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Abstract

Tilis tilesis introduces " monocul"r optical fiow algorithm that has been shown to por­

form weil at nearly real-time frame rates (4 FPS) on n"tural imalle sequences. 'l'Il(! system

is completely bottom-up, using pixel region-matching techniqnes. A coordinated gradient

descont nwtilod is broken down into two stages; pixel region matching error measures are

locally minimized, and fiow field consistency constraints apply non-Iinear adaptive diffusion,

causing confident measurements to infiuence their less confident neighbors. Convergence is

usually accomplislwd with one iteration for an image frame pair. Temporal Integration and

Kalman filtering predicts upcoming fiow fields and figure/ground separation. The algorithm

is desig.wd for fiexibility: large displacoments are tracked as easily as sub-pixel displace­

ments, and higher-Ievel information can food fiow field predictions into the measurement

procoss.
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Résunlé

Cette thèse introduit un algorithme de Ilot optique monoculaire qui a ét." appliqné avl'c

succès sur des séqnences d'images de scènes naturelles il des fréqueuces video presque t.emps

réel. Le système utilise une approche de bas niveau s'appuyant. principalmnl'nt sur dl's

techniques de comparaison des regions de pixels. Une mét.hode de descentl' de ~radi('ut.

collaborativc est séparée en deux étapes; l'erreur de comparaison des regionH PHt. IllillilUisée

localement, ct les contraintes de compatibilité des champs de Ilot appliquent une diffusioll

adaptive non-linéaire, permettant uax regions de grande compatibilit.é d'inllul'nl,er leurs

voisins. La convergence est habituellement atteinte il la première itération pour une paire

d'images. L'intégration temporelle ct l'utilisation de filtres Kalman prédisent. les champs

de flot ct la séparation objet versus arrière-scène. L'algorithme est conçu avec un criti,re

de flexibilité; les grands déplacements sont perçus aussi facilement que ceux de moins d'nll

pixel, ct les informations de plus haut niveau peuvent fournir une assistance il la prncèdnrt:

de mesure.
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2. ORGANIZATION or THIS 1'118515

CHAPTER 1

Introduction

1. Brief ProposaI

ln this thesis we describe a fast monocular optical fiow algorithm for real-time appli­

cations that featllres rapid convergence (within a single iteration), ease of temporal inte­

gration, and swift reaction to abrnpt change in scene motion. Although the fiow data are

represented on a coarse grid, the quantitative and qualitative fiow for natural scenes is as

good as or better than algorithms in the same class.

The system is cornpletely bottom-up, but does incorporate predictions from higher-level

processes. In the current implementation a Kalman filter is used to predict upcoming fiow

fields and to perform figure/ground separation. The heart of the algorithm is a coordinated

gradient descent method that alternately minimizes local correspondence errors and the

consistency of adjacent fiow field vectors. What results is a non-linear adaptive diffusion in

which confident measurements are used to infiuence their less confident neighbours.

The principles used to forrnulate the algorithm follow directly from an approximate

model of the hypercolumn organization present in the primate visual cortex. This model

sllggests a process in which scalar and vector information are processed independently and

how they might be combined to produce a coarse fiow field that is both accurate and

robllst. The optimization of region correspondences and fiow field consistency, for example,

are implemented as separate minimization stages as in the biological case instead of one

IlIrnped minimization.

2. Organization ofthis Thesis

Optical fiow does not exist in a vacuum. This thesis therefore begins in Chapter 2

with a discussion of the motivating applications of motion from image sequences, and the

techniques used to implement them. The reader is guided through a brief outline of the

1
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2, OItGANIZATION OF 'l'IIIS TIIESIS

biological motivation for the algorit.hm and t.hen sllmnHHizt,s some of tht' goals of Ihis \\'ork,

The algorithm itself is described in Section 5,

The major components and concept.s of the algorithm 'He teeat.ed in separat.e s(,ct.ions

of Chapter 3, Our algorithm combines t.he layers of image region mat.ching (Sect.ion 1l, flo\\'

field consistency (Section 2), and fignre/grollnd separat.ion (Section ,1), OUI' algorilhm ('au

intcgrate information from ather SOUfces, and thcsc hip;lwr-lcvel ~ml1rccs a.r(' disellsspd in

Section 5, The details of our particular Implementation, incilldiug l'eal-t.ime t'onsiderations

and time versus quality trade·offs arc described in Sect.ion fi.

Experimental results presented in Chapter '\ dellloustrat.e t.he performance of t.he aigo.

rithm on both synthetic and l'cal data using sollle of the \\'ell-kuown data sets cited in tI",

Iit.erature [5], and show that it it comparable to sOllle of the best results obtained, with the

added advantage of rapid computation.

This thesis concludes in Chapter 5 by bringing the daims and the experilll<'ntai results

together. The novelty of the present work and the future direction for t.his work al'<' also

outlined .

2



•

•

•

J. GENERAL MOTION

CHAPTER 2

Background

This thesis unites conccpts from biological models of the primate vision system and com­

puter vision techniques to yield a rapid and robust optieal flow algorithm. However, wc

also olfer an architecture for integrating higher-Ievel information to steer the lower-Ievel

sensors in a principled way. For this reason, wc will start this chapter with an overview

of the motion problem (Section 1), followed by a discussion on computer vision techniques

(Section 2) that have been applied and the relevant applications (Section 3) that motivated

motion measurement in image sequences. Exploring a biological model hypothesized for

the primate visual system (Section 4) has led to our proposai for a real-time optieal flow

architecture (Section 5). White measuring motion from image sequences will remain an

open problem, our future work (Section 6) will make use of our open architecture to intro­

duce operator and volumetrie reconstruction feedback to project perceived 3D motion and

objects back iuto the image plane to close an exploration loop. These exploration issues

will not be addressed in this thesis.

1. General Motion

Ilumans perceive motion with so Iittle effort, and with so much fluidity that they tend

to take the mechanism for granted and foc us on the inferences caused by the signais, rather

than the signais themselves. A "trained observer" couId be conditioned to locate important

points in a scene and to describe the displacement of these points over time, but his or her

visual processor integrates heuristies of the organization of the physieal world to generate

perception of physical motion more elaborate than the stimuli. The distinction between the

stimuli and its perception is typieally the focus of psychophysics. A~ far back as 1865, Mach

Imd demonstratcd and discussed the "existance of Iight and dark bands in the perceived

pattern whieh had no analog in theactual input." [18, p. 219]. More recently, the studies
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of iIIusory coutours aud otller subjective iuterprl'tations of light pattPrns [0] haVl' le,1 tll

the elucidatiou of the mechanisms in t.he hidden layers bet.wel'n t.hl' rl'tina and t.11l' l"'rebral

cort.ex. ln our case. wc will be applying some of t.hese implied medmnisllls III a cllmpulw

vision system. equipped with a gray-Ievel sensing caillera.

There has been debate on the choiee of camera imaging modl'1 for mot.ion analysis. Most.

camera optieal paths arc nol perfectly modeled by a pinhole caml'ra. Pt'l'SI)('{~livl' warping.

Projecting image plane dat.a into 3D space using the l'Onst.rainls of slriel p"rspl'd,iv,' is

a very daunting task. If, instead, one chooses a weak persped.ivl' nlodel, such as scah'd

orthographie projection, the result is a toy model of perspect.ive, much simpler bolh inlu­

itively and mathematieal!y. Translations in 3D paral!el ta the image plane al'e projed,ed

orthogonal!y onto the image plane. Translations perpendieular to the illlagl' pianI' yidd a

change in scale. This weak perspective approximation holds as long ,l., t.he dist.ance lrom t.hl'

viewer ta the abject is significantly larger than the abject.. This toy imaging modelmight. be

implemented in human perception: it would explain why wc get confnsed abont. an objl'ct.'s

shape when perspective deformation dominates (as an abject approaches a vil'wer).

Assuming the scaled-orthogonal imagiug model, wc cau decompose :11) object mot.ion

into a set of representative motions, iIIustrated in Figure 2.1. Wc have already ml'nt.iIHI,·d

translation in the image plane and translation perpendicular ta the image plaul' (scale

change), but there is also rotation in the image plane and rotation about. an axis in the image

plane. The latter rotation decomposition with respect ta the image plane is attributed to

Kontsevieh [17], and is a simpler form than the dimcult ta compute aud decompose lumped

3D rotation and translation matrix of the camera (or abject) motiou. This thesis does not.

assume either striet or weak perspective imaging, and concentrates on tI;~ optical f10w ou t.1",

image plane itself. Nevertheless, it is important ta note that general 3D motion projecled

onto the image plane, may have al! of the motion components iIIustrated. This wil! be

stressed later, when wc show how sorne opt.ical flow algorithms have difficult.y comput.iug

some of these components.

Motion perception is a vietim of noise. The image seusors (biologieal or synthetic) arc

prone ta bursts of white noise and structured noise, aliasing and other imaging artifacts.

The Interpretation ofstatie scenes is dimcult enough, and measuring displacernents of image

components is also noisy in itself; smal! and large displacements alike surfer from ali'l.,ing.

The aIder information technology techniques suggestcd a modulaI' approach to computer

vision in general, creating data structures ta describe statie imagœ, and ta have dilferent

modules infer knowledge from the image from different algorithms, e.g. cdgc-detection,



•
1. GENERAL MOTION

(a) Translation parallcl to image plane (b) Translation perpendicular to image plane
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(c) Rotation about axis in image plane (d) Rotation about axis perpendicular to image plane

FIGURE 2.1. Components of optical Dow from weak perspective imaging.

•

shapc-frorn-shading, and so on [20, 6]. But motion perception can not be confined to

analysing two statie images and then analysing the data structures of the two images: the

tiniest noise signal introduced will make the problem intractable. Furthermore, natural

scenes involve the motions of objects that are difficult to characterize as data structures.

Given an image sequence, subjective issues such as scale and aperture allow many possible
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interpretations and figure/ground separations, but the viewer nSllail.y sl'll'CtS one intl'rpl'l'­

tation. '1'0 be of nse computationaily, this selection wonld need 1.0 1", exp\'('ssed in tl'rms of

a perceptnal model or a model of biological sensor processing.

Regularization is introduced as a method of applying local constraints 1.0 an othl'rwisl'

noisy system. I\nowledge of t:tc physical system 11Illier observation leads 1.0 approximatl'

models of how neigitboring clements should internct. In cases of noise, the system would

integrate nelghborhood activity into each lllC;L~nrement.. ChL~sic regulariz:ttion techni'lnl's,

such as those in Blake and Zisserman[7], deal with snrface recoustruct.iou froul uoisy Ull'a·

surements and use analogies of surface plates, weak springs alld melllhl'llnl's 1.0 elllhlllly

physics in a search for a best fit.

The distinction here is that a measurement proccs.~ is guided by a regularization of thl'

measurement results, and the process is iterated until a reasonable result is ohtained. 'l'Ill'

unresolved problems here include: how many Iterations arc enough'! 1I0w do we prevl'nt

degradation from over-regularizing or over·iternting'! How do wc prevent noise artifads

from under-regularizing or under-iterating? How do wc balance the llleasnrement signal

with the regularized measurement signal? How important arc neighhorhood constraillts

with respect to individual measurements? For the most part, these questions lll~ allswl'red

by tuning weighting parameters by experimental observations or noise melL""'ements. Tlll're

is clearly something important missing from the approach so far: a new l'egnlarizer is not

the answer, but a better architecture to integrate measurements and physical or perceptnal

constraints.

We propose to go a large step further. instead of embodying a model of the physics

of surfaces into the solution, wc model some of the perception of physics of sn l'faces and

motion, whieh wc will show is a more powerful constraint in motion perception, producing

results consistent with human observers, including the cases of unstructured sccnes.

1.1. Motivation With the advances in computer speed and the decrease in imaging

hardware costs, the novel problem of extracting information from image sequencr.,; l'an he

approached with more accessible tools. While the majority of optieal ftow and motion algo­

rithms resolve the data into knowledge byoff·line batch techniques, wc have designed and

constructed an optieal ftow algorithm sufficiently rapid ta use temporal Integration and user

interaction as far more powerful constraints. We believe that this strategy and architecture

will contribute ta the more common computer vision tasks of surface reconstruction and

tracking from image motion .
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2. Computer Vision Motion Techniques

Optieal f10w can h~ considered as a dense set of point correspondences between suc­

cessive images. How these correspondences are found val'ies according to key assumptions

made about the irnaged environment. The following sections describe the assumptions and

characteristies of the dominant optical f10w algorithm types. The comprehensive study by

Barron et al. [4, 5] provides a level playing field to objectively test and compare optieal

f10w algorithrns against a set of standardized input image sequences.

2.1. Optical Flow by DifferentiaI Relations The key assumptions in differential

relation optical f10w such as Horn et al are that the objects in the scene have surfaces

of near-uniform reflectivity (e.g. uniform color) and no specularity[15]. This allows the

approximation of displacement proportional to intensity change. Image intensity leaks are

considered to be negligible. For image intensity E(x, y, t), this is expressed as

Using the chain rule for differentiation, Horn obtained

aE dx + aE dy +aE _ 0
(2.2) ax dt ay dt at - .

The unknowns are the velocities in the x and y direction, whieh are denoted as u and

v 5uch that

•
(2.1)

dE
dï=O.

dx dy
(2.3) u = dt' v = dt'

The notion here is to approach optical flow as a large set of partial differential equations

for a physieal system, of the form

(2.4)

•

Still, this is under-determined, providing the component of the movement in the di­

rection of the brightncss gradient [15] and intensity leaks abound. Furthermore, textured

surfaces fail under this assumption, and displacements are limited to a fixed scalej the same

scale over whieh the intensity gradient change is computed. The assumptions made for this

form of optical flow computation may seem almost contradictory, in that without texture,

no motion is perceivcd, but the motion of boundaries is known in only one dimension, due
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1.0 the loo.al nature of the measuremeut. Regularizatiou improvcs the local Ull'asure by in­

troducing neighbor interactions, but does uot go ail the way 1.0 propose a princip!<·d way 1.0

balance rncasurcmcnt \Vith rcgularization. Local error minima a.rc almast. Unl'H(~apl'ïLblcl HO

initial estimates of displacement arc essential for convergence.

2.2. Optical Flow by Fe:\ture Point Correspondence Featurl' poiut com'spou­

dence raises interesting issues, and Iiterature exists 1.0 define what makes a good feature

l'oint. This decision is environ ment and task dependent, and is usefnl for very controlled

or contrived situations, such as tracking target markers on a moving object. The re''''on

for doing this is 1.0 bypass the optical Oow problem and nse precisdy-measurcable imagc

features as a skeleton of displacement that can be filled in al. a later stage. The advantagc is

that the problem becomes a data processing problem where featnres arc matched in succcs­

siVI' image frames, using a sparse data structure. The dimculty here is in determining how

1.0 fill in the motion for clements of the scene that do not coutain featnre l'oints: we nsually

prefer seeing the motion of an entire car rather than the motion of some spots ou thc car:

this gives more useful information for perceiving the bnlk properties of the car, avoiding

the car with one's bicycle, and so on. Collision avoidance may be desired, independent of

the type of object in view.

The interdependance of what makes a good feature point, and how fentnre points

interact as neighbors can not be respected in n feed-forward system. Most feature detectors

use feed-forward image pre-processing, and not predictions of how feature poiuts behave

over time. This restriction prevents feature point correspondences from being used iu morc

evolved vision architectures which include top-down feedback.

2.3. Optical Flow by Region Matching To borrow the terminology of Barron ct

al, a region-based matching algorithm defines the velocity ii as the shift d that yields the

best fit between image regions al. different times [S]. The methods of Annndan [2, 3) or

Singh [28, 29, 30) optimîze a similarity measure, such as minimizing the sum-of-squared

differences (SSD) between two images, II and h,

(2.5)
n n

SSD1,2(X, y; d""dy) = E E W(i,j) [f.(x + i, y +il - f2(x + ,1", +i, y +dy+ jW,
j=-ni=-n

where W denotes a 2-D window function, and (d"" dg) are usually restricted 1.0 a small

integer number of pixels. Alternatively, a distance measure minimization is added 1.0 the

optimization, in the expectation that small displacements make more sense than larger
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displ"cmnents wl",n the pixel patterlls arc rnatclwd equally weil. Clearly, this is a bottom­

up, or data·drivell strategy th"t uses local information. The representative algorithms

use diffnrent rnethods for reaching the optimal tile alignments, but neither use the rich

inforrnation available al. the flow geornetry level, Le. flow consistency constraints.

Anandan goes futher and rneasures confidence of each region-match, by measuring the

curvatnre of the SSO error surface [3]. By doing this, Anandan encodes the directional

certainty for each flow vector. At corners, this error surface is pointy, so the magnitude

of the uncertainty is small. On edges, the error surface has a ridge, 50 the direction of

uncertainty rllns parallel to the ridge. Unfortu nately, the directionality of this error rneasure

is not used in regularization. This will be discussed in detail in Section 2.5.

One of the thorny issues is the size and shape of the W window function. The larger the

sarnpling area, the more convex the error function, leading to fewer steps for convergence,

at a higher cost of computation per step. On the down side, larger window sizes suffer at

ooject ooundaries, reducing the discriminability of finer details. In short, larger windows

olur perceptually significant discontinuities. The Iinearity or non-linearity of the weighting

function in W is also suojective: uniform weighting is computationally efficient, out perhaps

less meaningful than a Gaussian distributioll. Wc will propose that the size chosell for W

is less sensitive when cou pied with other constraints.

While optical flow techniques abound in the Iiterature, ail must deal with a fundamental

limitation of the aperture problem: how can one share information between the local and

glooal domains, even when they conflict? Furthermore, to what extent, and in what way

can information from different scales be combined?

Anandall 's algorithm traverses scale space by performing region matching at coarser

scales and smoothing the resulting flow field, taking the directional uncertainty of each

flow vector illto account. The resulting flow field then seeds the search at the next-finer

scale, and the hierarchical computation continues. This inheritance of smoothed results

from coarser scales imposes a limitation on the amount of image-plane rotation that can be

preserved. The practieal upshot of this is that Anandan 's algorithm is biased towards object

translation and rotation about an axis in the image plane (whieh resembles translat;on over

large patches), but has difficulty with rotation in the image plane.

ln this thesis, wc argue that the important information is not strieUy individual error

surface measurements that should be minimized, bllt rather, flow field consistency that

should be enforced. By having the two layers of region matching and f10w consistency

9
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constraints internet, wc can gain Hignifirant advant.agt'H in stahility, rohllNt.Ilt'NN and o\,{'r·

ail accuracy. For cxétmple in the ca.HC of tcxttlred Hurfac'ps with il n'Ill'at.inp; pattl'fll t.ht'

algorithm would be less likely to becollle trappcd in a local minimum.

2.4. Rigid Body Constrnints Because optkal f10w fields ar.. IlIuh'rdetNlllilu'd lIy

tbe sensory input, regularization is ofteu inl.roduced ta force tbe r<'sultinl\ f10w fit·hl 10 ,'ou­

form to certain material or perceptual propertil's. These wnstraints r"duce th., solutiou

space while searching for a global optilllum, and help produce n'stlits tltat satisfy tht, mal,··

rial physies or minimize noise over the enlire d.tta set. The way in whkh th.,s.. coustraints

arc applied, however, will significantly affect the overail outcome of t.he opt.illlization. For

example, interleaving mellSurement and regularization, versus weight.ing IIIt'a.'Ur<'lnl'nt. with

previous measurelllents and regularization. lead to dilferent optimizat.ion pat.lls.

Weber ct al. show how a f10w field can be segmented and prediett'd lIy usinl\ th..

Fundamental Matrix of each image region to determine local rigid body 1II0tion [36]. A

region-growing method groups image regions of simitar motion parallleters, and aHsodatt·s

a high cost for segmentations that select large numbers of groups. Using tl\(' Fundan\('ntal

Matrix is a form of rigid body constraint (the matrix is formed under the :.",,"nptiou of a

rigid body undergoing translation and rotation).

White the rigid body constraints embody physieal 1II0deis of the imaged environlllellt,

they arc still dimcult to determine, noisy to quantify into a nseable form. 'l'hl' ril\itl body

lives in 3D space, and the mapping from the image plane into 3D space is rar"'y adeqnate.

For unstructured environments, a more appropriate levc\ of regnlarization can 1", aehieved

with f10w field constraints whieh arc based on physieal properties, but ean IH' proeesH..d

without rcsorting back to the 3D space.

2.5. Flow Field Constraints 1I0w does the f10w algorithm know when it h:.,

reached a local, sub-optimal minima, and where shonld it go r,ext to escape'! One an­

swer lies in the f10w field consistency of its neighborhood: if the neighborH arrived at the

same conclusion, there is no cause for alarm, but if one f10w vector points in the wrong

direction, it will l'onder its neighbors' choiee as an alternative. Aigorithms that nse f10w

fields as inputs generally expect that the f10w fields behave in certain ways: the rigid body

constraint discussed in Section 2.4 make strong assumptions about how objects behave in

3D, but projecting these constraints back into the image plane can be computationally

challenging. An alternative approach is to deal with the f10w vectors in the image plane,

using simple rules of interaction that are suggested by perception experimenL', and irnplied
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hy mat"rial physics. This lH!collU!s useful iu the Cllses of sparse measurements, where only

k"y featnrl's can be accnmtely determined, although a more dense measurctnent is desired.

One might hope l.hat applying a Gaussian dirrusion operator to a flow field would

somehow spwad the flow field information throughout the moving object. Giachetti ct al.

do this to spread a sparse optical flow field over the entire image plane, and perform some

weighting bllSed on measllrement error [12). This is acceptable when the desired erfect is a

Iinm,rized flow field for mellsllring a small nurnber of motion parameters, such as foclIs of

expansion, angnlar rotation and time to impact. In gener?.1, however, this only blllrs the

adllal flow field alld l'liminates the finer detai!s that allow figllre/gwund separation and

tracking.

Anandan's algorithm [3) uses a modified Gaussian dirrusion to spread flow vectors across

each scale image before proceeding to the next-finer scale. Each vector becornes a. weighted

sllm of its previolls vaille and the average of its neighbors. The weighting is determined by

the cllrvatllre of the error surface at that point. What is ignored is the error measllre of the

individllal neighbors and their consistency with each other: one should not give the same

wcight to neighbors which arc obviollsly wrong, and smcar the error around. In order to be

clfecti"e, flow field consistency must be enforced during the measurement stage.

Giachetti ct al. also relax th" rigid body constraints and permit shearing and other

deformations to the image plane [12). Prazdny's research into estimating egomotion [25]

assllmed that flow fields beha"ed in a Iinearly consistent manner, duc to the imaging of

planar obstacles: plailar motion induces Iinearly smooth optical flow patterns.

Psychophysics insists that no matter how construc<l or noisy the input image sequence,

the perception of fluid motion will dominate over local minima that lack local coherency

or consistency. In fact, these uncertain areas arc almost always influenced by neighboring,

certain areas: when motion is perceived at boundarles of an object, the low-contrast interior

region of the object is perceived to move with the same velocity, even when there is no

apparent local motion. The hypothesized mechanism for this ability in the primate visual

cortex is orrered in Section 4.2.

Steering local detection of curvature or flow field by neighborhood flow consistency

is covered by Parent and Zucker [23, 40). Simple updating rules based on the substrate

problem arc used to attain solutions that arc globally and locally consistent. The advantages

of using flow field consistency include its ambiguity resolving, rapid convergence, and the

abstraction from 3D physical models into the 20 flow field.
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One of the problems associated with npplying a Ganssian Iilter to diffns(' the lIow Iidd

is its Iinearity: discontinuities arc smoothed over, regardlcss of thcir perceptual signilica.l\cl'.

Flow Iield consisteuc.y rccognises that some combiuations of ncighboriug lIow vI'cl.ors an'

more Iikely than others, and arc given weights accordiugly, preserving features hased on

measurement conlidence and neighborhood compatibility, It decidedly uon-Iiuear stral.egy,

rather than a blind feed-forward strategy.

Embedding 1I0w field consistency into the measnrement process allo\\'s l'tllllident nl'igh·

bors to steer uncertain 1I0w vectors for local consistency, bnt al. the san", tin", forces the

propagation of local measures 1.0 achieve a more globally consistent set of 1I0w vectors. Rapid

convergence is possible duc 1.0 the reduction in solntion space, but also because 11011' lid"

consistency does not lead the measurement stage 1.0 test hypot.\",ses that violat.I' nHl\.l'l'ial

constraints.

3. Computer Vision Motion Applications

3.1. Surface Reconstruction from Points of Correspondence Two views of au

object are not always sufficient to determine the structure of the object. We l'an always

benefit from integrating new information into our perception of the world: new informa­

tion reduces uncertainty, reduces noise, and solidifies our internalized representations of

the world. More concrete\y, temporal Integration of optical now l'an certainly improve u,,­

coming measurements of image motion, just as surface reconstruction l'an be improved by

integrating multiple measurements, demonstrated by lIeel [14].

Prazdny used synthetic now fjelds to reconstruct egomotion parameters and for "Iauar

surface reconstruction [25]. The technique is reasonably rapid, performs coarse range imag­

ing, but works only with 1011' noise now fields. The now field generated from our algorithm

will be shown to be of sufficiently high quality to do coarse range imaging of this type.

3.2. Feature Point Tracking Cornmon applications for motion tracking in general

inc1ude featurc-point tracking [31, 26]. Both methods arc present.\y Hmited to laboratory

environments and controlled experiments, but could be improved by applying denser motion

measures from optical now, and might l'ven be moved to less structured environments. Ile·

gion matching coupied with now field consistency l'an offer more than any single regularizcr

in terms of noise rcduction. Feature point tracking for articulated rigid bodies would not

benefit, however, if individual Hmb motion measurement needs to meet a precision rC<luire.

ment. However, rigid bodies with unknown shapes or more general, non·rigid motion would

greatly benefit from the interpolation of perceived motion throughout the object.
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3.3. Structure nnd 3D Motion The c1assic 8-point algorithm [19) offered a rapid

technique of using point eorrespurulences from two projections ta produce the 3D positions

of the points as weil as the relative orientation of the two viewing planes. Unfortunately,

this algorithm is wrought with noise sensitivity and singularities. Noticeable improvements

are arforded by conditioning the inputs [13), but no amount of regularizatiou will recover

the surface in the presence of structured noise ever-prcsent in optical f10w techniques.

lIowever, with rapid optical f10w computation, where measurements and coustraints

produce acceptable f10w output, the higher-Ievel 3D constraints can be projected back down

to the sensor levcl, c10sing the acquisition and analysis loop.

Uncalibrated, and even noisy, images can yield reasonable 3D structure and motion

information [8, 27), but the noise in the image plane is amplified many-fold when pro­

jected back into 3D space through noisy imaging parameters [34, 39, 32, 37, 22, 35).

The Iimiting factors to perform the projection from the image plane to 3D space are uoise

iu image coordinate measurements (due to aliasing or artifacts or local minima), and the

ill-condil.ioned inversion of the perspective imaging parameters, such as the Fundamental

Matrix. The inversion of the Fundamental Matrix can be regularized to a point, but at

the expense of computational efficiency. On the otfter hand, the image coordinate measure­

ments can be improved significantly when neighborhood f10w consistency is applied: the

motions of image clements are governed by constraints of f1uid, or consistent f10w clements.

Clean patches of image coordinate measurement allow local calculations of the Fundamental

Matrix, with the possibility of merging patches, until entire objects are percieved with a

unique set of Fundamental Matrix motion parameters [36].

4. Combining Computer Vision with Biological Clues

ln arder ta anchor this discussion in meaning and relevance, the reader is offered the

following section as a roadmap to vision system architectures. After this, it should be more

c1ear where our work is situated in the larger perspective, and why we consider it significant

to the vision community.

4.1. Three Vision Pnrndigms: Summary of Early Vision When discussing

(computer or biological) vision algorithms, it is convenient to c1assify them according to

their architecture. We have adopted a classification and naming scheme that differentiates

between early-generation approaches to computer vision and biologically-motivated systems,

inspired by (41). There is a steady evolution from one level to the next, and a complexity

gap separates each paradigm from its predecessor. The reader should note that this section
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is not meant to be an ali-inclusive discussion of visiou 1llgoril.llln taxonomy, huI. ral.hl'I" an

illustration of how vision algorithm architecture tends toward solution methods l'SI><lIl8<'d

by biological visiou systems.

This should not be surprising: after all, biological aud computer-hasl'd vision systl'ms

suifer similar constraints in terms of size and complexity of availahle hardware and l'nl'r~y

consumption. In the ideal case, bath systems either llel'li or could hendit from tinl<'ly in­

formation. While sOine of nature's tricks for compactnl'ss and spl'ed involve hrut" fol'l"',

unorthodox shortcuts and massive parallelism, this rapid executiou in turn simplifil's thl'

computation. Perceptiou at the biological level, as wc understand il. today, SU'~l'l'l'ds hl'

performing simple computatious in specialized layers, enahling ueighborin~ r"gions 1.0 in­

fluence each other. As the informatiou passes through succcssive layers, hi~her levels havI'

the opportunity 1.0 send signais 1.0 the lower-Ievellayers, providing hints ta steer the owrall

processing. This top-down fcedback can be significantly more useful to thl' lower lev"'s than

neighborly interaction for convergence.

The First paradigm is typical of the first generation vision algorithms whieh at­

tempted to associate features or objects with image intensities, such :., histo~ram l''Inal­

ization and thresholding, or convolving an edgc-enhancing kernel with an image. l'oints of

interest arc tagged, and because strong assumptions arc made conccrning the imaged envi­

ronment, the Interpretation is strongly context-dependanl.. The key Ingredients to \.III' lirst

paradigm architecture include strictly fced-forward stages, very local proccssing th al. usually

only works in artificial environments. Distinguishing characteristics of these algorithms are

several tuneable parameters (thresholds and the Iike) that must bc set by cxperimentatioll

in order to function. The biggest advantage of tbis paradigm is the simplicity of computl'r

implementation, and rapid exccution.

The Second paradigm architecture attempts to recLify the drawbacks of the first

paradigm by combining more local information, and performing more Iterations before

reporting results. Like the first paradigm, this usually illvolves separating the proces.'illg illto

feed-forward stages, b'lt withill each stage, information is dilfused locally for each Iteration.

An example of this is combining information across dilferellt scales hl' performillg first

paradigm measurements at dilferent scales and using temporal illtegratioll (such ""' "almall

filtering) to determine relevant scales al. dilferellt image locatiolls. Diffusion parameters and

discontinuity penalties enforce properties perceived in physical objects. Surfaces arc seen

as locally smooth patches with sharp cdges, moving objects telld to stay ill motioll. TlwBe

material observations are translatcd into constraints imposcd during the Iterations: at cach
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point, neighborhood interaction eauses adhesion of dumps of data. This leads to a definite

improvernent in results, but il is costly and leaves open the issues of how many Iterations

can be performed at each stage before eroding the information one hoped 1.0 recover. The

corn pu tation, ther"fore, in vol ves many iterations of r"latively sim pic rnles. Un fortu nat"ly,

th" r"sults I",com" eroded beyond a certain number of itemtions, and eXl!Cution is usually

slow.

TI", Third pnrndigm takes its inspiration from approximat" mod"ls of the massively

parallel and int"grated organization of biological vision systems. The information now h"r"

is not strictly feed-forward: each stage p"rforms a large amou nt of neighborhood interaction

that indudes non-Iirwar diffusion. Lat"r stages ar" biased by their pr"vious stat", and

rwighbors can inn'Ience each other in cas"s of sensor or signal noise. Global constraints

gov"rn b"haviour ill cas"s of local ambigllity, providing p"rceptual continuity. Furthermore,

th"s" constraints are 1,,85 r"strictive than the constraints of the second pa.radigm; surface

curvature consistency replaces the plate and rod models, relaxation labelling replacl!S LIll!

maximum-Iikelihood strat"gies. One key advantage to this approach is rapid converg"nc"

(in terms of number of Iterations; each iteration can be very costly). The minimization of

errors used in the second paradigm is most often blind to neighborhood interaction. In the

second paradigm, blind minimizations lead to testing Interpretations of the scene that arc

unstable or violate material property constraints. In the third paradigm, impossible states

are discarded and not even tested: at each stage, the algorithm will only reach astate

allowed by the previously attained state, and the consistency constraints are inviolable.

'l'Ire computation usually involves a large set of simple rules that would be executed in a

parallel fashion. Typically the complexity ofimplementation prevents these algorithms from

being real-time vision systems. This thesis presents an algorithm that runs contrary to this

widely-held view, providing the robustness and high-quality results of the third-paradigm

dass algorithms but within a reasonable amount of execution time.

4.2. BioIogical CIues The primate visual system is arguably the most developed

vision system that can be studied. Computer vision research has much to gain from study­

ing the structure and organization of the only fully-functional vision system architectures,

developed not by engineers, but by nature.

Sorne approximate biological vision models yield efficient algorithms by decoupling a

complex minimization expression into individual components. Marr and Poggio [21] used

a cooperative algorithm for computing stereo disparity, suggesting a rough model of early

visiou and cooperative layers that could be explained by the biological hardware available.
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The cooperative process decouples a patteru-match minimi~ation and surface rontinnit,y

constraints into two layers that interact (feedback). The two layers art' much simpler than

a single layer that performed both actions. Since the simpler or more complex minimi~ation

attain the same goals, it seems re1L,onable that the simpler architecture is a more praetkal

choiee for both biologieal systems and synthetie algorithms. lIardware that ronsists of

speciali~ed layers, where each clement in a layer resembles its neighbor, is generally raster

and less expensive than single-layer monolithie implementations. More Iterations l'an Il('

performed in a given amount of time. For the rclativcly slow ,,,,nral pathway signais (Ill

cm in 10 ms), this decoupled architecture is crucial.

Vllman suggested mapping biological computational clements to the algorithmk coun­

terparts in [33]. Examining the receptive fields in the retina and the contrast-enhaneing

property of the Difference-of-Gaussian operators leads us to examine the signal pal,h fur­

ther, into the visual cortex. Wc can model the simple, complex, and hypl'r-coml'Iex œlls

in the visual cortex as combinations of these receptive fields. I3nt there is yet another step

needed to explain the neighborly interaction of perccived motion.

Staining neurons of the visual cortex for cytochrome oxidase identifies clusters of ,,,,n­

rons that are highly active, contrasted with clusters of lower activil.y [1]. 'l'Yl'ically, the

stained cross sections yield clumps, or blobs of apparentIy higher nenral activity, s"l'aratec\

by regions of lower neural activity, sometimes referred to as intcrbloIJ.•. The regions of higher

activity (blobs) are found to be scalar representatives of the visual fields, while the low(,r

activity regions (interblobs) are orientation detectors [1]. The scalar ~ones are more ac­

customed to continuous activity and react abruptly to changes in inpnt, while the ori"nted

zones fatigue rapidly unless the images shift, allowing the neurons to rcst until activated

again, responding smoothly to changes in input. This suggests that shifting the input im­

ages by eye movement becomes necessary not only to refresh the retinal cclls, but also to

refresh the oriented cells.

Sorne of the clues for region-based motion (and stereo vision) correspondence that arc al­

ready widely-known include the alternating left- and right-occular dominance hypercolumns

in the visual cortex. In each hypercolumn of the interblob (oriented) regions, dilferent orien­

tations and scales are represented, higher neural firing rates indicating a stronger presenct!

of each element. In each hypercolumn of the blob (scalar, non-oriented) regions, dilferent

spacial scales of Iight intensity are represented.

The parvoccllular pathway, dominated by orientation detectors, has been suspected of

being largely responsible for matching edge information from left and right visual fields, and

iii



•

•

•

5. PROPOSAL FOR REAL-TIME OPTICAL FLOW

the medial temporal region for tracking this positional information over time. This would

he a strong indication for the importance of ûdge information in sequential image analysis.

f3ut what ahout the non-oriented, smoothly-varying or textured image fields that do

not trigger the oriented.edge cells? Surely, scalar information would be more useful ir, these

zones. The correspondence problem would be given another constraint to help the solution

converge more rapidly, and reduce the solution space. The blob and interblob regions arc

interspersed, and can share information with each other. The blobs might perform image

intensity region (or template) matching in the hypercolumns, and similarly, the interblobs

might perform a comparison of flow orientations across several scales.

f3ecause the blob regions respond abruptly to changes in input, neighboring neurons

within the blobs may represent very different Iight intensities, as opposed to the interblob

regions, where edge and flow orientations arc strongly influenced by neighboring orienta­

tions. One would expect that within the blob regions, neighboring neurons do not diffuse

their estimates as much as neurons within interblob regions. This characteristic could allow

a form of window or region matching of Iight intensities or textures that takes place between

corresponding receptive fields in the blob regions over time.

A key issue underlined by Yeshurun [38] in stereo and motion perception is the differ­

ence in size between a receptive field and the region represented by a hypercolumn. This

observation implies that a motion patch in a hypercolumn represents changes from a c1uster

of neighboring reccptive fields, and that the motion field will be less dense than the input

image field. Traditionally, however, optical flow algorithms [3, 28, 15] expect motion field

density about the same as the imput image density.

The combination of these relevant fads suggest that the scalar and oriented hyper­

columns perform different tasks to produce optical flow motion representation, and the

rcsults from both are combined to produce a coarse flow field. The blob-interblob interac­

tion may be modelled as intensity-based region matching diffusing its estimates, and the

orientation of the flow elements as a constraint or boundary for the diffusion.

Thcse cooperative processes play quite well into the decoupled matching and consis­

tency minimization model suggested above. Each "layer" performs its task on its inputs,

and scnds a compressed summary to the next (or previous) layer.

5. Proposai for ReaI-Time OpticaI Flow

As suggested in Sections 4.2, 2.3 and 2.5, our algorithm performs region-based matching

betwccn successive image frames, at once minimizing a pixel pattern matching error and
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imposing flow field constraints within a neighborhood. For the pnrposes of this thesis,

we will consider the optical flow field ta be a coarse field of image point correspondeucl's

between the two sequential images.

5.1. Organization of Aigorithm An overview of our algorithm is presented in t.he

black diagram of Figure 2.2. Each stage is represented as one hlock, with t.he execntion of

stages proceeding from left ta right. Each stage performs iterat.ious internally, 11._ indicated

by the dark, curved arrows. Furthermore, there is a backward and forward exchange of flow

data between the tile-matching and the "ow consistency stages. Note that flow information

from a Kalman prediction loop is used ta predict the next set of region mat.ching. This

top-down feedback is used in onr laboratory environlnent, but for this thesis, wc will he

reporting results without using this high-Ievel tracking and prediction, in arder ta compare

our optical flow algorithm with otller relevant algorithms. Each stage of this black diagram

is described in more detail in Chapter 3.

• Image
sequence

use prevlous flow
ta seed new seorch

adoptive
diffusion

Kalman f1ller
usIng uncerfalnty

Rgure/Ground
Separation

flow
flg/gnd

Kalman Flller
wtlh separation mop

ObJect
Tracklng

!rock

•

FlOURE 2.2. Block diagram of full optical "OIV proccss, including tracking fccdback.

For the most part, however, we will demonstrate the core algorithm modelled by the

black diagram in Figure 2.3. The higher-Ievel information is ignored here, aud the opti­

cal flow is examined and processed without considering the interprctatio71 of the optical

flow. For this simplified model, prediction of upcoming image motion is deterrnined by the

previous measured motion al. each point.

5.2. Strengths and Shortcomings of Aigarithm Our algarithrn is firmly raoted

in the third paradigm of vision architectures. Impossible (perceptually unlikely) iuterpre­

tations are not allowed into the optimization proccss. This intelligent error minimizatiou

embodies the flow field consistency constraints described by material properties and psy­

chophysics by restricting the correspondence search regions and combiuing the gearnetrical
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FlOU/li, 2.3. Block diagram ofcooperative optical flow process, without higher-Ievel
information. This model will be used for most of this thesis.

information from these correspondences with non-linear diffusion to seed searches for fur­

ther iterations. The stages of region-matching and flow consistency are separate stages, but

they share information and steer each other. The principled method of integrating the flow

field geometry with correspondences enables an open architecture where information can

be introduced from a higher level of processing, leading to top-down feedback. The promise

of this approach is rapid convergence for flow field measurement, better quality flow fields,

aud easy integration with other processing stages.

For the purpose of this thesis, wc apply no underlying surface transport mode!. An

example of such a surface transport model would be parametric solids, such as superellip­

soids, undergoing general motion. The optical flow algorithm presented here does not use

this constraint, neither in the measurement stage, nor in the flow field consistency stage.

Such a powerful ronstraint would improve the quality and convergence of the flow field.

However, allowances have been made to include this type of higher level information at a

later stage, in order to predict upcoming flow fields.

At this point, it may seem that sorne issues have been simplified to fit our architecture,

namely ignoring directional confidence that Anandan 's algorithm could produce. We will

show that these issues have not been neglected, but instead are embodied by the form of flow

consistency constraints chosen (see Section 2.3). The savings in computation and sampling,

however, arc enormous, allowing either more iterations per sampIe set, or more sampIe sets

per IInit time.

5.3. Performance Expected Our proposai can meet the goals presented in Sec­

tion 5.2 by demonstrating that convergence occllrs within very few iterations, and that the

quality of the resultant flow field is competitive with slower algorithms. These points will

be dealt with in the Experiments section, Chapter 4.
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This proposai would demonstrate the almost real-time eapabilities of a good '1uality

third-paradigm algorithm when applied to optical flow. Our l'remise is that the approxima.!.e

biological model or visual cortex hypcreoltlmns provides powerflll l'onstraints 1.0 motion

processing that can be performed with simple updating filles and implemented in near

real-time on conventional workstations. Onr ciaim is that our integrated third-pal'adigm

architecture with simple rules ont-performs sccond-paradigm algorithms th:,t eml!ody 1II0re

complex constraints in the error minimization in l'very mea8111'eable sense. This ciaim will

be justified by comparing rcsnlts with competing algorithms in Chaptcr ·1 (Expel'inll'nts).

5.3.1. Comparing Computational Cost Region matching, the fundalllentai IIIl'a8111'e

used in this thesis and the algorithms of Anandan and Singh, will have the saml' wlllputa­

tional cost for ail three algorithms: it is dependant on the area of the window nsed in region

matching. Also, ail tlnee algorithms have a rorm of neighborhood diffnsion operation that

regularizes the flow fields. In this case as weil, the compntational cost or the diffusion is

dependant on the number or neighbors that are affected by any single e1ement, analogons

to an area encompassing the neighbors. What distinguishes the three algorithms, ther""ore,

is how often pixel regions must be compared, and how often flow measnres mnst be diffnsed

between two image frames.

Chosing r to l'l'present the cost of performing a region comparisoa, Il to l'l'present

the cost of updating an estimate by examining ail its neighbors, and N 1.0 l'l'present. the

number or resulting flow vectors, we shall examine the cost entailed by our algorithm and

those of Anandan and Singh. This cost analysis is not absolutely rigollrolls, alld some

allowances must be made for end-user adjustments, such as diffllsion factors a',d 1.1", lllllnber

of iterations applied. 'l'bis section is offered as a sketch for comparison.

For our algorithm, we perform an arbitrary k iterations between image l'rallies. For

each Iteration, there is one step of 18 X N region matches or cost r and one step of N

diffusion updates of cost d. As a cost expression, then,

(2.6) Cou", =kN (18r +d).

•

This leads us to the cIaim that our algorithm's cost is or order O(kN).

For Anandan, there is an added cost or image pre-processing to constrllct the hierarchi­

cal image pyramid, but this is a fixed cost and will be put aside for this discussion. 'l'ilere

are n levels in the image hierarchy, where n is typically proportional 1.0 log(N). At each

level i there are 2; x R x N region matches of l'ost r, where Il is the number or tests that
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are applieu for each rnm~"Jrement, typieally 36. At the same level i, there are D x 2' x N

diffusion upuates of cost Il, where Dis the number of uiffusion iterations (typieally 10). At

each level i, then, the cost becomes

(2.7)

Sl1mming nI' these costs over ail n levels of the image hierarchy, we obtain the total

cost of

(2.8)

(2.9)

log(N)

CAnandan = L: 2; N (Rr +Dd)
i=J

= (2'09(N)+1 _ 21) N (Rr +Dd)

= 2 (N - 1) N (Rr +Dd)

'" 2N2 (Rr +Dd)

•

•

This approximate cost analysis suggests that Anandan's algorithm has a cost of order

O(N2). Note also that D and Rare usually constants of the order of 10, aduing more cost,

anu that the image pre-processing is also costly.

Singh 's algorithm is of similar hierarchical structure, and can be paritioned in a similar

fashion, leading to a cost of order O(N2 ) as weil.

How can we ensure that our algorithm will be faster (Iess costly) than those of Ananuan

or Singh? First, we can ensure that the number ofiterations k is much less than the number

of f10w vectors N. Second, we perform only one diffusion operation per iteration, insteau

of D. The three algorithms offer comparable quality results, as will be shown in Chapter 4,

but ours is of cost O(kN) instead of O(N2 ).

6. Context and Future Work

A 3D volumetrie reconstruction architecture is under study that would incorporate f10w

measurements and estimated range data, using simplifications inherent in the technique

suggcsted by I\ontsevieh in [17]. A simple scaled-orthographie (weak perspective) camera

mode! can be used to extract approximate 3D object descriptions, whieh can evolve in time

to assist the optica! f10w algorithm. By rapidly estimating a volumetrie mode! of the scene

under stuuy, the 3D motion of the object can be tracked weil enough to predict upcoming

f10w fields, projecting 3D motion into the image plane. The f10w field consistency constrains
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the solution euough to reduce the workload of the volumetrie fiUinp; prOCl'HH. Th" :ID mod<'1

of the object wiII constraiu upcoming now fieldH significantly more,ll'adinp; tn rapid temporal

convergence of the whole system.
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\

CHAPTER 3

Theory

1. Region Matching

1.1. How it's Usually Done The comprehensive study by Barron et al. [4, 5] on

the performanc~ of optical fiow techniques describes, classifies and compares representative

algorithms using similar conditions. To borrow from their terminology, a region-based

matching algorithm defines the velocity jj as the shift cl that yields the best fit between

image regions at different times [5]. The methods of Anandan [2, 3] or Singh [28, 29, 30]

maximize a similarity measure, such as minimizing the sum-of-squared differences (SSD)

between two images, Il and 12,

(3.1)
n n

SSD I •2(X,y; d",dy ) = I: I: W(i,j)[h(x+i,y+j)-I2(x+d,,+i,y+dy +j)]2,
i=-ni=-n

where W denotes a 2-0 window function, and (d", dy) are usually restricted to a smail

integer number of pixels.

SSO as a measure of matching error is useful and convenient for computation, but has

sorne drawbacks that affect its ease of use and appropriateness to the task. More precisely,

SSO returns a number that is unnormalized and varies according to overall intensity, and

camera noise can be amplilied. The SSO returns a positive number for any measurement,

it does not indicate the overall goodness of a match. The SSD error surface will return

a single minima even when many answers are possible: the decision is then controlled by

camera noise. The same SSO number from two locations says nothing about the similarity

of goodness of lit at the two locations.

Anandan 's algorithm performs this region matching at coarse scales and diffuses the

resulting fiow lield to seccl region matching at liner scales. The diffusion is controllccl by the
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curvature of the SSO error surface. As will he showu, the SSD error surface "'"I have a Vl'I'V

differeut shape depending on ove rail Iight iutensity chauges. The same correspoudences

under different Iighting conditions will have different SSO crror sll1'faces, nH'auiug dill'l'l'l'ut.

SSO error curvatures, leading to dilfcrent diffusion characteristirs. The pract.ical upshot. is

that the same 1I0w pattern will he spread dilferently in t.he case of au overalllight.ing dl<lngl',

an undesirahle property. The diffusion will he discussed further in Section 2.2. Ilecausl'

the coarse scales arc reprcseuted with fewer pixels than the finer scales, Anandan is ahl,' t.u

apply the same W(i,j) at each scale, typically a 5 x 5 window.

1.2. How We Do It '1'0 find correspondenccs of clust.ers of pixels l11'twl'en t.he first.

and second images, our algorithm dividcs the first image into a grid of tiles, and proc"eds

to search for each tile's corresponding position in the second image, minimizinl; a pixd

pattern-matching error metric hetween corresponding tiles.

The search for corresponding tile positions is assisted hy providing an initial estimate

of where each tile was predicted to move. This can he providcd hy a higher-Icvel proeess

in a larger vision system, and effectively tunes the measurcment system to the cxpectcd

motion l'vents. For this thesis, the predicted 1I0w field is the 1I0w field calculated from t.he

preceding image pair.

For each tile p, there is a pixel pattern Plp(i, j) in frame 1 at position 'l'II' and a

corresponding pattern P2p(i,j) in frame 2 at position 1'2p' Wc defiue a dilference and

summation operation hetween the two correspouding tiles as

(3.2) Dp(i,j) ~ 11P2p(i,j) - P1p(i,j)11

(3.3) Sp(i,j) ~ Ilp2p (i,j) + P1P(i,j)JI

(3.4) errp(i,j) ~
Dp(i,j)
Sp(i,j)

(3.5) errp = L errp(i,j)
i,j

This differencc and summ?tion are performed betweeu correspoudiug pixels, and the

resulting error term errp for the tile summarizcs the average pixel-matchiug error. The

error function expresses a difference of intensities, normalized by their mcan. '1'0 combat

sensor noise, thrcsholds are applied to D and S, to clip unwantcd behavior at scnsor input

extremes. This applies mainly to when the input intensitics are very low, and governed by

noise. When the summation of the pixel intensities is too small, the data arc essentially

unusable. Also, when the differences betwcen successive inputs arc very low, the intensities
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should Ill! conKidercd cKKcntially thc samc.• (a.li)

(:1.7)

for 8p(i,j) < 80, sct crrp(i,j) = C7'rmax

for Dp(i,j) < Do, set crrp(i,j) = crrmin

•

•

Thc advantagc of uKing theKc two constraints bccomes clcar WhCll using natural scenes

cncodcd by vidco camcras: cven in a static scene, digitization or other noise can introduce

spccklcs or ~:rcaks in an image scqucnce that most algorithms would prefer chasing. These

pararr.ctcrs wcrc chosen to bc 80 = !G, Do = 8, for the intensity thresholds of a 25G-lcvel

digitized image. The crror levelK were never allowed to be exactly 1.0 or 0.0. Iustead, we

preferrcd thc more uumerically stable choices of errmax = 0.99 and crrmin = 0.01.

1.3. Why It Should Work (Better) Our normalized error mcasurc has scveral

desirablc fcatures. It returns an absolute measure of goodness of match, from a to 1.

Camera noisc is clippcd, or taken into consideration during individual pixel comparisons.

Ellually plausiblc candidates for region matching are not just local minima in an error

surface, but have about the same error height. ln SSO, local minima can correspond to

C<lually plausible matches, but will have widely varying error heights, and the numerica/ly

lowest of thcse minima will influence thc outcome of a search. For our normalized measure,

the samc number for dilferent pixels imply the same quality of match. The same number

for dilferent regions implics the same overail quality of match fol' the regions.

'1'0 illustrate the dilferencc between the SSO region matching metric and our own error

metric, reprcscntative regions have bccn chosen from a natural scene, and the SSO error

surfaces and our error surfaces are comparcd. The images chosen are from a hand-held

moving cube sequence, shown in Figure 3.1.

Therc are sOlue noticeable similarities in the shape of the competing crror surfaces: they

are both concave around the minima for corner points, and have troughs at edge regions.

But a serious drawback to SSO is illustrated in figure 3.2, where the SSO error surface has

a gentle slope near the minima, and the minima itself is hard to detect as comparcd with

the normalizcd error surface. Note also the dilference in scale betwccn the two measures.

The normalizcd error measure is designed to loca/ly vary between a and 1 at each pixel­

to-pixel comparison, but a comparison using squarcd dilferences will vary the scaIe widely

betwccn any two pixel locations. Neighboring individual pixel error measures for squarcd

dilferences will therefore produce numbers that are not necessarily proportionai te any

perceivable similarity betwccn the two pixel locations. An SSO error is the summation of

thcsc contributions, and this combined error scale varies from neighboring region to region.
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FIIoIM20

(a) (h)

FlOURE 3.1. Region Matcbing image frames. Frm •. , 19 of the hand·hcld mov·
ing cube (a), and Frame 20 (h). The numbered squares are the initial tile positions
for region malching between the Iwo images. The number corresponds ta Ihc region
malching experimenls, shawn laler.

•
Error surface of normalized reglon matchlng, zone 1 Error surface of SSO. zone 1
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FlOURE 3.2. Region Matcbing Zone 1. The error surfaces generatcd using the
normalized error measure versus the SSD error measure. The verlical axis is Ihe
error, the x and y axes are Ihe pixel region shifting belween Ihe Iwo frames 10 obtain
the region match. This corresponds ta a corner of Ihe cube in the image sequence.
Nole Ihe minima in Ihe lower left of Ihe two surfaces, where Ihe Irue correspondencc

lies.

•
Of course, when overall light intensity docs not vary mueh, sueh as the smooth grey­

levels in the hand area, SSO and our normalizcd error metrie perform very similarly, as
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Khown in Figure :1.3. Noisy, low-intensity image patch error surfaces also look similar, as

shown in Figure 3.4. Note, however, the error axis of the SSO surface tells us nothing

about how ambiguous or noisy the imaging conditions arc. Our normalized error measure

tells us that a large variation in position causes a small change in error. The image patch

in question is a poorly-Iit, out-of-focus whiteboard with writing on it: this should not be

considered as reliable as a more textured image patch. The curvature of the SSO error

surface cannot tell us this.

Error surface of normalized reglon matching, zone 3 Error surface of SSD, zone 3

0.25 4000

0.2 3000

0.15
2000

0.1

0.05 1000

0 0
-5 0 -5 0

0• 5 5

FIGURE 3.3. Region Matching Zone 3. The error surfaces generated using the
normalized error measure versUS the SSD error measure. The vertical axis is the
error, the x and y axes are the pixel region shifting between the two frames to obtain
the region match. This corresponds to the crease near the operators hand in the
image sequence. Note the trough indicating the edge-Iike nature of the matching.

•

One otller distinction between the normalized error surface and the SSO error surface

can be demonstrated near an edge of high contrast. In this case, the operator's dark hair

occludes the whiteboard behind him, shown as region 6 in Figure 3.1. The competing error

surfaces arc shown in Fignre 3.5. Note the sharpness of the corner for the normalized error,

and the smoother cusp for the SSO error. For the same window size, better positional

accuracy can be achievcd using the normalizcd error.

A neighborhood similarity error measure is providcd as a function of local, individual

pixel similarity errors. No assumptions are made about neighborhood intensity leakage

that cou Id bias derivative-bascd algorithms, Iike that of Horn and Shunck. This simple

measure makes a strong statement about accomplishing region matching using inexpensive

computational mcchanisms that could be found in a biological vision system: the comparison

of dilferences is casier to perform than the comparison of absolute values. By normalizing
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Error surface of SSD, zone 5
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FIGURE 3.4. Region Matehing Zone 5. The error surfaces generated using the
normalized error measure versus the SSD error measure. The vertical axis is the
error, the X and y axes arc the pixel region sllifting between the two frnmesl,o ohtlliu
the region match. This corresponds to the poorly-lit, our-of·foc"s whitehollrd in the
background in the image ..quence. Note the SSD error surface does not tell us how
ambiguous the overall matching is.
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Error surface of normallzed reglon matching, zone 6 Error surface of SSD, zone 6
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FIGURE 3.5. Region Matebing Zone 6. The error surfaces generated using the
normalizcd error measure versus the SSD error measure. The vertical axis is the
error, the x and y axes are the pixel region shifting betwcen the two frames to obtain
the ragion match. This corresponds ta the dark hair of the operator meeting the
whiteboard on the left of the image sequence. Note the SSD error surface is not as
sharp near the cdge.

•
differences with the overail intensities, local illumination effects are eliminated: the emphasis

is on local texture instead of local illumination.
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By clipping the noisy extremities of intensity sums and differences, we make another

strong statement by stating that no nseful information can be extracted from indiscriminable

intensity levels. When noise dominates, the algorithm tags the results as such.

Psyochophysical experiments can show that a human observer will perceive apparent

motion of random-dot patches. Intensity-derivative methods cannot function in this envi­

ronment. An algorithm using texture measurement, such as edge matching would fail as

weil. Only an algorithm performing region-matching could successfully track this type of

motion.

No global-local reduction operations are performed. No scale-space assumptions are

made, ail measurements refer to the original set of images, not prc-proccssed, band-Iimited

da.ta..

1.4. Importance This error mctric is rapidly executed, and measures the image

samples directly, instead of a prc-processed smoothed or band-passed image: ail the original

data is available for measurement in an undistorted, unbiased, unfiltered form. Sensor noise

is combattcd at the lowest measurement stage, where noise is most expected to arise. The

error measure minimization is very convex and stable.

Note that tilis error metric minimization has a weakness in the case of repeated textures

over a large area. Local minima may be good matches of textures, but they do not describe

the overall surface motion. This is a problem Inherent in ail forms of region-matching

and correlational techniques, where geometric information from a higher level can help. A

principled technique to correct these mi"interpretations is discussed in Section 2. There, we

will show how Dow consistency steers region matching away from these local minima and

toward a solution that is consistent with its neighbors.

2. Flow Field Consistency

2.1. What it is Flow field consistency is the behaviour of a Dow field that obeys the

constraints suggested by psychophysical experiments in motion perception. For example,

t~xtnre Dow fields are improved when the measurement process includes a texture Dow

curvature consistency constraint [23]. The issue of how to measure or enforce optical Dow

field consistency now deserves attention. Applying curvature consistency would probably

improve the optical Dow field, but due to the coarse sampling of tHe alignments and equally

coarse directional encoding, a Iinear Dow consistency is more appropriate.
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2.2. How it's Usually Done A form of flow field consistency is typically integratcd

into the measurement process by penali~ing larg" displacenll!nts from th" prcdict.ed scnrch

area, withont considering neighborhood displacenll!nts or exp"ctations. Altl!fnativdy, aft"r

a measnrement stage is performed, the resnlting flow field is diffnsed uniformly to neighbor­

ing tiles. Modest improvements arc obtained when the diffnsion is weighted by measnrement

error: this ill the first step toward using confident measnres to inllnence nnconfid,)I\t mea­

sures. B,,' f"'r the most part, this information is not used to rl~seed the measurement stag",

and the flow field diffusion is used unaltered by a higher-level process.

There are two distinctions to be made in Anandan's algorithm for llow consistency.

First is the search for correspondences, which is goverened by the SSD surface cllrvatnrc.

Second is the diffusing of information betwccn neighboring llow vectors.

Examining the first case for steering individual correspondence matches, AlHlIldan's

Hierarchcal algorithm uses a form of the Gauss-Seidel relaxation algorithm. The shape and

orientation of the Gaussian filter is altered according to the direction of the llow nnCl!rtainty

at each point, effectively tuning the search for correspondences along the tronghs of the

error surface during diffusion. This is intuitively correct for cases of edge-Iike strllctnr"s in

images, however does not tell us how to interpolate in the uncertain areas betwccn edgl~like

structures.

Considering the second case for llow field consistency, Anandan's algorithm applies

a linear Gaussian diffusion at each scale after region matching. The effective radius of

the Gaussian smoothing fundion is determined by the curvature of the SSD error snrface.

Although the shape and orientation of the Gaussian filter could have bccn altered according

to the direction of the flow uncertainty at each point, this information is ignored during

diffusion. This feed-forward smoothing leads to difficulties at discontinuities and image

plane rotations, but also allows poor measurements to bias otherwise good measurements.

One of the disadvantages of the Gaussian diffusion is its Iinearity. The smoot.hing was

intended to enforce neighboring flow vectors to have equal directions and magnitudœ, but

no amount of linear diffusion will bring this about (except in the limit, where the entire

flow field is blurred away to converge al. uniformity). Not only are ail neighbors considered

equally valid (a rare event), but also, the llow field model (neighbors have similar magnitudes

and directions) and the updating function (Gaussian diffusion) are incompatible.
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2.3. How We Do It We acknowledge that neighboring elements in an image se­

quence can legitimately undergo very different motions. Discontinuities in flow are percep­

tua\ly significant, and preserving these discontinuities during the diffusion stage is impor­

tant. A form of relaxation is applied to our flow fields to update flow vectors in such a

way that similar flow vectors reinforce each other, and different flow vectors will selectively

ignore each other when neighbors conflict.

Relaxation labelling is an Iterative procedure that models the para\lelism of feature­

preserving data diffusion and noise reduction in the brain. Each data element is assigned

a parameter or label, with an associated probability or confidence measure. Compatibility

functions are chosen to reflcct desirable perceptual responses that describe the relationship

between neighboring data. These compatibility, or support functions are used to refine the

initiallabelling {p?} at each iteration k [24]. Hummel and Zucker devlop a general scheme

for the Iteration [16]

(3.8)

where sr is a measure of support for element i at iteration k.

For our purposes, the label À is the parameter, the lIow vector with a magnitude and a

direction, and the belief in paramter Àat position i is Pi(À), obtained from an error measure

(from region-matching). Our prior, or constraint for convergence must be expressed as a

support function s.

Linear flow consistency implies that patches of an image should be moving in roughly

the same direction as their neighbors. In cases of uncertainty, when a patch is moving in a

direction contrary to ail its neighbors, the neighbors will influence the outlier more than vice

versa. An easily-implemented updating rule performs a weighted averaging of neighbor's

displacements, each contribution weighted by a similarity measure. This similarity measure

encodcs a similarity of direction and magnitude between two given vectors.

Adaptive diffusion a\lows confident neighbors to influence uncertain tiles without af­

fecting already confident tiles. To apply linear velocity consistency between ail adjacent

tilcs, we define vp as displacement of tile p between framcs 1 and 2, Le. T2p - T\p.

At each iteration k,

(3.9)
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where n is a neighbor of the tile from neighborhood N, and III is a weighting fnnction that.

measures the similarity between a tile's motion vect.or and it.s neighbor n's mot.ion vect.or.

The requirements of Iinear flow consistency cali for fundion III to ret.nrn a high weight.

when the vectors were similar, and a low weight. when they were dissimilar. This is in fact

the support function s introduced above. Fleet. and .Jepson offeml a measure of f10w v!'dOl'

similarity that treats flow vectors as 3 dimensional vectors, where the thinl dimension is

unit time [11, 10]. In Chapter 4, wc will use this error measurement. 1.0 compare OUI'

experimental results with those of similar algorithms. Representing t.he velodt.i!'s as :I-d

space-time unit direction vectors, v == V' 1, (VII 1'2,1)'1', the error bet.ween the wrred
vt +v2 +1

velocity Vc and an estimate v. is

(3.10) !/JE =arccos(Vc • v;,)

•
Note, however, that this error rneasure biases directional error over magnitude <'rror.

For our situation, both the magnitude and direction similarity are considered equally im­

portant. This can be justified by showing that the magnitude and direction of f10w are

independant. To expand this c1aim, wc propose that time should not. ent.er t.he f10w vector

similarity error measure. This way, wc will be considering 2D displacemeut. fields t.hat are

measured al. arbitrary, possibly varying sampling rates. Since time is now omilted, t.he

similarity measure now deals with 2D displacement vectors, where direction is independant.

of speed. Therefore, the similarity measure is divided into two components, maguitude

similarity Sm (VII V2) and direction similarity Sd(Vll V2)' The direction similarity exprL'S.,ion

can be obtained from Equation 3.10, replacing the time component (1) with ~ero.

(3.11)
when JiitlJii21 =F 0,

otherwise.

(3.12)

Both functions have values ranging from 0.0 1.0 1.0. The overall similarity S(Vll V2) is

the Iinear combination

•
(3.13)
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This form of weighted averaging is a very non-Iinear diffusion process. The amount

of diffusion betweeu auy two neighbors is governed by their local beliefs, in contrast to

uniformly-weighted diffusion, which blurs away discontinuities in now. ACter an update is

perforrned for each tile, the region (tile pixel) matching error is recomputed in one pass.

The usefulness of the Iinear now consistency constraints become c1ear in cases of motion

involving repeating textures. When region matching becomes ambiguous, the now consis­

tency constraints dominate. This is in opposition to region-matching schernes that embed

a displacement-rninimization constraint, which would tend to hait patches with ambiguous

region matching.

3. Integrating Region Matching and Flow Field Consistency

3.1. Singh's Framework for Optical Flow Computation Singh and Allen pro­

posed a novel framework to unify many contemporary optieal flow algorithms that could

take directional errors into account for later processing [30]. A key notion that is used in

this thesis is how velocity must be propagated from "regions of full information, such as

corners, to regions of partial or no information." [30] They propose the conceptua/ separa­

tion of the region matching and now diffusion stages in order to evaluate the constraints,

but combine the two operations into one minimization step. They procede to label the in­

formation obtained from the first step of region matching as the conservation information,

measured from the imagery and based on the assumption of conservation of sorne image

property over lime. The neighborhood information refers to the distribution of the velocity

vectors in a small neighborhood.

While key clements of this framework have strong parallels in this thesis, there are

also key differences. We decompose the region matching and neighborhood interaction

stages cornputationally, as weil as conceptually. The resulting steps suggest the properties

of a coordinated conjugate descent, with the added advantage of rapid execution (through

simpler stages) and Icss investigation of perceptually unlikely image events.

ln Singh 's region matching stage, the error measure (SSO) and estimation method

(weighted least squares) are inextricably Iinked. Many displacements are tested, and the

velocity estimate becomes the weighted average of ail the displacements, weighted by the

SSO similarity. Singh 's method offers a covariance matrix to describe the directional un­

certainty of the central pixel's motion. Our method instead tests region-matches in a few

selected positions, and proceeds to a greedy error gradient descent.
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Singh presents a neighborhood interaction stage that is overall consistent. with our al'­

proach. Neighbors arc weighted differently, according to their distance from the central

pixel. Together, the neighbors form an opinion of how the motion of the central pixel

should behave, including a covariance matrix to describe the directional nncertainty of tlll'

neighborhood's opinion. However, the neighborhood updating ru le fol' velocity vectors is

essentially a smoothing operator that does not rejnforcc, bnt Cllfol'cc.• pamllel 1I0w V<'ctors

in a neighborhood. Singh's method decides /10111 flll' and iu tv/1111 ,UI'cctioll 1.0 spread the

flow, but does not adapt the diffusion to reflcct /10111 much auy neighbor is consistent with

the central pixel. Wc argue that the extents and direction of diffusion can be decided bl' the

number of Iterations applied 1.0 the data set, whereas the neighborhood consistency con­

straint that decides hotv much any given neighbor influences another rellects the perccptual

model chosen, and affects the outcome by far more. And the perccptual model wc have

chosen is that of flow field consistency, not the flow field similaritl' implied bl' Singh.

3.2. Practical Considerations for Optimization The error ml'asnres for region

matching presented in equation set 3.5 arc well-understood, as are the vector similarity

measures described by equations 3.11, 3.12 and 3.13. Had these error terms been combined

into one lumped error, we would have 1.0 choose an arbitrary weighting parameter that

would significantly change the behaviour of the optimization and the shape of the ontpnt

data. Either way, the algorithms would perform a coordinated gradient descent.

There are efficiency considerations, however, that support the deconpled optimizat.ion

for our application. By decoupling the region matching and flow field consistency stages,

fewer samplings in the region matching stage (2 dimensions of parameters) will be performed

before making a choiee. When the error measures arc treated as coupled, many more

possibilities (4 dimensions of parameters) must be tested. In fact, the cou pied optimization

will test many perceptually unlikely parameter sets that our decoupled optimization will

not bother considering.

Besides accuracy, our goal is 1.0 make results available in real-time. This means that

the optimization must be capable of producing useable resu\ts within a short number of

Iterations. The coupied optimization case does not degrade graccfulJy when interupted

too carly. Our decoupled implementation will al. least have results that can be used for

subsequent proccssing. Temporal integration becomes possible when wc decouple the stages.

Like the coupied optimization, the next Iteration of optimization continues processing from

whatever state il. had achieved previously. But in the case of integrating suggestions from

other sources, such as a Kalman filter folJowing the overalJ image motion, the new error
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l!xpresHion would increase in comple.<ity ir cou pied with the other error terms. By treating

it as a separate, decoupled stage reeding into the region matching stage, wc can construct

a rairly flexible architectnre ror rnsing data rrom difrer(!IIt sources.

4. FigurejGround Separation

Identirying the location of objects in a scene using only the optieal f10w field is a non­

trivial task in the general case of moving backgrounds and moving target objects. At this

sl.age, it shonld be emphasized that this section on figure/ground separation is Ilot used in

the compntation of optieal f1ow. It is instead a convenient layer for other processing, such

;.~ demonsl.rating the validity of the f10w field ror real-world scenes.

Wc have also performed experiments using this simple form of tracking to Iimit the

compntation of optieal f10w in subsequent image frames. If the tracking filter is convinced

that there is nothing moving beyond a window or -Ji of the image area for example, restrieting

the next Iteration to that window would produce a speedup of factor N. The problem, of

conrse, is that this elementary attentive mechanism will ignore ail but the first object it

caught sight of. Shonld that first object disappear from the tracking window's view, an

opposing mechanism would need to relax the tracking filter enough to expand the tracking

window, searching for otller motion in the image sequence. These experiments will not be

presented in this thesis. Ali the examples and experiments performed here were computed

looking at the entire image.

Onr system typieally encounters scenes with moving target objects and a stationary

background. The figure/ground separation problem is thus simplified: anything moving

is not part or the background. A moving object can be isolated from its background by

associating a certalnty that a tile is observing image motion ror each tile. Applying a

I,alman filter to each tile's rneasure of occupation provides stability to this representation.

For each rrarne pair k, the weight Wk is the number of tiles experiencing motion, Le. those

tiles moving faster than a threshold Vs, typieally 0.5 pixels / frame.

Tracking might be achieved adequately by examining differences of images, but difficul­

tics abound. The assurnptions made in difference of image tracking include small displace­

ment between frames and highly-textured surfaces. What usually results is a rough contour

that docs not cornpletely surround the target abject. The countour occupies image areas

that have been recently accu pied and/or recently vacated: there is no information about

where the abject presently is. A figure/ground separation, by contrast, generates a filled
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mal' locating ail image regions occllpied by t.he movin~ objl'ct, not. t.hl' itna~l' art.ifads t.hat

may or may not. helong t.o t.hl' moving ohject..

A rapid schcme for associating a Ilormalized mensure of ol'c1llmlÎoII for l'at~h t.Hp in·

volves applying a threshold to each t.ile's vclocity. 'l'Ill' hellristk IIsl'd herl' impli('s t.hal.

displacements of one pixel or more prohahly rl'presl'nt moving rl'gions, whill' smaller dis­

placements arc morc probably stationary background regiolls. The estimatt' of t.1H' lIu'asurp

of occllpation can he expressed as

(3.14)
• {0.9 when Iv(Il)I > 0.5 pixels/frallll'

Mocc(Il) =
0.1 otherwise.

•

So far, this certainty of occllpation is very local, mapping on" vclocit.y Vl'ct.or to OIU'

occupation measure, and tends to he noisier than the now field, du" t.o th" thr<'sholdill~

operation. A more useful quantity would integrate this iuformat.ion over timl' or over hllw'r

areas. For our purposes, wc adopted integratiou over time using a I\almau filt"r. Ea"h t.il,,'s

ccrtainty of occupation hecomes a wcighted average hetween the curreut estimate aud t.h,'

previous estimate. 'l'he weights arc chosen to represent the nnmber of tiles in motion in t.he

present frame and those from the previous frame.

f---+I Predict

A+

Zk
Update

Zk
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Pk p~

A
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A
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FIGURE 3.6. Kalman Filter. B10ck di.gram of the cl.ss;c Kalmao Filter. Mea­
surements al stage k are denoted as Zk, whilc thcir crror variances arc flic.

•

We propose a form of Kalman filtering that is applied to each region in the image.

Traditionally, Kalman filtering uses the variance of measurement error to weight incoming

measurements, and the structure of the filter is shown in Figure 3.6. The Kalman filter

maintains an estimate Zk and its variance Pk. The measurements Zk have a known error

variance Pk, and the estimate is updated using equations 3.16.
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The Kalman filter's strength, however, is its ability to make predictions of upcoming

lfIeasurements b'L~ed on a model from previous measurements. If 10 is a function that

predicts the next measurement from the present estimate, then we can user equations 3.18

to estimate the prediction and its error variance.

(:1.17)

(3.18)

= f{ZtJ

(
81)2.+
8Z Pk

•
ln our case however, the prediction fnnction 1 is identity, meaning that the upcoming

position of the target object is exactly where it was last seen. Because our occupation does

not have an error variance measure per se, we make use of the inverse relationship between

population size and sampling variance. The weights ~ become replaced by w, which is

the number of tiles experiencing significant motion. Thus, the Kalman filtered certainty of

occupation Mocc for tile p can be exprcssed as

(3.19)

•

The end result is that a map of image regions is produced, isolating moving objects

from the statiouary background, integrated over time. This information can be used for

2-D tracking purposes.

This form of Kalman filtering allows moving objects to remain segmented from the

background even when motion stops: the figure/ground separation map will not change

until new motion is introduced. This allows targets that were identified by their motion to

corne to rest and retain their tag as a zone capable of motion.

If figure/ground separation were the only source of higher-level information, one couId

isolate each patch of motion and track them, predicting the motion for the next frame. This

predicted Dow-field can be used in the measurement stage to seed correspondence searches.
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This notion incindes a form of gracefnl degradation. By design, npcomin~ motionl'Vl'nts

arc predicted by previonsly measnred motion events. In the case where old motion patdu's

hait, and new motion patchcs come into being, the older p:ttchl's will not Ill' l'lOinfnrl·,'d and

will lose importance, while newec motion will be reinforced and tral'ked instead.

One practical nse of this figure/gronnd separation is tracking single movin~ ohjeds

against an unmoving background. A tracking window is compnted to endose th" movin~

object. In order to double and quadruple processing speed, subsequent re~ion-matehin~

stages arc limited to the tracking region. A live demonstration of this pl'Op,'rty hall SUI"

cessfully shown that object tracking l'an be accomplished using only a partial oplical f10w

field.

5. Using Higher-Level Information

Presently, most optical f10w algorithms arc designed and implemented as sclf'l'ontainl'd

stages that take an image sequence as inpnt and produce a f10w field :., ouput, pl'l'haps

inciuding an error measure for the confidence of each now vector. These al~orithms l'xisl,

as testbeds for specific characteristics of carly vision and arc designed :., end·products: ilny

connections to other processing stages arc messy.

Our algorithm was designed to meet the goals of real·time performance and cali" of

integration into a larger vision system where each stage is assisted by adjacent stages.

A simple region-matching approach becomes a l'ost-effective optical f10w tool when it is

integrated with flow field consistency.

But more important constraints become available after 3D information emerges through

Structure from Motion processing. The 3D surfaces of objects in the image seqnenc" l'an

be tracked over time, and predicted 3D motion l'an be easily projected into a pr"dieted

20 optical ftow field, seeding the correspondence searches for the next set of images. This

surface transport modelwould improve the quality of the f10w field with the obvious beuefit

of a 3D scene motion l'l'presentation. But if the transport model is blindly combinined into

the now field measurement, the added complexity would tend to slow down compntation

for relatively little improvement in the now field. Instead, we propose adding the transport

model as a higher-Ievel stage as suggested in Figure 2.2.

Anandan's proposed architecture of optical now does not deal with integrating other

sources of motion. Each scale of region matching only uses information propagated from a

coarser scale: there is no allowance for suggestions or predictions from previous image frame

pairs. In short, the predictions are not temporal, they are from l'DarSe to fine scales within
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onl' instant. This choic" discards valuable accnmulatl!d tmcking information that could

Sl"',,d up su"s"'lu"nt rI'gion matching stag"s. Although Anandan's algorit.hm computes

opt.i<:al 1I0w from imllg"s v"ry w,'II, it. is memoryleKS, and t.hus cannot nmke predictions t.o

make computations c;L'iier.

ln crf",:t., tOI)·I"vcl information is fornll'd from low·levcl mellsur('ments and constmint.s,

whil" the 10w·l"vel mellSur"'lIent. stage is steered or directed by the t.op,h.vel information.

This not only rI'solves local·global issues in a principled way, but also integmtes bottom·up

and top.down dat.a 1I0w, This architecture would lead t.o improved opt.ical 1I0w measurc­

ment, which in t.urn would lead to better structure from motion. This information, inte·

I(rated over liuw, can Le fit ln compact, paralllctric surrac(~ modcls thilt dcscribc the moving

objects in a SCCIII', while tracking and predicting their motion.

6. Implementation Considerations

6.1. Time/Quality Trade-off Note thatthe region matching and 1I0w field consis·

tency constraints could have bccn implemented as one error function to minimize. It would

appear that by alternatively measuring the region-matching error and enforcing the 1I0w

field consistency, the end errect is to coordinate a gradient desccnt locally for each tile, while

dirrnsing measnrements to neighboring tiles.

6.2. Fixed Time per Iteration But by decoupling the stages as is evidenccd by

the primate visual cortex architecture, wc achieve brief steps that can be implementcd

compactly and executed quickly. This way, each iteration is brief, and can either be repeatcd

over the s..me image pair, or pipelincd to another proccssing stage while new information

is g~.thercd. Fast implementation of the optical 1I0w algorithm becomes possible.

6.3. Pre-computation of tile positions The tiles were uniformly distributcd over

the image, and tests were performcd using overlapping arrangements and non·overlapping

arrangemen' .., with various tile sizes, ranging from 3 x 3 pixels to 8 x 8 pixels, with <1 x

.. yielding a reasonabl" tradcorr of time to compute versus quality. During the region­

matching stage, the algorithm tests a fixcd number of tile displacements, scarching arol!nd

the predictcd correspondence, but alsa tcsting for the case of sudden stopping. The latter

case occurs most often when an object in the image sequence translates a di~tance the

dimension of a tile. At one instant, the tile secs the object; at the next, the back~round.
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CHAPTER 4

Experimental Results and Discussion

Twelve image sequences arc presented here, consisting of fOllr syntlll'tic sets, thn'!' natllral·

appcarancc synthctic sets, four wcll-knowli natural image sequences, and Olle iltltlp;c HI'<ltH'lIfl'

typical of the algorithm's intended environment.

The experimental results arc followed by a sllmmary Discllssion in Sl'ctioll li, whkh

will unify the daims made in the Proposai (Chapter 2, Section 5) and thl' 1II1"."Irl'ml'nts

performed on the algorithm,

ln the experimental section, wc will frequently refer 1.0 li", relatl'd works of Anandan

and Singh. The optical now algorithms of P. Anandan and A, Singh arc the 1II0St c1l1sdy

related works to this algorithm. Anandan employs a Laplacian pyramid and a coarsl~to·fill!'

SSD-based matching strategy, while Singh employs a comparable hierarchical coarse·to-fin"

strategy, Our work differs significantly in that wc also employ the resulting geometry lIf th"

estimated now field to reduce the noise in the now field, refine the measllremeut proCI'SS for

further Iterations and prcdict upcoming now field events. Where appropriate, WI' will alsu

mention how our results compare to 1II0re general dasses of optical now al!\orithms.

1. Synthetic Sequences

1.1. Positive Results This data ",'j was obtained from tlll' Barron ct al. archiv".

and consists of the superposition of siIllJ~;ds. Error here is reporte<1 using the salll"

error metric as reportcd in [4) and (5), namely the angnlar deviation frolll tlll' cor·

rect now direction. ReprCSl'nting the velocities as 3-d spacl'-tilll" unit dirl'Ction vl'ClofS,

v;: ,ft>. "A (V., v2. 1)T, the error betwl'Cn the correct vl'locity Vc and an l.-;tilllate Vc is.+ ,+1

•
(4.1) 1/IE =arccos(vc • v.)
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The tests were performed on the mysirwlJ.6 (Sinusoid 1) and mysiTlcC-16 (Sinusoid

2) datl' sets, wl"'fIJ tJIf! lIIotions of the entire image plane arc known to he (1.583,0.80:1)

pixels / fraull! and (J .n, I.n) pixeIH / frallle, respectively. The algorithm used a grid of

ln x ln tiles, l'ach tile of 0 x 0 pixels, applying 5 iteratious hetween each image pair. The

results shown arc acculllulated over the eutire image sequence, uot just a single frame

pair. Thn rnsults for our algorithlll and those of Auaudan and Siugh arc summari~l!(1 in

taille 4.1. Sam l'le framns and generatnd 1I0w fields from the two sequences arc shown in

Figur<'s 4.1 and 4.:1. The 1I0w fields from the algorithms of Anandau and Singh arc showu

iu Figure 4.2.

or Anandan

Techuique Average Staudard

Error Deviation

Us 5.21° '" 0.000°

Anandau 30.80° 5.45°

Singh (n =2, W =2, N =2) 2.24° 0.02°

Singh (n =2, W =2, N =4) 91.ilo 0.04°
Hesults of Smusoidl test data. Experimental results ~TAHI.E 4.1

and Singh arc taken from [4] and [5J.•
Technique Average Standard

Error Deviation

Us 0.0452° 0.3007°

Anandan - -
Singh - -
SmusOld2 test data. Ex erimentalTAULE 4.2. Hesults a l' results for Anandan

and Singh arc unavailable from [4] and (5), but arc describcd as "unchangcd".

•

Our algorithn; thus responds very strongly to this c1ass of stimulus, namely uniform

translatious. Note that the displacements for Sinusoid 1 arc not integer displacements,

aud rival other region-matching methods. Our algorithm's success for this c1ass of input can

he explaincd by the fiow field consistency enforcement. The local information providcd by

region matching is propagatcd to neighbors who improve their estimates with the new infor­

mation. With weightcd averaging of neighbors, non-integer displacements can be obtaincd

despite the integer-bascd region-matching.

41



•

(a)

1. SYNTIIETIC SEQUI':NCES

(b)

FlOURE 4.1. Sinusoid 1. An image frame from the seqllenee (Il), /I/Id s/lperim·
posed reeo/lstrllcted flow field, (b). Note that the flow image hns beell slIbdll"d for
pietorial pllrposes only.

•
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(b)

•

FlOURE 4.2. Sinusoid 1, other Il1goritlulls. The flow field for Au"ud"u·. ,,1­
gorithm is shown in (a). Singh's algorithm prodllccd the flow field shown iu (h).
Both plots were obtaincd from (4).

1.2. Negative Results Neither of the following resllits are considered cat:.'tropilic

failllres, since most optical f10w algorithms eneollnter similar or worse rl!SlIlts. The pllrpose

of this section is to show how our al~orithm deals with ambiguous synthetie scene changes.

One of the most diflicult environments for an optieal flow algoritllfn involves the am­

biguity of the aperture problem. The case examine<! here is where our algorithm has no
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1. SYNTHETIC SEQUENCES

(a) (b)

•

•

FIOUllE 4.3. Sinusaid 2. An image frame fram the sequence (a), and superim­
pased recanstructed flaw field, (h). As befare, the flaw image has been subdued for
pictorial purpases anly.

textures ta track, and is a perfect case to demonstrate how the algorithm degrades gracc­

fully. Shown in Figure 4.4 arc the experimental data obtained from a translating uniformly

white square on a uniformly black background. As can be seen, sorne motion is perceived in

the upper-right direction, but the distribution of magnitudes does not correspond to what a

11\1Inan observer perceives. The test was repeated on a translating square with an intermc­

diate gray-Ievel boundary around the square, producing similar results shown in Figure '1.5.

For comparison, the results obtained in the Barron et al. experiments for Anandan and

Singh arc shown in Figure 4.6.

The explanation for this behaviour is not complicated: the region-matching informa­

tion is inconc1usive in areas of no texture. The algorithm does perceive the motion of the

bouudaries, but flow field consistency dominates OVer the image matching. Still, the f10w

field consistency necds actual measurements to anchor the image motion, which is uuavail­

able.

It is important to note that our algorithm's output appears better than the optieal f10w

algorithms presentcd in [5], but at least as good as those presented in [4]. We consider our

test results to be less than adequate comparcd to human observers, but superior to other

algorithms testcd.

Oue couId argue that human observers would perceive the motion of geometrie fea­

tures of this synthetie scene, namely the boundary between the square and its background.

Gestalt psychologists could explain how the motion of a boundary infers the motion of the
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2. NATURAL-APPEARANCE SYNTIIETIC SEQUENCES

•

(a) (b)

FIGURE 4.4. Translating Square 1. An image frame f'OIn the seqncnce (II), alld
reconstructed flow field, (b).

•
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(a) (h)

FIGURE 4.5. Translating Square 2. Ali image frame f,om the sequence (u), allli
reconstructed flow field, (b).

region enclosed by the boundary in the absense of texturai stimnli. This re<L'illning wonld

suggest that global constraints or regularization wou Id dominate local texture measnrcs in

these image sequences, hence the non-ideal.

•
2. Natural-Appearance Synthetic Sequences

2.1. Yosemite Sequence The Yosemite sequence, created by Lynn Quam, was cho­

sen as a complex text case with a range of velocities, occlnding edgcs anel severe aliasing [4].
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2. NATURAL-APPEARANCE SYNTHETIC SEQUENCES

(a)
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(b) (c)

•

FIGURE 4.6. Trnnslating Square 2, other algorithms. The flow field for Anan­
dan's algorithm is shown in (a). Singh's algorithm produced the flow field shown in
(h). Both plots were obtained from [4]. Our results were resampled and are shown
in a similar format in (c).

A frame of the sequence and the correct flow field appear in Figure 4.7. This experiment

uscd a grid size of 80 x 60 tiles, each tile consisting of 8 X 8 pixels. Five iterations were

performcd on each frame pair.

The sequence was tested in two ways, first using every flow vector, regardless of

confidence, and the second time, vectors falling above an error threshold were ignored.

This is made possible by the measurement of region-matching error during the mini­

mization. The applied error threshold was 0.025, and affected 32.4% of the flow vectors.

45



•
2. NATURAL-APPEARANCE SYNTIIETIC SI~QUl~NCES

(a)
Correct Flow Field
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•

FIGURE 4.7. Yosemite Sequence. An image rrame rrom the sequence (Il), and
correct flow field, (h).

The results for the thresholded and unthrcsholded experiments are summarized in table 4.:1.

•

The f10w field obtained is shown in Figure 4.8, and can be compared with the rl'llull.H

of Anandan and Singh shown in Figure 4.9. The error details from the experiment are

shown in Figures 4.10 and 4.11. Note that our algorithm is competitive with the algorithms

of Anandan and Singh. As explained earlier, our algorithm represents flow information

as a coarse data set, versus the conventional dense data set (represented in table 4.:1 as
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2. NATURAL-APPEARANCE SYNTHETIC SEQUENCES

'l'ccli nique Valid Average Std. < 1° < 2° < 3°

Data Error Dev. Error Error Error

Us Untliresholded 100% 17.16° 17.50° 1.96% 7.25% 13.35%

Us Tliresliold=0.025 67.6% 15.13° 15.57° 2.43% 9.37% 16.86%

Anandan 100% 13.46° 15.64° 1.1% 4.1% 8.0%

Singli (st 1,71 = 2,10 = 2) 100% 15.28° 19.61° 1.3% 3.7% 7.0%

Singli (st l, 11 = 2, 10 = 2, À1 ::; 6.5) 11.3% 12.01° 21.43° 12.3% 24.4% 34.6%

Singli (st 2, 11 = 2, 10 = 2) 100% 10.44° 13.94° - - -
Singli (st 2, 71 = 2, tu = 2, ÀI ::; 0.1) 97.7% 10.03° 13.13° 2.4% 7.4% 12.6%

IAHI.E 4.3. Resuils al Yosemlle lesl Ilala. Mean aM slanllarll Ilevml,on exper-
illlenlal resulls for Anandan and Singli arc laken from [5], while lhe low angular
error dislribulion were oblained from [4].

percentages of the image surface used. ln particular, our algorithm has a tighter distribution

of low-error flow data tlian either Anandan or Singh in most cases. Wc concede, of course,

tliat Singh 's mean error and standard deviation is better than ours in the thresholded case.

Measured Flow Field trom Image 9 10 Image 10
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FIGURE 4.8. Yosemite Sequence. Mensured flow field

47



•
2. NATURAL-APPEARANCE SYNTIIETIC SEQlJENCI';S

-------------- ...--------------------------------- ... ---------_.-.---------------_._----~--.... --------------------..--..--­.................. '" ......... __ .~.......................... , .
~- , , .-_ ......--- " ..,."",.--- , .,. " ..
.""", ~.,..,.;~ , " ..
...........--,,-,,// .. ,- .. , , .. , ..............-fl""" -. ~,., , .
1fII"'.",... _,,;~ - - fi., ~,- ..

/!"IfII"' .,.; - fi , J ..
-I/""'''~~;''.' "". ~ •••••• , •• Il ••

,

V~/,fI"",~~",,,, • • , ~ ~ ~ ••••••••• Il''rI'/"'''''''' 1,/ ~ • " •• , , , ,
~/~fI;/~/·4"..,.'.' ~J J' ""
/%/~""/,, l , " l) l ' 1 III 'I" " •· .l'/J''''ri l" 7 1 1 1 1 1 1 1'" \ H//"'..,,~11 ' , ~ Il 1 1 1 1 1 II l , , , \, "

--------------------.~-------------------_., .... _---. . .

\\\\\\
\\\\\\
\\\\\\

., ,
1 \ , ,

\ , , \

1 1 \ , , ,

• •

_.... "\ ........ _..-.. ' ... --- -_.
(a)--- _. --........."'. _..~.-_ ........ ~ _ .. """-----_ ...

------ .....-"..",..- "., ..
..._, /- ,/, ........
-- ,/- ",I .. " .. ~

--..",../", /11" .
_ ....",/////,/*, ~ ~ - Il

-""///"'//,/~~/"" '1
//"/////"'-' " 1

//--;'///";/1 1111 '
~~~~~~~~~~~ :
//////1'1'1'11 11 1

(c)

---_ ... ---....-...---_.. \' ......---_.
....._-- -- .. --_.....-----_ ... ,---­"'---_ .. _----_._-. -~~----_.

---
· _. ·---• ·· • · • • •

• . • · • •
• • • • · · • •

• · • • · •
• . • · •

• · • • · •.... .. .... "........................ " , ..!1.·······" ..111.' •• t,,'"
1 1 1 1 1 1 l , \ \ \ \
111111'\\\\\

image

.....

---------- ... -....

--_ ......

(b)

... .. .. .. .. .. .. ..

.,,,--, ... .,_ ....
"--'r'-,.,;"r··r""- ..... ..-"I'· .. ••
..".""";,.,,.~/ ........
"~//"''''-''''' tI,,"
"//",,,,,,,,,;,;,,;'
;/1""'''''''' 1·
;/ '" ";';';'1'
///"'''''''11''1''
//"'''11;'11'1
//"'''11'''1''

•
FIGURE 4.9. Yosemite Sequence, other algorithms. The Dow field for Anan­
dan's algorithm is shawn in (a). Singh's algorithm produced the Dow field shawn in
(b). Bath plots were obtained from [4]. Our results were resampled and arc shawn
in a similar format in (e).

What is not shawn here is the qualitative performance of Anandan 's or Singh 's algo­

rithms on this image sequence. There arc outliers in bath algorithms' f10w fields that arc

not allowed ta occur in our algorithm. This qualitative information can he found in [S].

•

2.2. Translating Tree Sequence This image sequence simulatcs translational cam­

era motion with respect ta a textured planar surface, shown in Figure 4.12. In this C1L.e,

the camera moves normal ta its line of sight along its X -axis, with velocitics ail parailel

with the image x-axis, with speeds between 1.73 and 2.26 pixels/frame. Our algorithm was

performed with 4 iterations, using 16 x 16 pixel tiles in a grid of 20 x 20 tilcs.
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150
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•
FIGURE 4.10. Yosemite Sequence, error surface. An angular error surface for
frame 10.

The flow field obtained is shown in Figure 4.13, and can be compared with the flow

fields from Anandan's and 5ingh's algorithms in Figure 4.14.

fABLE 4.4. Results ofTranslatmg Tree test data. Mean and standard devlatlOn ex­
perimental resulls for Anandan and Singh are taken from [5], while the low angular
error distribution were oblained from [4].

Technique VaUd Average 5td. < 1° < 2° < 3°

Data Error Dev. Error Error Error

Us 100% 2.44° 3.44° 37.8% 64.0% 81.8%

Anandan 100% 4.54° 3.10° 5.7% 19.1% 36.0%

5ingh (st 1, n =2, W =2) 100% 1.64° 2.44° - - -
5ingh (st 1, n =2, W =2, >'1 < 5.0) 41.4% 0.72° 0.75° 79.7% 93.8% 97.7%

5ingh (st 2, n =2, W = 2) 100% 1.25° 3.29° - . - -
5ingh (st 2, n =2, W =2, >'1 < 0.1) 99.6% 1.11° 0.89° 57.4% 84.6% 98.5%

,

•
From these results, our algorithm is c1early competitive with the other region-matching

optical f10w methods, both from the low mean error and tight error deviation, but also in

terms of tight c1ustering toward zero error, shown in the error histogram of Figure 4.15. It
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FIGURE 4.11. Yosemite Sequence, error histogram•. Shown arc angular error
distribution for the unthrcsholded (a) and thrcsholded (b) experimeuts. The error
distributions from (e) Anandan (unthrcsholded) and (d) Singh ('\1 ~ 0.1) were
obtained from [4].

is important to note that the apparent motion can not be measured directly in many arca..

of the image, in particular the low-contrast, untextured background. Because our met!lod

allows neighborhood f10w field consistency to dominate in t!lcsc under-determincd zoncs,

a globally meaningful f10w field emerges which is influenced by t!le succcssfui matching of

!ligher-contrast, textured regions. The algorithm, it should be cmphasized, is not using any

underlying motion transport model, such as planar motion, to determine the displacement

of the pixel regions in the image, and yet returns a f10w field that one would expect of a

higher-Ievel ("global" motion) interpretation.
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(a)
Correct Flow Aeld

50

100

50 100 (b)

•
FIGURE 4.12. Trauslating Tree Sequence. An image frame from the sequence
(al, and correct Dow field, (hl.
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Meesured Aow Field lrom Image 9 ta Image 10
r -

50

100

50 100

•

•

FIGURE 4.13. Trnns1nting Trec Sequellce. Measurcd now field

2.3. Diverging Tree Sequence This image sequence simulates transiationai cam­

era motion with respect to a texture<! pianar surface, shown in Figure 4.16. In this case, the

camera moves a10ng its line of sight. The focus of expansion is at the center of the image,

with velocities varying from 1.279 pixels/frame on the left side and 1.86 pixels/frame on

the right. Our algorithm wns performed with 4 iterations, using 16 x 16 pixel tHes in a grid

of 20 X 20 tHes.

The flow field obtained is shown in Figure 4.17, and can be compared with the 1I0w

fields from Anandan's and Singh 's aigorithms in Figure '\.18.

From these results, our algorithm is c1early competitive with the other region-matching

optical 1I0w methods, both from the low mean error and tight error deviation, but also in

terms of tight c1ustering toward zero error, shown in the error histogram of Figure 4.19.

Again, note that the apparent motion can not be mensured directly in lIlany areas of the

image, in particular the low-contrast, untextured background. The flow-field cOllsistency

does not use an underlying motion transport model, such as planar motion. The algorithm,

yet returns a flow field that one would expect of a higher-Ievel ("global" motion) interprL~

tation. The flow-field consistency is sufficient and necessary to recover diverging flow fields

such as this.
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FIGURE 4.14. Translatins Trec Sequence, otller a1goritllms. The Oow field
for AnandM'. algorithm (unthrcshold.-d) is shown in (a). Singh'. algorithm (step
2, Â, ~ 0.1) prodllccd the Oow field shown in (b). Both plot. were obtained from
["]. Thcsc were t~e bcst of the rcsllits prodllccd by the two algorithms. Our rcsllits
w.", rcsamplcd and arc shawn in a .imilar format in (c).

3. Natural Sequences

3.1. Hamburg Taxi Sequence The Hamburg taxi sequence has four principal mov­

ing abjects, including a taxi turning the corner, a car in the lower left moving from left to

right, and a van 'n the lower right moving from right to left. A procstrian is alsa walking

on the sidewalk in the upper left, but the motion was too far below the error thrcshold for

onr algorithm to detect. Alongside the image of the Oow field superimposcd on the seene

in Fig;!re ·1.20 arc velocity and occupation maps. The algorithm uscd only one iteration
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FIGURE 4.15. Trallslating Tr"" S"'1U"lIe", "rror surfilee IInd hiHtol;rlllnH.
An angular error surface for frame 10 (Il). Also showII is lhe angular ."ror diN­
lribulion for lhe unlhrcsholdcd (h) experirncnl. The error dist.rihnt.ions frorn (,,)
Anandan (unlhrcsholdcd) and (d) Singh (.\, ~ 0.1) wcre oblained frorn [4].

p"r image pair, with a grid of 80 x 60 tiles, each tile at 6 x 6 pixels. For c1arity, an irnaJ\e

frame and the ftow field are shawn separatcd in Figure ·1.21. The rI,,;uIL~ of An"I)(lan '. alld

Singh's algorithms on the same data set are shawn in Figure 4.22.

Qualitatively, the background :s shawn ta be immobile, despite the large '''"OUlt of

white noise and aliasing present in the image sequence. Analldall'. output does Ilot .how

the vertical displacement of the taxi. while Singh 's output shows les.. coherellt lIIolioll

!i4
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(a)
Correct Flow FIeld

50

100

50 100 (b)

•
l'IGURf: 4.16. Div(!rging Trec Sequence. An image frame from the sequence
(n), and correct lIol\' field, (b).
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Measurad Flow Field Irom Image 14 to Image 15

50

100

50 100

FIGURE ~.I 7. Divergillg Trec Sequellee. McaslI,,-d 1I0w lil-Id

g g
pcrilllcntai result. ror Anandan and Singh arc takcn rrolll [5J, while Il,,, low anglliar
crror distribution were obtainoo rrolll [4J.

Tech niq Ile Valid Average Std. < )0 < ~o < :1 0

Data Errar Dev. Error Error Error

Us 100% 9.21· 05.060 1.0% 2.8')(, H.n%

Anandan 100% 7.6,10 ,1.960 2.5CX, X.5IX, 1li.:I%

Singh (st l, Il =2, IV =2) 100% 17.66· 1~.2So 0.6% I.!)% ,1,n%

Singh (st 1, Il =2, IV =2, ÀI ~ 05.0) :1.:1% 7.09· fi.59° i.IIXJ 19.7% :lll.7%

Singh (st 2, Il =2, IV =2) 100% 8.60· 05.600
0 0 -

Singh (st 2, Il =2, IV =2, Àl ~ 0.1) 99.0% 8.400 4.780 O.H% aA1
,'{, 7.:~CX,

TAULE ~.S. Result. or Diver in Trec tc:;t data. Menn and staudard d~viatioll f'X-

•

(withollt thresholding) and noise along the bottolll of the image frame w/",re tl"'r" is no

motion.

•
3.2. SRI Tree Sequence This is a low-contrast image st~l'tenœ, where tl", c:all",ra

translates perpendicularly to the line of sight. There is a large aillOli nt of occillsion. and

fiG



3. NATURAI, SEQUENCES
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•
FIGURE 4.18. Divergillg Trec Sequellee. other nlgorithms. The flow field for
Anllndan's algorithm (unthrcsholded) is shawn in (a). Singh's algorithm (step 2,
.\, ~ 0.1) produeed the flow field shawn in (h). Bath plots were obtained from
[4]. Thcsc were the best of the results produccd by the two algorithms. Our rcsults
were resampled and arc shawn in a similar format in (e).

•

the highcsl image velocilics Were found la be jusl under 3 pixels per frame. A saml'le frame

of lhe image sequence and lhe measured flow field are shawn in Figure 4.23.

The algorilhms of bolh Anandan and Singh do reasanably good jobs on lhe SRI lrce

sequence. as shawn in Figure 4.24. Bul bolh have disconlinuous flow fields in localions

wlll'rt' lht' molion is fluid. whereas our outpul has a consistent flow field.

ln lhis special case of camera lranslation, we can use the kinetic deplh elfect (proximity

proportional la velocily) la show an approximale depth mal' of lhe scene, shawn in Figure

·1.25.
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FIGURE 4.19. Divcrgillg Trec SCCIUCllCC, error surface und histogrmus. An
angular error surface for frame 10 (a). Aiso shown is the angular "rror distribution
for the unthrcsholdcd (b) experiment. The error distributions from (<:) Anandan
(unthrcsholded) and (d) Singh (,\, ::: 0.1) were obtaine" from [4].

•

3.3. Rubic Cube Sequence The Rubic Cnbe sequence portrays the famons toy on

a rotating platter, the sides of which have a pattern that can be used for position encoding.

Our algorithm suffers in zones without appropriate-scale textnres. Although OIU! can arglU!

that the black-and-white squares of the rubic cube constitute a very strang, regnlar textn""

we must also note that the scale of this texture is very large in comparison to the "",t of

the image. While we employed lù x 10 pixel region matching with a 64 x 64 grid and 4

5))
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3. NATURAL SEQUENCES

FIGURE 4.20. Hamburg Taxi Sequence, workstation view. The flow mag­
nitude is rendered in the upper right window as intensity proportional to image
velocity. [n the lower right window, the figure/ground separation is rendered as a
binarized image.

iterations, wc can observe that motion is correctly found at and around the regions of higher

texture, iIIustrated in Figure 4.26.

Qualitatively, our results on this image sequence rival those of Singh and Anandan,

shown in Figure 4.27, which have many zones with apparently random lIow vector orien­

tations and magnitudes. One advantage to our algorithm is that large flow vectors will

only result from actual large displacements: the flow field consistency stage would not allow

neighboring vectors to behave so randomly unless there were sufficient low-Ievel evidence

for such displacements.

An additional remark is warranted by the lack of apparent motion on the top surface

of the platter. By using higher-Ievel knowledge of the scene, human observers have Iittle

difficnlty perceiving the rotation of the entire platter when it is constrained by the coaxial

rotation of the Rubic cube. Our algorithm does interpolate the motion between the platter

rilJl and the Rubic cube, but does not completely connect the two motion regions because

of the lack of local support for this connection through moving textures on the top platter

surface. Our op'.I~al lIo'v algorithm, without higher-Ievel scene knowledge, will not lill-in

the rest of the otherw,sc ambigous holes.
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(a)

Aow Aeld Irom Imege 15 la Imege 16
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FIGURE 4.21. Hamburg Taxi Sequence. Frame 15 from the image sequence is
shown in (a). The Oow field between frames 15 and 16 is shown in (h).

3.4. NASA Coke Can Sequence Tha NASA Coke Can s"quencc shows lhe slow

image expansion molion caused by lhe camera moving along ils line of sighl loward the

Coke can near the ccnter of the image. The typical image velocilics arc helow 1 pixel/frame.

While we would expect most flow vectors to radiate away from lhe cenler of lhe imag".

only one fifth of the vectors in the field do this, as iIIustrat",1 in Figure ·1.28. Nole lhal lhe

60



3. NATURAL SEQUENCES

· , .•,. ..
..... f· ...-....--~ .._......

1 .. " 1 •
.. ... 1 • 10 •

.. • 10 •• t

,·. .., .

•• • • • •.• • • ••·•• •
• • •• •·• .

.. .. .. ,
• ••·..• ••

• ••·..•• •
• •
• •

......
••

.. • • 1.." ..
" ....
.. , • 1

" ." ...
... 1 • , ••

" • .. .. • • .. 1 •

" •• , 1 f'
••• 1 - ,

_, • ~ ~ • f·--_ ,
_---.~ , • , , , .. f

............ -.....r-- ......... ---... , ... --. ,........ , ,' ..
, . .. , ..
·e .. " It 'oo

• • • .
• • ·.·.. •.. •·• • ·.·.. ..

" ... , ." ....... .. .
•

.. .. • .. .. 1

.. .. .. 1 •

••

•

•
• •
•

•, .".
• •

--_....-.... - ..--. ........_­----_ .

" .

---. ...._-­...-...~..-_.

. ..._....

· .... _-. ~ ..~ ~ ....
. __ .. .
. "---. '"'--

(a)

...
• ••·..• •• ••

••·.... • •, .....
•

•
• .. , 1.......... ..· -

.......... r '"
.. .. f' • " 1 ....... , ....

" 1 .. ",.. ......... .. " .

image

.. , ".. " ,
" , " • " .. Il ..
........... " ••• 1 ".......................... ~ .. , " .. , ..
'1 """ " ." <41...... , .

.. l " " .. " 1 " "........................... '" . ... " ... .. .. .. .. .... \ ..

.. ' "."" t .

... ,,' '\' t" "'"
"P"'~ _ ....... "" ...., ••~ •• ".t •••
,. " ~ , Il'......... -...,._ ..... '( "-., .
".. " ~ "..... , .. , " .
'1' , f ., • _ ., ':•

(b) (c)

FIGURE 4.22. Hamburg Taxi Sequence, other algorithm., The f10w field
,esull. by Anandan'. algorilhm arc shawn in (a). The flow field by Singh is shawn
in (h). Bolh of lhese diagrams appcar in Barran el al. [5]. Our resulls were
resamplcd and arc shawn in a similar format in (c).

•

regions where no molion was percieved (white space in the f10w field) correspond ta image

patches with very little texture as weil as image intensities near the edges of the sensor's

dynamic range (i.e.: near intensity level 0 or 255). Our algorithm treats these limits of the

dynamic range as noisy and unreliable, acreditting very little weight to these regions.

This image sequence did not cause our algorithm the instabilities seen in the results

of Singh or Anandan, shown in Figure 4.29. Wc concede, however, that the f10w vectors

generated arc not as imprcssive as the previously shown image sequences.

Again, the rcsults of Singh and Anandan exhibit instabilitics evidencc<1 by the appar­

ently randam f10w vector orientations and magnitudes, which our f10w consistency stage
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(a)
Flow Field from Image 4 to Image 5
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FIGURE 4.23. SRI Trec Sequellee. Frame 5 fram the image se'I',enc!! Îs shawn
in (a). The flaw field between frames 4 and 5 is shawn in (h).

di5allaws. The strength of our algorithm is apparent when applit.<J la those dilfieull seel"'S:

flow vectors in textured patehes arc acceptable to good, but never unexpecledly raudam

in regions of Iittle information. The thrust of flow field consisteney is lhal lIeighhorhooc1

fl2
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FIGURE 4.24. SRI Trce Scqucnce, othcr algorithms. The flow field results by
Anandan's algorithm are shown in (al. The flow field by Singh is shown in (bl.
Both ofthcsc diagrams appear in Barron et al. [5J. Our resu!ts werc resampled and
arc shown in a similar format in (cl.

•
bchaviour dominates in rcgions of grcatcr uncertainty, producing a f10w field that can be

gcntly cxtrapolated from morc confident neighbors.
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Flow magnitude

3

• 80

•

FIGURE 4.25. SRI Trec Sequence, Killetie Depth. The magnitnde of LI", f10w
field is rendered here as a relief mal'.

4. Image Plane Rotation

Not all optieal f10w algorithms can deal with image plane rotatious, Jlarticnlarly wllCn

the rotating object occupies the bulk of the image and the augnlar velocity is large. Hierar­

chieal coarse-to-fine or scale-space algorithms use coarse scale displacement me,.""ements

to seed the finer scales. An image plane rotation is Jloorly predieted from the coars"r

scales because the diffusion averages out the opposing f10w v"ctors to zero: inst"ad of Jlrl~

dicting a rotation, it would predict no motion at all. This difficnlty is not fouud iu th"

flow-field consistency architecture of our algorithm. In Figufl! 4.30, wc demoustrat" the

a1gorithm's succcss when dealing with image-plane rotation. A textured cube is rotat"d

counter-c1ockwise by hand.

Note that the pixel displacements in this image range as high as 4 pixels p"r franlf! .

(;4
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4. IMAGE PLANE ROTATION

(a)

Measured Flow Field fram Image 2 to Image 3

50

100
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200

50 100 150 200

(b)

•
l'IGUItE 4.26. Rubic Cube Sequence. Frame 1 from the image sequence isshown
in (a). The Dow field between frames 2 and 3 is shown in (b).
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FIGURE 4.27. Rubic Cube Sequence, other algorithllls. The flolV field resulLs
by Anandan's algorithm arc sholVn in (a). The flolV field by Siugh is sholVU iu (h).
Bath of these diagrams appear in Barran ct al. [5]. Our results lVere resarnpled and
are sholVn in a similar format in (c).

5. Laboratory Sequences

•
This scene is typical of the events we wish to measure. An end user presents il targ"t

abject ta the workstation's video camera and moves the abject while viewing the rcsult

on-screen in real-time. The rich flow field (see Figure 4.31) will be used in later stages

lifj
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•
FIGURE 4.28. NASA Coke Can Sequence. Frame 4 from the image sequence
is shown in (a). The Oow field bctwecn frames 2 and 3 is shown in (b).
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FIGURE 4.29. NASA Cokc Cali SC<lUCIICC. other a'goritltllls. Th" lIow field
rcsults by Anandan's algorithm a" shawn in (a). Th" lIow field hy Singh is shown
in (b). Bath of those diagrams app"ar in Barran ct al. [5). Ou, fl.,;nIL. wc,,,
rcsamplcd and arc shawn in a silllilar format in (c).

•
for qualitative shape description. This scene de;1I' " , the aigoritilln nnd"r iL~ 1..'St

conditions, i.e. low camera noise and high·contras~ teJ<Ctrcs. As in ail UI!' ahove "XILlIlI'I•.,;,

only one iteration of the algorithm was applied ta each image pair. Image vclodth", for thi.

particular frame pair approached 5 pixels / frame, but velocitics as high as 10 Ilix,·I. / fflLlII"

li'!



5. I,AIJORATORY SEQUENCES

(a)

Flow Field 'rom Image 5 to Image 6

60 - - - -
- - -

80 , , , , - -
, , .- .- .- ~ -- -

• 100 1 1 / / .- .- , --
1 1 / 1 .- .- , - - - - - - , ,
1 1 1 1 1 1 , - - , , ,

120 , , , ,
1 1 1 ,

140

160

180

120 140 160 180 200 220 240 260 260
(b)

•

FIGUIlf: 4.30. Lah Cuh" rotation 5"<;u""c,,, Frame 5 from the image sequence
is shown in (a). A closeup of the now field betw".en frames 5 and fi is shown in (h).
Ali flo\\' vcctors not shown in this image were nuH.

•
havp bccn snccl'ssfully tracked. As bl'forl', a rl'lil'f map is shown in Figurl' 4.32 to iIIustratl'

thl' crisp bonndaril'S of thl' targl't objl'ct and cohl'rl'ncy of thl' flow fil'ld magnitudl'.
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(a)
Flow Reid 'rom Imago 19 ta Imago 20

"--~.""
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•
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o 50 100 150 200 250 300 (h)

•

FIGURE 4.31. Hnlld-Held Target Sequellee. Frame 20 f,omlhc image ."'1".,,,,""
is shown in (n), The Dow field between framcs 19 and 20 i••hown in (h).

6. Summary

The experÏl.lenlal rœulls on synlhelie image seqnences (Seclion 1) and nalllral­

appear:<nce sYP~helic SlY.Juences (Seclion 2) are comparable la lhose of Anandan and Sin~h,

despile th~ ~ilference in compulalional cosl. The nalural scenes (Seclion :1) demonslral..1

our algorilhm 's lendency lo avoid perceplually unlikely Dow field confignralions, whe",,",

lhe hierarchieal algorilhms allowed runaway Dow veclors lo inflnence lhe snrron"<Îin~Dow

field, producing misleading Dow responses.

7(1
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Flow magnitude
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FIGUR.E 1.32. Rand-Reid Target Sequence, Killetic Deptll. J'Ile magnitudeof the fiow field Îs rendered llere as a relief map.

As 'bcribed in Chapter 3, Section 2.2, tlIC !Jierarc!Jical ::.lgorithms diffusion stages pre­
Vent the perception of image-plane rotation, a percept tllat Wc consider as important as

translation in the image plane and translation along the Hne of sight (ilJustrated in Chap­

ter 2, Figure 2.1 J. WC demonstrate experi!ll,mtally how our algorithm's noW-consistency
stage allows tlle perception of image plane rotation in Section 'l.

TypÏcally, natura) image sequences will contain displacements of much more than one

pixel l'cr frame. W
e

demonstrate llOw our algorithm can adapt ta thes
e

wide ranges of

image velocity, ma/ntaining enongll sensitivity ta distinguish an operator's hand from the
cnb

e
he is holding, as discussed in Section 5.

•
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l. UNIQUE CON'I'lllllll'l'ION:-;

CHAPTER 5

Conclusion

From the results in Chapter 4, wc have dl'monstrated t.hl' st.rl'ngt.hs or onr algorit.hm "n

a vari<,LY of image sequences with results that arc consist.l'nt.ly 'L' good as or 1ll'1.1..r t.han

other region-matching based optical lIowalgorithms. Furtl",rmorl', tl", n'sn Ils MC ohlain,'d

at near real-time frame rates. The experiment.s were performed on a 100 M\I~ 1l·lfillO

SGI workr.tation at about 4 framl's l'cr second, but. within :t fl'w short. y,'ars, th,'sl' salll<'

experiments could be performed on platforms al. real-time frame rates, of thl' ordN "l'Ir.

frames l'cr second.

As evidenced by both the synthetic and uatnral image sequences, our algorithm ('()n­

sistently finds optical lIow fields that arc close to what human ohsNvers wonld I,,·rcl'ivl'.

On synthetic data sets, wc obtaiu quautitat:-:ely competitive rc.<ults; <lI1 natural scenl'S, thl'

results arc qualitatively superior to other algorithms of the same cla."" ami mauy algorit.hms

of any class.

1. Unique Contributions

The algorithrn presented here emhodies principlc.. of optical lIow """L,urement, noise

reduction and lIow consistency helieved to be preseut iu the l'rimate hrain. By following this

model, region-based (pixel pattern) matching perforrns rapid searches, while a non-Iinl'ar

diffusion proccss enforces lIow field consistency. This is really a compact d"('()mposition

of a coordinated gradient descent applied to many regions in parallel. The architecturl'

employed is simple and executes rapidly on general-purpose workstaUons. lisl'ful solutions

usually emerge al'ter only one iteration..Just as significautly, the algorithm is designed to

be steered, or tuncd, by higher-Ievel information. The adaptahiiity, quality, convergell<:e

and specd of this algorithm make it stand out as an easily-integratlod, mnlti-purpos" tno!.
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2. Importance

'1'0 ollr kllowledlle, 110 other algorithm is a.~ efficient or effective at making lise of mea­

Sllr","enl. pmliel.ions. Ollr resllits demonstrate the advalltages of flow field consistellcy

c,,"sl.raints in rellioll-I".~ed optieal flow complltation. Ilased on a biologieal model, this

alwnitilln makes lise of the rieh geometrical illformation avaHable from the estimated flow

fidd at N,dl Iteration. Real-time optical flow is now achievable, and higher-Ievel information

can tllne or direct the attentions of the low-Ieve! J1}';;.~lIrement process.

3. Relevance

The resllits obtained IIsing onr algorithm suggest that the biologically-motivated atrat­

egy of illterleaving scalar regioll correspondence with flow field consistency operatiolls leads

to a stable jnferellce of optical flow field that can serve as a stable inlsis for further interpre­

tation. l'erforrrk,.re is comparable to the best algorithms in terms of both quantitative and

qualitative performance with the additional advantages of spccd and adaptability. The al­

gorithm is also flexible - large displacements arc tracked as easily as sub-pixel displacements,

and high-Ievel information can feed flow field predictions into the measurement process (e.g.

I,allnan filtering).

4. Future Work

Our group does not consider optieal flow computation a goal in itsf'lf. Our original

intent was to explore the acquisition of thrcc dimensional surface information from moving

objects using a video camera signal as input. The advent of low-cost sensors cou pied with

high-performance computing power has rekindled the interest in both the determination of

the optical flow field and its Interpretation in tems of scene structure.

The context of our future work is the characterization of three-dimensional shape given

prior knowledge in the form of a parametrie mode!. In this scenario an operator presents a

target object to a video camera and moves it according to the computer's suggestions for

new view points (usillg a strategy derived from the autonomous exploration paradigm of

onr group). Our goal is to corrcctly recover the 3-D motion and structure of the object from

the rcsulting flow and to minimize the ambiguity of this interpretation using constraints

derivl'd from the structure of the mode) and fccdback provided to the operator.

The problem of fitting optical flow fields to 3-D parametric objects is still an open field

of study, but would be of great benefit in c10sing the 1001' for higher-level information in

our optical flow algorithm. Once the approximate 3-D shape and position of the object

i3
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is known, ils mot.ion rail hl' tracked and projec1.ed bal'k illt,t) tlH' l'<tlllt'ra\; illlap;t' plant',

predictitlg the next optical liaI' field. This ensnres top-down fe,·dha,'k. wlll'rI' th,· sl'nsol' is

directed. or ttlned, by higher-Ievel information of SCl'nl' motion,

The top-down feedback wonld he akin tu "ml",ddin~ Gl'stalt l'unstraitlls far stl'lltl~el'

than the local consistency constraints at tlll' sensin~ level. This f('l'dhaek is ('ompal't and

subtle, is present in hun",n perl'eption, and l'un Id \'" a pOl'('\' l'u1 instruml'nt for m,"'hh"'

perception.
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