VOLUME 63, NUMBER 16

PHYSICAL REVIEW LETTERS

16 OCTOBER 1989

Roughening Dynamics of Systems with Latent Heat
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We study the dynamics of the roughening of a surface between two coexisting phases using a novel
Monte Carlo algorithm. Our model Hamiltonian explicitly contains a latent heat whose value directly
influences the growth law. We observe a crossover between short-wavelength, short-time behavior con-
trolled by the surface tension and long-wavelength, long-time behavior controlled by the diffusion of
heat. The results are in excellent agreement with recent theoretical predictions.

PACS numbers: 68.10.—m, 82.65.Dp

The characteristics of interfaces such as vapor-liquid
or liquid-solid boundaries are of interest to those seeking
to understand phenomenon like dendritic instabilities,
crystal growth, and nucleation. Of primary importance
is the equilibrium state of a stable interface which is
“rough” at temperatures above the roughening transition
temperature 7, and smooth or “faceted” below.! For
systems in the Ising universality class, the width of the
interface in 3D and in the rough phase depends on the
logarithm of the interface length, whereas in 2D, where
T, is exactly zero, the roughening depends on the square
root of the length.

The relaxation of perturbed interfaces to their equilib-
rium roughened state is a simple example of a dynamical
process. In particular, the growth of thermal fluctua-
tions on an initially flat interface can be used to charac-
terize the relaxation of various types of dynamical sys-
tems which share common static properties but differ in
their dynamics.?

Three such systems are models A4, B, and C of critical
dynamics.? The behavior of models 4 and B are defined
by their respective nonconservation and conservation of
the order parameter. Their dynamics have been exam-
ined theoretically and by simulation and are well under-
stood:*> In addition, there is considerable literature on
the dynamics of their interfaces.®"'® For model C, in-
terest has focused on crossover behavior of the growth
exponents, which is induced by the coupling of an uncon-
served order parameter to a conserved field. However,
there are relatively few results.>®!! Of these, the most
important is the recent work of Zia, Bausch, Janssen,
and Dohm,? which relates the crossover to an asymmetry
between two bulk phases, showing that it arises from a
transition between uncoupled rapid growth at short
length scales and slower growth of fluctuations at long
length scales. The importance of model C is also ap-
parent in recent studies of the dynamics of unstable in-
terfaces in Ising-type systems'? where it provides an
ideal forum for examining dynamics which are heat-dif-
fusion dependent and involve first-order phase transi-
tions.

In this Letter we present the first Monte Carlo simula-
tions of the roughening of an interface constrained by
model-C dynamics. We observe the crossover from rapid
early growth to slower late-time behavior, and show that
it depends upon the latent heat of our model, in agree-
ment with theoretical predictions. The growth laws that
we observe are precisely those required by theory.

Our novel Monte Carlo algorithm, which combines
elements of the microcanonical and canonical schemes,
has been described in a number of recent publications
which examine equilibrium and nonequilibrium steady-
state configurations of various Ising-type systems.'%!3
Consequently, it will be mentioned only briefly here.
The evolution of an Ising-type spin system is governed by
one or more Maxwell “demons.” Each demon is respon-
sible for administering the rules of spin flip for a subset
of the spin population, thus acting as a heat transport
mechanism, and either measuring or controlling the local
temperature. In the present application, for a system of
N x M spins, coupled to NxM demons, the 2N demons
on the free boundaries of the system are used to set the
temperature, and the spins in the bulk each have access
to their own demons and to the demons of their nearest
neighbors. Since the total energy of the combined
demon and spin system is conserved while the average
spin magnetization (the order parameter) is noncon-
served, this is model C.

The algorithm is employed here to simulate the relax-
ation to equilibrium of interfaces in a 2D ferromagnetic
Ising-type model. The basic Ising Hamiltonian is

H = --Jzaiaj -AEG,- .
p 7

where J is the spin coupling, the interactions are nearest
neighbor, the spins are o; = * 1, and A represents a uni-
form external field. In the absence of A the second-order
phase transition is at 7, == 2.269J, but in order to induce
a first-order transition and a stable region of phase coex-
istence, the upper spin state is given a degeneracy &
> 1.'* This introduces a latent heat A which is of order
A, and defines the melting temperature as T, =24/ Iné.
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Consequently, A can be increased at constant T, by in-
creasing & and A in the appropriate manner.

The initial spin state is prepared as two bulk phases
with an exactly flat interface between them. The demons
are prepared by randomly distributing the energy es-
timated to place them in thermal equilibrium with the
spins (i.e., at T),,). This is done is such a way as to mini-
mize the time taken for this equilibrium to be estab-
lished.!> The boundary conditions at the sides of the
spin system are periodic (the spin array is one dimen-
sional and arranged in a spiral of circumference NV and
height M). The top and bottom are maintained at con-
stant 7, =0.97 . with a Boltzmann-probability technique
identical to the standard Metropolis method. This
choice of T, permits a sufficiently fast relaxation for ob-
servation while avoiding the influence of critical fluctua-
tions: The thermal correlation length is approximately 5
lattice units. The spin degeneracy is varied over a range
of 1.0=<46=<5.0, with A therefore varying between 0
(Ref. 16) and 0.53J. The interfaces are subsequently al-
lowed to relax towards equilibrium, with time measured
in units of MCS, Monte Carlo steps per spin, such that
every spin site is visited once in each MCS.

The interface was defined as a single-valued function,
ignoring overhangs and bubbles in the bulk; in general,
this was a more-than-reasonable approximation since the
interface was always distinct and well behaved. The in-
terface width was defined as &2, =([&—(&)]1%). After
5000 MCS, the mean width of the interface was ~10
lattice units, while the average interface position
remained roughly constant (% 1 lattice unit) throughout
the run. Saturation of the roughening was observed in
systems smaller than N =512, and, consequently, the
system size was set at N =1024 and M =64, the initial
interface running parallel to the NV axis. Because of the
lack of self-averaging in the roughening behavior, it was
necessary to take an ensemble average of the growth of
interface fluctuations, and therefore of order 50 trials for
each value of § were made.

Figure 1 shows the growth of thermal fluctuations on a
typical interface for typical values of the system parame-
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FIG. 1. The evolution of the roughening on a typical inter-
face between coexisting phases. The system size is 1024 x 64,
but the vertical scale has been enhanced by a factor of 1.66 for
clarity. The interfaces are represented by a continuous trace;
those shown are for 1 =0, 100, and 5000 MCS with A=0.33J
and Ty =0.97..
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ters, and Fig. 2 shows the observed time dependence of
the interface width for A=0, 0.20J, 0.33J, and 0.53J.
Error bars are somewhat smaller than the symbol size.
The width was measured every 10 MCS, although for
clarity not all data points are shown, and the other sys-
tem quantities such as the magnetization, demon energy,
spin energy, demon temperature, etc., were monitored
every 100 MCS. The first 200 MCS were ignored as a
(pessimistic) estimate of the time taken for demons and
spins to come to equilibrium.

The width is expected to be of the form & s~ N*f(z/
N?), where f is a scaling function.'® Thus, when finite-
size effects are unimportant, &2, o 2/ ? where, from
equilibrium,7’8 one has 2y =3 —d =1. Power-law fits to
our data, see Fig. 2, reveal that systems with latent heats
greater than A~0.5J grow uniformly with z =3, while
strong transitional behavior is observed for the smaller
values of A. As A tends to zero, approaching the stan-
dard field-free Ising model, the growth rate is well de-
scribed by z =2,

Linear analysis provides the framework within which
to interpret these results. Within models A4, the growth
rate is well known to be z =2,7 and within model B the
rate is z =3.8 By contrast, the linearized solution of Zia
et al.? for model-C dynamics predicts a rate which con-
tains elements of both model 4 and B behavior. Zia et
al. describe a dispersion relation for overdamped surface
modes of the form w(q)~Aq>3/(A*+Bgq), where A in-
cludes factors describing the heat diffusion and the sur-
face tension, g is the wave number, and A, as before, is
the latent heat. The term Bg is the leading order of an
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FIG. 2. The ensemble-averaged growth of the mean inter-
face width for various values of the latent heat, A=0 (Ising),
0.20J, 0.33J, and 0.53J. The mean deviation from the average
is smaller than the symbol size in all cases. For clarity, not all
data points are shown. The dotted lines, given for comparison,
are exactly #'/2 and ¢!, In the case of the Ising results, the
data are shown with an offset of 2.53 (Ref. 17).
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expansion in g. At a critical ¢, g.~A?%/B, w(g) will
transit from g2 to ¢>; and thus, through simple dimen-
sional analysis, the growth law will change from z =2 to
z==3. From the linearized continuum equations for the
interface,'® the value of q. appears as the inverse of the
capillary length do-miCp/Az, where y is the surface
tension and C, is the specific heat.

This critical length scale is a manifestation of the rela-
tionship between the rate of generation of latent heat at
the interface and the rate of heat diffusion to the bulk
phases. If the rate of generation is very much larger
than the rate of heat diffusion (Bg/A%2< 1), the relaxa-
tion will be retarded by the coupling to the energy field
and grow with z =3. If Bqg/A?< 1, the neat produced or
absorbed at the interface will be efficiently diffused away
and the thermal fluctuations will grow unhindered with
z=2. Thus, the short-length-scale fluctuations will grow
freely at early times, giving a z =2 behavior which will
eventually be supplanted by z =3 when all of the fluctua-
tions shorter than g. have grown into their equilibrium
values and the long-length-scale relaxation dominates.
This will continue until the system saturates at its equi-
librium width (£ & NV).

The results presented in Fig. 2 are consistent with this
picture. The growth of fluctuations in the Ising model
(A=0) is observed to be within error of z=2 for the
duration of the trial. At A~0.5J, q. is of the order of
the lattice spacing: Consequently, the transition from
z =2 to z =3 occurs very early, well before the 200-MCS
limit, and the interface is observed to grow with z =3,
The intermediate systems show less well-defined but con-
sistent behavior. In both cases, there is apparently a
transition region between z =2 and z =3 behavior, but
the growth rates before and after the transition are not
distinctly defined. The data between ¢ =200 MCS and
the time of transition show z ~2, but the amount of data
involved is not sufficient for much precision. After the
transition, the growth rate approaches but does not reach
z~3. Both results are subject to improvement with
larger systems and longer runs.

To conclude, we have presented the results of simula-
tions of the roughening of flat interfaces, based on a nov-
el Monte Carlo technique. Our approach, which is espe-
cially useful for modeling situations involving heat dif-
fusion, provided the means to confirm the predictions of
recent theoretical work regarding model-C dynamics.
By controlling the strength of the latent heat of transi-
tion, the effect of coupling the interface and bulk modes
was demonstrated, showing the transition from model-
A-like to model-B-like behavior. In the future, with data
from further simulations, the dispersion relation w(q) of
the interface will be examined directly to study the tran-
sition from g2 to g3 behavior, making the correspon-
dence with theory even more precise.
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