm [2]. The corresponding base-to-apex time-dclay

(Tcoch) of the sound is given by

Lcoch 0.035 m 'JO
Tcoch = -- = ~... JlS

Vcoch 1,600 mis
which indicates that there is essentially no phase delay in pressure along the BM. The

mechanical properties (mass, stiffness,:Js) of the cochlea change very slowly with

place. As a consequence, no significant amount of wave energy is refiected back [41J.

Observation 4 (Resonances in BM): The fluid current due to the motion of

the BM tends to go through the point of least resistance where the BM compliance

reactance annuls its mass reactance [47]. The BM appears to have a 'hole' in that

point-to its left, the BM is very stiff (large capacitive reactance) and to its right, the

BM is massive (large inductive reactance). Thus, each place along the BM resonates

most strongly with a pressure wave of a characteristic frequency (CF) associated with

it. The frequency response curves corresponding to different places, found by Nobel

laureate von Békésy [45], were r:.ther broad and later Mossbaur's gamma·ray-based

experiment suggests much sharper frequency response curves [43]. 1t has also been

observed that all the response Cllrves have almost constant Q-factor, thereby implying

a fixed ratio of center frequency to bandwidth for ail the band-pass filters. Frequency

resolution along the BM is best at low frequencies (apical end) whereas the time

resolution is best at higher frequencies (basal end). This is primarily due to the fact

that a hair cell attached to a high-CF location on the BM fires in response to a

broader set of frequencies than does a low-CF hair cell [44].

Observé.tion 5 (lnner Hair Cells as Rectifiers): Fine hairs, called ster'coci!ia,

protrude from the ends of the inller hair cells. They detect the shearing motion of the

membranes and act as transducers converting this defiection to an ion current. When

the cilia are bent one way, the hair cells stimulate the primary auditory neurons to

fire. When the cilia are bent the other way, no pulses are generated. Thus, the inner

hair cells act as half-wave rectifiers for the velocity of the motion of the fiuid [41].

Observation 6 (Outer Hair Cells as Coup/ed Gain-Control/crs): Studies on the

cochlear echo and the oto-acoustic emission suggest that the BM behaves as an active

system and the transfer characteristics of the BM system vary depending on the input

signallevel [48]. This is attributed to the fact that the outer hair cells interact with
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• the BM motion. Sounds with high SPLs are elfective!y diminished whereas sounds

with low SPLs are enhanced by the 'superregenerative active' mechanisms of the outer

hair cells [46J.

An important aspect of hearing is the phenomenon of auditory masking in which
the perception of low-energy sound is obscured by the presence of a high-energy sound

[49, 50J. The outputs of the band-pass filters may be viewed as zero-mean 'carrier'

signaIs which are 'amplitude-demodulated' by the half-wave detection nonlinearity.

The phenomenon of auditory masking can thus be justified by the 'threshold effect'

phenomenon [51J as observed in the envelope detection process of AM signais.

Elfects of the outer hair cells can be emulated by automatic gain control (AGC)

stages and sorne kind of inter-stage coupling of these AGCs can simulate the auditory

masking feature. Any gain control elfect (i.e., amplification or compression) is not

instantaneous and the time required to adapt to any input signal is dependent on the

signallevel [44J.

• 3.4 Perceptual-Domain Representation

•

We desire to deal with an accurate description of human perception as far as pos­

sible. But at the same time, since the computational speed of the model is also of

importance, we prefer using a Junclional model of the auditory system for the PD

representation of speech signal.

3.4.1 Auditory Models for Speech Representation

The Interpretation of the cochlea as a spectrum analyzer goes back to Helmholtz [52J

in the last century. The timing or volley theory states that low sound frequencies such

as those corresponding to the fundamental frequency (FO) of speech, are perceived

in terms of time-synchronous neural firings from the BM apex. On the other hand,

the place theory suggests that, especially for higher frequencies such as those in the

formants of speech, the spectral information is decoded via the BM locations of the

neurons that fire most [53J.

Current models for representing speech in the auditory periphery falls into
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Figure 3.1: Block diagram of Ly~>n's cochlear model ('HWR' slands for the half-wave

rectifier and 'AGC' stands for the automatic gain controller)

one of four broad classes [54J: rate/place, synchrony/place, synchrony/quasi-place

and synchrony/place-independent. The rate/place represenlalion [~5].a well-delined

average-rate-based spatial profile, functions weil at low SPL. The "ynchrony/place

representational form [56] is based on neural synchrony and requires lhe system lo

possess sorne knowledge of the tonotopic affiliation of each fiber wilh which to eval­

uate its temporal liring pattern. The synchrony/quasi-place model [57], in lhe form

of laierai inhibiiory neiwork, considers simultaneous aclivity across adjacenl chan­

nels. A proposition that a spectral representation based on synchrony need nol be

concerned with the tonotopic identity of the auditory nerve libers gives rise to lhe

synchrony/place-independent model [58] which works well only for high SPL.

Based on the psychoacoustic observations discussed in the previous section,

we believe that a synchrony/quasi-place model [57, 59J is most appropriale for our

work as it could operate satisfactorily for high, medium or even low signal levcls.

Consequently, we adopt one such synchrony/ quasi-place model as suggested by Lyon

[44] based on work described elsewhere such as [60].
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3.4.2 Mapping Using Lyon's Cochlear Model

Time-domain speech representation is mapped onto a perceptual-domain where the

time-place components become the fundamental bases of analysis. The conversion

is achieved here using Lyon's cochlear model as described in [44, 61]. This model

separates complex mixtures of sounds mainly by segregating different frequencies

into dilferent places, but also by preserving enough time resolution to r.eparate the

responses to different pitch pulses. Therefore, the voiced speech sounds that differ

simultaneously in sorne formants as weil as in pitch are separated into recognizably

distinct patterns of activity at the output. By a detailed separation of sounds along

the time and frequency dimensions, this model paves way for a robust speech analysis

technique. Lyon's cochlear model, as shown in Fig. 3.1, integrates the prime features

of the 'place' as weil as the 'volley' theory. In the following, we describe the model

in six steps.

Step 1 (Outer-and-Middle Ear FiIter): The outer-and-middle ear effectively

adds a slight high-pass response to the system. Assuming that the input speech

signais are sampIed at a frequency f. of 8,000 Hz, a simple first-order high-pass

discrete-time filter with a corner frequency of 300 Hz is designed to model roughly

the effects of the outer and the middie ear. The frequency response of this filter

HOM(Z), plotted in Fig. 3.2, is given by

(l-exp [-27l"~]z)
HoM(z) = ( [ 2 31:000]°) = 4.76375(1- 0.79008z). (3.4)

1 - exp - 7l"8ôOO Z z=1

This filter has unity gain at DC (i.e., at z = 1). For simplification, the AGC mecha­

nism of the middle ear via stapedial reflex is not modeled here [62].

Step 2 (Notch Filters and Resonators): The cochlea is best described by a

continuous dilferential equation [63]; however, it can be modeled by an ensemble of

discrete stages in cascade. Lyon, in his proposed cochlear model, uses such discrete­

place approximation. An implementation of the discrete-place stages involves com­

bining a series of notch filters that model the traveling pressure waves with a series

of resonators that model the conversion of pressure waves into BM motion [44, 61].

The notch filters operate at successively lower frequencies so that the net effect is

to low-pass filter gradually the acoustic energy which are collected by the resonators

corresponding to different places. We consider here sixty-four stages (covering up to

4,000 Hz) in cascade, each having a different frequency sensitivity representing the
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F!gure 3.2: First-order outer-and-middle car-fil ter

associated resonance and is characterized by the respective filter transfer function.

The notch filters and the resonators arc approximated by biquadratic filter trans­

fer functions. Though these stages arc designed in discrete-time, Fig. 3.3 plots poles

and zeros for sorne of the notch and the resonator filters, for the sake of clarity, in

the s-plane. Each of the notch filters has a high-Q zero-pair near a low-Q pole pair

whereas each of the resonators has a zero at DC with a high-Q pole pair located be­

tween the previous and the next notch filter zero-pairs. Several models of the cochlear

mechanics include a micromechanical 'second filter' for a resonance in the organ of

Corti that contributes a zero pair slightly below the BM resonance [64]. Presently,

this not-so-well-accepted feature is left out. This can easily be incorporated in this

model hy putting another zero pair in the resonator section.

Step 3 (Cascade Design of Stage Filters): The combination of the notch filters

and the resonators can be implemented in cascade/parallel form as shown in Fig. 3.1.

However, to reduce the computations, the notch and the resonator filters of each

stage can he integrated into a single ear-filter stage. The locations of the poles in the

resonator filters are chosen to he at the same locations as the poles in the succeeding

notch filter. This way, the zeros from each notch filter and the poles from a resonator

and the next notch filter are integrated to yield a single ear-filter stage [61].
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Figure 3.4: Bandwidths vs. center frequencies of sixty-four stages
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(3.5)

• The composite transfer function of each ear-filter stage is an asymmetric band­

pass function. Wear(Je) , the 3-dB bandwidth of a band-pass filter with center fre­
quency le, is defined as

w. (')_ Jr;+f';b
ear Je - Q ,

ear
where the ear-break frequency leb is 1,000 Hz and the constant Q-factor for ail the

band-pass filters Qear is 8. In conformance 1,0 psychoacoustical data, four successive

ear-filter stages are overlapped within the 3-dB bandwidth of any one ear-filter and

thus we have, Sear, reciprocal of the number of overlapping ear-filter stages, as 0.25.

Finally, the following parameters are obtained for any ear-filter stage corresponding

1,0 a particular characteristic frequency:

lep = Ici
lez = le +Wear(Je).Sear.Zolf;

Q _ lell
cp - lVea.rUc)

Q - JI 1"
c.:: - car' Wnr(Jc) ,

(3.6)

(3.7)

•

•

where lep and lez are the center frequencies of the associated poles and zeros of a

particular ear-filter stage having center frequency le. The center freqnency of the

associated zero is an extra stage higher than that of the pole. Thus, the Zolf, a factor

that determines how far the zero is offset from the center freqllency of the ear-filter

stage, is chosen to be 1.5. Qep and Qez are the Q-factors for the corresponding poles

and zeros and the parameter hear, which determines how much sharper the notch

(zero) is than the resonator (pole), is selected to be 5.0.

The ear-filter stages are indexed from 1 (corresponding to the highest freqllency)

to 64 (corresponding to the lowest frequency) and the center freqllency of each stage

decreases by Sear (here, 0.25) times the bandwidth of the previolls stage. Weor(Je) vs.

le of ail the sixty-four ear-filter stages are ploited in Fig. 3.4 where we observe t,hat

lim,,_o Wear(Je) ->~ = 125.

Step 4 (Other Adjustments in Stage Filters): To implement the zeros ai De
for every resonator, a differentiator is required for each stage. Sincc ail the filtering

used is linear, the differentiator (a term of the form 1 - z) can be placed just once

before the ear cascade. In addition, the differentiator is cornbined with a zero at the

Nyquist rate (1 +z) 1,0 compensate for the close spacing of the poles near z = -1 for

high frequency. The frequency response for this combined filter is given as

(3.8)
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Figure 3.5: Initial stage filter

with unity gain at one·quarter of the sampJing frequency.

In the cascade form, each of the ear-filter stages is implemented by a combination

of two poles and two zeros. After the pole·zero integration, a pair of poles of the

first stage is left aside. Thus, the <lar·filter is redefined with an initial stage H(z)
which combines the effects of the outer·and·middle ear HOM(z) and the differentiator·

compensator Hcomb(Z) with the two poles of the first stage filter. The transferfunction

of this initial stage filter becomes

H(z) = (-0.77356 +3.91442j)(1 - 0.79008z)(1 - Z2)

0.67523 +1.64342z + Z2

and the corresponding magnitude frequency response plot is shown in Fig. 3.5.

(3.9)

•

The gain of an ideal differentiator is proportional to frequency. Preceding all

stages of the ear·filter with a single differentiator causes the lower frequency stages to

have a much lower output than the preceding stages. While within a single stage, it

is desired to add a term that is proportional to frequency, the effect of differentiator

at each stage is adjusted so that it has unity gain at the center frequency of the cor­

respollding stage. Typical frequency responses for three ear-filter stages with center

frequencies as 499 Hz, 1,013 Hz and 2,509 Hz are shown in Fig. 3.6.

Step 5 (Half-wave Rectification): The exact shape of the half·wave nonlinearity
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Figure 3.6: Magnitude responses for three typic.al car-fil ter stages with Ic=499; 1,013

and 2,509 Hz

is not obvious; there are proposais for ideal as weil as soft half-wave [65] rectification.

In this work, an ideal half-wave rectifier is considered.

Step 6 (Coup/ed Autornatie Gain Control/ers): The effects of the BM and

the hair cell nonlinearity are taken care of adequately by lumping them into a gain

control mechanism. Other nonlinear effects, such as the cubic difference tones etc.,

are assumed to be relatively unimportant to normal hearing [41].

The most important adaptation mechanism in sensory systems is lateral inhi­

bition by which the sensory neurons reduce their own gain as weil as the gain of the

others nearby. A logarithmic or simple non-coupied AGC mechanism does not ade­

quately handle wide var;'ttions of energy across the frequency dimensions. Therefore,

Lyon proposed a coupled AGC that adapts in the frequency domain [44]. One such

coupled AGC, as described in [61], is shown in Fig. 3.7. Each stage is coupled directly

only to its neighboring stages. However, in principle, any stage c,,~ affect ail the other

stages having an effect, perhaps, decaying exponentially with distance from it [66].

The gain offered to an input in an AGC stage varies betwcull °and l, and this gain

factor is determined based on the previous states of the current, the left and the right

stages as weil as the previous output value.
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Figure 3.7: A typical automatic gain control (AGC) stage

The time constant of the coupied AGC is made dependent on the signal level.

A cascade of four AGC blocks with different time constants, simulating the different

adaptation times in the ear, are used [61]. A longer time constant implies that the

AGC takes longer to respond to the input. Each AGC attenuates the incoming signal

so that, under steady-state condition, it remains below the target value corresponding

to that AGC. The target parameters (i) and the time constants (r) of the four AGC

blocks, respectively, are chosen as 0.0032, 0.0016, O.OOOS and 0.0004 units (on the

same scale, the amplitude of a signal with +120 dB SPL is assumed to be unity) and

640 ms, 160 ms, 40 ms and 10 ms. The r parameters as indicated in Fig. 3.7 are

related to the r parameters as

(3.10)

•

For any one of the sixty-four stages, a typical steady-state response of the four cas­

caded AGC blocks is depicted in Fig. 3.S.

3.4.3 Auditory Representation

The outputs of the cochlear model vary over only about two orders of magnitude

as the input signal varies over the entire range covering the threshold of hearing
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Figure 3.8: A typical steady-state response of four cascaded AGC blocks

to the threshold of pain_ The neurons are attached to the hair cells at differellt

places along the cochlear partition and they 'fire' (i.e., generate all-or-none electrical

spikes) based on the gain-control1ed signais as sensed by the correspolldillg hair cclls.

Essential1y, these neural firing events are communicated from the auditory system

to the brain through a large number of neural fibers. These neural pathways are

termed hereafter as the 'neural channels' so as to keep conformity with the other

communication channels. Although these neural fibers are spread densely along the

BM, since we consider sixty-four discrete-place stages, we would visualize that ail the

neurons could be classified into sixty-four characteristic neural channels.

The normalized cochlear model output provides the probability-of-firing infor­

mation in these sixty-four neural channels at each clock time. Bere, the norrnalization

is done with respect to the maximum possible output value (i.e., 0.000213 unit as

shown in Fig. 3.8) of the four cascaded AGC blocks and the clock time is chosen to

be same as the sampling time, i.e., 125 ilS. Since we do not know the exact firing pro­

cess, the neural activity patterns can be presented in a cochleagram matrix form which

gives the probability-of-firings in al1 the neural channels for al1 the clock times. ln our

work, this auditory representation is referred to hereafter a~ the perceptual-domain

(PD). We assert that, to devise a distortion measure for speech signais, the original

and the coded/distorted signal should be compared in this perceptual (time-place)
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domain, rather than just in the time or in the frequency domain. In the next two

chapters, we propose two distinct approaches for comparing these PD parameters.

These comparisons, in turn, provide measure values to assess the degree of overall

coder distortions in a coded/distorted speech with reference to its original version.

3.5 Summary

This chapter of the dissertation has dealt with the issue of auditory representation

for speech signal which is the first step in our formulation of distortion measures for

coded speech. For comparing an original speech with its coded version, neither the

time-domain nor the frequency-domain representation is sufficient. It is important

to consider ail the major perceptual events and represent the speech signal in a joint

time-place domain. Towards this end, we have used Lyon's auditory mode!. This

model has simulated the high-pass behavior of the outer-and-middle ear, the band­

pass characteristics of the inner ear (cochlea), the half-wave nature of the inner hair

cells and the automatic gain controlling feature of the outer hair cells. Temporal

and spectral masking eifects have also been emulated by inter-stage coupling. The

final perccptual domain representation of the speech signal is in the form of firing

probabilities in the neural channels at the dock times.
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Chapter 4

Cochlear Discrimination

Information (CDI) Measure

4.1 Introduction

In Chapter 3, we have addressed the issue of representing speech signal in a perccptual­

domain (PD). This PD representation is a sequence of N-dimensional (in onr work,

N = 64) vectors at the dock times within a speech signal. Each of the N neural

channels may be conceived as communication channels with an inpnt alphabet of size

two, i.e., firing and non-firing. Due to the lack of our knowledge abont the exact neural

conversion process, wc compare the probability distributions for firing and non-firing,

derived from an original and a coded signal, to quantify the degree of distortion. The

discrimination information which has emerged as a powerful tool [67] for rileasuring

the 'doseness' of two probability density or distribution fllnctions is applied here

for defining a coch/ear discrimination information (CDf) measure [68, 69]. In the

first part of this chapter, we formulate the CDI measllre and study speech coder

performances with it.

For any source-coder, a source-destination l,·lir can be characterized by a prob­

abilistic model of the source and a fidelity criteril,n measuring the degradation of the

coded signal with reference to the original source. Based on the mte-distortion theory,

a rate-distortion function R(D) may be associated with any sllch source-destination

pair. This function calculates the effective rate at which the source produccs infor·
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mation subject 1.0 the constraint that an average distortion of D is endured al. the

destination. A knowledge of the R(D) is of considerable importance as il. may prevent

one from frivoling t.ime as weil as resources 1.0 achieve an impossible task. However,

often, il. becomes difficult 1.0 give an explicit closed-form or parametric solution 1.0

the R(D), even for apparently simple sources and distortion measures. In such cases,

a lower bound 1.0 the R(D) or an algorithm 1.0 compute il. proves 1.0 be helpful. The

second part of this chapter provides a rate-distortion-theoretic analysis for spE.'Cch

coding based on the COI distortion measure.

The remainder of the chapter is organized as follows. Section 4.2 puts forward

the idea of COI, a perceptual cross-entropy measure-based fidelity criterion for speech

signaIs. Section 4.3 provides sorne experimental results with relevant remarks. Sec­

tion 4.4 defines R(D) mathematically, provides pre1iminary background and surveys

pertinent literature. Section 4.5 addresses the R(D) evaluation problem by charac­

terizing a source-destination pair and computing an R(D) function for speech coding

directly using the Blahut algorithm. The performance of different speech coders is

analyzed with respect 1.0 these limits.

•

• 4.2 Distortion Computation

The cochlear discrimination information (CDI) measure, in effect, determines the

amount of new information (the increase in neural source entropy) associated with

the coded signal when the neural source entropy associated with the original speech

is known or vice versa.

Let P be a set of probability measures defined on a measure space S(J) for a

discrete information source with an alphabet of size J. The Rényi-Shannon entropy

lI,,(P) for such source with P = {PI,P2,'" ,PJ} is given as [70]

It has bcen shown in [70, 71] that

1 J
--log(L:pj), Ct;::: 0, Ct # 1.
1 - Ct j;1

•

[{,,(P) =

J

- L: Pj log Pi>
j;1
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• 1. H,,(P'is a continuous positive decreasing function of a and is also continuous

in P.

2. H,,(P) is always non-negative and H,,(P) = 0 if and only if ail of the l'i 's exccpt

one are equal to zero.

3. H".:P) is strictly concave with respect to P for 0 < a ::; 1; i.e., H"P.,P' +
1- ~P") ;:: >.lI,,(P') + (1 - À)H,,(P") VP', p" and ail À E (0,1).

4. Convexity or concavity of H",(P) with respect to P depends on J for II > 1.

Now, let us consider one neural channel for a specific dock time. Since therc

are only two events possible (i.e., firing and non-firing), the measure space can be

written as
(" "5"' = {P: P = (1'1,1'2); 1'1>1'2;:: 0; PI +1'2 = 1}. (4.2)

•

•

The Appendix A shows that with P E 5(2), H",(P) is strictly concave with respect to

P not only for 0 < II ::; 1, but also for 1 < II ::; 2. Thus, here we consider a values in

the range [0, 2) which ensures a global maximum of Il,,,(P) for Pl = 1'2 = 1/2.

In this work, time-domain speech representation T is mapped onto the PD A
using Lyon's cochlear mode! C. Mathematically, this mapping B can he expressed as

B : T ~ A. The PD representation A for an original speech signal can he written in

a matrix form as
Pu P12 PIN

A=
P21 P22 P2N

(4.3)

Pnl Pn2 PnN

with n dock times and N neural channels. An.element Pkl of the matrix A implies

that l'lkl and p2kl = 1 - 1'1k/ are the firing~l1d the non-fHng prohahilities for the

k-th neural channel at the l-th dock time corresponding to the original speech signa!.

Similarly, let q1k/ and q2kl = 1 - q1k/ be the firing and the non-fi ring probabilities

for thecoded/distorted speech. Accordingly, the directed divergence (a form of the
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• discrimination information measure) between Pkl and Qkl can be written as [71)

2 (POkl)L Pjkllog _J_ ,
j=1 qJkl

a = 1,

1
(

2 a)Pjkl
( _ 1) log L ~-1 , a ~ 0,
a J=1 qJkl

(4.4)

•

This measure is not a metric as it does not satisfy sorne of the conditions required

for it to be a metric-(a) the symmetry condition [D,,(Pkl ;Qkl) is Ilot the same as

D,,(Qkl; Pkl ) when Pkl and Qkl are different); and (b) the triangle inequality [the sum

of the measures D,,(Pkl; Qkl) and D,,(Qkl; Rkl) may be greater than, equal to or less

than D,,(Pkl; RH) for any three probability distributions Pkl, Qkl and Rk,j. However,

the satisfaction of the non-negativity condition allows it to be considered as a fidelity

criterion (even though it is not a metric). We define the directed divergence measure

of order a for 0 < a ::; 2, the range in which Ha(P) has been shown to be concave
with respect to P E 8(2).

For simplicity, we assume that the neural firing events in different channels and

at different dock times are independent. Thus, the neural sources corresponding to

the N neural channels and the n dock times form a product source, i.e.,

(4.5)

with x as the cartesian product of the probability spaces, [. == {1,2,··· ,n} and

IC ={l, 2,"', N = 64}. {Tnder this assumption, the probability distribution of the

product source is the product of the probability distributions of the individual sources

[1] and the directed divergence values are additive, i.e.,

D,,(P; Q) = L L D,,(Pkl ;Qkl).
leI: keK:

(4.6)

•

The satisfaction of (4.6), along with the non-negativity of the directed divergence for

a ~ 0, areshown in the Appendix B.

One generalized form for the directed divergence measure is the f-divergence

[72) based on which the distortion measure can be defined as

(4.7)
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• where f(.) is a convex function. This specializes to the directed divergence with a = 1

(also known as the Kullback-Leibler divergence) if f(x) = x log Xj to the x2-divergence

[72] if f(x) = (x -l?i to the J(-directed divergence [73] if f(x) = x log{2x/(1 +x)}
and to the variational distance [74] if f(x) = lx - 1\. lt may be noted that there exist

relationships among many of these measures (e.g., a lower bound for the Kullback­

Leibler divergence in terms of the variational distance is givel1 in [75]). In this work,

we also use a 'symmetrized' divergence measure S,,(Pi Q) defined as

(4.8)

The divergence measures based on the entropies other than the Rényi-Shannon type

can also be studied. One such common example is

In order to maintain the boundedness of the measure, in general, we impose a condition

that the probability of firing or non-firing for the original and the coded signal can

not be a complete certainty or uncertaintYi and accordingly we Itssociat.e a 1- or a

0+ probability, as appropriate.

•

2

Cl.s(Pi Q) = 2: 2: 2:(VPjkl - VQjkr)2
IEe kEK: j=1

based on the I-Iavrda-Charvat entropy EI.5(P) given as [74]

2

El.S(P) = 2(1 - 2: p},S).
j=l

(4.9)

(4.10)

•

4.3 Experimental Results

Twelve speech utterances, of 1-2 sec durations and spoken by male as weil as female,

were considered for the test. Digit.ized versions of t.hese speech sentences (listed

in the Appendix C) were stored in audio-files having SNR of 50 dB approximately.

Each of these original utterances were passed through six different code-cxcited linear

prediction (CELP)-type speech coders.

No database containing various types of coded/distorted speech with accompa­

nying MOS ratings was available to us. Also, we did not attempt to develop MOS

ratings as it implies substantial cost and considerable time. Obtaining such a subjec­

tive scale involves the great difficulty of repeatability and elimination of biases and
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artifacts-especially without well-understood anchors. The quantization distortion

unit (QDU), defined as the quantity of distortion subjectively equivalent to that of

a single encoding of 64 kbps PCM, has often been used in practice as a distortion

measure. Recent tests, however, indicate that the QDU may not be as stable and de­

pendable as on.:e it was thought to be [13]. Considering ail these aspects, we decided

to administer an informal subjective test against which the objective measure results

were judged.

In this subjective test, twelve listeners ranked six different coded versions (two

with 8 kbps coders Cl, C2 and four with 4.8 kbps coders C3, C4, C5, C6) of ail

the twelve speech utterances. The overall perceptual quality of the coded signaIs

was designated as the basis for the order of their preferences. Subsequently, we

carried out an objective evaluation of these coded signais with reference to the original

speech signal by considering eight variations of the proposed fidelity criterion. These

measures were as follows.

1. The directed divergence with a = 1 [Dl (Pj Q)],

2. The directed divergence with a=1.5 [Dl.5(Pj Q)],

3. The directed divergence with a=2 [D2(Pj Q)],

4. The symmetrized divergence with a=l [SI(Pj Q)],

5. The variational distance [V(Pj Q)],

6. The x2-divergence [X 2(Pj Q)],

7. The I<-directed divergence [I«Pj Q)] and

8. The Havrda-Charvat entropy-based Cl.5-divergence [Cl.5(Pj Q)].

A comparison of the informai listening test results and the objective measure

values leads us tu make the following remarks.

4.3.1 Performance of Objective Measures

In Fig. 4.1, the time-domain waveforms and the spectrograms of an original and three

coded versions of a typical speech sentence, say, "Oak is strong and a/so gives shade"
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Figure 4.1: Time·domain waveforms and spectrograms of an original and three coded

speech signaIs, "Oak is sfrang and alsa gi"es shade."
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• (with 18,800 samples), are shown. Table 4.1 provides average distodion measure

values per dock time (with a base-10 logarithm, wherever applicable) for the aforesaid

speech utterance. We also tabulate the values of corresponding SNR..g as weil as SNR

with and without scaling ('scaling' implies multiplication of ail the coded speech

samples by an appropriate factor so as to maximize the SNR value).

In Table 4.2, we provide subjective and objective measure values per dock time

for each of the sentences. The subjective rankings (6 for the best and 1 for the worst)

are averaged over the rankings made by the twelve listeners. These scores are average

ordinal numbers and not the absolute quality scores. For each of the twelve utterances

and six coded versions, the average ranking scores are mentioned in the first column

(marked 'S'). As an example, if a coded signal is given a score of '6' by eight listeners,

a score of '5' by three listeners and a score of '4' by one listener, the 'S' value becomes

(6 x 8 +5 x 3 +4 x 1)/12 = 5.58.

Measure Type oakf8f oakf8k oakf8b

Subjective Ranking Best Good Poor

• Dt(P;Q) 2.721 2.756 4.273

D1.5(P; Q) 4.492 4.540 6.916

D2(PjQ) 6.751 6.812 10.165

St(Pj Q) 2.730 2.760 4.285

V(P;Q) 8.777 8.845 11.454

X2(P; Q) 17.326 15.486 19.111 x

I«PjQ) 0.795 0.806 0.909

Cl.s(Pj Q) 0.077 0.083 0.117

SNR (w/o scaling [dB]) 8.724 9.178 -2.597 x

SNR (with scaling [dB]) 8.979 9.334 0.009 x

SNR..g [dB] 6.815 7.080 -2.004 x

Table 4.1: Different measure values for three coded signais (with three different

4.8 kbps speech coders) with reference to the original speech utterance F3 (' x' in-

dicates that the objective measures for 'oakf8f' and 'oakf8k' do not agree with the

subjective rankings)

• On the other side, we have computed the eight variations of the CDI mea-
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• sure values. However, here we tabulate only the DI(P; Q) measure values (in the

second column marked 'DI ') as an example and make general remarks about the

other measures. It is emphasized that the lower the amount of additional information

(cross-entropy), better is the signal quality of the coded speech with reference to the

original one. In Table 4.2, we observe that with the utterance Ml, the C4, C5 coders

and with the utterance F5, the Cl, C2 coders were ranked same subjectively. Ob-

jective measures have shown slight preference towards C4 coder for Ml and towards

Cl coder for F5. Besides that, for the utterance F4, the subjective and objective

rankings were in contradiction for the coders Cl, C2.

Sent. Cl C2 C3 C4 C5 C6

8 DI 8 DI 8 DI 8 DI 8 DI 8 DI

Ml 5.75 2.569 4.92 2.662 4.17 2.703 2.58 2.741 2.58 2.744 1.00 4.931

M2 5.50 2.630 5.17 2.651 4.25 2.678 2.75 2.702 2.25 2.793 1.08 4.817

M3 5.75 2.573 5.17 2.623 4.00 2.720 2.58 2.753 2.33 2.782 1.17 4.333

M4 5.00 2.672 5.67 2.654 4.25 2.716 2.50 2.752 2.58 2.747 1.00 4.776

M5 5.75 2.578 5.17 2.627 3.83 2.692 2.67 2.725 2.50 2.759 1.00 4.833• M6 5.58 2.621 5.25 2.666 3.83 2.696 2.75 2.719 2.42 2.760 1.17 4.669

FI 5.67 2.607 5.00 2.671 4.25 2.695 2.33 2.801 2.58 2.751 1.17 4.722

F2 5.67 2.612 5.00 2.678 3.91 2.737 2.67 2.766 2.50 2.774 1.25 4.285

F3 5.50 2.619 5.17 2.648 4.25 2.721 2.50 2.756 2.25 2.771 1.33 4.273

F4 5.41 2.661 5.25 2.649 4.17 2.700 2.75 2.729 2.17 2.793 1.25 4.562

F5 5.50 2.653 5.50 2.658 3.83 2.743 2.33 2.797 2.50 2.765 1.33 4.414

F6 5.67 2.602 4.83 2.674 4.08 2.694 3.08 2.701 2.17 2.791 1.17 4.379

Table 4.2: Subjective and objective measure values for coded signais with reference

to the corresponding original speech utterances (MI-M6 (male) and FI-F6 (female)

are speP.ch utterances, CI-C6 are speech coders, '8' denotes the average subjective

ranking scores and 'DI' gives the directed divergence measure values with a = 1)

•
Over the test sentences, the human rankings were found to be almost consistent

with the measures DI (Pj Q), D1.5(Pj Q), D 2(P; Q) and 81(Pj Q); and satisfactorily

consistent with the measures J((Pj Q) and C1.5(P; Q). Furthermore, the D,,(Pj Q)
class of the measures has shown conformance to subjective evaluation results where
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the SNR measure (with or without scaling) and also the SNR.eg measure have failed.

However, the V(P; Q) and the X2 (Pj Q) measures often disagreed with the subjective

rankings, especially when two coded signais were very close in their perceptual quality.

4.3.2 Effect of Different Entropies

The Dl (Pj Q) and the D2(P; Q) measure profiles for one neural channel at a particular

clock time are presented in Fig. 4.2 where the X-axis is the probability-of-firing for

the original signal, the Y-axis is the probability-of-firing for the coded signal in the

same channel and the Z-axis is the corresponding measure. It was noticed that the

value of a in the D,,(Pj Q) measure class has a consistent but small elfect on its

performance. For finer classification (i.e., classifying two coded signais almost equal

in their perceptua! quality), it has been found to be useful to apply an a value

larger than one to increase the dynamic range of the measure values. It has also

been observed that the measures based on the Rényi-Shannon entropy show better

performance than that based on the Havrda-Charvat entropy.

4.3.3 Effect of Gain Changes

The X2(P; Q) and V(P; Q) measure profiles with the same X, Y and Z axes as of

Fig. 4.2 are shown in Fig. 4.3. In addition to the AGC nonlinearity, aU the measure

profiles (except the V(Pj Q)) exhibit nonlinearity and the measure values are rela­

tively very small in the neighborhood of the X = Y region. This also makes them

insensitive to small gain changes. We speculate that a linear profile of the V(P; Q)
measure is responsible for its poor performance. Due to its broad fiatness around the

X =Y region, the X2(P; Q) measure shows less sensitivity to gain changes; however,

this may he the reason for its unsatisfactory performance in the coder evaluation.

4.3.4 Effect of Sample Delays

The COI measures, in geveral, were found to be relatively less sensitive (compared

to the SNR rneasure) to aÙlight time misalignment (Jf the coded signal with respect

to the original one or vice\vc:r~.>cFor example, let us consider the coded speech

signais marked 'oakf8f' and 'oakf8k' of Fig. 4.1. Table 4.3 provides the SNR measure
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Figure 4.2: The discrimination measure profiles (J = 2)-(a) the directed divergence

with a = 1 and (b) the directed divergence with a = 2.

(without scaling) values as well as the Dt(Pj Q) and the D2(Pj Q) measure values

with zero, one, two and three sampie delays in the coded speech. These sampie delays

are with reference to the original signal and the misaligned ~'ample places are filled in

with zero values. In general, we observe that one sampie delay does not cause much

change in the CDI measure values, but two or three sampie delays have considerable

effeet. With three sample delays, the measures show 'oakf8f' to be inferior tü 'oakf8k'

(which is aligned to the original signal) although subjeetively the reverse is true.

Coded Speech Measure Sampie Delays

Zero One Two Three

oakf8f SNR (w/o scaling [dB]) 8.724 7.391 5.619 5.117

oakf8f Dt(P;Q) 2.721 2.728 2.747 2.779

oakf8f D2(P;Q) 6.751 6.792 7.193 8.838

oakf8k SNR (w/o scaling [dB]) 9.178 7.503 6.108 7.027

oakf8k Dt(PjQ) 2.756 2.762 2.791 3.128

oakf8k D2 (PjQ) 6.812 6.855 7.124 8.950

Table 4.3: The direeted divergence (with a = 1,2) measure values with zero, one,

two and three sample delays for the coded signal 'oakf8f' and 'oakf8k' with rcference

to the original speech sentence
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Figure 4.3: The discrimination measure profiles (J = 2)-(a) the X2 divergence and

(b) the variational distance.

4.3.5 Speech Coder Identification

By considering the neural pathway ta be a noisy channel, the s~lbjective evaluation of
the speech coders can be treated as a hypothesis testing problem. Csiszar and Longo

[76] have shawn that the probability-of-error of optimum hypothesis testers based on
blocks of measurements decreases exponentia11y with the black length. Let us consider

two coded speech of the same u.tterance and let 1· be the sma11est probability that

'c' is identified to be the samples of 'A' when it is actua11y the samples from 'B'. This
probability is sma11est over ail the decision rules such that the probability of other

type of error (i.e., 'c' chosen as samples of 'B' when it is actua11y from 'A') does not

exceed (3. Then, 1·' for all{3 in (0,1) and with Q = 1, can be given as [76]

1· ~ exp[- L L D(Pkl; Qkl)]
leI: keK:

(4.11)

•

We conducted an experiment where the listeners were asked ta listen ta two

coded speech sentences'A' and 'B' and then a varying number of samples 'c' from
one of them, not known ta the listeners which one, were played. In such subjective

evaluation testing, there is no precise way of determining 1·' The 1· could be esti­
mated by carrying out the test with a large number of listeners and then considering

their opinions (whether 'A' or 'B') about 'C'.

It would be of academic interest to investigate the validity of the relationship

of (4.11). In our experiment, we only verified that to achieve a given probability of
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• Sentence Sample Nos. C3-C4 C4-C5 C5-C6

Ml 3,000 5/12 4/12 7/12
6,000 7/12 7/12 9/12
9,000 11/12 10/12 12/12
12,000 12/12 12/12 12/12

F3 3,000 6/12 4/12 8/12
6,000 8/12 6/12 11/12

9,000 11/12 !J/12 12/12

12,000 12/12 11/12 12/12

Table 4.4: Speech coder identification for two sentences Ml and F3 (the sample

numbers played and the fraction of !isteners who have correctly identified the coders

are provided in the table)

•

•

decision error, it required more samples (i.e., longer durations) of 'c' to be played

when 'A' and 'B' are of 'near equal' quality (as indicated by our measure) compared

to that required when 'A' and 'B' are of 'substantially different' qllality. Table 4.4

shows, for the same example sentence, the subjective identification of coders (i.e,

the number of listeners out of twelve listeners correctly identified the coders) and the

corresponding number of sampIes played. We have considered three coder pairs where

C4-C5, C3-C4 and C5-C6 were ranked in the descending order from their perceptual

quality 'closeness' point of view. For example, let us consider the utterance F3. In

Table 4.4, we observe that by playing 6,000 samples, for C4-C5 coder pair, only one­

half of the listeners could identify the coder correctly, the remaining listeners either

identified wrongly or could not decide. On the other hand, with the same number

of samples played, the correct coders were identified by two-third of the listeners for

C3-C4 pair and by almost ail the listeners for C5-C6 pair.

4.4 Rate-Distortion Analysis

Rate-distortion theory is a branch of information theory that establishes a mathemati­

cal foundation to a source encoding problem. For a particlliar source-destination pair,

a rate-distortion function R(D) could be computed which gives the lowest achievable
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• rate with an average distortion of D by the defined fidelity criterion. As D increases,

R(D) decreases monotonically and usually becomes zero at sorne finite value of dis­

tortion. In the following, we define the R(D) analytically, discuss important results

relevant to this work and review sorne of the pertinent literature.

4.4.1 Preliminary Background

We consider a time-discrete source {X" P} that produces i.i.d. outputs described

by a probability density function p(x). The accuracy of reproduction of x by y is

measured by a non-negative distortion measure p(x, y). An average distortion

q(y) = Jp(x)q(ylx)dx (4.14)

are assigned to every conditional probability density q(ylx). Then, the rate distortion

function R(D) of {X" P} with respect to the fidelity criterion is defined by

•

d(q) = JJp(x)q(ylx)p(x,y)dxdy

and an average mutual information

I(q) = JJp(x)q(ylx) !og{ q~(~~)} dxdy,

where

R(D) = inf I(q),
qEQD

(4.12)

(4.13)

(4.15)

where the set of ail D-admissible conditional probability assignments is denoted by

the symbol

I(q) is a convex downward function of q which implies that any stationary point of

I(q) in QD must yield the absolute minimum, namely the R(D). 8ince the above

formulation is a convex programming problem, generalized Kuhn-Tucker conditions

can be determined to identify the conditional probability distribution which attains

the infimum in (4.15). The variational problem defining R(D) can be solved using

the method of Lagrange multipliers. An application of this method results in the

following parametric expressions for D and R [77J:

•

QD = {q(ylx) : d(q) = D}.

D = JJ>.(x)p(x)q(y)e,p(~·Y)p(x,y)dxdy
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• and

where,

R = sD +Jp(x) log À(x) dx (4.18)

À(x) = [j q(y)e,p(r,Yl dxr (4.19)

The slope of any R(D) curve at the point (D" R.) is represented hy the paramcter s
which is generated parametrically from (4.17), (4.18) and (4.19). If 1\ .• he the set of

all non-negative funetions À(x) satisfying

then,

c(y) = JÀ(x )p(x )e,p(r.Yl dx :s; 1 for all y; (4.20)

R(D) = sup [sD +Jp(x) log À(x) dx] .
'~O••\(rlEA.

(4.21 )

•

•

For each s :s; 0, a necessary and suflicient condition for À(x) to attain the supremum

in (4.21) is the existence of a prohability density q(y) that is rclated to À(x) by (4.19)

and is such that c(y) = 1 in (4.20) for almost all y for which q(y) > O.

4.4.2 Relevant Literature

The rate-distortion theory has been developed in the last two decadcs for discrete as

well as continuous sources. For the evaluation of R(D), two broad approaches arc

generally adopted.

One approach is to derive the Shan.~on lower bound RL(D) [77] and then to

find conditions for the existence of a De > 0 s.t. R(D) = RL(D), for all D E

[0, De]. With difference-type distortion measures R(D) funetions have been calculated

for Laplacian, Cauchy and Gaussian sources [77]. This idea is generalized and a

parametric solution is provided for a weighted mean-square error distortion measure

in [78]. For quotient-type distortion measure (i.e, a measure of the functional form

f(xfy)) and a source with p(x) = 0 for x < 0, a logarithmic transformation of

the source variables x and y yields R(D) bounds from the results of the differencc

distortion measures [79]. With balanced distortion measures (i.e., with distortion

matrix containing the same set of entries, perhaps permuted, in each column), the

R(D) functions are computed in [80] for discrete memoryless source and in [81] for
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fini te-alphabet sources with memory. However, it appears to be diflicuIt with this

approach to evaluate R(D) with an arl~itrary non-balanced fidelity criterion.

The second approach is to evaluate the R(D) function directly. Sorne simple

examples of the fini te-alphabet source-destination pair for which the rate-distortion

function that can be determined analytically are provided in [77J. Tan and Yao [82]

have evaluated R(D) for a Gaussian source and an absolute-magnitude difference

criterion by making a suitable choice of the boundary set (i.e., the value of y for

which the condition (4.20) is satisfied with equality). This method has also been

applied to a large class of i.i.d. sources having probability densities with constrained

tail decay [82]. An efficient algorithm for the direct evaluation of the R(D) function

for discrete as weil as continuous sources has been suggested by Blahut in [83].

Historically, the application of the rate-distortion theory to the speech process

has been hindered because of the lack of a widely accepted probabilstic model of the

speech process as weil as a meaningful distortion measure. The problem is further

complicated by the mathematical difliculties in evaluating the rate-distortion function

eV<ln if a reasonable source-destiaation pair is defined. A fairly large set of pdf models

is suggested in the literature based on the first-order histograms of Nyquist samples

of continuous spep.ch waveforms. The gamma pdf based on the long-term statistics

[3J, the Laplacian pdf based on the medium-term statistics [84J and the Gaussian pdf

based on the short-term statistics [85J are among the more p0!)ular ones. An evalu­

ation of the first-order R(D) functions based on these pllfs and differerlc~ di.tortion

measures ar" available in [86J; and with Itakura-Saito distortion measure in [79].

4.5 Evaluation of Rate-Distortion Function

The objective of this section is to provide a rate-distortion-theoretic analysis for

speech coders with the cor measure. We formulate the problem by characterizing

the source-destination pair precisely. Then, the R(D) function is computed '.'.ing the

Blahut algorithm. Finally, the performances of different speech coders are studied

with respect to these bounds.
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Figure 4.4: Source-destination pair characterization

4.5.1 Source-Destination Pair Characterization

• ,

/

The cochlear model is, in essence, a highly non·linear structure with the half-wave

rectifiers, the AGC stages and the coupling among them simulating the auditory

spectral and temporal masking phenomena, It may prove to be sufficiently difficult

to express these signal processing operations, especiall)', the coupling of the AGC

stages, with the help of simple mathematical operators,' Thus, we take a dilferent

outlook towards the source-destination pair model shown in Fig. 4.4. We merge the

physical speech source with the cochlear model and consider this ensemble io be th~

source. Since there is as such no uniquely accepted pdf for the physical speech source,

we are not in any further disadvantageous position by integratin!!: the cvchlear model

with the speech source and detcrrr.iuing the histogram of the cochlear model outputs.

These outputs, being the probability·of·firing informL~ion, assume values in the range

(0,1). The histogram for the firing-prob;~bility is determined by experimenting with

t "'enty-four speech utterances (tweive male and twelve female voices) of 1-2 sec.

durations. The firing-probability histogram for each of the sixty-four neural channels

could be determined separately. For simplification purpose, we have assumed ail the

hiF.togi'ams to be identical and derived only one histogram based on the prc;bability­

of'liring information obtained from ail the channels.
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• 4.5.2 Calculation Based on Blahut's Algorithm

In [87], we have derived analytically a lower bound to the R(D) with a single-letter

cochlear variational distance measure. However, with the other distortion measure

forms, it becomes difficult to give an analytical solution. Moreover, these are not

exact solutions; they are merely lower bounds. Here, we use the Blahut algorithm for

calculating the R(D) functions exactly.

We treat the probability-of-firing information to be discrete-valued with symbols

from one of the 255 uniformly spaced values between 0 and 1 (Le., 1/256,2/256,··· ,

255/256). Let the input alphabet (firing-probability corresponding to the original

speech) u be reproduced in terms of an output alphabet (firing-probability corre­

sponding to the coded speech) v. Then, the algorithmic steps could be written as

follows.

•
Step 1 : Au initial output probability distribution {Qv} is assumed, say, Q~.

The parameter set {Avv = e'puu} is evaluated, where puv is the single-letter CDI

mea,ure between the input alphabet u and the output alphabet v.

Step 2 : The parameter s is chosen from the range of -00 to Oj and then

Steps 3 and 4 are canied out with different values of s.

Step 3: With the values of the input probability distribution Pu (obtained from

the hi.togram of the cochlear model output) and the parameters Auv the following
1

parameter, are calculatt>cJ:

'\' Auv
Cv = LJ Pu" A Q ,

u LJv uv v
(4.22)

U = max log Cv.
v

(4.23)

(4.25)

(4.24)

. ,

Step 4 If U - L ? E, then the previous step is repeatedj otherwise, the

program is terminated for this value of s by evaluating the fol1owing:

Q
AuvQv

vlu = " A Q ,
LJv uv v

•
u v

R(D) = s~ .:... ~ Pu log (~AuvQv) - ~ Qv log Cv
u v v
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Figure 4.5: Speech coder rate in bitsjsample vs. average cochlear variational distance

measure (- - - Hne shows an analytically derived lower bound, -- line shows the

exact rate-distortion curve using Blahut's algorithm and four ,*, points [SCI-SC4]

denote the performances of four s~eech coders)

Fig. 4.5 shows the R(D) for the Vrp; Q) measure whereas Fig. 4.6 plots the R(D)

function for the Dl (P; Q).

4.5.3 Measured Performances of Speech Coders

We have considered four state-of-the-art speech coders for the assessment of their

average perceptual quality. These four coders (designated as SCI-SC4) were: CELI)­
based coder SCI (4.8 kbps) [5], VSELP-based coder SC2 (8 kbps) [88], wideband

CELP-based coder SC3 (H', kbps) [89] and ADPCM coder SC4 (32 kbps) [3]. For

the first, second and the fourth coders with sampling rates of 8,000 Hz, sixty-four

neural channels (covering up to 4,000 Hz band) were assigned as described in this

chapter. On the other band, for the widebô.nd coder withbampling rate of 16,000 Hz,
eighty-five neural cbannels (covering up to 8,000 Hz band) werc assigned as described

in Chapter 6. Although we considered only the CELP-type speech coders for com­

paring the COI measure performance with subjective assessment, wc do not foresee

any difficulty in applying this measure to other types of speech coders. With this
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Figure 4.6: 8peech coder rate in bits/sample vs. average cochlear directed divergence

(with Q = 1) measure (-- line shows the rate-distortion curve using Blahut 's algo­

rithm and four '*' points [8Cl-8C4] denote the perform..nces of four speech coders)

understanding, wc h,",ve included one ADPCM coder in this section 1.0 examine its
-qualit.y ~ith resr-ect 1.0 the rate·distortion l;:r,it.

, f;

-' Twelve speech sentences of 1-2 sec ck,ations were passed through each of the

four coders 1.0 calculate the average distortion values over each sampling time. Fig. 4.5

and Fig. 4.6 plC't the performances of the four speech coders (marked by '*') as

evaluated by V(PjQ) and Dt(PjQ), respectively. Now, let us examine one of the

figures, Fig. 4.6. We observe that the perceptual quality obtained (measured with

the D1(Pj Q)) by SC1 coder is pos.ible 1.0 achieve with much lower rate (as lowas

1.5 kbps)', 8imilarly, 8C2, 8C3 and 8C4 coder performances are achievable with

almost 3.8 kbps, 5.4 kbps and 20 kbps, respectively. From another perspective, we

can say that a pcrceptual quality (a value of 2.575 units/sample) somewhere between

those ~ttained by 8C2 and 8C3 coders are attainable with a 4.8 kbps speech coder. A

value of 2.485 units/sample which falls between the perceptual quality of 8C3 and 8C4

is theoretically achievable with an 8 kbps speech coder. Although the rate·distortion

analysis docs not provide with an answer 1.0 how 1.0 attain these limits, il. gives an

insight 1.0 what is possible and how close a specific speech coder is performing with

respect 1.0 the R(D) limits in terms of the perceptual quality.
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• 4.6 Summary

•

•

In this chapter, the firing/non-firing probabilities of original and coded signais were

compared in an information-theoretic sense to formulate the cochlear discrimination

information measure. This fidelity criterion, in essence, evaluates the neural firing

cross-entropy of the coded speech with respect to that of the original one. The perfor­

mance of this objective measure was compared with subjective evaluation results. A

low value in this measure has indicated superior quality of the corresponding speech

coder. The last part of the chapter has deaIt with the calculation of the rate-distortion

functions for speech co<:1ing based on this distortion measure. For this purpose, wc

have applied the Blahut algorithm. Four speech coders with rates ranging from 4.8

kbps to 32 kbps were studied from the viewpoint of their performance (as assessed

by the cochlear discrimination measure) with respect to the rate-distortion limits.

Our study has shown that there is an1.ple scope for the improvement of the coder

architecture and the coding algorithm.
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Chapter 5

Cochlear Hidden Markovian

(CI-IM) Measure

5.1 Introduction

In Chapter 4, we have introduced a cochlear discrimination information measure

which exploits the perceptual events at the auditory periphery. In this chapter,

we attempt to capture the basics of high-Ievel processing in the brain with simple

hidden Markov models. We use these HMMs over thepe,ceptual-domain speech

representation and introduce a new measure [90, 91], namely the cochlear hidden

Markovian (CHM) measure. Computing coder distortion with the CHM measure

involves estimating the HMM parameters from the perceptual-domain observations

of an original speech frame and calculating the likelihood (against the estimated

HMM) of observing the PD representation corresponding to the coded version of

the same speech frame. The proposed CDI measure compares the PD observations

directly whereas the CHM measure is a parametric nonlinear model-based measure.

Test results, mode! behavior, advantagesfdisadvantag€s of this method and also sorne

other alternatives for measuring coder distortion are discussed.

The format of this chapter is as follows. Section 5.2 characterizes the hidden

Markovian signal mode!. Section 5.3 provides sorne relevant background I:laterials.

Section 5.4 introduces a method to compute distortion for speech coders and also

sUAAests briefly sorne other alternative approaches. Section 5.5 addresses the HMM.....
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behavior and tabulates experimental results for speech coder evaluation.

5.2 Characterization of Hidden Markov Model

The cochlear model output is a sequence of ](-dimensional vectors (in our work,

K=64 corresponding 1.0 sixty-four neural channels) with one vector for each dock

time t. The elements in each of the K -dimensional "hservation vectors represent

information regarding the probability-of-firing. Based on this PD representation of a

speech signal, what are transmitted through neural channels 1.0 the brain arc series

of all-or-none electrical spikes (firings). However, the exact conversion process of

the PD representation 1.0 the firing/non-firing representation is not yet known. We

attcmpt here 1.0 capture the underlying firing/non.firing event in each channel with

discrete-time series analysis.

One such analysis technique involves using a hidden Markov model for modo

eling the observation sequence. The time-varying observation proccss is considered

as a concatenation of many short-time segments of a fixed duration. However, il. is

e~p,'Ctcd that the properties of the process change neither synchronously with every

analysis duration nor abruptly from each unit 1.0 the ·next one. The development of

an efficient optimization technique [92] 1.0 estimate the model parameters so as 1.0

'match' the observed signal patterns has culminated in the theory of HMM-based

signal representation. T!·3 success of this hidden Markov modeling technique has

been proven by its application in ecology (e.g., [93]), text analysis (e.g., [94]), coding

theory (e.g., [95]) and speech recognition (e.g., [96]).

An HMM is a doubly embedded stochastic model with an underlying process

that is not directly observable (il. is hidden), but can be observed through an"t,her set

of stochastic processes that produce the sequence of observations. ln other words, the

states of ~:t HMM are hidden and the observation is a probabilistic function of the

states. The order of occurrence of observations and the correlations among adjacent

observations are suitably modeled by stochastic dependencies among the hidden states

of an HMM. In the following, we charaeterize an HMM for our problem by selecting

the model type, the number of hidden states and ail the parameters associated with

the mode!.

We consider K numbers of independent two-state (N = 2) fully-conneeted mod-
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Figure 5.1: A two-state fully-connected hidden Markov model (So and SI denote the

non-firing and firing states, 71"0 and 71"1 are the initial state probabilities, ai; gives the

state transition probability from a state Si 1.0 astate Si, bo(O) and bl(O) are the

observation probability density funetions for the state So and SI respeetively)

e1s, as shown in Fig. 5.1, where either state is reachable from the other one. Although

in many applications, the states do not have a physical meaningj here astate So
corresponds 1.0 a non-firing event whereas a state SI corresponds 1.0 a firing event.

The initial state distribution (i.e., al. t=l) is given as 71" = {7I";!i EN} with

7I"i = P[ql = Sd for i E N and L: 7I"i = l,
iEN

where N == {D, l} and astate reached al. any dock time t is denoted by qt.

(5.1)

The HMM considered is of order one and hence the transition from one state te

the next oneoccurs according 1.0 a transition probability distribution whlch depends

only on the previous state. If we define an integer set T ={l, 2,"" T -l} then the

state transition probability distribution A = {ai;li,j EN} is given hy

ai; = P[qt+I = S;lqt = Sd for i,j EN and tE T (5.2)

•

where every ai; coefficient (i.e., aoo, ao!, alQ, an) is positive, and L.;EN ai; - 1 for
iEN.

Now, we consi~er any one of the neural channels for which the observation is

represented by 0=010 2 •.• OT. 1'0 avoid significant degradation due 1.0 any quantiza­

tion process, wê' treat. the PD representatiol1"to be continuous-valued and accordingly



• consider an HMM with continuous pdfs. However, the use of a continuous pdf requires

sorne restrictions on its form 50 as to facilitate reestimation of the pdf param'Jters

(e.g., mean, variance) in a consistent manner. The pdf for each of the two states is

maintained fixed regardless of when and how the state is reached. The most general
representation of the pdf, for which a reestimation procedure exists [92], is used here.

Each state Sj is characterized by a continuous mixture pdf bj(x) of the form

bj(x) = l: Cjmbjm(x) for j E Ar,
mEML

(5.3)

•

where ML == {l, 2,· .. ,L} with L as the number of components in the mixture and

bjm(.) is any log-concave [92] or elliptically symmetric [97] density. The rationale

behind choosing a mixture pdf and selecting the component pdf bjm (.) to be log­

concave or elliptically symmetric is discussed later. In our present study, bjm (.) is

assumed to be a beta density function and can be written as

b () r(djm + lim + 2) d (1 )1·
jm x = X Jm - X Jm

r(djm + l)r(lim +1)
(5.'1)

where djm and h.. are the parameters associated with the density fllnction. The

L2ta F;df of (5.4) is suitaLle as the observations are continuous-valued between 0 and

1. '::.·h~~ Appendix D shows t.hat the beta density function satisfies the log-conacavity

condition.

The observation probability density Junetion B is denoted as B = {b j (x)lj E Ar},
where bj(x) dx is the probability of observing a value 0, in state Sj at dock time

t. A coefficient Cjm is the m-th component mixture gain in state Sj and the set

{Cjmlj E Ar, mE Md satisfies the stochastic constraint

l: Cjm = 1 for jE Ar with Cjm > 0 for j E Ar and m E MD (5.5)
mEML

50 that

(5.6)

•
5.3 Preliminaries

In Section 5.2, an HMM has been defined by describing ...è complete parameter set of

the mode\. The model is represented as À=(11", A, B), where 11" is the state probability
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Figure 5.2: A two-state trellis diagram (So and SI denote the non-firing and firing

states)

vector, A is the state transition probability matrix and B is a set of two (N=2)
continuous mixture pdfs, each with L mixtures. In this section, we provide sorne

pre!iminaries required for computing the degree of distortion (similarity) of a coded

speech with reference to its original version. A forward and a backward likelihood
variables and an auxiliary function are defined below.

5.3.1 Forward and Backward Likelihood Variables

Let us extend the integer set T to T+ as T+ == T + {T}. Following Baum [92], a

forward likelihood variable a,(i) is then defined as

a,(i) = P(0102'" 0" q, = Sd>'), for i EN and t E T+ (5.7)

which gives the probability of observing the partial sequence 0 10 2 ••• 0, (until time

t) and reaching the state Si at dock time t given an HMM >.. Likewise, a backward

likelihood variable P,U) is defined as

P,U) = P(O,+!0,+2' .. OTlq, = Sj, >'), for j EN and t E T (5.8)

which gives the probability of observing the partial sequence 0,+10,+2 ... OT (from
t +1 ta the end) given state Sj at time t and a model >..

The forward likelihood variable a,(i) is initialized as the joint probability of
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• being in state Si at t = 1 and an initial observation Oh i.e.,

a,(i) = 'Il"ibi(0tl, i EN. (5.9)

•

With the help of the trellis diagram shown in Fig. 5.2, an iterative procedure is

followed to compute the other forward likelihood variables from the initial one. Since

al(i) is the probability of the joint eveFt that 0 10 2 , •• 0, are observed and the state

. Si is reached 3.L dock time t, the product a,(i)aij becomes the probability of the joint

event that 0 10 2 ••• 0, are observed and the state Sj is reached at t + 1 through the

state Si at t. Summation of this product over the possible two states Si (for i E N)
at time t yields the probability of reaching state Sj at t + 1 with the corresponding

partial observation sequence upto time t. Multiplication of the summed qllantity by

bj(OI+I)' the probability of observing O'+I at state Sj, results in the forward likelihood

variable al+I (j) for time t + 1. This evaluation procedure can be expressed by the

following recurrence equation:

(5.10)

In a similar manner, let us now consider the backward variable P,(i). An ini­

tialization process arbi trarily defines

PT(j) = 1,

Then, Pl(i) is calculated recursively as follows:

j EN. (5.11)

P,(i) = L aijbj(O,+tlP'+I(j), tE T, i EN.
jeN

(5.12)

•

For a given model À, P,(i) is the probability of observing the particular partial se­

quence from time t + 1 to the end when it is known that the state Si is rcached at

time t. To compute this, it is evident from the trellis diagram of Fig. 5.2 that wc need

to consider both the states So and SI at time t +1 accounting for the possible transi­

tions from Si to Sj, the observation O'+I in state Sj and also the partial observation

sequence 0,+201+3 ", OT (being in state Sj at tirrie t +1).
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5.3.2 Auxiliary Function

Following the concept of the Kullback-Leibler statistic, an auxiliary function F(>', >.')
of two models >. and >.', for a given observation vector 0, can be defined [98] as

F(>',>.')= I: I: P(O,Q, MI>')logP(O,Q, MI>") (5.13)
QENTMEMI

with Q = Qlq2'" QT, M = mlm2'" mT, Qk E .IV and mk E ML for k E T. In the

following, we show that if F(>',>.');::: F(>',>.), then P(OI>");::: P(OI>').

P(OI>") P(OI ') log ~ ~ P(O, Q, MI>")
P(OI>.)logp(OI>') - "Q~TM~I P(Oj>')

_ P(OI>') 1 :E I: P(O,Q,MI>') P(O,Q,MI>")
o/; QE.\fTMEMI P(OI>') . P(O,Q,MI>')

> P(OI>'). ') I: P(O,Q,MI>').IOgP~O,Q,MI>")
Q~TMEMI P(Oj>') P',O,Q, MI>')

- [F(>',>.') -71"(>',>.)];::: 0 (5.14)

,C- with strict inequality except when P(O, Q, MI>') = P(O, Q, MI>"). In the above,

the fact that logx is strictly concave for x > 0 (since J2/dx 2 (logx) = _x-2 < 0)

has been used. The first inequality is the well-known Jensen's inequality whereas the
. -~-

second one is true by hypott'esis, If the current model is clefined as >.=(7r, A, B) and a

reestimated model is >.' =(7r', A', B')j then either the initial model >. defines a critical

point of the likelihood function (in ~hat. r.ase >.' = >.), or the rnodcl >.' is better than

the model >. in a sense that the observation sequence ° is more likely to have been

generated by >.'. From (5.14), we observe that the maximization of P(OI>') implies

maximization of the auxiliary functionj and hence a critical point of the auxiliary

function gives an estimate about the HMM pararneters.

5.4 Distortion Measure Methodology

An original speech segment and its coded version are passed through the cochlear

model to obtain the PD representations. For each of these segments, the PD ob­

servations are sequences of 64-dimensional vectors corresponding to sixty-four neural
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channels. A hidden Markov model is associated with each of the channels and the

parameters are estimated from the PD observation sequence produced by the orig­

inal speech segment. In a sense, aIl the sixty-four HMMs are 'trained' with the

pertinent observation vectors corresponding 1.0 the original speech segment. Then,

for the same speech segment, the observations from ail the coded speech signais are

'matched' against the derived HMMs 1.0 compute the relative coder distortions. Now

we describe the exact procedures for the model parameter estimation as weil as the

likelihood computation.

5.4.1 Parameter Estimation

There is no optimal way of estimating the model parameters from any finite-length

observation sequence. Since the closed-form maximum likelihood is noL possible,

the HMM parameters are (re)estimated iteratively starLing from an iniLial estimaLe.

To solve this problem, Baum-Welch reestimation algorithm [99] is used here. An

application of this algorithm is equivalent 1.0 solving a maLhematical opLimizaLion

problem for obtaining the maximum likelihood estimates of Lhe HMM parameLers.

The scheme for estimating the HMM parameters is based on the maximizaLion of

the probability of the observation sequence given a mode!. This algoriLhm is quite

powerful as il. ensures a monotonie increase in the likelihood with the successive

iterations of the algorithm [92].

Let us now consider the calculation of P(OIÀ), the probability of Lhe observation

sequence 0 given the model À. Assuming the statistical independence of observaLions,

for every given state sequence Q=qlq2··· qT, the probability of observing 0 can b~

written as P(OIQ, À), where

(5.15)

The probability of the occurrence of such a state sequence Q is given as

•
Using (5.15) and (5.16), P(OIÀ) can be computed as

P(OIÀ) = 2: P(OIQ, À)P(QIÀ).
qe}/T
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• The global density function of (5.17) with the state density defined by (5.3) can be

rewritten as

P(OIÀ) = L 7I"q, II [aq,q'+1 { L cq,mb.q,m(Otl}]
QENT ~ET+ mEML·":·

= L L L··· L [7I"q, II aq,q,+tCq,m,bq,m,(O')] (5.18)
QeNTmlEML m:;tEML mTeML tET+

assuming the parameter aqTqT+, = 1. The direct computation of P(OIÀ) as given

by (5.18) involves enumerating every possible state sequence of length T. Instead,

we exploit the trellis structure and use (5.10) and (5.12) for the forward and the
backward likelihood parameters. In order to describe the procedure for an iterative

update of the HMM parameters, we define a set of transition likelihood variables
{e,(ï,j)ji,j EN, tE T} as

(5.19)

•
which gives the probability of observing the particular sequence 0, and being in the

state S; at lime t and the state Sj at time t +1 given the mode!. From the trellis
diagram of Fig. 5.2, it can be noted that ç,(i,j) can be written as

ç,(i,j) = ~ a,(i)a;jCjmbjm(O,+tliJ'+l(j).
mEML

(5.20)

We note the following relationships among the three likelihood variables as defined

in (5.10), (5.12) and (5.19):

1. A product of the forward and the backward likelihood variables for any dock

time t is shown, using (5.3) and (5.12), equal to the sum of the transition

likelihood variable ç,(i,j) over the index j.

a,(i)iJ,(i) = a,(i) [L LaijCjmbjm(O'+l)iJl+l(j)]
meMLjeJl

= Le,(ï,j)·
jeJl

(5.21)

•
2. Using (5.10) and (5.12), it is shown that a sum of the product of the forward

and the backward likelihood variables, i.e., a,(i).iJt(i) over i is independent of
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• the time index t.

La,+! (j).Bt+! (j)
ieN

- L [L L at(i)aiiCimbim(Ot+I)] .Bt+!(j)
iEN iE}! mEM L

= L a,(i) rL L aiiCimbim(Ot+d.Bt+l(j)]
ieN UEN' mEM L

= L at(i),Bt(i) for tE T (5.22)
ieN

3. Using (5.11) and applying (5.22) recurrently, P(OjÀ) can be written as t.he sum

of the terminal forward likelihood variables aT(i) over i, i.e.,

P(OIÀ) = L aT(i).
ieN

(5.23)

•
The logarithm of P(O, Q, MIÀ'), the square bracket.ed t.erm in (5.18), can be

written as

logP(O,Q,MIÀ')=log1l"~,+ L 10ga~'Ml+ L logc~,m,+ L 10gb~,ml(O,).
teT+ ,eT+ teT+

(5.24)
It is seen that the HMM parameters 11"', A' and B' corresponding to the modcl À' are

segregated. Without any loss of generality, then t.he auxiliary funct.ion F(À, À') of

(5.13) can also be written in a separated form as

F(À, À') = L L P(O, Q, MIÀ) {lOg 1I"~, + L log a:".'+1
QeNr MeMI 'eT+

+ L logc~,m, + L 10gb~,ml(O')}. (5.25)
teT+ ,eT+

Since F(À, X) is considered as the basis for t.he maximum likclihood opt.imizat.ion

procedure, separability of the individual auxiliary funct.ioI::; a, given in Appendix E

simplifies the (re)estimation procedure. Individual maximizat.ion of t.he !irst. t.hree

summands subject 1.0 the constraints

L 1I"i = 1, 11"' > 0 for jE N. (5.26)
) -

ieN

L aii = 1, aii ::=:: 0 for i,j EN. (5.27)
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• L c;m = 1, c;m;::: 0 for i E./II, mE ML,
mEML

(5.28)

respeetively, is weil known. Each of the individual auxiliary funetions has the same

form L-jENUj logvj, which as a funetion of {vjlj E./II} with the constraint L-jENVj =

1 and Vj ;::: 0 for j E ./II attains a global maximum at the single point Vj = Uj / L-iEN Ui

for j E./II. The initial probability"if can be reestimated as

for i E./II (5.29)

•

which is the expeeted frequency in state Si at t = 1. Similarly, the reestimation

formula for A results in a ratio of the expected number of transitions from state Si

to state Sj to the expeeted number of transitions out of state Si, i.e.,

(5.30)

where çlm)(i,j) is the probability of being in state Sj at time t + 1 and state Si at

time t with the m-th mixture component accounting for 0" i.e.,

t(m)(, ') _ t (' ') [ Cimbim(Ot) ]
<,t Z,) - <,t Z,). '" b (0) .

LJ Cil il t
IEML

(5.31)

with bim(Ot) as given by (5.3). ëim is the ratio of the expected number of transitions

out of state Si using the m-th mixture component to the expected number of total

transitions out of state Si. Thus, for i E./II and m E ML, we get

L L çlm)(i,j) L L çlm)(i,j)

ëim =
tET+ iEN tET+ iEN (5.32)

ç{m)c ')
= L at(i),6t(i)LL L t Z,)

tET+ iEN mEML tET+

The parameters set {dimli E ./II,m E Md and {fimli E ./II,m E Md can be

calculated from the following two equations.

•
lim+! 1

?; (dim + r) -

L L çlm) (i, j) log(Ot)
tET+ iEN

L L çim)(i,j)
tET+ jEN
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(5.34 )

L L çlrn)(i,j) 10g(1 - 0,)
teT+ ieN

dim+l 1

~ (firn+ r )- L L çlrn)(i,j)
teT+ ieN

where the parameters dirn and firn are assumed, for reducing computations, 1.0 take
up integer values.

•

5.4.2 Distortion Computation

•

We now discuss the CHM measure methodology. At first, we obtain the PD observa­

tion sequences from the original signai. For each of the sixty-four neural chalwcb, we

consider these PD observations for a frame of T consecutive dock times. An HMM

is associated with each of such channels and the model parameters are det.ermilled

starting from an initial estimate. Equations (5.29) 1.0 (5.34), derived based on the

Baum-Welch algorithm, are used fer estimating the model parameters. This tech­

nique iterative1y chooses a 'better' model by maximizing P(0" lÀ,,) where 0" is the

n-th channel PD observation sequence for the original speech. After a reasonable

number of iterations, the algorithm is terminated and the final modcl is denoted as

À~). Let the n-th channel PD observations for a corresponding coded speech be rep­

resented by O~c). Using (5.23), we compute P(O~c)IÀ~o)) for ail the neural channcls.

This computation, in essence, evaluates the likelihood probability of the PD represen­

tation of the coded signal against the models derived from the PD representation of

the original speech. We assume the neural channels to be'independent and thercfore

the probability scores are multiplied. Upon taking logarithm, wc obtain a similarity

measure Mf for the frame as
64

Mf = L 10gP(0~c)IÀ~o»).
n=l

(5.35)

Finally, a cochlear hidden Markovian (CHM) distortion measure _alue is defined by

taking average of Mf values over ail the frames, negating il. and also dividing il. by

64 (i.e., CHM=-Mf /64).

5.4.3 Alternative Approaches

•
Here, we suggest two other logical approaches for computing coder distortion although

we have not carri~d out any tests with them.
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• State sequence approach

One alternative method is to determine the 'optimal' state ~~quences associated with

the PD observation sequences of an original speech as weil as its coded version. An

optimality criterion chooses the state q, that arc individually most lik,~ly by maximiz­

ing the expected Ilumber of correct individual states. The indiviùually most likely

state q, at time t is determined by computing

(5.36)

The bracketed term, i.e., the probability of being in state Si at time t, given the ob­

servation sequence 0 and the model À, is written for the forward-backward technique

in terms of the varia.bles ç,(i,j) as

(5.37)

•
The solution simply determilles the most likely state at every instant without any

regard to the probability of occurrence for sequence of states. A distortion measure

could be defined based on calculating the Hamming distance between the estimat~d

state sequences for the original and the coded speech signaIs. There is no unique

way of selecting an 'optimality' criterion and the approach may even be modified to

maximize the expected number of correct paths of pairs of states (q" qt+I) or triples

of states (q" q'+I, q'+2) etc.

Model distance approach

Another alternative is to estimate a model À(c) from the PD observations of the

codcd speech frame exactly the way we have estimated the model À(o) from the PD

observation of the original speech frame. A.lllodel distance measure following the

notion of discrimination information couId be defined for comparing these pairs of

HMMs [100]. One such mcasure form is

64 64

D(À(C), À(o») = L 10gP(OnIÀ~c») - L log P(OnIÀ~»).
n=1 n=l

(5.38)

•
This measure is non-symmetric and a symmetrized version could be used in practice.
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• 5.5 Practical Considerations

A 'good' distortion measure should consider only the informat.i"" .devant, to percep­

tuai events. However, the suceess of the measure also becomes heavily dependent

on the accuracies of the implemeot?otion and the model description. Here, wc dis­

cuss sorne practical aspects related to the evaluation of speech coders by the CHM

measure.

5.5.1 Computational Issues

•

•

The forward p~obah.;lity calculation is, in eifect, based upon the trellis structure shown

in Fig. 5.2. Since there are only two possible states at each time in the trellis, ail the

possible state sequences will rem'lrge into one of these two node", regardless of the

length of the observation sequence. At any time t, comput'1!,ion of a,(j) involves only

two previc'us values of a'_i(i) because each of the two grid points is reachcd from the

sarne two grid points at the previous time slot. For computing each a,(i) and (J,(j),

it requires on the order of N 2T calculations, rather than 2TNT as required by the

direct calculation.

Another important issue is that computing the likelihood variables involves

multiplication oi many terms having values smaller than 1. In a recursive procedure,

each term of these variables starts to diminish towards zero e,;ponentially and thus the

number representation goes below the precision range of any machine. To circumvent

this problem, the likelihood and other vuiables are multiplied by constants known

as scaling coefficients [lOIJ. The scaling procedure is not applied at every clock time,

but once every few clock times.

5.5.2 Initial Estimates for HMM Parameters

Since a convergent reestimation procedure exists for the continuous mixture model

considered here, it is theoretically possible to have arbitrary initialestimates for the

HMM parameters obeying the stochastic constraints. The reestimation equations

provide values for the HMM parameters corresponding to a local maximum of the

likelihood function. The choice of 'good' initial estimates is thus important in making

the convergence faster or ensuring the local maximum to be the global maximum of
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•

•

the likclihood function. In fact, sorne of the parameters may be very sensitive to the

initial estimates [!02].

5.5.3 Training Data and Iterations

The PD observation sequence used for 'training' the mode!s h"" a fini te !ength and

this causes problem in determining the HMM parameters via reestimation method.

An insulIicient number of occurrences of different model t'vents does not truely portray

the real scenario and therefore we have to have sufficiently long training data. On the

other hand, we w:.nt the model parameters to be fixed for a specilic period and then

vary depending on the new PD observations. The Baum-Welch estimation algorithm

also needs several iterations before the convergence occurs.

5.5.4 Mixture Processes

It is an usual practice to approximate a K-dimensiona! correlated random process

by a mixture of few uncorrelated, K-dimensional r:tndom processes. The number of

mixture components is heavily dependent on the degree of correlation. By assuming

mixture uncorrelated processes, we effectively reduce the number of parameters to be

estimated and thus help making the estimates more reliable. The trade-off is clearly

bctween the increased error in the approximation process and the increased reliability

in the estimation rro.:ess.

5.6 Experimental Results

Bdore providing with the objective mea.~ure resnlts, we describe the set-up procedure

for sorne of the experimental parameters.

(i) We have 'trained' and 'matched' the HMMs with speech frames of 480 sam­

pics. For N = 2 and T = 480, only about 1920 computations were needed since the

algorithm uscd was based on trellis structuw.

(ii) The scaling procedure was used iK,t at every instant, but after every ten

clock times.
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•

(iii) Although the length of the PD sequences over which the training and match­

ing were done is 480, we overlapped each such frame with the previous frame by 50%.

In other words, the observation window was shifted by 240 samples for dealing with

each new mode!. This has allewed having sufficiently long training data and also has

facilitated the models not to change the parameters drastically.

(iv) In our experiment, we have chosen models with three mixture cornponcnts

(i.e., M = 3). This has appeared to be a reasonable choice for making trade-off

between the accuracy of modeling the histogram and the number of parametcrs to be

estimated.

(v) Based on the psychoacoustic data, we have assulllcd the initial transition

probability from a non-firing state to another non-firing state is 0.8 and that, from

a firing state to another firing state is 0.2. In accordance with this, the initial state

probabilities were chosen to be 0.8 for non-firing state (So) and 0.2 for firing state

(SI)'

(vi) The initial estimates for the beta pdf parametcrs {di,..} and {fi,..} were

chosen in such a fashion that the corresponding mean values were 0.25, 0.50 and 0.75

for i E N. The weighting factors {Ci,..} were ail assumed to be equal (i.e., 0.33)

initially.

(vii) For any particular neural channel, the final estimate of HMM parameters

obtained for a speech frame was considered as the initia. estimate of the pararneters

for the subsequent frame.

(viii) While solving the simult"neo1!s equatiolls of (5.33) and (5.34), the {di,..}
and {f;.,n} parameters were allowed to take up integral values bctween 1 and ,10. Since

the exact solution could not be found, we have determined the parameter values hy

choosing the best pair which minimizes the sum of the square errors. One more

constraint imposed on the parameters was that the mean values (given by di,../(d;,.. +
fi,..)) for three different mixture comportents have been kept confined to three different

rcgions-one between 0 and 1/3, the second between 1/3 and 2/3; and the thi,d

between 2/3 and 1. This also reduced the search for best solution by making sorne

combinations of the pararneter values ta be invalid.

(ix) For model parameter estimations, we have made 30 iterations each time.
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• Sent. Cl C2 C3 C4 C5 C6

S II S H S H S H S H S H

Ml 5.75 195 4.92 225 4.17 336 2.58 358 2.58 365 1.00 420

M2 5.50 250 5.17 231 4.25 280 2.75 310 2.25 390 1.08 414

FI 5.67 209 5.00 263 4.25 300 2.33 389 l.58 371 1.17 430

F2 5.67 220 5.00 276 3.91 347 2.67 378 2.50 312 1.25 398

Table 5. ,.: Subjective and objective measure values for six coded signais with reference

to the corresponding original speech utterances ('S' gives the average subjective rank­

ing scores and' lI' denotes the cochlear hidden Markov measure with single channel

(CHM-SC))

Sent. Cl C2 C3 C4 C5 C6

S H S H S H S H S H S H

Ml 5.75 146 4.92 188 4.17 256 2.58 314 2.58 320 1.00 408,

• M2 5.50 161 5.17 179 4.25 238 2.75 287 2.25 346 1.08 398

M3 5.75 157 5.17 183 4.00 261 2.58 310 2.33 304 1.17 401

M4 5.00 l oa 5.67 152 4.25 230 2.50 326 2.58 311 1.00 412~v

M5 5.75 138 5.17 170 3.83 277 2.67 301 2.50 335 1.00 421

M6 5.58 163 5.25 186 3.83 265 2.75 292 2.42 319 1.17 392

FI 5.67 154 5.00 182 4.25 244 2.33 326 2.58 307 1.17 416

F2 5.67 159 5.00 192 3.91 270 2.67 296 2.50 310 1.25 386

F3 5.50 170 5.17 177 4.25 221 2.50 319 2.25 352 1.33 381

F4 5.41 169 5.25 174 4.17 238 2.75 281 2.17 361 1.25 399

F5 5.50 162 5.50 155 3.83 272 2.33 330 2.50 304 1.33 373

F6 5.67 156 4.83 202 4.08 263 3.08 322 2.17 348 1.17 391

Table 5.2: Subjective and objective measure values for six coded signaIs with reference

to the corresponding original speech utterances ('S' gives the average subjective rank-

ing scores and'H' denotes the cochlear hidden Markov measure with three channels

(CHM-TC))
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In this work, we have followed two strategies for computing coder distortions.

Let us now con~ider determining the model parameters for the n-th neural channel.

In the first strategy, while training the model, we have used only the n-th channel

PD observation sequence corresponding to the original speech. We cali this strategy

as CHM-SC (with single channel). Table 5.1 shows subjective and objective measure

values for six coded signais with reference to the original speech utterance. We tabn­

late here measure values for only four utterances. The CHM-SC measure was found

to be not very satisfactory in ranking coded signaIs.

It has been our understanding that the training data length was not sufficient in

the CHM-SC strategy to make a reliable estimate for the model parameters. There­

fore, we formulated a new strategy where three adjacent channels-the (n - 1)-th,

n-th and (n + 1)-th channel PD sequences were used in alternate manners for train­

ing. This strategy has been termed as the CHM-TC (with three channels). Table 5.2

provides subjective and CrIM-TC measure values ior ail the twelve utterances given

in the Appendix C.

• Coded Speech Measure Sampie Delays

Zero One Two Three

oakf8f SNR (w/o scaling [dB]) 8.72·1 7.391 5.619 5.117

oakf8f CHM-TC 221 227 221 229

oakf8k SNR (w/o scaling [dB]) 9.178 7.503 6.108 7.027

oakf8k CHM-TC 319 321 326 323

Table 5.3: The SNR and the cochlear hidden Markovian-thr'le channels (CHM-TC)

measure values with zero, one, two and three sampie delays for the coded signal

'oakf8f' and 'oakf8k' with reference to the original speech sentence

•

For the CHM distortion measure values, we have computed the logarithm (rml­

ural) of the likelihood probability scores, negated them and averaged over ail the

channels and ail the speech frames. Tables 5.1 and 5.2 provide these measure values

where iL !ow value implies a better perceptual quality. Already in Chapte!"4, we have

noted that with the utterance Ml, the C4, C5 coders and with the utterance F5, the

Cl, C2 coders were ranked same subjectively. The CHM-TC measure has found C1

coder for Ml and C2 coder for F5 to be slightly better than their counterparts. Other
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than these tie cases, the subjective and objective measures were not in conformance,
for the C4, C5 with the utterance Ma.

The suceess of the CHM meolUre is quite comparable with th::..t of the CD!

measure. However, the primary two advantages of the CHM measure are that (i)

ample provisions (selectingbetter initial estimates, carrying out more iterations etc.)

exist for its improvement and (ii) it attempts to take time correlations into account

and is fairly robust against few sampJ.~ delays. Unlike most of the other distortion

measures, the CHM measure performs quite weil without an exp!icit time-alignment.

Table 5.3 provides the SNR measure (without scaling) values as weil as the CHM

measure values with zero, one, two and three sample delays in the coded speech. The

misaligned sampie places are filled in with very smail (approximately zero) values. It

is observed that the sampie delays do not affect the measure values considerably.

5.7 Summary

ln th:" chapter, we ha'/e introduced a cochlear hidden Markovian (CHM) measure for

computing coder distortion. We have attempted to capture the basics of neural firing

eventil with simple hidden Markovian models where the occurrence of perceptual­

domain observations and correlation among adjacent observations are modeled ap­

propriately. A two-date (one each for firing and non-firing events), fully-connected

HMM has been assûciated with each of the neural channels.

For computing coder distortions, at first, ail the HMMs are 'trained' (i.e., the

UMM parameters are estimated) with the PD observation derived from the origi­

nal signal. The Baum-Welch reestimation technique has been applied to derive the

UMM parameters iteratively starting from an initial estimate. The PD observations

obtained from the coded speech are 'matched' against these UMMs. A negated ver­

sion of the log likelihood probability scores, averaged over ail the speech speech frames

and neural channels, has acted as the CHM distortion measure. This measure has

shown promise by conforming appreciably with subjective evaluation results and also

by exhibiting its robustness against coder delays.
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Chapter 6

Applications in Coder Analysis

6.1 Introduction

The earlier chapters have dealt with an auditory representation of speech and two

distinct approaches for computing distortions by comparing these perceptual-domain

parameters of a coded signal vis-a-vis its original version. We have evaluated the

performances of speech coders with these measures and also have computed the rate­

distortion functions for speech coding with one of them. Although wc have not

attempted to use our measure formulation in a closed-Ioop fashion in any speech coder,

it may very weil be possible to use it for 'populating' a codebook in the training phase

and/or for 'selecting' an appropriate codebook entry in the transmission phase. A

typical speech coder has several components based on the features and its encoding

paramett:rs. For a low bit-rate speech coder, a proper bit allocation among these

components plays a significant role in achieving a good perccptual <juality for the

coded speech. Thus, it would be helpful for the designer if there could be a way to

assess the performances of these components in a separate manner.

State-of-the-art analysis-by-synthesis medium or low bit-rate speech coders com­

prise of a linear prediction filter to model the short-term sp"etrum, a pitch predictor

to model the long-term periodicity and a stochastic codebook to represent the resid­

ual speech signal. In practice, sorne of these filter blocks and codebooks are often

split into more than one components primarily to give different perceptual impor­

tance and also for computational reason. While transmitting, in the analysis phase,
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different synthesized signaIs arc compared with the original signal by a fidelity cri­

terion. A mean-square distortion criterion has becn found to be unsatisfactory as it

does not even addrzss perhaps the most important perceptual event, namely the au­

ditory masking. To address this issue, in the recent literature, various noise weighting

schemes have been coupled with the mean-square distortion criterion and/or other

noise shaping filters have been suggested.

A detailed analysis on a component-by-component basis for different coders with

the same bit-rate is beyond the scope of this thesis. Nonetheless, in this chapter,

wc will outline two related applications of the proposed measures. The first part

describes an analysis procedure for determining the the pitch frequency by examining

the output space of the cochlear model and applying the cm l'.'1easure. With the help

of this analysis, it is possible to compare the pitch information of the original signal

and that retained in a coded version. This, in turn, could provide a feedback to the

designer regarding the ~eficielJcyof the pitch filter component. In the second part, we

conoïde! ". wideband speech coder which uses three-way split vector quantization for

the LPC parameters and fractional pitch lag value in the pitch predictor. We apply

the C:::>I as weil as the CHM measures for studying the performances of different

noise weighting methods as incorporated in this coder. The coder was designed by K.
Abboud [9J and the .,valuation of the noise weighting schemes was carried out jointly

by this author and Abboud.

The remainder of this chapter is formatted as follows. Section 6.2 briefly reviews

sorne of the existing pitch frequency estimation algorithms. Section 6.3 suggests an

algorithrnic approach, using the CDI measure form, for the pitch frequency determina­

tion from the PD representation of a speech signai. Section 6.4 describes a 11.2 kbps

code-excited linear prediction (CELP)-based wideband speech coder. Section 6.5 in­

troduces sorne of the perceptual weighting schemes while Section 6.6 investigates their

performances by the proposed objective measures. Thus, Sections 6.2 and 6.3 are re­

lated to the first application of pitch frequency estimation whereas Sections 6.4, 6.5

and 6.6 pertain to the second application of performance evaluation of perceptual

weighting schemes implemented in a wideband coder.
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• 6.2 Existing Pitch Estimation Algorithms

One simple time-domain approach for the pitch estimation is to low-pass !ilter ail the

energy from the speech signal except the fundamental harmonic and then detect the

zero-crossing rate (ZCR). The ZCR measure is related to the pitch (FO) by

where f, is the sampling frequency in samples/sec. The prime difficulty of this method

is in the determhation of the cut-off frequency for the low-pass filter as it should be

high enough to in:::ude the fundamental frequency from a high-pi tched voiee and low

enough to exclude !.he first harmonic or a low-pitched voice. Moreover, the ZCR

detects sorne time the first formant frequency rather than the FO if the Îormer has

sufficiently high energy. A windowed autocorrelation function (ACF) is often caleu­

lated by taking the product of the speech sampIe {s[n]} with its delayed version and

passing it through a window filter {w[n]} [103]. In the pitch determination, the ACF

R,,[k] given by

•

FO = ZCR * f,/2,

00

Rn[k] = I: s[m]w[n - m]s[m - k]w[n - m +k],
m=-oo

(6.1 )

(6.2)

is evaluated for k ranging from the shortest possible period (e.g., 3 m8 fcr a female

voice) to the longest one (e.g., 20 ms for a male voiee). Another alternative technique

is to ca!culate the average magnitude difference function (AMDF) defincd as

00

AMDF[k] = I: Is[m] - s[m - kll
m=-oo

which shows minimum for a k value corresp:mding to the pitch period.

(6.3)

Frequency-domain techniques involve computing a windowed Fourier trallsform

defined as
00

Sn(ei''') = I: s[m]e-iwmw[n - ml·
m=-oo

(6.4)

•

In a spectrogram, Sn(eiw ) is plotted with the sample-time n on the horizontal axis, the

frequency w on the vertical axis and the magnitude by darkness of the display. The

pitch period can be detected by searching either the periodically-spaced verticallines

in a wideband spectrogram or the periodically-spaced horizontallines in a narrowband

spectrogram. For estimating the FO, a cepstral analysis technique has also been
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• employed where the complex cepstrum exhibits sharp pulses spaced al, intervals typica!

of the pitch periods.

Unlike the conventional techniques, an auditory model-based pitch determina­

tion technique works for varying pitch effects, and is robust against a wide range

of distortions [104]. Based on the duplex theory of the pitch perception, Lyon has

published an 'auditory correlogram' [105]. Using this idea, Slaney et al. have recently

proposed a perceptual pitch detector [104]. In this algorithm, a pre-processing step

emphasizes the vertical structure in the correlogram, sums the value al, each time­

delay in the enhanced correlogram across ail the frequencies and determines the pitch

based on the location of the largest peak. Weintraub has used a cost-reduced correlo­

gram version as a pitch tracker for his two voice sound separation experiments [106J.

Seneff has used an auditory model and suggested a generalized synchrony detection

(GSD) mechanism for detecting the pitch periodicities in the speech signal [107].

•
6.3 Pitch Frequency Estimation

Here we suggest an algorithm, using the CDI measure form, for estimating the pitch

fundamental frequency.

A rectangular analysis window of 40 ms is chosen for a speech frame of 20 ms

so that the successive windows overlap by 50% and al, least two pitch periods are

included in the analysis window. The output for each of the sixty-four neural channcls

is compared with itself delayed by r samples (r up 1,020 ms =160 samples accounting

for the lowest possible FO). With twosetsI= {1,2, ... ,160} and Je == {1,2, .. ·,64},

the comparison with the discrimination measure (e.g., with the D\(Pj Q)) takes the

form

80

(6.5)for r E I, k E Je.Ek(r) = L:tPjk,IOg ( Pjkl ),
leI j=\ \Pjk(I+7)

In this way, from a two-dimensional time-place representation A, wc derive a cross­

entropogram E = {Ek(r)lk E Je,r E I} which is also two-dimensional where the

vertical direction corresponds 1,0 the channel k E Je and the horizontal direction

corresponds 1,0 the sample delay r E I. To enhance the vertical structure of E, a

convolutionaloperator 0 = [-1 +2 -1] is used 1,0 give g = {Gk(r)lk E Je,r E I}

•
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• Figure 6.1: Time-domain waveform and spectrogram plot of the vowel lai In the
word 'shade' (fcmale voice)
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• with

Ck(r)=-Ek(r-1)+2Ek(r)-Ek(r+l), for T:/;I, kEJe, (6.6)

where Ek(O) = Ek(161) = 0, Vk E Je. An exponentiai weightil.g set {w[kJlk E Je} of

the form
w[k] = e-a(N-kl{N, for k E Je (6.7)

is defined where the number of channels N is sixty-four and the decay factor li is

chosen to be 6. The exponentially-weighted discrimination ml'asure values for aH tb

sample delays, summed over ail the sixty-four channels, can then be written as

The evidences l'rom the higher harmonies arl';':on,uined this way to make the pitch

estimat~ robust. At the same time, the contributions l'rom the formant frequencies are

minimized by giving exponentially decaying weights to the higher frequency channels.

In this fiattened one-dimensional cross-entropogram /\1 = {C(r) Ir E I}, the measure

C(r) shows the first significant dip at a r value corresponding to the pitch period.

Thus, an average Fa for a frame is calculated as

•

C(r) = I: w[kjCk(r), for r E I.
kelC

Fa = fa * [mjn {r E I: C(r) < H}ri

(6.8)

(6.9)

•

with fa = 8, 000 Hz and an appropriate threshold II.

Fig. 6.1 shows the time-domain waveform and spectrogram plot for the word

'shade' (female voice). We execute our pitch estimation algorithm to determine the

pitch period for one frame (160 samples starting l'rom the sampie number 15,000) of

1al in that word. In the one-dimensional cross-entropogram plot (using the directed

divergence measure with Cl' = 1) of Fig. 6.2, the !irst dip in C(r) is observed at

r =40 samples (equivalently, 5 ms) with an H value, say, -30 units. The perceptual

pitch period is thus calculated to be 200 Hz. It is expected that this scheme, due to

merging of information l'rom ail the channels, could estimate the pitch c:orrectly even

when the 'fundamental frequency' component is fiitered out l'rom the original signal.

However, the selection of II may become more stringent. A post-proccssor may be

used for the pitch estimates of successive frames to correct any serious error, e.g.,

pitch doubling or halving.
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Figure 6.2: Oue-dimensional cross-entropogram (directed divergence with a=1) for

one particular frame (160 samples starting from the sample number 15,000) of lai in

the word 'shade'

• 6.4 Wideband Coder Architecture

•

In the second application, our intention is to examine the performances of sorne of

the noise shaping schemes generally incorporated in a medium or low bit-rate speech

coder. Here, we consider a 11.2 kbps CELP-based wideband speech coder. A wide­

band (50-7,000 Hz) speech shows superiority in the perceived quality over a narrow­

band (200-3,400 Hz) speech. This stems from the fact the added low frequencies

increase the naturalness of a "Qice while the added high frequencies make the speech

sound more intelligible, especially for fricative sounds. Obviously, more bits are re­

quirect to code the additional information which leads us to have a trade-off between

preserving àcceptable speech quali ty of the reconstructed signal and maintaining a

relatively low operating bit-rate. HClwever, here our objective is not efficient codingj
JI. •

but assessing the effectiveness of the perceptual weighting schemes.

The CELP analysis-by-synthesis speech coders treat the input speech samples on

a frame-by-frame basis. Linear prediction operations are used to exploit the fact that

the speech exhibits a high degree of intersample correlations-correlation observed

between adjacent samples (near-sample redundancy) and also, for voiced speech, cor-
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relation between sampl~s separated by the pitch period (far-sample redundancy).

Generally, a CELP coding technique consists of three basic funetions- (i) short-term

prediction (in the analysis phase) to Jetermine the LPC (or equivalent) coefficients,

(ii) pitch search (in the synthesis phase) to calculate the pitch lag (Le., the pitch

period in samples) and the pitch coefficient (i.e., the corresponding gain parameter)

values and (iii) codebook search (in the synthesis phase) to determine the index of

an excitation waveform and the associated scale factor.

Accordingly, two codebook indices and two qu~ntized gain values are determined

along with the formant predictor coefficients. In fact, the CELP coder does not

directly need an analysis stage; ideally, the formant synthesis fil ter could also be

optimized for each candidate excitation waveform. However, the formulation cl an

optimal (in a mean-square sense) formant synthesis filter leads to a highly nonlinear

set of equations which is not amenable to solutlOn. Thus, a formant synthesis filter

is generally implemented as the inverse of a formant filter determined in the analysis

step. These parameters are selected in a systematic way for matching a synthesized

speech to the original one with minimum error as defined by a distortion measure.

Ali of them are updated at regular intervals and transmitted over a communication

channel in order to reconstruct the speech signal in the decoder side. A wide variety

of wideband CELP-based algorithms has been proposed in the Iiterature (e.g., [89]).

In this work, we use a 11.2 kbps wideband speech coder as designed by Abboud [91
and described below brief!y.

6.4.1 LSF-based Short-term Prediction

For this wideband coder, a 16-th order LPC filter is chosen for the short-term pre­

diction. The LPC parameters are determined by an autocorrelation method in which

each frame of speech samples is multiplied by a Hamming window bcfore getting

filtered by the inverse formant filter. This method involves minimizing the resid­

ual signal (of the filtered version) energy and requires solving a set of Yule-Walker

equations. The LPC parameters obtained are not well-suited for direct transmission

because an error in any one parameter can cause the filter to become unstable and

their wide dynamic range may make an efficient quantization practically impossible.

Thus, they are transformed into a 'better-behaved' set of parameters such that the

synthesis filter characteristics vary smoothly as a function of those parameters.
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The !ine speetral frequency (LSF) parameters represent the phase angle of an
ordered set of poles on the unit circle. They are used quite often because they simplify

the quantization procedure, ensure synthesis filter stability (if LSFs are ordered) and
are closely related 1.0 the formant frequencies. An use of the LSF pararneters has

an added advantage of localized spectral sensitivity, i.e., that an error in one LSF

only affeets t.he synthesizeà speetrum near that frequency. An efficient technique

for the computation of the LSFs is followed. The polynomial 1'001.5 are determined

by applying a Chebyshev transformation 50 as 1.0 map the upper semi-circle in the

z-plane 1.0 the [-1,+1] range and searching for sign changes in this interval [108].

These LSF parameters are quantized before transmission. In scalar quantiza­
tion, eaeh LSF coefi1cients are quantized individaally while in the veetor quantization
(VQ), all the LSF coefficients are quantized together. For the sarne performance, the

first one demands a high number of bits ior quantization while the second one suffers

from high complexity in terms of the amount of training data needed, the memory

required and the number of computations involved. Here, a three-way split VQ tech­

nique for the LSF parameters is adopted. For each frame of 15.625 ms, 30 bits are

distributed among the 16 LSFs. They are divided into three subgroups-13 bits (for

the first 8 LSFs), 9 bits (for the middle 4 LSFs) and 8 bits (for the last 4 LSFs). A

training data of LSF veetors is used 1.0 construet three different optimal (al. least in

the local sense) codebook sets using the Linde-Buzo-Gray (LBG) algorithm [109].

During the transmission phase, an unquantized LSF vector is compared with the

codebook entries for the LSF veetors. The algorithm cnooses that codebook yector

which minimizes a weighted-Euclidean LSF distance measure where the weighting

faetor considers the frequcncy sensitivity and also the LSF positions. A nested search

technique is followed with priority given 1.0 the first LSF subgroup where most of the
perceptual information prevails. The optimal first veetor is combined with the second

LSF codl'bc(lk entries 1.0 yield the second LSF vector; and finally, the optimal first

and second ve~tors are combined with the third LSF codebook entries 1.0 generate the

overall LSF veetor. With a transmission of 30 bits pel' frame and an update rate of

64 Hz, the operating rate for the short-term predictor is 1,920 bits/sec.
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6.4.2 Long-term Prediction with Fractional Delays

The long-term linear predictor parameters are the pitch coefficient and the pitch lag.

The pitch coefficient is a scaling factor related to the degree of waveform periodicity.

It is zero for a signal without a periodic structure and is approximate!y one for st,eady­

state voiced speech. The pitch lag tends to vary smoothly in the voiced segments with

only occasional departure from the smooth trajectory [110]. However, in the unvoiced

segments, the pitch lag tends to jump around. '1'0 avoid the problern of locking onto

the correct pitch during the transition from silence to voiced speech, a good pitch

delay resolution. should be maintained at ail times during the aIlidysis and synthesis

stages of the CELP coder.

The pitch coefficient values may be positive or negative. In general, the negative

values tend to occur in the speech regions with low energy and the large positive values

tend to occur in the transition regions (silence to speech). A restriction on the pitch

period to be integer multiples of the sampling interval results in the partial destruction

of the harmonie structure, especially in the high frequency regions. '1'0 increase the

temporal resolution, non-integer (fractional) pitch lag values can be used. For this

purpose, a multitap or a pseudo-multitap pitch prediction fil ter [111] can also be

used. However, in this coder, a single-tap pitch predictor with fractionallag values is

adopted. This is implemented by the use of interpolation and polyphase filters [112J.

The pitch lag in wideband speech ranges from 40 to 320 samples with sorne

delays occuring more orten than others. With the use of 38,400 pitch sl\bfrarnes

of 3.125 ms (five subframes in a formant frame of 15.625 ms) each, a pitch delay

distribution is generated. Based on this, a nonuniform distribution of non-integer

delays is set UPi the highest resolut'ion is given to the pitch lags in the range of 71 to

100 while the lowest resolution is given to the end of the lag range. For each subfrarne,

the pitch gain is represented by 4 bits whereas the pitch lag by 10 bits. 'l'hus, with

an update rate of 320 Hz, the pitch pararneters altogeth<'r require 4,480 bits/sec.

6.4.3 Residual Signal Codebook

The residual signal codebook is filled up with codevectors containing sparse ternary

elements. These excitations are generated by center-clipping and using a zero-mean

unit-variance Gaussian sequence. The center-clipping threshold is set to ±1.2 in order
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to satisfy a specifie percent (75%) of sparsity inside the vector. Ali values between

+ 1.2 and -1.2 in the Gaussian distribution are set to 0, values greater than +1.2
are set to +1, and values less than -1.2 are set to -1. The number of codewords

is set to 1,024 requiring 10 bits for each subframe of a.125 ms. A 4 bit differential

quantizer with a leaky predictor is used to code the differences in successive subframe

magnitudes and an extra bit to code the sign. Thus, 4,800 bits/sec are required for

residual signal representation with an update rate of 320 Hz.

6.5 Perceptual Noise Weighting

At a low bit-rate, the mean-squared error criterion between the original and the recon­

structed speech has been found to provide an unsatisfactory result. This indicates a

requirement to shape the noise based on the auditory mê.sking phenomenon in speech

perception. In noise spectral shaping, the noise components at certain frequencies

can only be diminished at the price of increased noise components at sorne other

frequencies. At low bit-rates where the average noise level is quite high, it is difficult,

if not impossible, to maintain noise below the masking threshold at an frequencies.

The noise components in spectral valleys may exceed the thresholdj nonetheless, ~,hey

can be attenuated substantially by a postfilter used at the last stage of the decoding

process. On the other hand, the postfiltering operation introduces distortion in the

speech signal to sorne degree [113]. In this coder, the filter paramcters and the code­

book entries are selected by minimizing a noise-weighted mean square error and/or

using noise shaping filters. This section discusses three perceptually-weighted filtering

schemes-(i) a simple noise weighting filter, (ii) a codebook shaping filter and (iii) an

enhanced noise weighting fil ter. Although no postfilter is used here, it could be used

with any of the above schemes.
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Figure 6,3: Noise weighting with 1 = 0.75.

•
6.5.1 Simple Noise Weighting

This auditory masking scheme is accomplished by minimizing a weighted mean-square

error with a noise shaping Jllter W(z) defined as

(6.10)

where A(z) is the formant analysis filter with the predictor order p. The value of

1 (0 < 1 < 1) is determined by the degree desired to de-emphasize the formant

regions in the error spectrum. Decreasing the value of 1 moves the poles of the filter

1/A(zIl) inward and therefore increases the bandwidth of the poles of W(z). A good

value of 1 is 0.75 [9J. Fig. 6.3 shows the effect of using such a noise weighting filter in

the reconstruction process of the input speech. The resulting noise level is no longer

fiat, but has the spectral shape of W- 1(z) and therefore is boosted in the formant

peaks and attenuated in the formant valleys.
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Figure 6.4: Noise level using codebook shaping filter.

6.5.2 Codebook Shaping Filter

In the second approach, an excitation codebook is cascaded with a shaping filter F(z)
to form a modified codebook structure. The filter F(z), defined as [114J

-1 A(zh1)
F(z) = (1 - JlZ ) A(zh2) ' (6.11)

•

is dynamically changed to control the statistical properties of the codebook in time

and in frequency. The parameters 71 and 72 are de-emphasizing constants while Jl

is a parameter compensating for the spectral tilt. A differencer uses Jl = 1, but an

optimum preemphasis filter which maximizes the output spectral fiatness measure hai

Jl = ~, where r(n) represents the autocorrelation sequence for the excitation signal

before shaping. For unvoiced sounds, this fraction is relatively small and the effect

of the preemphasis filter becomes negligible. On the other hand, for voiced sounds

where r(l) is very close to r(O), the preemphasis filter acts almost as a differencer.

6.5.3 Enhanced Noise Weighting

The prime disadvantage of a simple noise weighting filter W( z) is inadequate bal­

ancing of low and high fre,!uency components due to interdependency of the tilt and
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•

•

formant parameters. An accurate modeling of one requires a sacrifice in modcling the

other.. An enhanced noise weighting technique [115] introduces a decoupling factor

that Tcsu1ts in an independent control of the tilt with respect to the formants. In

general, the corresponding weighting fi1ter is implemented as

, A(z) 1
WN(z) = W(z)PN(z) = A(zh) -'N:;----

1 +L. Pklikz-k
k=l

where the coefficients Pk are determined by an LPC analysis on the first (N + 1)

correlation coefficients of the inverse fil ter A(z) and the parameter li controls the

spectral tilt.

6.6 Performance Evaluation

We kept the wideband coder architecture in tact and applied different noise weighting

schemes. In this second application, the primary contribution of this author, was in

the performance evaluation of these schemes by the introduced objective rneasures

[116J. The following seven configurations were used for the evaluation purpose.

1. no weighting, .
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• 2. simple noise weighting ".iLh W(z),

3. simple ilOise weighting with W(z) ~nd also codebook shaping with F(z),

4. enhanced noise weighting with W~(z),

5. enhanced noise weighting with W;(z),

6. enhanced noise weighting with W~(z) and also codebook shaping with F(z) alld

7. enhanced noise weighting with W;(z) and codebook shaping with F(z).

For the filter W(z), the parameter 1 was chosen to be 0.75. The filter F(z) used

parameters Il = 0.80, ,2 = 0.95 and an optimum /1-. The pal'''meter 8 for W~(z) was

ta.ken to be 0.5 whereas that for W;(z) was considered to be 0.7.

Config. SNR.eg (,!B) cm CHM-TC

1 16.06 2.731 362

2 1:2.89 2.684 284

• :) 11.00 2.649 247

4 11.90 2.543 183

5 11.59 2.518 166

6 9.69 2.606 212

7 9.95 2.623 225

Table 6.1: Distortion mcasures for diiferent noise weighting configurations (the seg­

mentai SNR values (SNR.eg), the cochlear discrimination information measure values

with ce = 1 (Cm) and the cochle~r: hidden Markovian measure with three channels

(CHM-TC) are tabulated)

•

For this part of the work with wideband speech, the cochlear model was extended

to have eighty-five neural channel outputs. The transfer funetions corresponding to ail

the filters are provided in [51]. It is 'North mentioning that although sixty-four neural

channels wer0 needed to cover from 0 to 4,000 Hz, only an additional twenty-one

channels were sufficient for covering the 4,000 to 8,000 Hz band. This is attributed

to the faet that the center frequencies of the stages correspondi"gto these neural

channels are logarithmically and not linearly placed.
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By evaluating the coded signal ql'a!ity with the CD! and CHM meaSllres, the

effecti,'eness of the perc~ptual weighting schemes descrioed in the l'revious section

were :lSsessed. The results with the SNR.eg, the CD! (with cr = 1) and the CIIM

meilSures are presenteà in Table 6.1. These éxperimelltal results indicate the following
noints.

(a) As has been ciis"118sed earlier, the SNR.eg measure does not perform weil

as an objective criteriûn. honically, we observe here that the SNR.eg with the [jrst

configuration (no noise weighting filter) is highest whereas the perceptual qllality

measured subjectively as weil as by the CD! and CHM measures is 10wesL among the

others.

(b) The use or a codebookshaping /ilter F(z) in combination with a simple

noise weighting filter W(z) yields better results in the perceptllal domain than the

configuration (1) with no shapi.lt; filter. This is due to appropriate shaping of the
excitati,m codevectors.

(c) The two-pole weighting' filter W;'(:z) exhibits better performance than the

three-poleweightingfilter W~(z). The.hree-pole /ilter effectively 1>oosts the high

frequencies near the haU sampling rate due to the presence of a real pole.. However,

this is achieved at the cust of a bwadband increase in the level of distortion al. lower

frequencies. By getting rid of the real pole, the two-pole /ilter has been able to attain

low level of dist,ortion at lower frequpncies while maintaining an acceptable levcl of

high frequency noise.

(d) Among the configurations testeà, the enhanced noise weighting scheme with

two-pole filter (i.e., the choice (5)) appears to be the best one. A pausible explanation

for such a good performance of this con[jgur..tion is that the weighting filter controls

the tilt aS well as the formant parameters efficiently.

(e) We note that an integration of codebook shaping filter along with the en­

hanced noise weighting scheme (two or three poles), in fact, degrades the perceptual

quality of the synthes~zed speechcompared to the one generated by using only the

enhanced noise weighting technique.

(f) In Table 6.1, we observe that the CD! and CIIM measurcû are consistent

with each other in ordering the coded signaIs..
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(g) For this part of the work, we did not conduct an informallistening test with

ail the twelve listeners; instead, only two of us (i.e., myself and Abboud) made a

cursory subjective assessment. Our assessments agreed with the objective measure

results. Despite the agreement made by the concerned objective measures about the

relative superiority of the configuration (6) over (7), subjectively wc assessed them

to be of equal quality.

6.7 Summary

In this chapter, we have sketched applications of the proposed distortion measures in

the analysis of speech coder components. Using the COI measure form, the output

space of the cochlear model was examined to estimate the pitch frequency. We carried

out, although not presented here, sorne preliminary work for formant estimation [87]

similar to the work presented in [107]. In another application, several noise weighting

schemes were used in a wideband speech coder. As a coordinated work with K.
Abboud, the perceptual impacts of these techniques were studied with the COI and

CHM measures. We believe that this type of analysis could help the designer to study

any particular section of the speech coder, adopt a new strategy and/or redistribute

the available bits in a more efficient manner.
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Chapter 7

Concluding Remarks

In this dissertation, we have proposed two auditory distortion measures and investi­

gated their performance in speech coder analysis and evaluation. Section 7.1 summa­

rizes the key points of our work while Section 7.2 provides a future research direction

related to our work.

7.1 Summary of Our Work

In Chapter 1, we have given a brief overview of speech coding techniques. The cod­

ing algorithms vary in the selection of features, in the parametric representation of

features, in the quantization of parameters and in the computation of distortion. We

have explained the importance of deriving an objective quality measure for speech

coding. A 'good' measure could be used in the evaluation of speech coder perfor­

mance, in the computation of rate-distortion function, in the analysis of speech coder

components and also in the design of speech coder. In this dissertation, our purpose

has been to introduce and investigate auditory distortion measures for coded speech.

In Chapter 2, we have reviewed sorne of the subjective and objective quality

measures used in the speech coding area. Among the existing subjective measures,

the MûS and DAM scores are more popular than the others. The time-domain

objective measures such as the SNR and the segmental SNR are used widely for their

simplicityeven though they do not correlate weil with subjective measures. We have

studied numerous parametric distortion measures (e.g., the log likelihood ratio, the
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cepstral distance) based on ali-pole speech synthesis models. We have also discussed

two recently proposed psychoacoustically-motivated objective measures, namely the

information index and the Bark spectral distance.

In this work, we have introduced two types of perce;>tual distortion measures

for the purpose of speech coder evaluation. Towards this end, we have represented

the speech signal onto a perceptual-domain using an auditory mode!. In Chapter 3,

we have described the mechanism of auditory system and also analyzed sorne of

the important psychoacoustic observations related to the speech perception. Among

various functional auditory models, we have chosen Lyon's cochlear mode!. The

outer-and-middle ear filter is modeled by a simple high-pass filter. The band-pass

characteristies of the basilar membrane in the inner ear (cochlea) are simulated by

sixty-four combinations of second-order notch filters and resonators. The activitics of

the inner hair cells are mimicked by half-wave rectification process while those of the

outer hair cells are imitated by the automatic gain control stages. Unlike many other

models, Lyon 's auditory model considers the temporal as weil as spectral masking

effects. The final representation of the cochlear model output is the probability-of­

firing information in the neural channels at the dock times.

In Chapter 4, we have introduced and studied a distortion measure, namely the

cochlear discrimination information (CDI) measure, whieh compares the neural-firing

information corresponding to an original speech and its coded version in a cross­

entropie sense. An insufficient knowledge about the exact neural firing processes has

prompted us to use the probabilistic information of firing/non-firing in the compar­

ison. We have investigated several variants of the CDI measure based on different

types of entropy, the associated parameters and also the cross-entropie measure form.

The effects of gain changes and sampie delays etc. have also been studied. The di­

rected divergence measure form based on the Rényi-Shannon entropy has shown very

good performance by conforming strongly with informai subjective test in terms of

ranking coded speech from six different coders. Subsequently, a rate-distortion anal­

ysis for speech coder has also been carried out with this measure. We have evaluated

the rate-distortion function directly using the B1ahut algorithm and also determined

performances of four speech coders. We have observed that there is ample scope for

improving the coded speech quality at a specified bit-rate.

We have suggested another approach towards formulating a perceptual distor­

tion measure in Chapter 5. This method has used hidden Markovian model in an
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effort to capture the basic firing/non-firing process opm'ative in the brain. We have

considered two-state fully-connected model of order one for each neural channel; the

two states of the model are corresponding to the firing and non-firing events. These

models have been assumed to be stationary over a fh:ed duration (in our work, 480
sample times). The model parameters have been determined based on the PD ob­

servations corresponding to the original signal. The Baum-Welch optimization tech­

nique has been applied for the parameter estimation. Finally, the PD representations

of the coded speech have been passed through the respective models so as to calcu­

late the corresponding likelihood probabilities. The logarithms of these probability

scores have been added and negated to give the cochlear hidden Markovian (CHM)

distortion measure. This measure has shown promise by agreeing with subjective

evaluation results to a large extent and also by demonstrating its robustness against
sampie delays.

Chapter 6 has outlined sorne of the possible applications of these measures

in the analysis of speech coder components. The present-day analysis-by-synthesis

medium or low bit-rate coders use several filters and codebooks. Keeping ail but

one component intact and having various configurations for the specifie component

under test, several coded versions could be synthesized for a speech utterance. As a

first application, an algorithm for pitch frequency estimation has been suggested. This

algorithm has involvedexamining the output space of the cochlear model with the COI

measure form and integrating information across channels. As a second application,

different noise weighting schemes have been included in a wideband speech coder

and their effed on performance has been evaluated by the COI and CHM measures.

An enhanced noise weighting scheme which controls the tilt as weIl as the formant

parameters efliciently shows the best performance among the configurations.

While converting the time-domain speech signal into its corresponding PD rep­

resentation by an auditory model, the resonating nature of the cochlea, the perceptual

nonlinearity as weil as the temporal and spectral masking effects have been consid­

ered. An inclusion of the spectral masking feature has allowed the probability-of-firing

information in a particular neural channel at a specifie clock time to depend not only

on the strength of the gain-controlled signal of that channel but also on those of the

other channels. Similarly, the same probability-of-firing information depends not only

on the strength of the gain-controlled signal at that clock time but also on those at the

other times. Thus, the PD representation for speech signal has exploited reasonably
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the interdependencies at the auditory periphery level.

In the COI measure, we have compared element-by-element of the cochleagram

matrices (whose elements are the probability-of-firing information) for the original

and the coded speech signais. However, this measure has been found to be not very

robust against the coder delays. Thus, estimating and removing time-delay between

the original and the coded speech are, in sorne sense, necessary first steps in applying

the COI measure. The CHM laeasure which has considered the temporal ordering

in the firing pattern has shown a greater robustness against the coder delays. An

explicit removal of the coder delays is not a necessity when the delays are confined to

just a few samples. We believe that, even if the original and the coded speech signais

are properly aligned, the CHM measure methodology is more powerful in the sense

that it utilizes the contextual information present in the neural firing patterns.

7.2 Future Research Directions

III this section, we provide a future research direction by outlining sorne of the issues

involved to improve this work.

7.2.1 Improvement of Model Structure

Lyon's auditory model which we have used in our work is, no doubt, a simplifica­

tion of the complex behavior of the cochlea. The main simplification is in separating

the interacting behaviors of the basilar membrane and the organ of Corti into non­

interacting models-simple time-invariant fi!tering followed by a detection nonlinear­

ity and an automatic gain control mechanism. A further refinement (e.g., [117]) of

the model structure may improve the performance of the distortion measure. Sorne

of the aspects for refinement are-fine-tuning the model parameters (e.g., Qea:r, Jeb),
dynamically adjusting the Qea:r value, making the model structure to be two- or three­

dimensional, incorporating the binaural feature etc. Many of these aspects may be

important for other reasons such as localization of sound source etc. and thus may

not contribute significantly in the distortion measure for coded speech. If we want

to create a more biology-like condition by having a large number of neurons, it may

become necessary to use a massively-parallel computer architecture based on 'connec-
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tionist' model or a neural network architecture based on Kohonen 's self-organizing

feature map [118].

7.2.2 Reduction of Computational Complexity

It takes approximately seventy times (run on a SUN-SLC workstation) the real time

system to provide the perceptual-domain representation for a speech signal. However,

most of the signal processing tasks (except the coupling stages) may be performed

in parallel to make the operation real-time. Advances in VLSI and signal processing

technology have resulted in the fabrication of an application-specifie integrated circuit

(ASIC) for cochlea [119]. An application of such an ASIC would make the processing

very fast compared to the software simulation.

7.2.3 Administration of FormaI Subjective Test

An objective measure is considered to be useful if its result cornports with the result

of a formaI subjective test (generally, the MûS). A regression analysis is usually

performed to determine an analytic relationship between the objective measures and

the MûS scores. Since different coded signaIs with accompanying MûS scores were

not available in our academic environment, we had to rely on the results of informal

test with twelve listeners. As a consequence of this, we have not carried out any

regression analysis because finding a relationship between our objective measure and

any such informallistening test result would only be r.Jisleading. With a limited time­

duration for doctoral work, we had to make a choice between the two-(i) confining

to the CDI measure approach and pursuing a more rigorous testing, or (ii) along with

the CDI measure, addressing the issues of temporal ordering in the liring pattern and

robustness of the measure against coder delays. The second option appealed to us.

Although our experimental results show enough promise, correlation with a formai

subjective test result is needed to validate our approach.

In a speech coder standardization process, the perceptual qualities of several

coders are evlauated by subjective testing. ûften, the coders are assessed under

different test conditions. For example, the Telecommunications Industries Associa­

tion (TIA) is currently setting up a 6.5 kbps speech coder standard (half-rate North

American standard) for mobile communication purposes [120]. From a large pool of
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candidate coders, they have selected nine of them. Ali these coders are being tested

subjectively under fourteen different conditions (e.g., channel conditions, background

noise, tandemming). Such a testing procedure involves a great deal of money and

also consumes a large amount of time. We believe that our measures could, at least,

be used in bringing down the number of candidate coders to a few for final subjective

assessment. This would substantially reduce the amount of time and rnoney involved

for testing.

7.2.4 Derivation of Firing Pattern

For continuous speech, its perception depends not only on the acoustic eues, but

also on the semantic eues (the meaning of preceding and following words and the

subject matter), the syntactic eues (grammatical rules) and the circumstantial cues

(speaker identity, listening environment etc.). It is quite likely that the processing

of speech does not occur in a hierarchical way from one level to the next and that

there are extensive links between levels [43]. However, the speech coders typically

do not produce distortions that are specifically related to the semantic, syntactic

or circumstantial eues. Therefore, it is reasonable to hypothesize that the proposed

measures are, by and large, sufficient from this perspective.

The CD! measure compares the probability-of-firing information whereas the

CHM measure compares implicitly the neural firing patterns for the original and the

coded signaIs. With further progress in psychoacoustic research, it may be possible

to derive the actual neural firing patterns from the cochlear model outputs by a

suitable trigger mechanism [121] and compare them explicitly for the original and

coded signaIs. Since ail the information related to the speech perception are conveyed

to the brain only as a sequence of neural firings through neural fibers, in future, an

explicit comparison of these patterns may become an effective way for devising a

distortion measure.

7.2.5 Application of Measures in Speech Corling

The present day state-of-the-art low bit-rate speech coders generally use, in the closed­

loop analysis, a mean square error criterion with sorne form of perceptua! weighting

filter. For an use of the introduced measures in a speech coding process, the cochlear
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model transformation has to be expressed in a more analytically tractable form. Also,

because of the temporal masking effects, speech coding with such measures would

imply additional coding delays. Motivated by the in-synchrony characteristics of the

timing information in the auditory nerve firing patterns, in [122], the in-synchrony­

bands spectrum has been used in an analysis/synthesis system. In [123], wavelet func­

tions have been used to incorporate the multiresolution signal nature at the cochlea

and represent the speech signal onto a joint time-frequency domain. Recent efforts

(e.g., [124, 125]) have been made to propose empirical but perceptually advantageous

time-frequency frameworks for speech processing. Further research is necessary to

express cochlear functions, preserving ail the major perceptuaJ events, in a compact

mathematical form and apply it in the speech coding process.

7.3 Epilog

In this dissertation, our primary contributions are-(i) reviewing the existing subjec­

tive and objective distortion measures, (ii) studying the auditory system and various

cochlear models, (iii) applying Lyon'~ cochlear model for auditory representation of

speech, (iv) devising a cochlear discrimination information measure and evaluating

speech coder performance with it, (v) pursuing a rate-distortion analysis with this

measure for speech coding, (vi) formulating a cochlear hidden Markovian measure

and assessing speech coder quality with it, (vii) suggesting an algorithm for pitch

frequency estimation from the cochlear model outputs, (viii) comparing different per­

ceptual weighting strategies adopted in low bit-rate speech coders and (ix) providing

a future research direction in the context of our work.

Determining a 'good' distortion measure for speech coding is an extremely dif­

ficult problem due to its very basic nature. At the same time, finding such a measure

would surely have a significant impact on the speech coding and coder evaluation

procedures. Our objective has never been to give a 'final' answer for this complex

problem, rather we have tried to take an incremental step towards the solution. With

the progress of time, we expect an improvement of the cochlear model structure, a

determination of an analytically tractable expression for it and also a reduction in

the computational complexity. However, the basic framework of comparing the neural

firing information for original and coded signal couid still be maintained.
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Since the work of von Békésy, the auditory system has been studied from differ­

eut perspectives. Some of these research findings are well-accepted in the literature.

On the other side, since the pioneering work of Shannon, the field of information

theory has grown substantially. Through the proposed work of distortion measures
for coded speech, we have made an endeavor to use a physiological model for auditory

processing and apply information-processing techniques from information theory.
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• Appendix A

It is known [70, 71] that Ha(P) is strictly concave with respect to P for 0 < a ::; 1,

but its convexity or concavity depends on J for a > 1. In this appelidix, we show

that for J = 2 (i.e., with P = {Pl> P2}), (a) Ha(P) is strictly concave with respect to

P for 0 < a ::; 2 and (b) for every a > 2, Ha(P) is neither convex nor concave with
respect to P.

It is shown in [71] that the Ha (P) is concave for 0 < a ::; 1. So, to prove (a),

we have to show that for J = 2, the concavity is also satisfied for 1 < a ::; 2. We

demonstrate this by showing that the second derivative of Ha(p, (1- p)) with respect

to P is negative in the range 1 < a ::; 2.

a (pf-2p2-2).{a - (pf +P2)(pi-a +p~-a)}
- (1 - a)" (pf +P2)-2

It is noted that for a > 1,
•

Ha(P)

iF Ha(P)
dPi

- (l~a)10g(P~+P~)' where P2=I-pl> P1>P2~0. (A.l)

a (a -1)(pf + P2)(pf-2 + P2-2) - a(pf-I - P2-1 )2
=

(1 - a)" (pf +P2)2

(A.2)

(A.3)

(A.4)

(A.5)

•

Furthermore, PI = P2 = 1/2 maximizes the expression (pi-a +p~-a) for 1 < a ::; 2. We

note that a > G)I-a for 1 < a ::; 2. Additional1y, we observe that the denominator

factor (1- a) of (A.2) is negative for a > 1. Thus, Ha(P) is proved to be concave in

the range 1 < a ::; 2.

Now, we investigate the concavity for J = 2 and a> 2. With sufficiently smal1

8> 0 and PI = 8 or P2 = 8, we obtain

iF Ha(P) 0
d 2 >,

PI
On the other hand, with PI = P2 = 1/2, we have

iF~a}P) = -4a < o.
PI

From (A.4) and (A.5), we observe that for J = 2 and a > 2, Ha(P) is neither convex

nor concave.
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• Appendix B

In this appendix, we show that (a) the directed divergence measure based on the

Rényi-Shannon entropy is non-negative and (b) it is additive for random measure­

mcnts that are independent under both probability distributions. For showing the

part (a), the inequality log x ;::: 1- (l/x) is used.

(a) Non-negativity of the measure:

DI(Pkl ;Qkl) = "tPjkllog (P~kl) ;::: "tPjkl (1- q~kl) = "tPjkl- "tqjkl = O. (B.1)
j=l q)kl j=l p)kl j=l j=l

We note that Plkl = q1k/ and P2kl = q2kl maximizes Ya(Pkli Qkl) for 0 < Cl< < 1

and minimizes it for Cl< > 1. Thus, the Ya(Pkli Qkl) conditions of (B.3) are met and

hence the non-negativity of the divergence measure (the Rényi-Shannon type) is also

satisfied. The measure becomes cqual to zero if and only if the distributions Pkl and

Qkl become the same.

•

1 (~ pikl ) 1 [ 1]Da(Pkl; Qkl) = --1 log L., -a=ï ;::: --1 1 - - 2 pa ,
Cl< - • q'kl Cl< - "..:..J!;L)=1 J LJ)'=l --::a;;r

qjkl

To show that Da(Pkl ;Qkl) ;::: 0, we need to show that

;::: 1 for Cl< > 1.

(B.2)

(B.3)

•

(b) Addivitivity of the measure: With w E [, x Je and m = nN, we obtain

Dl (P; Q) = i~l i~l ... i~l U1 Piw) [I:I log :~:]

{

2 (p.) 2 2- L Pil log ..2!. L Ph ... .L Pjm
31=1 qJl 32=1 Jm=l

2 2 (p' ) 2+ L Pil L Pj, log ..2!. ···.L Pjm
31=1 32=1 Q'2 3m=1

+ ... + "t Pi, t Ph ...."t Pim log (Pim) }
JI=1 32=1 Jm=l q'm

103



•

•

•

- ~ t~/iW log (:;:) }

- I: I: D1(Pkl ; Qkl)
IEekE~

Similarly, for a # 1, a:2: 0, we get

D,,(PjQ) = 1 )IOg{~ ... .f- (rr:=1Piw

1 )}
(a - 1 ~.L.J rrm q'!

)1=1 )m=1 w=1)w

1 {(2 p~)(2 P'!) (2 P'!)}_ log '" 11 '" J2 '" Jm
( 1) LJ 0'-1 LJ a=ï ... LJ 0'-1
a - i)=1 qjl h=l qh im=l qjm

m{ 1 (2 P'!)}- I: log I: ::1
w=1 (a - 1) iw=1 qiw

- I: I: D,,(Pk1j Qkl)
IEe kE~
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Appendix C

The referencc audio files were obtained by digitally filtering the speech and sampling

it at a rate of 8,000 Hz. The digital filter (255 tap FIR) applied was designed to

be unity between 0 and 3,200 Hz. For the purpose of speech coder evaluation, the

following test sentences [male (M) and female (F) voices] were used.

1. Add the sum to the product of these three (Ml, FI).

2. Cats and dogs each hate the other (M2, F2).

3. Oak is strong and also gives shade (M3, F3).

4. Open the crate but don't break the glass (M4, Fi).

5. The pipe began to rust while new (M5, F5).

6. Thieves who rob friends deserve jail (M6, F6).
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• Appendix D

A beta density function is given as

_ f(d+f+2) d f
b(x) - r(d + l)r(J + l),x (1 - x) . (0.1)

•

In this appendix, we prove that this function satisfieo the iùg-concavity condition,

i.e., the logarithm of the function is concave. Taking logarithm of (D.1), we get,

4>(x) = log r(d + f + 2) - log r(d + 1) - log ru + 1)

+dlog x + f log(l - x). (0.2)

To show the log-concavity nature of (0.1), we need to show that 4>(x) is concave w.r.t.

x. Defining"X == (1 - À), we write

4>(Àx' +"Xx") - À4>(x') - "X4>(x")

- dÀlog(Àx' +"Xx") + fÀlog(l- Àx' - "Xx'') +d"Xlog(Àx' +"Xx'')

+f"Xlog(l - Àx' - "Xx") - dÀ log x' - f Àlog(l - x')

-d"Xlogx" - f"Xlog(l - x")

_ dÀlog ex' ~,"Xx") + fÀlog C-~~ :,"Xx")

dTI (Àx' +"Xx") f"X1 (1- Àx' - "Xx")+ " og " + og 1 "x -x

~ dÀ (1 - Àx' : ÀX") + fÀ (1- 1-~:: h")
( ") ( 1")+d"X 1- ÀX': Àx" + f"X 1-1_À~ ~ Àx"

d _ d (Àx' +"Xx") f _ f ()(1- x') +"X(1 - x"))
- Àx' +Àx" + 1 - Àx' +Àx"

- O. (0.3)

Since it has been shown that 4>(Àx' +"Xx") ~ ÀrjJ(x') - "XrjJ(x"), the beta pdf of (0.1)

is proven to be log-concave.
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• Appendix E

In our work, an auxiliary function F(>', >.') is considered as the basis for the maximum

likelihood optimization procedure. The Baum-Welch (re)estimation procedure is used

for determining different model parameters. Sepitrability of the individual auxiliary

functions has made this procedure elegant and reduced the complexity. Here, we

write the expressions for individual auxiliary functions. We can rewrite (5.25) as

+L: L: Fb(>.,b;m) +L: Fe,(>', {C;m}mEML)' (E.1)
ieN mEML ielJ'

where

F~(>.,1r') = L: L: P(O,Q,1\...iI>')log1r~,
QENTMEMI

•
= L: L: P(O,qt=S;,MI>.)lop;,

;EN MEMI

Fa;(>', {a;J;EN) = L: L: P(O, Q, MI>') L: log a:"o+J(q, - S;)
QENT MEMI 'ET+

(E.2)

- L: L: L: P(O,qt = S;,qt+t = S;,MI>') log a;;, (E.3)
jEN 'E7+ MEMI

Fb(>',b;m) = L: L: P(O,Q,MI>.).L:logb:.m,(O,)b'(qt- S;)t5(mt- m )
QENT MEMI 'E7+

and

L: P(O,q, = S;,mt = ml>')logb:m(O,)
'ET+

Fe;(>',{C;m}mEML) - L: L: P(O,Q,MI>.)L:logc:.m,t5(qt-S;)
QENT MEMI 'E7+

(EA)

•
= L: L: P(O, q, = S;, m, = ml>') log c;m, (E.5)

mEML tE7+

where t5 in the above expressions is the Kronecker delta function.

107



•

•

•

References

[1] R. E. Biahut, Principles and Praetice of Information Theory. Addison-Wesley,

1987.

[2] D. O'Shaughnessy, Speech Communication. Academic Press, 1987.

[3J N. S. Jayant and P. Noll, Digital Coding of Wavef01'ms: P"inciples and Appli­

cations to Speech and Video. Prentice Hall, 1984.

[4J L. Rabiner and R. Schafer, Digital Processing of Speech Signais. Prenticc Hall,
1979.

[5] J. P. Campbell Jr., T. E. Tremain, and V. C. Welch, "The federal standard 1016
4800 hps CELP voice coder," Digital Signal Processing, vol. 1, pp. 145-155, July

1991.

[6] W. B. Kleijn, Analysis-by-Synthesis Speech Coding Based on Relaxed Waveform­

Matching Constraints. PhD thesis, Delft University of Technology, Dcc. 1991.

[7J J.-P. Adoul, P. Mabilleau, M. Delprat, and S. Morissette, "Fast CELP coding

based on algebraic codes," in Proc. IEEE Int. Conf. Acoust., Speech and Signal

Process., pp. 49.4.1-49.4.4, 1987.

[8J A. Gersho and R. M. Gray, Veetor Quantization and Signal COmlJression.

Kluwer Academic Pub., 1992.

[9J K. Abboud, "Wideband CELP speech coding," Master's thesis, McGiIl Univer­

sity, Feb. 1993.

[10J H. J. Coetzee and T. P. Barnwell III, "An LSP based speech quality measure,"

in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., pp. 596-599,

1989.

108



•

•

[11] S. R. Quackenbush, T. P. Barnwell III, and M. A. Clements, Objective Measures

of Speech Quality. Prentice Hall, 1988.

[12] T. P. Barnwell III, "Correlation analysis of subjective and objective measures for

speech quality," in Proc. IEEE Int. Conf Acoust., Speech and Signal Process.,

pp. 706-709, 1980.

[13J R. F. Kubichek, "Standards and technology issues in objective voice quality

assessment," Dig. Signal Process., vol. 1, pp. 38-44, Jan. 1991.

[14] M. H. L. Hecker and C. E. Williams, "Choice of reference conditions for speech

preference tests," J. Acoust. Soc. Am., vol. 40, pp. 946-952, Nov. 1966.

[15J H. Fletcher and J. C. Steinberg, "Articulation testing methods," Bell Syst.

Tech. J., pp. 806-854, 1929.

[16] G. Fairbanks, "Test of phonemic differentiation: The rhyme test," J. Acoust.

Soc. Am., pp. 596-600, July 1958.

[17] W. A. Munson and J. E. Karlin, "Isopreference method for evaluating speech­

transmission circuits," J. Acoust. Soc. Am., vol. 31, pp. 762-774, June 1962.

•

[18]

[19]

[20J

[21J

[22]

"IEEE recommended practice for speech quality measurements," IEEE Trans.

Aud. and Electroacoust., pp. 227-246, Sept. 1969.

W. D. Voiers, "Diagnostic acceptability measure for speech communication sys­

tems," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., pp. 204­
207, 1977.

S. R. Quackenbush, "Objective measures of speech quality," Tech. Rep. DSPL­

85-4. Georgia Institute of Technology, 1985.

M. R. Schroeder, B. S. Atal, and J. L. Hall, "Optimizingdigitai speech coders by

exploiting masking properties of the human ear," J. Acoust. Soc. Am., vol. 66,
pp. 1647-1652, Dec. 1979.

P. Mermelstein, "Evaluation of a segmental SNR measure as an indicator of the

quality of ADPCM coded speech," J. Acoust. Soc. Am., vol. 66, pp. 1664-1667,
Dec. 1979.

109



•

•

•

[23] B. J. McDermott, C. Scagliola, and D. J. Goodman, "Perceptual and objective

evaluation of speech processed by adaptive differential PCM," Bell Sysl. Tech.

J., pp. 1597-1619, May 1978.

[24] R. E. Crochiere, J. E. Tribolet, and L. R. Rabiner, "An interpretation of the

log likelihood ratio as a measure of waveform coder performance," IEEE Tmns.

Acoust., Speech and Signal Process., vol. ASSP-28, pp. 318-323, June 1980.

[25] R. M. Gray, A. Buzo, A. H. Gray Jr., and Y. Matsuyama, "Distortion mea­

sures for speech processing," IEEE Trans. Acoust., Speech and Signal Pl"Ocess.,

vol. ASSP-28, pp. 367-376, Aug. 1980.

[26] U. Halka and U. Heute, "A new approach to objective quality-rneasures based

on attribute-matching," Speech Commun., vol. 11, pp. 15-30, Mar. 1992.

[27] A. H. Gray and J. D. Markel, "Distance measures for speech proccssing," IEEE

Trans. Acoust., Speech and Signal Proccss., vol. ASSP-24, pp. 380-391, Oct.

1976.

[28] N. Kitawaki, H. Nagabuchi, and K. Itoh, "Objective quality eva!lIation for

low-bit-rate speech coding systems," IEEE J. Selcct. A"cas Commun., vol. 6,

pp. 242-248, Feb. 1988.

[29] K. K. Paliwal, "On the performance of the quefrency-weighted cepstral coeffi­

cients in vowel recognition," Speech Commun., vol. 1, pp. 151-154, May 1982.

[30] Y. Tohkura, "A weighted cepstral distance measure for speech recognition,"

IEEE Trans. Acoust., Speech and Signal Process., vol. ASSP-35, pp. 1414-1422,

Oct. 1987.

[31] Y.-T. Lee, "Information·theoretic distortion measllres for speech recognition,"

IEEE Trans. Signal Process., vol. 39, pp. 330-335, Feb. 1991.

[32] F. Itakura and S. Saito, "Analysis synthesis telephony based on the maximum

likelihood method," in Proc. 6th Int. Congo Acoust., Japan, pp. C 17-C 20,

1968.

[33] P. L. Chu and D. G. Messerschmitt, "A frequency weighted Itakura-Saito

spectral distance measure," IEEE Trans. Acoust., Speech and Signal Process.,

vol. ASSP-30, pp. 545-560, Aug. 1982.

110



•

•

[34] B. A. Carlson and M. A. Clements, "A computationally compact divergence

measure for speech processing," IEEE Trans. Pattern Anal. and Machine Intell.,

vol. 13, pp. 1255-1260, Dec. 1991.

[35J Bell Northern Research, "Evaluation of nonlinear distortion via the coherence

function," Contribution to CCITT, COM-XII-no. 60-E, Apr. 1982.

[36] J. Lalou, "The informati,:,n index: An objective measure of speech transmission

performance," Ann. Telecommun., vol. 45, pp. 47-65, Jan. 1990.

[37] S. Wang, A. Sekey, and A. Gersho, "An objective measure for predicting sub­

jective quality of speech coders," IEEE J. Select. Areas Commun., vol. 10,
pp. 819-829, June 1992.

[38] R. Bladon, "Modeling the judgement of vowel quality differences," J. Acoust.

Soc. Am., vol. 69, pp. 1414-1422, May 1981.

[39] D. Robinson and R. Dadson, "A redetermination of the equal-Ioudness relations

for pure tones," Bri!. J. Appl. Physics, vol. 7, pp. 166-181, 1956.

[40] B. Paillard, J. Soumagne, P. Mabilleau, and S. Morissette, "PERCEVAL: Per­

ceptual evaluation of the quality of audio signais," J. Audio Eng. Soc., vol. 40,
pp. 21-31, Jan.-Feb. 1992.

[41] J. Flanagan, Speech Analysis, Synthesis and Perception. Springer-Verlag, 1972.

•

[42]

[43]

[44]

[45]

[46]

[47]

D. Green, An Introduction to Hearing. Erlbaum, 1976.

B. C. J. Moore, Introduction to the Psychology of Hearing. Academie Press,

1989.

R. F. Lyon, "A computational model of filtering, detection, and compression

in the cochlea," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process.,

pp. 1282-1285, 1982.

G. von Békésy, Experiments in Hearing. McGraw-Hill, 1960.

J. B. Allen, "Cochlear modeling," IEEE ASSP Mag., pp. 3-29, Jan. 1985.

J. J. Zwislocki, "Five decades of research on cochlear mechanics," J. Acoust.

Soc. Am., vol. 67, pp. 1679-1685, 1980.

111



•

•

[48] D. T. Kemp, "Towards a model for the origin of cochlear echoes," lleariug Res.,

vol. 2, pp. 533-548, 1980.

[49] M. J. Penner, "Forward masking with equal-energy maskers," J. Acoust. Soc.

Am., vol. 66, pp. 1719-1724, D< 1979.

[50] E. D. Young and P. E. Barta, "Rate responses of auditory nerve fibers to tones

in noise near masked threshold," J. Acoust. Soc. Am., vol. 79, pp. 426-442, Feb.

1986.

[51] A. B. Carlson, Communication Systems. McGraw Hill, 1986.

[52] H. V. Helmholtz, On the Sensations of Toue. Dover Pub., 1954.

[53] C. D. Geisler, "Representation of speech sounds in the auditory nerve," J. of

Phonetics, vol. 16, pp. 19-35, Jan. 1988.

[54] S. Greenberg, "The ear as a speech analyzer," J. of Phonetics, vol. 16, pp. 139­

149, Jan. 1988.

[55] M. B. Sachs, C. C. Blackburn, and E. D. Young, "Rate-place and temporal­

place representations of vowels in the auditory nerve and anteroventral cochlear

nucleus," J. of Phonetics, vol. 16, pp. 37-53, Jan. 1988.

•

[56]

[57]

[58]

[59]

[60]

S. Seneff, "A joint synchronyfmean-rate model of auditory speech processing,"

J. of Phonetics, vol. 16, pp. 55-76, Jan. 1988.

S. A. Shamma, "Speech processing in the auditory system II: Lateral inhibition

and the central processing of speech evoked activity in the auditory nerve," J.

Acoust. Soc. Am., vol. 78, pp. 1622-1632, Nov. 1985.

O. Ghitza, "Temporal non-place information in the auditory-nerve firing pat­

terns as a front-end for speech recognition in a noisy environment," J. of Pho­

netics, vol. 16, pp. 109-123, Jan. 1988.

L. Deng, C. D. Geisler, and S. Greenberg, "A composite model of the auditory

periphery for the processing of speech," J. of phonetics, vol. 16, pp. 93-108,

Jan. 1988.

G. Zweig, R. Lipes, and J. R. Pierce, "The cochlear compromise," J. Acoust.

Soc. Am., vol. 59, pp. 975-982, 1976.

112



•

•

•

[61] M. Slaney, "Lyon's cochlear model," Tech. Rep. 13, Apple Computer Inc., 1988.

[62] J. O. Pickles, An Introduction to the Physiology of Hearing. Academie Press,

1982.

[63] 1. Deng, "Processing of acoustic signais in a cochlear model incorporating lat­

erally coupled suppressive e1ements," Neural Networks, vol. 5, pp. 19-34, 1992.

[64] T. Hall, "Cochlear models: Evid.ence in support of mechanical nonlinearity and

second filters (a review)," Hearing Res., vol. 2, pp. 455-464, 1980.

[65] M. R. Schroeder and J. L. Hall, "Model for mechanical to neural transduction

in the auditory receptor," J. Acoust. Soc. Am., vol. 55, pp. 1055-1060, 1974.

[66] R. F. Lyon and 1. Dyer, "Experiments with a computational model of the

cochlea," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process.,

pp. 37.6.1-37.6.4, 1986.

[67] S. Kullback, Information Theory and Statistics. John Wiley & Sons, 1959.

[68] A. De and P. Kabal, "Cochlear discrimination: An auditory information­

theoretic distortion measure for speech coders," in Proc. 16 th Biennial Symp.

on Commun., Kingston, Canada, pp. 419-423, May 1992.

[69] A. De and P. Kabal, "Auditory distortion measure for coded speech­

discrimination information approach," Speech Commun. (being revised for pub­

lication), 1993.

[70] J. Aczél and Z. Daroczy, On Measures of Information and Their Characteriza­

tions. Academie Press, 1975.

[11] A. Rényi, Probability Theory. North-Holland, 1970.

[72] J. Aczél, "Sorne recent results on characterizations of measures of information

related to coding," IEEE Trans. Inform. Theory, vol. IT-24, pp. 592-595, Sept.

1978.

[73] J. Lin, "Divergence measures based on the Shannon entropy," IEEE Trans.

Inform. Theory, vol. 37, pp. 145-151, Jan. 1991.

113



•

•

[74) C. R. Rao and T. K. Nayak, "Cross entropy, dissimilarity measures, and char­

acterizations of quadratic entropy," IEEE Trans. InJorm. TheOl·Y, vol. IT-31,
pp. 589-593, Sept. 1985.

[75) G. T. Toussaint, "Sharper lower bounds for discrimination information in terms

of variation," IEEE Trans. InJorm. Theory, vol. IT-21, pp. 99-100, Jan. 1975.

[76) R. E. Blahut, "Hypothesis testing and information theory," IEEE Trans. In­

Jorm. Theory, vol. IT-20, pp. 405-417, July 1974.

[77] T. B. Berger, Rate Distortion Theory. Prentice Hall, 1971.

[78] D. J. Sakrison, "The rate distortion function of a Gaussian process with a

weighted square error criterion," IEEE Trans. InJorm. Theory, vol. IT-14,
pp. 506-508, May 1968.

[79] A. Buzo, F. Kuhlmann, and C. Rivera, "Rate-diotortion bounds for quotient­

based distortions with applications to Itakura-Saito distortion measures," IEEE

Trans. InJorm. Theory, vol. IT-32, pp. 141-147, Mar. 1986.

[80) J. T. Pinkston, "An application of rate-distortion theory to a converse to the

coding theorem," IEEE Trans. InJorm. Theory, vol. IT-15, pp. 66-71, Jan. 1969.

[81) R. M. Gray, "Rate distortion functions for finite-state fini te-alphabet Markov

sources," IEEE Trans. InJorm. Theory, vol. IT-17, pp. 127-134, Mar. 1971.

[82] H. H. Tan and K. Yao, "Evaluation of rate-distortion functions for a c1ass of

independent identically distributed sources under an absolu te-magnitude cri te­

rion," IEEE Trans. InJorm. Theory, vol. IT-21, pp. 59-64, Jan. 1975.

[83] R. E. Blahut, "Computation of channel capacity and rate-distortion functions,"

IEEE Trans. InJorm. Theory, vol. IT-18, pp. 460-473, July 1972.

[84] P. Noll, "Adaptive quantizing in speech coding systems," in Zurich Seminar

Dig. Commun., Zurich, Switzerland, Mar. 1974.

[85] D. H. Richards, "Statistical properties of speech signais," Proc. IEEE, vol. 52,

pp. 941-949, 1964.

•
[86] H. Abut and N. Erdôl, "Bounds on R1(D) functions for speech probability

models," IEEE Trans. InJorm. Theory, vol. IT-25, pp. 225-228, Mar. 1979.

114



•

•

•

[87] A. De and P. Kabal, "Rate distortion function for speech coding based on

perceptual distortion measure," in Proc. of IEEE Globecom '92, pp. 452-456,
Dec. 1992.

[88] B. S. Atal, V. Cuperman, and A. Gersho, Advances in Speech Coding. Kluwer

Academie Pub., 1991.

[89] G. Roy and P. Kabal, "Wideband CELP speech coding at 16 kbits/sec," in
Proc. IEEE Int. Conf. Acoust., Speech and Signal Process., pp. 17-20, 1991.

[90] A. De and P. Kabal, "Hidden Markov model-based auditory distortion measure

for speech coder evaluation," in Abstracts of Canadian Inst. Telecommun. Res.

Conf., Montréal, Canada (ta appear), Aug. 1993.

[91] A. De and P. Kabal, "Auditory distortion measure for coded speech-hidden
Markovian approach," Speech Commun. (being prepared for submission), 1993.

[92] 1. E. Baum and T. Petrie, "Statistical inference for probabilistic functions of

finite state Markov chains," Ann. Math. Stat., vol. 37, pp. 1554-1563, 1966.

[93] 1. E. Baum and J. A. Egon, "An inequality with applications to statistical

estimation for probabilistic functions of a Markov process and to a model for

ecology," Bull. Amer. Meteorol. Soc., vol. 73, pp. 360-363, 1967.

[94] R. L. Cave and 1. P. Neuwirth, "Hidden Markov models for english," Hidden

Markov models for Speech (J. Ferguson red.]), vol. IDA-CRD, pp. 16-56, 1980.

[95] R. W. Chang and J. C. Hancock, "On receiver structures for channels having

memory," IEEE Trans. Inform. Theory, vol. IT-12, pp. 463-468, Oct. 1966.

[96] F. Jelinek, "Continuous speech recognition by statistical methods," Proc. IEEE,

vol. 64, pp. 532-536, Apr. 1976.

[97] L. A. Liporace, "Maximum likelihood estimation for multivariate observations

of Markov sources," IEEE Trans. Inform. Theory, vol. IT-28, pp. 729-734, Sept.

1984.

[98] B.-H. Juang, "Maximum-likelihood estimation for mixture multivariate

stochatic observations of Markov chains," Bell Syst. Tech. J., pp. 1235-1249,
July-Aug. 1985.

115



•

•

[99] L. E. Baum, "An inequality and associated maximization technique in statistical

estimation for probabilistic functions of Markov processes," Inequalities, vol. 3,
pp. 1-8, 1972.

[100] B.-H. Juang, "On the hidden Markov mode! and dynamic time warping for
speech recognition," Bell Syst. Tech. J., pp. 1213-1243, Sept. 1984.

[101] S. E. Levinson, L. R. Rabiner, and M. M. Sondhi, "An introduction to the appli­
cation of the theory of probabilistic functions of a Markov process to alltomatic

speech recognition," Bell Syst. Tech. J., pp. 1035-1074, Apr. 1983.

[102] L. R. Ra.biner, B.-H. Juang, S. E. Levinson, and M. M. Sondhi, "Sorne proper­
ties of continuous hidden Markov mode! representations," Bell Syst. Tech. J.,
pp. 1251-1269, July-Aug. 1985.

[103J W. Hess, Pitch Determination of Speech Signais: Atgorithms and Deviees.

Springer-Verlag, 1983.

[104] M. Slaney and R. F. Lyon, "Visualizing sound with allditory corre!ograms," in

submission for J. Acoust. Soc. Am., 1991.

[105] R. F. Lyon, "Computational models of neural auditory processing," in Proc.

IEEE Int. Conf. Acoust' J Speech and Signal Process., pp. 36.1.1-36.1.4, 1984.

[106] M. Weintraub, "A computational model for separating two simultaneous talk­

ers," in Proc. IEEE Int. Conf. Acoust' J Speech and Signal Process., 1986.

[107] S. Seneff, "Pitch and spectral estimation of speech based on auditory syn­

chrony model," in Proc. IEEE Int. Conf. Acoust'J Speech and Signlll Process.,

pp. 36.2.1-36.2.4, 1984.

•

[108]

[109]

[110]

P. Kabal and R. P. Ramachandran, "The computation of line spectral frequen­

cies using Chebyshev polynomials," IEEE Trans. Acoust. Speech and Signal

Process., vol. ASSP-34, pp. 1419-1426, 1986.

Y. Linde, A. Buzo, and R. M. Gray, "An algorithm for vector quantizer design,"

IEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan. 1980.

J. L. Moncet and P. Kabal, "Codeword selection for CELP coder~," Tech. Rep.

87-35, INRS-Telecommunications, 1987.

116



•

•

•

[111] Q. Yasheng and P. Kabal, "Pseudo-three-tap pitch prediction filters," in Proc.

IEEE Int. Conf. Acoust., Speech and Signal Process., pp. II.523-II.526, 1993.

[112] R. E. Crochiere and 1. R. Rabiner, Multirate Digital Signal Processing. Prentice

Hall, 1983.

[113] N. S. Jayant and V. Ramamoorthy, "Adaptive postfiltering of 16 kb/s­

adpcm speech," in Proc. IEEE Int. Conf. Acoust., Speech and Signal Process.,

pp. 16.4.1-16.4.4, 1986.

[114] C. Laflamme, J.-P. Adoul, R. Salami, S. Morissette, and P. Mabilleau, "16 kbps

wideband speech coding technique based on algebraic CELP," in Proc. IEEE

Int. Conf. Acoust., Speech and Signal Process., pp. 13-16, 1991.

[115] E. Ordentlich and Y. Shoham, "Low-delay code-excited linear-predictive coding

of wideband speech at 32 kbps," in Proc. IEEE Int. Conf. Acoust., Speech and

Signal Process., pp. 9-12, 1991.

[116] A. De, "Auditory distortion measures for coded speech quality evaluation," in

Proc. Canadian Acoust. Assoc. Annual Symp., Toronto, Canada (to appear) ,

Oct. 1993.

[117] J. M. Kates, "A time-domain digital cochlear model," IEEE Trans. Signal Pro­

cess., vol. 39, pp. 2573-2592, Dec. 1991.

[118] T. Kohonen, Self-Organization and Associative Memory. Springer Verlag, 1988.

[119] R. F. Lyon and C. Mead, "An analog electronic cochlea," IEEE Trans. Acoust.

Speech and Signal Process., vol. 36, pp. 1119-1134, July 1988.

[120] "Half-rate speech codee test plan V 6.0," Tech. Rep. TR 45.35, Telecommun.

Industries Assoc., 1993.

[121] R. D. Patterson, "Auditory/connectionist techniques for speech," Tech. Rep. 2,

ESPRIT Basic Research Action 3207, 1991.

[122] O. Ghitza, "Auditory nerve representation criteria for speech analy­

sis/synthesis," IEEE Trans. Acoust., Speech and Signal Process., vol. ASSP-35,

pp. 736-740, June 1987.

117



•

•

•

[123J X. Yang, K. Wang, and S. A. Shamma, "Auditory representation of acoustic

signais," IEEE Trans. Inform. Theory, vol. 38 (II), pp. 824-839, Mar. 1992.

[124) Y. Shoham, "High quality speech coding at 2.4 to 4.0 kbps based on time­

frequency interpolation," in Pme. IEEE Int. Conf. Acollst., Speech and Signal

Process., pp. II.167-II.170, 1993.

[125) D. Sen, D. H. Irving, and W. H. Holmes, "Use of an audltoiY t'lOdel to improve
speech cod, .os," in Pmc. IEEE Int. Conf. Acoust., Speech and Signal Pl"Ocess.,

pp. II.411-11.414, 1993.

118




