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ABSTRAC']

Abstract

T'his thesis introduces a monocular optical flow algorithm that has been shown to per-
form well at nearly real-time frame rates (4 FPS) on natural image sequences. The system
is completely bottom-up, using pixel region-matching techniques. A coordinated gradient
descent method is broken down into two stages; pixel region matching crror measures are
locally minimized, and flow ficld consistency constraints apply non-linear adaptive diffusion,
causing confident measurements to influence their less confident neighbors. Convergence is
usually accomplished with one iteration for an image frame pair. Temporal integration and
Kalman filtering predicts upcoming flow fields and figure/ground separation. The algorithm
is designed for flexibility: large displacements are tracked as easily as sub-pixel displace-
ments, and higher-level information can feed flow field predictions into the measurement

pracess.



RESUMIE

Résumé

Cette thése introduit un algorithme de flot optique monoculaire qui a été appliqué avee
succés sur des séquences d'images de scénes naturelles & des fréquences video presque temps
réel. Le systéme utilise une approche de bas nivean s'appuyant principalement sur des
techniques de comparaison des regions de pixels. Une méthode de descente de gradient
collaborative est séparée en deux étapes; l'erreur de comparaison des regions est minimisée
localement, et les contraintes de compatibilité des champs de flot appliquent une diffusion
adaptive non-linéaire, permettant nax regions de grande compatibilité d’influencer leurs
voisins. La convergence est habituellement atteinte & la premiere itération pour une paire
d’'images. L'intégration temporelle et I'utilisation de filtres Kalman prédisent les champs
de flot et la séparation objet versus arritre-scéne. L’algorithme est congu avec un critére
de flexibilité; les grands déplacements sont pergus aussi facilement que ceux de moins d’un
pixel, et les informations de plus baut niveau peuvent fournir une assistance a la procédure

de mesure.
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2. ORGANIZATION OF THIS THESIS

CHAPTER 1

Introduction

1. Brief Proposal

In this thesis we describe a fast monocular optical flow algorithm for real-time appli-
cations that features rapid convergence (within a single iteration), ease of temporal inte-
gration, and swify reaction to abrupt change in scene motion. Although the flow data are
represented on a coarse grid, the quantitative and qualitative flow for natural scenes is as
good as or better than algorithms in the same class,

The system is completely bottom-up, but does incorporate predictions from higher-level
processes. In the current implementation a Kalman filter is used to predict upcoming flow
ficlds and to perform figure/ground separation. The heart of the algorithm is a coordinated
gradient descent miethod that alternately minimizes local correspondence errors and the
consistency of adjacent flow field vectors. What results is a non-linear adaptive diffusion in
which confident measurements are used to influence their less confident neighbours.

The principles used to formulate the algorithm follow directly from an approximate
model of the hypercolumn organization present in the primate visual cortex. This model
suggests a process in which scalar and vector information are processed independently and
how they might be combined to produce a coarse flow field that is both accurate and
robust. The optimization of region correspondences and flow field consistency, for example,
are implemented as separate minimization stages as in the biological case instead of one

lumped minimization.

2. Organization of this Thesis

Optical flow does not exist in a vacuum. This thesis therefore begins in Chapter 2
with a discussion of the motivating applications of motion from image sequences, and the
techniques used to implement them. The reader is guided through a brief outline of the

1



2. ORGANIZATION OF 'TUHIS THESIS

biological motivation for the algorithm and then sununarizes some of the goals of this work.
The algorithm itself is deseribed in Section 5.

The major components and concepts of the algorithm are treated in soparate sections
of Chapter 3. Our algorithm combines the layers of image region matching {(Section 1), flow
field consistency (Section 2), and figure/ground separation {Section 1), Our algorithm can
integrate information from other sources, and these higher-level sources are discussed in
Section 5. The details of our particular implementation, including real-time consideritions
and time versus quality trade-offs are described in Section 6.

Experimental results presented in Chapter 4 demonstrate the performance of the algo-
rithm on both synthetic and real data using some of the well-known data sets cited in the
literature [5], and show that it it comparable to some of the best results obtained, with the
added advantage of rapid computation.

This thesis concludes in Chapter 5 by bringing the claims and the experimental resalts
together. The novelty of the present work and the future direction for this work are also

outlined.



1. GENERAL MOTION

CHAPTER 2

Background

This thesis unites concepts from biological models of the primate vision system and com-
puter vision techniques to yield a rapid and robust optical flow algorithm. However, we
also offer an architecture for integrating higher-level information to steer the lower-level
sensors in a principled way. For this reason, we will start this chapter with an overview
of the motion problem (Section 1), followed by a discussion on computer vision techniques
(Section 2) that have been applied and the relevant applications (Section 3) that motivated
motion measurement in image sequences. Exploring a biological model hypothesized for
the primate visual system (Section 4) has led to our proposal for a real-time optical flow
architecture (Section 5). While measuring motion from image sequences will remain an
open problem, our future work (Section 6) will make use of our open architecture to intro-
duce operator and volumetric reconstruction feedback to project perceived 3D motion and
objects back into the image plane to close an exploration loop. These exploration issues

will not be addressed in this thesis.

1. General Motion

Humans perceive motion with so little effort, and with so much fluidity that they tend
to take the mechanism for granted and focus on the inferences caused by the signals, rather
than the signals themselves. A “trained observer” could be conditioned to locate important
points in a scene and to describe the displacement of these points over time, but his or her
visual processor integrates heuristics of the organization of the physical world to generate
perception of physical motion more elaborate than the stimuli. The distinction between the
stimuli and its perception is typically the focus of psychophysics. As far back as 1865, Mach
had demonstrated and discussed the “existance of light and dark bands in the perceived
pattern which had no analog in the actual input.” [18, p. 219]. More recently, the studies

3



. GENERAL MOTION

of illusory contours and other subjective interpretations of light patterns [9] have led to
the elucidation of the mechanisms in the hidden layers between the reting and the cerebral
cortex. In our case, we will be applying some of these implied mechanisms to a computer
vision system, equipped with a gray-level sensing camera.

There has been debate on the choice of camera imaging model for motion analysis. Most,
camera optical paths are not perfectly modeled by a pinhole camera perspective warping,
Projecting image plane data into 3D space using the constraints of strict perspeclive is
a very daunting task. If, instead, one chooses a weak perspective model, such as scaled
orthographic projection, the result is a toy model of perspective, much simpler both intu-
itively and mathematically. Translations in 3D parallel to the image plane are projected
orthogonally onto the image plane. Translations perpendicular to the tinage plane yield a
change in scale. This weak perspective approximation holds as long as the distance [rom the
viewer to the object is significantly larger than the object. T'his toy imaging model might be
implemented in human perception: it would explain why we get confused about an object’s
shape when perspective deformation dominates (as an object approaches a viewer),

Assuming the scaled-orthogonal imaging model, we can decompose 31 object motion
into a set of representative motions, illustrated in Figure 2.1. We have already mentionnd
translation in the image plane and translation perpendicular to the image plane (scale
change), but there is also rotation in the image plane and rotation about an axis in the image
plane. The latter rotation decomposition with respect to the image plane is attributed to
Kontsevich [17], and is a simpler form than the difficult to compute and decompose lnmped
3D rotation and translation matrix of the camera (or object) motion. This thesis does not
assume either strict or weak perspective imaging, and concentrates on tke optical flow on the
image plane itself, Nevertheless, it is important to note that general 3D motion projected
onto the image plane, may have all of the motion components illustrated. This will be
stressed later, when we show how some optical flow algorithms have difficulty computing
some of these components.

Motion perception is a victim of noise. The image sensors (biological or synthetic) are
prone to bursts of white noise and structured noise, aliasing and other imaging artifacts.
The interpretation of static scenes is difficult enough, and measuring displacements of ilmage
components is also noisy in itself: small and large displacements alike suffer from aliasing.
The older information technology techniques suggested a modular approach to computer
vision in general, creating data structures to describe static images, and to have different

modules infer knowledge from the image from different algorithms, e.g. cdge-detection,

4



1. GENERAL MOTION
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FiGURE 2.1. Components of optical flow from weak perspective imaging.

shape-from-shading, and so on [20, 6]. But motion perception can not be confined to
analysing two static images and then analysing the data structures of the two images: the
tiniest noise signal introduced will make the problem intractable. Furthermore, natural
scenes involve the motions of objects that are difficult to characterize as data structures.
Given an image sequence, subjective issues such as scale and aperture allow many possible

5



1. GENERAL MOTION

interpretations and figure/ground separations, but the viewer usually selects one interpre-
tation. To be of use computationally, this selection would need to be expressed in tetms of
a perceptual model or a model of biological sensar processing.

Regularization is introduced as a method of applying local constraints to an otherwise
noisy system. Knowledge of tiie physical system under observation leads to approximate
models of how neighboring clements should interact. In cases of noise, the system would
integrate neighborhood activity into each measurement. Classic regularization techuiques,
such as those in Blake and Zisserman[7], deal with surface reconstruction from noisy mea-
surements and usc analogies of surface plates, weak springs and membranes to embaody
physics in a search for a best fit.

The distinction here is that a measurement process is guided by a regularization of the
measurement results, and the process is iterated until a reasonable result is obtained. The
unresolved problems here include: how many iterations are enough? How do we provent
degradation from over-regularizing or over-iterating? How do we prevent noise artifacts
from under-regularizing or under-iterating? How do we balance the measurement signal
with the regularized measurement signal? How important are neighborhood constraints
with respect to individual measurements? For the most part, these questions are answered
by tuning weighting parameters by experimental observations or noise measurements, There
is clearly something important missing from the approach so far: a new regularizer is not
the answer, but a better architecture to integrate measurements and physical or perceptual
constraints.

We propose to go a large step further. Instead of embodying a model of the physics
of surfaces into the solution, we model some of the perceplion of physics of surfaces and
motion, which we will show is a more powerful constraint in motion perception, producing

results consistent with human observers, including the cases of unstructured scenes.

1.1. Motivation With the advances in computer speed and the decrease in imaging
hardware costs, the novel problem of extracting information from image sequences can be
approached with more accessible tools. While the majority of optical flow and motion algo-
rithms resolve the data into knowledge by off-line batch techniques, we have designed and
constructed an optical flow algorithm sufficiently rapid to use temporal integration and user
interaction as far more powerful constraints. We believe that this strategy and architecture

will contribute to the more common computer vision tasks of surface reconstruction and

tracking from image motion.
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2. Computer Vision Motion Techniques

Optical flow can by considered as a dense set of point correspondences between suc-
cessive images. How these correspondences are found varies according to key assumptions
made about the imaged environment. The following sections describe the assumptions and
characteristics of the dominant optical flow algorithm types. The comprehensive study by
Barron et al. {4, 5] provides a level playing field to objectively test and compare optical

flow algorithms against a set of standardized input image sequences,

2.1. Optical Flow by Differential Relations The key assumptions in differential
relation optical flow such as Horn et al arc that the objects in the scene have surfaces
of near-uniform reflectivity (e.g. uniform color) and no specularity{15]. This allows the
approximation of displacement proportional to intensity change. Image intensity leaks are

considered to be negligible. For image intensity E(z,y,t), this is expressed as

dE
(2.1) =0

Using the chain rule for differentiation, Horn obtained

dEdz 0FEdy OJFE
kT yata "
“The unknowns are the velocities in the £ and y direction, which are denoted as u and

v such that

dz b= dy
dt' Tt
The notion here is to approach optical flow as a large set of partial differential equations

(2.3) u=

for a physical system, of the form

(2.4) Exu+ Epv+ E =0,

Still, this is under-determined, providing the component of the movement in the di-
rection of the brightness gradient [15] and intensity leaks abound. Furthermore, textured
surfaces fail under this assumption, and displacements are limited to a fixed scale; the same
scale over which the intensity gradient change is computed. The assumptions made for this
form of optical flow computation may seem almost contradictory, in that without texture,
no motion is perceived, but the motion of boundaries is known in only one dimension, due

7
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to the local nature of the measurement. Regularization improves the local measure by in-
troducing neighbor interactions, but docs not go ali the way to propose a principled way to
balance measurement with regularization. Local error minima are almost unescapeable, so

initial estimates of displacement are essential for convergence,

2.2. Optical Flow by Feature Point Correspondence Feature point correspon-
dence raises interesting issues, and literature exists to define what makes a good feature
point. This decision is environment and task dependent, and is useful for very controlled
or contrived situations, such as tracking target markers on a moving object. The reason
for doing this is to bypass the optical flow problem and use precisely-ineasureable image
features as a skeleton of displacement that can be filled in at a later stage. The advantage is
that the problem becomes a data processing problem where features are matched in succes-
sive image frames, using a sparse data structure. The difficulty here is in determining how
to fill in the motion for elements of the scene that do not contain feature points: we usually
prefer seeing the motion of an entire car rather than the motion of some spots on the car:
this gives more useful information for perceiving the bulk properties of the car, avoiding
the car with one’s bicycle, and so on. Collision avoidance may be desired, independent of
the type of object in view,

The interdependance of what makes a good feature point, and how feature points
interact as neighbors can not be respected in a feed-forward system. Most feature detectors
use feed-forward image pre-processing, and not predictions of how feature points behave
over time. This restriction prevents feature point correspondences from being used in mnore

evolved vision architectures which include top-down feedback.

2.3. Optical Flow by Region Matching To borrow the terminology of Barron et
al, a region-based matching algorithm defines the velocity @ as the shift d that yiclds the
best fit between image regions at different times [5]. The methods of Anandan {2, 3] or
Singh {28, 29, 30] optimize a similarity measure, such as minimizing the sum-of-squared
differences (SSD) between two images, /; and /o,

(2.5)

n n
SSD1 (3,41 derdy) = Y S Wi, )z +i,u+7) - ha(z + de +i,y+ dy +5))°

Jj=—ni==n
where W denotes a 2-D window function, and (dz,d,) are usually restricted to a small
integer number of pixels. Alternatively, a distance measure minimization is added to the
optimization, in the expectation that small displacements make more sense than larger

8
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displacements when the pixel patterns are matched equally well. Ciearly, this is a bottom-
up, or data-driven strategy that vses local information. The representative algorithms
use different. methods for reaching the optimal tile alignments, but neither use the rich
information available at the flow geometry level, i.e, flow consistency constraints.

Anandan goes futher and measures confidence of each region-match, by measuring the
curvature of the SSD error surface [3]. By doing this, Anandan encodes the directional
certainty for each flow vector, At corners, this error strface is pointy, so the magnitude
of the uncertainty is small, On edges, the error surface has a ridge, so the direction of
uncertainty runs parallel to the ridge. Unfortunately, the directionality of this error measure
is not used in regularization. This will be discussed in detail in Section 2.5.

Qune of the thorny issues is the size and shape of the W window function. The larger the
sampling area, the more convex the error function, leading to fewer steps for convergence,
at a higher cost of computation per step. On the down side, larger window sizes suffer at
object boundaries, reducing the discriminability of finer details. In short, larger windows
blur perceptually significant discontinuities. The linearity or non-linearity of the weighting
function in W is also subjective: uniform weighting is computationally efficient, but perhaps
less meaningful than a Gaussian distribution. We will propose that the size chosen for W
is less sensitive when coupled with other constraints.

While optical flow techniques abound in the literature, all must deal with a fundamental
limitation of the aperture problem: how can one share information between the local and
global domains, even when they conflict? Furthermore, to what extent, and in what way
can information from different scales be combined?

Anandan’s algorithm traverses scale space by performing region matching at coarser
scales and smoothing the resulting flow field, taking the directional uncertainty of each
flow vector into account, The resulting flow field then seeds the search at the next-finer
scale, and the hicrarchical computation continues, This inheritance of smoothed resulits
from coarser scales imposes a limitation on the amount of image-plane rotation that can be
preserved. The practical upshot of this is that Anandan’s algorithm is biased towards object
translation and rotation about an axis in the image plane (which resembles translation over
large patches), but has difficulty with rotation in the image plane.

In this thesis, we argue that the important information is not strictly individual error
surface measurements that should be minimized, but rather, flow field consistency that

should be enforced. By having the two layers of region matching and flow consistency
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constraints interact, we can gain significant advantages in stability, robustness and over-
all accuracy. For example in the case of textured surfaces with a repeating pattern the

algorithm would be less likely to become trapped in a local minimur,

2.4, Rigid Body Constraints Because optical flow fields are underdetermined by
the sensory input, regularization is often introduced to force the resulting flow field to con-
form to certain material or perceptual properties. These constraints reduce the solution
space while searching for a global optimum, and help produce results that satisfy the mate-
rial physics or minimize noise over the entire data set. The way in which these constraints
are applied, however, will significantly affect the overall outcome of the optimization. lor
example, interleaving measurement and regularization, versus weighting measurement with
previous measurements and regularization. lead to different optimization paths.

Weber ct al. show how a flow field can be segmented and predicted by using the
Fundamental Matrix of each image region to determine local rigid body motion [36). A
region-growing method groups image regions of similar motion parameters, and associates
a high cost for segmentations that select large numbers of groups. Using the Fundamental
Matrix is a form of rigid body constraint (the matrix is formed under the assumption of a
rigid body undergoing translation and rotation).

While the rigid body constraints embody physical models of the imaged environment,
they are still difficult to determine, noisy to quantify into a useable forts. The rigid body
lives in 3D space, and the mapping from the image plane into 3D space is rarely adequate.
For unstructured environments, a more appropriate level of regularization can be achioved
with flow field constraints which are based on physical properties, but can be processed
without resorting back to the 3D space.

2.5. Flow Field Constraints How does the flow algorithm know when it has
reached a local, sub-optimal minima, and where should it go rext to escape? One an-
swer lies in the flow field consistency of its neighborhood: if the neighbors arrived at the
same conclusion, there is no cause for alarm, but if one flow vector points in the wrong
direction, it will ponder its neighbors’ choice as an alternative. Algorithms that use flow
fields as inputs generally expect that the flow fields behave in certain ways: the rigid body
constraint discussed in Section 2.4 make strong assumptions about how objects behave in
3D, but projecting these constraints back into the image plane can be computationally
challenging. An alternative approach is to deal with the flow vectors in the image plane,
using simple rules of interaction that are suggested by perception experiments, and implied

10
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by material physics. This becotnes useful in the cases of sparse measurements, where only
key features can be accurately determined, although a more dense measurement is desired.

One might hope that applying a Gaussian diffusion operator to a flow ficld would
somehow spread the flow field information throughout the moving object. Giachetti et al.
do this Lo spread a sparse optical flow field over the entire image plane, and perform some
weighting based on measurement error [12]. This is acceptable when the desired effect is a
linearized flow field for measuring a small number of motion parameters, such as focus of
expansion, angular rotation and time Lo impact. In general, however, this only blurs the
actual flow field and eliminates the finer details that allow figure/ground separation and
tracking.

Anandan’s algorithm [3) uses a modified Gaussian diffusion to spread flow vectors across
each scale image before proceeding to the next-finer scale. Each vector becomes a weighted
sum of its previous value and the average of its neighbors. The weighting is determined by
the curvature of the error surface at that point. What is ignored is the error measure of the
individual neighbors and their consistency with each other: one should not give the same
weight to neighbors which are obviously wrong, and smear the error around. In order to be
cffective, flow field consistency must be enforced during the measurement stage.

Giachetti et al. also relax the rigid body constraints and permit shearing and other
deformations to the image plane [12]. Prazdny’s research into estimating egomotion [25]
assumed that flow ficlds behaved in a lincarly consistent manner, due to the imaging of
planar obstacles: pianar motion induces linearly smooth optical flow patteras.

Psychophysics insists that no matter how construed or noisy the input image sequence,
the perception of fluid motion will dominate over local minima that lack local coherency
or consistency. In fact, these uncertain areas are almost always influenced by neighboring,
certain areas: when motion is perceived at boundaries of an object, the low-contrast interior
region of the object is perceived to move with the same velocity, even when there is no
apparent local motion. The hypothesized mechanism for this ability in the primate visual
cortex is offered in Section 4.2.

Steering local detection of curvature or flow field by neighborhood flow consistency
is covered by Parent and Zucker [23, 40]). Simple updating rules based on the substrate
problem are used to attain solutions that are globally and locally consistent. The advantages
of using flow ficld consistency include its ambiguity resolving, rapid convergence, and the
abstraction from 3D physical models into the 2D flow field.

11
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One of the problems associated with applying a Gaussian filter to diffuse the llow field
is its linearity: discontinuities are smoothed over, regardless of Lheir pereeptual significance,
Flow field consistency recognises that some combinations of neighboring flow vectors are
more likely than others, and arc given weights accordingly, preserving features based on
measurement confidence and neighborhood compatibility, a decidedly non-linear strategy,
rather than a biind feed-forward strategy.

Embedding flow ficld consistency into the measurement process allows confident neigh-
bors to steer uncertain flow vectors for local consistency, but at the same time forces the
propagation of local measures to achieve a more globally consistent set of flow vectors, Rapid
convergence is possible due to the reduction in solution space, but also because low field
consistency does not lead the measurement stage to test hypotheses that violate material
constraints.

3. Computer Vision Motion Applications

3.1. Surface Reconstruction from Points of Correspondence Two views of an
object are not always sufficient to determine the structure of the object. We can always
benefit from integrating new information into our perception of the world: new informa-
tion reduces uncertainty, reduces noise, and solidifies our internalized representations of
the world. More concretely, temporal integration of optical flow can certainly improve up-
coming measurements of image motion, just as surface reconstruction can be improved by
integrating multiple measurements, demonstrated by Heel [14].

Prazdny used synthetic flow fields to reconstruct egomotion parameters and for planar
surface reconstruction [25]. The technique is reasonably rapid, performs coarse range imag-
ing, but works only with low noise flow fields. The flow field generated from our algorithm

will be shown to be of sufficiently high quality to do coarse range imaging of this type.

3.2. Feature Point Tracking Common applications for motion tracking in general
include feature-point tracking {31, 26]. Both methods are presently limited to laboratory
environments and controlled experiments, but could be improved by applying denser motion
measures from optical flow, and might even be moved to less structured environments. Re-
gion matching coupled with flow field consistency can offer more than any single regularizer
in terms of noise reduction. Feature point tracking for articulated rigid bodies would not
benefit, however, if individual limb motion measurement needs to meet a precision require-
ment. However, rigid bodies with unknown shapes or more general, non-rigid motion wonld
greatly benefit from the interpolation of perceived motion throughout the object.

12
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3.3. Structure and 3D Motion The classic 8-point algorithm [19)] offered a rapid
technique of using point correspondences from Lwo projections to produce the 3D positions
of the points as well as the relative orientation of the two viewing planes. Unfortunately,
Lhis algorithm is wrought with noise sensitivity and singularities. Noticeable improvements
are afforded by conditioning the inputs [13], but no amount of regularization will recover
the surlace in the presence of structured noise ever-present in optical flow techniques.

However, with rapid optical flow computation, where measurements and constraints
produce acceptable flow output, the higher-level 3D constraints can be projected back down
to the sensor level, closing the acquisition and analysis loop.

Uncalibrated, and even noisy, images can yield reasonable 3D structure and motion
information [8, 27], but the noise in the image plane is amplified many-fold when pro-
jected back into 3D space through noisy imaging parameters [34, 39, 32, 37, 22, 35).
The limiting factors to perform the projection from the image plane to 3D space are noise
in image coordinate incasurements (due to aliasing or artifacts or local minima), and the
ill-conditioned inversion of the perspective imaging parameters, such as the Fundamental
Matrix. The inversion of the Fundamental Matrix can be regularized to a point, but at
the expense of computational efficiency. On the other hand, the image coordinate measure-
ments can be improved significantly when neighborhood flow consistency is applied: the
motions of image clements are governed by constraints of fluid, or consistent {low elements.
Clean patches of image coordinate measurement allow local calculations of the Fundamental
Matrix, with the possibility of merging patches, until entire objects are percieved with a

untique set of Fundamental Matrix motion parameters [36].

4. Combining Computer Vision with Biological Clues

In order to anchor this discussion in meaning and relevance, the reader is offered the
following section as a roadmap to vision system architectures. After this, it should be more
clear where our work is situated in the larger perspective, and why we consider it significant

to the vision community.

4.1. Three Vision Paradigms: Summary of Early Vision When discussing
(computer or biological) vision algorithms, it is convenient to classify them according to
their architecture. We have adopted a classification and naming scheme that differentiates
between early-generation approaches to computer vision and biologically-motivated systems,
inspired by [41]. There is a steady evolution from one level to the next, and a complexity
gap separates cach paradigm from its predecessor. The reader should note that this section
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is not meant to be an all-inclusive discussion of vision algorithin taxonomy, but rather, an
illustration of how vision algorithm architecture tends toward solution methods espoused
by biological vision systems.

This should not be surprising: after all, biological and computer-based vision systems
suffer similar constraints in terms of size and complexity of available hardware and energy
consumption. In the ideal case, both systems either need or counld benefit from timely in-
formation. While some of nattire’s tricks for compactness and speed involve brute foree,
unorthodox shortcuts and massive parallelism, this rapid exccution in turn simplifies the
computation. Perception at the biological level, as we understand it today, succeeds by
performing simple computations in specialized layers, enabling neighboring regions to in-
fluence each other. As the information passes through successive layers, higher levels have
the opportunity to send signals to the lower-level layers, providing hints to steer the overall
processing. This top-down feedback can be significantly more useful to the lower levels than
neighborly interaction for convergence.

The First paradigm is typical of the first generation vision algorithms which at-
tempted to associate features or objects with itnage intensities, such as histogram equal-
ization and thresholding, or convolving an edge-enhancing kernel with an image. Points of
interest are tagged, and because strong assmmptions are made concerning the imaged envi-
ronment, the interpretation is strongly context-dependant. The key ingredients to the first
paradigm architecture include strictly feed-forward stages, very local processing that usually
only works in artificial environments. Distinguishing characteristics of these algorithms are
several tuneable parameters (thresholds and the like) that must be set by experimentation
in order to function. The biggest advantage of this paradigm is the simplicity of computer
implementation, and rapid execution.

The Second paradigm architecture attempts to rectifly the drawbacks of the first
paradigm by combining more local information, and performing more iterations before
reporting results. Like the first paradigm, this usually involves separating the processing into
feed-forward stages, but within each stage, information is diffused locally for each iteration.
An example of this is combining information across different scales by performing first
paradigm measurements at different scales and using temporal integration (such as Kalman
filtering) to determine relevant scales at different image locations. Diffusion parameters and
discontinuity penalties enforce properties perceived in physical objects. Surfaces are seen
as locally smooth patches with sharp edges, moving objects tend to stay in motion. These

material observations are translated into constraints imposed during the iterations: at cach
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point, neighborhood interaction causes adhesion of clumps of data. This leads to a definite
improvement in results, but it is costly and leaves open the issues of how many iterations
can be performed at each stage before eroding the information one hoped to recover. The
computation, therefore, involves many iterations of relatively simple rules, Unfortunately,
the results become eroded beyond a certain number of iterations, and exccution is usually
slow,

The Third paradigm takes its inspiration from approximate models of the massively
parallel and integrated organization of biological vision systems. The information flow here
is not strictly feed-forward: each stage performs a large amount of neighborhood interaction
that includes non-linear diffusion, Later stages are biased by their previous state, and
neighbors can influence each other in cases of sensor ot signal noise. Global constraints
govern behaviour in cases of local ambiguity, providing perceptual continuity. Furthermore,
these constraints are less restrictive than the constraints of the second paradigm; surface
curvature consistency replaces the plate and rod models, relaxation labelling replaces the
maximum-likelthood strategies. One key advantage to this approach is rapid convergence
(in terms of number of iterations; each iteration can be very costly). The minimization of
errors used in the second paradigm is most often blind to neighborhood interaction. In the
second paradigm, blind minimizations lead to testing interpretations of the scene that are
unstable or violate material property constraints. In the third paradigm, impossible states
are discarded and not even tested: at each stage, the algorithm will only reach a state
allowed by the previously attained state, and the consistency constraints are inviolable.
The computation usually involves a large set of simple rules that would be executed in a
parallel fashion. Typically the complexity of implementation prevents these algorithms from
being real-time vision systems. This thesis presents an algorithm that runs contrary to this
widely-held view, providing the robustness and high-quality results of the third-paradigm

class algorithms but within a reasonable amount of execution time.

4.2. Biological Clues The primate visual system is arguably the most developed
vision system that can be studied. Computer vision research has much to gain from study-
ing the structure and organization of the only fully-functional vision system architectures,
developed not by engineers, but by nature.

Some approximate biological vision models yield efficient algorithms by decoupling a
complex minimization expression into individual components. Marr and Poggio [21] used
a cooperative algorithm for computing stereo disparity, suggesting a rough model of early
vision and cooperative layers that could be explained by the biological hardware available.
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The cooperative process decouples a pattern-mateh minimization and surface continuity
constraints into two layers that interact (feedback). The two layers are much simpler than
a single layer that performed both actions. Since the simpler or more complex minimization
attain the same goals, it scems reasonable that the simpler architecture is a more practical
choice for both biological systems and synthetic algorithms. [lardware that consists of
specialized layers, where cach element in a layer resembles its neighbor, is generally [aster
and less expensive than single-layer monolithic implementations. More iterations can be
performed in a given amount of time. For the relatively slow neural pathway signals (10
cm in 10 ms), this decoupled architecture is crucial.

Ullman suggested mapping biological computational elements to the algorithmic coun-
terparts in [33]). Examining the receptive fields in the retina and the contrast-enhancing
property of the Difference-ol-Gaussian operators leads us to examine the signal path fur-
ther, into the visual cortex. We can model the simple, complex, and hyper-complex cells
in the visual cortex as combinations of these receptive fields. But there is yet another step
needed to explain the neighborly interaction of perceived motion.

Staining neurons of the visual cortex for cytochrome oxidase identifies clusters of nen-
rons that are highly active, contrasted with clusters of lower activity (1]. T'ypically, the
stained cross sections yield clumps, or blobs of apparently higher ncural activity, separated
by regions of lower neural activity, sometimes referred to as interblobs. The regions of higher
activity (blobs) are found to be scalar representatives of the visual fields, while the lower
activity regions (interblobs) are orientation detectors {1]. The scalar zones are more ac-
customed to continuous activity and react abruptly to changes in input, while the oriented
zones fatigue rapidly unless the images shift, allowing the neurons to rest until activated
again, responding smoothly to changes in input. This suggests that shifting the input im-
ages by eye movement becomes necessary not only to refresh the retinal cells, but also to
refresh the oriented cells.

Some of the clues for region-based motion (and sterco vision} correspondence that are al-
ready widely-known include the alternating left- and right-occular dominance hypercolumns
in the visual cortex. In each hypercolumn of the interblob (oriented) regions, dillerent orien-
tations and scales are represented, higher neural firing rates indicating a stronger presence
of each element. In each hypercolumn of the blob (scalar, non-oriented) regions, different
spacial scales of light intensity are represented.

The parvocellular pathway, dominated by orientation detectors, has been suspected of

being largely responsible for matching edge information from left and right visual fields, and
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the medial temporal region for tracking this positional information over time. This would
be a strong indication for the importance of edge information in sequential image analysis.

But what about the non-oriented, smoothly-varying or textured image fields that do
not trigger the oriented-edge cells? Surely, scalar information would be more useful it these
zones. The correspondence problem would be given another constraint to help the solution
converge more rapidly, and reduce the solution space. The blob and interblob regions are
interspersed, and can share information with cach other. The blobs might perform image
intensity region (or template) matching in the hypercolumns, and similarly, the interblobs
might perform a comparison of flow orientations across several scales.

Because the blob regions respond abruptly to changes in input, neighboring neurons
within the blobs may represent very different light intensities, as opposed to the interblob
regions, where edge and flow orientations are strongly influenced by neighboring orienta-
tions. One would expect that within the blob regions, neighboring neurons do not diffuse
their estimates as much as neurons within interblob regions. This characteristic could allow
a formn of window or region matching of light intensities or textures that takes place between
corresponding receptive fields in the blob regions over time.

A key issue underlined by Yeshurun [38] in stereo and motion perception is the differ-
ence in size between a receptive field and the region represented by a hypercolumn. This
observation implies that a motion patch in a hypercolumn represents changes from a cluster
of neighboring receptive fields, and that the motion field will be less dense than the input
image field. Traditionally, however, optical flow algorithms [3, 28, 15] expect motion field
density about the same as the imput image density.

The combination of these relevant facts suggest that the scalar and oriented hyper-
columns perform different tasks to produce optical flow motion representation, and the
results from both are combined to produce a coarse flow field. The blob-interblob interac-
tion may be modelled as intensity-based region matching diffusing its estimates, and the
orientation of the flow elements as a constraint or boundary for the diffusion.

These cooperative processes play quite well into the decoupled matching and consis-
tency minimization mode! suggested above. Each “layer” performs its task on its inputs,

and sends a compressed summary to the next (or previous) layer.

5. Proposal for Real-Time Optical Flow

As suggested in Sections 4.2, 2.3 and 2.5, our algorithm performs region-based matching
between successive image frames, at once minimizing a pixel pattern matching error and
17
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imposing flow field constraints within a neighborhood. For the purposes of this thesis,
we will consider the optical flow field to be a coarse field of image point correspoudences

between the two sequential images.

5.1. Organization of Algorithm An overview of our algorithm is presented in the
block diagram of Figure 2.2. Each stage is represented as one block, with the execution of
stages proceeding from left to right. Each stage performs iterations internally, as indicated
by the dark, curved arrows. Furthermore, there is a backward and forward exchange of flow
data between the tile-matching and the flow consistency stages. Note that flow information
from a Kalman prediction loop is used to predict the next set of region matching. This
top-down feedback is used in our laboratory environment, but for this thesis, we will be
reporting results without using this high-level tracking and prediction, in order to compare
our optical flow algorithm with other relevant algorithms. Each stage of this block diagram

is described in more detail in Chapter 3.
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FIGURE 2.2. Block diagram of full optical flow process, including tracking feedback.

For the most part, however, we will demonstrate the core algorithin modelled by the
block diagram in Figure 2.3. The higher-level information is ignored here, and the opti-
cal flow is examined and processed without considering the interprelation of the optical
flow. For this simplified model, prediction of upcoming image motion is determined by the

previous measured motion at each point.

5.2. Strengths and Shortcomings of Algorithm Our algorithm is firmly rooted
in the third paradigm of vision architectures. Impossible (perceptually unlikely) interpre-
tations are not allowed into the optimization process. This intelligent error minimization
embodies the flow field consistency constraints described by material properties and psy-

chophysics by restricting the correspondence search regions and combining the geometrical
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FiGure 2.3, Block diagram of cooperative optical flow process, without higher-level
information. This model will be used for most of this thesis.

information from these correspondences with non-linear diffusion to seed searches for fur-
ther iterations. The stages of region-matching and flow consistency are separate stages, but
they share information and steer each other. The principled method of integrating the flow
ficld geometry with correspondences enables an open architecture where information can
be introduced from a higher level of processing, leading to top-down feedback. The promise
of this approach is rapid convergence for flow field measurement, better quality flow fields,
and casy integration with other processing stages.

For the purpose of this thesis, we apply no underlying surface transport model. An
example of such a surface transport model would be parametric solids, such as superellip-
soids, undergoing general motion. The optical flow algorithm presented here does not use
this constraint, neither in the measurement stage, nor in the flow field consistency stage.
Such a powerful constraint would improve the quality and convergence of the flow field.
However, allowances have been made to include this type of higher level information at a
later stage, in order to predict upcoming fiow fields.

At this point, it may seem that some issues have been simplified to fit our architecture,
namely ignoring directional confidence that Anandan’s algorithm could produce. We will
show that these issues have not been neglected, but instead are embodied by the form of flow
consistency constraints chosen (see Section 2.3). The savings in computation and sampling,
however, are enormous, allowing either more iterations per sample set, or more sample sets

per unit time.

5.3. Performance Expected Our proposal can meet the goals presented in Sec-
tion 5.2 by demonstrating that convergence occurs within very few iterations, and that the
quality of the resultant flow field is competitive with slower algorithms. These points will
be dealt with in the Experiments section, Chapter 4.
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This proposal would demonstrate the almost real-time capabilities of a good quality
third-paradigm algorithm when applied to optical flow. Qur premise is that the approximate
biological mode! of visual cortex hypercolumns provides powerful constraints to motion
processing that can be performed with simple updating rules and implemented in near
rcal-time on conventional workstations. Our claim is that our integrated third-paradigm
architecture with simple rules out-performs second-paradigm algorithms that embody more
complex constraints in the error minimization in every measureable sense. ‘This claim will

be justified by comparing results with competing algorithms in Chapter 4 (Experiments).

5.3.1. Comparing Computational Cost Region matching, the fundamental measure
used in this thesis and the algorithms of Anandan and Singh, will have the same computa-
tional cost for all three algorithms: it is dependant on the area of the window used in region
matching. Also, all three algorithms have a form of neighborhood dillusion operation that
regularizes the flow fields. In this case as well, the computational cost of the diffusion is
dependant on the number of neighbors that are affected by any single clement, analogous
to an area encompassing the neighbors. What distinguishes the three algorithms, therelore,
is how often pixel regions must be compared, and how often flow measures must be diffused
between two image frames.

Chosing r to represent the cost of performing a region comparisou, d to represent.
the cost of updating an estimate by examining all its neighbors, and N to represent the
number of resulting flow vectors, we shall examine the cost entailed by our algorithm and
those of Anandan and Singh. This cost analysis is not absolutely rigourous, and some
allowances must be made for end-user adjustments, such as diffusion factors and the number
of iterations applied. This section is offered as a sketch for comparison.

For our algorithm, we perform an arbitrary & iterations between image frames. For
each iteration, there is one step of 18 x N region matches of cost r and one step of N

diffusion updates of cost d. As a cost expression, then,

(2.6) Cours = kN (18 + d).

This leads us to the claim that our algorithm’s cost is of order O(kN).

For Anandan, there is an added cosl of image pre-processing Lo construct the hierarchi-
cal image pyramid, but this is a fixed cost and will be put aside for this discussion. There
are n levels in the image hierarchy, where n is typically proportional to log(/V). At each

level i there are 2 x R x N region matches of cost r, where R is the number of tests that
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are applied for cach measurement, typically 36. At the same level 4, there are D x 29 x N
diffusion updates of cost d, where D is the number of diffusion iterations (typically 10). At

cach level 7, then, the cost becomes

(2.7) C pnandan (i) = 2N (Rr + Dd).

Summing up these costs over all n levels of the image hierarchy, we obtain the total

cost of
log(N}
(2°8) Chnandan = Z 2'N (RT' + Dd)
i=}
- (2‘09“‘”“ - 21) N(Rr+ Dd)
= 2(N-1)N{Rr+ Dd)
(2.9) ~ 2N?*(Rr + Dd)

This approximate cost analysis suggests that Anandan’s algorithm has a cost of order
O(N?). Note also that D and R are usually constants of the order of 10, adding more cost,
and that the image pre-processing is also costly.

Singh’s algorithm is of similar hierarchical structure, and can be paritioned in a similar
fashion, leading to a cost of order O(N?) as well.

How can we ensure that our algorithm will be faster (less costly) than those of Anandan
or Singh? First, we can ensure that the number of iterations & is much less than the number
of flow vectors N. Second, we perform only one diffusion operation per iteration, instead
of D. The three algorithms offer comparable quality results, as will be shown in Chapter 4,
but ours is of cost O(kN) instead of O(N2).

6. Context and Future Work

A 3D volumetric reconstruction architecture is under study that would incorporate flow
measurements and estimated range data, using simplifications inherent in the technique
suggested by Kontsevich in [17]. A simple scaled-orthographic (weak perspective) camera
model can be used to extract approximate 3D object descriptions, which can evolve in time
to assist the optical flow algorithm. By rapidly estimating a volumetric model of the scene
under study, the 3D motion of the object can be tracked well enough to predict upcoming
flow ficlds, projecting 3D motion into the image plane. The flow field consistency constrains
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. the solution enough to reduce the workload of the volumetric fitting process, The 3D model
of the object will constrain upcoming flow fields significantly more, leading Lo rapid temporal

convergence of the whole system.
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1. REGION MATCHING

CHAPTER 3

Theory

1. Region Matching

1.1. How it’s Usually Done The comprehensive study by Barron et al. [4, 5] on
the performance of optical flow techniques describes, classifies and compares representative
algorithms using similar conditions. To borrow from their terminology, a region-based
matching algorithm defines the velocity ¥ as the shift d that yields the best fit between
image regions at different times [5]. The methods of Anandan [2, 3] or Singh [28, 29, 30]
maximize a similarity measure, such as minimizing the sum-of-squared differences (SSD)
between two tmages, Iy and /s,

(3.1)

n n
SSD1a(z,yidedy) = S S Wi, ) [z +i,y+7) - Rz +de + i,y +dy + 7)),
j=—ni=—n
where W denotes a 2-D window function, and (d;,d,) are usually restricted to a small
integer number of pixels.

SSD as a measure of matching error is useful and convenient for computation, but has
some drawbacks that aflect its ease of use and appropriateness to the task. More precisely,
SSD returns a number that is unnormalized and varies according to overall intensity, and
camera noise can be amplified. The SSD returns a positive number for any measurement,
it does not indicate the overall goodness of a match. The SSD error surface will return
a single minima even when many answers are possible: the decision is then controlled by
camera noise. The same SSD number from two locations says nothing about the similarity
of goodness of fit at the two locations.

Anandan’s algorithm performs this region matching at coarse scales and diffuses the
resulting flow field to seed region matching at finer scales. The diffusion is controlled by the
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I. REGION MATCHING

curvature of the SSD error surface. As will be shown, the SSD error surface can have a very
different shape depending on overall light intensity changes. The same correspondences
under different lighting conditions will have different SSD error surfaces, meaning different
SSD error curvatures, leading to different diffusion characteristics, The practical upshot is
that the same flow pattern will be spread differently in the case of an overall lighting change,
an undesirable property. The diffusion will be discussed further in Section 2.2. Because
the coarse scales are represented with fewer pixels than the finer scales, Anandan is able to

apply the same W (i, j) at each scale, typically a 5 X 5 window.

1.2. How We Do It To find correspondences of clusters of pixels between the first
and second images, our algorithm divides the first image into a grid of tiles, and proceeds
to search for cach tile’s corresponding position in the second image, minimizing a pixel
pattern-matching error metric between corresponding tiles.

The search for corresponding tile positions is assisted by providing an initial estimate
of where each tile was predicted to move. This can be provided by a higher-level process
in a larger vision system, and effectively tunes the measurement system to the expected
motion events. For this thesis, the predicted flow ficld is the flow field calculated from the
preceding image pair,

For each tile p, there is a pixel pattern Pjp(i,j} in frame I at position 7, and a
corresponding pattern Ppu{i,f) in frame 2 at position T5,. We define a difference and

summation operation between the two corresponding tiles as

(3'2) Dp(lv.') = ”PZp(IvJ) - Plp(lv.?)"
(3.3) Spl(ind) & || Papli,3) + Pipli, 3)]
.o a Dpli,j)
(3.4) erry(i,j) 2 3:7',;’7
(3.5) errp = Zerr,,(i,j)
i,j

This diflerence and summation are performed between corresponding pixels, and the
resulting error term err, for the tile sumimarizes the average pixel-matching error. The
error function expresses a difference of intensities, normalized by their mean. To combat
sensor noise, thresholds are applied to D and §, to clip unwanted behavior at sensor input
extremes. This applies mainly to when the input intensities are very low, and governed by
noise. When the summation of the pixel intensities is too small, the data are essentially
unusable. Also, when the differences between successive inputs are very low, the intensities
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1. REGION MATCHING

should be considered essentially the same.

(3.6) for Sp(i,7) < Se, set erry(i, j) = errfmas

(3.7) for Dp(i,j) < Dg, set errp(i, j) = errpin

"I'he advantage of using these two constraints becomes clear when using natural scenes
encoded by video cameras: even in a static scene, digitization or other noise can introduce
spockles or #ireaks in an image sequence that most algorithms would prefer chasing. These
parameters were chosen te be Sp = 16, Dy = 8, for the intensity thresholds of a 256-level
digitized image. The error levels were never aliowed to be exactly 1.0 or 0.0. Instead, we

preferred the more numerically stable choices of errpqa: = 0.99 and erry;, = 0.01.

1.3, Why It Should Work (Better) Our normalized error measure has several
desirable features. It returns an absolute measure of goodness of match, from 0 to 1.
Camera noise is clipped, or taken into consideration during individual pixel comparisons,
Equally plausible candidates for region matching are not just local minima in an error
surface, but have about the same error height. In SSD, local minima can correspond to
equally plausible matches, but will have widely varying error heights, and the numerically
lowest of these minima will influence the outcome of a search. For our normalized measure,
the same number for different pixels imply the same quality of match. The same number
for different regions implies the same overall quality of match for tle regions.

To illustrate the difference between the SSD region matching metric and our own error
metric, representative regions have been chosen from a natural scene, and the SSD error
surfaces and our error surfaces are compared. The images chosen are from a hand-held
moving cube sequence, shown in Figure 3.1.

There are some noticeable similarities in the shape of the competing error surfaces: they
are both concave around the minima for corner points, and have troughs at edge regions.
But a serious drawback to SSD is illustrated in Iigure 3.2, where the SSD error surface has
a gentle slope near the minima, and the minima itself is hard to detect as compared with
the normalized error surface. Note also the difference in scale between the two measures.
The normalized error measure is designed to locally vary between 0 and 1 at each pixel-
to-pixel comparison, but a comparison using squared differences will vary the scale widely
between any two pixel locations. Neighboring individual pixel error measures for squared
differences will therefore produce numbers that are not necessarily propcetionai to any
perceivable similarity between the two pixel locations. An SSD error is the summation of
these contributions, and this combined error scale varies from neighboring region to region.
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1. REGION MATCHING

Frame 19 Frame 20

(h)

FiauRre 3.1. Region Matching image frames, Frai..: 19 of the hand-held mov-
ing cube {a), and Frame 20 (b). The numbered squares are the initial tile positions
for region matching between the two images. The number corresponds to the region
matching experiments, shown later,

Error surface of normalized region matching, zone 1 Error surface of SSD, zone 1

8000+
6000+
4000 -

20001

0
-5

FIGURE 3.2. Region Matching Zone 1. The error surfaces generated using the
normalized error measure versus the SSD error measure. The vertical axis is Lthe
error, the x and y axes are the pixel region shifting between the Lwo [rames Lo obtain
the region match. This corresponds to a corner of the cube in the image sequence.
Nole the minimain the lower left of the two surfaces, where the true correspondence

lies.

Of course, when overall light intensity does not vary much, such as the smooth grey-
levels in the hand area, SSD and our normalized error metric perform very similarly, as
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1. REGION MATCHING

shown in Figure 3.3. Noisy, low-intensity image patch error surfaces also look similar, as
shown in Figure 3.4. Note, however, the error axis of the SSD surface tells us nothing
about how ambiguous or noisy the imaging conditions are. Qur normalized error measure
tells us that a large variation in position causes a small change in error. The image patch
in question is a poorly-lit, out-of-focus whiteboard with writing on it: this should not be
considered as reliable as a more textured image patch. The curvature of the SSD error

surface cannot tell us this.

Error surface of normalized region matching, zone 3 Error surface of SSD, zone 3
0.251 4000 -
0.27 3000-
0,151
2000 -
0.1
0.05- 1000+
0 0
-5 -5

FIGURE 3.3. Region Matching Zone 3. The error surfaces generated using the
normalized error measure versus the SSD error measure. The vertical axis is the
error, the X and y axes are the pixel region shifting between the two frames to obtain
the region match. This corresponds to the crease near the operators hand in the
image sequence. Note the trough indicating the edge-like nature of the matching.

One other distinction between the normalized error surface and the SSD error surface
can be demonstrated near an cdge of high contrast. In this case, the operator’s dark hair
occludes the whiteboard behind him, shown as region 6 in Figure 3.1. The competing error
surfaces are shown in Figure 3.5. Note the sharpness of the corner for the normalized error,
and the smoother cusp for the SSD error. For the same window size, better positional
accuracy can be achieved using the normalized error.

A neighborhood similarity error measure is provided as a function of local, individual
pixel similarity errors. No assumptions are made about neighborhood intensity leakage
that could bias derivative-based algorithms, like that of Horn and Shunck. This simple
measure makes a strong statement about accomplishing region matching using inexpensive
computational mechanisms that could be found in a biological vision system: the comparison
of differences is easier to perform than the comparison of absolute values. By normalizing
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Error surface of normalized ragion matching, zone 5 Error surace of S8D, zone 5

0.035
0.03
0.025
0.02
0.015

0.01
-5

of
0 -5 0
0 0

5 5

FigurE 3.4. Region Matching Zone 5, The crror surlaces generated using the
normalized error measure versus the SSD error measure. The vertical axis is the
error, the x and y axes are the pixel region shifting between the two frames o obtain
the region match. This corresponds to the poorly-lit, our-of-focus whiteboard in the
background in the image sequence. Note the SSD error surface does not Lell us liow
ambiguous the overall matching is.

Error surface of normalized region matching, zone & Error surface of SSD, zone 6

1000+
800-
6004
400
200

Figure 3.5. Region Matching Zone 6. The crror surfaces generated using the
normalized error measure vetsus the SSD error measure. The vertical axis is the
error, the x and y axes are the pixel region shilting between the two frames to obtain
the region match. This corresponds to the dark hair of the operator meeting the
whiteboard on the left of the image sequence. Note the SSD error surface is not as
sharp near the edge.

differences with the overall intensities, local illumination effects are eliminated: the emphasis

is on local texture instead of local illumination.
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2. FLOW FIELD CONSISTENCY

By clipping the noisy extremities of intensity sums and differences, we make another
strong statement by stating that no useful information can be extracted from indiscriminable
intensity levels, When noise dominates, the algorithm tags the results as such.

Psyochophysical experiments can show that a human observer will perceive apparent
motion of random-dot patches. Intensity-derivative methods cannot function in this envi-
ronment. An algorithm using texture measurement, such as edge matching would fail as
well. Only an algorithm performing region-matching could successfully track this type of
motion.

No global-local reduction operations are performed. No scale-space assumptions are
made, all measurements refer to the original set of images, not pre-processed, band-limited
dala.

1.4. Importance This error metric is rapidly executed, and measures the image
samples directly, instead of a pre-processed smoothed or band-passed image: all the original
data is available for measurement in an undistorted, unbiased, unfiltered form. Sensor noise
is combatted at the lowest measurement stage, where noise is most expected to arise. The
error measure minimization is very convex and stable.

Note that this error metric minimization has a weakness in the case of repeated textures
over a large area. Local minima may be good matches of textures, but they do not describe
the overall surface motion. This is a problem inherent in all forms of region-matching
and correlational techniques, where geometric information from a higher level can help. A
principled technique to correct these misinterpretations is discussed in Section 2. There, we
will show how flow consistency steers region matching away from these local minima and

toward a solution that is consistent with its neighbors,

2. Flow Field Consistency

2.1. What it is Flow field consistency is the behaviour of a flow field that obeys the
constraints suggested by psychophysical experiments in motion perception. For example,
texture flow fields are improved when the measurement process includes a texture flow
curvature consistency constraint [23]. The issue of how to measure or enforce optical flow
field consistency now deserves attention. Applying curvature consistency would probably
improve the optical flow field, but due to the coarse sampling of tile alignments and equally

coarse directional encoding, a linear flow consistency is more appropriate.
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2. FLOW FIELD CONSISTENCY

2.2, How it’s Usually Done A form of flow field consistency is typically integrated
into the measurement process by penalizing large displacements from the predicted search
area, without counsidering neighborhood displacements or expectations. Alternatively, alter
a measurement stage is performed, the resulting flow field is diffused uniformiy to neighbor-
ing tiles. Modest improvements arc obtained when the diffusion is weighted by measurement.
error: this iz the first step toward using confident measures to influence unconfident mea-
sures. But for the most part, this information is not used to re-sced the measurement stage,
and the flow field diffusion is nsed unaltered by a higher-level process.

There are two distinctions to be made in Anandan’s algorithin for flow consistency.
First is the search for correspondences, which is goverened by the SSD surface curvature.
Second is the diffusing of information between neighboring flow vectors.

Examining the first case for steering individual correspondence matches, Anandan’s
Hierarchcal algorithm uses a form of the Gauss-Seidel relaxation algorithm. The shape and
orientation of the Gaussian filter is altered according to the direction of the flow uncertainty
at each point, effectively tuning the search for correspondences along the troughs of the
error surface during diffusion. This is intuitively correct for cases of edge-like structures in
images, however does not tell us how to interpolate in the uncertain areas between edge-like
structures,

Considering the second case for flow field consistency, Anandan’s algorithm applies
a linear Gaussian diffusion at each scale after region matching. The effective radius of
the Gaussian smoothing function is determined by the curvature of the SSD error surface,
Although the shape and orientation of the Gaussian filter could have been altered according
to the direction of the flow uncertainty at each point, this information is ignored during
diffusion. This feed-forward smoothing leads to difficulties at discontinuities and image
plane rotations, but also allows poor measurements to bias otherwise good measurements,

One of the disadvantages of the Gaussian diffusion is its linearity. The smoothing was
intended to enforce neighboring flow vectors to have equal directions and magnitudes, but
no amount of linear diffusion will bring this about (except in the limit, where the entire
flow field is blurred away to converge at uniformity). Not only are all neighbors considered
equally valid (a rare event), but also, the flow field model (neighbors have similar magnitudes

and directions) and the updating function (Gaussian diffusion} are incompatible.
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2. FLOW FIELD CONSISTENCY

2.3. How We Do It We acknowledge that neighboring elements in an image se-
quence can legitimately undergo very different motions. Discontinuities in flow are percep-
tually significant, and preserving these discontinuities during the diffusion stage is impor-
tant. A form of relaxation is applied to our flow ficlds to update flow vectors in such a
way that similar flow vectors reinforce each other, and different flow vectors will selectively
ignore each other when neighbors conflict.

Relaxation labelling is an iterative procedure that models the parallelism of feature-
preserving data diffusion and noise reduction in the brain. Each data element is assigned
a parameter or label, with an associated probability or confidence measure. Compatibility
functions are chosen to reflect desirable perceptual responses that describe the relationship
between neighboring data. These compatibility, or support functions are used to refine the
initial Jabelling {p¥} at each iteration & [24]. Hummel and Zucker devlop a general scheme
for the iteration [16]

(3.8) PPN = SF(A)isE(A)

where s¥ is a measure of support for element i at iteration k.

For our purposes, the label A is the parameter, the flow vector with a magnitude and a
direction, and the belief in paramter A at position i is p;(A), obtained from an error measure
(from region-matching). Our prior, or constraint for convergence must be expressed as a
support function s.

Linear flow consistency implies that patches of an image should be moving in roughly
the same direction as their neighbors. In cases of uncertainty, when a patch is moving in a
direction contrary to all its neighbors, the neighbors will influence the outlier more than vice
versa. An casily-implemented updating rule performs a weighted averaging of neighbor’s
displacements, each contribution weighted by a similarity measure. This similarity measure
encodes a similarity of direction and magnitude between two given vectors.

Adaptive diffusion allows confident neighbors to influence uncertain tiles without af-
fecting already confident tiles. To apply linear velocity consistency between all adjacent
tiles, we define 7, as displacement of tile p between frames 1 and 2, i.e. T3, — T,

At each iteration £,

k =k
(3 9) ﬁ-k-i-l — EneN Wy Uy
. ]
P ZnEN wﬁ
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2. FLOW FIELD CONSISTENCY

where n is a neighbor of the tile from neighborhood N, and w is a weighting function that
measures the similarity between a tile’s motion vector and its neighbor n's motion vector.

The requirements of lincar flow consistency call for function w to return a high weight
when the vectors were similar, and a low weight when they were dissimilar. T'his is in fact
the support function s introduced above. Fleet and Jepson offered a measure of flow vector
similarity that trcats flow vectors as 3 dimensional vectors, where the third dimension is
unit time [11, 10]. In Chapter 4, we will usc this error measurement to compare our
experimental results with those of similar algorithms. Representing the velocities as 3-d

. . . N - 1 'Iv
space-time unit direction vectors, ¥ = v, U, § the error hetween the correct
velocity ¥, and an estimate G, is

(3.10) Vi = arccos(i, + )

Note, however, that this error measure biases directional error over magnitude error.
For our situation, both the magnitude and direction similarity are considered equally im-
portant. This can be justified by showing that the magnitude and direction of flow are
independant. To expand this claim, we propose that time should not enter the flow vector
similarity error measure. This way, we will be considering 2D displacement fields that are
measured at arbitrary, possibly varying sampling rates, Since time is now omitted, the
similarity measure now deals with 2D displacement vectors, where direction is independant
of speed. Therefore, the similarity measure is divided into two components, magnitude
similarity Sp, (¥}, 52) and direction similarity Sy(¥, #2). The dircction similarity expression

can be obtained from Equation 3.10, replacing the time component (1) with zero.

-

144 ) -
(3.11) Suldh, 72) = { T when |5;]|5 # 0,

0 otherwise.

(3.12) S (81, U2) ={ - IvLT'lHI"L when |5y + |52] # 0,
e 1 otherwise.

Both functions have values ranging from 0.0 to 1.0. The overall similarity S(7), 7,) is
the linear combination

1

I I )
(3.13) S(t),7,) = -2-Sm(v|, o) + -2'-5'&(”1, 72)
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This form of weighted averaging is a very non-linear diffusion process. The amount
of diffusion between any two neighbors is governed by their local beliefs, in contrast to
uniformly-weighted diffusion, which blurs away discontinuities in flow. After an update is
performed for each tile, the region (tile pixel) matching error is recomputed in one pass.

The usefulness of the linear flow consistency constraints become clear in cases of motion
involving repeating textures. When region matching becomes ambiguous, the flow consis-
tency constraints dominate. This is in opposition to region-matching schemes that embed
a displacement-minimization constraint, which would tend to halt patches with ambiguous

region matching,

3. Integrating Region Matching and Flow Field Consistency
3.1. Singh’s Framework for Optical Flow Computation Singh and Allen pro-

posed a novel framework to unify many contemporary optical flow algorithms that could
take dircctional errors into account for later processing [30]). A key notion that is used in
this thesis is how velocity must be propagated from “regions of full information, such as
corners, to regions of partial or no information.” [30] They propose the conceptual separa-
tion of the region matching and flow diffusion stages in order to evaluate the constraints,
but combine the two operations into one minimization step. They procede to label the in-
formation obtained from the first step of region matching as the conservation information,
measured from the imagery and based on the assumption of conservation of some image
property over time. The neighborhood information refers to the distribution of the velocity
vectors in a small neighborhood.

While key clements of this framework have strong parallels in this thesis, there are
also key differences. We decompose the region matching and neighborhood interaction
stages computationally, as well as conceptually. The resulting steps suggest the properties
of a coordinated conjugate descent, with the added advantage of rapid execution (through
simpler stages) and less investigation of perceptually unlikely image events.

In Singh’s region matching stage, the error measure (SSD) and estimation method
(weighted least squares) are inextricably linked. Many displacements are tested, and the
velocity estimate becomes the weighted average of all the displacements, weighted by the
SSD similarity. Singh’s method offers a covariance matrix to describe the directional un-
certainty of the central pixel’s motion. Qur method instead tests region-matches in a few
sclected positions, and proceeds to a greedy error gradient descent.
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Singh presents a neighborhood interaction stage that is overall consistent with our ap-
proach. Neighbors are weighted differently, according to their distance from the central
pixel. Together, the neighbors form an opinion of how the motion of the central pixel
should behave, including a covariance matrix to describe the directional uncertainty of the
neighborhood’s opinion. However, the neighborhood updating rule lor velocity vectors is
essentially a smoothing operator that does not reinforce, but enforces parallel llow vectors
in a neighborhood. Singh’s method decides how far and in what direction to spread the
flow, but does not adapt the diffusion to reflect how much any neighbor is consistent with
the central pixel. We argue that the extents and direction of diffusion can be decided by the
number of iterations applied to the data set, whereas the neighborhood consistency con-
straint that decides hotr much any given neighbor influences another reflects the perceptual
model chosen, and affects the outcome by far more. And the perceptual model we have

chosen is that of flow field consistency, not the flow field similarity implied by Singh.

3.2. Practical Considerations for Optimization The crror measures for region
matching presented in equation sct 3.5 are well-understood, as are the vector similarity
measures described by equations 3.11, 3.12 and 3.13. Had these error terms been combined
into one lumped error, we would have to choose an arbitrary weighting parameter that
would significantly change the behaviour of the optimization and the shape of the ontput
data. Either way, the algorithms would perform a coordinated gradient descent.,

There are cfficiency considerations, however, that support the decoupled optimization
for our application. By decoupling the region matching and flow ficld consistency stages,
fewer samplings in the region matching stage (2 dimensions of parameters) will be performed
before making a choice. When the error measures are treated as coupled, many more
possibilities (4 dimensions of parameters) must be tested. In fact, the coupled optimization
will test many perceptually unlikely parameter sets that our decoupled optimization will
not bother considering.

Besides accuracy, our goal is to make results available in real-time. This means that
the optimization must be capable of producing uscable results within a short number of
iterations. The coupled optimization case does not degrade gracefully when interupted
too early. Qur decoupled implementation will at least have results that can be used for
subsequent processing. Temporal integration becomes possible when we decouple the stages.
Like the coupled optimization, the next iteration of optimization continues processing lrom
whatever state it had achieved previously. But in the case of integrating suggestions from

other sources, such as a Kalman filter following the overall image motion, the new error
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expression would increase in complexity if coupled with the other error terms. By treating
it as a separate, decoupled stage feeding into the region matching stage, we can construct

a fairly flexible architecture for fusing data from different sources.

4. Figure/Ground Separation

Identifying the location of objects in a scene using only the optical flow field is a non-
trivial task in the general case of moving backgrounds and moving target objects. At this
stage, it should be emphasized that this section on figure/ground separation is nol used in
the computation of optical flow. It is instead a convenient layer for other processing, such
as demonstrating the validity of the flow field for real-world scenes.

We have also performed experiments using this simple form of tracking to limit the
computation of optical flow in subsequent image frames. If the tracking filter is convinced
that there is nothing moving beyond a window of -J{,- of the image area for example, restricting
the next iteration to that window would produce a speedup of factor N. The problem, of
colirse, is that this elementary attentive mechanism will ignore all but the first object it
caught sight of. Should that first object disappear from the tracking window's view, an
opposing mechanism would need to relax the tracking filter enough to expand the tracking
window, searching for other motion in the image sequence. These experiments will not be
presented in this thesis. All the examples and experiments performed here were computed
looking at the entire image.

Our system typically encounters scenes with moving target objects and a stationary
background. The figure/ground separation problem is thus simplified: anything moving
is not part of the background. A moving object can be isolated from its background by
assoctaling a certainty that a tile is observing image motion for each tile. Applying a
Kalman filter to each tile’s measure of occupation provides stability to this representation.
For cach frame pair £, the weight wy is the number of tiles experiencing motion, i.e. those
tiles moving faster than a threshold vy, typically 0.5 pixels / frame.

Tracking might be achieved adequately by examining differences of images, but difficul-
ties abound. The assumptions made in difference of image tracking include small displace-
ment between frames and highly-textured surfaces. What usually results is a rough contour
that does not completely surround the target object. The countour occupies image areas
that have been recently occupied and/or recently vacated: there is no information about

where the object presently is. A figure/ground separation, by contrast, generates a filled
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4. FIGURE/GROUND SEPARATION

map locating all image regions occupied by the moving abject, not the image artifacts that
may or may not belong to the moving object.

A rapid scheme for associating a normalized measure of occupation for cach tile in-
volves applying a threshold to each tile’s velocity, The heuristic used here implies that
displacements of one pixel or more probably represent moving regions, while smaller dis-
placements are more probably stationary background regions. The estimmate of the measure

of occupation can be expressed as

0.9 when |o(p)| > 0.5 pixels/frame

0.1 otherwise.

(3.14) Moce(p) = {

So far, this certainty of occupation is very local, mapping one velocily vector Lo one
occupation measure, and tends to be noisier than the flow field, due to the thresholding
operation. A more useful quantity would integrate this information over time or ovet larger
areas. For our purposes, we adopted integration over time using a Kalman filter. Fach tile's
certainty of occupation becomes a weighted average between the current estimate and the
previous estimate. The weights are chosen to represent the number of tiles in motion in the

present frame and those from the previous frame.

Zy Zy
— Update ———— Predict >
Py - P

A

A - A .
Z Kk Z VA k+1
Delay -

Pk p;-}-]

Ficure 3.6. Kalman Filter. Block diagram of the classic Kalman Filter, Mea-
surements at stage k are denoted as Zg, while their error variances are py.

We propose a form of Kalman filtering that is applied to each region in the image.
Traditionally, Kalman filtering uses the variance of measurement error to weight incoming
measurements, and the structure of the filter is shown in Figure 3.6. The Kalman filter
maintains an estimate Zk and its variance pg. The measurements Zg have a known error

variance px, and the estimate is updated using equations 3.16.
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4. FIGURE/GROUND SEPARATION

Z 4
g Pk p
(3.15) 7y = T +f_,i
Pk pp

) 1
(3.16) f o= T L
Pk by

The Kalman filter’s strength, however, is its ability to make predictions of upcoming
measurements based on a model from previous measurements. If f{) is a lunclion that
predicts the next measurement from the present estimate, then we can user equations 3.18

to estimate the prediction and its error variance.

(3.17) Zew = J(ZH)
. CTAY
(3.18) Popr = (%) Y

In our case however, the prediction function f is identity, meaning that the upcoming
position of the target object is exactly where it was last seen. Because our occupation does
not have an error variance measure per se, we make use of the inverse relationship between
population size and sampling variance. The weights :—, become replaced by w, which is
the number of tiles experiencing significant motion. Thus, the Kalman filtered certainty of

occupation M. for tile p can be expressed as

MEE (p)wt! 4+ ME (p)w*

(3.19) MEE () o

The end result is that a map of image regions is produced, isolating moving objects
from the stationary background, integrated over time. This information can be used for
2-D tracking purposes.

This form of Kalman filtering allows moving objects to remain segmented from the
background even when motion stops: the figure/ground separation map will not change
until new motion is introduced. This allows targets that were identified by their motion to
come to rest and retain their tag as a zone capable of motion.

If figure/ground separation were the only source of higher-level information, one could
isolate cach patch of motion and track them, predicting the motion for the next frame. This
predicted flow-field can be used in the measurement stage to seed correspondence searches.
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5. USING HIGUER-LEVEL INFORMATION

This notion includes a form of graceful degradation. By design, upcoming motion events
are predicted by previously measured motion events, In the case where old motion patches
halt, and new motion patches come into being, the older patches will not be reinforced and
will lose importance, while newer motion will be reinforced and tracked instead,

One practical use of this figure/ground separation is tracking single wmoving objects
against an unmoving background. A tracking window is computed to enclose the moving
object. In order to double and quadruple processing speed, subsequent. region-imatching
stages are limited to the tracking region. A live demonstration of this property has sue-

cessfully shown that object tracking can be accomplished using only a partial optical flow

ficld.

5. Using Higher-Level Information

Presently, most optical flow algorithms are designed and implemented as self-contained
stages that take an image sequence as input and produce a flow ficld as ouput, perhaps
including an error measure for the confidence of each flow vector. These algorithms exist
as testbeds for specific characteristics of early vision and are designed as end-products: any
connections to other processing stages are messy.

Our algorithm was designed to meet the goals of real-time performance and ease of
integration into a larger vision system where cach stage is assisted by adjacent stages.
A simple region-matching approach becomes a cost-effective optical flow tool when it is
integrated with flow field cunsistency.

But more important constraints become available after 3D information emerges through
Structure from Motion processing. The 3D surfaces of objects in the image sequence can
be tracked over time, and predicted 3D motion can be casily projected into a predicted
2D optical flow field, seeding the correspondence searches for the next set of images. ‘I'his
surface transport model would improve the quality of the flow field with the obvious benefit
of a 3D scene motion representation. But if the transport model is blindly combinined into
the flow field measurement, the added complexity would tend to slow down computation
for relatively little improvement in the flow field. Instead, we propose adding the transport
model as a higher-level stage as suggested in Figure 2.2,

Anandan’s proposed architecture of optical flow does not deal with integrating other
sources of motion. Each scale of region matching only uses information propagated from a
coarser scale: there is no allowance for suggestions or predictions from previous image [rame

pairs. In short, the predictions are not temporal, they are from coarse to fine scales within
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6. IMPLEMENTATION CONSIDERATIONS

one instant, This choice discards valuable accumulated tracking information that could
speed up subsequont region matching stages,  Although Anandan’s algorithm computes
optical flow from images very well, it is memoryless, and thus cannot make predictions to
ke computations casier.

In effect, top-level information is formed from low-level measurements and constraints,
while the low-level measurement stage is steered or directed by the top-level information.
‘I'his not only resolves local-global issues in a principled way, but also integrates bottom-up
and top-down data flow. This architecture would lead to improved optical flow measure-
ment, which in turn would lead to better structure from motion. This information, inte-
grated over Lime, can be fit to compact, parametric surface models that describe the moving

objects in a scene, while tracking and predicting their motion,

6. Implementation Considerations

6.1. Time/Quality Trade-off Note that the region matching and flow field consis-
tency constraints could have been implemented as one error function to minimize. It would
appear that by alternatively measuring the region-matching error and enforcing the flow
field consistency, the end effect is to coordinate a gradient descent locally for each tile, while

diffusing measurements to neighboring tiles.

6.2. Fixed Time per Iteration But by decoupling the stages as is evidenced by
the primate visual cortex architecture, we achieve briel steps that can be implemented
compactly and executed quickly. This way, each iteration is brief, and can either be repeated
over the same image pair, or pipelined to another processing stage while new information

is gathered. Fast implementation of the optical flow algorithm becomes possible.

6.3. Pre-computation of tile positions The tiles were uniformly distributed over
the image, and tests were performed using overlapping arrangements and non-overlapping
arrangements, with various tile sizes, ranging from 3 x 3 pixels to 8 x 8 pixels, with 4 x
4 yielding a reasonable tradeoff of time to compute versus quality. During the region-
matching stage, the algorithm tests a fixed number of tile displacements, searching around
the predicted correspondence, but also testing for the case of sudden stopping. The latter
case occurs most often when an object in the image sequence translates a distance the

dimension of a tile. At one instant, the tile sees the object; at the next, the backyround.
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L SYNTHETIC SEQUENCES

CHAPTER 4

Experimental Results and Discussion

Twelve image sequences are presented here, consisting of four synthetic sets, three natural-
appearance synthetic sets, four well-known natural image sequences, and one iinage sequence
typical of the algorithm’s intended environment.

The experimental results are followed by a swnmary Discussion in Section 6, which
will unify the claims made in the Proposal {Chapter 2, Section 5) and Lhe measurements
performed on the algorithm,

In the experimental section, we will frequently refer to the related works ol Anandan
and Singh. The optical flow algorithms of P. Anandan and A. Singh are the most closely
related works to this algorithm. Anandan employs a Laplacian pyramid and a coarse-to-fine
SSD-based matching strategy, while Singh employs a comparable hierarchical conrse-to-fine
strategy. Our work differs significantly in that we also employ the resulting geometry of the
estimated flow field to reduce the noise in the flow field, refine the measurement process for
further iterations and predict upcoming flow field events. Where appropriate, we will also

mention how our results compare Lo more general classes of optical flow algorithms.

1. Synthetic Sequences

1.1. Positive Results This dats -+t was obtained from the Barron et al. archive,
and consists of the superposition of sinuswids. Error here is reported using the same
error metric as reported in [4] and [5], namely the angular deviation from the cor-
rect flow direction. Representing the velocities as 3-d space-time unit direction vectors,

-~ | 7‘ . - . 1t — e
v = v Lw the correct velocily 7. and an estimate v, is
T 2_H(v;, 2, 1)", the error between the corr locity &, e

(4.1) Vg = arccos(T, - G, )
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1, SYN'THETIC SEQUENCES

‘I'he tests were performed on the mysinel3-6 (Sinusoid 1) and mysineC-16 (Sinusoid
2) duta sets, where the motions of the entire image plane are known to be (1.583, 0.863)
pixels / frame and (1.0, 1.0) pixels / frame, respectively. The algorithm used a grid of
10 x 10 Liles, each tile of G x 6 pixels, applying 5 iterations between each image pair. The
results shown are accumulated over the entire immage sequence, not just a single frame
pair. The results for our algorithm and those of Anandan and Singh are summarized in
table 4.1. Sample frames and generated flow fields from the two sequences are shown in
Figures 4.1 and 4.3. The fow fields from the algorithms of Anandan and Singh are shown

in igure 4.2,

Technique Average | Standard
Error | Deviation
Us 5.21° 2 0.000°
Anandan 30.80° 5.45°
Singh (n=2,w=2, N=2)| 2.24° 0.02°

Singh (n =2, w=2,N=4)[ 91.71° 0.04°
‘TABLE 4.1. Results of Sinusoidl test data. Experimental results for Anandan
and Singh are taken from [4] and [5].

Technique | Average | Standard

Error | Deviation
Us 0.0452° | 0.3607°

Anandan - -

Singh - -
TABLE 4.2. Results of Sinusold2 test data. Experimental results for Anandan
and Singh are unavailable from [4) and [5], but are described as “unchanged”.

Our algorithn: thus responds very strongly to this class of stimulus, namely uniform
translations. Note that the displacements for Sinusoid 1 are not integer displacements,
and rival other region-matching methods. Our algorithm’s success for this class of input can
be explained by the flow ficld consistency enforcement. The local information provided by
region matching is propagated to neighbors who improve their estimates with the new infor-
mation. With weighted averaging of neighbors, non-integer displacements can be obtained
despite the integer-based region-matching.
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1.2. Negative Results

FiGurg 4.1. Sinuseid 1. Ap image frame from the sequence (a), and superi-
posed reconstructed flow field, (b). Note that the flow image has been subidued for

pictarial purposes only.
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(a)

FIGURE 4.2. Sinusoid 1, other algorithms, The flow field for Anandan's al-
gorithm is shown in (a). Singh's algorithm produccd the flow field shown in (b).

Both plots were obtained from [4].

1. SYNTHETIC SEQUENCES
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(b)

Neither of the following results are considered catastrophic
failures, since most optical flow algorithms encounter similar or worse results, The purpose
of this section is to show how our algorithm deals with ambiguous synthetic scene changes.

One of the most difficult environments for an optical flow algorithin involves the am-

biguity of the aperture problem. The case examined here is where our algorithm has no
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1. SYNTHETIC SEQUENCES

(2)

Figung 4.3. Sinusaoid 2. An image frame from the sequence (a), and superim-
posed reconstructed flow field, (b). As before, the flow image has been subdued for
pictorial purposes only.

textures to track, and is a perfect case to demonstrate how the algorithm degrades grace-
fully. Shown in Figure 4.4 are the experimental data obtained from a translating uniformly
white square on a uniformly black background. As can be seen, some motion is perceived in
the upper-right direction, but the distribution of magnitudes does not correspond to what a
human observer perceives. The test was repeated on a translating square with an interme-
diate gray-level boundary around the square, producing similar results shown in Figure 4.5.
For comparison, the results obtained in the Barron et al. experiments for Anandan and
Singh are shown in Figure 4.6,

The explanation for this behaviour is not complicated: the region-matching informa-
tion is inconclusive in areas of no texture. The algorithm does perceive the motion of the
boundarics, but flow field consistency dominates over the image matching. Still, the flow
field consistency needs actual measurements to anchor the image motion, which is unavail-
able.

{t is important to note that our algorithm’s output appears better than the optical flow
algorithms presented in [5], but at least as good as those presented in [4]. We consider our
test results to be less than adequate compared to human observers, but superior to other
algorithms tested.

One could argue that human observers would perceive the motion of geometric fea-
tures of this synthetic scene, namely the boundary between the square and its background.
Gestalt psychologists could explain how the motion of a boundary infers the motion of the
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2. NATURAL-APPEARANCE SYNTHETIC SEQUENCLES
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FIGURE 4.4, Translating Square 1. An image frame froin the sequence (n), and
reconstructed flow field, (b).
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FIGURE 4.5. Translating Square 2. An image frame from the sequence (a), and
reconstructed flow field, (b).
region enclosed by the boundary in the absense of textural stimuli. This reasoning would
suggest that global constraints or regularization would dominate local texture ineasures in

these image sequences, hence the non-ideal.

2. Natural-Appearance Synthetic Sequences

2.1. Yosemite Sequence The Yosemite sequence, created by Lynn Quam, was cho-

sen as a complex text case with a range of velocities, occluding edges and severe aliasing [4].

44



2. NATURAL-APPEARANCE SYNTHETIC SEQUENCES

1Tl L L ™
adededeSanre

-y
.

f499%14
it ddd i AL
.k - Pl

(a)
s 8 9 " & & 8 a4 " & 4 L T
E I B A K ol B Y T BN T Y
X .
a0 [ oS e *
...3 ¢ Selgltgglnloe oo, 1
e N B
LI ' iy RN Ry
e 1 P r /o 20 BE B T B A P
s u - [] PR/ I RN R A
- ' -, R V]
e ' P, PR W
v -, el
LI I . . 174. .41;//
” P . L L7,
::- ) I//f|\\\’f//r
3 -\
’ ¢ P \ ! /
- . LN 1))
vv el ’e ca 2 PEANANNAN .
s e PP BERgAICLN L LY LA J P T T
S ® B % & 48 b e rae s S s A ased

(b) (c)

FIGURE 4.6. Translating Square 2, other algorithms, The flow field for Anan-
dan’s algorithm is shown in (a). Singh’s algorithm produced the flow field shown in
(b). Both plots were obtained from [4]. Our results were resampled and are shown
in a similar format in {c).

A frame of the sequence and the correct flow field appear in Figure 4.7. This experiment
used a grid size of 80 x 60 tiles, each tile consisting of 8 x 8 pixels. Five iterations were
performed on each frame pair.

The sequence was tested in two ways, first using every flow vector, regardless of
confidence, and the second time, vectors falling above an error threshold were ignored.
This is made possible by the measurement of region-matching error during the mini-

mization. The applied error threshold was 0.025, and affected 32.4% of the flow vectors,
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FIGURE 4.7. Yosemite Sequence. An image frame from the sequence (a), and
correct flow field, (b).

The results for the thresholded and unthresholded experiments are summarized in table 4.3,

The flow field obtained is shown in Figure 4.8, and can be compared with the results
of Anandan and Singh shown in Figure 4.9. The error details from the experiment are
shown in Figures 4.10 and 4.11. Note that our algorithm is competitive with the algorithms
of Anandan and Singh. As explained earlier, our algorithm represents flow information
as a coarse data set, versus the conventional dense data set (represented in table 4.3 as
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Technique Valid | Average | Std, | <1° | <2° | <3°
Data | Error | Dev. | Error | Error | Error
Us Unthresholded 100% | 17.16° | 17.50° | 1.96% | 7.25% | 13.35%
Us Threshold=0.025 67.6% | 15.13° | 15.57°|2.43% | 9.37% | 16.86%%
Anandan 100% | 13.46° |15.64°| 1.1% | 4.1% | 8.0%
Singh (st 1, n =2, w=2) 100% | 15.28° | 19.61°| 1.3% | 3.7% | 7.0%
Singh (st I,n =2, w=2, Ay €6.5) [ 11.3% | 12.01° |21.43°| 12.3% | 24.4% | 34.6%
Singh (st 2,n =2, w=2) 100% | 10.44° | 13.94° - - -
Singh (st 2, n=2, w=2, A £0.1)|97.7% | 10.03° |13.13°| 2.4% | 74% | 12.6%

TanLe 4.4. Results of Yosemite test data. Mean and standard deviation exper-
imental results for Anandan and Singh are taken from (5], while the low angular
crror distribution were obtained from [4].

percentages of the image surface used. In particular, our algorithm has a tighter distribution

of low-error flow data than either Anandan or Singh in most cases. We concede, of course,

that Singh’s mean error and standard deviation is better than ours in the thresholded case.

Measured Flow Field from Image 9 to Image 10

FIGURE 4.8. Yosemite Sequence. Measured flow field
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FIGURE 4.9. Yosemite Sequence, other algorithms, The flow field for Anan-
dan’'s algorithm is shown in (a}. Singh’s algorithm produced the flow field shown in
(b). Both plots were obtained from [4]. Our results were resampled and are shown

in a similar format in (c).

What is not shown here is the qualitative performance of Arandan’s or Singh’s algo-

rithms on this image sequence. There are outliers in both algorithins’ flow fields thal are

not allowed to occur in our algorithm. This qualitative information can be found in [5].

2.2. Translating Tree Sequence Thisimage sequence simulates translational cam-

era motion with respect to a textured planar surface, shown in Figure 4.12. In this case,

the camera moves normal to its line of sight along its X-axis, with velocities all paralicl
with the image z-axis, with speeds between 1.73 and 2.26 pixels/frame. Our algorithm was

performed with 4 iterations, using 16 x 16 pixel tiles in a grid of 20 x 20 tiles.
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Ficure 4.10. Yosemite Sequence, error surface. An angular error surface for
frame 10.

The flow ficld obtained is shown in Figure 4.13, and can be compared with the flow

fields from Anandan’s and Singh’s algorithms in Figure 4.14.

Technique Valid | Average| Std. | <1° | <2° | < 3°
Datf,_ Error | Dev. ErrE)_r_ Error | Error
Us 100% | 2.44° | 3.44° 37.37%_ 64.0% | 81.8%
Anandan 100% | 4.54° |3.20°| 5.7% } 19.1% | 36.0%
Singh (st 1, n =2, w=2) 100% 1.64° | 2.44° - - -
Singh (st 1, =2, w=2, X, <5.0){41.4% | 0.72° |0.75° | 79.7% | 93.8% | 97.7%
Singh (st 2,n =2, w =2) 100% | 1.25° [3.29°] - - - -
Singh (st 2,n=2 w=2, ) <0.1){99.6% | 1.11° |0.80° |57.4% | 84.6% | 98.5%

TasLE 4.4. Results of Translating Tree test data. Mean and standard deviation ex-
perimental results for Anandan and Singh are taken from {5], while the low angular
error distribution were obtained from {4].

From these results, our algorithm is clearly competitive with the other region-matching
optical flow methods, both from the low mean error and tight error deviation, but also in
terms of tight clustering toward zero error, shown in the error histogram of Figure 4.15. It
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FIGURE 4.11. Yosemite Sequence, error histograms. Shown are angular error
distribution for the unthresholded (a} and thresholded (b) experiments. The error
distributions from {c) Anandan (unthresholded) and (d) Singh (M > 0.1) were
obtained from [4].

is important to note that the apparent motion can not be measured directly in many arcas

of the image, in particular the low-contrast, untextured background. Because our method

allows neighborhood flow field consistency to dominate in these under-determined zones,

a globally meaningful flow field emerges which is influenced by the successful matching of

higher-contrast, textured regions. The algorithm, it should be emphasized, is not using any

underlying motion transport model, such as planar motion, to determine the displacement

of the pixel regions in the image, and yet returns a flow field that one would expect of a

higher-level (“global” motion) interpretation.
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Ficure 4.12. Translating Tree Sequence. An image frame from the sequence
(a), and correct fow field, (b).
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Measured Flow Fleld from Image 8 to Image 10
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FiGURE 4.13. Translating Tree Sequence. Measured flow field

2.3. Diverging Tree Sequence This image sequence simulates translational cam-
era motion with respect to a textured planar surface, shown in Figure 4.16. In this case, the
camera moves along its line of sight. The focus of expansion is at the center of the inage,
with velocities varying from 1.279 pixels/frame on the left side and 1.86 pixels/frame on
the right. Our algorithm was performed with 4 iterations, using 16 x 16 pixel tiles in a grid
of 20 x 20 tiles,

The flow field obtained is shown in Figure 4.17, and can be compared with the flow
fields from Anandan’s and Singh’s algorithms in Figure 4.18.

From these results, our algorithm is clearly competitive with the other region-matching
optical flow methods, both from the low mean error and tight error deviation, but also in
terms of tight clustering toward zero error, shown in the error histogram of Figure 4.19.
Again, note that the apparent motion can not be measured directly in many arcas of the
image, in particular the low-contrast, untextured background. The flow-field consistency
does not use an underlying motion transport model, such as planar motion. 'The algorithm,
yet returns a flow field that one would expect of 2 higher-level (“global” motion) interpre-

tation. The flow-field consistency is sufficient and necessary to recover diverging flow ficlds
such as this.
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FigurE 4.14. Translating Tree Scquence, other algorithms. The flow ficld
for Anandan’s algorithm (unthresholdd) is shown in (a). Singh's algorithm (step
2, Ay > 0.1) produced the flow ficld shown in (b). Both plots were obtained from
[41. Thesc were tlie best of the results produced by the two algorithms. Qur results
were resampled and are shown in a similar format in (c}.

3. Natural Sequences

3.1. Hamburg Taxi Sequence The Hamburg taxi sequence has four principal mov-
ing objects, including a taxi turning the corner, a car in the lower left moving from left to
right, and a van ‘n the lower right moving from right to left. A pedestrian is also walking
on the sidewalk in the upper left, but the motion was too far below the error threshold for
our algorithm to detect. Alongside the image of the flow field superimposed on the scene
in Figure 4.20 are velocity and occupation maps. The algorithm used only one iteration
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per image pair, with a grid of 80 x 60 tiles, each tile at 6 x 6 pixels. For clarity, an image

frame and the flow ficld are shown separated in Figure 4.21. The results of Anandan’s and

Singh’s algorithms on the same data set are shown in Figure 4,22,

Qualitatively, the background is shown to be immobile, despite the large amount of

white noise and aliasing present in the image sequence. Anandan’s output does not show

the vertical displacement of the taxi. while Singh’s output shows less coherent motion
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Corract Flow Field
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Figurr 4.16. Diverging Tree Sequence. An image frame from the sequence
(a), and correct tlow field, (b).
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3. NATURAL SEQUENCES

Measured Flow Field irom Image 14 to Image 15

’

50

FiGURE 4.17. Diverging Tree Sequence, Measured How field

Technique Valid | Average | Std. | < 1° | <2° | <f°
Data Grror | Dev. | Error | Error | Error
Us 100% | 9.21° | 5.06° | 1.0% | 2.8%% | 8.0%
Anandan 100% | 7.64° | 4.96° | 2.5% | 8.5% | 16.3%
Singh (st 1, n =2, w = 2) 100% | 17.66° | 14.25°| 0.6% | 1.9% [ 1.0%
Singh (st 1, n=2, w=2 X <50)( 3.3% | 7.09° | 6.59° | 7.19% [ 19.7% | 30.7%
Singh (st 2, n =2, w=2) 100% | 8.60° | 5.60° - - -
Singh (5t 2, n=2, w=2, A €0.1)]90.0% | 8.40° | 4.78° | 0.8% | 3.4% | 7.3%

TABLE 4.5. Results of Diverging’

[ree test data. Mean and standard deviation ex-

perimental results for Anandan and Singh are taken frotn [5], while the low angular
error distribution were obtained from [4].

(without thresholding) and noise along the bottom of the image frame where there is 1o

motion.

3.2. SRI Tree Sequence This is a low-contrast image sequence, where the camera

translates perpendicularly to the line of sight. There is a large amount of occlusion, and
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FiGure 4.18. Diverging Tree Sequence, other algorithms. The flow field for
Anandan's algorithm (unthresholded) is shown in (a). Singh’s algorithm (step 2,
Ay > 0.1) produced the flow field shown in {b). Both plots were obtained from
[4]). These were the best of the results produced by the two algorithms. Qur results
were resampled and are shown in a similar format in {¢),

the highest image velocities were found to be just under 3 pixels per frame. A sample frame
of the image sequence and the measured flow field are shown in Figure 4.23.

The algorithms of both Anandan and Singh do reasonably good jobs on the SRI tree
sequence, as shown in Figure 4.24. But both have discontinuous flow fields in locations
where the motion is fluid, whereas our output has a consistent flow field.

In this special case of camera translation, we can use the kinetic depth effect (proximity
proportional to velocity) to show an approximate depth map of the scene, shown in Figure

4.25.
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3.3. Rubic Cube Sequence The Rubic Cube sequence portrays the famous toy on

a rotating platter, the sides of which have a pattern that can be used for position encoding,.

Our algorithm suffers in zones without appropriate-scale textures. Although one can argue

that the black-and-white squares of the rubic cube constitute a very strong, regular texture,

we must also note that the scale of this texture is very large in comparison to the rest of

the image. While we employed 10 x 10 pixel region matching with a 64 x 64 grid and 4

1
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I lose Hagnitude

Sty

FiGURE 4.20. Hamburg Taxi Sequence, workstation view. The flow mag-
nitude is rendered in the upper right window as intensity proportional to image
velocity. In the lower right window, the figure/ground separation is rendered as a
binarized image.

iterations, we can observe that motion is correctly found at and around the regions of higher
texture, illustrated in Figure 4.26,

Qualitatively, our results on this image sequence rival those of Singh and Anandan,
shown in Figure 4.27, which have many zones with apparently random flow vector orien-
tations and magnitudes. One advantage to our algorithm is that large flow vectors will
only result from actual large displacements: the flow field consistency stage would not allow
neighboring vectors to behave so randomly unless there were sufficient low-level evidence
for such displacements.

An additional remark is warranted by the lack of apparent motion on the top surface
of the platter. By using higher-level knowledge of the scene, human observers have little
difficulty perceiving the rotation of the entire platter when it is constrained by the coaxial
rotation of the Rubic cube. Our algorithm does interpolate the motion between the platter
rim and the Rubic cube, but does not completely connect the twe motion regions because
of the lack of local support for this connection through moving textures on the top platter
surface. Our opiwal flow algorithm, without higher-level scene knowledge, will not fill-in

the rest of the otherwise ambigous holes.
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Flow Field from Image 15 to Image 16
20r
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(b)

FiGURE 4.21. Hamburg Taxi Sequence. Frame 15 from the image sequence is
shown in (a). The flow field between frames 15 and 16 is shown in (h).

3.4, NASA Coke Can Sequence Tha NASA Coke Can sequence shows the slow
image expansion motion caused by the camera moving along its line of sight toward Lhe
Coke can near the center of the image. The typical image velocities are below 1 pixel/frame.

While we would expect most flow vectors to radiate away from the center of the image,
only one fifth of the vectors in the field do this, as illustrated in Figure 4.28. Note that the
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FiGure 4.22. Hamburg Taxi Sequence, other algorithms. The flow field
results by Anandan’s algorithm are shown in {(a). The flow field by Singh is shown
in (b). Both of these diagrams appear in Barron et al. [5]. Our results were
resanipled and are shown in a similar format in (c).

regions where no motion was percieved (white space in the flow field) correspond to image
patches with very little texture as well as image intensities near the edges of the sensor’s
dynamic range (i.e.: near intensity level 0 or 255}. Our algorithm treats these limits of the
dynamic range as noisy and unreliable, acreditting very little weight to these regions.

This image sequence did not cause our algorithm the instabilities seen in the results
of Singh or Anandan, shown in Figure 4.29. We concede, however, that the flow vectors
generated are not as impressive as the previously shown image sequences.

Again, the results of Singh and Anandan exhibit instabilities evidenced by the appar-
ently random flow vector orientations and magnitudes, which our flow consistency stage
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0 50 100 150 200 250

(b)

FiGure 4.23. SRI Tree Sequence. Frame 5 from the image sequence is shown
in (a). The flow ficld between frames 4 and 5 is shown in (b).

disallows. The strength of our algorithm is apparent when applied to these difficult scenes:
flow vectors in textured patches are acceptable to good, but never unexpectedly random
in regions of little information. The thrust of flow field consistency is that neighborhood

62



3. NATURAL SEQUENCES

.‘...i-....d-.-...-'—‘h—-r.‘.—ﬂ(l-lu-.-ll
LI e R e NN B e o L I IR I
||b'.‘lﬂ‘qﬁﬁ“'—“‘l"ﬂ.‘.l'!il

h
-

" ARl s RN A ) P a—hy 4y ey
B gy TOE T G ep g gt T mmpely P gl 4 4 r o s
20 ps it N oy L anast T e A B B
lll-ludrl-.—h..‘-'-.noc-'-bo'......
¢y pag &2 LI 2 BY I RN
s 5 nhyh v .'!.A'I'ql
LS N LI N PN B
-8 ALy, LI O I B B
s Maar b ga L N SN
Y2 Ay v a b s ma o Wa gt
LE TR UL N ] s gt g g ®
[ . ] [ Y 2 8 % % 4 BE =
&% 4y vy (Y LI I N R )
A gt Al AT s w Tapgramet BB 4 Ry
-I-O-Q‘nou-\\—nqc—ﬂ.-.-c-.-oe‘--‘-oa‘
S d s Tag ey —p® gy B G H ek WSSy
PR I R R Tk T i eyt G R I I S

1-0100-.s‘,-.v'._.....f'a-.-i.qoq.-..
no--.---u.dl\‘...-m...oo—o-a-looc w -
'0-‘-.—--4u-.~.\.4-|r‘..¢'-.---.wndﬂo-.-o-!
iR T R IR I o e T dhadn gl Ko e Lol B R d
L e A e i ke diadiake et B I B A

- - —y’ - e g -
.
image (a)
] .‘...-..—\d-t-g’.l -ty oy b gy Ny vy . e L T e T Ry
....-.q.o--t—r.-l-‘.‘-oal--.-..c'-.oc.
R R TR N Ll I e R
A BRNP TGRS gy AL i J_.-“.“.'.‘
\o....g.l‘.‘uq‘ou"’“‘-.llat.os- s
I Y AR R L TR A B I
4e" e Vg e =,y I LTI U B
\l....-'..q‘-.““b:.q‘;'l..-... L T I
LR Ry ) e N L L {‘._....--...,-- A P
.,.' P I E Y I F e mmsmame s | % g gy S E b | f M o by a
sa By .o T I RN I . aw
Y I I A et S et o it mmmr s m e a -
’ N S R L O N T T + mm——
') . Ly e =Ser s b Fw I8,y b N .
) 3ol . et tmmm s om R T L L L R
2t " - LR L AT B it T T o L I T
“rea LR T e R L] ma e n gt T B e S A b ba  an e
L LN L R R S L L . e ———— o g =Pttty ma = e ® = mw mem o ‘s
t et st s ey dmdh P gy ra A, [P p— . el " e emme cam T -
[ B B I R R e I e L T R R RN N ] . - - B e T R R R -
WP B Dy L e L R IR S SR R ) A - -
PEE ) - - T M. -
-¢.41\.>\§.|’q-¢...-0-¢. A_..‘\ e ; ——
LIL T R TN W R \-0\.\-4.4--.‘.‘-‘4-‘ b S, N R
- LR I T R e R4 - ‘:‘,
. Lon -
I T e L L : Sy

L e e Ll TPy )
Dl o up wh oy oy Y el ot gy o oy o 2 ) o op g = B .

- gy

(b) (c)

FiGure 4.24. SRI Tree Scquence, other algorithms, The flow field results by
Anandan’s algorithm are shown in (a). The flow field by Singh is shown in (b).
Both of these diagrams appear in Barron et al. [5]. Our results were resampled and
are shown in a similar format in (e).

behaviour dominates in regions of greater uncertainty, producing a flow field that can be
gently extrapolated from more confident neighbors.
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4. IMAGE PLANE ROTATION
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Ficure 4.25, SRI Tree Sequence, Kinetic Depth. The magnitude of the flow
field is rendered here as a relief map.

4. Image Plane Rotation

Not all optical flow algorithms can deal with image plane rotations, particularly when

the rotating object occupies the bulk of the image and the angular velocity is large. Hierir-

chical coarse-to-fine or scale-space algorithms use coarse scale displacement measurements

to seed the finer scales. An image plane rotation is poorly predicted from the courser

scales because the diffusion averages out the opposing flow vectors to zero: instead of pre-

dicting a rotation, it would predict no motion at all. This difficulty is not found in the

flow-field consistency architecture of our algorithm. In Figure 4.30, we demonstrate the

algorithm’s success when dealing with image-plane rotation. A textured cube is rotated
counter-clockwise by hand.

Note that the pixel displacements in this image range as high as 4 pixels per frame.
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4, IMAGE PLANE ROTATION

Measured Flow Field from Image 2 to Image 3
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FIGURE 4.26. Rubic Cube Sequence. Frame 1 from the image sequence is shown
in (a). The flow ficld between frames 2 and 3 is shown in (b).
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FIGURE 4.27. Rubic Cube Sequence, other algorithms. The flow field results
by Anandan’s algorithm are shown in {a). The fow field by Singh is shown in (b).
Both of these diagrams appear in Barron et al. [5]. Our results were resampled and

are shown in a similar format in {c).

5. Laboratory Sequences

This scene is typical of the events we wish to measure. An end user presents a target

object to the workstation’s video camera and moves the ohject while viewing the result

on-screen in real-time. The rich flow field (see Figure 4.31) will be used in later stages
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(a)
Measured Flow Field from Image 2 to Image 3
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Fiaune 4.28. NASA Coke Can Scquence. Frame 4 from the image sequence
is shown in (a). The flow field between frames 2 and 3 is shown in {b).
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FIGURE 4.29. NASA Coke Can Sequence, other algorithms. ‘The flow ficld
results by Anandan’s algorithm are shown in (n). The flow field by Singh is shown
in (b). Both of these diagrams appear in Barron et al. [5]. Owr results were
tesampled and are shown in a similar format in (c).
for qualitative shape description. This scene dein- ¢4 the algorithm under its best

conditions, i.e. low camera noise and high-contras® textures. As in all the above examples,
only one iteration of the algorithm was applied to cach image pair. Image velocities for this
particular frame pair approached 5 pixels / frame, but velocities as high as 10 pixels / frame
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Flow Field from Image 5 to Image 6
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Ficure 4.30. Lab Cube rotation Sequence. Frame 5 from the image scquence

is shown in {a). A closeup of the flow field betw=en frames 5 and 6 is shown in (b).
All flow vectors not shown in this image were nuli.

have been successfully tracked. As before, a relief map is shown in Figure 4.32 to illustrate

the crisp boundaries of the target object and coherency of the flow field magnitude.
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(a)

(b)

FIGURE 4.31. Hand-Held Target Sequence, Frame 20 from the inage sequence
is shown in (a). The llow ficld between frames 19 and 20 is shown in (b).

6. Summary

The experitaental results on syathetic image sequences (Section 1) and natural-
appearance syplhetic sequences (Section 2) are comparable to those of Anandan and Singh,
despite the Gifference in computational cost. The natural scenes (Section 3) demonstriated
our algorithm’s tendency to avoid perceptually unlikely flow field configurations, whereas
the hierarchical algorithms allowed runaway flow vectors to influence the surrounding flow

field, producing misleading flow responses.
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Flow magnitude
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[, UNIQUE CONTRIBIUPTIONS

CHAPTER 5

Conclusion

From the results in Chapter 4, we have demonstrated the strengths of our algorithm on
a variciy of image sequences with results that are consistently as goad as or better than
other region-matching based optical flow algorithims. Furthermore, the results are obtained
at near real-time frame rates. The experiments were performed on a 100 Mz RAGOO
SGI work-tation at about 4 frames per second, but within a few short years, these sune
experiments could be performed on platforms at real-time frame rates, of the order of 15
frames per sccond.

As evidenced by both the synthetic and natural image sequenees, our algorithm con-
sistently finds optical flow fields that are close to what human observers would perceive.
On synthetic data sets, we obtain quantitatizely competitive results; on natural scones, the
results are qualitatively superior to other algorithms of the same class, and many algorithins

of any class.

1. Unique Contributions

The algorithm presented here embodies principles of optical low measurement, noise
reduction and flow consistency believed Lo be present in the Primate brain. By lollowing this
model, region-based (pixel pattern) matching performs rapid searches, while a non-linear
diffusion process enforces flow field consistency. This is really a compact decomposition
of a coordinated gradient descent applied to many regions in parailel. The architecture
employed is simple and executes rapidly on general-purpose workstations. Useful solutions
usually emerge after only one iteration. Just as significantly, the algorithm is designed Lo
be steered, or tuned, by higher-level information. The adaptabiiity, quality, convergence
and speed of this algorithm make it stand out as an casily-integrated, multi-purpose too!,
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2. Importance

To our knowledge, no other algorithm is as cfficient or effective at making use of mea-
surement predictions.  Our results demonstrate the advantages of flow field consistency
constrainls in region-based optical flow computation. Based on a biological model, this
algorithin makes use of the rich geometrical information available from the estimated flow
field at each iteration. Real-time optical flow is now achievable, and higher-level information

can tune or direct the attentions of the low-level measurement process.

3. Relevance

T'he results obtained using our algorithm suggest that the biologically-motivated strat-
egy of interleaving scalar region correspondence with flow field consistency operations leads
to a stable inference of optical flow field that can serve as a stable hasis for further interpre-
tation. Perform....ne is comparable to the best algorithms in terms of both quantitative and
qualitative performance with the additional advantages of speed and adaptability. The al-
gorithm is also flexible - large displacements are tracked as casily as sub-pixel displacements,
and high-level information can feed flow field predictions into the measurement process (e.g.

Kalmman filtering).

4. Future Work

Our group does not consider optical flow computation a goal in itself. Our original
intent was to explore the acquisition of three dimensional surface information from moving
objects using a video camera signal as input. The advent of low-cost sensors coupled with
high-performance computing power has rekindled the interest in both the determination of
the optical flow field and its interpretation in tems of scene structure.

The context of our future work is the characterization of three-dimensional shape given
prior knowledge in the form of a parametric model. In this scenario an operator presents a
target object to a video camera and moves it according to the computer’s suggestions for
new view points (using a strategy derived from the autonomous exploration paradigm of
our group). Qur goal is to correctly recover the 3-D motion and structure of the object from
the resulting flow and to minimize the ambiguity of this interpretation using constraints
derived from the structure of the model and feedback provided to the operator.

The problem of fitting optical flow fields to 3-D parametric objects is still an open field
of study, but would be of great benefit in closing the loop for higher-level information in
our optical flow algorithm. Once the approximate 3-D shape and position of the object
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4. FUTURE WORK

is known, its motion can be tracked and projected back into the camera's image plane,
predicting the next optical flow field. This ensures top-down feedback, where the sensor is
directed, or tuned, by higher-level information of scene motion.

The top-down feedback would be akin to embedding Gestalt constraints [ar stronger
than the local consistency constraints at the sensing level, This feedback is compact and
subtle, is present in human perception, and would be a powerful instrument for machine

perception,
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