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Abstract

One of the important research problems in the area of speech coding is to deter-
mine the sound quality of coded speech signals. This quality can best be evaluated
by a subjective assessment which is often difficuit to administer and time-consuming.
An objective measure which is consistent with subjective assessment could play a
vital role in the evaluation as well as in the design of a low bit-rate speech coder. In
this dissertation, we introduce two distortion measures for spcech coder evaluation.
Since the perceptual abilities of a human being determine the precision with which
speech data must be processed, we consider the details ¢f cochlear (inner ear) and
other auditory processing. Using Lyon’s auditory model, the time-domain speech
signal is mapped onto a perceptual-domain (PD). Any speech uiterance is commu-
nicated to the brain through a series of all-or-none electrical spikes (firings) and the
PD representation provides information pertaining to the probability-of-firings in the
neural channels. Our first measure, namely the cochlear discrimination information
(CDI), evaluates the cross-entropy of the neural firings for the coded speech with
respect to those for the original one. With this measure, we also compute the rate-
distortion function determining the lowest bit-rate required for a specified amount
of distortion. In the second measure, namely the cochlear hidden Markovian (CHM)
measure, we attempt to capture the high-level processing in the brain with simple hid-
den Markov models (HMMs). We characterize the firing events by HMMs where the
order of occurrence of PD observations and correlations among adjacent observationg
are modeled suitably. For computing the coder distortion, the PD observations of the
coded speech are matched against the HMMs derived from the PD observations of the
original speech. Experimental results show that these measures conform to subjective
evaluation results in majority of the cases. Finally, the introduced measures are also
applied in speech coder analysis, e.g., in the pitch frequency determination and the
evaluation of noise weighting schemes.



Sommaire

I’un des problemes de recherche importants dans le domaine du codage de la
parole cst de déterminer la qualité de son des signaux de parole codés. Cette qualité
est évaluée 4 son meillcur par un jugement subjectif, ce qui est souvent difficile a
organiser et assez long. Une mesure objective consistente avec I’évaluation subjective
pourrait jouer un réle vital dans la conception de codeurs de parole a bas taux de
bits ainsi que dans le jugement quailitatif de la parole. Nous introduisons dans cette
dissertation deux mesures de distortion pour I’évaluation de performance de codeurs
de parole. Etant donné que la précision avec laquelle les données de parole devraient
étre traitées est déterminée par les capacités perceptuelles de ’étre hurnain, nous
considérons les détails du traitement de signaux par la cochlea (intérieur de l'oreille),
ainsi que d’autres traitements par le systeme autitif. En utilisant le modéle auditif
de Lyon, le parole dans le domaine temporel est transformée dans le domaine per-
ceptuel (PD). Chaque phrase parlée est communiquée au cerveau i travers une série
d’impulsions électriques sur une base de tout ou rien, et la représentation PD offre des
informations pertinent a la probabilité d’envoi des impulsions dans les canaux neu-
ronaux. Notre premiére mesure, plus exactement la discrimination de 'information
par la cochlea (CDI), évalue ’entropie croisée des impulsions envoyées pour la pa-
role codée avec ceux de la parole originale. Avec cette mesure, nous calculons aussi
une fonction taux-distortion pour déterminer le plus bas taux de bits requis pour
un niveau de distortion donné. Dans la seconde mesure de distortion, la Markovi-
enne cachée de la cochlea (CHM), nous essayons de capturer le traitement de haut
niveau dans le cerveau a travers de simples modeles de Markov cachés (HMM). Nous
caractérisons les événements d’envoi d’impulsions par des HMM ou l'ordre de lieu
d’observations PD et la correlation entre observations adjacentes sont proprement
représentés. Pour calculer la distortion du codeur, les observations PD de la parole
codée sont comparées aux HMMs dérivés des observations PD de la parole d’origine.
Les résultats expérimenta=x démontrent que ces mesures sont conforme & 1’évaluation
subjective dans la majorité des cas. Finalement, les mesures introduites sont ap-
pliqués & I'analyse dans le codage de la parole, par exemple, pour la détermination
de la fréquence fondamentale et ’évaluation de modeéles de pondération bruités.
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Chapter 1

Introduction

In a typical source coding problem, a continuous-time continuous-amplitude bandlim-
ited signal is sampled in the time domain at or above the minimum sampling rate
required. This time-discretized signal with amplitude having continuous probability
density function has an infinite eniropy. To transmit the output of such a source
and recover it exactly, a communication channel of infinite capacity is required. In
practice, every channel, due to perturbation by noise, has a finite capacity. Thus, it
is not possible to transmit the output of a continuous source over any channel and
recover it exactly [1]. Accepting the fact that there will inevitably be some distor-
tion, a typical source coder minimizes it by removing deliberately some information
which is deemed ‘not very important’ to the destination. The extent Lo which the
information should be removed depends on the bit-rate of the coder; the lower the
bit-rate, the more information is needed to be removed.

In speech communication, the ultimate recipient of information is a human
being and hence his/her perceptual abilities govern the precision with which speech
data must be processed and transmitted. Thus, to reduce the amount of distortion,
the speech data can be modified by an intentional removal of some information in
accordance with the limitations of the auditory system. Determining ‘what is not
very important’ to the auditory system and ‘how the auditory system assesses’ the
relative importance of information is the primary task involved in devising a distortion
measure for speech coders.

The sound quality of a given speech coder can best be evaluated by listening to



it. However, an extensive subjective testing of speech coders is difficult to administer
and also time-consuming. Often, it is found to give inconsistent result due to the
inherent non-repeatability of human responses. Moreover, it does not provide much
insight into the factors which may lead to an improvement of the speech coding
system. It is obvious that an objective quality measure, if suitably defined, could
play an important role in the evaluation as well as in the design of low bit-rate speech
coders. One important advantage of an objective quality measure is that its repeated
application at different time under different environment gives the same performance.

Defining an apptopriate objective quality measure for coded/distorted speech
has thus become one of the pressing tasks to maintain a ‘good’ speech quality with low
bit-rate coding or to assess the perceptual quality of any speech coder. We provide
a brief overview of speech coding techniques in Section 1.1. The utility of having
a ‘good’ objective measure is discussed in Section 1.2 and the motivation for our
research js explained in Section 1.3. We present an outline of the thesis in Section 1.4
and state our contribution to original knowledge in Section 1.5.

1.1 Brief Overview of Speech Coding Techniques

The primary objective in speech coding research is to determine strategies for gen-
erating synthesized signals with as high quality as possible and at the same time
adhering to other constraints such as bit-rate and coding delay. Many coding tech-
niques exist for rates starting from 64 kilobits per sec (kbps) all the way down to
2.4 kbps (or even lower). Speech coding algorithms vary from the high-rate/low-
complexity waveform coders to the medium- to low-rate/high-complexity vocoders or
hybrid coders [2]. Their variations are primarily in the following four aspects: (i)
selection of information (features) to be encoded, (ii} representation of features by
appropriate parameters for encoding, (iii) quantization technique adopted for param-
eter discretization and (iv) distortion measures applied for estimating quantization
loss.

Waveform coders analyze, code and reconstruct speech on a sample-by-sample
basis. Time-domain waveform coders exploit waveform redundancies, e.g., the peri-
odicity and slowly varying intensity while the spectral-domain waveform coders take
advantage of the nonuniform distribution of speech information across different fre-



quencies [3]. On the other hand, source coders or vocoders utilize speech-specific
model. They generally identify certain aspects of the speech spectrum as being im-
portant to model and generate speech with good reproduction of these aspects [4]. In
speech production, the source may be either periodic generating a voiced speech or
noisy and aperiodic resulting in an unvoiced speech. The fundamental frequency of
the vocal cord vibration, in the utterance of a voiced speech, is termed as the piich
frequency. The resonances, termed as the formants, occur due to the poles of the
vocal tract frequency response while the spectral nulls (anti-resonances) occur duc to
its zeros. Currently, the code-excited linear prediction (CELP) algorithm is the most
widely used speech coding method and a typical low or medium bit-rate such coder
encodes the formant, pitch and residual information separately [5)]. |

An all-pole linear prediction filter synthesizes formant information and the filter
parameters are determined by autocorrelation or covariance method. These param-
eters may be encoded directly or may be expressed in other forms such as reflection
coefficients, area ratio parameters, line spectral frequency parameters etc. and then
coded. They differ from each other from the perspectives of computational efficiency,
quantization sensitivity etc. [2]. A pitch prediction filter is generally characterized by
the pitch gain and lag value parameters. Depending on the bits available, the number
of pitch predictor taps and the codebook size for the pilch parameters are decided [6].
For sending information about the residual signal, a random excitation codebook or
often a structured algebraic codebook is used [7] and an appropriate codebook entry
is selected from it.

While designing a speech coder, once the parameters pertaining to different
features are appropriately selected, they are quantized. The quantization may be
scalar, vector (single- or multi-stage) and scalar-vector. For example, U.S. federal
standard 4.8 kbps CELP coder [5] has formant filter with scalar quantization of line
spectral frequency parameters. However, vector quantization provides a substantial
bit reduction for the same speech quality at the expense of higher memory and com-
putational complexity. Different variations and hybrid forms of scalar and vector
quantizations are used for different coder rates [8]. Similarly, the pitch prediction
parameters can also be quantized in various ways [9]. The residual signals are usually
vector-quantized and stored in a stochastic codebook [5].

In an analysis-by-synthesis type speech coder, the selection of appropriate in-
dices for different codebook entries requires minimizing a distortion criterion. It is



possible to define different types of distortion measures for different features. How-
ever, selecting a codeword with respect to a global distortion measure could yield
better results as such a selection could even take care of interactions among the fea-
tures. The overall perceptual quality of a given speech coder could be evaluated
subjectively or by a properly defined objective measure. In this research, we have
primarily concentrated on the formulation of distortion measures using an auditory
model in the front-end. We have not attempted to use the measure in the coding
process, but only in the evaluation of speech coder performances.

1.2 Utility of Objective Measure

In this section, we explain the utility of deriving an objective quality measure. Ob-
taining a suitable distortion measure could offer several advantages such as (a)} its
use in evaluating speech coder performances, {(b) its application in a rate-distortion
analysis which could indicate the lowest possible bit-rate required for a particular
speech quality and (c) its use in the design procedure of speech coders.

1.2.1 Ewvaluation of Coder Performance

Speech coders of several standardized data rates are designed to ‘match’ to the capac-
ities of different communication channels. These encoders vary from each other from
the view point of the coder architecture, the type of features encoded, the number of
bits allocated to the features and so on. A wide variety of encoding algorithms intro-
duces a broad range of linear and nonlinear coder distortions. All of these distortions
are not equally perceived by the auditory system. As a consequence, if we can devise
a distortion measure incorporating the human perception procedure, then that can
appropriately be used to evaluate the performances of different speech coders.

1.2.2 Rate-Distortion Analysis

The need for a strong mathematical foundation for the field of data compression has
resulted in the development of rate-distortion theory. The performance achieved by
various data compression systems can be compared with absolute bounds derived from



rate-distortion theory. With a particular source and a defined distortion measure, it is
possible to draw a rate-distortion curve which determines the lowest possible rate for
allowing a particular amount of coder distortion. However, if the distortion measure
is not properly defined, this limit may not portray the real picture. Defining an
appropriate distortion measure would facilitate the determination of the coder rate
limit for attaining a particular speech quality.

1.2.3 Design of Speech Coders

A distortion measure can help the design procedure of speech coders in three ways:

(1) In an analysis-by-synthesis type speech coder, from a stochastic codebook,
all innovation sequence entries (in the case of an ‘optimal’ coder) or selectlively chosen
entries (in the case of a ‘suboptimal’ coder) are used along with the formant and pitch
synthesis filters to generate several coded speech signals. Finally, the index of that
codebook entry is transmitted which results in the minimum distortion as measured
by the defined fidelity criterion. The distortion measure can thus be instrumental in
selecting an ‘appropriate’ codebook entry.

(2) With a limited number of bits available per second, a strategic allocation
of bits to different feature parameters becomes very important. The bit allocation
strategy adopted for an 8 kbps coder can neither be scaled down directly for a 4 kbps
coder nor be scaled up for a 16 kbps coder. The relative importance of the information
to be transmitted plays a significant role. In the design phase, the defined distortion
measure can be used for improving the bit allocation policy of a particular speech

coder, be it a waveform coder, an analysis-by-synthesis coder or a vocoder,

(3) While designing a speech coder, an appropriate distortion measure not only
helps in making a sound bit allocation policy, but also in ‘populating’ (also called
‘training’) the codebook. In the training phase, determining the centroid for each class
with the defined distortion measure results in the design of an ‘optimum’ (at lcast in
the local sense) codebook. If the distortion measure properly reflects the perceptual
importance of information, then a fixed size codebook designed in this way will also
be filled up with the entries which contain perceptually important information.



1.3 Motivation for Our Research

Over the last two decades, several objective measures have been suggested in the
Iiterature (references are in Chapter 2). It is a well-known fact that the time-domain
objective measures such as the signal-to-noise ratio and the segmental signal-to-noise
ratio do not perform well in the assessment or in the design of a low or madium bit-rate
speech coder. Spectral measures, e.g., the log likelihood ratio measure, the log area
ratio measure, the log spectral distortion measure and the Itakura-Saito measure,
exhibit a better performance. However, most of these measures are based on the
paramelers of linear prediction filter modeling the formant structure and thus do
not adequately feature the perceptual phenomena. Only about 80% of the perceived
degradation in speech quality can be explained by the distortions of the spectral peaks
or speech formants [10]. Therefore, it is important for a ‘good’ quality measure to
consider distortion not only in the formant information, but also in the pitch and the
residual information.

A few psychoacoustically-motivated measures such as the information index and
the Bark spectral distortion measure has also becn studied. In the recent literature,
several auditory models have been proposed and investigated (references are in Chap-
ter 3). Some of these models emulate the psychoacoustic observations fairly well, at
least at the level of auditory periphery. Thus, an application of one such auditory
model in the formulation of a distortion measure could result in good performance.
This may, to some extent, increase the complexity of computing the measure value.
Nevertheless, we believe that the measure could be used widely in practice as the com-
putational burden is eased with further progress in the signal processing technique and
the VLSI technology. Keeping this view in mind, we have conducted research on the
topic of Auditory Distortion Measures for Speech Coder Evaluation. We emphasize

accuracy over computational considerations in the evaluation of speech coders.

1.4 OQutline of the Thesis

The format of the dissertation is as follows. Chapter 2 reviews the existing time-
domain, spectral-domain as well as perceptually-motivated distortion measures. Chap-
ter 3 discusses psychoacoustic observations relevant to speech perception, describes



Lyon’s auditory (cochlear) model and defines a perceptual-domain. Chapter 4 pro-
poses a cochlear discrimination information measure which compares the set of percep-
tual-domain parameters for the original and the coded speech signals. With this mea-
sure, performance of several speech coders is evaluated objectively and also a rate-
distortion-theoretic analysis is pursued. Chapter 5 puis forward another distortion
measure methodology which uses hidden Markov models. This measure is computa-
tionally more intensive, but captures the basics of high-level processing in addition
to the signal processing at the auditory periphery. Chapter 6 outlines some other
applications of the measures, for example, in the pitch extraction or in the evaluation
of perceptual weighting schemes usually iﬁé:orporated in a speech coder. Chapter 7

concludes this dissertation with relevant remarks and future research directions.

1.5 Our Contribution

In this thesis, we consider an auditory model and suggest two distinct approaches for
devising distortion measures for coded speech. The fundamental diflerence between
our approaches and the existing perceplually-motivated measures is in addressing the
issue of the ‘cause’ rather than that of the ‘effect’ involved in speech perception. In
other words, instead of merely considering the important perceptual eflects observed,

we emulate the auditory system as it is and use it in the formulation of our distortion
measure.

Our primary contribution is in the processing of neural information obtained
at the output of Lyon’s auditory model. As explained in the dissertation, in reality,
a series of electrical spikes (firings) is transmitted from the auditory periphery to
the brain through the neural pathways. Here, we treat the neural pathways to be
communication channels with an input alphabet of size two, i.e., firing and non-firing.
Our first distortion measure deals with the neural firing probabilities and evaluates
the neural firing cross-entropy of the coded speech with respect to that of the original
one. With this measure, we compute the rate-distortion function for speech coder
determining the lowest bit-rate required for a given amount of distorlion. Speech
coders with rates ranging from 4.8 kbps to 32 kbps are studied from the viewpoint of
their performance with respect to the rate-distortion limits. In the second measure,
a two-state (one each for firing and non-firing events) fully-connected hidden Markov
model (HMM) is associated with each of the neural channels and various model
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parameters are derived with the pertinent peural firing information of the original
sig'hal. For computing the coder distortion, the neural firing observations from the
coded speech are matched against the derived HMMs. We believe that the second
measure is more powerful as it utilizes the contextual information present in the neural
firing pattern. Experimental results show that these measures conform to subjective
evaluation results in majority of the cases. The introduced measures are also applied
in speech coder analysis, e.g., in the pitch frequency determination and the evaluation
of noise weighting schemes vsually incorporated in a low bit-rate coder.
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Chapter 2

Distortion Measures for Speech
Coding |

2.1 Introduction

A distortion measure for speech quality is a measure which can be computed directly
from an original speech waveform and its coded/distorted version; and which conforms
to the results of a subjective measure of speech quality [11]. Regression analysis
establishes a quantitative relationship between an objective quality measure and a
subjective evaluation method. A correlation coefficient (p), defined as [12] |

= Tk(Sk — )0k = 0)
[Tu(8: =397 [Zu(0, - 0] "

is often used as a figure-of-merit to measure the degree of correlation between a stan-

(2.1)

dard subjective measure and an objective measure, In (2.1), S; and Oy, respectively,
are the subjective and objective measure values for the k-th speech utterance in a
particular database; and S and O are the corresponding average test scores, aver-
aged over all the utterances of the database. One major disadvantage of applying
the regression analysis technique is the necessity of knowing the form of the regres-
sion equation a priori. An alternative method [13] uses Bayesian estimation and a
nonlinear relationship is automatically determined during the training.

Several subjective as well as objective measures have been proposed in the litera-

ture, For many such subjective and objective measure pairs, the degrees of correlation
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have also been determined. In Section 2.2, some of the standard subjective evalua-
tion procedures are outlined. We lescribe a major class of time-domain distortion
measures in Section 2.3 and a few spectral distortion measures in Section 2.4. Some

of the perceptually-motivated distortion measures are discussed in Section 2.5.

2.2 Subjective Quality Measures

Subjective quality measures can be classified into two primary categories [14]: util-
itarian and analylic. The utilitarian quality measures are found to be reliable and
reasonably efficient in the test administration. These measures are based on a unidi-
mensional'sca.]e and the result is provided by a single number so that the coded speech
qualities can be directly compared. On the other hand, the analytic measures typi-
cally use more than one dimension for assessing the speech quality and are directed
towards characterizing the underlying psychological components that determine the
perceived quality. With either of the classes, an extensive listener training procedure
is needed to ensure the reliability of these tests under different test environments.

2.2.1 Utilitarian Tests

Subjective measures very often address the speech intelligibility and the articulation
aspects separately. The intelligibility tests are scored by the percentage of correct
understanding of the meaning conveyed by the transmitted speech while the articula-
tion tests are evaluated by the percentage of correct recognition of the sounds, words
or sentences. Fletcher and Steinberg [15] have constructed, for their articulation test,
random lists of nonsense monosyllables (nullifying the associated semantic memory)
in the form of consonant-vowel-consonant (C-V-C). Later, Fairbanks [16] has modified
this test by specifying the trailing vowel-consonants to the listeners and asking them
to choose the leading consonant based on his/her interpretation of the test speech.
Many refined versions of such rhyme tests have subsequently been suggested where
the listener responses are restricted in different manners (e.g., the choice being limited
to a finite set of rhyming words).

These tests are found to be appropriate for speech coding systems that generate
moderately to severely distorted speech [11]. However, for highly intelligible systems,

10



other perceivable attributes (e.g., pleasantness, naturalness) become important. In
an isopreference evaluation procedure [17), test speech signals each having a differ-
ent speech level and contaminated with different levels of additive noise are passed
through the test transmission system. Test results are usually reported as ‘isoprefer-
ence contours’ in the twn-dimensional parameter space of speech level vs. noise level.
Listeners usually judge the test. speech in terms of a reference speech; hence, they are
often compelled to consider a smaller perceptual descriptor space than that might be
desired. The most widely used utilitarian type subjective evaluation method is the
mean opinion score (MOS) [18] ir which the listeners rate the speech distortion under
test on a five-point absolute scale (Rate 5: imperceptible; Rate 4: just perceptible,
but not a.nnoying; Rate 3: perceptible and slightly annoying; Rate 2: annoying, but
not objectionable; Rate 1: very annoying and objectionable). Since the listeners have
freedom to interpret the scale ‘ratings’ in their own way, the MOS score provides an

agglomerative measure value for different types of coder distortions.

2.2.2 Analytic Tests

An alternative subjective evaluation approach is to rate the test speech on a mul-
tidimensional scale. One such popular multidimensional measure is the diegnostic
acceptability measure (DAM) [19]. The DAM evaluates a speech signal on sixteen
separate scales (covering the signal quality, the background quality and the overall
quality), all of which have a range from 0 to 100 points. In a mullidimensional percep-
tual space, the distorted speech signals are represented as points so that the relation-
ship between an individual preference and an acoustic distortion can be studied [20].
Signal degradations such as jluttering (amplitude-modulated speech), thin (high-pass
speech), rasping (peak-clipped speech), inlerrupted (packetized speech with ‘glitches’),
nasal; background noise such as hissing (noise-masked speech), buzzing (tandemmed
digital systein), babbling (narrowband system with errors), rumbling (low-frequency
noise-masked speech); and overall qualities such as inlelligibilily, pleusantness, ac-
ceptability are considered in the DAM test [11]. This measure attempts to minimize
the errors involved in the measurement process as well as that associated with the
human variability.
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2.3 Time-Domain Objective Measures

The most popular class of the time-domain measures is the signal-to-noise ratio (SNR)
with its varied forms (e.g., the segmental SNR, the granular segmental SNR).

2.3.1 Signal-to-Noise Ratio

The signal-to-noise ratio (SNR), for measuring the coded speech quality, is defined as
Tnz’n]
zn(y[n] - x[n])z

where z[n] and y[n] are the n-th original and coded speech samples, respectively.
Numerous studies {11] have exhibited that the SNR. measure does not correlate well

SNR = 10log,, dB, (2.2)

with subjective eveluation results. In practice, any phase distortion with a delay
variation limited to a few milliseconds has such a small effect on the signal quality that
it can be disregarded in the context of most synthetic speech quality [21]. However,
the SNR measure degrades drastically with any time misalignment of {z[n]} and
{y[n]}. The correlation coefficient (with the MOS score) for the SNR. measure has
been found to be 0.24 correlated only across the waveform-coder distortions [11] where
it is expected to perform relatively well.

2.3.2 Segmental SNR

A major drawback of the SNR measure is that it treats the entire speech utterance
as a single vector thereby presuming an unrealistic idea of a single comparison made
by the listener after listening to the entire utterance. A better measure, usually
referred to as the segmental SNR (SNR,g), is an average measure of the SNR values
in dB. The averaging is done over the M speech ‘segments’ present in an utterance,
each segment being of the order of 16 ms long (i.e., N =128 samples with 8,000 Hz
sampling rate). Mathematically, this measure can be written as [22]

N

1 M=3 > #¥n + Nm]
SNRus = 77 Y logpq dB. (2.3)
e Y- (yln + Nm] — z[n + Nm)])?

n=1
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The correlation coefficient associated with this measure has been determined to be
0.77 across a wide range of waveform coder distortions [11]. Though SNR,.; provides
better accuracy than the SNR measure, it also can not be considered as a reliable
measure for the speech quality. In segments where an original speech has almost
no signal components, a little noise could give rise to a large negative SNR for that
segment which in turn causes a considerable bias in the overall measure of SNR,,.
A threshold-adjusted or frequency-weighted SNR,., measure could be used which
alleviates this problem to a great extent [11]. Another variation of the SNR,cg measure
is the granular SNR,,; which has been found to be appropriate only for the evaluation
of delta modulation or differential waveform coders [23].

2.4 Spectral Objective Measures

Several spectral distortion measures have been proposed in the literature including the
log likelihood ratio measure, the log area ratio measure, the line spectral frequency-
based measure, the log spectral distortion measure, the cepstral distance, the Itakura-
Saito measure and the coherence function. These distortion measures arc genecrally
computed using speech segments typically between 15 and 30 ms long. They are
much more reliable than the SNR measure and are less sensitive to the occurrence of
time misalignments between the original and the coded speech [11].

2.4.1 Log Likelihood Ratio

The log likelihood ratio (LLR) distance for a speech segment is defined based on the
assumption that samples of a speech can be represented by a p-th order all-pole linear
predictive coding (LPC) model of the form

p
z[r] = Y amzln — m] + Gzuln), (2.4)
m=1
where z{n] is the n-th speech sample, ¢, (for m = 1,2,---,p) are the coefficients

of an all-pole filter 1/A.(z) which models the resonances of the speech production

mechanism, G is the gain of the filter and u[n] is an appropriate excitation source
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for the filter. The LLK measure then can be defined as [24]

a,R,al
LLR =1o {—’] , 2.5
where a. is the LPC coefficient vector {1, —af, —a$, - -, —af] for the original speech
{z[n]} and a, is the LPC coefficient vector 1, —a{, —a3, -+, —a¥] for the coded speech

{y[n]}. R,, the correlation matrix of {y[n]}, has elements as

N—fi—|
ry(i'lj) = Z y[n]y[n'{' Ii_jl]s for i1j= 01 ]-a"'ap! (26)
n=1
where N is the number of samples used in the analysis. The denominator in (2.5) mea-
sures the prediction residual energy when {y{n]} is filtered with its all-zero analysis
filler Ay(z), whereas the numerator measures the same when {y[r]} is passed through
the filter A.(z). A correlation coefficient of 0.59 is achieved with this measure [11].

2.4.2 Log Area Ratio Measure

The reflection coefficients {kn }, another representation of the LPC coefficients {an},
are spectrally less-sensitive to quantization than their counterparts. However, the
reflection coefficients can be sensitive to quantization errors when their magnitudes are
near unity (i.e., they represent narrow-bandwidth poles). To reduce the sensitivity, a
suitable nonlinear transformation expanding the region near |k,,| = 1 can be followed
based on which a log area ratio (LAR) distortion measure is defined as [11]

P 1— knm 1-k\1?
LAR= )" [log (1+km) —log(1+k:n)] , (2.7)

m=]1

where p is the number of predictor coefficients and ki, k,, (form = 1,2,---,p) are the
reflection coefficients corresponding to the original and the coded signals, respectively.
A correlation coeflicient 7 the order of 0.62 is attained with this measure [11].

2.4.3 Line Spectral Frequency-based Measure

The line spectral frequency (LSF) coefficients are derived by mapping the p-zeros
of an all-zero analysis LPC filter A(z) onto the unit circle through two orthogonal
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polynomials P(z} and Q(z) of (p + 1)-st order as [2]

P(z) = A(2)+z"PHA(zY (2.8)
Q(2) = A(2) -z~ A(Y), (2.9)

The resulting polynomials, P(z) and Q(z), have their roots in conjugate pairs. A
multiobjective functional measure is formulated by using the LSF transformation in
determining the spectral peak locations and the spectral peak bandwidths for the
original and the distorted speech frames. This measure compares six parameters
which are (a) 2 shift in peak location, (b) a change in peak bandwidth, (c) a change
in peak energy, (d) differences in inter-frame peak movement, (e) lost peaks and (f)
distortion-induced extra peaks. This measure has exhibited a correlation coeflicient

of 0.78 [10].

2.4.4 Log Spectral Distortion Measure

The notions of one-step prediction error and spectral factorization arc two important
properties using which an L, norm-based log spectral distortion (LSD) measure is
defined between two log spectral densities as [25]

LSD = {/w |V(w)]"d“’}w, (2.10)

- or
where o o
= —_—| - —_— 2.11

V(w) = log [IAz(e’”)IQ] log hAy(ch)lzl (2.11)
with G, and G, as the LPC gain coefficients; and A(e/) and A,(¢*) as the LPC
model polynomials corresponding to the original and the coded speech signals, re-
spectively. The most common choices in (2.10) for p are 1, 2 and oo giving risc to the
mean absolute, the root mean square and the maximum deviation, respectively. A

computational form of frequency-weighted log spectral distortion (FWLSD) measure
is often given as

M 1/p
| X (v}|7|20log X(v)/ Y (v)|?
FWLSD = { &L

- , (2.12)
Z_:l | X ()]
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where M is an integer corresponding to M-point discrete Fourier transform (DFT),
v is the discrete frequency variable; and X(v) and Y(v) are the LPC spectra of
{z[n]} and {y[r]}, respectively. With p = 2 and 4 = 0.5, a magnitude correlation
coeflicient of 0.60 is obtained [11]. Another version of this measure has recently been
proposed in [26] where the kernel of the measure is not the original and the coded
signal spectra, but the coded signal spectrum and the spectral representation of the
nonlinear distortions incurred in the coding process.

2.4.5 Cepstral Distance

The basic problem with the LSD measures is the Fourier transform and logarithm
computations involved in obtaining sufficient values of V{w) in order to approximate
the integral of (2.10) by summation. Computational efficiency and a high correlation
with the root mean square LSD have thus made another measure, namely the cepstral
distance (CD), popular {27]. The CD is a measure of the overall difference between an
original and a corresponding coded speech cepstra. A cepstrum computed from the
LPC coefficients, unlike that computed directly from the speech waveform, results in
an estimate of the smoothed speech spectrum [28). This can be written as

o L = 3 clk]z"*
lg{A(Z)} k§1 [k]z~%, (2.13)

where A(z) is the LPC analysis filter polynomial and c[k] denotes the k-th cepstral
coeflicient. Accordingly, a CD measure is defined as

cp = JO—\J2§:(c 6] = eyl (.14
log 10 i Sl )

k=1

where ¢;[k] and ¢, [k} are the k-th cepstral coefficients of the original and the distorted
specch, and L is the number of the cepstral coefficients used. Although the sequence
of the cepstral coefficients is infinite in (2.13), limiting it to three times the number of
LPC parameters shows almost no deterioration in the result. A correlation coefficient
of 0.80 has been obtained with this measure [11]. The quefrency-weighted CD [29],
the liftering window-based CD [30] are some examples of weighted CD measures. A
unifying framework for viewing different distortion measures in the cepstral domain
has been laid out in [31].
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2.4.6 Itakura-Saito Distortion Measure

With a maximum likelihood formulation of linear prediction, Itakura and Saito have
defined a dis measure as [32]

_ M vw -
dis = o [ = V(w) - 1] do, (2.15)

-

where V(w) is as given in (2.11). The assumptions vsed in deriving the integral
form of (2.15) are that the speech is generated by a Gaussian process, the result
of uncorrelated noise passed through an all-pole LPC filier and that the analysis
interval is much longer than the all-pole filter order. It has been shown in [25] that
the dis- méasure is twice the asymptotic discrimination information under the above
"'“a;sumption. A frequency-weighted version of the Itakura-Saito measure has been

found in [33] to give a better performance. The dc.an measure, a symmetrical version
of dis, is often defined as '

deosn = % " fcosh(V(w)] = 1} dw. (2.16)

-

It has been found in [27] that the dcosh measure bounds the LSD measure from above,
and in [25] that it becomes one half of the generalized Ornsiein distance between two
Gaussian processes. Computational costs for evaluating the dis and deou measures
are given in [34].

2.4.7 Coherence Function

In this method, the speech frames are first divided into four groups based on the four
amplitude quartiles. The original and the coded signal power spectira as well as the
cross-power spectrum are computed and averaged for all the frames in each quartile.

The respective average spectra, denoted by S;-(f), Syu{f) and S;,([f), are used to
compute the squared coherence function y2(f) as [35]

|1Szy ()2

which can be interpreted as the correlation between the original and the coded signals
at a frequency f. Next, the signal power C(f) and the distortion power D(f) are

() = (2.17)
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estimated from v%(f) and used to develop a modified signal-to-distortion ratio (SDR)
for each quartile as

C(f) = 7?72(f)|5yy(f)|2 (2°18)

DY) = nll=7DNSu(HI, (2.19)
el

SDR = B wWa(h) + Wil (2.20)

In (2.18) and (2.19), 7 is a scale factor. Wi(e) and Wa(e) in (2.20) are the weight-
ing functions related to the hearing threshold and the handset receiver sensitivity.
The regression-analyzed MOS value is calculated using a frequency-weighted quartile-
weighted nonlinear function; the details are given in [35].

2.5 Perceptually-Motivated Objective Measures

Coder distortions can be perceived if the magnitude of the distortion is greater
than the resolution of the human auditory system. The nature of the distortion
is also important from the perception point of view. In the following, we discuss two
perceptually-motivated distortion measures.

2.5.1 Information Index

An information index (II) measure which accounts for loss, noise and distortion in
speech transmission over a telephone network has been proposed in [36]. The auditory
system effect is roughly modeled by dividing the spectrum into sixteen critical bands
and applying empirical frequency weights and hearing thresholds for each band. At
first, a signal-to-distortion ratio for each critical band, denoted as R(i), is computed

by
D X (W)
R(:) = 10logy, 7€b dB, (2.21)
131X (w52 = 3 1Y (wi)]]
JEb; Jebi

where j ranges over all the frequencies specified for the i-th band ;. Here, X(w)
and Y'(w) are the Fourier transforms of an original and a corresponding coded speech
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frame. Assuming the bands to be independent, the I measure is computed as

16
. 3
=% Wa(2). - 9.9
. .; 2() 0.1 + 10-[RGM*W1(i)/10) (2.22)

where R(z) is the average of R() over all the frames and W, (¢) and W;(:) are the ap-
propriate weighting functions accounting for the hearing threshold and the perceptual
importance of the i-th frequency band, respectively.

2.5.2 Bark Spectral Distortion

In [21], Schroeder et al. have described a method of calculating an objective measure
for signal degradation based on the measurable propertics of the auditory perception.
Motivated by this work, a series of psychophysical experimental curves has been in-
voked in [37] to define a Bark spectral distortion (BSD) measure. At first, a nonlinear
frequency transformation from Hertz f to Bark b is made via the relation [21]

f = 600 sinh{(b/6) (2.23)

which transforms the original power spectral density function X (/) to a critical band
density function Y'(4). The function Y'(b) is ‘smeared’ by a prototype critical band
filter F'(b) given as [38]

10log, F(b) = 7 ~ 7.5(b — ) — 17.5[0.196 + (b — «)?]'/* (2.24)

with @ = 0.215. The smearing is conceived of as a convolution operation between
F(b) and Y'(b) which yields a continuous spectrum D{b). The fact that the car is not
equally sensitive to the amount of energy at different frequencics is exploited next.
The well-known equal loudness level curves [39] have been used to translate the sound
pressure levels (SPL) in dB to the loudness levels in phons. The increase in phons
required to make the subjective loudness double depends on the loudness level and
thus finally a phon-to-sone conversion is performed using {38]

_{%“wmﬂ if P > 40;

2.25
(P/40)2%42 if P < 40 (2.25)

to generate a Bark spectrum S(z). The BSD measure is defined in [37] as the average
of BSD™ with N
BSD®) = ST[s() — S}, (2.26)

i=1
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where N is the number of critical bands; and S{¥)(:) and S{¥(i) are the Bark spectra
in the i-th critical band for the k-th speech segment corresponding to the original and
the coded speech, respectively.

The success of the BSD measure has demonstrated the advantage of consider-
ing important perceptual events while formulating a distortion measure. Recently,
a software package, named PERCEVAL, is introduced in [40] which computes the
probability of detection of the noise as a function of time for noise-corrupted audio
and music signals.

2.6 Summary

In this chapter, we have reviewed some of the existing subjective and objective mea-
sures used in the speech coding area. The mean opinion score and the diagnostic ac-
ceptability measure are two of the widely used subjective measures. The most popular
class of the time-dnmain measures is the SNR with its variants such as the segmental
SNR, the granular segmental SNR etc. Among the spectral distortion measures, the
log likelihood ratio measure, the log area ratio measure, the log spectral distortion
measure, the cepstral distance and the Itakura-Saito distortion measure are quite
well-known. Some of the existing objective measures have placed emphasis on the
aspects which are perceptually important. Two such psychoacoustically-motivated
measures are the information index and the Bark spectral distortion measure. The
merit of considering important perceptual events has been demonstrated by the suc-
cess of these measures.
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Chapter 3 -

Auditory Representation of
Speech

3.1 Introduction

The formulation of any distortion measure requires resolution of two important issues:
(1) defining a suitable domain where the signal parameters should be compared and
(ii}) comparing them in a meaningful sense. This chapter is concerned with the first
issue as relevant to speech signals. It has been observed that even the repcated
utterances of a sentence by a speaker often differ considerably in the time-domain. In
this regard, a spectral representation of speech has appeared to be a rclatively steady
one. However, we argue that neither the time-domain nor the frequency-domain, in
isolation, is a good representation for speech signal. Since a human auditory system
is the final information processor in speech communication, it would be meaningful
to represent the speech signal in a perceptual-domain (PD). In this work, we use an
auditory model for mapping the time-domain speech signal onto its corresponding
PD representation.

The present chapter is organized as follows. Section 3.2 briefly studies the
mechanism of the auditory system. Section 3.3 presents various well-established psy-
choacoustic observations pertinent to speech perception. Section 3.4 discusses four
broad classes of analogous electrical model featuring primary auditory processing. In
particular, we describe Lyon’s auditory (cochlear) model which is used to define the
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PD representation for the present work.

3.2 Mechanism of Auditory System

An ear consists of three sections—the outer ear, the middle ear and the inner ear.
Speech pressure variations, directed towards the eardrum by the outer ear, are trans-
formed into mechanical motion by the middle ear. Finally, the inner ear converts
these mechanical vibrations into electrical firings (impulses) which are sensed by the
hair cells and propagated to the brain following an ascending auditory pathway over
nerve fibers [2, 41, 42). In the following subsections, we concisely describe anatomy
and functions of the prime components of the auditory system.

3.2.1 OQuter and Middle Ear

The pinnae which is the visible part of the outer ear channelizes sound waves into the
ear canal (meatus) and finally hits the eardrum (tympanic membrane). This 2.7 cm
long canal with about 0.7 cm diameter behaves as a quarter-wavelength resonator
and amplifies energy between 3 kHz and 5 kHz by up to 12-15 dB. The middle ear
which contains three tiny, dense bones (malleus, incus and stapes) transmit the sound
wave vibrations to the oval window membrane of the inner ear. This way, it acts as
an acoustic transformer matching the airborne-sound impedance of the outer ear to
the fluid-borne sound impedance of the inner ear. The transformer action is due to
the ratio of the area of the active parts of the eardrum to the area of the footplate of
the stapes. The acoustic impedance of the inner ear fluid is about 4,000 times that of
air and this impedance mismatch is such that, without the transformer effect of the
ossicles, all but 0.1% of the pressure waves hitting the eardrum would be reflected
back allowing very little energy to enter the inner ear. Additionally, the middle ear
also helps in protecting the inner ear against very intense sounds.

3.2.2 Inner Ear (Cochlea)

The cochlea, a liquid-filled tube coiled in a snail-shaped spiral, converts mechanical
vibrations at its oval window input into electrical excitation on its neural fiber outputs.
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It has a cross-sectional area of about 4 mm? at its base near the stapes and tapers
gradually to about 1 mm? at its apex. The interior of the cochlea is divided into three
chambers—the scala vestibuli, the scala media and the scala tympani. Between the
latter two chambers is the basilar membrane (BM) which increases from a width of
0.04 mm at its base to 0.50 mm at the apex. The stiffness of the BM varies smoothly
over its length. It is stiff and thin at the basal end, but compliant and massive at the
apical end (the ratio of stiffness between ends exceeds 100). Therefore, the cochlea
near its base is most sensitive to high frequency sounds and as the wave travels
down the cochlea, lower and lower frequencies are sensed. The prime feature of the
cochlea is that energy in the acoustic wave is separated by frequercy and each place
in the cochlea responds best to one frequency, termed as its characteristic frequency.

This way, it maps the spectral components of the signal onto the place domain and
maintains a tonotopic organization.

3.2.3 Inner and Outer Hair Cells

On the top of the BM (within the organ of Corti), there are about 30,000 sensory
hair cells arranged in several rows along the length of the cochlea. The endings of
the auditory nerve terminate on these hair cells and each of them has about 40-140
hairs. The tips of the outer hair cells, placed in three or four rows, are embedded in
the tectorial membrane. These cells usually do not send any information about the
sound to the brain. Rather, they function as part of an active amplifier and signal-
level controller. On the other hand, the single row of 3,500 inner hair cells that runs
along the length of the BM is the primary source of the nerve pulses that travel to
the cochlear nucleus and on up to the brain.

3.2.4 Neural Pathways

The chemical stimulation of the nerve endings atlached to the hair cells produces
an all-or-none electrical firings. The auditory firings pass via the cochlear nerve to
the ventral and dorsal cochlear nuclei in the medulla. Subsequenily, they traverse
through the superior olivary complez, the lateral leminscus, the inferior colliculus
and finally the medial geniculale body before entering the brain corter. The stimuli
received at the two ears may interact both at the medulla and mid-brain levels. The
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exact neuro-electrical representation of sound stimuli at these various levels is not

sufficiently understood.

3.3 Psychoacoustic Observations

Auditory system has been studied from different viewpoints by researchers in the
field of psychoacoustics, physiology of hearing and speech processing [2, 42, 43]. We
note here some of the psychoacoustic phenomena believed to be important in the
perceptual event. This description, although supplementary to [44], is quite self-
contained.

Observation 1 {Far Canal as an Organ Pipe): The ear canal, about [ = 2.7
cm long, is an air-filled cavity open at one end (at the pinna) and closed at the other
(at the eardrum) [41). To a rough approximation, the ear canal can be considered
as a uniform pipe and it has normal modes of vibration which occur at frequencies
where the pipe length is an odd multiple of a quarter wavelength. The first resonance
thercfore occurs at the frequency fres given by

frun = Vsound 330 m/s
e 41 4x0.027m
which aids the ear’s sensitivity in this frequency range.

~ 3,000 Hz (3.1)

Observation 2 (Impedance Transformation in Middle Ear): The lever action
of the ossicles provides a force amplification (G) of about 1.3 [45]. Moreover, the
vibrating area of the eardrum (Aeardrum) i8 approximately 35 mm?, compared to the
stapes area (Auapes) of 3.2 mm?. Therefore, the ratio (F) of pressure applied at the
oval window to that applied at the eardrum is given by

GAcardrum 55
F=————=13x — =22 .
Astapes X 3.2 2 (3 2)

This impedance transformation (throngh pressure transformation) leads to an increase
of about 20log,;22 dB = 27 dB in sound pressure level (SPL) [Note: 0 dB SPL =
1071 W/cm?] within the middle ear [2]. When low-frequency sounds of more than 85-
90 dB SPL reach the eardrum, the middle ear provides some automatic gain control
effect via stapedial reflex [46).

Observation 3 (Motion of BM in Cochlea): The motion of the BM in cochlea
is quite complicated; however, its total volume displacement at any instant of time
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is equal to the volume displacement of the stapes or of the round window membrane
[46]. The velocity of sound (veoe) in cochlear fluid is 1,600 m/s and the length of
the cochlea (Lcoen) is around 35 mm [2]. The corresponding base-to-apex time-delay
(Teoch) of the sound is given by

Leoch  0.035 m
Veoch 1,600 m/s
which indicates that there is essentially no phase delay in pressure along the BM. The
mechanical properties (mass, stiffness, --ss) of the cochlea change very slowly with

place. As a consequence, no significant amount of wave energy is reflected back [41].

Teoch =

~ 20 pus (3.3)

Observation 4 (Resonances in BM): The fluid current due to the motion of
the BM tends to go through the point of least resistance where the BM compliance
reactance annuls its mass reactance [47]. The BM appcars to have a ‘hole’ in that
point—to its left, the BM is very stiff (large capacitive reactance) and to its right, the
BM is massive (large inductive reactance). Thus, each place along the BM resonales
most strongly with a pressure wave of a characteristic frequency (CF) associated with
it. The frequency response curves corresponding to dilferent places, found by Nobel
laureate von Békésy [45], were rather broad and later Mdssbhaur’s gamma-ray-based
experiment suggests much sharper frequency response curves {43]. It has also been
observed that all the response curves have almost constant Q-factor, thereby implying
a fixed ratio of center frequency to bandwidth for all the band-pass filters. Frequency
resolution along the BM is best at low frequencies (apical end) whereas the time
resolution is best at higher frequencies (basal end). This is primarily due to the fact
that a hair cell attached to a high-CF location on the BM fires in response to a
broader set of frequencies than does a low-CF hair cell [44].

Observation 5 (Inner Hair Cells as Rectifiers): Fine hairs, called stereocilie,
protrude from the ends of the inner hair cells. They detect the shearing motion of the
membranes and act as transducers converting this deflection to an ion current. When
the cilia are bent one way, the hair cells stimulate the primary auditory neurons to
fire. When the cilia are bent the other way, no pulses are generated. Thus, the inner
hair cells act as half-wave rectifiers for the velocity of the motion of the fluid [41].

Observation 6 (Outer Hair Cells as Coupled Gain-Controllers): Studies on the
cochlear echo and the oto-acoustic emission suggest that the BM behaves as an active
system and the transfer characteristics of the BM system vary depending on the input
signal level [48]. This is attributed to the fact that the outer hair cells interact with
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the BM motion. Sounds with high SPLs are effectively diminished whereas sounds

with low SPLs are enhanced by the ‘superregenerative active’ mechanisms of the outer

hair cells [46].

An important aspect of hearing is the phenomenon of auditory masking in which
the perception of low-energy sound is obscured by the presence of a high-energy sound
{49, 50]. The outputs of the band-pass filters may be viewed as zero-mean ‘carrier’
signals which are ‘amplitude-demodulated’ by the half-wave detection nonlinearity.
The phenomenon of auditory masking can thus be justified by the ‘threshold effect’
phenomenon [51] as observed in the envelope detection process of AM signals.

Effects of the outer hair cells can be emulated by automatic gain control (AGC)
stages and some kind of inter-stage coupling of these AGCs can simulate the auditory
masking feature. Any gain control effect (i.e., amplification or compression) is not
instantaneous and the time required to adapt to any input signal is dependent on the
signal level [44].

3.4 Perceptual-Domain Representation

We desire to deal with an accurate description of human perception as far as pos-
sible. But at the same time, since the computational speed of the model is also of
importance, we prefer using a functional model of the auditory system for the PD
representation of speech signal.

3.4.1 Auditory Models for Speech Representation

The interpretation of the cochlea as a spectrum analyzer goes back to Helmholtz [52]
in the last century. The {iming or volley theory states that low sound frequencies such
as those corresponding to the fundamental frequency (F0) of speech, are perceived
in terms of time-synchronous neural firings from the BM apex. On the other hand,
the place theory suggests that, especially for higher frequencies such as those in the
formants of speech, the spectral information is decoded via the BM locations of the
neurons that fire most [53].

Current models for representing speech in the auditory periphery falls into
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Figure 3.1: Block diagram of Lyon’s cochlear model (‘HWR’ stands for the hall-wave
rectifier and ‘AGC’ stands for the automatic gain controller)

one of four broad classes [54]: rate/place, synchrony/place, synchrony/quasi-place
and synchrony/place-independent. The rate/place representation [55], & well-defined
average-rate-based spatial profile, functions well at low SPL. The synchrony/place
representational form [56] is based on neural synchrony and requires the system to
possess some knowledge of the tonotopic affiliation of each fiber with which to eval-
uate its temporal firing pattern. The synchrony/quasi-place model [57], in the form
of lateral inhibitory network, considers simultaneous activity across adjacent chan-
nels. A proposition that a spectral representation based on synchrony nced not be
concerned with the tonotopic identity of the auditory nerve fibers gives rise to the
synchrony/place-independent model [58] which works well only for high SPL.

Based on the psychoacoustic observations discussed in the previous section,
we believe that a synchrony/quasi-place model [57, 59] is most appropriate for our
work as it could operate satisfactorily for high, medium or even low signal levels.
Consequently, we adopt one such synchrony/quasi-place model as suggested by Lyon
[44] based on work described elsewhere such as [60].
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3.4.2 Mapping Using Lyon’s Cochlear Model

Time-domain speech representation is mapped onto a perceptual-domain where the
time-place components become the fundamental bases of analysis. The conversion
is achieved here using Lyon’s cochlear model as described in [44, 61]. This model
separates complex mixtures of sounds mainly by segregating different frequencies
into different places, but also by preserving enough time resolution to separate the
responses to different pitch pulses. Therefore, the voiced speech sounds that differ
simultaneously in some formants as well as in pitch are separated into recognizably
distinct patterns of activity at the output. By a detailed separation of sounds along
the time and frequency dimensions, this model paves way for a robust speech analysis
technique. Lyon’s cochlear model, as shown in Fig. 3.1, integrates the prime features
of the ‘place’ as well as the ‘volley’ theory. In the following, we describe the model
in six steps.

Step 1 (Quter-and-Middle Ear Filter): The outer-and-middle ear effectively
adds a slight high-pass response to the system. Assuming that the input speech
signals are sampled at a frequency f, of 8,000 Hz, a simple first-order high-pass
discrete-time filter with a corner frequency of 300 Hz is designed to model roughly
the effects of the outer and the middie ear. The frequency response of this filter
Hom(2), plotted in Fig. 3.2, is given by

(1 —exp [-2722%]z)
(1 —exp [-2rg2]z) .1

Hom(z) = = 4.76375(1 — 0.79008z). (3.4)
This filter has unity gain at DC (i.e., at z = 1). For simplification, the AGC mecha-
nism of the middle ear via stapedial reflex is not modeled here {62).

Step 2 (Notch Filters and Resonators): The cochlea is best described by a
continuous differential equation [63]; however, it can be modeled by an ensemble of
discrete stages in cascade. Lyon, in his proposed cochlear model, uses such discrete-
place approximation. An implementation of the discrete-place stages involves com-
bining a series of notch filters that model the traveling pressure waves with a series
of resonators that model the conversion of pressure waves into BM motion [44, 61].
The notch filters operate at successively lower frequencies so that the net effect is
to low-pass filter gradually the acoustic energy which are collected by the resonators
corresponding to different places. We consider here sixty-four stages (covering up to
4,000 Hz) in cascade, each having a different frequency sensitivity representing the
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Figure 3.2: First-order outer-and-middle ear-filter

associated resonance and is characterized by the respective filler transfer function.

The notch filters and the resonators are approximated by biquadratic filter trans-
fer functions. Though these stages are designed in discrete-time, Fig. 3.3 plots poles
and zeros for some of the notch and the resonator filters, for the sake of clarity, in
the s-plane. Each of the notch filters has a high-Q zero-pair near a low-Q) pole pair
whereas each of the resonators has a zero at DC with a high-Q pole pair located be-
tween the previous and the next notch filter zero-pairs. Several models of the cochlear
mechanics include a micromechanical ‘second filter’ [or a resonarce in the organ of
Corti that contributes a zero pair slightly below the BM resonance [64]. Presently,
this not-so-well-accepted feature is left out. This can casily be incorporated in this
model by putting another zero pair in the resonator section.

Step 3 (Cascade Design of Stage Filters): The combination of the notch filters
and the resonators can be implemented in cascade/parallel form as shown in Fig. 3.1.
However, to reduce the computations, the notch and the resonator filters of each
stage can be integrated into a single ear-filter stage. The locations of the poles in the
resonator filters are chosen to be at the same locations as the poles in the succeeding
notch filter. This way, the zeros from each notch filter and the poles from a resonator
and the next notch filter are integrated to yield a single car-filter stage [61].
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The composite transfer function of each ear-filter stage is an asymmetric band-
pass function. Wea(f.), the 3-dB bandwidth of a band-pass filter with center fre-

quency f., is defined as
Vet fa
Wear(fc) = m_b‘v (35)

where the ear-break frequency fe, is 1,000 Hz and the constant Q-factor for all the
band-pass filters QQear is 8. In conformance to psychoacoustical data, four successive
ear-filter stages are overlapped within the 3-dB bandwidth of any one ear-filter and
thus we have, Sear, reciprocal of the number of overlapping ear-filter stages, as 0.25,

Finally, the following parameters are obtained for any ear-filter stage corresponding
to a particular characteristic frequency:

fcp = fc; Qcp = Tu{‘:}(’f_c) (36)
fcz = fc + Wear(fc)~5ear-zoﬂ; Qc: = hcnr-TV:":ELfc), (3.7)

where fo, and f.. are the center frequencies of the associated poles and zeros of a
particular ear-filter stage having center frequency f.. The center {requency of the
associated zero is an extra stage higher than that of the pole. Thus, the Z.g, a factor
that determines how far the zero is offset from the center frequency of the ear-filier
stage, is chosen to be 1.5. @, and Q.. are the @-factors for the corresponding poles
and zeros and the parameter he,, which determines how much sharper the notch
(zero) is than the resonator (pole), is selected to be 5.0.

The ear-filter stages are indexed from 1 (corresponding to the highest [requency)
to 64 (corresponding to the lowest frequency) and the center frequency of each stage
decreases by Sear (here, 0.25) times the bandwidth of the previous stage. Wear(fe) vs.
fe of all the sixty-four ear-filter stages are ploited in Fig. 3.4 where we observe that
limy, o Wenr(fe) — 22 = 125.

ar

Step 4 (Other Adjustmenis in Stage Filters): To implement the zeros at DC
for every resonator, a differentiator is required for each stage. Since all the filtering
used is linear, the differentiator (a term of the form 1 — z) can be placed just once
before the ear cascade. In addition, the diflerentiator is cornbined with a zero at the
Nyquist rate (1 4 z) to compensate for the close spacing of the poles near z = —1 for
high frequency. The frequency response for this combined filier is given as

Heomb(z) = 0.5(1 — z?) (3.8)
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with unity gain at one-quarter of the sampling frequency.

In the cascade form, each of the ear-filter stages is implemented by a combination
of two poles and two zeros. After the pole-zero integration, a pair of poles of the
first stage is left aside. Thus, the car-filter is redefined with an initial stage H(z)
which combines the effects of the outer-and-middle ear Hopm(z) and the differentiator-
compensator Heomp(#) with the two poles of the first stage filter. The transfer function
of this initial stage filter becomes

—0.77356 + 3.91442;)(1 — 0.79008z)(1 — 22)
0.67523 + 1.64342z + 22

H(z) = ( (3.9)

and the corresponding magnitude frequency response plot is shown in Fig. 3.5.

The gain of an ideal differentiator is proportional to frequency. Preceding all
stages of the ear-filter with a single differentiator causes the lower frequency stages to
have a much lower output than the preceding stages. While within a single stage, it
is desired to add a term that is proportional to frequency, the effect of differentiator
at each stage is adjusted so that it has unity gain at the center frequency of the cor-
responding stage. Typical frequency responses for three ear-filter stages with center
frequencies as 499 Hz, 1,013 Hz and 2,509 Hz are shown in Fig. 3.6.

Step 5 (Half-wave Rectification): The exact shape of the half-wave nonlinearity
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is not obvious; there are proposals for ideal as well as soft half-wave [65] rectification.
In this work, an ideal half-wave rectifier is considered.

Step 6 (Coupled Automatic Gain Controllers): The effects of the BM and
the hair cell nonlinearity are taken care of adequately by lumping them into a gain
control mechanism. Other nonlinear effects, such as the cubic difference tones etc.,

are assumed to be relatively unimportant to normal hearing [41].

The most important adaptation mechanism in sensory sysitems is lateral inhi-
bition by which the sensory neurons reduce their own gain as well as the gain of the
others nearby. A logarithmic or simple non-coupled AGC mechanism does not ade-
quately handle wide variations of energy across the frequency dimensions. Therefore,
Lyon proposed a coupled AGC that adapts in the [requency domain [44). One such
coupled AGC, as described in [61], is shown in Fig. 3.7. Each stage is coupled directly
only to its neighboring stages. However, in principle, any stage can affect all the other
stages having an effect, perhaps, decaying exponentially with distance from it [66].
The gain offered to an input in an AGC stage varies betwzen 0 and 1, and this gain
factor is determined based on the previous states of the current, the left and the right
stages as well as the previous output value.
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The time constant of the coupled AGC is made dependent on the signal level.
A cascade of four AGC blocks with different time constants, simulating the different
adaptation times in the ear, are used [61]. A longer time constant implies that the
AGC takes longer to respond to the input. Each AGC attenuates the incoming signal
so that, under steady-state condition, it remains below the target value corresponding
to that AGC. The target parameters () and the time constants (1) of the four AGC
blocks, respectively, are chosen as 0.0032, 0.0016, 0.0008 and 0.0004 units (on the
same scale, the amplitude of a signal with +120 dB SPL is assumed to be unity) and
640 ms, 160 ms, 40 ms and 10 ms. The r parameters as indicated in Fig. 3.7 are
related to the T parameters as

r = exp [- Tlfl . (3.10)

For any one of the sixty-four stages, a typical steady-state response of the four cas-
caded AGC blocks is depicted in Fig. 3.8.

3.4.3 Auditory Representation

The outputs of the cochlear model vary over only about two orders of magnitude
as the input signal varies over the entire range covering the threshold of hearing
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Figure 3.8: A typical steady-state response of four cascaded AGC blocks

to the threshold of pain. The neurons are attached to the hair cells at different
places along the cochlear partition and they ‘fire’ (i.e., generate all-or-none clectrical
spikes) based on the gain-controlled signals as sensed by the corresponding hair cells.
Essentially, these neural firing events are communicated from the auditory system
to the brain through a large number of neural fibers. These neural pathways are
termed hereafter as the ‘neural channels’ so as to keep conformity with the other
communication channels. Although these neural fibers are spread densely along the
BM, since we consider sixty-four discrete-place stages, we would visualize that all the

neurons could be classified into sixty-four characteristic neural channels.

The normalized cochlear model output provides the probability-ol-firing infor-
mation in these sixty-four neural channels at each clock time. Here, the normalization
is done with respect to the maximum possible output value (i.e., 0.000213 unit as
shown in Fig. 3.8) of the four cascaded AGC blocks and the clock time is chosen to
be same as the sampling time, i.e., 125 gs. Since we do not know the exact firing pro-
cess, the neural activity patterns can be presented in a cochleagram matrix form which
gives the probability-of-firings in all the neural channels for all the clock times. In our
work, this auditory representation is referred to hereafter as the perceptual-domain
(PD). We assert that, to devise a distortion measure for speech signals, the original
and the coded/distorted signal should be compared in this perceptual (time-place)
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domain, rather than just in the time or in the frequency domain. In the next two
chapters, we propose two disiinct approaches for comparing these PD parameters.
These comparisons, in turn, provide measure values to assess the degree of overall

coder distortions in a coded/distorted speech with reference to its original version.

3.5 Summary

This chapter of the dissertation has dealt with the issue of auditory representation
for speech signal which is the first step in our formulation of distortion measures for
coded speech. For comparing an original speech with its coded version, neither the
time-domain nor the frequency-domain representation is sufficient. It is important
to consider all the major perceptual events and represent the speech signal in a joint
time-place domain. Towards this end, we have used Lyon’s auditory model. This
model has simulated the high-pass behavior of the outer-and-middle ear, the band-
pass characteristics of the inner ear (cochlea), the half-wave nature of the inner hair
cells and the automatic gain controlling feature of the outer hair cells. Temporal
and spectral masking effects have also been emulated by inter-stage coupling. The
final perceptual domain representation of the speech signal is in the form of firing
probabilities in the neural channels at the clock times.
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Chapter 4

Cochlear Discrimination
Information (CDI) Measure

4.1 Introduction

In Chapter 3, we have addressed the issue of representing speech signal in a perceptual-
domain (PD). This PD representation is a sequence of N-dimensional (in our work,
N = 64) vectors at the clock times within a speech signal. Each of the N ncural
channels may be conceived as communication channels with an input alphabet of size
two, i.e., firing and non-firing. Due to the lack of our knowledge about the exact neural
conversion process, we compare the probability distributions for firing and non-firing,
derived from an original and a coded signal, to quantily the degree of distortion. The
discrimination information which has emerged as a powerful tool [67] for nicasuring
the ‘closeness’ of two probability density or distribution functions is applied here
for defining a cochlear discrimination information (CDI) measure [68, 69]. In the
first part of this chapter, we formulate the CDI measure and study speech coder
performances with it.

For any source-coder, a source-destination pair can he characlerized by a prob-
abilistic model of the source and a fidelity criteris.n measuring the degradation of the
coded signal with reference to the original source. Based on the rale-distortion theory,
a rate-distortion function R(D) may be associated with any such source-destination

pair. This function calculates the effective rate at which the source produces infor-
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mation subject to the constraint that an average distortion of D is endured at the
destination. A knowledge of the R(} is of considerable importance as it may prevent
one from frivoling time as well as resources to achieve an impossible task. However,
often, it becomes difficult to give an explicit closed-form or parametric solution to
the R(D), even for apparently simple sources and distortion measures. In such cases,
a lower bound to the R(D) or an algorithm to compute it proves to be helpful. The
second part of this chapter provides a rate-distortion-theoretic analysis for speech

coding based on the CDI distortion measure.

The remainder of the chapter is organized as follows. Section 4.2 puts forward
the idea of CDI, a perceptual cross-entropy measure-based fidelity criterion for speech
signals. Section 4.3 provides some experimental results with relevant remarks. Sec-
tion 4.4 defines R{D) mathematically, provides preliminary background and surveys
pertinent literature. Section 4.5 addresses the R(D) evaluation problem by charac-
terizing a source-destination pair and computing an R(D) function for speech coding
directly using the Blahut algorithm. The performance of different speech coders is
analyzed with respect to these limits.

4.2 Distortion Computation

The cochlear discrimination information (CDI) measure, in effect, determines the
amount of new information (the increase in neural source entropy) associated with
the coded signal when the neural source entropy associated with the original speech
is known or vice versa.

Let P be a set of probability measures defined on a measure space SV) for a
discrete information source with an alphabet of size J. The Rényi-Shannon entropy
H,(P) for such source with P = {p;,p2,...,ps} is given as [70]

4

J
—ijlogpi: a=1,
i=1

Ho(P) = | (4.1)

1 J
log(3>"p%), a>0, a#l.
J=1

l—a

\

It has been shown in {70, 71] that
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1. H,(Fis a continuous positive decreasing function of e and is also continuous

in P.

2. H,(P) is always non-negative and H,(P) = 0if and only if all of the p;'s except
one are equal to zero.

3. H, P) is strictly concave with respect to P for 0 < a < 1; i.c., H, (P +
T—AP") 2 AHL(P)+ (1 = \)H,(P"YVP', P' and all A € (0,1).

4. Convexity or concavity of H,(P) with respect to P depends on J for a > 1.

Now, let us consider one neural channel for a specific clock time. Since there
are only two events possible (i.e., firing and non-firing), the measure space can be
written as .

SEGE{P:P=(p,p); p.p220 pitp =1 (4.2)

The Appendix A shows that with P € S@), H_(P) is strictly concave with respect to
P not only for 0 < o <1, but also for 1 < & < 2. Thus, here we consider o values in
the range [0, 2) which ensures a global maximum of H,(/P) for p, = p; = 1/2.

In this work, time-domain speech representation T is mapped onto the PD A
using Lyon’s cochlear model C. Mathematically, this mapping B can be expressed as
B:TS A ‘The PD representation A for an original speech signal can be written in

a matrix form as
Py Py -+ Py
I (13)

Pnl Pn?. e PnN
with n clock times and N neural channels. An_Felement Pyt of the matrix A implies
that piy and parr = 1 — pru are the firing and the non-fizing probabilities for the
k-th neural channel at the I-th clock time corresponding to the original speech signal,

Similarly, let ¢1x and goir = 1 — gixr be the firing and the non-firing probabilities
for the coded/distorted speech. Accordingly, the directed divergence (a form of the
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discrimination information measure) between Py and Q4 can be written as [71]

4 2 .,
Y pitlog (M), a=1,
s giki
Do (Prt; Q) = (4.4)
1 log 22: —gﬁ-’,— , 20, a#l.
L {a—1) j=1 Dkt

This measure is not a metric as it does not satisfy some of the conditions required
for it to be a metric—(a) the symmeiry condition [Do(Pu; @u) is not the same as
Da(Qui; Pu) when Py and Q4 are different]; and (b) the triengle inequality [the sum
of the measures D,(Pur; @Qrt) and Do(Qr; Br) may be greater than, equal to or less
than Dy (Py; Ri) for any three probability distributions Py, Qi and Ry). However,
{the satisfaction of the non-negativity condition allows it to be considered as a fidelity
criterion (even though it is not a metric). We define the directed divergence measure
of order « for 0 < o < 2, the range in which H,{P) has been shown to be concave
with respect to P € §3,

For simplicity, we assume that the neural firing events in different channels and
at different clock times are independent. Thus, the neural sources corresponding to

the N neural channels and the n clock times form a product source, i.e.,
S = Xigr Xkex 53) (4-5)

with x as the cartesian product of the probability spaces, £ = {1,2,-:-,n} and
K =1{1,2,.--,N = 64}. Under this assumption, the probability distribution of the
product source is the product of the probability distributions of the individual sources
(1) and the directed divergence values are additive, i.e.,

Da(P;Q) =3 Y Da(Pu; Qu). (4.6)

el keX

The satisfaction of (4.6), along with the non-negativity of the directed divergence for
a 2 0, are-shown in the Appendix B.

One generalized form for the directed divergence measure is the f-divergence
[72] based on which the distortion measure can be defined as

. — 2 . _P;i
‘DSen(P:Q) - 2 Z Z%klf (ijl) (47)

leL kek j=1
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where f(e) is a convex function. This specializes to the directed divergence with o =1
(also known as the Kullback-Leibler divergence) if f(z) = z log z; to the y?-divergence
[72] if f(z) = (= —1)?%; to the K-directed divergence [73] if f(x) = zlog{2z/(1 + )}
and to the variational distance [74] if f(z) = |z — 1|. It may be noted that there exist
relationships among many of these measures (e.g., a lower bound for the Kullback-
Leibler divergence in terms of the variational distance is given in [75]). In this work,
we also use a ‘symmetrized’ divergence measure S,(P; Q) defined as

S5.(P; Q) = Da(P; @) + Do(Q5 P) (4.8)

The divergence measures based on the entropies other than the Rényi-Shannon type
can also be studied. One such common example is

2

Cus(PiQ) =3 3 Y (VFm — Var)’ (4.9)

leL kek j=1

based on the Havrda-Charvat entropy Ey5(P) given as [74]

2
BEys(P)=2(1 =3 p}®%). (4.10)
j=1
In order to maintain the boundedness of the measure, in general, we impose a condition
that the probability of firing or nen-firing for the original and the coded signal can
not be a complete certainty or uncertainty; and accordingly we associale a 1”7 or a
0% probability, as appropriate.

4.3 Experimental Results

Twelve speech utterances, of 1-2 sec durations and spoken by male as well as female,
were considered for the test. Digitized versions ol these speech sentences (listed
in the Appendix C) were stored in audio-files having SNR of 50 dB approximately.
Each of these original utterances were passed through six different code-excited linear
prediction (CELP)-type speech coders.

No database containing various types of coded/distorted specch with accompa-
nying MOS ratings was available to us. Also, we did not attempt to develop MOS
ratings as it implies substantial cost and considerable time. Obtaining such a subjec-

tive scale involves the great difficulty of repcatability and elimination of biases and
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artifacts—especially without well-understood anchors. The quantization distortion
unit (QDU), defined as the quantity of distortion subjectively equivalent to that of
a single encoding of 64 kbps PCM, has often been used in practice as a distortion
measure. Recent tests, however, indicate that the QDU may not be as stable and de-
pendable as once it was thought to be [13]. Considering all these aspects, we decided
to administer an informal subjective test against which the objective measure results
were judged.

In this subjective test, twelve listeners ranked six different coded versions (two
with 8 kbps coders C1, C2 and four with 4.8 kbps coders C3, C4, C5, C6) of all
the twelve speech utterances. The overall perceptual quality of the coded signals
was designated as the basis for the order of their preferences. Subsequently, we
carried out an objective evaluation of these coded signals with reference to the original

speech signal by considering eight variations of the proposed fidelity criterion. These
measures were as follows.

1. The directed divergence with & = 1 [D1(P; Q)],

2. The directed divergence with a=1.5 [Dy 5(P; @)},
3. The directed divergence with =2 [Dy{P;Q)],

4. The symmetrized divergence with a=1 [S;(P; @)],
5. The variational distance [V(P;Q)],

6. The x2-divergence [x*(P;Q)],

7. The K-directed divergence [K'(P; Q)] and

8. The Havrda-Charvat entropy-based C; s-divergence [Cy.5(P; Q)]

A comparison of the informal listening test results and the objective measure
values leads us to make the following remarks.

4.3.1 Performance of Objective Measures

In Fig. 4.1, the time-domain waveforms and the spectrograms of an original and three
coded versions of a typical speech sentence, say, “Oak is strong and alse gives shade”
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Figure 4.1: Time-domain waveforms and spectrograms of an original and three coded
speech signals, “QOak is strong and also gives shade.”



(with 18,800 samples), are shown. Table 4.1 provides average distortion measure
values per clock time (with a base-10 logarithm, wherever applicable) for the aforesaid
speech utterance. We also tabulate the values of corresponding SNR,.¢ as well as SNR
with and without scaling (‘scaling’ implies multiplication of all the coded speech
samples by an appropriate factor so as to maximize the SNR value).

In Table 4.2, we provide subjective and objective measure values per clock time
for each of the sentences. The subjective rankings (6 for the best and 1 for the worst)
are averaged over the rankings made by the twelve listeners. These scores are average
ordinal numbers and not the absolute quality scores. For each of the twelve utterances
and six coded versions, the average ranking scores are mentioned in the first column
(marked ‘S’). As an example, if a coded signal is given a score of ‘6’ by eight listeners,
a score of ‘5’ by three listeners and a score of ‘4’ by one listener, the ‘S’ value becomes
(6x8+5x3+4x1)/12=05.58.

Measure Type oakf8f oaki8k oakf8b
Subjective Ranking Best Good  Poor
Di(P;Q) 2721 2.756  4.273
Dy 5(P; Q) 4492 4540 6.916
D2(P; Q) 6.751 6.812 10.165
51(P;Q) 2730 2,760  4.285
V(P Q) 8777 8.845 11.454

X (P;Q) 17.326 15486 19.111 x
K(P;Q) 0.795 0.806 0.909
Cs5(P; Q) 0.077 0.083  0.117

SNR (w/o scaling [dB]) 8.724  9.178 -2.597 x
SNR (with scaling [dB]) 8.979 9.334 _ 0.009
SNRucg [4B] 6815 7.080 -2.004 x

Table 4.1: Different measure values for three coded signals {with three different
4.8 kbps speech coders) with reference to the original speech utterance F3 (‘x’ in-
dicates that the objective measures for ‘oak{8f’ and ‘oak{8k’ do not agree with the
subjective rankings)

On the other side, we have computed the eight variations of the CDI mea-
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sure values. However, here we tabulate only the D;(P;Q) measure values (in the
second column marked ‘D,’) as an example and make general remarks about the
other measures. It is emphasized that the lower the amount of additional information
(cross-entropy), better is the signal quality of the coded speech with reference to the
original one. In Table 4.2, we observe that with the utterance M1, the C4, C5 coders
and with the utterance F5, the Cl, C2 coders were ranked same subjectively. Ob-
jective measures have shown slight preference towards C4 coder for M1 and towards
C1 coder for F5. Besides that, for the utterance F4, the subjective and objective
rankings were in contradiction for the coders C1, C2.

Sent. C1 C2 C3 C4 Ch C6

S Dy S Dy S Dy S Dy S D, S

D,

M1l 575 2.569 492 2.662 4.17 2.703 2.58 2.741 258 2.744 1.00

4.931

M2 5.50 2.630 5.17 2.651 4.25 2.678 2.75 2702 2.25 2.793 1.08

4.817

M3 575 2573 5.17 2.623 4.00 2.720 258 2.753 2.33 2.782 1.17

4.333

M4 500 2.672 5.67 2.634 4.25 2.716 250 2.752 2.58 2.747 1.00

4.776

M5 575 2578 5.17 2.627 3.83 2.692 2.67 2725 250 2.759 1.00

4.833

M6 558 2.621 5.25 2.666 3.83 2.696 2.75 2.719 242 2.760 1.17

4.669

F1 567 2.607 500 2.671 4.25 2.695 233 2801 258 2751 1.17

4.722

F2 567 2612 500 2678 3.91 2737 2.67 2766 2.50 2.774 1.25

4.285

F3 550 2.619 5617 2.648 4.25 2.721 2,50 2756 2.25 2.771 1.33

4.273

F4 541 2.661 525 2,649 4.17 2.700 2.75 2.729 217 2.793 1.25

4.562

F5 550 2.653 5.50 2.658 3.83 2.743 233 2.797 2.50 2.765 1.33

4.414

F6 b5.67 2.602 483 2.674 4.08 2.694 3.08 2.701 217 2791 1.17

4.379

Table 4.2: Subjective and objective measure values for coded signals with reference
to the corresponding original speech utterances (M1-M6 (male) and F1-F6 (female)
are speech utterances, C1-C6 are speech coders, ‘S’ denotes the average subjective
ranking scores and ‘D;’ gives the directed divergence measure values with a = 1)

Over the test sentences, the human rankings were found to be almost consistent
with the measures D;(P;Q), Di1s(P;Q), D.(P; @) and S:1(P; @); and satisfactorily
consistent with the measures K(P;@Q) and C,5(P;@). Furthermore, the D,(P; Q)
class of the measures has shown conformance to subjective evaluation results where
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the SNR measure (with or without scaling) and also the SNR,,; measure have failed.
However, the V(P; Q) and the x*(P; Q) measures often disagreed with the subjective
rankings, especially when two coded signals were very close in their perceptual quality.

4.3.2 Effect of Different Entropies

The D,(P; Q) and the D,(P; Q) measure profiles for one neural channel at a particular
clock time are presented in Fig. 4.2 where the X-axis is the probability-of-firing for
the original signal, the Y-axis is the probability-of-firing for the coded signal in the
same channel and the Z-axis is the corresponding measure. It was noticed that the
value of a in the D, (P;Q) measure class has a consistent but small effect on its
performance. For finer classification (i.e., classifying two coded signals almost equal
in their perceptual quality}, it has been found to be useful to apply an « value
larger than one to increase the dynamic range of the measure values. It has also
been observed that the measures based on the Rényi-Shannon entropy show better
performance than that based on the Havrda-Charvat entropy. -

4.3.3 Effect of Gain Changes

The x*(P; @) and V(P;Q) measure profiles with the same X,Y and Z axes as of
Fig. 4.2 are shown in Fig. 4.3. In addition to the AGC nonlinearity, all the measure
profiles (except the V(P;Q)) exhibit nonlinearity and the measure values are rela-
tively very small in the neighborhood of the X =Y region. This also makes them
insensitive to small gain changes. We speculate that a linear profile of the V(P; Q)
measure is responsible for its poor performance. Due to its broad flatness around the
X =Y region, the x*(P; Q) measure shows less sensitivity to gain changes; however,
this may be the reason for its unsatisfactory performance in the coder evaluation.

4.3.4 Effect of Sample Delays

The CDI measures, in general, were found to be relatively less sensitive (compared
to the SNR measure) to a slight time misalighment\ of the coded signal with respect
to the original one or vice\fyg_@@,;;a or example, let us consider the coded sp=ech
signals marked ‘oakf8f{’ and ‘oakf8k’ of Fig. 4.1. Table 4.3 provides the SNR measure
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Figure 4.2: The discrimination measure profiles (J = 2)—(a) the directed divergence
with @ =1 and (b) the directed divergence with o = 2.

(without scaling) values as well as the Dy(P; Q) and the Dy(P; Q) measure values
with zero, one, two and three sample delays in the coded speech. These sample delays
are with reference to the original signal and the misaligned sample places are filled in
with zero values. In general, we observe that one sample delay does not cause much
change in the CDI measure values, but two or three sample delays have considerable
effect. With three sample delays, the measures show ‘oak[8f’ Lo be inferior to ‘oak{8k’

(which is aligned to the original signal) although subjectively the reverse is true.

Coded Speech Measure Sample Delays

Zero One Two Three
oak{Bf SNR (w/o scaling [dB]) 8.724 7.391 5.619 5.117

oak{Sf Di(P;Q) 2721 2728 2.747 2.779
oakf8f Dy(P; Q) 6.751 6.792 7.193 8.838
oakfSk SNR (w/o scaling [dB]) 9.178 7.503 6.108 7.027
oaki8k Di(P; Q) 2.756 2.762 2.791 3.128
oakf8k Dy(P; Q) 6.812 6.855 T7.124 8.950

Table 4.3: The directed divergence (with @ = 1,2) measure values with zero, one,
two and three sample delays for the coded signal ‘oakf8f’ and ‘cakf8k’ with reference
to the original speech sentence
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Figure 4.3: The discrimination measure profiles (J = 2)—(a) the x* divergence and
(b) the variational distance.

4.3.5 Speech Coder Identification

By considering the neural pathway to be a noisy channel, the subjective evaluation of
the speech coders can be treated as a hypothesis testing problem. Csiszar and Longo
[76] have shown that the probability-of-error of optimum hypothesis testers based on
blocks of measurements decreases exponentially with the block length. Let us consider
two coded speech of the same utterance and let 4* be the smallest probability that
‘C’ is identified to be the samples of ‘A’ when it is actually the samples from ‘B’. This
probability is smallest over all the decision rules such that the probability of other
type of error (i.e., ‘C’ chosen as samples of ‘B’ when it is actually from ‘A’) does not
exceed 8. Then, 7%, for all 8 in (0,1) and with & = 1, can be given as [76]

7 ~exp[=D >, D(Pu; Qu)] (4.11)

leL kek
We conducted an experiment where the listeners were asked to listen to two
coded speech sentences ‘A’ and ‘B’ and then a varying number of samples ‘C’ from
one of them, not known to the listeners which one, were played. In such subjective
evaluation testing, there is no precise way of determining v*. The 4* could be esti-
mated by carrying out the test with a large number of listeners and then considering

their opinions (whether ‘A’ or ‘B’) about ‘C’.

It would be of academic interest to investigate the validity of the relationship
of (4.11). In our experiment, we only verified that to achieve a given probability of

48



Sentence Sample Nos. C3-C4 C4-C5 C5-C6

M1 3,000 5/12 4/12 7/12
6,000 7/12 7/12 9/12
9,000 11/12  10/12  12/12
12,000 12/12 12/12  12/12
F3 3,000 6/12  4/12  8/12
6,000 8/12  6/12 11/12
9,000 11/12  9/12  12/12

12,000 12/12 11/12  12/12

Table 4.4: Speech coder identification for two sentences M1 and FJ (the sample
numbers played and the fraction of listeners who have correctly identified the coders
are provided in the table)

decision error, it required more samples (i.e., longer durations) of ‘C’ o be played
when ‘A’ and ‘B’ are of ‘near equal’ quality (as indicated by our measure) compared
to that required when ‘A’ and ‘B’ are of ‘substantially different’ quality. Table 4.4
shows, for the same example sentence, the subjective identification of coders (i.c,
the number of listeners out of twelve listeners correctly identified the coders) and the
corresponding number of samples played. We have considered three coder pairs where
C4~-C5, C3-C4 and C5-C6 were ranked in the descending order from their perceptual
quality ‘closeness’ point of view. For example, let us consider the utterance F3. In
Table 4.4, we observe that by playing 6,000 samples, for C4-C5 coder pair, only one-
half of the listeners could identify the coder correctly, the remaining listeners either
identified wrongly or could not decide. On the other hand, with the same number
of samples played, the correct coders were identified by two-third of the listeners for
C3-C4 pair and by almost all the listeners for C5-C6 pair.

4.4 Rate-Distortion Analysis

Rate-distortion theoryis a branch of information theory that establishes a mathemati-
cal foundation to a source encoding problem. For a particular source-destination pair,
a rate-distortion function R(D) could be computed which gives the lowest achievable
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rate with an average distortion of £ by the defined fidelity criterion. As D increases,
R(D) decreases monotonically and usually becomes zero at some finite value of dis-
tortion. In the following, we define the R(D} analytically, discuss important results

relevant to this work and review some of the pertinent literature.

4.4.1 Preliminary Background

We consider a time-discrete source {X,, P} that produces i.i.d. outputs described
by a probability density function p(z). The accuracy of reproduction of z by y is
measured by a non-negative distortion measure p(z,y). An average distortion

//p q(y|z)p(z,y) dz dy (4.12)

and an average mutual information

f/p (z)gq(y|z) log{ ((I))} dr dy, (4.13)

v) = [ pla)alyle) do (4.14)

are assigned to every conditional probablhty density ¢(y|z). Then, the rate distortion
function R(D) of {X:, P} with respect to the fidelity criterion is defined by

where

R(D) = ngfn I(g), (4.15)

where the set of all D-admissible conditional probability assignments is denoted by
the symbol

Qo = {q(v|z) : d(q) = D}. (4.16)
I(q) is a convex downward function of ¢ which implies that any stationary point of
I(q) in @p must yield the absolute minimum, namely the R(D). Since the above
formulation is a convex programming problem, generalized Kuhn-Tucker conditions
can be determined to identify the conditional probability distribution which attains
the infimum in (4.15). The variational problem defining R(D) can be solved using

the method of Lagrange multipliers. An application of this method results in the
following parametric expressions for D and R [77]:

D= [ [ No)p()a()e = p(z,y) da dy (4.17)
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and
R=sD+ [ p(z)log A(z) da (4.18)

where,

Ma) = [ f g(y)er=¥) dx]“l. (4.19)

The slope of any R(D) curve at the point (D,, R,) is represented by the parameter s
which is generated parametrically from (4.17), (4.18) and (4.19). If A, be the set of
all non-negative functions A(z) satisfying

o(y) = f Mz)p(z)e™ N dz <1 for ally; (4.20)
then,
R(D)= sup [sD + /p(:r:) log A(z) dz| . (4.21)
s€0,A(z)EA,

For each s € 0, a necessary and sufficient condition for A(z) to atiain the supremum
in (4.21) is the existence of a probability density g(y) that is related to A(z) by (4.19)
and s such that ¢(y) =1 in (4.20) for almost all ¥ for which ¢(y) > 0.

4.4.2 Relevant Literature

The rate-distortion theory has been developed in the last two decades for discrete as
well as continuous sources. For the evaluation of R(D), two broad approaches are
generally adopted.

One approach is to derive the Shannon lower bound RL(D) [77] and then to
find conditions for the existence of a D, > 0 s.t. R(D) = Rp(D), for all D €
[0, D.]. With difference-type distortion measures R(D) functions have been calculated
for Laplacian, Cauchy and Gaussian sources [77]. This idea is generalized and a
parametric solution is provided for a weighted mean-square error distortion measure
in [78]. For quotient-type distortion measure (i.e, a measure of the functional form
f(z/y)) and a source with p(z) = 0 for z < 0, a logarithmic transformation of
the source variables z and y yields R(D) bounds from the resuits of the diflerence
distortion measures [79]. With balanced distortion measures (i.c., with distortion
matrix containing the same set of entries, perhaps permuted, in each column), the

R(D) functions are computed in [80] for discrete memoryless source and in [81] for
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finite-alphabet sources with memory. However, it appears to be difficult with this
approach to evaluate R(D) with an arlitrary non-balanced fidelity criterion.

The second approach is to evaluate the R(D) function directly. Some simple
examples of the finite-alphabet source-destination pair for which the rate-distortion
function that can be determined analytically are provided in [77]. Tan and Yao [82]
have evaluated R(D) for a Gaussian source and an absolute-magnitude difference
criterion by making a suitable choice of the boundary set (i.e., the value of y for
which the condition (4.20) is satisfied with equality). This method has also been
applied to a large class of i.i.d. sources having probability densities with constrained
tail decay [82]. An efficient algorithm for the direct evaluation of the R(D) function
for discrete as well as continuous sources has been suggested by Blahut in [83].

Historically, the application of the rate-distortion theory to the speech process
has been hindered because of the lack of a widely accepted probabilstic model of the
speech process as well as a meaningful distortion measure. The problem is further
complicated by the mathematical difficulties in evaluating the rate-distortion function
even if a reasonable source-destination pair is defined. A fairly large set of pdf models
is suggested in the literature based on the first-order histograms of Nyquist samples
of continuous speech waveforms. The gamma pdf based on the long-term statistics
(3], the Laplacian pdf based on the medium-term statistics [84] and the Gaussian pdf
based on the short-term statistics [§5] are among the more penular ones. An evalu-
ation of the first-order R(D) functions based on these pdfs and differsnce. distortion
- measures are available in [86]; and with Itakura-Saito distortion measure in {79).

4.5 EValuation of Rate-Distortion Function

The objective of this section is to provide a rate-distortion-theoretic analysis for
speech coders with the CDI measure. We formulate the problem by characterizing
the source-destination pair precisely. Then, the R(D) function is computed . ing the
Blahut algorithm. Finally, the performances of different speech coders are studied

with respect to these bounds.
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Figure 4.4: Source-destination pair characterization
4.5.1 "Source-Destination Pair Characterization

The cochlear model is, in essence, a highly non-linear structure with the half-wave
rectifiers, the AGC stages and the coupling among them simulating the auditory
spectral and temporal masking phenomena. It may prove to be sufficiently difficult
to express these signal processing operations, especially the coupling of the AGC
stages, with the help of simple mathematical operators. T:hus, we take a different
outlook towards the source-destination pair model shown in Fig. 4.4. We merge the
physical speech source with the cochlear model and consider this ensemble to be thia
" source. Since there is as such no uniquely accepted pdf for the physical speech source,
we are not in any further disadvantageous position by integrating the cuchlear model
with the speech source and detcrmining the histogram of the cochlear model outputs.
These outputs, being the probability-of-firing informs.iion, assume values in the range
(0,1). The histogram for the ﬁring-prob:lb_ility is determined by experimeniing with
t wenty-four speech utterances (twelve male and twelve female voices) of 1-2 sec.
durations. The ﬁring-probability histogram for each of the sixty-four neural channels
could be determined separately. For simplification purpose, we have assumed all the
hislograms to be identical and derived only one histogram based on the probability-
of-ﬁring information obtained from all the channels.

33



4.5.2 Calculation Based on Blahut’s Algorithm

In [87], we have derived analytically a lower bound to the R(D) with a single-letter
cochlear variational distance measure. However, with the other distortion measure
forms, it becomes difficult to give an analytical solution. Moreover, these are not
exact solutions; they are merely lower bounds. Here, we use the Blahut algorithm for
calculating the B(D) functions exactly.

We treat the probability-of-firing information to be discrete-valued with symbols
{from one of the 255 uniformly spaced values between 0 and 1 (i.e., 1/256,2/256, .-,
255/256). Let the input alphabet (firing-probability corresponding to the original
speech) u be reproduced in terms of an output alphabet (firing-probability corre-
sponding to the coded speech) v. Then, the algorithmic steps could be written as
follows.

Step 1 : An initial output probability distribution {@2,} is assumed, say, Q%.

. The parameter set {A,, = e*} is evaluated, where p,, is the single-letter CDI

measure between the input alphabet u and the output alphabet v.

Step 2 : The parameter s is chosen from the range of —oo to 0; and then
Steps 3 and 4 are cariied out with different values of s.

Step 3 : With the values of the input probability distribution P, (obtained from
the hilstogram of the cochlear model output) and the parameters A,, the following

parameters are calculated: 7
AUU

| Cy = ; Pums Gy — Quey, (4-22)

L=3"Qlog ¢, U=maxlog c,. (4.23)

Step 4 : If U ~ L > ¢, then the previous step is repeated; otherwise, the
program is terminated for this value of s by evaluating the following: |

_ AwQy
Qupu = T Auw@y’ (4-24)
D= z E PuQ'u|u.Puu'g F‘:". (4.25)

R(D) = sb —Z P, log (E AMQU) - > Quloge, (4.26)
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Figure 4.5: Speech coder rate in bits/sample vs. average cochlear variational distance
_ measure (- - - line shows an analytically derived lower bound, line shows the
exact rate-distortion curve using Blahut’s algorithm and four “*’ points [SC1-SC4]
denote the performances of four speech coders)

Fig. 4.5 shows the R(D) for the V(P; Q) measure whereas Fig. 4.6 plots the R(D)
function for the D,(P; Q). o

4.5.3 Measured Performances of Speech Coders

We have considered four state-of-the-art speech coders for Lthe assessment of their
average perceptual quality. These four coders (designated as SC1-SC4) were: CELP- ’
based coder SC1 (4.8 kbps) 5], VSELP-based coder SC2 (8 kbps) [88], wideband
CELP-based coder SC3 (1€ kbps) [89] and ADPCM coder SC4 (32 kbps) [3). For
the first, second and the fourth coders with sampling rates of 8,000 Hz, sixty-four
neural channels (covering up to 4,000 Hz band) were assigned as described in this
chapter. On the other hand, for the wideband coder with sampling rate of 16,000 Hz,
eighty-five neural channels (covering up to 8,000 Hz band) were assigned as described
in Chapter 6. Although we considered only the CELP-type speech coders for com-
paring the CDI measure performance with subjective assessment, we do not foresee
any difficulty in applying this measure to other types of speech coders. With this

99



18

16 h
14
A
< 12 \
g‘ 10 \
;TS
o
| \\ +564
2 . *.801
, T ] N
(].6 1.8 2 2.2 24 <6 28 -3

Cochlear Directed Divergence -->

Figure 4.6: Speech coder rate in bits/sample vs. average cochlear directed divergence
(with & = 1) measure {—— line shows the rate-distortion curve using Blahut’s algo-
rithm and four “*’ points [SC1-SC4] denote the performances of four speech coders)

understanding, we teve included one ADPCM coder in this section to examine its
'qualltv with resnect to the rate-distortion Limit.

“ Twelve speech sentences of 1-2 sec dirrations were passed through each of the
four coders to calculate the average distortion values over each sampling time. Fig. 4.5
and Fig. 4.6 plot the performances of the four speech coders (marked by *') as
evaluated by V(P; Q) and Dy(P;Q), respectively. Now, let us examine one of the
figures, Fig. 4.6. We observe that the perceptual quality obtained (measured with
the Dy(P;@)) by 8C1 coder is possible to achieve with much lower rate (as low as
1.5 kbps). Similarly, SC2, SC3 and SC4 coder performances are achievable with
almost 3.8 kbps, 5.4 kbps and 20 kbps, respectively. From another perspective, we
can say that a perceptual quality (a value of 2.575 units/sample) somewhere between
those attained by SC2 and SC3 coders are attainable with a 4.8 kbps speech coder. A
value of 2.485 units/sample which falls between the perceptual quality of SC3 and SC4
is theoretically achievable with an 8 kbps speech coder. Although the rate-distortion
analysis does not provide with an answer to Liow to attain these limits, it gives an
insight to what is possible and how close a specific speech coder is performing with
respect to the R(D) limits in terms of the perceptual quality.
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4.6 Summary

In this chapter, the firing/non-firing probabilities of original and coded signals were
compared in an information-theoretic sense to formulate the cochlear discrimination
information measure. This fidelity criterion, in essence, evaluates the neural firing
cross-entropy of the coded speech with respect to that of the original one. The perfor-
mance of this objective measure was compared with subjective evaluation results. A
low value in this measure has indicated superior quality of the corresponding speech
coder. The last part of the chapter has dealt with the calculation of the rate-distortion
functions for speech cading based on this distortion measure. For this purpose, we
have applied the Blahut algorithm. Four speech coders with rates ranging from 4.8
kbps to 32 kbps were studied {rom the viewpoint of their performance (as assessed
by the cochlear discrimination:'measure) with respect to the rate-distortion limits.
QOur study has shown that there is ample scope for the improvement of the coder
architecture and the coding algorithm. ‘ :
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Chapter 5

Cochlear _Hidden Markovian
(CHM) Measure

5.1 Introduction

In Chapter 4, we have introduced a cochlear discrimination information measure
which exploits the peréeptual events at the auditory periphery. In this chapter,
we attempt to capture the basics of high-level processing in the brain with simple
hidden Markov models. We use these HMMs over the 'pe;c-eptua,l—doma.in speech
representation and introduce a new measure [90, 91], namely the cochlear hidden
Markovian (CHM) measure. Computing coder distortion with the CHM measure
involves estimating the HMM parameters from the perceptual-domain observations
of an original speech frare and calculating the likelihood (against the estimated
HMM) of observing the PD representation corresponding to the coded version of
the same speech frame. The proposed CDI measure compares the PD observations
directly whereas the CHM measure is a parametric nonlinear model-based measure.
Test results, model behavior, advantages/disadvantages of this method and also some
other alternatives for measuring coder distortion are discussed.

The format of this chapter is as follows. Section 5.2 characterizes the hidden
Markovian signal model. Section 5.3 provides some relevant background raaterials.
Section 5.4 introduces a method to compute distortion ior speech coders and also
suggests briefly some other alternative approaches. Section 5.5 addresses the HMM
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behavior and tabulates experimental results for speech coder evaluation.

5.2 Characterization of Hidden Markov Model

The cochlear model output is a sequence of K-dimensional vectors (in our work,
K=64 corresponding to sixty-four neural channels) with one vector for each clock
time ¢. The elements in each of the K-dimensional nhservation vectors represent
information regarding the probability-of-firing. Based on this PI) representation of a
speech signal, what are transmitted through neural channels to the brain are series
of all-or-none electrical spikes (firings). However, the exact conversion process of
the I’D representation to the firing/non-firing representation is not yet known. We

attempt here to capture the underlying firing/non-firing event in each channel with
discrete-time series analysis.

One such analysis technique involves using a hidden Markov model for mod-
eling the observation sequence. The time-varying observation process is considered
as a concatenation of many short-time segments of a fixed duration. However, it is
expected that the properties of the process change neither synchronously with every
analysis duration nor abruptly from each unit to the next one. The development of
an efficient optimization technique [92] to estimate the model parameters so as to
‘match’ the observed signal patterns has culminated in the theory of HMM-based
signal representation. T} = success of this hidden Markov modeling technique has
been proven by its application in ecology (e.g., [93]), text analysis (c.g., [94]), coding
theory (e.g., [95]) and speech recognition (e.g., [96]).

An HMM is a doubly embedded stochastic model with an underlying process
that is not directly observable (it is hidden), but can be observed through anuther set
of stochastic processes that produce the sequence of observations. In other wofds, the
states of »x HMM are hidden and the observation is a probabilistic function of the
states. The order of occurrence of observations and the correlations among adjacent
observations are suitably modeled by stochastic dependencies among the hidden states
of an HMM. In the following, we characterize an HMM for our problem by selecting

the model type, the number of hidden states and all the parameters associated with
the model. -

We consider K numbers of independént two-state (N = 2) fully-connected mod-
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Figure 5.1: A two-state fully-connected hidder Markov model (S, and S; denote the
non-firing and firing states, mo and m; are the initial state probabilities, a;; gives the
state transition probability from a state S; to a state S;, bp(O) and b,(0) are the
observation probability density functions for the state Sp and S; respectively)

els, as shown in Fig. 5.1, where either state is reachable from the other one. Although
in many applications, the states do not have a physical meaning; here a state Sp
corresponds to a non-firing event whereas a state S; corresponds to a firing event.
The initial state distribution (i.e., at {=1) is given as = = {m;li € N'} with

m=Plpg=8] for i€N and > m=1, (5.1)
ieN

where N = {0,1} and a state reached at any clock time ¢ is denoted by ¢;.

The HMM considered is of order one and hence the transition from one state te
the next one occurs according to a transition probability distribution wiich depends
only on the previous state. If we define an integer set 7 = {1,2,--+,T — 1} then the
state transition probability distribution A = {a;;|i,7 € N'} is given by

ai; = Plgy1 = Silge = Si) for 1, EN and teT (5.2)

where every a;; coefficient (i.e., aoo, @o1,a10, @11} is positive, and 3cprai; = 1 for

teN.

Now, we consider any one of the neural channels for which the observation is
represented by O= 0102 -Or. To avoid 51gn1ﬁcant degradation due to any quantiza-
tion process, we treat the PD representation to be continuous-valued and accordingly
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consider an HMM with continuous pdfs. However, the use of a continuous pdf requires
some restrictions on its form so as to facilitate reestimation of the pdf pararacters
(e.g., mean, variance) in a consistent manner. The pdf for cach of the two states is
maintained fixed regardless of when and how the state is reached. The most general
representation of the pdf, for which a reestimation procedure exists [$2], is used here.,
Each state S; is characterized by a continuous mixture pdf b;(z) of the form
bj(z) = E Cimbim(z) for jEN, (5.3)
meMy
where My = {1,2,.-.,L} with L as the number of components in the mixture and
bim(.) is any log-concave [92] or elliptically symmetric [97] density. The rationale
behind choosing a mixture pdf and selecting the component pd{ bjm(.) to be log-
concave or eiliptically symmetric is discussed later. In our present study, bj,(.) is
assumed to be a beta density function and can be written as
h(@:réfizﬁgjhf%ﬂuﬂm'erMMJMJeMmGNm
. . (5.4)
where d;m and fis, are the parameters associated with the density function. The
- bata pdf of (5.4) is suitable as the observations are continuous-valued between 0 and

1. The Appendix D shows that the beta density function satisfies the log-conacavity
condition.

The observation probability densily function B is denoted as B = {b;(z)|j € N},
where b;(z) dz is the probability of observing a value O, in state S; at clock time
t. A coefficient ¢;, is the m-th component mixture gain in state S; and the set
{cjml] € Nym € M_} satisfies the stochastic constraint

> em=1 for jeN with ¢m>0 for j €N and m e My (5.5)
meMp

so that

-00

ijﬂa=LjeN. o (5.6)

5.3 Preliminaries

In Section 5.2, an HMM has been defined by describing ...e complete parameter':set of
the model. The model is represented as A=(r, A, B), where 7 is the state probability
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Figure 5.2: A two-state trellis diagram (Sp and Sy denote the non-firing and firing
states)

vector, A is the state transition probability matrix and B is a set of two (N=2)
continuous mixture pdfs, each with L mixtures. In this section, we provide some
preliminaries required for computing the degree of distortion (similarity) of a coded
speech with reference to its original version. A forward and a backward likelihood
variables and an auxiliary function are defined below.

5.3.1 Forward and Backward Likelihood Variables

Let us extend the integer set 7 to 7+ as 7+ = 7 + {T'}. Following Baum [92], a

forward likelihood variable a,(7)} is then defined as
(i) = P(010;+++ Oyyqe = Si|A), for i€ Nandte T (5.7)

which gives the probability of observing the partial sequence 0,0, --- O, (until time
t) and reaching the state S; at clock time ¢ given an HMM . Likewise, a backward
likelihood variable B,(7) is defined as

ﬁt(]) - P(O¢+10t+2 e Oqut = Sj?A), for ] c N and € T (5-8)

which gives the probability of observing the partial sequence Opy10s42 -+ - Or (from
t + 1 to the end) given state S; at time ¢ and a model A.

The forward likelihood variable a(7) is initialized as the joint probability of
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being in state S; at ¢t = 1 and an initial observation Oy, i.e.,
al(i) = W;b.'(ol), ieN. (5.9)

With the help of the trellis diagram shown in Fig. 5.2, an iterative procedure is
followed to compute the other forward likelihood variables from the initial one. Since
ay(7) is the probability of the joint ever:t that 0,0, - -- O, are observed and the state
- S; is reached a! clock time £, the product a,(i)a;; becomes the probability of the joint
event that 0,0, -+- O, are observed and the state S; is reached at ¢ + 1 through the
state S; at ¢. Summation of this product over the possible two states S; (for i € )
at time ¢ yields the probability of reaching state S; at £ + 1 with the corresponding
partial observation sequence upto time ¢. Multiplication of the summed quantity by
b;(O:41), the probability of observing O141 at state S;, results in the forward likelihood

variable e;41(j) for time ¢ 4 1. This evaluation procedure can be expressed by the
following recurrence equation: '

CYH.-] |:Z: Q:(E G-.J] OH.]) te T, j = N (5.10)
ieN

In a similar manner, let us now consider the backward variable 8;(:). An ini-
tialization process arbitrarily defines

Br(j) =1, jEN. (5.11)

Then, B:(7) is calculated recursively as follows:

=3 a;0;(01)Bia(j), LET, i€N. (5.12)

JEN
For a given model A, B:(7) is the probability of observing the particular partial se-
quence from time ¢t + 1 to the end when it is known that the state S; is rcached at
time ¢t. To compute this, it is evident from the trellis diagram of Fig. 5.2 that we need
to consider both the states Sy and S) at time ¢t 4+ 1 accounting for ihe possible transi-
tions from S; to S;, the observation Oy, in state S; and also the partial observation
sequence Oupy2043- - Op (being in state Sj at time ¢ + 1).
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5.3.2 Auxiliary Function

Following the concept of the Kullback-Leibler statistic, an auxiliary function (X, )
of two models A and A, for a given observation vector O, can be defined [98] as

FOXN)= Y 3 P(O,Q,M|X)log P(O,Q, M|X) (5.13)

QeNT MeMT

with @ = qiqo- g7, M = myma---mr, ¢ € N and my € My for k € 7. In the
following, we show that if F(X,A") > F(A, ), then P(O|X") > P(O|A).

P(OIX)

o) = pomig 3 HEGEIR)

QGNTMEMT P(O]A)

P(0,Q, M|)X) P(0,Q, M|X)
= P(O|X)log
[A)1o %TMQT PO P(0,Q,M[X)

P(0,Q,M|X) P(0,Q, M|X)
> P(O|X .
2 P(OIA). EMTMQT POD) % B0, Q, M)

= [FOLN) = F(AA)] 20 (5.14)

P(O\)lo

i -0 with strict ine(-;ua.lity except when P(O,Q, M|A) = P(O,Q, M|X"). In the above,

the fact that logz is strictly concave for z > 0 (since d%/dz?(logz) = —z7% < 0)
has been used. The first inequality is the well-known Jensen’s inequality whereas the
second one is true by hyp\'it‘b_.esi& If the current model is cefined as A=(7, A, B) and a
reestimated model is A'=(x", A’, B'); then either the initial model A defines a critical
point of the likelihood function (in that case A" = A), or the model A' is better than
the model A in a sense that the observation sequence Q is more likely to have been
generated by A", From (5.14), we observe that the maximization of P(O|)) implies
maximization of the auxiliary function; and hence a critical point of the auxiliary
function gives an estimate about the HMM parameters.

5.4 Distortion Measure Methodology

An original speech segment and its coded version are passed through the cochlear
model to obtain the PD representations. For each of these segments, the PD ob-
servations are sequences of 64-dimensional vectors corresponding to sixty-four neural
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channels. A hidden Markov model is associated with each of the channels and the
parameters are estimated from the PD observation sequence produced by the orig-
inal speech segment. In a sense, all the sixty-four HMMs are ‘trained’ with the
pertinent observation vectors corresponding to the original speech segment. Then,
for the same speech segment, the observations from all the coded specch signals are
‘matched’ against the derived HMMs to compute the relative coder distortions. Now

we describe the exact procedures for the model parameter estimation as well as the
likelihood computation.

5.4.1 Parameter Estimation

There is no optimal way of estimating the model parameters from any finite-length
observation sequence. Since the closed-form maximum likelihood is nol possible,
the HMM parameters are (re)estimated iteratively starting from an initial estimate.
To solve this problem, Baum-Welch reestimation algorithm [39] is used here. An
application of this algorithm is equivalent to solving a mathematical optimization
problem for obtaining the maximum likelihood estimates of the HMM parameters,
The scheme for estimating the HMM parameters is based on the maximization of
the probability of the observation sequence given a model. This algorithm is quite
powerful as it ensures a monotonic increase in the likelihood with the successive
iterations of the algorithm [92].

Let us now consider the calculation of P(Q|A), the probability of the observation
sequence O given the model A. Assuming the statistical independence of observations,

for every given state sequence Q@=¢q;q2 " - ¢r, the probability of observing O can be
written as P(0}Q, A), where

P(O|Q,A) = bq:(ol)qu(OZ) -+ bgr(O7). (5.13)
The probability of the occurrence of such a state sequence Q is given as
P(Qlk) = Tq1%g192%293 * " Lgroyqr- (5'16)

Using (5.15) and (5.16}, P(Q@|A) can be computed as

PO = 3 POIQAP@I), (5.17)
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The global density function of (5.17) with the state density defined by (5.3) can be
rewritten as

P(O|A)

Z Ta H [aqzqm{ E anﬁéq:m(ot)}]

QeNT teTt meEM

= > X )EEEEDY [Wq1 I aq:q:+1cq:msbqsm=(oi)] (5.18)
QENT mieEM; maEM, mrEMy teT+

assuming the parameter @g.,.,, = 1. The direct computation of P(O|A) as given

by (5.18) involves enumerating every possible state sequence of length 7. Instead,

we exploit the trellis structure and use (5.10) and (5.12) for the forward and the

backward likelihood parameters. In order to describe the procedure for an iterative

update of the HMM parameters, we define a set of transition likelithood variables

{&(5,5)li,j EN,t €T} as
&(6,5) = P(O, 0 = Siy qua = S;|A) (5.19)

which gives the probability of observing the particular sequence O, and being in the
state S; at time ¢ and the state S; at time £ 4 1 given the model. From the trellis
diagram of Fig. 5.2, it can be noted that £,(z,7) can be written as

§(,7) = Y au(8)aijCimbim(Ore1)Braa (7). (5.20)
meM,

We note the following relationships among the three likelihood variables as defined
in (5.10), (5.12) and (5.19):

1. A product of the forward and the backward likelihood variables for any clock
time ¢ is shown, using (5.3) and (5.12), equal to the sum of the transition
likelihood variable £(i, j) over the index j.

a,(i)ﬂt(i)

I

()| 30 Y aiicimbim(Ow1) B ()

meMy jEN

= 2 &lisd). (5.21)

jeN

2. Using (5.10) and (5.12}, it is shown that a sum of the product of the forward
and the backward likelihood variables, i.e., a;().5:(Z) over 7 is independent of
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the time index 2.

Y n()Bn(l) = X [E > at(i)aficjmbj:n(ot+l)] Br1(5)

JEN JEN ieN meM,

= Zat(i) ['Z Z a;‘jcjmbjm(ot-{-l)6£+l(j):1

ieEN 1EN meEM
= Y (i)f(s) for teT (5.22)
ieN '
3. Using (5.11) and applying (5.22) recurrently, P(O]A) can be written as the sum
of the terminal forward likelihood variables cp(i) over i, i.c.,

P(O|A) = Y ar(i). (5.23)
iEN

The logarithm of P(O, @, M|X"), the square brackeled term in (5.18), can be

written as

log P(O,Q, M|X) =logm, + D logay,, + 3 logc,,, + 3 log by, (0.
teTt teTt teT+
(5.24)
It is seen that the HMM parameters 7 , A" and B’ corresponding to the model X' are
segregated. Without any loss of generality, then the auxiliary function F(A,X") of

(5.13) can also be written in a separated form as

FLWX) = Y % PO,Q,M(N) {logw;ﬁ > logay,,,

QeNT MeMT te7+
+ Y logcym, + 3. log b;‘m,(Ot)}. (5.25)
teT+ teTt

Since F(A, ') is considered as the basis for the maximum likelihood optimization
procedure, separability of the individual auxiliary functioi:z as given in Appendix E
simplifies the (re)estimation procedure. Individual maximization of the first three
surnmands subject to the constraints

E'.rrj=1, ;20 forj € N. (5.26)
JEN
Ea:’j:l, a;j >0 fori,jeN. (5.27)
JEN
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Z cm=1, cm>0foriecN, me M. (5.28)
mEM,

respectively, is well known. Each of the individual auxiliary functions has the same
form ¥ jex u; log v;, which as a function of {v;|j € A} with the constraint 3 ;ep vj =
1 and v; 2 0 for j € A attains a global maximum at the single point v; = u;/ Yien ui
for j € . The initial probability ¥ can be reestimated as

B0 SOB0 ey
Z a1{2)61(2) %ar(i) ’ €

ieN

(5.29)

which is the expected frequency in state 5; at ¢ = 1. Similarly, the reestimation
formula for A results in a ratio of the expected number of transitions from state S;
to state S; to the expected number of transitions out of state S;, i.e.,

> &(i,4) > &G )

@ = teT+ . & S—— (5.30)
YT Y 6, Y eB)
LET+ JEN meEM, teT+

where {f"‘)(i,j) is the probability of being in state S; at time ¢ + 1 and state S; at
time ¢ with the m-th mixture component accounting for O, i.e.,

Cimbim(ot)
> cuba(0y)

leMy

™, ) = 66,5). (5.31)

with b;,,(O:) as given by (5.3). G is the ratio of the expected number of transitions
out of state S; using the m-th mixture component to the expected number of total
transitions out of state S;. Thus, for i € N and m € M, we get

S > MG, > 3G, 5)

- _ tET+ jEN _ teT* JEN (5.32)

Cim = E Z Z g(m) Z a:(l)ﬂg(z)

teT+ jeN meMy teTt

- The parameters set {din}i € M,m € My} and {finli € Nym € M} can be
calculated from the following two equations.

fim 1 EEWMMW

1 _ _IETHjEN

; (dim + r) - Z Z g(m) 3

teT+ jeN

(5.33)
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dptt ] > T ™) og(1 - 0)

Z - _tET+ JEN
= Gm+r) IR
teET+ jEN
where the parameters d;,, and fim are assumed, for reducing computations, to take
up integer values.

(5.34)

5.4.2 Distortion Computation

We now discuss the CHM measure methodology. At first, we obtain the PD observa-
tion sequences from the original signal. For each of the sixty-four neural channels, we
consider these PD observations for a frame of T' consecutive clock times. An HMM
is associated with each of such channels and the model parameters are determined
starting from an initial estimate. Equations (5.29) to (5.34), derived based on the
Baum-Welch algorithm, are used fcr estimating the model parameters. This tech-
nique iteratively chooses a ‘better’ model by maximizing P(O,|A,) where O, is the
n-th channel PD observation sequence for the original speech. Afler a rcasonable
number of iterations, the algorithm is terminated and the final model is denoted as
Ale). Let the n-th channel PD observations for a corresponding coded speech be rep-
resented by O, Using (5.23), we compute P(O9|AL)) for all the neural channels.
This computation, in essence, evaluates the likelihood probability of the PD represen-
tation of the coded signal against the models derived from the PD representation of
the original speech. We assume the neural channels to be independent and therefore
the probability scores are multiplied. Upon taking logarithm, we obtain a similarity
measure My for the frame as

64

My =Y log P(O©)|A(2)), (5.35)

n=1
Finally, a cochlear hidden Markovian (CHM) distortion measure value is defined by
taking average of M, values over all the frames, negating it and also dividing it by

64 (i.e., CHM=—17,/64).
5.4.3 Alternative Approaches

Here, we suggest two other logical approaches for computing coder distortion although
we have not carried out any tests with them.
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State sequence approach

One alternative method is to determine the ‘optimal’ state sequences associated with
the PD observation sequences of an original speech as well as its coded version. An
optimality criterion chooses the state g, that are individually most likely by maximiz-
ing the expected number of correct individual states. The individually most likely
state ¢, at time ¢ is determined by computing

¢c = argmax(P(g = 5|0, A)] (5.36)

The bracketed term, i.e., the probability of being in state S; al time £, given the ob-
servation sequence O and the model A, is written for the forward-backward technique
in terms of the variables £,(z,7) as

Pl = 510, ) = T i), (5.37)
Liew ar(i)

The solution simply determines the most likely state at every instant without any
regard to the probability of occurrence for sequence of states. A distortion measure
could be defined based or calculating the Hamming distance between the estimatad
stale sequences for the original and the coded speech signals. There is no unique
way of selecting an ‘optimality’ criterion and the approach may even be modified to
maximize the expected number of correct paths of pairs of states (g¢, gi+1) or triples
of states (g¢, gi1, qe42) etc.

Model distance approach

Another alternative is to estimate a model A(? from the PD observations of the
coded speech frame exactly the way we have estimated the model Al®) from the PD
observation of the original speech frame. A niodel distance measure following the

notion of discrimination information could be defined for comparing these pairs of
HMMs [100]. One such measure form is

64
D(AE, \)) = ElogP (On| ALY — 3" log P(O,|AL). (5.38)
n=1 n=1

This measure is non-symmetric and a symmetrized version could be used in practice.
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5.5 Practical Considerations

A ‘good’ distortion measure should consider only the informativu .elevant to percep-
tuai events. However, the success of the measure also becomes heavily dependent
on the accuracies of the implementation and the model description. Here, we dis-

cuss some practical aspects related to the evaluation of speech coders by the CHM
measure.

5.5.1 Computational Issues

The forward probability calculation is, in effect, based upon the trellis structure shown
in Fig. 5.2. Since there are only two possible states at each time in the trellis, all the
possible state sequences will remrge into one of these two nodes, regardless of the
length of the observation sequence. At any time ¢, computation of a;(7) involves only
two previcus values of ;1 (%) because each of the two grid points is reached from the
~ same two grid points at the previous time slot. For computing each a.(z) and §,(3),
it requires on the order of N2T calculations, rather than 27 N7 as required by the
direct calculation.

Another important issue is that computing the likelihood variables involves
multiplication of many terms having values smaller than 1. In a recursive procedure,
each term of these variables starts to diminish towards zero exponentially and thus the
number representation goes below the precision range of any machine. To circumvent
this problem, the likelihood and other variables are multiplied by constants known

as scaling coefficients [101]. The scaling procedure is not applied at every clock time,
but once every few clock times.

5.5.2 Initial Estimates for HMM Parameters

Since a convergent reestimation procedure exists for the continuous mixture model
considered here, it is theoretically possible to have arbitrary initial estimates for the
HMM parameters obeying the stochastic constraints, The reestimaiion equations
provide values for the HMM parameters corresponding to a local maximum of the
likelihood function. The choice of ‘good’ initial estimates is thus important in making

the convergence faster or ensuring the local maximum to be the global maximum of
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the likelihood function. In fact, some of the parameters may be very sensitive to the
initial estimates [102].

5.5.3 Training Data and Iterations

The PD observation sequence used for ‘training’ the models has a finite length and
this causes problem in determining the HMM parameters via reestimation method.
An insuflicient number of occurrences of different model events does not truely portray
the real scenario and therefore we have to have sufficiently long training data. On the
other hand, we wunt the model parameters to be fixed for a specitic period and then
vary depending on the new PD observations. The Baum-Welch estimation algorithm

also needs several iterations before the convergence cccurs.

5.5.4 Mixture Processes

It is an usual practice to approximate a K-dimensional correlated random process
by a mixture of few uncorrelated, K-dimensional random processes. The number of
mixture components is heavily dependent on the degree of correlation. By assuming
mixture uncorrelated processes, we effectively reduce the number of parameters to be
estirnated and thus help making the estimates more reliable. The trade-off is clearly
between the increased error in the approximation process and the increased reliability
in the estimation process.

5.6 Experimental Results

Before providing with the objective measure results, we describe the set-up procedure

for some of the experimental parameters.

(i) We have ‘trained’ and ‘matched’ the HMMs with speech frames of 480 sam-
ples. For N = 2 and T = 480, only about 1920 computations were needed since the
algorithm used was based on trellis structure.

(ii) The scaling procedure was used not at every instant, but after every ten
clock times.
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(iii) Although the length of the PD sequences over which the training and match-
ing were done is 480, we overlapped each such frame with the previous frame by 50%.
In other words, the observation window was shifted by 240 samples for dealing with
each new model. This has allowed having sufficiently long training data and also has
facilitated the models not to change the parameters drastically.

(iv) In our experiment, we have chosen models with three mixture components
(i.e., M = 3). This has appeared to be a reasonable choice for making trade-off

between the accuracy of modeling the histogram and the number of parameters to be
estimated.

(v) Based on the psychoacoustic data, we have assumed the initial transition
probability from a non-firing state to another non-firing state is 0.8 and that from
a firing state to another firing state is 0.2, In accordance with this, the initial state
probabilities were chosen to be 0.8 for non-firing state (So) and 0.2 for firing stale

(51)-

(vi) The initial estimates for the beta pdl parameters {d;;,} and {fi,} were
chosen in such a fashion that the corresponding mean values were 0.25, 0.50 and 0.75

for i € N. The weighting factors {ci,} were all assumed to be equal (i.c., 0.33)
initially.

(vii) For any particular neural channel, the final estimate of HMM parameters
obtained for a speech frame was considered as the initiai estimate of the parameters
for the subsequent frame.

(viii) While solving the simultzneous equations of (5.33) and (5.34), the {din}
and {fin} parameters were allowed to take up integral values between 1 and 40. Since
the exact solution could not be found, we have determined the parameter values hy
choosing the best pair which minimizes the sum of the square errors, One more
constraint imposed on the parameters was that the mean values (given by dim /(dim +
fim)) for three different mixture components have been kept confined to three different
regions—one between 0 and 1/3, the second between 1/3 and 2/3; and the third
between 2/3 and 1. This also reduced the search for best solution by making some
combinations of the parameter values to be invalid.

(ix) For model parameter estimations, we have made 30 iterations each time.
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Sent. C1 C2 C3 C4 C5 C6
s H § H S H § H S§ H § H
M1 575 195 4.92 225 4.17 336 2.58 358 2.58 365 1.00 420
M2 550 250 5.17 231 4.25 280 2.75 310 2.25 390 1.08 414
F1 5.67 209 5.00 263 4.25 300 2.33 389 258 371 1.17 430
F2 5.67 220 5.00 276 3.91 347 2.67 378 2.50 312 1.25 398

Table 5.%: Subjective and objective measure values for six coded signals with reference
to the corresponding original speech utterances (‘S’ gives the average subjective rank-
ing scores and ‘H’ denotes the cochlear hidden Markov measure with single channel

(CHM-SC))

Sent. Cl C2 C3 C4 C5 C6
s H § H S§ H § H § H S H
M1 5.75 146 4.92 188 4.17 256 258 314 258 320 1.00 408
M2 550 161 5.17 179 4.25 238 2.75 287 2.25 346 1.08 398
M3 5.75 157 5.17 183 4.00 261 2.58 310 2.33 304 1.17 401
M4 5.00 195 567 152 4.25 230 2.50 326 2.58 311 1.00 412
M5 5.75 138 5.17 170 3.83 277 2.67 301 2.50 335 1.00 421
M6 558 163 525 186 3.83 265 2.75 292 242 319 1.17 392
F1  5.67 154 5.00 182 4.25 244 233 326 2.58 307 1.17 416
" F2 567 159 500 192 3.91 270 2.67 296 2.50 310 1.25 386
F3 550 170 5.17 177 4.25 221 250 319 225 352 1.33 381
F4 541 169 3.25 174 4.17 238 2.75 281 2.17 361 1.25 399
F5 5.50 162 550 155 3.83 272 233 320 250 304 1.33 373

F6 567 156 4.83 202 4.08 263 3.08 322 2.17 348 1.17 391

Table 5.2: Subjective and objective measure values for six coded signals with reference
to the corresponding original speech utterances (‘S’ gives the average subjective rank-

ing scores and ‘A’ denotes the cochlear hidden Markov measure with three channels
(CHM-TQC))
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In this work, we have followed two strategies for computing coder distortions.
Let us now concider determining the model parameters for the n-th neural channel.
In the first strategy, while training the model, we have used only the n-th channecl
PD observation sequence corresponding to the original speech. We call this strategy
as CHM-SC (with single channel). Table 5.1 shows subjective and objeclive measure
values for six coded signals with reference to the original speech utterance. We tabu-
late here measure values for only four utterances. The CHM-SC measure was found
to be not very satisfactory in ranking coded signals.

It has been our understanding that the training data length was not sufficient in
the CHM-SC strategy to make a reliable estimate for the model parameters. There-
fore, we formulated a new strategy where three adjacent channels—the (n — 1)-th,
n-th and (n + 1)-th channel PD sequences were used in alternate manners for train-
ing. This strategy has been termed as the CHM-TC (with three channels). Table 5.2
provides subjective and CHM-TC measure values ior all the twelve utterances given
in the Appendix C.

Coded Speech Measure Sample Delays

Zero One Two Three
oakf8f SNR (w/o scaling [dB]) 8.724 7.391 5.619 5.117

oakf8f CHM-TC 221 227 224 229
oakf8k SNR (w/o scaling [dB]) 9.178 7.503 6.108 7.027
oaki8k CHM-TC 319 321 326 323

Table 5.3: The SNR and the cochlear hidden Markovian—three channcls (CHM-TC)
measure values with zero, one, two and three sample delays for the coded signal
‘0aki8f’ and ‘oakf8k’ with reference to the original speech scntence

For the CHM distortion measure values, we have computed the logarithm (nat-
ural) of the likelihood probabilily scores, negated them and averaged over all the
channels and all the speech frames. Tables 5.1 and 5.2 provide these measure values
where & low value implies a better perceptual quality. Already in Chapter 4, we have
noted that with the utterance M1, the C4, C5 coders and with the utterance I'5, the
Ci, C2 coders were ranked same subjectively. The CHM-TC mecasure has found C4
coder for M1 and C2 coder for F5 to be slightly better than their counterparts. Other
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than these tie cases, the subjective and objective measures were not in conformance
for the C4, C5 with the utterance M3.

The success of the CHM mezsure is quite comparable with that of the CDI
measure, However, the primary two advantages of the CHM measure are that (i)
ample provisions (selecting better initial estimates, carrying out more iterations etc.)
exist for its improvement and (ii) it attempts to take time correlations into account
and is fairly robust against few samplz delays. Unlike most of the other distortion
measures, the CHM measure performs quite well without an explicit time-alignment.
Table 5.3 provides the SNR measure (without scaling) values as well as the CHM
measure values with zero, one, two and three sample delays in the coded speech. The
misaligned sample places are filled in with very small (approximately zero) values. It
is observed that the sample delays do not affect the measure values considerably.

5.7 Summary

In ikis chapter, we have introduced a cochlear hidden Markovian (CHM) measure for
computing coder distortion. We have attempted to capture the basics of neural firing
events with simple hidden Markovian models where the occurrence of perceptual-
domain observations and correlation among adjacent observations are modeled ap-
propriately. A two-ctate (one each for firing and non-firing events), fully-connected
HMM has been asscciated with each of the neural channels.

For computing coder distortions, at first, all the HMMs are ‘trained’ (i.e., the
HMM parameters are estimated) with the PD observation derived from the origi-
nal signal. The Daum-Welch reestimation technique has been applied to derive the
HMM parameters iteratively starting from an initial estimate. The P1) observations
obtained from the coded speech are ‘matched’ against these HMMs. A negated ver-
sion of the log likelihood probability scores, averaged over all the speech speech frames
and neural channels, has acted as the CHM distortion measure. This measure has
shown promise by conforming appreciably with subjective evaluation results and also
by exhibiting its robustness against coder delays.
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Chapter 6

Applications in Coder Analysis

6.1 Introduction

The earlier chapters have dealt with an auditory representation of speech and two
distinct approaches for computing distortions by comparing these perceptual-domain
parameters of a coded signal vis-a-vis its original version. We have evaluated the
performances of speech coders with these measures and also have computed the rate-
distortion functions for speech coding with one of them. Although we have not
attempted to use our measure formulation in a closed-loop fashion in any speech coder,
it may very well be possible to use it for ‘populating’ a codebook in the training phase
and/or for ‘selecting’ an appropriate codebook entry in the transmission phase. A
typical speech coder has several components based on the leatures and its encoding
parameters. For a low bit-rate speech coder, a proper bit allocation among these
components plays a significant role in achieving a good perceptual quality for the
coded speech. Thus, it would be helpful for the designer if there could be a way to

assess the performances of these components in a separate manner.

State-of-the-art analysis-by-synthesis medium or low bit-rate speech coders com-
prise of a linear prediction filter to model the short-term spectrum, a pitch predictor
to model the long-term periodicity and a stochastic codebook to represent the resid-
ual speech signal. In practice, some of these filter blocks and codehooks are often
split into more than one components primarily to give different perceptual impor-
tance and also for computational reason. While transmitting, in the analysis phase,
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different synthesized signals are compared with the original signal by a fidelity cri-
terion. A mean-square distortion criterion has been found to be unsatisfactory as it
does not even addrzss perhaps the most important perceptual event, namely the au-
ditory masking. To address this issue, in the recent literature, various noise weighting
schemes have been coupled with the mean-square distortion criterion and/or other

noise shaping filters have been suggested.

A detailed analysis on a component-by-component basis for different coders with
the same bit-rate is beyond the scope of this thesis. Nonetheless, in this chapter,
we will outline two related applications of the proposed measures. The first part
describes an analysis procedure for determining the the pitch frequency by examining
the output space of the cochlear model and applying the CDT1neasure. With the help
of this analysis, it is possible to compare the pitch information of the original signal
and that retained in & coded version. This, in turn, could provide a feedback to the
designer regarding the deficiency of the pitch filter component. In the second part, we
corsider a wideband speech coder which uses three-way split vector quantization for
the LPC parameters and fractional pitch lag value in the pitch predictor. We apply
the CDI as well as the CHM measures for studying the performances of different
noise weighting methods as incorporated in this coder. The coder was designed by K.

Abboud [9] and the =valuation of the noise weighting schemes was carried out jointly
by this author and Abboud.

The remainder of this chapter is formatted as follows. Section 6.2 briefly reviews
some of the existing pitch frequency estimation algorithms. Section 6.3 suggests an
algorithmic approach, using the CDI measure form, for the pitch frequency determina-
tion from the PD representation of a speech signal. Section 6.4 describes a 11.2 kbps
code-excited linear prediction (CELP)-based wideband speech coder. Section 6.5 in-
troduces some of the perceptual weighting schemes while Section 6.6 investigates their
performances by the proposed objective measures. Thus, Sections 6.2 and 6.3 are re-
lated to the first application of pitch frequency estimation whereas Sections 6.4, 6.5
and 6.6 pertain to the second application of performance evaluation of perceptual
weighting schemes implemented in a wideband coder.
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6.2 Existing Pitch Estimation Algorithms

One simple time-domain approach for the pitch estimation is to low-pass filter all the
energy from the speech signal except the fundamental harmonic and then detect the
zero-crossing rate (ZCR). The ZCR measure is related to the pitch (F0) by

FO = ZCR * £./2, (6.1)

where f, is the sampling frequency in samples/sec. The prime difficulty of this method
is in the determination of the cut-off frequency for the low-pass filter as it should be
high enough to inciude the fundamental frequency from a high-pitched voice and low
enough to exclude the first harmonic of a low-pitched voice. Morcover, the ZCR
detects some time the first formant {requency rather than the IO if the former has
sufficiently high energy. A windowed autocorrelation function (ACF) is often calcu-
lated by taking the product of the speech sample {s[r]} with its delayed version and
passing it through a window filter {w[n]} {103]. In the pitch determination, the ACF
R, [k] given by

o
Rkl = > s[mlwln — m]s[m — Kwln — m + &), (6.2)
M=—C0
is evaluated for k ranging from the shortest possible period {e.g., 3 ms for a female
voice) to the longest one (e.g., 20 ms for a male voice). Another alternative technique
is to calculate the average magnitude difference function (AMDF) defined as

oo

AMDF[k] = > |s[m]—s[m — ]| (6.3)

m=—co
which shows minimum for a & value correspcnding to the piich period.

Frequency-domain techniques involve computing a windowed Fourier transform
defined as

o]

Su(e™) = > s[mle™™™wn — m]. (6.4)

m=-00

In a spectrogram, S,(e’) is plotted with the sample-time r on the horizontal axis, the
frequency w on the vertical axis and the magnitude by darkness of the display. The
pitch period can be detected by searching either the periodically-spaced vertical lines
in a wideband spectrogram or the periodically-spaced horizontal lines in a narrowband
spectrogram. For estimating the F0, a cepstral analysis technique has also been
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employed where the complex cepstrum exhibits sharp pulses spaced at intervals typical
of the pitch periods.

Unlike the conventional techniques, an auditory model-based pitch determina-
tion technique works for varying pitch effects, and is robust against a wide range
of distortions [104]. Based on the duplez theory of the pitch perception, Lyon has
published an ‘auditory correlogram’ [105]. Using this idea, Slaney et al. have recently
proposed a perceptual pitch detector [104]. In this algorithm, a pre-processing step
emphasizes the vertical structure in the correlogram, sums the value at each time-
delay in the enhanced correlogram across all the frequencies and determines the pitch
based on the location of the largest peak. Weintraub has used a cost-reduced correlo-
gram version as a pitch tracker for his two voice sound separation experiments [10G).
Seneff has used an auditory model and suggested a generalized synchrony detection
((GSD) mechanism for detecting the pitch periodicities in the speech signal [107].

6.3 Pitch Frequency Estimation

Here we suggest an algorithm, using the CDI measure form, for estimating the pitch
fundamental frequency.

A rectangular analysis window of 40 ms is chosen for a speech frame of 20 ms
so that the successive windows overlap by 50% and at least two pitch periods are
included in the analysis window. The output for each of the sixty-four neural channels
is compared with itself delayed by 7 samples (T up to 20 ms =160 samples accounting
for the lowest possible F0). With twosets T = {1,2,---,160} and K = {1,2,-.-,64},

the comparison with the discrimination measure (e.g., with the D{(P;@Q)) takes the
form

2z .
Ex(r) =33 pjulog ( Pikl ) , for 7€, kek. (6.5)

leT =1 Pjk(t47)
In this way, from a two-dimensional time-place representation A, we derive a cross-
entropogram € = {Ex(v){k € K,7 € I} which is also two-dimensional where the
vertical direction corresponds to the channel ¥ € K and the horizontal direction
corresponds to the sample delay 7 € Z. To enhance the vertical structure of £, a
convolutional operator O = [~1 +2 - 1] is used to give G = {Gy(7)|k € K,7 € T}
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with
Gi(r) = —Ex(r — 1)+ 2E(r) = Ex(r +1), for 7 €1, k€K, (6.6)

where E(0) = E(161) = 0, Vk € K. An exponentiai weightiug sel {w[k]|k € K} of
the form

wik] = e * VYN for ke O (67)

is defined where the number of channels N is sixty-four and the decay factor « is
chosen to be 6. The exponentially-weighted discrimination measure values for all tii:
sample delays, summed over all the sixty-four channels, can then be wrilten as

G(r) =3 wlkjGi(r), for €T (6.8)
keX

The evidences from the higher harmonics are.conibined this way to make the pilch
estimate robust. At the same time, the contributions from the formant frequencies are
minimized by giving exponentially decaying weights to the higher frequency channels.
In this flattened one-dimensional cross-entropogram M = {G(7)|r € T}, the measure
G(7) shows the first significant dip at a = value corresponding to the pitch period.
Thus, an average FO0 for a frame is calculated as

-1
FO = f, * [mTin (reT:C(r)< H}] (6.9)
with f, = 8,000 Hz and an appropriate threshold #.

Fig. 6.1 shows the time-domain waveform and spectrogram plot for the word
‘shade’ (female voice). We execute our pitch estimation algorithm to determine the
pitch period for one frame (160 samples starting from the sample number 15,000} of
/a/ in that word. In the one-dimensional cross-entropogram plot (using the directed
divergence measure with @ = 1) of Fig. 6.2, the first dip in G(7) is chserved at
T =40 samples (equivalently, 5 ms) with an H value, say, —30 units. The perceptual
pitch period is thus calculated to be 200 Fz. It is expected that this scheme, due to
merging of information {rom all the channels, could estimate the pitch correctly even
when the ‘fundamental frequency’ component is fiitered out from the original signal.
However, the selection of I may become more stringent. A post-processor may be
used for the pitch estimates of successive frames to correct any serious error, e.g.,
pitch doubling or halving.
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6.4 Wideband Coder Architecture

In the second application, our intention is to examine the performances of some of
the noise shaping schemes generally incorporated in a medium or low bit-rate speech
coder. Here, we consider a 11.2 kbps CELP-based wideband speech coder. A wide-
band (50—7,000 Hz) speech shows superiority in the perceived quality over a narrow-
band (200-3,400 Hz) speech. This stems from the fact the added low frequencies
increase the naturalness of a voice while the added high frequencies make the speech
sound more intelligible, especially for fricative sounds. Obviously, more bits are re-
quired to code the additional information which leads us to have a trade-off between
preserving. acceptable speech quality of the reconstructed signal and maintaining a
relatively low operating bit-rate. However, here our objective is not efficient coding;
but assessmg the effectiveness of the perceptual weighting schemes.

The CELP analysis-by-synthesis speech coders treat the input speech samples on
a frame-by-frame basis. Linear prediction operations are used to exploit the fact that
the speech exhibits a high degree of intersample correlations—correlation cbserved
between adjacent samples (rear-sample redundancy) and also, for voiced speech, cor-
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relation between samples separated by the pitch period (far-sample redundancy).
Generally, a CELP coding technique consists of three basic functions— (i) short-term
prediction (in the analysis phase) to determine the LPC (or equivalent) coefficients,
(ii) pitch search (in the synthesis phase) to calculate the pitch lag (i.e., the pitch
period in samples) and the pitch coefficient (i.e., the corresponding gain parameter)
values and (iii) codebook search (in the synthesis phase) to delermine the index of
an excitation waveform and the associated scale factor.

Accordingly, two codebook indices and two quantized gain values are determined
along with the formant predictor coefficients. In fact, the CELP coder does not
directly need an analysis stage; ideally, the formant synthesis filter could also be
optimized for each candidate excitation waveform. However, the formulation of an
optimal (in a mean-square sense) {formant synthesis filter leads to a highly nonlinear
set of equations which is not amenable to solution. Thus, a formant synthesis filter
is generally implemented as the inverse of a formant filter determined in the analysis
step. These parameters are selected in a systematic way for matching a synthesized
speech to the original one with minimum error as defined by a disiortion measure.
All of them are updated at regular intervals and transmitted over a communication
channel in order to reconstruct the speech signal in the decoder side. A wide variety
of wideband CELP-based algorithms has been proposed in the literature (e.g., [89]).
In this work, we use a 11.2 kbps wideband speech coder as designed by Abboud [9]
and described below briefly.

6.4.1 LSF-based Short-term Prediction

For this wideband coder, a 16-th order LPC filter is chosen for the short-term pre-
diction. The LPC parameters are determined by an autocorrelation method in which
each frame of speech samples is multiplied by a Hamming window before getting
filtered by the inverse formant filter. This method involves minimizing the resid-
ual signal (of the filtered version) energy and requires solving a set of Yule-Walker
equations. The LPC parameters obtained are not well-suited for direct transmission
because an error in any one parameter can cause the filter to become unstable and
their wide dynamic range may make an efficient quantization practically impossible.
Thus, they are transformed into a ‘better-behaved’ set of parameters such that the
synthesis filter characteristics vary smoothly as a function of those parameters.
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The line spectral frequency (LSF) parameters represent the phase angle of an
ordered set of poles on the unit circle. They are used quite often because they simplify
the quantization procedure, ensure synthesis filter stability (if LSFs are ordered) and
are closely related to the formant frequencies. An use of the LSF parameters has
an added advantage of localized spectral sensitivity, i.e., that an error in one LSF
only affects the synthesized spectrum near that frequency. An efficient technique
for the computation of the LSFs is followed. The polynomial roots are determined
by applying a Chebyshev transformation so as to map the upper semi-circle in the
z-plane to the [-1,+1] range and searching for sign changes in this interval [108].

These LSF parameters are quantized before transmission. In scalar quantiza-
tion, each LSF coefficients are quantized individually while in the vector quantization
(VQ), all the LSF coefficients are quantized together. For the same performance, the
first one demands & high number of bits for quantization while the second one suffers
from high complexity in terms of the amount of training data needed, the memory
required and the number of computations involved. Here, a three-way split VQ tech-
nique for the LSF parameters is adopted. For each frame of 15.625 ms, 30 bits are
distributed among the 16 LSFs. They are divided into three subgroups—13 bits (for
the first 8 LSFs), 9 bits (for the middle 4 LSFs) and 8 bits (for the last 4 LSFs). A
training data of LSF vectors is used to construct three different optimal (at least in
the local sense) codebook sets using the Linde-Buzo-Gray (LBG) algorithm [109].

During the transmission phase, an unquantized LSF vector is compared with the
codebook entries for the LSF vectors. The algorithm chooses that codebook vector
which minimizes a weighted-Euclidean LSF distance measure where the weighting
factor considers the frequency sensitivity and also the LSF positions. A nested search
technique is followed with priority given to the first LSF subgroup where most of the
perceptual information prevails. The optimal first vector is combined with the second
LSF codebeak entries to yield the second LSF vector; and finally, the optimal first
and second vectors are combined with the third LSF codebook entries to generate the
overall LSF vector. With a transmission of 30 bits per frame and an update rate of
64 Hz, the operating rate for the short-term predictor is 1,920 bits/sec.
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6.4.2 Long-term Prediction with Fractional Delays

The long-term linear predictor parameters are the pitch coefficient and the pitch lag.
The pitch coefficient is a scaling factor related to the degree of waveform periodicity.
It is zero for a signal without a periodic structure and is approximately one for steady-
state voiced speech. The pitch lag tends to vary smoothly in the voiced segments with
orly occasional departure from the smooth trajectory [110]. However, in the unvoiced
segments, the pitch lag tends to jump around. To avoid the problem of locking onto
the correct pitch during the transition from silence to voiced speech, a good pitch

delay resolution should be maintained at all times during the anzlysis and synthesis
stages of the CELP coder.

The pitch coefficient values may be positive or negative. In general, the negative
values tend to occur in the speech regions with low energy and the large positive values
tend to occur in the transition regions (silence to speech). A restriction on the pitch
period to be integer multiples of the sampling interval results in the partial destruction
of the harmonic structure, especially in the high frequency regions. To increase the
temporal resolution, non-integer (fractional) pitch lag values can be used. For this
purpose, a multitap or a pseudo-multitap pitch prediction filter [111] can also be
used. However, in this coder, a single-tap pitch predictor with fractional lag values is
adopted. This is implemented by the use of interpolation and polyphase filters [112].

The pitch lag in wideband speech ranges from 40 to 320 samples with some
delays occuring more often than others. With the use of 38,400 pitch subframes
of 3.125 ms (five subframes in a formant frame of 15.625 ms) each, a pitch delay
distribution is generated. Based on this, a nonuniform distribution of non-integer
delays is set up; the highest resolution is given to the pitch lags in the range of 71 to
100 while the lowest resolution is given to the end of the lag range. For each subframe,
the pitch gain is represented by 4 bits whereas the pitch lag by 10 bits. Thus, with
an update rate of 320 Hz, the pitch parameters altogether require 4,480 bits/sec.

6.4.3 Residual Signal Codebook

The residual signal codebook is filled up with codevectors containing sparse ternary
elements. These excitations are generated by center-clipping and using a zero-mean
unit-variance Gaussian sequence. The center-clipping threshold is set to 1.2 in order
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to satisfy a specific percent (75%) of sparsity inside the vector. All values between
+1.2 and —1.2 in the Gaussian distribution are set to 0, values greater than +1.2
are set to +1i, and values less than —1.2 are set to —1. The number of codewords
is set to 1,024 requiring 10 bits for each subframe of 3.125 ms. A 4 bit differential
quaniizer with a leaky predictor is used to code the differences in successive subframe
magnitudes and an extra bit to code the sign. Thus, 4,800 bits/sec are required for
residual signal representation with an update rate of 320 Haz.

6.5 Perceptual Noise Weighting

At a low bit-rate, the mean-squared error criterion between the original and the recon-
structed speech has been found to provide an unsatisfactory result. This indicates a
requirement to shape the noise based on the auditory masking phenomenon in speech
perception. In noise spectral shaping, the noise components at certain frequencies
can only be diminished at the price of increased noise components at some other
frequencies. At low bit-rates where the average noise level is quite high, it is difficult,
if not impossible, to maintain noise below the masking threshold at all frequencies.
The noise components in spectral valleys may exceed the threshold; nonetheless, they
can be attenuated substantially by a postfilter used at the last stage of the decoding
process. On the other hand, the postfiltering operation introduces distortion in the
speech signal to some degree [113]. In this coder, the filter paramcters and the code-
book entries are selected by minimizing a noise-weighted mean square error and/or
using noise shaping filters. This section discusses three perceptually-weighted filtering
schemes-—(i) a simple noise weighting filter, (i) a codebook shaping filter and (iii) an
enhanced noise weighting filter. Although no postfilter is used here, it could be used
with any of the above schemes.
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Figure 6.3: Noise weighting with 4 = 0.75.
6.5.1 Simple Noise Weighting

This auditory masking scheme is accomplished by minimizing a weighted mean-square
error with a noise shaping filter W(z) defined as

P
1~ a,-z“'
_ AR _ ;
W(z) = A7) - = —, (6.10)
1—> ay'=z"

where A(z) is the formant analysis filter with the predictor order p. The value of
v (0 < 4 < 1) is determined by the degree desired to de-emphasize the formant
regions in the error spectrum. Decreasing the value of 4 moves the poles of the filter
1/A(z/~) inward and therefore increases the bandwidth of the poles of W(z). A good
value of v is 0.75 [9]. Fig. 6.3 shows the effect of using such a noise weighting filter in
the reconstruction process of the input speech. The resulting noise level is no longer
flat, but has the spectral shape of W=1(z) and therefore is boosted in the formant
peaks and attenuated in the formant valleys.
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Figure 6.4: Noise level using codebook shaping filter.

6.5.2 Codebook Shaping Filter

In the second approach, an excitation codebook is cascaded with a shaping filter F(z)
to form a modified codebook structure. The filter F(z), defined as [114]

1y Alz/m)

F(z) = (1—pz ‘)m, (6.11)
is dynamically changed to control the statistical properties of the codebook in time
and in frequency. The parameters 4y and +; are de-emphasizing constants while p
is a parameter compensating for the spectral tilt. A differencer uses g = 1, but an
optimum preemphasis filter which maximizes the output spectral flatness measure has
o= E%}, where r(n) represents the autocorrelation sequence for the excitation signal
before shaping. For unvoiced sounds, this fraction is relatively small and the effect
of the preemphasis filter becomes negligible. On the other hand, for veiced sounds

where (1) is very close to r(0), the preemphasis filter acts almost as a differencer.

6.5.3 Enhanced Noise Weighting

The prime disadvantage of a simple noise weighting filter W(z) is inadequate bal-
ancing of low and high frequency components due to interdependency of the tilt and

39



— 1/W(2)

—= I(P@)W(2))

Amplitude (dB) >

0 1000 2000 3000 4000 5000 6000 7000 800
Frequency (Hz) -->

Figure 6.5: Performance of the weighting filter with N =2 and 6 = 0.7.

formant parameters. An accurate modeling of one requires a sacrifice in modeling the
other. -An enhanced noise weighting technique [115] introduces a decoupling factor
that results in an independent control of the tilt with respect to the formants. In

general; the corresponding weighting filter is implemented as

L Wa(a) = W(E)P() = A’("S}y) 1 - (6.12)
w3 1+2Pk62

k=1

where the coefficients p, are determined by an LPC analysis on the first (N + 1)
correlation coefficients of the inverse filter A(z) and the parameter é controls the
spectral tilt.

6.6 Performance Evaluation

We kept the wideband coder architecture in tact and applied different noise weighting
schemes. In this second application, the primary contribution of this author, was in
the performance evaluation of these schemes by the introduced objective measures
[116]. The following seven configurations were used for the evaluation purpose.

1. no weighting,
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2. simple noise weighting with W(z),

3. slirmple noise weighting with W(z) znd also codebook shaping with F(z),

4. enhanced noise weighting with Wy(z),

5. enhanced noise weighting with W,(2),

6. enhanced noise weighting with W,(z) and also codebook shaping with F'(z) and

7. enhanced noise weighting with W,(z) and codebook shaping with F(z).

For the filter W(z), the parameter  was chosen to be 0.75. The filter F(z) used

parameters 7, = 0.80, 7, = 0.95 and an optimum g. The parameter § for Wy(z) was
taken to be 0.5 whereas that for Wg'(z) was considered to be (.7.

“Config. SNRy (B) CDI CHM-TC
] 16.06 2731 _ 362
. 1289  2.684 284

2

3 11.00 2.640 247
4 11.90 = 2.543 183
: :
il

11.59 2518 166
9.69 2.606 212
9.95 2.623 2925

-1

Table 6.1: Distortion mcasures for different noise weighting configurations (the seg-
mental SNR values (SNmeg), the cochlear discrimination information measure values
with a =1 (CDI) and the cochlear hidden Markovian measure with three channels
(CHM-TC) are tabulated) -

For this part of the work with wideband speech, the cochlear model was extended
to have eighty-five neural channel outputs. The transfer functions corresponding to all
the filters are provided in [§1]. It is worth mentioning that although sixty-four neural
channels werc needed to cover from 0 to 4,000 Hz, only an additional twenty-one _
channels were sufficient for covering the 4,000 to 8,000 Hz band. This is attributed
to the fact that the center frequencies of the stages corresponding‘to these neural
channels are logarithmically and not linearly placed.
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By evaluating the coded signal quality with the CDI and CHM measures, the
effectiveness of the perceptual weighting schemes described in the previous section
were assessed. The results with the SNRy, the CDI (with & = 1) and the CHM

measures are presented in Table 6.1. These experimental results indicate the following
noints.

(a) As has been discussed earlier, the SNR,.; measure docs not perform well
as an objective criterion. . tronically, we observe here that the SNR,e with the first
configuration (no noise weighting filter) is highest whereas the perceptual quality

measured subjectively as well as by the CDI and CHM measures is lowest among the
others. |

(b) The use of a codebook shaping filter F'(z) in combination with a simple
noise weighting filter W(z) yields better results in the pereeptual domain than the
configuration (1) with no shapiag filter. This is due to appropriate shaping of the
excitatiun codevectors.

_ (c) The two-pcle weighting filter W}{z) exhibits better performance than the
'three-pole'we_ightingr"'ﬂlter Wi(z). The three-pole filter effectively boosts the high
frequencies near the half sampling rate due to the presence of a real pole. However,
this is achieved at the cust of a broadband increase in the level of distortion at lower
frequencies. By getting rid of the real pole, the two-pole filter has been akle to attain
low level of distortion at lower {frequencies while maintaining an acceptable level of

high frequency noise.

(d) Among the configurations tested, the enhanced noise weighting scheme with
two-pole filter (i.e., the choice (5)) appears to be the best one. A pausible explanation
for such a good performance of this configuration is that the weighting filter controls
the tilt as well as the formant parameteis efficiently.

(e) We note that an integration of codebook shaping filter along with the en-
kanced noise weighting scheme (two or three poles), in fact, degrades the pereeptual

quality of the syntheb'zed speech compared to the one generatcd by using only the
enhanced noise welghtmg technique.

(f) In Table 6.1, we observe that the CDI and CIIM measures are consistent
with each other in ordering the coded signals..
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(g) For this part of the work, we did not conduct an informal listening test with
all the twelve listeners; instead, only two of us (i.e., myself and Abboud) made a
cursory subjective assessment. Qur assessments agreed with the objective measure
results. Despite the agreement made by the concerned objective measures about the
relative superiority of the configuration (6) over (7), subjectively we assessed them
to be of equal quality.

6.7 Summary

In this chapter, we have sketched applications of the proposed distortion measures in
the analysis of speech coder components. Using the CDI measure form, the output
space of the cochlear model was examined to estimate the pitch frequency. We carried
out, although not presented here, some preliminary work for formant estimation [87]
similar to the work presented in [107]. In another application, several noise weighting
schemes were used in a wideband speech coder. As a coordinated work with K.
Abboud, the perceptual impacts of these techniques were studied with the CDI and
CHM measures. We believe that this type of analysis could help the designer to study
any particular section of the speech coder, adopt a new strategy and/or redistribute
the available bils in a more efficient manner.
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Chapter 7

Concluding Remarks

In this dissertation, we have proposed two auditory distortion measures and investi-
gated their performance in speech coder analysis and evaluation. Section 7.1 summa-
rizes the key points of our work while Section 7.2 provides a future research direction

related to our work.

7.1 Summary of Our Work

In Chapter 1, we have given a brief overview of speech coding techniques. The cod-
ing algorithms vary in the selection of features, in the parametric representation of
features, in the quantization of parameters and in the computation of distortion. We
have explained the importance of deriving an objective quality measure for speech
coding. A ‘good’ measure could be used in the evaluation of speech coder perfor-
mance, in the computation of rate-distortion function, in the analysis of speech coder
components and also in the design of speech coder. In this dissertation, our purpose
has been to introduce and investigate auditory distortion measures for coded specch.

In Chapter 2, we have reviewed some of the subjective and objective quality
measures used in the speech coding area. Among the existing subjective measures,
the MOS and DAM scores are more popular than the others. The time-domain
objective measures such as the SNR and the segmental SNR are used widely for their
simplicity even though they do not correlate well with subjective measures. We have
studied numerous parametric distortion measures (e.g., the log likelihood ratio, the
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cepstral distance) based on all-pole speech synthesis models. We have also discussed
two recently proposed psychoacoustically-motivated objective measures, namely the
information index and the Bark spectral distance.

In this work, we have introduced two types of percentual distortion measures
for the purpose of speech coder evaluation. Towards this end, we have represented
the speech signal onto a perceptual-domain using an auditory model. In Chapter 3,
we have described the mechanism of auditory system and also analyzed some of
the important psychoacoustic observations related to the speech perception. Among
various functional auditory models, we have chosen Lyon’s cochlear model. The
outer-and-middle ear filter is modeled by a simple high-pass filter. The band-pass
characteristics of the basilar membrane in the inner ear (cochlea) are simulated by
sixty-four combinations of second-order notch filters and resonators. The activitics of
the inner hair cells are mimicked by half-wave rectification process while those of the
outer hair cells are imitated by the automatic gain control stages. Unlike many other
models, Lyon’s auditory model considers the temporal as well as spectral masking
effects. The final representation of the cochlear model output is the probability-of-
firing information in the neural channels at the clock times.

In Chapter 4, we have introduced and studied a distortion measure, namely the
cochlear discrimination information (CDI} measure, which compares the neural-firing
information corresponding to an original speech and its coded version in a cross-
entropic sense. An insufficient knowledge about the exact neural firing processes has
prompted us to use the probabilistic information of firing/non-firing in the compar-
ison. We have investigated several variants of the CDI measure based on different
types of entropy, the associated parameters and also the cross-entropic measure form.
The effects of gain changes and sample delays etc. have also been studied. The di-
rected divergence measure form based on the Rényi-Shannon entropy has shown very
good performance by conforming strongly with informal subjective test in terms of
ranking coded speech from six different coders. Subsequently, a rate-distortion anal-
ysis for speech coder has also been carried out with this measure. We have evaluated
the rate-distortion function directly using the Blahut algorithm and also determined
performances of four speech coders. We have observed that there is ample scope for
improving the coded speech quality at a specified bit-rate.

We have suggested another approach towards formulating a perceptual distor-
tion measure in Chapter 5. This method has used hidden Markovian model in an
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effort to capture the basic firing/non-firing process operative in the brain. We have
considered two-state fully-connected model of order one for each neural channel; the
two states of the model are corresponding to the firing and non-firing events. These
models have been assumed to be stationary over a fixed duration (in our work, 480
sample times). The model parameters have been determined based on the PD ob-
servations corresponding to the original signal. The Baum-Welch optimization tech-
nique has been applied for the parameter estimation. Finally, the PD representations
of the coded speech have been passed through the respective models so as to calcu-
late the corresponding likelihood probabilities. The logarithms of these probability
scores have been added and negated to give the cochlear hidden Markovian (CHM)
distortion measure. This measure has shown promise by agreeing with subjective

evaluation results to a large extent and also by demonstrating its robustness against
sample delays.

Chapter 6 has outlined some of the possible applications of these measures
in the analysis of speech coder components. The present-day analysis-by-synthesis
medium or low bit-rate coders use several filters and codebooks. Keeping all but
one component intact and having various configurations for the specific component
under test, several coded versions could be synthesized for a speech utterance. As a
first application, an algorithm for pitch frequency estimation has been suggested. This
algorithm has involved examining the output space of the cochlear model with the CDI
measure form and integrating information across channels. As a second application,
different noise weighting schemes have been included in a wideband speech coder
and their effect on performance has been evaluated by the CDI and CHM measures.
An enhanced noise weighting scheme which controls the tilt as well as the formant

parameters efficiently shows the best performance among the configurations.

While converting the time-domain speech signal into its corresponding PD rep-
resentation by an auditory model, the resonating nature of the cochlea, the perceptual
nonlinearity as well as the temporal and spectral masking effects have been consid-
ered. An inclusion of the spectral masking feature has allowed the probability-of-firing
information in a particular neural channel at a specific clock time to depend not only
on the strength of the gain-controlled signal of that channel but also on those of the
other channels. Similarly, the same probability-of-firing information depends not only
on the strength of the gain-controlled signal at that clock time but also on those at the
other times. Thus, the PD representation for speech signal has exploited reasonably
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the interdependencies at the auditory periphery level.

In the CDI measure, we have compared element-by-element of the cochleagram
matrices (whose elements are the probability-of-firing information) for the original
and the coded speech signals. However, this measure has been found to be not very
robust against the coder delays. Thus, estimating and removing time-delay between
the original and the coded speech are, in some sense, necessary first steps in applying
the CDI measure. The CHM 1aeasure which has considered the temporal ordering
in the firing pattern has shown a greater robustness against the coder delays. An
explicit removal of the coder delays is not a necessity when the delays are confined to
just a few samples. We believe that, even if the original and the coded speech signals
are properly aligned, the CHM measure methodology is more powerful in the sense
that it utilizes the contextual information present in the neural firing patterns.

7.2 Future Research Directicns

In this section, we provide a future research direction by outlining some of the issues
involved to improve this work.

7.2.1 Improvement of Model Structure

Lyon’s auditory model which we have used in our work is, no doubt, a simplifica-
tion of the complex behavior of the cochlea. The main simplification is in separating
the interacting behaviors of the basilar membrane and the organ of Corti into non-
interacting models—simple time-invariant filtering followed by a detection nonlinear-
ity and an automatic gain control mechanism. A further refinement (e.g., [117]) of
the model structure may improve the performance of the distortion measure. Some
of the aspects for refinement are—fine-tuning the model parameters (e.g., Qear, feb)s
dynamically adjusting the (Jear value, making the model structure to be two- or three-
dimensional, incorporating the binaural feature etc. Many of these aspects may be
important for other reasons such as localization of sound source etc. and thus may
not contribute significantly in the distortion measure for coded speech. If we want
to create a more biology-like condition by having a large number of neurons, it may

become necessary to use a massively-parallel computer architecture based on ‘connec-
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tionist’ model or a neural network architecture based on Kohonen's self-organizing
feature map [118].

7.2.2 Reduction of Computational Complexity

It takes approximately seventy times (run on a SUN-SLC workstation) the real time
system to provide the perceptual-domain representation for a speech signal. However,
most of the signal processing tasks (except the coupling stages) may be performed
in parallel to make the operation real-time. Advances in VLSI and signal processing
technology have resuited in the fabrication of an application-specific integrated circuit
(ASIC) for cochlea {119]. An application of such an ASIC would make the processing
very fast compared to the software simulation.

7.2.3 Administration of Formal Subjective Test

An objective measure is considered to be useful if its result comports with the result
of a formal subjective test (generally, the MOS). A regression analysis is usually
performed to determine an analytic relationship between the objective measures and
the MOS scores. Since different coded signals with accompanying MOS scores were
not available in our academic environment, we had to rely on the results of informal
test with twelve listeners. As a consequence of this, we have not carried out any
regression analysis because finding a relationship between our objective measure and
any such informal listening test result would only be misleading. With a limited time-
duration for doctoral work, we had to make a choice between the two—(i) confining
to the CDI measure approach and pursuing a more rigorous testing, or (ii} along with
the CDI measure, addressing the issues of temporal ordering in the firing pattern and
robustness of the measure against coder delays. The second option appealed to us.
Although our experimental results show enough promise, correlation with a formal
subjective test result is needed to validate our approach.

In a speech coder standardization process, the perceptual qualities of several
coders are evlauated by subjective testing. Often, the coders are assessed under
different test conditions. For example, the Telecommunications Industries Associa-
tion (TIA) is currently setting up a 6.5 kbps speech coder standard (half-rate North
American standard} for mobile communication purposes [120]. From a large pool of
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candidate coders, they have selected nine of them. All these coders are being tested
subjectively under fourteen different conditions (e.g., channel conditions, background
noise, tandemming). Such a testing procedure involves a great deal of money and
also consumes a large amount of time. We believe that our measures could, at least,
be used in bringing down the number of candidate coders to a few for final subjective
assessment. This would substantially reduce the amount of {ime and money involved
for testing.

7.2.4 Derivation of Firing Pattern

For continuous speech, its perception depends not only on the acoustic cues, but
also on the semantic cues {the meaning of preceding and following words and the
subject matter), the syntactic cues (grammatical rules) and the circumstantial cues
(speaker identity, listening environment etc.). It is quite likely that the processing
of speech does not occur in a hierarchical way from one level to the next and that
there are extensive links between levels [43]. However, the speech coders typically
do not produce distortions that are specifically related to the semantic, syntactic
or circumstantial cues. Therefore, it is reasonable to hypothesize that the proposed
measures are, by and large, sufficient from this perspective.

‘The CDI measure compares the probability-of-firing information whereas the
CHM measure compares implicitly the neural firing patterns for the original and the
coded signals. With further progress in psychoacoustic research, it may be possible
to derive the actual neural firing patterns from the cochlear model outputs by a
suitable trigger mechanism [121] and compare them explicitly for the original and
coded signals. Since all the information related to the speech perception are conveyed
to the brain only as a sequence of neural firings through neural fibers, in future, an
explicit comparison of these patterns may become an effective way for devising a
distortion measure.

7.2.5 Application of Measures in Speech Coding

The present day state-of-the-art low bit-rate speech coders generally use, in the closed-
loop analysis, a mean square error criterion with some form of perceptual weighting
filter. For an use of the introduced measures in a speech coding process, the cochlear
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model transformation has to be expressed in a more analytically tractable form. Also,
because of the temporal masking effects, speech coding with such measures would
imply additional coding delays. Motivated by the in-synchrony characteristics of the
timing information in the auditory nerve firing patterns, in [122], the in-synchrony-
bands spectrum has been used in an analysis/synthesis system. In [123], wavelet func-
tions have been used to incorporate the multiresolution signal nature at the cochlea
and represent the speech signal onto a joint time-frequency domain. Recent efforts
(e.g., [124, 125]) have been made to propose empirical but perceptually advantageous
time-frequency frameworks for speech processing. Further research is neccssary to
express cochlear functions, preserving all the major perceptual events, in a compact
mathematical form and apply it in the speech coding process.

7.3 Epilog

In this dissertation, our primary contributions are—(i) reviewing the existing subjec-
tive and objective distortion measures, (i1) studying the auditory system and various
cochlear models, (iii) applying Lyon’s cochlear model for auditory representation of
speech, (iv) devising a cochlear discrimination information measure and evaluating
speech coder performance with it, (v) pursuing a rate-distortion analysis with this
measure for speech coding, (vi) formulating a cochlear hidden Markovian measure
and assessing speech coder quality with it, (vii) suggesting an algorithm for pitch
frequency estimation from the cochlear model outputs, (viii) comparing different per-
ceptual weighting strategies adopted in low bit-rate speech coders and (ix) providing
a future research direction in the context of our work.

Determining a ‘good’ distortion measure for speech coding is an extremely dif-
ficult problem due to its very basic nature. At the same time, finding such a measure
would surely have a significant impact on the speech coding and coder evaluation
procedures. Qur objective has never been to give a ‘final’ answer for this complex
problem, rather we have tried to take an incremental step towards the solution. With
the progress of time, we expect an improvement of the cochlear model structure, a
determination of an analytically tractable expression for it and also a reduction in
the computational complexity. However, the basic framework of comparing the neural
firing information for original and coded signal could still be maintained.
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Since the work of von Békésy, the auditory system has been studied from differ-
eut perspectives. Some of these research findings are well-accepted in the literature.
On the other side, since the pioneering work of Shannon, the field of information
theory has grown substantially. Through the proposed work of distortion measures
for coded speech, we have made an endeavor to use a physiological model for auditory

processing and apply information-processing techniques from information theory.
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Appendix A

It is known [70, T1] that Hu(P) is strictly concave with respect to P for 0 < a < 1,
but its convexity or concavity depends on J for & > 1. In this appendix, we show
that for J = 2 (i.e., with P = {p1, p2}), (a) H.(P) is strictly concave with respect to

P for 0 < a €2 and (b) for every a > 2, H,(P) is neither convex nor concave with
respect to P.

It is shown in [71] that the H,(P) is concave for 0 < a < 1. So, to prove (a),
we have to show that for J = 2, the concavity is also satisfied for 1 < a < 2. We
demonstrate this by showing that the second derivative of H,(p, (1 —p)) with respect
to P is negative in the range 1 < a < 2.

1
H,(P) = mbg(zv?+p3‘), where pa =1—py, pi,p220. (A1)

CHy(P) _ _a (o- D} +p5)(pi™" +p57°) — alpi ™" — p57")?
dpt (1-a) (p} +p5)?

o (P77p ") fo — (F + P5)(P1 " + p2 %)}
(1—a) (p¥ + p3)-?
It is noted that for a > 1,

(A.2)

(P +72) < (P +p)* =1 (A3)
Furthermore, p, = pz = 1/2 maximizes the expression (p?~+p3~*) for 1 < a < 2. We
note that & > (3)'7° for 1 < a £ 2. Additionally, we observe that the denominator

factor (1 — @) of (A.2) is negative for & > 1. Thus, H.(P) is proved to be concave in
the range 1 < a < 2.

Now, we investigate the concavity for J = 2 and « > 2. With sufficiently small
& > 0 and p; = § or p2 = 6, we obtain

d?Hu(P)
d_p¥ > 0, (A4)
On the other hand, with p; = ps = 1/2, we have
d* Ho(P)
““*a;)—%'_ = —4a < 0. (A5)

From (A.4) and (A.5), we observe that for J = 2 and a > 2, H,(P) is neither convex
nor concave.
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Appendix B

In this appendix, we show that (a) the directed divergence measure based on the
Rényi-Shannon entropy is non-negative and (b} it is additive for random measure-
ments that are independent under both probability distributions. For showing the
part (a), the inequality logz > 1 ~ (1/z) is used.

(a) Non-negativity of the measure:

) 2 2
Dy(Pu; Qu) = ZPJH log (Z’ ) 2 ijkl ( p::) =3 pir—_ gir =0. (B.1)
J

=1 7=1 i=1 =1

Do(Po: 1 2. P 5 L 1 0
of kl:le)=a_110g Z o=l | = Ty 1—"‘—5—q , a¥l. (B.2)

2 Pkt
j=1 Gkt gk
1=1 q;kl

To show that D,{(Pu; @) > 0, we need to show that

2 g2
Yo(Pri; Qu) = D p;’fll <1 for 0<a<]l

=1 ikt

>1 for a>1. (B.3)

We note that pju = qu and par = gom maximizes Yo(Pu;Qu) for 0 € a < 1
and minimizes it for & > 1. Thus, the Y,(Py; Qi) conditions of (B.3) are met and
hence the non-negativity of the divergence measure (the Rényi-Shannon type) is also
satisfied. The measure becomes equal to zero if and only if the distributions Py and
2+ become the same.

(b) Addivitivity of the measure: With w € £ x X and m = nN, we obtain

DI il(ﬁ ij) Zlogp’“’]

f1=1 jz=1 im w=1 w=1

Di(P; Q)

= {Zp,, log (p") 2 Pi i Pim

=1 U1/ j=1 Jm=1

2
+ Zp.u anlog (PJ;) Z P

=1 fa=1 Jm=1

n=l j2=1 im=1 m

2 2 2 .
+ -+ ijl ZPJ’?"' E pimlog (?—M)}
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m 2 ;i
- z{z pi. log (—)}
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leC kek

Similarly, for @ # 1, a > 0, we get
w=1 P,
DuPiQ) = igylo 2 3 ()
( Ji=1 jm=1 w—l q.?w

1 2 P LI L
= og { (0 2} (3 Z2p) oo 3o
(C! - 1) { (J:Z=:1 i 1) (§ qJ'z .imz“-*-l Tim !

w=1

= 3.3 Da(Pu; Qui) (B.5)
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Appendix C

The reference audio files were obtained by digitally filtering the speech and sampling
it at a rate of 8,000 Hz. The digital filter (255 tap FIR) applied was designed to
be unity between 0 and 3,200 Hz. For the purpose of speech coder evaluation, the
following test sentences [male (M) and female (F) voices] were used.

1. Add the sum to the product of these three (M1, Fl)
2. Cats and dogs each hate the other (M2, F2).

3. Oak is strong and also gives shade (M3, F3).

4. Open the crate but don’t break the glass (M4, F1).
5. The pipe began to rust while new (M5, F5).

6. Thieves who rob friends deserve jail (M6, F6).
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'Appendix D

A beta density function is given as

(d+ f+2)
Td+ I + 1)|Id(1 —a) (D-1)

In this appendix, we prove that this function satisfies the log-concavity condition,

b(z) =

1.e., the logarithm of the function is concave. Taking logarithm of {D.1), we get,

¢(z) = logT(d+f+2)—logT(d+1)—logI'(f +1)
+dlogz + flog(l — z). (D.2)

To show the log-concavity nature of (D.1), we need to show that ¢(z) is concave w.r.t.
z. Defining X = (1 — }), we write
Az +Az") — Ad(z) — Xg(z")
= dilog(Az +Az") + fAlog(l — Az’ —Az") + dX log(Az + Az")
+fXlog(l — Xz’ —Az") —drlogz — fAlog(l —z')
—dXlogz” ~ fXlog(l—z")

= d\log (——-—-’\"“" :’\ )+fAl g(—#~—1"1\‘”_;,’\$ )

n X 1_ J__'/-\- "
+dXlog (ﬁ:—)ﬂz\l (%)

J ]__..m'

dX 1—-—--—__— R
(-imw) P ()
. z” 1—2"

—-—-_ Ml - ore——
+8 (1= ) + A (1 - )
1"

=d_d(,\ + )H f(( )+A(1-—:z:))

Y

Az’ + Az — Az’ + Az"
= 0. (D.3)

Since it has been shown that ¢(Az’ +Az") > Aé(z') — Aé(z"), the beta pdf of (D.1)
is proven to be log-concave.
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Appendix E

In our work, an auxiliary function F(X, '} is considered as the basis for the maximum
likelihood optimization procedure. The Baum-Welch (re)estimation procedure is used
for determining different model parameters. Separability of the individual auxiliary
functions has made this procedure elegant and reduced the complexity. Here, we
write the expressions for individual auxiliary functions. We can rewrite (5.25) as

F(A, A,) = Fr(A,ﬂ-') + z Fﬂl’(A’ {a:J}JEN)
ieN

+ Z Z Fb(A! b:m) + Z FC-‘(A'I {C:'m}mEML)’ (E'l)
tEN mEM iEN
where

F(Ar) = 3 3 PO,Q,M|X)logn,,

QeNT MeMT

= Y 3 PO,q=S;,M|)logm,, (E.2)
€N MemT

Fai(A, {a:'j}jEN) = Z Z P(0O,Q, M) Z log a;,q,+,6(‘1t - 5i)

QENT MeMT teT+

= > 3 X P(O,g=S,q41=S;M|)\logay, (E.3)
JEN 1eT+ MeMT

F(Abm) = 3 3 P(0,Q,M|A). X logh,,, (0)6(q — S:)6(m; — m)
QENT MeMT teT+
= Y P(O,q = Si,m =m|A)log b, (0 (E.4)
teT+
and

FaM {Cimtmerm,) = 3 3 P(O,Q,M|N) 3 logcy,m,6(a — i)

QeNT MeMT teT+
= Y X P(O,q=S;,m=m|\)logc,, (E.5)
meEMp teT+

where ¢ in the above expressions is the Kronecker delta function.
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