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Abstract
Nonparametric kernel estimation of density and conditional mean is widely

used, but many of the pointwise and global asymptotic results for the estima-
tors are not available unless the density is continuous and appropriately smooth;
in kernel estimation for discrete-continuous cases smoothness is required for the
continuous variables. Non-smooth density and mass points in distributions arise
in various situations that are examined in empirical studies; some examples and
explanations are discussed in the paper. Generally, any distribution function
consists of absolutely continuous, discrete and singular components but only a
few special cases of nonparametric estimation involving singularity have been
examined in the literature and asymptotic theory under the general set-up has
not been developed. In this paper the asymptotic process for the kernel estima-
tor is examined by means of the generalized functions and generalized random
processes approach; it provides a uni�ed theory since density and its derivatives
can be de�ned as generalized functions for any distribution, including cases
with singular components. The limit process for the kernel estimator of density
is fully characterized in terms of a generalized Gaussian process. Asymptotic
results for the Nadaraya-Watson conditional mean estimator are also provided.
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1 Introduction

Many non- or semi-parametric estimators utilize nonparametric kernel estima-
tors of density. For asymptotic results for such estimators existence of density
and some smoothness properties of the density are routinely assumed. In much
of the literature that develops asymptotic results for estimators of conditional
mean, its derivative and average derivatives, assumptions on smoothness of the
density function as well as about smoothness of conditional mean are made
(see, e.g. Pagan and Ullah, 1999 for a review). However, while conditional
mean could often be smooth (even linear) and satisfy various types of condi-
tions on derivatives that follow from some theoretical model, there may be no
theoretical basis for assuming density smoothness for many variables. Lumpi-
ness and lack of smoothness in various processes and institutional set-ups can
lead to singularities in distributions of observables.
Singularities may manifest themselves as mass points such as those occur-

ring in various hazard functions in biomedical studies; in economics an example
is the empirical study by Green and Riddell, 1997 where mass points in the
hazard function for weeks worked occur due to unemployment insurance quali-
�cation rules. The following example illustrates why singularities may occur in
distributions of labor supply as well as earned income, disposable income and
the joint distribution of male, female labor supply as a result of a lump-sum
transfer; they may be represented by mass points but may also be of a more
complex nature. The example is highly simpli�ed; more general varying tax
schedules, bene�ts and transfers would lead to more complicated distributions
with singularities.
Example 1. Suppose that each household chooses to supply labor amount y in

the range 0 � y � y where y is random in the population with some distribution
function Fy(�) (possibly absolutely continuous with density fy(�)): Denote by
y� the supply of labor (= earned income) chosen and by c disposable income
(=consumption). The household maximizes c: If c(y) = y then y� = y: Suppose
that a lump-sum transfer occurs and as a result

c(y) =

�
y + t if y � yt;
y if y > yt:

(1)

Next, consider two cases.
Case a: Unanticipated transfer. Labor supply is still y� = y; but c(y�) is

given by (1); the distribution of disposable income then is such that the density
is discontinuous:

fc(c) =

8<: fy(c� t) if c � yt;
fy(c� t) + fy(c) if yt < c � yt + t;

fy(c) if c > yt + t:

Case b: Anticipated transfer. In this case supply of labor adjusts to maximize
c in (1):

y� =

�
y if y � yt or > yt + t;
yt if yt < y � yt + t:
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Then the distribution of labor supply (earned income) for the household is

Fy�(y
�) = Fy(y

� � t)I(y� < yt) +

[Fy(yt)� Fy(yt � t)]I(y� = yt) + Fy(y
�)I(y� > yt);

with indicator I(a) = 1 if a is true, 0 otherwise. This distribution has a mass
point. Consider the joint distribution of male ( y�m) and female ( y

�
f ) labour

supply where in a household we may have y� = y�m + y�f : In the joint distri-
bution Fy�m;y�f (y

�
m; y

�
f ) singularities can occur at isolated points as well as on

one-dimensional subsets; to specify such subsets one would need extra informa-
tion (e.g. on how decisions are made in the household).
Mathematical examples of singular measures include self-similar and fractal

measures (e.g. Lu, 1999, Frigyesi, 2004); some examples are presented in this
paper. Even though in such situations the use of kernel estimators could be
questionable, e.g. using a kernel estimator when density does not exist as an
ordinary function, the estimators may have been used in applied work either
because the problem was not taken into account (possibly as a result of it being
obscure or because of neglect on the part of the researcher), or because an
alternative is not available; thus determining the asymptotic properties could
be helpful in interpreting existing empirical work. Of course, if the structure
of the distribution is known in advance one can attempt to suit the estimator
to account for mass points, discontinuities in the density, reduced dimension
and the like. There are results on detecting singularities that occur in isolated
interior points or on the boundary such as change points in distribution functions
or conditional mean and peaks or cusps in density or hazard functions mostly
starting with Muller�s (1992) paper on detecting discontinuity in the conditional
mean function. A general test for singularities using kernel density estimators
was developed by Frigyesi and Hössjer (1998); thus kernel estimators provide
useful information for inference when the distribution may have singularities.
Generally a distribution function (or a probability measure) can be repre-

sented as a mixture of absolutely continuous, discrete and singular components.
Results on joint estimation in combined discrete-continuous cases (see, e.g. Ah-
mad and Cerrito, 1994, papers by Li and Racine, e.g. 2003) extend the area
of coverage of kernel density estimation to cases when the set of variables can
be partitioned into two subsets: one of variables in which the distribution is
absolutely continuous (and the density is at least twice continuously di¤eren-
tiable), and the other of discrete variables. This leaves out cases where the
density exists, but is not continuous for non-discrete variables (or even if con-
tinuous is not di¤erentiable in some of the continuous variables); the possibility
of a singular part is not considered. Lu (1999) discusses the Nadaraya-Watson
estimator of the conditional mean for a special class of singular measures that
are given by a local spherical measure of reduced dimension and derives the
limiting Gaussian distribution. However, no general local asymptotic results
for kernel density estimator or conditional mean estimator are available; this
paper aims to provide a general method for obtaining such results by using the
apparatus of generalized functions.
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Generalized functions, or distributions as Schwartz (1950) called them, are
useful in cases of non-di¤erentiability (e.g. arising from the singularity of the
distribution function) since they allow characterization of generalized derivatives
when derivatives do not exist as ordinary functions. Some useful references are
Halperin (1952) who provided an English introductory version of Schwartz�s
lectures and Gel�fand and Shilov (1964, volumes 1 and 2), where the main
introductory results on generalized functions are collected. If the distribution
function exists then density can always be de�ned as a generalized function
even if it does not belong to any of the spaces of continuous/smooth functions,
or any of the Lp spaces such as L1 (Devroye and Györ�, 1985) or the usual
L2 or Sobolev or Besov spaces (considered e.g. by Härdle et.al., 1998) so the
characterization as a generalized function provides the most generality.
Generalized functions are widely used in mathematics and physics for solv-

ing di¤erential equations. Sometimes interest focuses on special generalized
functions (e.g. the ��function), or on functions that form special spaces such
as Sobolev or Besov spaces where some of the partial generalized derivatives
exist as ordinary functions. Phillips (1991) proposed the generalized functions
approach in application to the asymptotics of the LAD estimator using the
fact that the generalized derivative of the sign function is proportional to the
��function and then in 1995 successfully applied it to derive the limit process
for nonstationary LAD regression. These papers as well as others that use gen-
eralized functions1 focus on cases where the �nal results are expressed through
ordinary functions. This is not always possible. In Zinde-Walsh (2002) the
limit process for the least median of squares estimator is described in terms of a
generalized Gaussian process; Zinde-Walsh and Phillips (2003) derived the gen-
eralized Gaussian random process that represents the derivative of the fractional
Wiener process; these are not expressible through ordinary functions. Gel�fand
and Vilenkin (1964, volume 4) is the main reference for generalized random
processes. This paper demonstrates that the limit process for the kernel density
estimator may sometimes exist only as a generalized process.
Depending on the context it may be useful to think of a generalized function

as an element in a variety of spaces. For example, if the interest is in the
conditional mean we may view the density as a functional on the space of l
times continuously di¤erentiable functions but for the response (derivative of
conditional mean) we may wish to view the density as a functional on the space
of l + 1 times di¤erentiable functions. The introductory chapter of Sobolev�s
(1992) monograph (which makes use of generalized functions in approximation
of multivariate integrals) provides useful diagrams of embedding mappings for
di¤erent spaces of generalized functions.
The generalized derivative, f; of the distribution function, F; will be called

�density�here whether or not it exists as an ordinary function. As a generalized
function it can be interpreted as a linear continuous functional on a space D
of special �test functions� so that for any  2 D the value of the functional

1Another example is Schennach, 2004.
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(f;  ) is well de�ned2 . We discuss here estimation based on random sampling;
the issue of dependence is left for further development. The kernel density
estimator considered as a generalized random function converges in probability
as the sample size goes to 1 and the bandwidth parameter goes to zero to the
generalized derivative of the distribution function, which may or may not exist
as an ordinary function; if density exists in the ordinary sense and is continuous
at x the estimator converges to the value of the density function f(x): The
kernel estimator has a limit process that under the usual assumptions on the
rate of the bandwidth is a generalized Gaussian process. A full characterization
of this generalized Gaussian process is provided here.
For the Nadaraya-Watson estimator of conditional mean it is shown that the

estimator, rescaled by the kernel density estimator, converges as a generalized
random process to a generalized Gaussian process; a full characterization of
this process is provided; this is the most general result obtainable without any
assumptions on the marginal distribution. Under additional assumptions con-
sistency and rate of convergence for the Nadaraya-Watson estimator is derived.
The paper is organized as follows. Section 2 provides interpretation of the

distribution function as a generalized function and of the density as its gener-
alized derivative; local properties are de�ned and the kernel estimator is inter-
preted as an estimator of the generalized density. In Section 3 the limit process
for the kernel estimator is derived and shown to be a generalized Gaussian
process. Section 4 derives asymptotic results for the Nadaraya-Watson condi-
tional mean estimator. Section 5 concludes. Appendix A provides proofs of the
results of the paper. Appendix B gives a collection of de�nitions and results
about generalized functions and generalized random processes that are used
here.

2 Distribution function and density as general-
ized functions and the kernel estimator

2.1 Distribution function, density and its derivatives as
generalized functions

The de�nitions and results concerning generalized functions are collected in
Appendix B; this subsection specializes these results to distribution functions.
De�ne for a random vector x 2 Rk its distribution function F (x); it can be

de�ned as a monotonic bounded function that has a left limit and is continuous
from the right; thus it is an ordinary (locally summable) function on Rk as
discussed here in Appendix B.
We start with the univariate case k = 1: As a generalized function F (x)

can be represented by a functional on the generic function space D: That space
could be the space K of in�nitely di¤erentiable functions with �nite support, or

2Unless F is absolutely continuous the generalized derivative may not coincide with the
pointwise derivative even when it is an ordinary function.
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the space S of in�nitely di¤erentiable functions that go to zero at in�nity faster
than any power, or any of the spaces Dm of m times continuously di¤erentiable
functions (with �nite support) de�ned in Appendix B. For any  2 D de�ne
the value of the functional:

(F; ) =

Z
F (x) (x)dx: (2)

Then as long as D contains continuously di¤erentiable functions (e.g. coincides
with K;S; or any Dm; m > 1) we can de�ne density as a generalized derivative
of F :

(f;  ) = (F 0;  ) = �(F; 0) = �
Z
F (x) 0(x)dx: (3)

A similar relation holds for multivariate densities. If the distribution function
F (x1; :::; xk) is absolutely continuous then the density can be de�ned as an
ordinary function

f(x) = f(x1; :::; xk) =
@kF (x1; :::; xk)

@x1:::@xk
; (4)

f(x) integrates to F (x). Whether (4) exists as an ordinary function or not, it can
be de�ned as a generalized function. If functions in D are suitably di¤erentiable:
D � Dk; the space of k times continuously di¤erentiable functions (with �nite
support), for any  2 D;

(f;  ) = (�1)k(F; @
k (x1; :::; xk)

@x1:::@xk
): (5)

Generalized derivatives of the density function are de�ned by formulas similar to
(5), e.g. in the univariate case the generalized derivative of the density function,
f 0; is given for any  2 D (as long as D � D2) by

(f 0;  ) = �(f;  0) = (F; 00):

2.2 Distribution function and density function locally at
a point

For local properties of the distribution and density functions (generalized func-
tions) we can consider the distribution around the point of interest x for ~x in
some small h�neighborhood of x: We introduce a kernel function, K:
Assumption A (kernel).
(a). K(w) is an ordinary bounded function on Rk;

R
K(w)dw = 1;

(b). Support of K belongs to [�1; 1]k;
(c). K(w) is an l�th order kernel: for w = (w1; :::wk) the integralZ

wj11 :::w
jk
k K(w)dw1:::dwk

�
= 0 if j1 + :::+ jk< l ;
<1 if j1 + :::+ jk= l :
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If l = 1 Assumption 1 reduces to (a) and (b). The �nite support and bound-
edness assumptions can be relaxed and are introduced to simplify assumptions
and derivations; K is not restricted to be symmetric or non-negative.
For k = 1 de�neKh(~x; x) =

1
hK(

~x�x
h ): Note that

R
Kh(~x; x)d~x =

R
K(w)dw:

Then for any h and any �xed x de�ne

FhK(x) �
Z
F (~x)Kh(~x; x)d~x =

1

h

Z
F (~x)K(

~x� x
h

)d~x: (6)

This provides the value of FhK at x as a weighted average of values of the
function F (~x) in the h neighborhood3 . Once x is allowed to vary FhK(x) can
be viewed as a functional (generalized function) de�ned for functions  (x) 2 D
(but it is also an ordinary function of x).
An analogous construction applies to the multivariate case. Denote for the

multivariate case

h = maxfh1; :::; hkg; x = (x1; :::; xk);
w = (w1; :::; wk); dw = dw1:::dwk; (7)

~x� x
h

=

�
~x1 � x1
h1

; :::
~xk � xk
hk

�
: (8)

For the kernel function K de�ne

Kh(~x; x) =
1

�hi
K(
~x1 � x1
h1

; :::;
~xk � xk
hk

) =
1

�hi
K(
~x� x
h

);

then
R
Kh(~x; x)d~x =

R
K(w)dw: The functional FhK(x) is de�ned similarly to

the univariate case:

FhK(x) =

Z
F (~x)Kh(~x; x)d~x:

The following theorem establishes convergence of generalized functions FhK(x)
to F (x) as h ! 0. To distinguish convergence of generalized functions (weak
convergence of linear continuous functionals on the space D) from ordinary
pointwise convergence we denote it by ) as opposed to ! : To distinguish
between di¤erent spaces on which the functionals are de�ned we could subscript
) by the corresponding space, e.g. )Dn : Usually it is clear for which spaces
the convergence holds and the subscript is omitted.

Theorem 1 For h! 0 and K that satis�es Assumption A

FhK(x)) F (x):

In other words, for any  (x) 2 D we have

(FhK(x);  (x))! (F (x);  (x)) ;

and if F is continuous at x then FhK(x) ! F (x).

3Averaging of a generalized function by a kernel function was considered by e.g. Sobolev
(1992) who provided the proof of a statement similar to our Theorem 1.
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Proof. See Appendix A.
Next, consider the generalized derivative fhK(x) of FhK(x) that corresponds

to the generalized density function locally to point x: Write for the univariate
case for a given x

fhK(x) = F 0hK(x): (9)

Similarly

fhK(x) =
@kFhK(x)

@x1:::@xk

in the multivariate case. Of course, if F were absolutely continuous in the
neighborhood of x with ordinary density function f(x) this would be

@

@x

�
1

h

Z
F (~x)K(

~x� x
h

)d~x

�
=

@

@x

�Z
F (x+ hw)K(w)dw

�
=

Z
f(x+ hw)K(w)dw

and similarly in the multivariate case.
Assuming that K is a continuously di¤erentiable function (9) is

@

@x

�
1

h

Z
F (~x)K(

~x� x
h

)d~x

�
= � 1

h2

Z
F (~x)K 0(

~x� x
h

)d~x;

thus
fhK(x) = �

1

h
FhK0(x) (10)

is an ordinary function. Similarly

fhK(x) = (�1)k
1

(�hi)
2

Z
F (~x)

@kK( ~x�xh )

@x1:::@xk
d~x = (�1)k 1

�hi
FhK0(x) (11)

in the multivariate case.
If K is not assumed to be di¤erentiable (e.g. is a rectangular kernel) the

de�nition (10) still holds but can be understood only as equality of generalized
functions implying for  2 D:

(fhK(x);  (x)) = (�
1

h
FhK0(x);  (x)) =

1

h
(FhK(x);  

0(x)) (12)

for all  2 D; D � D1; a similar relation can be written for the multivariate
case: Thus as long as either F or K is continuously di¤erentiable fhK(x) is an
ordinary function; in any case it is a generalized function.
If for a sequence of generalized functions, gn; for any  2 D and some

number sequence r(n) as n ! 1 (gn;  ) = O(r(n)) holds, we use the notation
gn � O(r(n)):
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Theorem 2 As h! 0 and assuming that K satis�es Assumption A
(a) convergence of generalized functions on Rk;

fhK(x)) f(x);

holds for D � Dk; if the ordinary density function f(x) exists and is continuous
at x; this coincides with ordinary convergence: fhK(x)! f(x);
(b) if  2 Dl+k and K is a kernel of order l

fhK(x)� f(x) � O(h
l
);

more speci�cally (fhK(x);  )� (f(x);  ) =

(�1)l
X

m1+:::+mk=l

Z
F (~x)

 
kY
i=1

hmi
i

mi!

!
@l+k 

@xm1i+1
1 :::@xmki+1

k

(~x)d~x

Z
K(w)wm1

1 :::wmki

k dw

+R(h);

where R(h) = o(h
l
); if  2 Dl+k+1 then R(h) = O(h

l+1
):

Proof. See Appendix A.
Thus with the help of the kernel function K for h! 0; we have constructed

sequences of generalized functions (which may be ordinary functions e.g. if K is
di¤erentiable) that have support in a neighborhood of x and which converge as
generalized functions of to the generalized derivative of the distribution function:
The convergence rate of generalized functions can be controlled by appropriate
selection of K and space D (as follows from (b) of Theorem 2). Of course if F

is su¢ ciently di¤erentiable fhK(x)� f(x) = O(h
l
) as ordinary functions.

The following example illustrates the case where F is not absolutely contin-
uous and the sequence of ordinary functions fhK diverges at rate O(h�1) (even
though convergence as generalized functions holds).
Example 2. Suppose that in some region 
 the distribution function can be

de�ned as F (x) = �I(x � y) for some �xed y; K is di¤erentiable: Then it is
easy to compute that as h! 0 convergence of ordinary functions

hfhK(x)!
�
0; if x 6= y;
�K(0); if x = y

holds. Thus in this case for the sequence of ordinary functions, sup fhK(x) =
O(h�1) in 
. It is easy to verify that as generalized functions fhK(x)) ��(x�
y); where the generalized function � is Dirac�s �-function:

(�(x� y);  (x)) =  (y):
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2.3 The kernel estimator and its relation to generalized
density

Consider a multivariate density; recall the notation in (8). From (11) integrating
by parts we have

fhK(x) = (�1)k 1

(�hi)
2

Z
F (~x)

@kK( ~x�xh )

@x1:::@xk
d~x

=
1

�hi

Z
K(
~x� x
h

)dF (~x) = E~xKh(~x; x):

If fhK is not an ordinary function of x the equality may hold as equality of
generalized functions only. A natural estimator for fhK(x) follows from the fact
that it is an expectation; a sample average is used in estimation. The estimator
based on a random sample of n observations fxig from the distribution of x is

df(x) = 1

n�hi

nX
i=1

K(
xi � x
h

) (13)

and Edf(x) = fhK(x):
We can thus interpret the kernel density estimator as an estimator of the local

generalized density functional whether density exists as an ordinary function or
not.

3 Limit process for the kernel estimator of gen-
eralized density

We now describe the limit process for the kernel estimator as a generalized ran-
dom process. Note that since Edf(x) = fhK(x) part (b) of Theorem 2 provides
the convergence rate for the generalized bias function of the kernel estimator.
The following theorem describes the limit process of the kernel density esti-

mator as a generalized Gaussian process (de�ned here in Appendix B).

Theorem 3 For a kernel function K satisfying Assumption A, if h ! 0 as
n ! 1 with n�hi ! 1 and h

2l+k
n ! 0; the sequence of generalized random

processes (n�hi)
1
2

�df(x)� f(x)� converges to a generalized Gaussian process
with mean functional zero and covariance functional C which for any (linearly
independent)  1;  2 2 Dl+k provides

(C; ( 1;  2)) =

Z
 1(x) 2(x)f(x)dx

Z
K(w)2dw (14)

= E( 1(x) 2(x))

Z
K(w)2dw:
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Proof. See Appendix A.
If the density function f(x) is continuous at x the covariance functional re-

duces to a functional given by an ordinary function, and the standard covariance
result f(x)

R
K(w)2dw obtains. If f(x) = 0 the ordinary Gaussian process is

degenerate and only the consistency rate holds. In the general case if for any
 2 D (not identically zero) the value (C; ( ; )) is positive the limit process in
Theorem 3 is a proper (non-degenerate) generalized Gaussian process; here this
holds as long as E( 2(x)) > 0 for every non-trivial  : If the limit process is de-
generate, consistency holds and as long as for some  the expectation E( 2(x))
is positive there is a limit Gaussian process. Degeneracy of the generalized
limit process process can result from the continuous density taking zero values
on some open set and also can occur for distributions with singularities. The
following examples present some cases where the distribution is not absolutely
continuous.
Example 3. Discrete variables.
Case 1. When the discrete variables are represented correctly and the asso-

ciated density is viewed as discrete, appropriate nonparametric estimators (e.g.
those based on special kernels as in Ahmad and Cerrito, 1994) converge at para-
metric rates. In discrete-continuous models product kernels (e.g. Racine and
Li, 2003) provide convergence at non-parametric rates that re�ect the dimension
of the continuous part only (alleviating �curse of dimensionality�).
Case 2. When discrete variables are mislabelled as continuous, Example 2

demonstrates that if K rather than Kh were used as the kernel for the discrete
variable the corresponding kernel estimator would converge as n!1 to �K(0);
where � is the discrete density, since

hdf(y) ! �K(0):

In other words, a rescaling of the kernel produces faster convergence (this can be
viewed as a trivial case of reduced local dimension similar to the case in Example
5). The limit covariance functional is degenerate: (C; ( ; )) = 0 if  (y) = 0 at
the mass point y.
Example 4. Suppose that the distribution is a mixture of an absolutely con-

tinuous strictly monotonic F c(x) and a discrete F d(x) = I(x� y); with weights
� and 1� �; the generalized density then is non-singular at every x 6= y and is
singular at y; and can be represented as a sum �f c(y) + (1� �)�(x� y): Here
hdf(y)! (1��)K(0); unlike the previous example the limit of the rescaled kernel
estimator will not provide a full description of the limit density since it misses
the continuous component. The limit covariance functional is not degenerate.
Example 5. Reduced local dimension. Cantor-type distribution. Z-Q Lu

(1999) discusses this famous example of reduced local dimension. Consider a
random variable

� = 2�1i=13
�i�i;

where �i is Bernoulli (equals 1 with probability 1/2, 0 with probability 1/2). If
one thinks of � 2 [0; 1] as a number in base 3 its digits are either 0 or 2 (no
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ones) and any such number is equally probable. The distribution function on
[0; 1] is continuous but not absolutely continuous and for any point x 2 [0; 1]
and some r ! 0

Pr(ku� xk � r) = c(x)rlog 2= log 3

which de�nes local dimension of the measure as d = log 2= log 3 < 1: Consider a
point x that does not have ones in its base three representation, then the sequence
of kernel estimator functions df(x) diverges, but at rate O(hd�1): the rescaled
function h1�ddf(x) has a �nite limit. The limit generalized Gaussian process is
degenerate: for any neighborhood U of x and  2 D(U) there exists an interval
I � U (of points with a one in some position of the base three representation)
such that (C; ( ; )) = 0 for  with support in I. However if the distribution
is a mixture of an absolutely continuous strictly monotonic and the Cantor
distributions, the limit generalized process is no longer degenerate.
These examples indicate that utilizing knowledge regarding the nature of the

variables, in particular, local dimension (ranging from discrete variable cases to
redundant variables to fractional dimension) and rescaling the kernel appro-
priately, e.g. by h for discrete variables and h1�d for reduced local dimension
(example 5) may result in a faster convergence rate. However, if it cannot be
�rmly established that reduced dimension is relevant (as e.g. in a mixture with
an absolutely continuous measure) rescaling may lead to error and only the more
general rates and results such as those provided in Theorems 2 and 3 apply.
The results on density estimation can be extended to estimation of deriva-

tives of density. Under conditions of Theorem 3 as generalized functions on the
space Dl+2k derivatives of the kernel estimator have as a limit process the gen-
eralized Gaussian process with mean functional zero and covariance functional
given by generalized derivatives of the limit covariance functional for the kernel
estimator itself, and so the covariance functional for the limit process for the
derivatives of the kernel density estimator can be derived from C (see Appendix
B).

4 Relaxing assumptions on the marginal distrib-

ution in the asymptotics of Nadaraya-Watson
estimator

Nadaraya-Watson estimator of the conditional mean is widely used. Here gen-
eral limit results that do not require making any assumptions on the marginal
distribution are derived; additional assumptions provide consistency and the
usual limit Gaussian distribution.
Consider the model

yi = m(xi) + ui

where the conditional expectation function is

m(x) = E(yi jxi = x ) =

Z
ydF (y jx );

13



�2u(x) is the conditional variance

�2u(x) = var(ui jxi = x ) = var(yi jxi = x ):

Assume for simplicity that all bandwidths are equal: hi = h. The Nadaraya-
Watson kernel estimator of the conditional mean is

[m(x) =
�yjK(

xj�x
h )

�K(
xj�x
h )

=
1
nhk

�yjK(
xj�x
h )df(x) :

To accommodate various assumptions regarding smoothness of the condi-
tional mean function recall the de�nition of a Hölder space Cv+�(E) for integer
v � 0 and 0 < � � 1 (e.g. Mathematical Encyclopedia, 1977). It is a Ba-
nach space of bounded and continuous functions g(x) de�ned on a set E � Rk

which are v times continuously di¤erentiable with all the v�th order derivatives
g
(v)
� (x) satisfying Hölder�s condition for � :���g(v)� (x+�x)� g(v)� (x)

��� � A(x) k�xk�

for every x; x+�x 2 E:
If a = 1 the v�th derivatives satisfy the Lipschitz condition; if v = 0 the

function itself satis�es the Hölder (fractional Lipschitz) condition.
Denote by U some open neighborhood of x in Rk:
Assumption B (conditional moments).
(a). The conditional mean function m(x) 2 Cv+�(U):
(b). The conditional variance �2u(x) is continuous on U and for some � > 0

�2+�u (x) is uniformly bounded on U:
Assumption B(a) for v � 2 implies assumptions often made in the literature

on asymptotics of the Nadaraya-Watson estimator which discusses asymptotic
bias reduction (Bierens, 1987), while for example Lu (1999) argues that if the
conditional mean is di¤erentiable the local linear estimator (see, e.g. Fan and
Gijbels, 1995) is preferable4 and thus for the kernel estimator it makes more
sense to assume v = 0, i.e. a fractional Lipschitz (Hölder) condition. The
following Theorems examine the behavior of the Nadaraya-Watson estimator
under assumptions that include both of these cases. The space of test functions,
D; here is restricted to functions with support contained in U; D(U):

Theorem 4 (a) If as n ! 1 the bandwidth h ! 0 and nhk ! 1; Assump-
tion A holds for l � 1, assumption B(a) holds with v � l; B(b) holds and

lim
h!0

hl
�
nhk

�1=2
= 0; then

(nhk)
1
2 df(x)�[m(x)�m(x)�

4Local linear and local polynomial estimators perform better than Nadaraya-Watson esti-
mator when density is not smooth but the properties of those estimators, such as mean square
error, have only been derived for continuous density and are not yet available for distributions
with singularities.
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converges as a generalized random process on Dl+k(U) to a generalized Gaussian
process with expectation functional zero and limit covariance functional Cx given
by

(Cx; ( 1;  2)) = E
�
 1(x) 2(x)�

2(x)
� Z

K(w)2dw: (15)

(b) If as n ! 1 the bandwidth h ! 0 and nhk ! 1 ; Assumption
A(a-b) holds, assumption B(a) holds with v = 0; 0 < � � 1, B(b) holds and

lim
h!0

h�
�
nhk

�1=2
= 0; then

(nhk)
1
2 df(x)�[m(x)�m(x)�

converges in distribution to a generalized Gaussian process on Dk(U) with ex-
pectation functional zero and the covariance functional Cx given by (15).

Proof. See Appendix.
The Theorem in parts (a) and (b) provides an asymptotic (generalized)

Gaussian process for he conditional mean estimator weighted by df(x) ; as in
Theorem 3 the limit generalized Gaussian process may be degenerate. When
continuous density exists results such as Theorem 4 are viewed as intermediate
(e.g. Bierens, 1987) to obtaining the limit distribution for [m(x) itself; here this
limit distribution is given in Corollary 2. Without further assumptions on the
behavior of df(x) only the general result of Theorem 4 holds. It could be used
to construct con�dence intervals.
The following assumption allows to examine the limiting behavior for [m(x):
Assumption C (condition on df(x)) As n!1; h ! 0 for some � there

exists b > 0 such that for x 2 U

Pr(df(x) > h�b)! 1:

This assumption is a condition on the density estimator; it permits conver-
gence to zero for � > 0: When an ordinary density function that is continuous
and positive at x exists, the assumption obviously holds in some U with � = 0.
The following corollary establishes the consistency rate for [m(x):
Corollary 1. Under the conditions of Theorem 4 and Assumption C, for

bandwidths that additionally satisfy nhk+2� ! 1 when � > 0; the generalized
random process satis�es

(nhk+2�)
1
2

�
[m(x)�m(x)

�
�Op(1):

Proof. See Appendix A.
The next corollary provides the limit process in the case of a continuous

density function.
Corollary 2. Under the conditions of Theorem 4 and assuming that an

ordinary density function f(�) exists, is continuous at x and f(x) > 0; the
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sequence of ordinary random functions (nhk)
1
2

�
[m(x)�m(x)

�
converges as a

generalized sequence to an (ordinary) Gaussian distribution

(nhk)
1
2

�
[m(x)�m(x)

�
)d N

�
0;
�2(x)

f(x)

Z
K(w)2dw

�
; (16)

if ordinary convergence to a limit distribution for (nhk)
1
2

�
[m(x)�m(x)

�
ob-

tains, convergence to the Gaussian distribution (16) holds in an ordinary sense.
Proof. See Appendix A.

A standard su¢ cient condition for ordinary convergence for (nhk)
1
2

�
[m(x)�m(x)

�
in Corollary 2 is that the density be l times continuously di¤erentiable (Bierens,
1987). Assumptions on h in Theorem 4 and Corollary 2 imply zero asymptotic

bias. More generally, denote lim
h!0

hl
�
nhk

�1=2
by �; then from (20) in Appendix

A the asymptotic bias functional can be written as

�
X

s1+:::+sk=r=l�t;
l�1�t=m1+:::mk�0

1

m1!:::mk!

1

s1!:::sk!

@t

@~xm1
1 :::d~xmk

k

�
@rm(x)

@~xs11 :::d~x
sk
k

f(x)

�

�
Z
wm1+s1
1 :::wmk+sk

k K(w)dw:

If � = 0 the asymptotic bias is a generalized bias function that is given by an
ordinary function (� 0) and Corollary 2 applies. If 0 < � <1, the asymptotic
bias may not be given by an ordinary function unless the density is appropriately
smooth.

5 Conclusions

For kernel estimator of density df(x) and for the Nadaraya-Watson estimator
[m(x) of the conditional mean in the i.i.d. case this paper provides general
asymptotic results that can be obtained without making any assumptions re-
garding the underlying distribution of x: Density can always be de�ned as a
generalized derivative of the distribution function and the kernel estimator df(x)
represents an estimator of the generalized density, f . Limit processes for the es-
timators in Theorems 3 and 4 for appropriate rates of bandwidths are described
as generalized Gaussian processes with mean functional zero and a non-zero
covariance functional (possibly degenerate).
The generalized functions approach can be extended to deriving limit mo-

ments and limit processes for other estimators in situations where it may be of
bene�t to relax assumptions regarding existence and smoothness of the density
function.
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6 Appendix A.
Proof of Theorem 1.
We have

lim
h!0

Z Z
F (x+ hw)K(w)dw (x)dx

= lim
h!0

Z Z
F (y) (y � hw)K(w)dwdy

=

Z
F (y) (y)dy

Z
K(w)dw = (F; )

where the second equality follows from  being a continuous function. If F is
continuous at x then by interchanging the integral and limit in the �rst line we
get

lim
h!0

Z
F (x+ hw)K(w)dw = F (x):

�
Proof of Theorem 2.
(a) Since  is a continuously di¤erentiable function ( 2 Dk)

(fhK ;  ) = (�1)k
Z

@k

@x1:::@xk

�
1

�hi

Z
F (~x)K(

~x� x
h

)d~x

�
 (x)dx

=

Z �
1

�hi

Z
F (~x)K(

~x� x
h

)d~x

�
@k

@x1:::@xk
 (x)dx

= (�1)k
Z Z

F (~x)
@k

@x1:::@xk
 (~x� hw)K(w)dwdy (17)

! (f;  )

Z
K(w)dw = (f;  )

where the second equality is obtained by integration by parts and using �nite
support property of  ; the third equality follows from change of variable; the
last result uses continuity of @k

@x1:::@xk
 and

R
K = 1:

Consider fhK de�ned in (9). For F univariate absolutely continuous in the
neighborhood of x with continuous density function f(x)

fhK(x) =
@

@x

�
1

h

Z
F (~x)K(

~x� x
h

)d~x

�
=

Z
f(x+ hw)K(w)dw

! f(x)

Z
K(w)dw = f(x)

by change of variable, continuity of f and the assumption
R
K = 1; similarly in

the multivariate case.
(b) For the univariate case using (12) and applying change of variable

(fhK ;  )� (f;  ) = �
Z Z

F (~x)[ 0(~x� hw)�  0(~x)]K(w)dwd~x:
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From expanding  0(~x� hw /) and making use of kernel order this becomes

(�1)l h
l

l!

Z
F (~x) l+1(~x)d~x

Z
K(w)wldw +R(h)

where the remainder term R(h) is o(h
l
) and if  2 Dl+1 is O(h

l+1
). Consider

now the multivariate case: expansion of @k

@x1:::@xk
 (~x� hw) =

lX
m1+:::+mk=1

 
1

(m1 + 1)!::: (mk + 1)!

@m1+:::+mk+k (~x)

@~xm1+1
1 :::d~xmk+1

k

!
(�h)m1+:::+mkwm1

1 :::wmk

k dw+

+R(h) with R(h) = o(h
l
); if  2 Dl+k+1; R(h) = O(h

l+1
):

Substituting into (17), subtracting the limit and using the order of kernel we
get that

(fhK ;  )� (f;  )

= (�1)l
Z
F (~x)

" X
m1+:::+mk=l

 
1

(m1 + 1)!::: (mk + 1)!

@l+k (~x)

@~xm1+1
1 :::d~xmk+1

k

!
(�h)l +R(h)

#
d~xZ

K(w)wm1
1 :::wmk

k dw1:::dwk +R(h)

= O(hl):

�
Proof of Theorem 3.
De�ne a (generalized) function

enhj(x) =
1

�hi
K(

x� xj
h

)� f (x)

and consider ehn(x) = 1
n

Pn
j=1 enhj(x); it equals

df(x)� f(x):
By Theorem 2 (b) Eehni(x) � O(h

l
):

Next consider Tij = E(ehni(x);  1)(ehnj(x);  2)):
For i 6= j by independence

E(Tij) = E(ehni(x);  1)(ehnj(x);  2) = E(ehni(x);  1)E(ehnj(x);  2)

= O(h
2l
):

For i = j

E(Tii) = E(ehni(x);  1)(ehni(x);  2)

=

Z �Z
1

�hi
K(

xi � x
h

) 1(x)dx�
Z
f(x) 1(x)dx

�
��Z

1

�hi
K(

xi � x
h

) 2(x)dx�
Z
f(x) 2(x)dx

�
f(xi)dxi

= E(T 1ii + T
2
ii);
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where

T 1ii =

�Z
1

�hi
K(

xi � x
h

) 1(x)dx

��Z
1

�hi
K(

xi � x
h

) 1(x)dx

�
:

It is easy to see that ET 2ii = �E 1E 2: To express ET 1ii as a bilinear functional
applied to ( 1;  2) the order of integration has to be changed. Consider now
for any �xed (x; y) Z

1

�h2i
K(

xi � x
h

)K(
xi � y
h

)f(xi)dxi:

Substituting xi�x
h = w this becomesZ

1

�hi
K(w)K(w +

x� y
h

)f(x+ hw)dw;

if x � y 6= 0 for small enough h we have
��x�y
h

�� > 2 jsupport(K)j and then
K(w + x�y

h ) = 0: If x = y this expression multiplied by �hi becomesZ
K(w)2f(x+ hw)dw:

By Theorem 2 as h! 0 it converges as a generalized function to f(x)
R
K(w)2dw:

Thus �hiET 1ii !
R
K(w)2dwE( 1 2); it is easy to see that �hiET

2
ii ! 0 and

then �hiETii !
R
K(w)2dwE( 1 2). This provides the limit covariance.

Consider now

�hni(x) = n
1
2�h

1
2
i ehni(x)� E(n

1
2�h

1
2
i ehni(x));

�hn(x) =
1

n

X
�hni(x): (18)

This generalized random function has expectation zero. In the covariance the
terms where i 6= j are zero and

E(�hni(x);  1)(�hni(x);  2)

is O(1) and converges to
R
K(w)2dwE( 1 2):

Next we show that for any set of linearly independent functions  1; :::;  m 2
D with E( 2i ) > 0 the joint distribution of the vector

�!� hn = ((�hn;  1):::; (�hn;  m))0
converges to a multivariate Gaussian. De�ne similarly the vector �!� hni with
components (�hni;  l): Denote by � the m � m matrix with ts component
f�gts = (C; ( t;  s)) where the functional C is given by (14): Denote by �̂n the
covariance matrix of �!� hni: By the convergence results for Tij ; �̂n !p �: Since
the functions  1; :::;  m are linearly independent and E( 2i ) > 0 the matrix �
and thus �̂ (in probability for large enough n) is invertible. De�ne �hni to equal
�̂�1=2�!� hni; then �̂�1=2�!� hni � ��1=2�!� hni !p 0:
Next, consider an m�1 vector � with �0� = 1: The random variables �0�hni

are independent with expectation 0, var
P
�0�hni = 1; they satisfy the Liapunov
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condition:
P
E
���0�hni��2+� ! 0 for � > 0 since the kernel function is bounded

with �nite support. Thus X
�0�hni !d N(0; 1)

and by the Cramer-Wold theorem convergence to a limit Gaussian process for
�̂
�1=2
n

�!� hn and thus for ��1=2�!� hn follows. If there exists a non-trivial  (lin-
early independent of ( 1:::;  m)) such that E 

2 = 0 then for any any  i the
limit covariance functional provides (C; ( ; i)) = 0 in which case the limit
process for

�!
~� hn = ((�hn;  1):::; (�hn;  m); (�hn;  ))

0 is a degenerate Gaussian
process.�
Proof of Theorem 4.
First examine the mean functional. For the generalized expectation by using

iterated expectation and then the usual change of variable xi�x
h = w

E([m(x)df(x)�m(x)df(x)) =
1

hk
E[Ejxi (yiK(

xi � x
h

)�m(x)K(xi � x
h

)]

=
1

hk
E[m(xi)K(

xi � x
h

)�m(x)K(xi � x
h

)]

=

Z
1

hk
[m(xi)K(

xi � x
h

)�m(x)K(xi � x
h

)]f(xi)dxi

=

Z
[m(x+ hw)�m(x)]K(w)f(x+ hw)dw:

For any test function  (x) 2 D write

E
�
([m(x)df(x)�m(x)df(x));  (x)� =

=

Z
[m(x+ hw)�m(x)]K(w)f(x+ hw)dw (x)dx

=

Z
[m(~x)�m(~x� hw)]K(w)f(~x) (~x� hw)dwd~x (19)

where the last line is obtained by the change of variable ~x = x+ hw:
In case (a) the expansion (in ordinary continuous functions)

m(~x)�m(~x� hw) =
lX

s1+:::sk=1

ht
1

s1!:::sk!

@tm(~x)

@~xs11 :::d~x
sk
k

ws11 :::w
sk
k +R;

with R = O(hl+�)

holds for l � 1: Since  2 Dl+k we can expand

 (~x�hw) =
lX

m1+:::+mk=0

�
1

m1!:::mk!

@m1+:::+mk (~x)

@ym1
1 :::dymk

k

�
(�h)lwm1

1 :::dwmk

k +o(hl):
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Substituting the expansions into (19) and combining with kernel order we get
that the limit mean functional in part (a) is O(hl) and can be expressed as

hl
X

s1+:::+sk=r=l�t;
l�1�t=m1+:::mk�0

1

m1!:::mk!

1

s1!:::sk!

@t

@~xm1
1 :::d~xmk

k

�
@rm(x)

@~xs11 :::d~x
sk
k

f(x)

�

�
Z
wm1+s1
1 :::wmk+sk

k K(w)dw (20)

where the appropriate generalized derivatives of the density exist for  2 Dl+k:

Under the conditions on the bandwidth the mean functional for (nhk)1=2([m(x)df(x)�
m(x)df(x)) converges to zero.
For case (b) using in (19) Hölder continuity of m(x) (Assumption B(a) for

v = 0; 0 < � � 1) together with boundedness of the kernel function, smoothness
of  and boundedness of

R
f(~x) (~x)d~x we get that

���E �([m(x)df(x)�m(x)df(x));  (x)���� =
O(h�) and thus the mean functional for (nhk)1=2([m(x)df(x) �m(x)df(x)) con-
verges to zero under the condition on the bandwidth.
Next we derive the covariance functional for both (a) and (b). De�ne a

(generalized) function

enhj(x) =
1

hk

�
yiK(

x� xj
h

)�m(x)K(x� xj
h

)

�
and consider ehn(x) = 1

n

Pn
j=1 enhj(x); it equals

[m(x)df(x)�m(x)df(x):
Next consider Tij = E(ehni(x);  1)(ehnj(x);  2)):
For i 6= j by independence

E(Tij) = E(ehni(x);  1)(ehnj(x);  2) = E(ehni(x);  1)E(ehnj(x);  2)

=

�
O(h2l) for case (a);
O(h2�) for case (b).

For i = j we have E(Tii) =

E(ehni(x);  1)(ehni(x);  2)

=

Z
Ejxi

�Z
1

hk
K(

xi � x
h

) (yi �m(x)) 1(x)dx
�

�
�Z

1

hk
K(

xi � x
h

) (yi �m(x)) 1(x)dx
�
f(xi)dxi:

To express ETii as a bilinear functional applied to ( 1;  2) the order of integra-
tion has to be changed. For any �xed (x; y)Z

1

h2k
Ejxi (yi �m(x)) (yi �m(y))K(

xi � x
h

)K(
xi � y
h

)f(xi)dxi:
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Substituting xi�x
h = w this becomesZ

1

hk
Ejxi (yi �m(x+ hw)) (yi �m(y))K(w)K(w +

x� y
h

)f(x+ hw)dw;

if x � y 6= 0 for small enough h we have
��x�y
h

�� > 2 jsupport(K)j and then
K(w + x�y

h ) = 0: If x = y this expression multiplied by hk becomesZ
Ejx+hw (yi �m(x))2K(w)2f(x+ hw)dw: (21)

We have Ejx+hw (yi �m(x))2 =

Ejx+hw (yi �m(x+ hw))2 � 2(m(x+ hw)�m(x))Ejx+hw (yi �m(x+ hw))
+(m(x+ hw)�m(x))2

= �2(xi) + r

with (since Ejx+hw (yi �m(x+ hw) = 0)

r = (m(x+ hw)�m(x))2 =
�

O(h2) in case (a);
O(h2�) in case (b)

uniformly over U:As h! 0 (21) converges as a generalized function to f(x)�2(x)
R
K(w)2dw

by Assumption B(b) and Theorem 2: Thus

hkETii ! E( 1(x) 2(x)�
2(x))

Z
K(w)2dw:

This provides the limit covariance functional Cx in (15).
Consider now

�hni(x) = n
1
2h

k
2 ehni(x)� E(n

1
2hkehni(x));

�hn(x) =
1

n

X
�hni(x): (22)

This generalized random function has expectation zero. In the covariance the
terms where i 6= j are zero and

E(�hni(x);  1)(�hni(x);  2)

is O(1) and converges to E( 1(x) 2(x)�
2(x))

R
K(w)2dw:

The proof that the limit is a Guassian distribution is identical to the con-
cluding part of the proof of Theorem 3. Here for any set of linearly inde-
pendent functions  1; :::;  m 2 D the joint distribution of the vector �!� hn =
((�hn;  1):::; (�hn;  m))

0 converges to a multivariate Gaussian. If E( 2i�
2) > 0

the limit distribution is non-degenerate; if for some  the value of the covariance
functional E( 2�2) = 0 the limit process is degenerate.
�
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Proof of Corollary 1.
Write

(nhk+2�)1=2([m(x)�m(x)) (23)

=
�
b�1(nhk)1=2df(x)([m(x)�m(x))� b(df(x)h��)�1:

From Theorem 4 the �rst factor in the product in (23) as a generalized random
process is bounded in probability

b�1(nhk)1=2df(x)([m(x)�m(x)) � Op(1);

from Assumption C

Pr
�
b
���df(x)���h���1 < 1�! 1:

thus the ordinary function b(df(x)h��)�1 = Op(1) and

(nhk+2�)1=2([m(x)�m(x)) � Op(1):

�
Proof of Corollary 2.
Under the conditions of the corollary (nhk)1=2df(x)([m(x)�m(x)) converges

by Theorem 4 to a generalized Gaussian process with the limit mean func-
tional zero and the limit covariance functional given by an ordinary function
�2(x)f(x)

R
K(w)2dw: The estimator is an ordinary integrable random variable

in U that as a generalized random variable converges to a Gaussian generalized
limit process that is given by an ordinary Gaussian zero-mean process. Thus
the generalized limit process for the estimator is an ordinary Gaussian process

N(0; �2(x)f(x)

Z
K(w)2dw):

The fact that it has zero mean follows from the condition on h and does not
require di¤erentiability of f(x): Consider

(nhk)1=2([m(x)�m(x))

=
�
f(x)�1(nhk)1=2df(x)([m(x)�m(x))� f(x)(df(x))�1

=
�
f(x)�1(nhk)1=2df(x)([m(x)�m(x))� 1X

n=0

 
�
df(x)� f(x)

f(x)

!n
= f(x)�1(nhk)1=2df(x)([m(x)�m(x)) + op((nhk)1=2;

where f(x)(df(x))�1 is expanded as 1X
n=0

�
�

df(x)�f(x)
f(x)

�n
and the last line uses

the ordinary consistency of the kernel density estimator. It follows that the
limit process for (nhk)1=2([m(x) � m(x)) coincides with the limit process for
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f(x)�1(nhk)1=2df(x)([m(x)�m(x)) and that is N(0; �2(x) (f(x))�1 R K(w)2dw):
If a sequence of ordinary functions converges in an ordinary sense to a limit
distrbution and as a generalized sequence converges to an ordinary limit, then
convergence to this limit holds in an ordinary sense, thus ordinary convergence
in(16) obtains.
�

7 Appendix B.

In this Appendix useful results from di¤erent sources on generalized functions
and generalized random processes are collected and presented in the form and
notation that suits this paper.

7.1 Generalized functions: De�nitions, properties and
examples.

Here we summarize some of the de�nitions and results from Gel�fand and Shilov
(1964, v.1 and v.2) and Ch. 1 of Sobolev (1992).

Spaces of test functions. The space K (v.1,1.2). Consider all in�nitely
di¤erentiable real functions on Rk with �nite support; this is a linear space.
Convergence is de�ned for a sequence  1; ::: n; ::: if all  n are zero outside a
bounded interval and on it converge (uniformly) as well as each of the deriva-
tives. K is a non-metrizable topological space.
The space K(a) � K consists of  2 K such that  (x) = 0 for kxk > a:
The space S (v.1,1.10) is de�ned as that of all in�nitely di¤erentiable real

functions on Rk that go to zero at in�nity faster than any power; this is a linear
space and topology can be de�ned similarly.
Spaces Dm; m = 0; 1; ::: consist of functions with �nite support that have

m continuous derivatives. On Rk the space Dm contains all  with continu-
ous derivatives @l 

@l1x1:::@
lkxk

with l1 + ::: + lk � m: Any function in D can be
approximated by a product of univariate functions.
Properties (from embedding diagrams, Sobolev, p. 56; notation: our Dm is

o

C(m) there):
(i) K � Dm and Dm � Dm0 for any m; where m0 < m; also K � S;
(ii) each of the subspaces is dense in the larger space in the topology of that

space.
We denote a generic space of test functions by D:

Generalized functions.
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Ordinary functions (locally summable). A real function de�ned on Rk

and Lebesgue-integrable on any bounded set (locally summable) is an ordinary
function (v.1, 1.3). Each ordinary function f de�nes a functional on D: for
 2 D the value of the functional (f;  ) can be de�ned by

(f;  ) =

Z +1

�1
f(x) (x)dx: (24)

It is easy to see that this is a linear continuous functional. Note that if two
ordinary functions di¤er they de�ne di¤erent functionals (v.2, 1.5).

Generalized functions. Denote the space of linear continuous functionals
on D by D0: For any D the linear continuous functionals form a linear space D0

with the weak topology: a sequence of functionals in D0; gn; converges to g if
for any  2 D (gn;  )! (g;  ):
De�ne a generalized function as a functional from the space D0: If it is given

by (24) it is a regular functional (function); if it cannot be represented in the
form (24) it is a singular functional (function) (v.1, 1.3). Usually the same
notation (24) is used for any functional even though for singular functionals it
does not have the ordinary interpretation. An example of a singular function
is the ��function de�ned by (�;  ) =  (0): If a generalized function can be
represented as

(f;  ) =

pX
k=0

Z 1

�1
fk(x) 

(k)(x)dx (25)

where f0; :::fk are ordinary functions, it is said that f has an order of singularity
� p: E.g. an ordinary function has order of singularity zero, the �-function has
order of singularity � 1; and since it is not an ordinary function (with order of
singularity zero), its order of singularity is exactly 1.
Support of a generalized function f is de�ned (v.1,1.4) as the set of its

essential points, where an essential point x is such that for any neighborhood
U(x) there is a test function  2 D with support contained in U(x) for which
(f;  ) 6= 0:
Convergence of generalized functions is de�ned as weak convergence of func-

tionals: fn ) f i¤ for any  2 D the sequence of values of the functionals
converges: (fn;  )! (f;  ): Generalized functions form a complete linear space
D0 (v.1, 1.8). The subspace of functionals given by (24) is dense in D0 (v.1, 1.5
for the space K).

Properties (Sobolev, 1992, p.59; notation: our D0
m

o

is C(m)#):
(i) D0

m � K 0; D0
m0 � D0

m for any m where m0 < m; also S0 � K 0;
(ii) for any of the spaces D � D0 and is dense there in the weak topology.

Derivatives of generalized functions. For any generalized function f
on R its derivative, f 0; is de�ned as long as D � D1 (v.1, 2.1)

(f 0;  ) = (f;� 0) (26)
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It is easy to check that this de�nition provides an ordinary derivative if the func-
tional was di¤erentiable as an ordinary function. Di¤erentiation is a continuous
operation (v.1, 2.4).
Any continuous functional on D of degree of singularity less than m can be

extended to a continuous functional on Dm.
One can similarly consider multivariate generalized functions (examples in

v.1, 2.3). For x = (x1; :::; xk) 2 Rk and D(Rk) a continuous linear functional
F 2 D0 and its value on  2 D(Rk); (F; ); is similarly de�ned. If F (x1; :::; xk)
is an ordinary locally summable function then

(F; ) =

Z
::

Z
F (x1; :::; xk) (x1; :::; xk)dx1:::dxk;

which we write as
R
F (x) (x)dx: For any 2 D(Rk) the derivative

(
@kF (x)

@x1:::@xk
;K) = (�1)k(F; @k (x)

@x1:::@xk
)

can be de�ned as long as D � Dk:

7.2 Generalized random processes: De�nitions, proper-
ties and examples.

Here we summarize some de�nitions and results from Ge�fand and Vilenkin
(1964, v.4).
If f is a continuous linear functional on the space D (Gelfand and Vilenkin

consider onlyD coinciding with the spaceK) and additionally (f;  ) is a random
variable for any  2 D which implies that for any number l of  1; ::: l 2 D
the set (f;  1) ; :::; (f;  l) has a joint probability distribution, then f de�nes a
generalized random function on D: (pp. 241-243; the notation is di¤erent there
from ours). Gel�fand and Vilenkin distinguish between a generalized random
process de�ned by f when the functions in D are univariate and a generalized
random �eld for the case of multivariate functions. We shall not make that
distinction and refer to a generalized random process (univariate or multivariate)
in all cases.
An expectation or mean functional is de�ned by (again changing notation,

p.246)
m( ) = (E(f);  ) = E(f;  )

if E(f;  ) de�nes a continuous linear functional on D:
If for any  1;  2 the expectation E((f;  1); (f;  2)) exists then the �correla-

tion�functional of the process is given by

B( 1;  2) = E((f;  1); (f;  2));
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and the covariance functional by

C( 1;  2) = B( 1;  2)�m( 1)m( 2)

provided these functionals exist. These functionals are bilinear in  1;  2: (p.
247). Higher order moments are similarly de�ned.
A generalized random process is a generalized Gaussian process if for any

linearly independent  1; :::;  l from D the joint distribution of (f;  1) ; :::; (f;  l)
is Gaussian. (p.248). If for any  2 D (not identically zero) the covariance func-
tional (C; ( ; )) > 0 the limit process is a proper (non-degenerate) generalized
Gaussian process5 . A generalized Gaussian process is uniquely determined by its
mean functional and �correlation�(or covariance) bilinear functional (Theorem
1, p.250-251).
Generalized Gaussian processes are di¤erentiable; for example, the deriv-

ative of a generalized Gaussian process with mean functional zero and corre-
lation functional B( 1;  2) is a generalized Gaussian process with correlation
functional B0 given by B0( 1;  2) � B( 01;  

0
2) (p. 257).
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