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ABSTRACT

In this thesis the Feshbach-Lomon Boundary Condition
Model for nucleon-nucleon interactions is applied to the
Independent Pair Model (or Brueckner theory) of infinite
nuclear matter, and to the modified Brueckner theory
which includes also the hole-hole interactions. This is
accomplished by the construction of a pseudopotential
wnich is equivalent to the Boundary Condition Model in
the two-nucleon problem. The pseudopotential is then
used in the many-body problem in place of the complicated
phenomenological nucleon-nucleon potentials used in more
standard treatments. Because of the very simple form
of the pseudopotential, the integral equation for the
nuclear matter K matrix can be handled relatively easily
and without resorting to perturbative approaches.

Further, the dependence of the K matrix on the centre of

mass momentum of the interacting pair is treated more

fully than in previous treatments. Numerical calculations
are performed for the case when the nucleon-nucleon
interaction vanishes in all but lSO states, and in particular
the effects arising from the hole-hole interactions and

from the centre of mass momentum dependence of the K matrix
are discussed. The singularity of the K matrix, the

presence of which has been associated with a superconducting
state of the system, is investigated for the case when the

interaction potential vanishes in all but lS states. The

gquestion of whether a singularity exists whef the inter-
acting particles have a non-zero centre of mass momentum
is also discussed. Finally a value for the size of the
energy gap is found.
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CHAPTER 1

INTRODUCTTION AND SUMMARY

This thesis will be devoted to applying the Feshbach-
Lomon Boundary Condition Model for nucleon-nucleon
scattering to the Independent Pair Model (or Brueckner
theory) of an infinite nucleus. In this Introduction we
shall give a brief summary of some of the previous and more
standard works and we shall also indicate the contribution
of this thesis to the field.

The problem of explaining the properties of nuclei on
the basis of the forces between the constituents is an old
one in physics. The problem is in fact two-fold, since it
involves, firstly, knowing the nature of the forces between
nucleons, and secondly, once these forces are known, being
able to handle the equations for a many-particle system.

The first is indeed still an unsolved problem. Meson theory
has been moderately successful in explaining the nuclear
force and giving some of its qualitative features but most

of the information about the forces befween two nucleons

has been obtained from nucleon-nucleon scattering experiments.

To correlate the scattering data it has been customary to
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represent the nuclear force by phenomonological local
potentials. These potentials have become increasingly
complex as more and more scattering data has been obtained.

Assuming that nuclear forces can be represented
adequately by such phenomonological local potentials, the
problem is to calculate properties of nuclei on the basis
of these potentials. We have no knowledge of many-body
forces so at most the theoretical nuclear physicist hopes to
explain the properties of nuclei on the basis of the "known"
two-body forces. In particular we wish to be able to
calculate the energy per particle of a hypothetical
configuration of nucleons called nuclear matter. The concept
of nuclear matter results from an extrapolation of the semi-
emperical mass formula of Weiszacker, which formula gives
a good over-all fit to the binding energy of all known
nuclei. It is belleved on the basis of this formula that a
very large number A of A/2 protons and A/2 neutrons would
form a stable configuration with an energy per particle of
approximately -15 Mev, provided that the Coulomb force
between the protons did not exist. This hypothetical
configuration is called nuclear matter.

It was not until the work of Brueckner and associatesl)
that a systematic method for calculating the energy per
particle of nuclear matter was devised. Brueckner's idea

was to replace the potential by a reactance matrix
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(or K matrix), which is similar to the reactance matrix of
scattering theory, and express the properties of nuclear
matter (e.g., the energy per particle) in terms of this
quantity. Bethe2) has discussed the theory in detail

pointing out the complications and developing its logical
consistency. The most lucid description of the physics behind
the theory however has been given by Gomes, Walecka, and
Weisskopf.3) Bruecknert!s theory can be looked upon as an
"independent pair model" of nuclear matter in that it consists
of taking into account the interaction of any pair of particles
as exactly as possible, neglecting the interactions of all
other particles among themselves and with the pair. The
presence of the other particles is indirectly felt however
through the exclusion principle. The energy of the system

is then the sum of all the two body correlation energies.
Extensive numerical calculations using the Brueckner theory

of nuclear matter and phenomonological nucleon~-nucleon
potentials have been carried out, most notably by Brueckner
and Gammell) and by Moszkowski and Scott.k’S) In both cases
excellent results have been obtained. It has been conjectured
that an improvement over Brueckner's theory can be obtained

by including the so-called "hole-hole interactions'".®??’
(These are explained later.) At present no extensive
numerical calculations have been performed to investigate

this conjecture. It is felt however that the inclusion of
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these terms will cause large corrections to the form of the
K matrix but quite small corrections to the energy per
particle.s)

In this thesis we shall also use the Brueckner theory
(with the hole-hole interactions included) for our discussion
of nuclear matter, but out starting point, namely the
description of nuclear forces, will be different from that
used by other workers. The description we use is the
Feshbach-Lomon Boundary Condition Modelg): the interaction
in each state is represented by an energy independent boundary
condition on the logarithmic derivative of the wave function
of the two nucleons at an energy independent core. 1In
presenting their model Feshbach and Lomon were motivated by
developments in the meson theory of nuclear forces which
suggested that 1) use of simplified local potentials for
describing nuclear forces is only possible if the nucleons
are relatively far apart and, 2) there exists some region in
which many virtual mesons are present, or alternatively in
which the interaction energy is very large so that the behavior
of the nucleons is relatively insensitive to their kinetic
energy at infinity. This region has no sharp boundary but
one can say that an energy independent description will
hold for sufficiently small interparticle distances. These
two developments suggest the following phenomonelogical
model for the nucleon-nucleon interaction. The energy

independent core is represented by means of a set of energy
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independent boundary conditions at some energy independent
core radius r, which may be state dependent. For r greater
than Ty the nuclear forces are represented by potentials
indicated by meson theory. In their original analysis of

the experimental data however, Feshbach and Lomon dropped

the local potential external to the core. The resulting model
is called the Boundary Condition Model (BCM) and forms the
starting point of our work.

In order to apply the BCM to the Brueckner theory we must
reformulate the BCM in terms of potential. This potential
(or pseudopotential), which we give in the next Chapter,
has an extremely simple form. It is much simpler than the
usual phenomonological nucleon-nucleon potentials, and for
this reason leads to a great deal of simplification of the
many-body equations.

In the course of our discussion of the Brueckner theory
we go beyond previous treatments by introducing methods to
handle the centre of mass momentum dependence of the nuclear
matter K matrix. We introduce certain expansions only the
first terms of which have been given before.

In order to give some numerical results, we investigate
in some detail the case when the interaction vanishes in
all but lSo states. In this case the exact expression for
the nuclear matter K matrix can be written quite simply.

We investigate in particular the centre of mass momentum
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dependence of the K matrix and the effect of the hole-hole
interactions.

As a final point, we discuss, for the case when the
interaction vanishes in all but lSo states, the singularity
of the nuclear matter K matrix which has been associated

with a superconducting state of nuclear matter.lo)



CHAPTER 1I

THE FESHBACH-LOMON BOUNDARY CONDITION MODEL AND ITS
REFORMULATION IN TERMS OF A PSEUDOPOTENTIAL

This Chapter will be devoted to a discussion of the
Feshbach-Lomon Boundary Condition Modelg) of nucleon-nucleon
scattering, and to a recasting of this model into a form
making it more amenable for use in the nuclear many-body

problem.

2.1 1Ihe Feshbach-Lomon Boundary Condition Model.

The Feshbach-~Lomon approach to nucleon-nucleon scattering
is radically different from the usual phenomenological models
which have been suggested. Most of the models which have
been suggested for the correlation of nucleon-nucleon scatter-
ing data assume a local potential V(?,a,m) between the nucleons,
where ¥ is the internucleon radius vector, ¢ represents the
spin operators of each nucleon, and t the isotopic spin. These
models have become more and more complex in structure as more
scattering data has become available.ll)

Progress in the meson theory of nuclear forces has

indicated however that use of simplified local potentials

for describing the nuclear forces is only possible if the

-7 -
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nucleons are relatively far apart. When the distance between
the nucleons is less than one meson Compton wavelength, higher
order effects, corresponding to the exchange of many mesons,
must be taken into account. In this case, which is important
in high-energy nucleon-nucleon scattering, a non-local
potential must be used to describe the nuclear forces.
Motivated by these developments, Feshbach and Lomon
introduce an extreme non-local interaction to handle these
higher order effects. 1In particular, they consider the inter-
action in each state to be represented by an energy independent
boundary condition on the logarithmic derivative of the wave-
function of the two nucleons, this logarithmic derivative
taken at some energy independent core radius TS which may
be state dependent. For r greater than Ty they would assume
the usual local potentials indicated by meson theory, for
example, the static one and two pion exchange potentials
(OPEP and TPEP). It should be noted that Feshbach and Lomon

represent the higher order effects by an energy independent

boundary condition. It is felt that in the region where the
higher order effects are important (and thus where the inter-
action energy is large) that the behavior of the nucleons will
be relatively insensitive to their kinetic energy at infinity.
In their original analysis of the experimental data,
however, Feshbach and Lomon dropped the local potential
external to the core. The resulting approximation, which

we shall call the Boundary Condition Model (BCM), will be
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the starting point for the work of this thesis. The more
sophisticated model, that is, boundary condition plus
potential tail, is now being used by Feshbach and Lomon for
an analysis of nucleon-nucleon scattering data. For the
present, however, let us proceed with a quantitative
discussion of the BCM.

The basic assumption of the BCM is expressed in terms

of the boundary condition

d¥(r) - K
== ()
dr r=r Ty 0

o
where VY is a state or group of states with the same total

angular momentum, and where F and r_are energy-independent

0
parameters. In particular, for two nucleons in a singlet
spin state, ¥ = *L(r), the radial wave function of the two
nucleons in the center of mass coordinate system ({ is the
orbital angular momentum in units of n), and the boundary

condition becomes

dy, (r) f
(2.1) %— pep = ;f_ “/,?,(ro/&)
3 L

A similar simple structure holds for the wave function
of two nucleons in a triplet spin state when J, the total

angular momentum, equals {. In this case, ¢ = WJJ(r)
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and the boundary condition is

(2.2) Efiiﬁfl = fii_ (r )
* dr r=r, T *JJ 05
JJ %55

For the other two triplet states (that is, those where
4=J+1) the situation is not quite so simple since there can
be coupling between these states. In this case, ¥ is a

unicolumnar matrix

¥ 1_1(T)
velig]e 00

¥5,5+1(%)

and F is a real 2x2 hermitian matrix

(t)
£r5,5-1 £

(t)
£5 f

F =
J,J+1

and the boundary condition is

&

vng-l 3,31 f(t) V5,7-1 (
(2.3) | N To

Efg;iil ser, f(t) J+1/ \¥7,3+1 (r

Thus equations (2.1) to (2.3) form the BCM. The boundary
conditions are clearly equivalent to the phase shifts
and are therefore just another representation of the data.

Indeed for singlet states of the neutron-proton system

o3
Yy (r) = Ax[h£2)(kr)+e lb%hé})(kr)] for r>ro£
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where A& is a normalization constant, 5£,is the phase shift,
k is the relative wave number, and the h's are spherical

Hankel functions:

H

h{P () = 3, + iny ()

h$P () = 3,0 - 10y

where jx'is a spherical Bessel function and n% is a spherical

Neumann function. Thus we can write

iy
Yp(r) =24, e  cos by [j&(kr)—tan 5£p£(kr)]

direct substitution of which into equation (2.1) leads to

£,3,(kr. )-kr_ jo(kr. )
AL L )

(2.4) tan 5, = " i
£9L(qua)-quig&(qux)
Here and in what follows a prime on a function means
differentiation with respect to its argument. This equation
has been given by Feshbach and Lomon (see their equation 7).
They also show the relationship between the triplet boundary
condition parameters, and the phase shifts and mixing para-
meters for these states. We need not write down these

equations here.
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2.2 Ihe Pseudopotential
We would like to apply the BCM to the nuclear many-body

problem. We shall discuss the many-body problem in some
detail in Chapter IV, but it is sufficient for our purposes
now to state that it is formulated in terms of the nucleon-
nucleon potential. Now the BCM contains no reference to a
potential, so we shall in this Section reformmlate the BCM
in terms of a petential as the first step towards applying
the model to the many-body problem. This potential, or
pseudopotential, which we shall now construct will then be
used in the many-body theory in place of the very complicated
phenomenological potentials used in more standard treatments.
Thus, we are seeking a potential which vanishes for
r>ro and such that the wave function of the Schrodinger
equation describing the scattering of two particles via this
potential satisfies the required boundary conditions, that
is, equation (2.1), (2.2), or (2.3) depending upon the
angular momentum of the state in question. We assert that

such a potential is

(2.52)V(r) = n— Z [—&‘ b(r-r )-b(r-r0 )g% szo
2=0 4?,

2 o0

+ha- Z

+ -
-r’ )-3(r-r. )P
oJJ oJJ ar] JdJ1

+ [5”%_ 5(r-r J)-b(r'ro )35 Pg,341,1%F5, 51 )
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where m is the mass of one nucleon, r is the distance
between the two nucleons, the f's and ro‘s are the boundary
parameters occurring in equations (2.1), (2.2), and (2.3),
and the P's are projection operators having the property
that PJ%S gives a non-zero result only when operating on a
state having total angular momentum J, orbital angular
momentum 4, and spin S. The operator & is defined by

M _ .M (t) M
(2.50) SUr,3-1,1% £5,0-1 Y5,5-1,1 Y I3 Ug,041,1

o M = o) M i
(2.5¢) SY7 541,17 T5 7 Yg,5-1,1 * L5,041 Us,041,1

(2.54) Syjyg = O for & # Jil, §71

where the ygis are the orthonormal "spin-angle" wave

functions.lz)

(They are eigenfunctions of 7° and Jz.)
Finally, the s-functions occurring in equation (2.5a)
are Dirac s-functions. The arguments of the s-functions

. + - .
contain, for example, r and T, by which we mean

% 3
+ _
(2.5¢) T, = To, + €

where € is an infinitesimally small number. We interpret
the potential in the sense of & =« O.

We prove our assertion as follows. The Schrodinger
equation describing the scattering of two particles (each
of mass m) by a potential V is, in the centre of mass
system,

(2.6) V2?+k2\P :.ﬂLV\P
h2
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where k is the relative wave number. Now we can write

J+S

2.7 ¢ &0 = OZO Z Z ) Vgps(®) Yrpg(Fso)
J=0 M==J 8=0 2A=|J-S|

where T stands for the angles the radius vector T makes
with some coordinate axes, and ¢ stands for the spin operators
of the particles. Substituting equation (2.7) into the LHS
of equation (2.6) yields
LHS of (2.6) =
1 J+3

Z Z LooL Ums {q’J/?,S 2 vps - &%2’1'2 ‘l’J)&s+k2‘1’JJ¢s}
J=0 M=-J =0 4=|J-S|

If V is given by equation (2.5), then substituting equation
(2.7) into the RHS of equation (2.6) yields
RHS of (2.6) =

{‘MZ/&O [J‘ b(r—r )6(r-r Sarj:l ‘J’H,O}
&r m—-& 3

S T
..M JJ + -
+ z Z {WJJl [r d(r-r, )-6(r_roJJ)Baf] Vir1

M=-J °33 JJ
(t)
f
+ u, fi—— 6(r-r )W +(—£4£—lb(r -r, )-d(r- -r- )y ]
Jyd-1,1 TS Jyd+1l,1 T Oy 0y 0T Jy,J-1,1
J J

£ (8) :

J + JaJ+l
+ QJ J+1,1 [ 8(r-r Wy 5-1, 11+ d(r-r J) ~d(r-r J>&9WJ T+1 il}
O J 0y
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Equating both sides of equation (2.6) and using the ortho-
gonality of the g}s leads to the following equations

(2.82) Wppo *+ 29,0 - Voo + K2 Wy

f
= | A p(p- oo )R
= [ro% d(r-r £? ~3(r-r %) ] Vo0

J§J+l2

n 2 1
(2.8b) ¥s5p *+ T ¥gg1 - Yyt K Wy =

£
- | 24 +

O JJ
" 2 _(J-1)7 2 -
(2.8¢c) q/J,J-l,l + T WJ,J-l,l 1‘2 \]fJ’J-]_,]_ + k \][J,J—l,l -
= d— 3(r-rt W +(—had=dy (pop® -r  )-d(r-r_ Ly
r o] JyJd+1l,1 r ar Jyd=1,1
o] J o O3 Oy
J J
" g SJ+12$J+22 2 —
(2~8d) ‘IIJ,J"I'].,]. T \1/‘]' J"l'l l r2 \],J,J+l,l + k WJ,J""].,]_ =
£t fJ
_ g .t J+1 _nF 3y T
J J

We will now show that \Z3L the radial wave function of
two particles in a singlet spin state with orbital angular

momentum 4, satisfies the boundary condition (2.1).
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Integrating both sides of (2.8a) from o and B where
- +

or_ and B>r_ yields
K’ °r

¥ (B) (a) B
Wé&o(ﬁ)'wizo(“)+2 [ ££g - wXXg .]+-jadrwzgo(r)[ﬁ%-&if%ll +

f
‘&‘ \]{m(r -\‘fm(r
& 2

Let us now take B — r: and a + r_ . It is known that the
wave function for a 6-%ﬁnction potential is continuous at
the non-vanishing point of the &-function but that its first
derivative is discontinuous there. The same will be true of
the wave function for our pseudopotential (i.e. V&&O(r: ) =
y&& ) but W{)O(r ) # ¢£)O(r *)) Thus when we take
B+r;% and a -+ rox, all but the first two terms on the LHS

of the above equation vanish and we are left with

f ' -
(209) ‘1’,?/?0(1‘ -\1{/?)0(1' = 'I_,&" qluo(r:; ) - ‘f/%o(ro )
©, J3 X 2,
or p
' + 5y - 24 +
(r_ ) = (r_)
Y210 o, Yr20'to,

whieh is the boundary condition (2.1). It should be clear
from the methods we have used, that this result would still
be obtained if we also included a potential inside the core,
provided this potential is finite at Ty e We éhall not

include such a potential however in the work of this thesis.
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By performing identical operations on equations (2.8b)
to (2.8d), we find that the function yj;; satisfies (2.2)
and the functions Vy,041,1 and WJ,J—l,l satisfy (2.3).

This proves our assertion and thus the potential, or
pseudopotential, given by equation (2.5) is completely
equivalent to the BCM. We have now reformulated the BCM in
terms of a potential as was our aim.

The introduction of a pseudopotential to replace a
boundary condition has also been considered by Huang and

13) in another problem. They were interested in the

Yang
hard sphere Bose gas and introduced a pseudopotential to
replace the condition that the wave function must vanish on
the surface of the spheres. As they point out, however,
their pseudopotential, equation (12) in their paper, is quite
general and could in fact have been used in the above nuclear
problem. The Huang and Yang pseudopotential is really very
complicated and for practical purposes must be replaced by
some approximate form. No such approximation need be made
with our pseudopotential. The difference in the form of

our pseudopotential and that of Huang and Yéng arises from
the difference in the approaches taken for the derivation.
Huang and Yang require the analytic form of the wave function
inside the boundary radius to be identical to the form
outside. They then construct a pseudopotential involving

differential operators and delta functions at the origin so

that the wave function is finite there. Thus, the solution
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of the Schrodinger equation containing the Huang and
Yang pseudopotential is a smooth function whereas the
solution of the Schrodinger equation containing our
pseudopotential has a discontinuous derivative at the
boundary surface. Thus, even if the two wave functions
were the same outside the boundary region, they would be
different inside. We cannot attach any physical
significance to the wave functions inside the boundary
region so this difference should cause no concern. There
may indeed be many pseudopotentials which we could construct
to replace the BCM but we shall use (2.5) because of its
simplicity.

We should point out that the pseudopotential (2.5)
is not hermitian. This is also true of the Huang and
Yang pseudopotential and as they have mentioned, this
non-hermiticity is unimportant in the two-body problem
since in the region having physical significance (i.e., out-
side the boundary surface) the wave function is identical
to the wave function for the physical potential. We can

easily construct a hermitian pseudopotential from (2.5).
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We have

(2.10) V(r) =

2 &rf
= b Z [;‘L— 5(r-r;4/) =5 (r-r;)(/) % - 56; a(r-r;L)+

=0 ~ %
2 A2 -
+ T 6(1’ ro‘t) T b(r ro ):l Pm
0/?’ O'L f?/
2 pod T
+ %; Z.{[rJJ 6(r-r: )= s(r-r, g _ & s (p-r” ) +
J=0 OyJ JJ JJ’ ar Or O5J
2 + 2 -
MEPL A PP Mr-r"m)] fan
JJ JJd
S + -y 3 _& -
T 5(r-ro ) - 6(r'ro ) or ~ ar 5(r-r0 ) +
O J J
2 +y 2 -
T 3(r-ry ) - 75 s(r-1, i](PJ,J+l,l+ PJ,J-l,l{}
o J O J

This hermitian pseudopotential is alse completely equivalent
to the BCM as can be shown by the methods used above. The
pseudopotential (2.10) differs from (2.5) by containing terms
proportional to g% , which operates only on functions to the
left, and additional terms to take care of the fact that the

wave function for this pseudopotential is discontinuous at the
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non-vanishing points of the 3-functions. Equation (2.10)

is more complicated than (2.5) and we decided to use the
simplest form possible hoping that the non-hermiticity would
lead to no difficulties in the many-body problem. It is
possible however that the non-hermiticity may lead to
difficulties at high energies.

As an illustration of the use of our pseudopotential
(2.5) we shall examine in the next Chapter some aspects of
the two-body scattering problem. As we shall see, we can
solve the Schrodinger equation exactly when the potential

is given by (2.5).



CHAPTER III

THE TWO-BODY SCATTERING PROBLEM USING THE PSEUDOPOTENTIAL

In this Chapter we shall consider some aspects of
scattering theory, and as an illustration of the use of
our pseudopotential we shall apply the theory to the
two-body scattering problem when the interaction potential
is given by our singlet spin pseudopotential, that is,
when the potential is given by the first line of (2.5).
The first derivative of the wave function of the Schrodinger
equation containing the pseudopotential is discontinuous
and we shall point out explicitly here the way in which

this discontinuity manifests itself.

3.1 Some Aspects of Scattering Theory

We consider the scattering of a particle of mass g
from a potential V which is independent of spin and isotopic

spin. The Hamiltonian H of the system then is
H = HO + V

where Ho describes the unperturbed motion of the particle.

we shall take 5
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where 3 is the linear momentum of the particle. The eigen-

states and eigenvalues of Ho are given by

(3.1a) H|K) = E |
2,2
(3.1b) E, = DT?%"

The eigenvectors |E) form an orthogonal set with normalization

and completeness conditions as follows

3 -
(3.2a) (511; f dk|k) (K] =1
all momentum
space
(3.2b) @2 = (2m)3 (-

1 ]
where dﬁ = dkxdkydkz and b(EJE ) is a three dimensional Dirac

d-function. Further, the projection of |E) on the eigenstate

|?) of the position operator of the particle is

s
(3.3) (F|B) = KT

= e

where the eigenvectors {?) form an orthogonal set with normal-

ization and completeness conditions

(3.ka) [ & ®HE =2
all space
(3.1D) @) = 8GEF)
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We assume that H has the same continuous spectrum as
Ho' Now we shall be interested in the "standing wave™"
eigenstates of H which we denote by lwk). They satisfy the

equation
(3.5a) W) = K + E;@%— V)
o}
where {° denotes principal value. That this is indeed an

eigenstate of H can be seen by multiplying both sides on

the left by E,~H . We can write equation (3.5a) as

(3.5b) V) = [B) + G V[¥,)
where
(3.6) G, = —f—

k Ek—H0

G, 1s called the Green's operator for standing waves; it is

a solution of

(E—Ho) G =1

Let us consider the coordinate representation of
|¥)» that is, (?]wk) = ﬁk(?). From equations (3.5) and
(3.3) we have

ey

@y )z, (O =F|E) + F|6 V) = JAET | (F1G, V¥



) P
Now,
= ! N BN
(F16, V1) = [aF @6, [T )@ VY
using (3.ka). But
6 : '
SINESECNNIE £ 8C) ST ATHI ST SES

using (3.2a), and using (3.6), (3.1) and (3.2b)

(3.7 (K16 B) = &) gh 1K) = g=b—(em 3 @' -E)
k "o k Pkt
so that
T I~
2! elE‘-(r-r )

=+ 20 1413 21 o o
G-8) e lT)= g3 e | 4k 53

| ! 11
Further, (2 |V]y)=[ a¥ @' |v|2") @ |y,) which for a local
1

potential, (that is, one where (?'IV[?") = V(7 )6(5'43"))
beconmes

e | ey | e |

(r |V|¢k) = V(r ) wk(r )
so that finaly we have

R
(3.9) @ =T v [ @ e G FIE @D

1
where for convenience we now write (?[Gk[? ) = Gk(?:;B.

We are also interested in the "reactance operator, K"

which is defined by

(3.10) K|E) = V]y)
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t
Multiplying by (ﬁ | we obtain an equation for the reactance

matrix elements

-1 =+ _ =t
(3.11) (k 1K[k) = (kK |V]|y)
which for a local potential becomes

-
(3.12) @' kD) = [dF e K T v@y, B

|
We can also derive an integral equation for (k |K|K).

Using equation (3.5) in (3.11) we have

(k' |K|K) = (B [V]y) = @& |V)B+@"|v E;%{; Tl

@B + &V —B—Ek_Ho K| E)

Finally, using (3.2) and (3.1) we get

S | RS | O | Y | -
(3.13) (&' [K®) = ('E'|V|E)+(-2%)3 i-% ¢ QK_LL%L_).iﬁ_QLLI&

where, for a local potential,

ot >
(3.1%) @B = [ aF K Ty BT

We shall be concerned mainly with (3.9) to (3.1k).
Let us now suppose that V is a central potential, that

is V = V(r). 1In this case the angle dependence of wk(?) is
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particularly simple. We can write

(3.15) V@ = b Z z o oy, (8
2=0 m=-1

where the Y's are the usual spherical harmonics with

orthonormality condition
A * ~ ~
(3016) I dr Y’tm (1‘) Y‘&'m' (1‘) = bu‘bmm'

The integration extends over the full solid angle, and the
d-functions on the RHS are Kronecker d-functions.

Now the expansion of the plane wave in terms of

spherical harmonics is given bylu)
E -4 o +’?/
ik.r _ ,?/ x A A
1=0 m=-%

Using equations (3.16) and (3.17) we can rewrite
equation (3.8) in the form

(3.18a) 6, (&, F) = Z Z G (r,r)Y, (2)Y,, (FY)

m=-0
where

© gyt k'zjx(k'r)ax(k' t)

2 -
(3.18Db) Gk(r,r') Ff "ol
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In Appendix I we show that
© dk'k‘zj}(k'r)jz(k'r')

2 =
(3.19) 2 ¢ jo R

_ {:kjL(kr)qL(kr') if rt>r

kjL(kr') q&(kr) if r > rt
Using equations (3.15) to (3.18a) we obtain the
following integral equation for ﬁt(r) from (3.9)
(3.20) Wﬁ(r) = jx(kr) + I drtrt? Gﬁ(r,r')V(r')wk(r')
g )

Further using (3.15) to (3.17) we can write equation
(3.12) as

+1,

A * A
Z (k| K, | )Y, (k)Y (k)
2=0 m=-=}

138

(3.21a) ('E'|K|'E) = (4m)?2

&

where
(3.21D) Getlgy |l = [ are?y, Gete)V)yg(o)

Using (3.16), (3.17), and (3.21) we obtain the following
integral equation for (k'lK@lk) from (3.13)

o dk"k"z(k'|V)|k")(k"|K lk)
2 - k"2

(3.22) (g I0=t iy 0+ B2 e ] "

=
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where
(3.23) (k*|V,|k) = jodrrzj&(k'r)v(r)%(kr)

Let us now consider equation (3.20) again. 1In the

limit r =+ «© we get
¥ (F) + 3y (kr) + n, (kr) 2:5 jodrrsz(kr)V(r)ﬁﬁ(r)

where we have made use of (3.19). Now the phase shift is

defined by the requirement that as r -+ «

vﬁ(r) -+ jL(kr) - tan §Lq%(kr)

so that we have

«©

2 [ are? 3, (er) V(r) (o)

tanb = -
1 h 0

which using (3.21b) gives the important relationship

2
(3.24) (k|K, k) = - B tan 5,

We have now discussed enough of the formal theory
of scattering for our purposes and can now turn to a

particular application of the theory.
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3.2 Uge of the Pseudopotential

We shall be cencerned in this Section with equations
(3.20) to (3.24). These equations have been derived for the
scattering of a particle of mass pu from a spin and isotopic
spin independent central potential. These equations can be
applied also to the scattering of two nucleons in a singlet
spin state from an isotopic spin independent central
potential when 2u=m, the mass of one nucleon, r is the
distance between the two nucleons, k is their relative
wave number, and ! their orbital angular momentum. We shall
then examine these equations when the potential is given by
our pseudopotential for singlet spin and orbital angular

momentum ! states, that is for

2 [f
(3.25) V(r) = Dm— l:—a‘!‘ s(r-a¥)-p(r-a") 531: ) a-‘-r%

We shall see that we can solve (3.20) exactly using this
potential. Substituting (3.25) into (3.20) yields

f
(3.26a) p(r) = jp(kr) + j% g&(r,a+)¢£(a+)-gL(r,a")yi(a')

For simplicity we now write yL(r) = Wﬁ(r) (i.e., we drop the
reference to k) and we also write

2 wdk'kﬂ%(k'r)%(k'r')

2.2
(3:260)  b(p pry = BB ghip pnyo28 pf RN

JL(kr)qL(kr') if rtor
jL(kr')QL(kr) if r >rt

m
[
o

1l
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t, -
We now need expressions for VL(3+) and yp(a ). We notice
that yL(r) is a continuous function of r since gL(r,r’) is.

Thus, wL(a+) = y&(a) and therefore

f
(3.27) Ypla)=jy (ka)+ 7% gL(a,a)y£(a)-gL(a,a)yé(a')

using also g&(a,a') = g&(a,a+) = gL(a,a).

t
Consider Q%(r) however:

£
wz(r)=kji(kr) + j% gﬁ(r,a+)y&(a+)-gi(r,a-)yé(a-)

where

2
gﬁ(r,r*) - 8g(r.rt)

ar

It is discontinuous at r=a since g%(r,r') is discentinuous

when r=rt:

(3.28) gﬁ(r,r')=

O ) 1383 5 T jJ(kr)np(krt) if rt>
P dktkt 33 (D gy (k') .22 3flr)ny (krt) if xi>r

m o, kS - k12 ig(kr*)nj (kr) if r >r!

from differentiating equation (3.26b).
t, .
Thus, what do we mean by y&(a )? To answer this we look
back at equation (2.9). It is seen there that we consider

(3.29) yi(a_) = lim _ Wé(a) where a < a”
a—+ a
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If the limit is not taken in this manner than the pseudo-

potential will not lead to the required boundary condition.
t, -

In equation (3.26a) we must interpret y£(a ) as given by

(3.29) and we have then

f
(3.30) yy(aT)=kiy(ka) + =% gha™,a)yy(a)-gl(a,a)yp(a")

a

2

using en

2

(a',a+)=gr(a',a). The important point is that the
value of the first variable must be less than that of the
second.

Now equations (3.27) and (3.30) can be solved for y,(a)

1
v&(a) and we find

iy (ka) [l + gf(a',a)] -kjé(ka)g&(a,a)

(3.31a) \]I&(a) = T
1+ gﬁ(a-,a) - 7% ga(a,a)

£ by
kgt [1- & a0+ 2 gy kdelia,a)

(3.31b) ¥, (a”)
. T
t 1+ gﬁ(a-,a) - j% g&(a,a)

SO

£y (ka) - kaji( ka)

WL(P) = j&(kf)* % gL(r,a) 7
1+ gi(a‘,a) - 7% g&(a,a)
Now, from (3.26b) and (3.28)

g“"(a,a) = ka®j g (ka)ny (ka)

g%(a',a)= kzazji(ka)n£(ka)
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Thus

f
(3.31c) l+gf(a',a)- :% gL(a,a)=-kajL(ka) [faqk(ka)-kani(ka)]

where we have made use of the relationshipl5)
t t
i, (0 (%) - 0y (x)j,(x) =
plxiny X3y 2

Finally then

1
2 fpjp(ka) - kaj,(ka)
. g~ (r,a) 22 2
(3.32) WL(r)"JLﬂkr)' ka23L(ka) {::LQL(ka) - kaqt(ka):}

1
We notice that for r>a, ——%—12421 = ny(kr) and from equation
ka j£(ka)
(20"") )

{ }'= tan oy

so that

Y (r) = jp(kr) - tan pymy(kr) , r>a

as it should be.
Let us now consider (k*|K,|k). Using (3.25) in (3.21b)
gives

2 -
(k[Ky k) = B2 3y (kta) [£yyy(a) - ay,(a) |
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which using (3.31) becomes

£y (ka) - kaji(ka)

2
b8 j,(kta)

]

(3.332) (k*|K,|k) 3
1+ gf:(a',a) - aJ‘ gL(a,a)

) nf i&(k'a) ij{Ska) - kaji(ka)
mk ji(ka)

f&ﬂ‘?’(ka) - kan/;,(ka)

Again from equation (2.4), {::}= tan by SO that

2
= w Do
Thus we see that equation (3.24) is indeed satisfied.
It is instructive for later work to rewrite (k"Kijk)
with the g%s written in their integral form. From (3.33a)
we have, using (3.26b) and (3.28)

(3.33D) (k'K |k) =

2
_ hﬁé j&gk'a) [: jL(ka)-kaji(kai]
L g o dk"K"zjx/(k"a)%fx(j&(k"&) -k"aj&(k"a-)
Se] —

K2k 12

Let us now solve directly the integral equation (3.22)
for (k*|Kp|k).
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We have

(k*|Vy|k) =

= f:drr23£(k'r)v(r)jL(kr)= hl—iﬂ [fx/j&(k'a"') jL(ka'*')-kajL(kta-)j;/(ka-)]
substitution of which into (3.22) gives

(3.34) (k*|Kp | k) = fLajL(k'a*')Kl(k)-a2j‘t(ka_)K2(k)

where

= k"2, (ka’) (k") Ky | k)

S B2 katye 2
339 K =Py 2o [ N

3 | 4 -
2 ) @ dk"k"?Jp (k"a”) (k"| Ky | k)
(3.36)  Ky(k) = BE j(ka) + 2 PJ'O L N .

We now substitutien equation (3.3%) for (k!|K,|k) into
(3.35) and (3.36) to get equations for Ki(k) and Kz(k). We
find, using the definitions of g and )

2 f
Kl(k) = E; jL(ka+) + :% Kl(k)gt(a,a)-Ké(k)gz(a,a)

2 £
K (k) = h;} j;,(ka')+ —f Kl(k)gf.’(a',a) K, (k) gﬁ’(a-,a-)
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the solutions of which are

2 2
K, (k) = By dglka) [;+g§(a‘,a')] - Bk 5 (ka)gt(a,a)
1 - B 7 -
o gf:(a-,a-)- % g/t’(a’a).*. -é‘g/&(a,a) l:gf(a_sa)'g‘::(a-aa-)]
2 .' f ’L 2 . f L _
Ke(k) = hﬁ J&(ka) [l" '_ag‘ g (a9a)] + hﬁ' J‘t(ka) Jé‘ g‘r(a ,a)

T T
1+ gf.’(a',a')- -é‘g*’(a,a) + -f‘ g'(a,a) [gi.’(a',a)-gf.’(a',a')]

Substituting these expressions back into (3.34) gives

finally

(3.37) (k*|Ky|k)=

f£1%(ka) - kaji(ka) - £y [éﬁ(a',a)-gﬁ(a',a'i]

2
_h%a . (e
T om J&‘k a) f f
1+ g%(a',a')- j%ga(a,a)+ j% gﬁ(a',a)- %(a',a'ﬂ gL(a,a)

Comparing the two equations for (k'|K£|k), that is, (3.37)
and (3.33a), we see that they are different and thus (k|K£|k)
as given by (3.37) will not be proportional to tan 6& as it
should be. We have used no illegal procedures in obtaining
(3.37) from the integral equation (3.22) for (k*|K,|k).
However, by solving the integral equation for (k'|K&|k) we

1
cannot take into account the fact that WL(r) is discontinuous
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at r = a~ and it is for this reason that the two methods
of obtaining (k'thlk) give different results. The integral
equation (3.22) for (k'|K,|k) is ambiguous since (k* Ky |k)
given by (3.33a) and by (3.37) are both solutions. This
does not mean that we cannot deal with this equation however.
We could deal with this equation by dropping the distinction
between a+ and a- in the pseudopotential, that is, by using
simply a. In the final result however the distinction must
be made, and the correct choice will be governed by the
result obtained by constructing (k'IK&|k) from the solution
of the Schrodinger equation, that is, by (3.33). We emphasize
this point here since in the next Chapter omn the many-body
problem we shall meet a similar integral equation.

This completes our discussion of the two-body problem.
We have given an exact solution of the Schrodinger equation
for the case when the potential is given by our singlet spin
pseudopotential and we have illustrated how the discontinuity
in the first derivative of the wave function manifests itself.

We shall now examine the much more complex nuclear many-
body problem and the application of our pseudopotential to
this case. We shall see that in the many-body problem as
in the above two-body problem, use of the pseudopotential
instead of a more standard phenomenological nucleon-nucleon

potential leads to equations which are much simpler to

handle.



CHAPTER IV

THE NUCLEAR MANY-BODY PROBLEM AND THE
INDEPENDENT PAIR MODEL

4.1 Introduction
In the next Chapter we shall apply the BCM, via our

nucleon-nucleon pseudopotential (2.5), to the nuclear many-
body problem. Firstly, however, we must make some
introductory remarks about the problem.

In this discussion we shall be concerned with a
hypothetical configuration of nucleons called "nuclear
matter”. The concept of nuclear matter results from an
extrapolation of the semi-empirical mass formula of
Weiszacker, which formula gives a good over-all fit to the
binding energy of all known nuclei. It is believed on the
basis of this formula that a large number A of A/2 protoné
and A/2 neutrons would in their lowest energy state form a
stable configuration with an energy per particle of
approximately -15 Mev, provided of course that the Coulomb
force between the protons d4id not exist. It is this
hypothetical configuration that is called nuclear matter.

A second property attributed to nuclear matter is

constancy of density of nucleons, p = % , Where Q is the

...37..
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volume of the configuration. It is known experimentally
that the density of nucleons near the centre of all but the
very lightest nuclei is roughly equal to .18 nucleons per
(fermi)3 and it is this value which nuclear matter is
assumed to possess.

The problem then is to explain these properties of
nuclear matter on the basis of the forces between the
nucleons. We have no knowledge of many-bedy forces and
only an incomplete knowledge of two-body forces as obtained
by scattering experiments. At most then, one would hope to
calculate the properties of nuclear matter assuming the forces
between the constituents to be given by those indicated by
two-body scattering experiments.

Thus, we shall consider the following to be the

Hamiltonian for nuclear matter:

where T, is the kinetic energy operator for nucleon i and

Vij is the interaction potential between nucleons 1 and j

which shall be taken to be given from scattering experiments.
If |¢) is the normalized wave function of the ground state

of nuclear matter then the energy E of the ground state is
A A A

B9l ) Tt 3 ) LViyle)
i=1 1=1 j=1



_39_

The earliest calculations to obtain E were perturba-
tion calculations based on the independent particle model
of nuclear matter, and using the total interaction energy
as the perturbation. Neither of the known perturbation
methods yielded satisfactory results: the Wigner-Brillouin
series converges too slowly and the Raleigh-Schrodinger
series, when stopped at any given order, contains terms of
order A2 (instead of A), which is clearly unphysical. These
are the unlinked cluster terms. However, Goldstone,l6)
in one of the most important papers in this field,
considered the many-body problem using field theoretic
techniques and obtained a new perturbation series in which
no unlinked cluster terms appear.

Goldstonet!'s elegant approach in terms of diagrams
gives new series for |V ) and E and the problem then is
to find some suitable approximation for them. The

1) gives

approximation series introduced first by Brueckner
a good first approximation to the Goldstone series and
consists in picking out all of the "ladder" diagrams in the
Goldstone series for the energy. The Brueckner approxima-
tion can be looked upon as an independent pair model of
nuclear matter in that it considers the interactions between
any pair of particles, neglecting the interaction of all

the other particles among themselves and with the pair.

The most lucid description of the physics behind the
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Brueckner approximation has been given by Gomes, Walecka,
and Weisskopf3) and this paper will be the starting point

for our more quantitative discussion in the next Section.

4.2 The Independent Pair Model of Nuclear Matter.

Let us consider first the simplest of all models of
nuclear matter, the degenerate Fermi gas model, wherein one
completely ignores the interactions between the nucleons.
Nuclear matter is considered to be a Fermi gas enclosed in a
volume Q and composed of four different kinds of particles:
A/Y% protons of each spin and A/4% neutrons of each spin. The
particles will occupy single particle levels which are
eigenstates of the momentum operator. We denote a single
particle state by |a) where the letter a stands for the
quantum numbers ﬁﬁ, 6y» T, Where R& is the momentum of the

particle and ¢, and T, are the spin and isospin, respectively.

a
If |?) is the eigenvector of the position operator for a

particle, then

ika-}'
T

<4 ¢

Thus, we consider the momentum and position eigenfunctions

(Ll'ol) (?'0.) =

of a particle to have the following normalizations:

(EH—&") = 6Er E'
(4.2) @|F) = 5(@-7)
@B = T

ﬁ e
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The nuclear matter wave function is then a product of

these single particle wave functions
(4.3) 19) = /31 G (0)q1B)slr)gee- la)y

where (U 1s the antisymmetrizing operator. In the above, the
subscripts 1,2,...,A indicate which particle occupies which
single particle level. There are A single particle levels
occupied for a system of A particles.

The total energy of the ground state of the system is
the one where the particles occupy all levels up to the

Fermi level and its energy is3)
2T ela R
(. 1) Eo = om Z ka = 5 2m k~F
o

where RF is the Fermi momentum, and is related to the density

= A
Py by

(4.5) kp = (3 LR

In the independent pair model of nuclear matter (IPAM)
one goes beyond the above simple picture by including two
particle correlations. That is, one treats the correlation
between a given pair exactly and takes into account in an
average fashion the other interactions of the particles among
themselves and with the pair. One treats the scattering of

two particles in nuclear matter in a manner similar to the
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scattering of two particles in free space, there being

one very important difference in these two cases however:

the effect of the Paull Principle. 1In the zeroth order
approximation to the ground state of nuclear matter (i.e.
equation (4.3)) all levels up to the Fermi level are

occupied, and thus two particles in thié Fermi sea cannot
perform a real scattering process into different levels since
these levels are already occupied by other particles.
Although one assumes that the other particles do not interact
directly with the pair, they still have an important effect
on the interaction of the pair through the Pauli Principle.
The mathematical formulation of this model was first given

by Bethe and Goldstonel7) and the physical ideas underlying
the model were illuminated by Gomes, Walecka, and Weisskopf.3)
The equation for the wave function of the two particles is
not the usual Schrodinger equation but the Bethe-Goldstone
(BG) equation, which we shall now derive using the approach
of Gomes, Walecka, and Weisskopf.

In the IPAM the energy of the system is written as

— 1l .
E = Eo + > Z Aeaﬁ
a,p3

where the summation is over all occupied levels, and where
Aaaﬁ represents the energy shift coming from the interaction

of a pair of particles in levels o and B. Each Aeap is
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calculated by assuming that there is interaction only
between the pair of particles in levels a and B. Since the
interaction vanishes in levels y # a or B the wave function
of a particle in any of these levels is unchanged, that is,
is still given by the zeroth order approximation. However,
as a result of the interaction, the wave function |¢QB) of
particles in levels a and B is changed from a product of
zeroth order wave functions and it is this new wave function
which we shall now obtain.

In order to obtain an equation for IW“B) we consider,

in the spirit of the above discussion, the following equation

A
&.6) H = Z H, + up
i=1
Hi Ti + Ui

A
lhB = _Z Z V J q qJ
l:

where Ti is the kinetic energy operator for particle i; Ui

is a self-consistent single particle potential felt by
particle i (Because of the translational invariance of
nuclear matter, it cannot depend on the position coordinate

of particle i. It can depend on the momentum of the particle,

of course.); V.. is the interaction between particles i and

ij
j as determined from two-body scattering experiments; q; is



the following operator

(4.7) I N 9 TR OO SN PO N €Y
y>F

where > means summation over all single particle states
y>F

|y) where kY > kg .

In (4.7) the single particle states are eigenfunctions
of T+U. That is,

(4+.8) (T40) |y) = €_|y)

Y

where €Y= €(kY) is the energy eigenvalue. Since U is
independent of the position coordinate, the single particle
eigenfunctions are identical to those discussed in connection
with the Fermi gas model at the beginning of this Section.

The ground state of a system with the Hamiltonian (4&.6)
is the one in which only particles in levels a and 3 interact,
that is, the levels |a) and |B) are influenced by the inter-
action and their wave function is changed. We write the

ground state wave function of the system as

(.9)  [¥) =57 Glygp) 12 316dnen- o)y
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That is, we suppose that ka, kB, kY,...,kw are all less

than kyp. We consider the pair wave function |¢QB) to be
normalized, i.e., (Waﬁlwag)zl’ The wave function (4.9)
differs from (4.3) by having lwaﬁ) in place of {a)|B), which
from now on we shall write as [aB).

Now if we consider [{_,) expanded in terms of the

a
complete set of single particle eigenfunctions it is
evident that because of the antisymmetrization IwaB) cannot
contain any components with wave numbers less than kF

except for |a) and |B). Thus we can write

(4.10) (a5|¢aﬁ) =1

1 } 3
U Veglin = q§|¢a5)12 = IVeglio

The interaction U“B then is equivalent to the ordinary
interaction in the levels a and B and vanishes for all other
levels as far as the ground state is concerned. Thus the
Hamiltonian describes a system of particles moving in an
average field but where a direct interaction takes place
only between particles in levels a and B, giving justification
to the appellation, independent pair model.

In Appendix II we show that if the wave function (4.9)

is to be an eigenfunction of (4.6) the following equation
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must be satisfied.
A - A
(4.11) (Hy + Hy = egq) Wgg) = = QgpVIVg,)

This is the Bethe-Goldstone equation. The new symbols are
as follows: lWﬁB) is the antisymmetric wave function of
. A 1 .
articles 1 and 2 = —= [ )- 5] ); € . is the
p ( I‘l’aB _\/——2- I‘]faﬁ IWBO’ ? G'B

energy eigenvalues and Q“B the following operator:

(4.12) Q + laBA)(aBAl, Q= Z Z [vs) (b

QQB
y>F &5F

where |aﬁA) = R%: []aﬁ)-[ﬁa}] . In equations (4.11) and
(%.12) we have, %dr simplicity, dropped the labels 1 and
2 in some places. In the two-particle bras and kets
(e.g. (yd| and |y3)) the first letter refers to the state
of particle 1 and the second to that of particle 2.

It is worthwhile to point out that there can be no

terms of the following form in QOLB
Z lay) Coy | 5 (ky < kg)
Y>F

since such terms would give rise to single particle virtual
excitations and must be ruled out for nuclear matter by

conservation of centre of mass momentum.
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We shall now obtain an expression for the energy shift

€ due to the pair interaction. Substituting

Aeaﬁz saﬁ T Fa T 85

(4.12) into (4.11) gives

(Hp#Hymege) Vag) = = ) ) 1v)(rd[Vivgy) = (8™ Cap®|Vivgy)
y>F 8>F

Multiplying by (ap®| on the left yields

(QBA|H1+H2 - eaBIW§B) = - (QBA|V|WﬁB)

But (H1+H2)|aﬁA) = (sa + EB)IGBA) and (QBA|WéB) =1

so we get
g, t €5 " € T~ (GBAIVIWﬁB)

(.13) seqgg = (op|VIvgy) = (eBVivgy) = (aBIVIvg,)

Now since Ag is the energy shift of a pair, the total

ap

energy of the system is then

= 1
(4.1k) E=E +35 ) ) Begg
aF  B<F
where Z means summation over all states |a) where k <kp-.
a<F
Using (4.13) we can obtain an important fact about the
form of the spacial representation of |¢§B), i.e. of

(?i?2|W§B) = ¢§B(¥i¥2). Writing Q as 1-Q where

=) L k&)l
v<F <F
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we obtain from substituting into (&.11)

A _ A A A A A
(H1+H2‘3QB) WQB)""VWGB)"' Z z lyd) (ys |V|‘1‘a‘3)'|aﬁ ) (o |V|‘1’QB)
y<F 3<F
Let us consider the C?i?zl projection of this equation. We
have

LHS = (H1+H2-8 )(?r’l‘r’2|qzﬁﬁ)

o

RHS =-(1~'1'x*~2|vwﬁﬁ)+z ) (?l?zlyb)(Yb|V|¢‘3‘B)-(?l?QlaﬁA)(aﬁAWMﬁB)
v<F »<F

Now, since V is diagonal in F-space,

@ F,V |q,f;ﬁ) =@ E, |V[EF) B F, w,ﬁﬂ)

A

=Vc?i?2)waﬁ

(F,F,)  writing (F]F,|V[FF,)=V(F T,).

YL GEFolve) (b [Viyap)= j @ dF, O(F) F))6(E,F) VE ) ¥ag (BT
Y<F »<F

where

ei.EY' (_f'?') P E3

c@2) = ) GG rH=% ) ayd, Ty Ty

v<F y<F
If V(‘r'l?z) + 0 when [# -F,| + o we have then
(?i?zlvlwﬁﬁ).+ 0 ‘ For [¥,-F,| + o

) (?1?2IY6)(Y6IVIWﬁB) » 0
y<F »<F

“/
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t
where we have used also the fact that G(F-F ) is a delta
t
function of finite width and vanishes as [F-F | -+ oo.
Thus for [¥,-F,| + o the BG equation becomes

e A -
aB)(ri?2|wﬁB) = —(aB|V|¢€BCFlr2|aBA).

But using (%.13) the RHS can be rewritten:

(egtegmeqg) (F1F,1aph) = (By+Hy-e o) (BT, [ap™).

so that

Gl—fgwﬁﬁ) -+ (?11:2IO.BA) when I_fl-_f2| -+

Thus, at large distances the BG wave function "heals" to the
unperturbed wave function of a pair. This important fact
leads to the concept of the "healing distance" of the BG
wave function and is a very important result from ﬁhe model.
Using (4.13) we can also obtain a simpler equation for

the BG wave function. Substituting (4.13) into (L.11) yields

(Hp¥Hy-e =) [¥ag) = - QI¥Eg) +(apIVIvey) [1¥hp) - 1ap™)]

Now (aBA|V|¢ﬁB) is infinitesimally small for a large volume

of nuclear matter (for a square well potential of depth Vo

Vob3
and range b this term is of the order of ?Q ) and thus we

can drop the second term on the RHS. Finally then, we have
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the following BG equation for infinite nuclear matter

(4+.15) (Hy+Hp=e-eg) [¥gg) = = QVivgg)

This is the form of the equation originally given by Bethe
and Goldstone and we shall deal with this equation rather
than the more complicated equation (4.11).

The solution of (4.15) can be written

= 1
IwaB) - I O'B)+ ea-l-eBTHl—H

or

[v8) (yd [ V]y,q)
€0+EB—SY_86

(4.16)  |ygg)=lap) + ) )
v>F 3>F

The cencept of self-consistency arises in the following

way. Since A€ is the energy shift of a pair, if a particle

ap
is in the state B then the interaction with all other particles
must be = Aeaﬁ hence we get a new single particle potential

alF
Ut

To assure self-consistency we must choose U (equation

(4.6)) so that the resulting U is as close teo it as
possible.
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Thus we have the fellowing equations for the independent

pair model of nuclear matter

[v3) (ys [Viv,g)
(4.17a) |¢a5)=l“3) + Z Z £ +eB-eY-eaB

voF 3OF ¢ 5
h2%2
e, = elk)) = 5t U(ka)
(1.17b) Megg = (o [VI¥ge)=(oB [VI¥y,)
(4.17¢) Ulkg) = ) Aegg
o<F
(4.17d) E=E,+% ) Bt g

oF B<F

It should be noted that because of the self-consistency
requirement the value of the BG wave function '*dﬁ) is required
for ka,kB > kF. The wave function in this case is taken to
be (4.17a), using the principal value of the integral. We
shall no longer use ¢ to denote the principal value of an
integral but will simply understand from this point on that
all singular integrals arising will be taken to be principal
value integrals.

It should be noted further that in this discussion we have
completely neglected "propagation off the energy shell" effects.
This phrase was coined by Brueckner and the concept explained

2) 1)

in some detail by Bethe™ , by Brueckner and Gamme y and by
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Brueckner and Goldmanls). The whole point of the matter
is that the energy denominator ocecurring in (4.17a) cannot
strictly speaking be written €, * Eﬁ - eY LN since the
energies of the two particles in the virtual excited states
(i.e. in levels y and 3) depend not only on these states
but also on the states of the two holes remaining below the
Fermi sea. The wave function of the two particles in these
states thus depends on four quantum numbers (y,s and two
for the holes) and satisfies an equation which is similar
to (but more complicated than) equation (%.17a). In the
energy denominators of this more complicated equation, the
energy of the particles in the virtual excited states will
depend on additional quantum numbers and the wave function
describing these states will satisfy another more complicated
equation with still more complicated energy denominators
occurring. This situation is repeated without end.
Fortunately however the dependence on the additional quantum
numbers is not great and what can be done is approximate
the effect by introducing in the first step some average
excitation energy in the energy denominator, thus terminating
the infinite set of equations. Brueckner and Gammell) have
done this (they call the average excitation energy A) and
their results are indeed net strongly dependent on A. As

mentioned abeve, we shall neglect this complication entirely

in this thesis.
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Let us now introduce an operator K defined as follows
(4.18) K|aB) = VI%B)

so that from (4.17) we have

(4+.19a) (a*B*|K|aB) = (a'B*|V]ap) +Z Z Wﬁ
y>Fs>F P Y b
(4+.19b) degy = (ap|K[ap) - (ap|K[po)

Equations (4.19) were first introduced by Brueckner in
his investigations of the nuclear many-body problem. Equations
(4.18) and (%.19) will form the basis of the remainder of the
work of this thesis.

We shall now put (%.18) and (4.19) in a more useable form
by noticing some properties of the two-body potential. This
potential is diagonal in isotopic spin space (since we neglect
charge) and further can connect only states of the same total
spin of the two particles. Thus in equations (4.18a) and
(¥.19a) we can suppress the isotopic spin part of the wave
function, and in addition we need only consider pure total

spin states of the two particle system. Thus, we shall take

R X, xSmS) in place of |aB)
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and

lwklk2; XSmS) in place of [waﬁ)

where we now write the wave vectors of particles 1 and 2 as Ei
aniﬁé rather than Ed and EE, and where XSmS is the normalized
spin eigenfunction. (If 8 is the total spin vector of the

two particle system and SZ the z-projection of §, then

XSmS is an eigenfunction of 82 and Sz with eigenvalues
S(s+1) and mq respectively.)

From (4.18a) then, the equation for |¥, , 5 Xg, ) is
1 2 S

‘Wklk25 XSmS) = |kyko3 XSmS)

-+'-+

|k ko3 Sm')(klkZ’X 'Vl‘l’k kQ’XSmS)
+ L L L e(kl)+e(k2) eﬁ -e(;f

t

We now consider the coordinate representation of this
equation. We can separate out the centre of mass motion
provided V is independent of the centre of mass position

coordinate of the two particles, as we now show.
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We have
(%.20)
iR, oF, ik, T
2 )Xo, = (B3 X, J=Le 1 1272y
¥k, T2 Xem 1 2"1’klk2’ smg’™ Q Smg
-+ =+ -+  —+
ik-°*r, ik,°r
1 M1t Meato St .
+S Q e *md ks Xgne | V¥ k3 Xom )
+ [ t
f; lz 'Z S(kl)+€(k2)-e(kl)'8(k2)
where we have used (4.1) to write
iX, 7, ik.°T
e T 1 1 1“1 2 +2
(r17olk ki Xgp ) = 5 e e Xsmg,

Now let us introduce centre of mass and relative coordinates

by
- ;|__-+ 7 o S e 4
- _]; -+ —h e
-p

- =+ > P .
kl'rl + k2 T, = Ker + 2?'§

where k is the relative momentum, 2P is the centre of mass
momentum, T is the relative coordinate, and R is the centre

of mass coordinate.
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Now if V is independent of the centre ef mass

coordinate we can write

o,y = 1 2PER @
so that
__,:_+t _
- 5; j & & e-l(k'-r -2t R) xSmé V(r)ezi?'ﬁ e XSmS
= a1 = (Y Xgup 1V ¥yps Xgp )
57 Smg, k Sms.
where

B X [VIpiXey )= [ ar e F 4 v(@y, @
(¥ ; smy| H’kP’XSmS =[are Xsmg VP ¥ep(H)Xgn,
and where we have used

t
_é f af 2 (F-P)-R _ bt

From (4.20) we obtain the fellowing equation for *kP(F)XSm

S
LT -
(4.22) WKP(?)XSmsz JiE-T XSmS +
i‘ﬁ"'? (—b'. v . )
.1 Z "'i e ngé K QXSm_éI |WszXSmS
. L (P re (BB e (R ) -e (PR

L]
|P+E | >kp mg=-S
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b §
The summation means summation over all K wherein

| 1’+§' | >kp
|?4k | >kp and [?Fk |>kpe  Taking now Q - co we replace the

summation by an integral using

(%.23)

so that finally

-
K7
X +
SmS

(4.28) ,p(DXgy =

+S

-1 - b, % =+t -1
+ ) ]d Xsmg Gp (5T Wgpt V) yeplr ) Xgp

Gy p(Fy B 2RI F )= (B ) aE' e 18’ (1"1‘)
KP‘\*? kP I?jk"| k;(?+g)+5(?.")-a(?’+k )—e(?—k)

The K matrix elements now are

1,1
(+.25) (R K5 Xgp IKlkl 2 Xgn ) = (R, E; 25 Xsme | Ve i g ) =

i
Ol

&' oy | KIE:FiXgy )
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where we define
t 4
(k.26) (% ;XSmélKIE',?;XSmS) = (K ;xSmélvlka;xSmS) =
'k‘ =+,
=fd.1-" e-l T Xsmé V(?)\kkp(-f)xSmS

From (4.26) and (4.24) we get the following integral equation
1

=1 7' It
4.27) (B ;xSmélKlE,?;xSmS) = (K ;XSmélvlk;XSmS)

. +§ , )3 dk (k ,Xsmélvlk‘";xsmg) (k ;XSmglKli)p)XSmS)
e am B, PR PR e () e (P-E)

mi=- -
S

where (4.28)
'. -+, _ -+ -E' '? * iﬁ'?

The similarity between equations (&.24), (4.26), (4.27)
and the two-body equations (3.9), (3.12), and (3.13) should
be noted. 1In the two-body case it is possible to effect a
complete separation of centre of mass coordinates but in the
BG case this is not possible because the lower limit of the
E" integrals and the energy denominators have a ?'dependence.

That a ?“dependence arises in the BG case and not in the
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two-body case should not be surprising since in the former
the two particles are moving against a background of other
particles, whereas in the latter the particles are isolated
in space. This ?‘dependence complicates the problem
considerably but in the next Chapter we shall introduce

techniques to handle this.
We shall now put (4.17¢) and (4.17d) in more convenient

forms. We make the observation that the potential can be

written as

v =1yt o Ly e 3yt 4 3y
where 1V+ connects only states having singlet spin, triplet

1 1

isospin, and even parity (i.e., Sgr Doseee )

1V' connects only states having singlet spin, singlet
isospin, and odd parity (i.e., 1P1,1F3,...)

3V+ connects only states having triplet spin, singlet

isospin, and even parity (i.e., 381, 3Dl,...)

3V_ connects only states having triplet spin, triplet

isospin, and odd parity (i.e., 3P 3Pl,...)

0’
When V can be written in the above form, then indeed K can be

written as
K = 1kt + 1 + 3x* + 3k

1

wherelK% connects the same states as does V+, etec.
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Thus we have that

(%.29) Z Z [kaB[K[aB)-(aB[K[ﬁa)]
o<F  B<F

= 1.+ L=t 5 .
=) } [6“‘1 23X g0 |7 K [ Eps5X ) +2(R Kp5X o 17K [Ky K3 o)
k <kp  ko<kg

+1
> =+ I -+ R }]
+ Z {2(klk2,xlm8[ K [klkz,xlms)%(klkz,xlmsl K |klk2,xlms)

ms=—l

The statistical factors can easily be understood. In the first
term, for example, a factor 3 comes from summing over the 3
isospin states, and another factor 2 arises from the exchange
terms.

We can write also

(+.30) ) [ (opIK[op)-(ap|K|pe) | =
a<F

L BT x ) 4 L2 o ke EEs
K1k Kps X o0) * 5(E Ko X 0| 7K [y Kp5 3 o)

L 3= T .
+ 21{ FEEys Xy, | 3t R R 5 % n)* 3E®E, 21y | K |klk2,xlms)}]

The summations in (4.29 and (4.30) can be changed to
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integrals using (#.23). In (4.29) we write

Z Z -+ ) Z[ dkz
(2
k1<k k2<kF k k <kF

Now from (4.21) dﬁidﬁ = 8dKdP, and using (4.5) we can

2
rewrite one of the Q's as 31_§, so that

2kF

(4.31) L QkA (—zi)_é fd? f aK

ky<kp  kykp F P<ky | PR <k

The integral over K is over all values of K wherein
|P+E|<kp and |P-E|<kp. The integral over F is over all
values of P wherein P<kF.
In (4.30) we write
Y ~ ks aky
kikp Tk

But from (4.21) dﬁi=8dﬁ when Eé is kept fixed so that we

write

(4.32) ) 8 J[ o3
k) <kp (2’ | 2R+ | <l

The integral over K is over all values of E wherein

- p =P
E, is fixed and |2R+E,|<kg.
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Let us call E-E, the potential energy (PE) of the
system, then using (%.17d), (4.29), (4.29) and (%.31) we

have

(k.33) PE/A = 1?3“1:—3 f dP f dE |:3(R';xoollK+|‘k’,?; X o)
F Pk |PHEl<kg

+ (B3 x o | KT IE, P x )

+1
+ 7 { @y, BEIRE =, ) + 3@ %y PKIEF =, 0 ]
msz'l 5 S 5 °

Using (4.17¢), (4.30), (4.25), and (4.32) we have

(4.3%) U(k,) =

= —13 f dK [3(1:’; xooIlK+I‘E,I’; x5 0) (K xoollK'lk',?; %)
o na
|2k+'R'2|<kF

+1
+ Z {(R’;xlm 13" |E,B; %o )+3(K; LI |3k |2, B; ®qo )}]
= S S S S
mS--l
In the above ?ﬁE;Eé from (&%.21).
We have now put the self-consistent equations for the
IPAM in a useable form. The procedure now is to solve (&.2k4)
for the BG wave function, use (4.26) to obtain the K matrix
elements (or obtain the K matrix elements directly from (4.27)),

calculate the new single particle potential from (4.34), and
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calculate the potential energy of the system from (4%.33).
Self-consistency is obtained by adjusting the energy
denominators so that the single particle potential used
there, is equal to the single particle potential calculated.
The energy of the system will be a function of kF. If the
nucleon~-nucleon potential used provides an adequate description
of the nuclear force, and if the IPAM gives a good description
of nuclear matter, then, when kF is varied, E/A should attain
a minimum of approximately -15 Mev when kp = 1.k (fermi)_l.
Attempts to improve the IPAM (or the Brueckner
approximation) have been made by including the so-called
"hole-hole interactions'. In the virtual excitations of the
system, the interactions between the two particles above the
Fermi sea have been taken into account, but no interactions
of the two holes below the Fermi sea have been included. It
has been conjectured that a model which includes these
latter interactions would give a better approximation to the
many-body problem.6’7) Of course, the interaction of the
two holes is really a many-body interaction and thus including
the hole-hole interactions means that we now include certain
many-body interactions. As we pointed out in Section k.1,
the Brueckner approximation for the energy consists in
picking out the "ladder" diagrams from the Goldstone series.
Including hole-hole interactions means including, in addition

to the ladder diagrams, diagrams containing interactions
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between the hole lines on the ladders. When hole-hole inter-

actions are included, the BG equation (%.15) is changed to
3D @y g = - QDTN

Z Z lya) (yal

y<F &o<F
and the integral equation for |¢aB) now is

(4.36) I¥gg) = lap) +

e+ eg-e -eb et eg-e -e;
y>F 8>F Y Y<F &<F Y
The principal value of the singular integral is to be taken.
The new K matrix is given by

(4.37) (a'p'|K|aB) = (a'B'|V|ap) +

+zzmmmm1maz T [ eterltim okl

e t+ g, -¢ -£ _-€
y>F 8>F By ¢<F o<F BT

and (4.24) and (4.27) become
(%.38) &kp(?)xsms =

m4=-5
- —+1
GkP( T ) =
1 t
3 ' . iE «(F-7)
=(=2) g - dE .
o [ j' L ]e(?+ﬁ’)+e(F-E)-e(?+k )-e(B-E)
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(1.39) (E';xSmé IKIEPs X gy ) =

= (E';XSmé VIEs g ) * Z ) [ j B
mg=-S | B+RY | >kp,

1§ " n
- dE

. e (B+E) 4 (F-B) - e(B+E)-c(P-B)
<KEp

In the above the principal value of the singular integral is
to be taken.

The wave function given by (4.35) (which we shall call
the Bethe-Goldstone-Iwamoto (BGI) wave function) does not
heal to the unperturbed wave function at large distance
(when ks kB < kF) because of the pole in the second

7) has pointed out, the physical

integral. However as Iwamoto
interpretation of the BGI wave function is different from
that of the BG wave function. The BG wave function is the
amplitude of the physical particle pair state compared to
the degenerate Fermi gas ground state, but the BGI wave
function is the amplitude of the physical hole pair or
physical particle pair state compared to the physical A
particle ground state. Thus there is no reason why the BGI

wave function should heal to the unperturbed two-particle

state. One can think of the BG wave function as a
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Teamm-Dancoff amplitude and BGI wave function as a
Tamm-Dancoff~Dyson amplitude.

This completes our formal analysis of the nuclear
many-body problem. We have set up the equations for the
IPAM and for the IPAM including hole-hole interactions and
we shall in the next Chapter examine these equations when

the potential is given by our pseudopotential (2.5).



CHAPTER V

USE OF THE PSEUDOPOTENTIAL IN THE NUCLEAR MANY-BODY PROBLEM

In this Chapter we shall apply the BCM via our pseudo-
potential (2.5) to the IPAM equations of the last Chapter.
The pseudopotential is equivalent to the BCM and we have
in Chapter III used it in a discussion of the two-body problem.
We found then that because of its simple structure certain
equations could be solved exactly. We investigate now what
success the model has in the many-body problem, and in
particular in the IPAM of nuclear matter. We shall see
that the simple structure of the pseudopotential allows us
to handle the IPAM equations relatively easily and without
taking recourse to perturbation methods. Thus we are able to
use a realistic description of nuclear forces (the BCM) and
still obtain simplicity in handling the IPAM equations.

We shall be concerned with finding the K matrix elements.
There are two methods we can use: We can solve (4.24) for the
BG wave function then calculate the K matrix elements by
(4.26), or we can solve directly the integral equation (&.27)
for the K matrix elements. We shall use the latter method.

(For simplicity we neglect for the moment the hole-hole

-67-
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interactions since they can easily be taken into account at
the end of the calculation.) It will be recalled from our
discussion at the end of Section 3.2 that, in the two-body
case, these two methods lead to different results since by
solving directly the integral equation for the K matrix
elements, it is not possible to take into account the
discontinuity in the first derivative of the Schrodinger
wave function. The same situation will prevail here

since the first derivative of the BG wave function is also
discontinuous at the core radius. We shall then do the
following: We shall disregard the difference between r:
and r; in the pseudopotential, and then in our final results

for the K matrix elements we shall interpret certain integrals
similarly to the way they were interpreted when we constructed
the two-body K matrix elements from the Schrodinger wave
function. As a check on our results we should find in the
singlet case that as kF -+ O the diagonal K matrix elements

for each angular momentum state are proportional to the

tangent of the phase shift. These remarks will become

clearer later. The important point here is that we can
disregard the difference between r; and r; in the pseudopotential

when we solve the integral equation (4.27) for the K

matrix elements.
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5.1 The K Matrix Elements for Singlet Spin States

Let us consider first the singlet spin state pseudo-

potential which from (2.5) is

2 2 f
(5.1)  W(r) =B go [ ;iz b (e, )b (ror, O | 2y

The integral equation we want to solve is (4.27) for S=0, that

is,

| § | 3 " L § 1 11
(5.2a) (B |KIE,B)=(R |VID)+ (5 fgk' LR IVIE) (R |K|E,P)
IP+E | >k

(5.20) e = e(B+B)+e(B-E) - e(F+E )-c(B-E")

We neglect for the moment the hole-hole interactions since
we can easily take these interactions into account at the
end of the calculation.
First we need (Etlvlg) which is defined by (4.28). Using

(95.1) and the decomposition (3.17) we have

RS Y -
(5.3a) (R'|V|®) = _[d? e—lz Toy(r) eﬂz'r

w +1
= Y ) ek, (kDb ()Y (k)
=0 m=-{
(hwh)gro
(5-3b) a/?/(k') = o .’]L(k'ro%)
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(5.3c) b&(k) = f£3£(kr ) - kr, Jl(kr oy

We now substitute the separable potential (5.3) into
(5.2) and obtain:

o +,
(%' |X|%,B)= Lzo z& ay (kMY (k") [bL(k)Yzm(ﬁH
pred m:-

3
() fdk "e™ b, (kMY (km) (2" [K|B, ?)]
IB+R | >kp

That is

(5.%) (' |K|E,P) = Eg z;, ay (k)Y (k") £, (K,7)
= M=

where

A 3 1 t
(5.5) fm(ﬁ,?kb&(k)YLn(kH(%) '[(:E e'lbL(k")Yzm(ﬁ")(E'IKIE,P)
| B+K | >kp

Now by substituting (5.4) into (5.5) we obtain a set of

algebraic equations for the fls:

- _ *
(5.6) fxm(k,?)~b&(k)Y£m(ﬁ)+

Z Z L(E P) -[ ik e b&(k")a (k")Ym(k")Y (k')
L=0 u=-L | P2’ |>kF
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Let us call the integral occurring in (5.6)

I&m;Lp(E;P)’ i.€e,

(57) Lygyp, 0P = ["dE"e_lb&(k")aL(k")Y;/m(k")YLp(k")
IP+E | >kp

In constrast to the two-body case, we cannot immediately
simplify this integral by using the orthonormality of the
spherical harmonics since the region of integration is not
spherically symmetric. The condition |P£E"|>kF means that
the integration is over all of K" space exterior to the
volume of two spheres each of radius kF’ the distance between
whose centres is 2P. If the origin of E" is halfway along
the line joining the centres of the spheres, then, for

P<kF, the integration is over the darkened region in the

following figure:
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The lack of spherical symmetry of the integration region
prevents us from giving an exact expression for (E'|K|E,P)
since (5.6) is an infinite set of coupled algebraic equations.
For the special case when P = O the integration region is
spherical and the equations uncouple. The difficulty then
is in treating the non~zero centre of mass momentum case.

In the more standard treatments of the Brueckner theory the
same situation arises, of course, and what has been done is
either to assume (R |K|E,P) is independent of B and thus
equal to the value for P = 03), or to treat the non-zero
centre of mass momentum case in some average fashion.l’h’S)
We shall make no such approximations. In the treatment we
give below we shall assume for simplicify however that the
energy denominator e is independent of the angles between
the k-vectors and the P-vectors. (It is indeed independent
of angles in some cases as we shall see in the next Chapter.)
The methods we introduce below can be used to handle the
case of angular dependent energy denominators but we do not
ineclude this most general case here.

Let us concern ourselves now with the integral
I&m;Lp(E’p)‘ This is a three dimensional integral but we

shall introduce a technique for handling the angular integra-

tions. We note first that

]PEE"|>kF means k"2-2Pk"|cose]+P2>k§
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1
where § 1s the angle between X and P. We shall consider

P to be the z-axis for the coordinate system so that we

can write (5.7) as

Lyn;pu(BrP)= j’dk"k"2d(cose)d¢e'lb£(k")aL(k")Yzm(6,¢)YLu(6,¢)
k"?-2Pk" | cos |+P>ka

Now we define a function ¢(k,P,|cosf|)by

2

2_2Pk | cos@ |+P2>k2

(5.8) ¢(k,P,|cosp|) = 1 if k

0 otherwise

so that Iim;Lu can be written

(5.9) Ty 1, (,P)=

-} +1 2T
2 r -1 *
dk"k" d(cosB) | dp e ~by(k™Ma  (k")Y, (8,9)Y; (8,9)z(k",P,|cosB]|)
I, _{ L e AP AL i ALl

it
Thus by introducing z(k",P,|[cosf|) we can extend the ¥ integral
over all of momentum space. This trick has also been used

1) and by Moszkowski and Scotth)

by Brueckner and Gammel
but they further replace the function they have introduced
by its angular average. We shall go beyond this

approximation.
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We now expand z(k,P,|cosf|) in terms of Leg

polynomials, P&(cose). These functions have the following

properties:l9’20)
+1 >
(5.102) [ ax Py(x)Ppy(x) = mp5y b4,
-1

(5.10b) Po(x) =1 Py(x) =x

(5.10¢) Py(x) = Efii [?L*l(x)—3£_l(x)]

(5.100)  By(-x) = ()%, ()

(5.100)  By(cose) = [22=]7 v, (o)
.10e g (cosB) = 1+ 2,0 0

We write

¢(k,P, [cos8]) =) A&, (k,P)P)(cos)
2=0

where using (5.10a)

+1
A&(k,P) = £H§i= I d(cose)C(k,B|cose|)P&(cose)
-1
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We are concerned with P<kF. From the definition of

€ (k,P,|cos@) we have that

1)  if k «/ka-P2, €(k,B|cosB|)
Ay (k,P) = 0

i

O for all 6, so that

2) if k> kptP, £(k,P,|cosB|) 1 for all 6, so that

using (5.10a), A/b(k,P) = b&’o

3 if  VkE-P? < k < ky*P then

+
A&(k,P) = Q&EL j . d(cose)P&(cose)
-%

2. 2 2
_ kTHPTky

L 2Pk

The integral can be evaluated using (5.10c¢). Using also

(5.104) we obtain

Ao(k,P) = K
B (GP) = ¢ Py (-By 1 () if £ even (170)

0 if £ odd

Finally then

=]

(5.11a)  T(k,P,[cos8]) = } A (k,P)Pyy(cosH) =
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where for P<kF

(5.11b) Ao(k,P) = 1 if k > kp + P

X ikag - P2<k<kF+P
0 if k < Vk%-P2

(5.11c¢)
2#0, A2¥/(k,P)= J 0 if k> kp + P
s o/ 52
~ 0 if k < Va-p°
k2+p2 k2

(5.114) K= PR

Thus we have
(5.12) | ank®a(cose)ayp =

|P+E | >k
© oo +]1 2m

- {ZZ(E§§i)% [ axk® [ aCcose) [ dphoy(k,P)Y, (6
=0

0 -1 o)
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In this expression, P is considered to be the z-axis of the
coordinate system.

The first term in the series (5.11) is the angular

average of ¢(k,P,|cos8|) and is indeed equal to the function

used by Brueckner and Gammel (equation (34%) in their paperl))

and by Moszkowski and Scott (equation (III-7) in their
h)).

paper Thus their approximation consists of taking only

the first term in our series (5.11).

In Figure I we have plotted AZL(k’P) for 4=0,1,2,3 and

1

P = > kF. We see that the A's oscillate more as £ increases

and that their amplitudes decrease as ! increases.
Substituting (5.11) into (5.9) yields

Lynnu(EoP) =

=Idk"k"2Jd(cose)Id¢e-lbL(k")aL(k")Yzm(e,¢)YLH(9,¢)x
0 -1 o

= %
x [Z E);%.) Aza(k"’P)Yza,o(e):l
a=0

If we now assume that the energy denominator eszg(P+E)+e(P-X)-

e(P¥E")—e(P-E") is independent of angles, the angular integra-

tions can be performed using 2la) ‘

+1 2w
(5.13) jld(cose>jd¢ Y13m3(9,¢)Y£2m2(e,¢)Yxlml(e,v) =
- (8]

(20,+1) (20,#41) 7%
= [_ 4#(2L3+i) } (&1L2m1m2|&3m3)(£1&200I&BO)
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where (£1£2mlm2|£3m3) is a Clebsch-Gordan coefficient.
We have finally that

© o
=) (21‘11)%(&1 »L50,5k [43m) (20,1,0,0 [4,0) [akmkn?e~1h, (k™ ap (k") A, (k",P)
a=0 v o

if e is independent of angles. (I£m;Lu is now independent of
angles because of the restriction to angular independent

energy denominators.) We could, of course, let e have an

arbitrary angle dependence and then expand it in terms of

Legendre polynomials. For simplicity we have not included

this most general case.

Let us now note that (2a,L0u|4im) is zero unless u=m,21b) and
(2a,L00 |40) is zero unless L-{ is an even integer.le) Thus
Ilm;Lu is zero unless p=m and L-{ is an even integer. These
facts are manifestations of the two symmetries possessed by
the integration region (see Fig. A): There is cylindrical
symmetry about P and reflection symmetry about a plane passing
through the origin and perpendicular to'ﬁ. The first symmetry
implies that p=m, and the second that L-f is an even integer.
Thus we have coupling of S states to D states, S states to
G states, etc. We note that the coupled terms occur for
values of o different from zero, so that taking a¢=0 only
(as, in effect, Brueckner and Gammell) and Moszkowski and
Scotth) have done) means neglecting and coupling between

the states.
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Finally then we can write (5.6) as

-+ _ X ~
(5.15) f&m(k’P) = bl(k) Y&m (k) +

3 0 oo %
+ () ZO Y £ (B:P) (3EL) " (20, Z0m| 4m) (20,1001 20)
L=0 a=0

- 2 -1
% jodk"k" ™Mby (kM ay (k™)A, (k",P)

We are still left with an infinite set of coupled algebraic
equations but we have considerably simplified the situation
by reducing the integrals to a single integration over k".
Except for the restriction to angular independent energy
denominators, no other approximations have been made. We
can truncate the infinite setrof equations by restricting
ourselves to a finite set of angular momentum states. That
is, if we suppose that the potential vanishes for states
with angular momentum greater than xmax’ say, (which in effect
it does because of the angular momentum barrier) then
this means g%(k) = bL(k) =0 for 4>! .. and thus the upper
limit of the summation over L in (5.15) can be replaced by
£max'

Up to this point in this Section we have neglected the

hole-hole interactions. When these interactions are included

t
the integral equation for (K |K[E,?) is, from (%.39) with



s=0,
(5.16) (X KK, B) = (X |V]E) +

3 - - -l = -+ -+ -+
@[ [ & - [ ak e \VEDE" KD

-+ =M

-1
ﬁsik l>kF [P+ l<kF

rather than (5.2). Proceeding in a manner identical to that
following (5.2) we find that (5.4) still holds but now the

equation for the fts is

-p * A
(5.17) fh(k,3)=b/t(k)Yim(k) +

+L
3 " - A A
w2 L) e, P[] "d)z“ - [ B e o lema Ge0ry (kY (")
L=0 p=-L B4R |>kp  |PHE | <kp

We thus have to calculate a new integral, ka;Lu(E3?):

We shall use a procedure identical to that used to reduce

I&m;Lu to a single integral. We note that

2

U}
|P+E |<kp means k"2 + 2Pk"|cos 6] + P< < kg

(i}
where § is the angle between § and P. We shall consider
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P as the z-axis for the coordinate system so that we can

write J&m;Lp as

Tpmsp(EoP) = [dk"e"® a(cos8)dp e tby (kM ay (k™Y (0,9)Y1,(0,0)

k"2+2Pchosel+P2<k§
Now we define a function n(k,P,|cosf]|) by

2 2

(5.18) n(k,P,|cos8|) = 1 if k®+2Pk|cosd|+P k3

0 otherwise

so that ng;L can be written

n
TymyrulEoP) =
] +1 2
=[ak"k"?[a(cos) [dp e Loy (kM ay (kMY (0,9)Y], (8,9)n(k",P, [cosp])
0 -1 0 '

We now expand n(k,P,|cosg|) in terms of Legendre poly-

nominals: -
n(k,P,|cos8|) =) B, (k,P)Py(cose)
2=0
+1
B&(k,P) = 2&§l I d(cos 0) n(k,P,|cospl) R& (cosB)
~1

We are concerned with P<kp. (It should be noted that n=0 if
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P>kp.) From the definition (5.18) of n(k,P,|cosp|) we
have that

1) if k> Vk3-P2, n(k,P,|cos6|)=0 for all ¢ so that B (k,P) =0

2) if k< kp-P, n(k,P,|cosp|) = 1 for all 6 so that 3%(k,P)=b£O
3) if ky-P<k< Vk3 -P?  then

=K
B&(k,P) = 2£%l j d(cose)P£(cose)
K
24p2-k2

¥ 2Pk

This integral has been evaluated above and we have

Bo(k,P) = -«
By (k,P) = ¢ - [P£+1(K) - R%_l(xi] if X even (L # 0)
0 if L odd

Finally then, for P<kF, we have

(5.19a)  n(k,P,[cosp|) = z B,y (K;P)P,y (c0S0)
2=0

(5.19b) Bo(k,P) = 1 if k<kgp-P

«  if kgP<k< V k§-P2
0 if k>\/k§-P2



(5.19¢)
L # 05B,y (k,P)= J 0 1f k<kp-P
. iz o2
—[P2/?/+1(K) -P2»?,—1(K)] if k.F""P<k< k.F-P
|0 if k> V3P
k2+P2-k§
(5.114) K = —S5——

2Pk

Thus we have

(5.20) | akk®d(cose)dp =
| P+K| <kp

© _%_ ] +1 2w
= T ([ akk? [ aCeosd) [ dp By (k,PIY,y ((0)
£=0 -1 o

(v

In this expression, P is considered to be the z-axis of the

coordinate system.

Using (5.19) and (5.13) we have

Z <2L+1 (2a,Loul£m)(2a,Loo|&o)f QK" e by (kM ap (K")By, (k",P)

0

if e is independent of angles.
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Thus, finally, we can write the equation for the ft's as

(5.22) £, (R,P)=by (k)¥y, (k) +

3(!) o
+ (5% Z: z fLm(K,P)(%%E%)%(Za,LOmiim)(2a,LOO[&O) X
L=0 a=0

X jdk"k"e e_lbL(k")aL(k")Cga(k",P)
8]

where
(5.23a)
Co(k,P) = j - A if k<kF—P
K if kp-P<k<V k5-P2
" if V/ k2-P3<k<ky+P
L 1 if k>kF+P
(5.23b)
a#O,Cga(k,P)=<{ 0 if k<kF—P
/.2 52
XEPQCI"F].( ‘K) —P2a-l( K)] if KF"P<k< k.F‘P
'F/ 2 .2
P2a+l( K) -P2a__1( 1() 1 k.F"'P <k<k.F+P
0 if k>kF+P
(5.114) k2+P2~k§

K 2Pk
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(5.23c)

O when the hole-hole interactions are neglected

1 when the hole-hole interactions are included

That is, when \=0, C2a=A2a and when A=1, C2a=A2a'Bza' We
have introduced the quantity N in order to keep track of
the terms arising because of the hole-hole interactions
The f's above are functions of the angles of K. It
is convenient for later work to separate out this angle

dependence. To this end we write

o
(5.28) £, (B,p) =) £fM,p) vy ()
=0
Substituting (5.24%) into (5.22), multiplying both sides by
YXm(R)’ integrating over ﬁ, and using the orthonormality
of the Y's (3.16) yields the following equation for
4™ (k,P) 2

(5.25) fﬁz)(k,P) = 5h&bL(k) +

537 T e or) @b (20, 10m m) (20,100 20)
L=0 a=0

0
X J‘ dk"k"2 e—lb,[,(k")aL(k")CZQ(k“’P)
(3]

Where 5)A, is a Kronecker 3-function. The equation for the
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K-matrix elements is then, from (5.4) and (5.24):

(5.26) (R'|K|E,B) =

© o
= z Z z ay (k') fg;)(k,P) YM(E')Y;‘@(R)
1=0 A=0 m=-1

In arriving at the above equations we have disregarded
the difference between rg and r; in the pseudopotential
(2.5). As we pointed out at the beginning of this Chapter,
we shall interpret the integrals in the equation for the
f's similarly to the way they were interpreted when we
constructed the two-body K matrix elements from the

Schrodinger wave function. Thus we interpret the integrals

in (5.25) as follows:

(5.27) [ akk"® e"Loy (kM ay (k"C, (k",P) =
0

M) w '
=3 jdk"k"ze‘le(k"roL) [f,cj NUCIREL L(k"r;L)] Cpq (K", P)
(o]

1
That is, the argument of iy contains qu. (Compare this
integral with the integral occurring in (5.33b).) The
similarity with the two-body case can be most easily seen by

considering the nuclear matter K matrix elements when P=0.
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We have in this case

(5.28a) Co(k,O) = -\ if k<kg

+1 if k>kF

(5.28Db) Cza(k,O) =0 fora#O

Using (5.25) to (5.28) we have then, when P = 0,

o +3

(5.292) (@ [K[E,0) = +m2 ) ) (k'K (0¥, (kDY ()
=0 m=-1

(5.29b) (kt|Ky [k) =

hzro .
il J/?/(k'rolﬁ) fLaL(kIO’L) - krO/P/J/?/(krOL):'
2h2r°& © kF 5 -1 .
1- — (j-xj )dk"k" e iK'z ijL(k"roL)-k"roLjL(k"rO&)J

kF o)

Equation (5.29b) differs from the two-body equation (5.33b) in
three ways: 1) by having an integral proportional to A (i.e.,
the hole-hole interaction term), 2) by having the lower limit

of the first integral k., rather than zero, and 3) by having

F
different energy denominators. If in (5.29b) we take kF -+ 0
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and e = I};(kz-k'@), then (5.29b) becomes identical to the
two-body equation (5.33b). In particular, we have in this
limit that the diagonal elements (k|K&|k) are proportional
to tan 5&’where oy is the phase shift (see equation (3.24)).
We wish to point out that the limit obtained in this manner
will not be the low density limit of (k|K&|k), this being

22) The difference in the

proportional to the phase shift.
limits lies in the interpretation of the singular integrals.
When principal values of the integrals are taken the
resulting limit must be proportional to the tangent of the
phase shift. To obtain the low density limit a more
sophisticated handling of the singular integrals is
necessary, but we shall not discuss this point further in
this thesis.

This completes our discussion of the K matrix elements
for singlet spin states. We have found that our pseudo-
potential leads to a soluble set of algebraic equations, and

in addition we have shown how non-zero centre of mass momentum

effects can be taken into account exactly.

5.2 The X Matrix Elements for Triplet Spin States
The triplet spin pseudopotential is, from (2.5):

' 2 3 f
= h JJ
(5.308) V(r) = B JZO{[roJJb(r-roJJ)-b(r-ro y 2] 2y

S (ror, )-s(r-1, )L ]
+ [r o(r-r  )-s(r-r )77 (PJ,J+1,1 + PJ,J-l,i?}
07 J J
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where

. + 28

]&J J+1,1

M
(5.30D) S]-JIJ,J_]_,]_ J,J-1 1"J’,J’-—l,:l.

£(®

LM M
(5.30¢) &&J,Jq.]_,l M’J J- 1 1 fJ,J'*'l 14'.]',J+l,l

(5.308) SYyyq = O  otherwise

The integral equation we want to solve is,~fr6m (%.27) with

g 1
(5.31a) (K ; X 1ng |K|E,P; § Xp) = (B 5 %0 |VIE; Xip) *
S
3 2t
. "o . 1 n it
+(E Z J dk e l(ﬁ ;leé|V|E ;xlmg) (¥ ;xlmglK_m,?;xlm )
mi=-1 [P+E [>kg |

where

(5.31b) e = (B+E) + e(B-B) - e(B+&") - e(B-R)

and

-
e

t
T >, _ [z -iK T
(5.32) (% ,xlmé|V|k,xlmS) = jdr e lmSv(r)e les

We neglect for the moment the hole~-hole interactions since
we can easily take these into account at the end of the

calculation.



Now, .
© +
oEFx gy = lm Y ) i J&(kr)Y%m (xmij @) x gy
X/:‘O m/?/='/E/
and
2+S
A _ M -
J=[1-5| o
SO
ikeT -
(5.33) e Xig =

S

o ], A+l m.+m
= ) ) ) 1wmwya%mygmmnﬂmmL 5
2=0 m&—-L J=|4-1|

We substitute (5.33) and (5.30) into (5.32) and use the
orthonormality of the uﬁs to simplify the result. The
calculation is very straightforward so we shall just quote
the results. We suppose as a simplifying assumption that
there is just one core radius T for each state (that is,

J

we take r =r ). In this case we have
°3J °7

(5.34a) (¥'; X 1y V13 X1 ) =

=) X: Y (3+E,1,MemE,mE | IM) (T+n, 1, Memgymg | TM) g, (KDY m,(k )x
J=0 M=-J (&)

* A
* Dy (Y3, yon (B
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where Z means that the pair (¥,n) takes the values (0,0),
(E?)
(1,-1), (1,1), (-1,1), (-1,-1) and where

(brn) 2
I‘OJ

(5.34b) aj (k*) = ——F jJ+E(k'roJ)

(5.34e)  boq(k) = fJJjJ(kroJ) - kronj(kroJ)

- 1 - s q

J
- (t) .
- (t) .

We now substitute (5.34%a) into (5.31). The procedure is
similar to that used for the singlet spin case. We can

write

|
(5.35) (R ;xlméixlr{,?;xlms) =
o +J

L L G MngmE T e (DY 0 (R0 £ (B,Pomg)
J=0 M=-J (&) S
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where the f's are solutions of the set of algebraic equations:
E,P * k

(5.36) fJMEn( R ,ms) = (J+q,l,M#mS,mS[JM)bJEq(k)YJ+q,M;m (k)

3 +1 +1L

+(§1;-r) Z (J+1,1,M-mg,m¥ | IM) z Z (L*‘Y’l’““mg’mg'L”)fLwa(ﬁ’?’mS)x
ny=-1 L=0 p=-L(y3)

i * ~ L
BaE | >k
|F2k | >kp
We can use (5.8) and (5.11) to simplify the integral in
(5.36). Further if e is assumed to be independent of angles
then the angular integrations can easily be done using (5.13)

so that we have

i -1 *k A - A _
dk brgq (kM ar, (k" YJ+q’M_mg(k")YL+Y, u_mg(k") =

it
| P+E | >kp

ol

) Z [§{§+q§:ﬂ (20, Ly, 0, p-mf [ J+n,M-ml) (2a, Ly, 00 | J+1,0) X

a=0

X J dk"k"2 e-leEq(k")aLy(k")AQG(k"’P)
o}

We note that (2a,L+Y,O,p-m§|J+q,M-m§)=O unless u=M.2lb)
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Thus, when e is independent of angles we can write (5.36) as

- * n
(5.37) fJMEn(k,P,mS) = (J+q,l,M—mS,mSLJM)bJEﬂ(k)YJ+ﬂ,M_mS(k)
3 +l < (=]
+ )7 ) @ L¥ndmg|an )Y ) (T, 1,M-m,ml LM x
mgi=-1 0=0 L=0 (yb)

1
. 2
x (20, Lty 0, M-mll [ T4, M-m8)) (20, Lty ,0,0 | T+7,0) %%%}%%{%] v

x T (oPamg) [ @kt o™ by (kMap (kM)A (k",P)
0

We can perform the summation over mg by making use of the

following relation between Clebsch-Gordan and Racah

coefficients:23)

(5.38) Z (abaB|eya+p) (ed,at+B,y-a=p|cy) (bdB,y-a-B|f,y-a) =
P

1 1
= (2e+1)2 (2f+1)® (afa,y-a|cy) W(abcdjef)



e} TN

where W is a Racah coefficient. Using this relation we

have

(5.39) Z(2G,L+Y,0,M-m§|J+n,M-m§)(J+q,l,M—m§,m§|JM)(L+Y,1,M—m§,m§|LM)=
mll
S

=[2(J+q)+13% (21+1)% (2a,L,0,M|IM) W(2a,Ly,J,13J+n,L)

From (5.37) and (5.39) we have the following equation
for the ft's:

*

- _ 4 N

3 [ [ .
+ (j%) Z Z Z (2L+1)% [2(L+Y)+1]% W(2a,L+y,J,13J+n,L) x
L=0 (y&) a=0

x (2a¢,L,0,M|IM) (2a,L+y,0,0 |J+q,0) fLMYb(E,P,mS) X

X J dk"k"2e_l bJEq(k")aLY(k")AZQ(k"’P)
(o]

It is clear from the last Section that in order to include

the hole-hole interactions all we have to do is replace

Aza(k",P) by Cza(K"’P) where Cza(k"’P)’ is given by (5.23).
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It is interesting finally to see which states are
coupled. If we neglect Cza(k"’P) for o different from
zero then there is a considerable simplification of (5.40).
For a=0 the Clebsch-Gordon coefficients then vanish unless
L=J and unless y=n. In this case, there is then a single
equation for fJMDO for each J and M and a set of coupled
equations for fJMEn (z,m)#(00) for each J and M. Thus
there is no coupling between states of different angular
momentum other than the usual coupling due to the tensor
force.

In the more general case (a # 0) the situation is more
complicated. The second Clebsch-Gordon coefficient vanishes

2le) is even, the result being that all states

unless Lty+Jd+q
with even orbital angular momentum couple together and
all states with odd orbital angular momentum couple together.
As in the singlet case however the infinite set of equatioas
can be truncated by assuming the potential to vanish for
states with J>Jmax’

The f's above are functions of the angles of k and of

the quantum number Mg It is convenient for later work to

separate out these dependences. We can write

(5.4%1) fJng(k,P,mS) =

) +1
= * ry o(Jts)
Y ) (3+a, 1Mo mg | IV gy (B €57 )

Jt=0 g=-1
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We substitute (5.41) into (5.40), multiply both sides by

(Jt+a,1,M;mS,mS|JlNDYJ,+O,M_mS(k), integrate over k and
sum over mg, and use the orthonormality of the Yts (3.16)

and the following relationshipelb)

Z(abaﬁlc',c+B)(ab05l0,a+B) = b0t

B
to obtain the equation for f(Jtd)(k P):
q JMgqn 2
(5.42) £(I%e)

Jign (keP) = byg (k) b byeg +

3 <o o
w2~ )Y ) et (2] Foucae, 1y, 5,154,105
L=0 (y3) a=0

x(2a,L,0,M|IM (2a,L+y,00|J+n,0) f&;g)(k,P)x

X
2 -1
x| dk" k" e T b (kMa. (k™McC, (k",P)
J; Jgn Ly 2a i
The equation for the K matrix elements is then, from
(5.35) and (5.41),
- <> _
(5')'1'3) (k‘,leélKlk,?, -les) -
+J +1

@ =<}
= z Z Z Z Z (J+E,1,Mkm§,mé|JM)(J'+c,1,M-mS,mS|JtM)x
J=0 J*=0 M=-J (gn) o¢=-1

(Jte) RO k
X an(kt) fJMEf] (k’P)YJ'f'E,M"HIé(kt)YJL*'d ,M_ms(k)



-97-
In arriving at the above equations we have disregarded
the difference between r: and r; in the pseudopotential.
We shall interpret the integrals in equation (5.42) for
the f's exactly as we did for the singlet spin case of
the preceding Section. That is, we shall write the

argument of the derivatives of the spherical Bessel

functions as k"r_ .
o7

5.3 Expressions for the Potential Energy per Particle and
the Single Particle Potential using the Pseudopotential

The general expression (4.33) for PE/A involves the
following integral
[ & (5xgy |K|k'15 xSmS)
| Bk | <k

Using (5.20) and the expressions (5.26) and (5.43) for the
K matrix elements this integral can easily be reduced to a
single integral over k.

For the singlet spin case the K matrix elements are

given by (5.26) and using this and (5.20) we can write

j dkk“d(cosp)dp (B [K[E;P) =
| B4 | <k

o +1

oo w0 +£,
=y 3 ¥ Z (,m—+ i dkk> J: d(cos) x

2=0 A=0 m=-4 0a=0

j dp 2y () £5M) (k,PYY) (8,007, (6,0)T 50 (6.
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Since the f's are independent of angles, we can immediately
perform the angular integrations using (5.13), obtaining
finally,
(5.4 [ aF RIKED) =
-}
| PE] <kp

o0

Z Z Z i (2);’*'1) (2a,4,0,m|A,m) (20,200 NO) %
2=0 \=0 m=-4 a=0

xi dkkgaL(k)fég)(k,P)Bza(k,P)

Similarly for the triplet case we can write, using

(5.43) and (5.20),

(5.45) [ Qs xq, [KIE3P5 %o, )=
| P+¥| <kp > ®

o oo +J +1 o 1
Z Z z Z Z E: [%%§%§%§%i]-E(J+E,1,M-ms,mS|JM)x

J=0 J'=0 M=-J (&n) ¢=-1 a=0

X(J‘+o,l,M-mS,mS|J'M) (2a,J+€,O,M-mS|J'+o,M—mS)(2a,J+€,OO|J'+c,0)x

«] dkaaJE(k)féﬂE“)(k P)B,, (k,P)

0
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We are interested in the summation of this expression over

all values of ms(see (4.33)). This summation can easily
be performed using (5.38) and we find
+1

(5.46) ) | R Xy, P %y, ) =
mg=-1 [B+K|<kp S

0 © +dJ +1 .
S D N N ) (2r+1) [?(J+€)+;] t (20,70M 714) x

J=0 J'=0 M=-J (En) ¢=-1 a=0

*W(2a,J+8,J%,15J%+9,J) (2a,J+E,00|J¥+g,0)*
o0

ﬂL akka g ()£ 53 %) (,P) B, (k, ).

The expression (Y%.33) for PE/A can thus be written
Kk
F
(5.47) PE/A = plrky) ™3 [ app? [F3 Yo+ )«
o) £ even L odd
[+ +] o %
x) Z ) EEL" (20, 40m] M) (2a,£00|xo)fdkk 2y (02N (k,P)By (k,P)

A=0 m=~f a=0 o

o +J 4+l ®
() +3 ) ) ) Y T Yestaeon] .
J(gn) J(En) J'=0 M=-J 4=-1 a=0

J+¢ even J+E odd

x(20,JOM[J'M) W(2a,J+E,J%,13Jt+s,J) (2a,J+E,00[ I +c,0) ¥

xjodkk aJE(k)f§M€°)(k,P)Bga(k,P)]
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In the above we have made use of the fact that K+ couples only
states with even orbital angular momentum quantum number
and K~ couples only states with odd orbital angular momentum
quantum number.

Let us now consider the expression (4.34) for the

single particle potential. It involves the following integral

[ a® @;x |K|k B;

’ xSmS
& o
|2k+k2I<kF

We shall simplify the integrals using techniques similar

to those introduced in Section 5.1l. We notice that

|2K+E2|<kF means Lk +ikk cose+k2<k2

where 6 is the angle between % and EZ‘ We define a function
c(k,kz,cose) by

(5.48)  £(k,k,,cos0) = 1 if 4k2+ukk2cose+k§<k§
0 otherwise
so that we can write
+]1 2w

(5.49) | akk®d(cose)dy f akk® [ a(cose)[ dp €(k,ky,cos0)
| 2K+, | <k -1 °
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and

- = —+ _
(5.50) | ak (k;xSmSIK;k,?;xSmS) =
-+ -
| +k | <k
) +1 2
—

= Jaux® [ a(cose) [ ag z(k,kz,cose)(ﬁ;><SmS|K|k;?;><Sms)

0 -1 o]

where Kz is the z-axis of the coordinate system.
We now expand & in terms of Legendre polynomials, that

is
? [+ o}

£(kkyco88) = ) Dy(k,k,)Py (cosp)
=0

+1
D&(k,k2) = g&%l j d(cose)i(k,k2,cose)P£(cose)
-1

From the definition of E(k,kz,cose) we have
1) if k> Z(kstkp) or k< 3(ky-kp), E(k,ky,c0s6) = 0 for all §
so that D&(k’kg) =0

2)  if k< L(kp-k,), &(k,k,,cos0) = 1 for all § so that using
(5-103)3 D&(kakz) = 5&,0

so L 1
3) if 35 [k2-kFI<k< > (k2+kF) R

o ®2 K2 L2 )2
= 2241 _ _F 2

1
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This integral can be evaluated using (5.10c). We find
Dolksky) = 2 (k1)
L # 0, Dylk,ky) =3[Py, (ko) By 1 (x)]
¥inally, then,

(5.512)  &(kkye0s0) =) Dylk,k,)Py(cose)

=0
(5.51b)
Dy(ksky) = 1 if k< $(kpk,)
£(x,+1) 1F 3 |ky=kp [<k< Sk k)
1 1
0 if ko §(k2+kF)ork< §(k2-kF)
(5.51c)
140, D&(k,k2)=J6 if k< %(kF—kz)
%[éx*l(KQ)-RL_l(KZX]if Slky=kp|< 5 Lk otkp)
: 1 1
0 if kK E(k2+kF) or k< §(k2-kF)
k-l ek 3
(5.514) LD = ———;EEE——

Thus, using (5.51), we can write (5.49) and (5.50) in the
following forms:

(5.52) “ o

] axx®a(cosp)dy = Z ( ) jdkkz jd(cose) jd¢ Dy (k, k)Y (6

4=0
|2k+k2[<kF



-103-
(5.53)

-
| dE (F5xg, |K|k¥,x5m =
-+ S
| 2k+k, |<kg

+1 o
Z (st ) jdka | dateose) [ap Dy (k,k )50 (0) (Ksxgy |Klk ?,xSmS
0 -1 o)

It should be noted that in contrast to the expansions
of ¢(k,P,|cosg|) and n(k,P,|cos8|) (equations (5.11) and
(5.19) respectively), the expansion above of E(k,kz,cose)
contains odd as well as even orders of spherical harmonics.
The reason for this is that in this case the integration region
does not possess‘reflection symmetry.

Now for the singlet spin case, the K matrix elements

are given by (5.26) so using this and (5.93) we can write

(5.54%)
] dE(E|K{E,?)-

i Z Z (2a+l ¥

; ng

T A=0 m=-1 a=0
| 2ktky | <k +1 o
x [akk? [ d(cose) [ dp a (k)f(K)(k,P)Da(k,kg) x
o -1 0

x T3y (6,9)Yy, (8,9)Y, ((6)

There is now one important point which much be noticed. There
is a very complicated angle dependence of the integrand because

of the P dependence of the f's. ,That is, we have

(5.55) P = |k+k,| = (k2 + 2kk, cos® + k§>%
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Because of this angle dependence of P, the integral above
is very messy. The angular integrations could of course

be performed by an electronic computer, but for our present
purposes here we shall assume that we can approximate P by
5, where P is an average of P over angles or some other
appropriate average. Using this assumption, the angular
integration can easily be performed using (5.13) so we

obtain

(5.56) [dE(K|KI%,®) =
[2K+E2[<kF

(=] [>]

Z Z Z Z (2x+1 (alOm[ Am) (a00[NO) x
4=0 A=0 m=-% a=0
xjdkkzg&(k)f(k)(k B)D, (k,k,)
(3]

Similarily for the triplet case we can write, using

(5.43) and (5.53),

.57 ] & (B5 X 1 |KIEFs X 1) =
| 2B+, | <k 5

© ) +J +] . %
=) ) ) Lol [%%%$5%§%i] (J+E, 1, M-mg ymg | IM)

J=0 J'=0 M=-J (&1) ¢=-1 a=0
x(Jt+g,1,M-mg,mq|J* M) (a,J+8,0,M-mo|Jt+o,M-mg) (a,J+E,00(J +g, 0)x

j dkk® a; (k)f§§5°)(k P)D,(k,k,)
0
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We are interested in the summation of this expression over

all values of ms(see (4.34)). This summation can easily

be performed using (5.38) and we find
+1

(5.58) ) |k (& x X 1ng IK|X,B; x
M=l 2ReE, | <ky

-

) =
1mg

Z 2 iﬁ ) i% i (25+1)? [é(J+€)+;]'%x

J=0 J'=0 M=-J (&n) ¢=-1 a=0
x(a,JOM| T*MW(a,J+5,T%, 13T+ 6,J)  (a,J+§,00|Jt+6,0)

« [ aki® aJE(k)fgizd)(k P) D, (k,k,)
O

The expression (4.34) for the single particle potential

can then be written

(5.59) U(k,) =

[(3 ) )Z Z Z(%l) (a20m| Am) (200 A0) x
even 4 odd £ N=0 m=-4 a=0

xj dkkza&(k)f(*)(k B)D, (k, k)

+1

* <1 ) j) E: ) i 21y [2(3+5)+1] :

J(En) J(gn)” Jt=0 M;-J ¢==1 a=0
J+t even J+g odd
x(aJOM[JTtM) W(a,J+g,Jt,13J% 6,J)(a,J+E,00[Jt+c,0)x

«] dkkzaJE(k)fgﬂ;;)(k,ﬁ) Da(k,kz)]
0
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In the above we have made use of the fact that K couples
only states with even orbital angular momentum quantum
number and K couples only states with odd orbital angular
momentum quantum number.

This completes our manipulations with the formal
expressions of the theory. 1In the next Chapter we shall
apply these expressions and obtain some numerical results

1

for the case of interactions in So states only.



CHAPTER VI

INTERACTION IN ~+

SO STATES

We have to this point in the thesis concerned our-
selves with applying the BCM, via our pseudopotential, to
the IPAM (or Brueckner approximation) for nuclear matter,
and with the casting of the equations involved into forms
which can be used directly for numerical work. We have
not as yet discussed whether our approach leads to meaning-
ful numerical results. In this Chapter we shall discuss
in some detail and give some numerical results for the case
when the potential vanishes in all but lSO states. Of
course by using this simplified potential we cannot expect
to obtain the experimental equilibrium properties of

nuclear matter, that is, (see Section k.1)

E/A = -15 Mev

p = .18 nucleons (fermi)? so kp=1.k fermi™
5 hAd
PE/A=E/A - 5 om = =15 Mev - 24.4 Mev
m
= - 390)'*' MeV.

We expect of course that the major contributions to the PE/A

come from the interactions in lSO and 3S states. Indeed

1

-107-
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Moszkowski and Scotts) have done a calculation using the

realistic two-body potential used by Brueckner and Gammell),

and have found a minimum E/A of -14.2 Mev at kp = 1.5 fermi™L.

Table III of their paper shows that for kp = 1.5 fermi~t

the contribution to the PE/A by S states is -33.3 Mev, of
which -18.6 Mev comes from lSo states and ~14.7 Mev comes
from 3Sl states. From Table II of their paper it is seen
that for kp = 1.% fermi™! (the experimental value) the

total S wave contribution is -31.6 Mev. Although Moszkowski
s anda 3s

and Scott have not indicated the separate 1

contributions at this value of kF’ we shall suppose that

the T

S, contribution is approximately -18 Mev. Thus, by
assuming an interaction in lSo states‘only we should find
that for kp = 1.4 fermi™l, PE/A = -18 Mev.

Assuming the interaction V to vanish in all but lSo
states we have then

(6.1) (’E';xlméwri;xlms) =0 so (k' lmémri;?;xlms) =0

and, from (5.3) and (5.26).
(6.2) &' |V]E) =g a (k)b (k)

(6.3) & K[, D)= b a ()28 (k,P)
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where fég)satisfies (see equation (5.25)):
3 (>
(6.4) £89) (k,Py=b (k) +(2) 't {2 (i, p) [ akk"? e™b_(kMa (k)G (k",P)
)

or

b (k)

(0) ( py=
(6.5) £9) (i, p)=

3@
1-(5%) ] dk"k"e o1 b_(k"a (k") (k",P)
(8]

Thus, from (6.3) and (6.5), we have

1
an(k‘) bo(k)

(6.6) (%! |[K|%,B)=

3@
1-(5%) fdk"k"2 e'lbo(k")ao(k") C,(k",P)
0

Let us consider the denominator of (6.6) which we shall

call L(k,P):

3
(6.7) L(k,P)= 1-(5) | dk"k"%e™la_(k")b (k™)C_(k",P)

0
3 (4pn)r @ ) ;
= ]__(E]:’-T) _TQ J dk"k"ze ljo(k"ro) [fojo(K"ro)'k"roj;(k"roﬂco(k"’m
0

using (5.27).fo and r  are the 1

S0 boundary condition parameters.
In order to evaluate the above integral we shall use
the effective mass approximation. That is, we assume that

the single particle potential is of the form

= 2
(6.8) U(kg) = UO + Ulk2
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where U0 and Ul are independent of k2, so that the single
particle energy a(kg) can be written
2.2
h7k 2
— 2 = h_ 2
(6.9) elky) = —p= + Ulky) = U + (B + 0013

Defining the effective mass m* by

2 2
h _ - b
(6.10) ¥ = om t Ug

we have then

— 1.2,1 _ 1y.2

(6.11) U(ky) = U, + 3 h(Z5 - 2)k5
h%k3
(6.12) E(kg) = UO + —2?]1—*

The effective mass m* must be determined self-consistently.
(There is no self-consistency requirement on Uo since it
will not appear in the K matrix elements.) The single
particle potential which we calculate from (5.59) will not
have a simple quadratic k2 dependence, so that we shall find
that m* is really k2 dependent. The self-consistency lies

in finding a k2 independent value of m* for which the
calculated single particle potential is as close as possible
(at least for values of k2 of the order of kF) to the assumed

single particle potential (6.11).
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Using the effective mass approximation, the energy

denominator e (see (5.2b)) can be written

2
(6.13) e = e(P+8) + e(B-B) - e(B+Em-e(B-Em= Do (kPxn?)

so that (6.7) becomes

(6.1%) L(k,P) =

NN2

ku2 o) k" JL (k"] ):|;| (k"r )C_(k",P)

By defining new quantities x, xp, ¥, Y ,psa,B, and y by

(6.15) x = kr, xp = kprg
y=k"r, ¥y =k"r,
p = -
i
= 2_p2 _ 2
¢ =r, VEp-P" = x5 V 1-p

B = ry(kgtP) = xp (1+p)

1
[
g
~
-
]
©
-~

and using (5.23a), we can write

(6.16) L (k,P) =

l+-2='ﬂ- {(J' +xj ) 22 [fj (y)-yJ (y )]J (y)(g?;qt;)

(.[ ‘7‘.[ ) g v [foa ()-73 (5" ) Jig (y)}
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It will be recalled from (5.23c) that N takes the values

O and 1. When A = O only particle-particle interactions
are counted, and when A=1 both particle-particle and
hole-hole interactions are counted. We recall further that
the principal value of all integrals is to be taken.

Now j (y) = §i§l so that

(6.17a) L(k,P)

:1+§T%ni{<jﬁ+ \
a

a . 2_.2
dysiny . _ - Yy -a
j ) B [(f0+l)51ny y cosy J (sz )
Y y =X F

o([- 0 ") 58 [ pmysiay - 5 coor] )
B o -

The above integrals are elementary but tedious so we shall
only quote the results. We have

2

92-x2 b

b 2 2
dysin~y - a7y X _ b f e (V3
(6.170) | . (L—QPXFY )= [Ln 235 |-2¢a £ + ci2a-cizn)
a

+_ o+ . 1 | P
_(¢b-¢a)coszx - (eb-ea)51n2g] + E;E; [@n =+ ClZa-012bJ

2 .2 2pXFY

b . 2 2

(6.17¢) j dyysinycosy (¥ - 4 . % [}(¢;-¢;)sin2x-(eg-e;)0052%]

yo-x
a

- g—l- cos2b-cos?2a
pX
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(6.17d) jw = [Je,n

-¢Bcos2x + (v—eg)sin2§]
5 VX

(6.17¢) J dvvs;gf;gsy = + E + % [} ¢éSin2x + (n—eE)cos2g]
B

2
(6.17f) Yaysin®y . E_ [?n l -x| + ¢;cos2x + e; sin2x]

2_.2

(6.17g) J dyysinycosy . - i [¢; sin2x - 6: coszx]
yo-x

o)
b]

where, as in Jahnke and Emde

X

(6.18a) 8ix = J Q&ﬁ%g&

0
(o]

(6.18b) Cix ={ Qx%ﬂ
X

and where we have introduced the notation

o+

(6.19a) 6, = Si2(a+x) * Si2(a-x)
(6.19b) ¢§ = Ci2(a+x)  Ci2(a~x)
Further

(6.20) X = x=a®

2p XFX
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A word about the importance of using cos y rather
than cos y or cos y+ in (6.17e) is in order. A straight-

forward calculation of the following integrals (compare

(6.17e)):
J‘b dg"!§"§jg!§"rcost":' J‘b dg"g"sjngnrcosg"r
2 2 2 2
a k" - k b a k" - k
shows that

1) If both a and b are not infinite, then

li? b dg"gﬂgng"rcosg"r' - Ib ds"guﬁjggnrgg§!snr
ror " k"2 _ kz ) k"2 _ k2

2) Ifr>rt, then

[ood -]
lim dk"k"sink"rcoskfr! _ & dk"k"sink"rcosk"r
ror! ) Kn2 - 2 L £ k2 - 2

3) Ifr <rt, then

1lim 3 dk"k"sink"rcosk®rt _ E + f: dk"k"sink"rcosk"r
. = -

That is, when one limit of integration is infinite the
limiting operation and the integration cannot be interchanged.
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In particular then,

[+ -] . [ <]

j d1151gxcosx + j dx131nxcosz
y2 X2

B p

Thus finally we have
(6.21a) L(k,P) =

=1+ S8% [(f +1) I, (k,P)+I,(k,P)+\ {(f +1)15(k,P)+T), (k, P)}]

(6.21b) Il(k,P) =

= &% [%n 3.2

2_.2
ﬁgfgg_l - 2(in % + Ci2a-Ci2B)-(¢E—¢:)cost—(eé—e;)sin2x]

+ E?%;:[&n % + Ci2a—Ci2B] + ﬁ% [&n’%%%' - ¢é cos2x+(v-9§)sin2x]
(6.21c) I, (k,P)= - - + [ (¢B -4, )51n2x +(eB ) )cost]
+ gﬁzg cos2B—cos2a] - % [:¢é sin2x + (n-eg)cos2x]

(6.214d) I3(k,P) =

2 2
= & a_-Xx 1 3 (o -0t (8" =0") si
= [&n ’yz-xz l— 2(dn v + Ci2y-Ci2a) (¢a ¢Y)coszx (ea GY)SlHZX]

1 [ a . . ] 1 [ +X - + ]
+ In £ + Ci2y-Ci2a| + In| ¥ - cos2x - sin2x
hpxp L7 ¥ v bx |Y-X ’y O
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(6.21e) I,,(k,P) = & |- (45-¢7) s1n2x + (97-07) cos2x]
+ g;%; [cosQa-0052yJ - % lj¢;sin2x-e:cos2x]

Recall from (5.3) that

(6.22) (X|V[k) =

hwh T,

= ﬁ% ao(k')bo(k) J (k'r ) [f J (kr o) “KT (kr )]

Yrh2r 51nk' sinkr
_ 0 0
= — [(f +1) kro - coskro]

so that, from (6.6) and (6.7),
Lk T, sink' sinkr
[(f +1) O _ coskr ]
- + m o
(k' |X|k,B) = o
L(k,P)

with L(k,P) given by (6.21) when the effective mass
approximation for the energy denominator is used.

As a check on our results we should find on taking
kp ~ O and m* ~ m in (6.21) that (K|K|K,P) given by (6.23)
reduces to the S wave part of the two-body reactance matrix,
that is, it should be proportional to the tangent of the
S wave phase shift (3.24). In Appendix III we show that

this is indeed the case.
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In order to proceed with numerical calculations we

1

need the values of the So boundary condition parameters,

o))

fo and Ty Feshbach and Lomon”’ have found these parameters
by relating them to the scattering length and effective
range, that is, from the low energy scattering data. They

find

(6.24a) fo=o.o82-1

for proton-proton scattering
(6.24b) r,=1.32 fermi

(6.25a) fo=0.053-l
for neutron-proton scattering

(6.25b) ro=l.32 fermi

These values are not sufficient for our purposes. We need
parameters which fit the data over an energy range much
larger than can be covered by the effective range

approximation formulae. Indeed, the maximum energg gf a
' h<k

nucleon in the ground state of nuclear matter is el LO Mev
so that collision energies of the order of 80 Mev in the

centre of mass system are possible. Thus we need values

of the boundary condition parameters which fit the two body
scattering data for laboratory energies up to 160 Mev.

Clearly at these energies the effective approximation

formulae cannot be used.
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In order to determine the parameters we have used the
proton-proton scattering data of Breit et al.25) Figure 1

of this paper shows a plot of the 1

So phase shift vs. lab
energy. Now (2.4) gives the relationship with the phase
shifts and the boundary condition parameters so we have,
with £ = 0,
. ( ' >
fodolkr )-kr j (ke ) _ (f +1) sinkr -kr coskr
-(f;i)coskro—krosinkro

(6.26) tan 5, = i
fono(kro)-krono(kro)

COosX

S10X ong no(x)= - =5 . We have adjusted

using jo(x)=
fo and r, SO that this expression gives an over=-all fit to
the YLAM lSO phase shift data of Breit et al for lab energies

up to 160 Mev. We find a fit with

(6.27a) f = - .89

o

.95 fermi

(6.27b) r,

In Figure I1 we have plotted Breitt!s YLAM 1

So phase shift
data and &  from (6.26) for these values of f_ and r.

For comparison, we have also plotted bo using the Feshbach
and Lomon values of the parameters (6.24).

Using the values of the parameters given by (6.27) we
have plotted, as functions of k, (§|V|E) and (ElK{K,?) as
given by (6.22) and (6.23). In Figure III we show
(E|K|K,B) with m*=m for P=0, P=.5k;, P=.9kp for the case

when the hole terms are neglected (A\=0), and in Figure IV
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we show (ElKIE,?) with m*=m for P=0, P=.5kp, P=.9kp when
the hole terms are included (A=1). On each Figure we
have also plotted (E|V|ﬁ), which incidentally is the value
of (X|K|k,P) when m*=0. We notice in both cases that
(KIK[E,?) is quite different from (ﬁ|V|§), especially near
the bottom of the Fermi sea (that is, for k << kF). Thus,
the first Born approximation is a rather poor approximation
for the K matrix elements. We notice in the case when
the hole terms are neglected (see Fig. III) that for fixed
k less than kp, (¥|X|X,P) decreases monotonically as P
increases to kF' What is perhaps most striking however is
the great effect the inclusion of the hole terms has on the
K matrix elements. We see in particular that when the hole
terms are included the K matrix elements become rather
strongly dependent on P.

Let us consider now the potential energy per particle,

PE/A. From (5.47) we have for this case

(6.28) PE/A = ¢ (mky) J” Tapp? | akk2a_(10£00) (k,P)B (k,P)
(o) 8]

which using (6.3) and (5.19b), can be written
(6.29) PE/A =

—9— ] dpp{j dkk (kIK[k B)

T kF o

2.2 .2
dkk? (B K| ®,B) Ko
- f J SPk

kF-P
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We have integrated this expression numerically using
the plots of (K[K|X,P) vs. k (Figs. III and IV). To test
the effect of various approximations we have performed the

integration for the following five cases:

1) hole terms neglected (A=0),m*=m
2) hole terms included (A=1), m*=m
3)  hole terms neglected, m*=m, (X[K[%,P) = (K|X[%,0)
(Xl X|%,0)

1

4)  hole terms included, m*=m, (E|K|K,P)
5)  (KIKIE,B) = ([V[K) (i.e., m*=0)

In the first two cases above no approximation on P
are made but in cases 3) and 4) we perform the integration
assuming that (X|K|X,P) is independent of P and equal to
its value when P=0. In the last case we take (R|K|E,B)=(K[V[XK)

which is equivalent to assuming m*=0. The results are given

in Table I.
TABLE I

PE/A for lsggftates (Mev) Form of (¥|K|K,E)
-17.62 hole terms neglected, m*=m
-17.63 hole terms included, m*=m
-16.6 hole terms neglected, m*=m, P=0
-13.3 hole terms included, m*=m, P=0
-10.4 m*=0 |
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What is perhaps most remarkable about these results
is that the PE/A for cases 1) and 2) are almost identical,
that is, including the hole terms does not make a
significant change to the PE/A despite the large éhange
it makes to the K matrix elements (compare Figs. III and
IV). Moszkowski and Sessler8) have also arrived at this
conclusion by performing a crude calculation using an
interaction containing a repulsive core and an exponential
well.

Our results indicate that non-zero centre of mass
momentum effects are most important when the hole terms
are included. Indeed, the difference between the results
of cases 1) and 3) is about 1 Mev as compared with 4.3 Mev
for the difference between the results of cases 2) and k).
Our results also indicate that the PE/A depends fairly
critically on the value of m*.

Let us consider now the calculation of the single
particle potential U(kz). From (5.59) we have for this

case

2]

(6.30) U(k,) = ;—i-g jdkkeac(k)fgg)(k,’ﬁ)Do(k,kg)
0
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which using (6.3) and (5.51b) can be written

Bk o
(6.31) U(k,) = % [f F 2% ke (R K| X, B) +
4 o
& (kpthy) 2_(k,-2k)2
+j dkk2(®|K|%,B) ¥ 8§k2 ]

% I kF“kgi

Recall that P denotes some average of P. We have integrated
this expression numerically using the plots of (ElK[E{?) VS
(Figs. III and IV). We have arbitrarily taken P = O (this
is of course not the best choice of F), and Figure V shows
U(k2) VS. k2 for the cases when the hole terms are neglected
and included. Figure VI shows U(k2) for the case when
(K|K|%,B) = (X|V]K) (i.e. when m*=0).

The validity of the effective mass approximation
(6.11) can be checked by fitting parabolas to the calculated
single particle potentials. On Figs. V and VI we have drawn
parabolas fitted at k2=0 and k2= P and an effective mass m¥*,
which represents an average effective mass over the Fermi
sea, can be determined from these parabolas. From (6.11)
we have

2. 2
hzzF
m*
(6.32) " 5 2
h KF
U(kF)-U(O) +
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The values of m* calculated in this manner are as follows:

TABLE II
%s Form of (K|K[X,P)
.63 hole terms neglected, £ = 0
.90 hole terms included, F =0
.74 m* = O

It is noted from Figure V that the single particle
potential calculated with hole terms neglected can be fitted
quite well with a parabola, indicating that in this case
the effective mass approximation is quite good. The single
particle potential calculated with hole terms included
cannot be fitted to a parabola quite as well however,
indicating that in this case it may be necessary to use a
more elaborate energy denominator to obtain accurate
results.

Another value for the effective mass, namely the value
at the top of the Fermi sea, can be calculated from the
slope of U(kg) at k, = kp. It is worth noting from
Figure V that in the case when the hole terms are neglected

this effective mass will not differ much from the average
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effective mass calculated above, but that for the case when
the hole terms are included the value will be somewhat less
than the average value. Both methods of calculating the
effective mass indicate that its value is greater when the
hole terms are included.

We have not attempted to calculate m* self-consistently
and thus obtain an accurate value of the PE/A. From Table I
however we see that the value must lie between - 17.6 Mev
(m*=m value) and -10.4 Mev (m*=0 value) and probably will
be closer to the larger value. We note further that if the
self-consistent value of m* calculated including hole terms
is larger than that calculated neglecting hole terms (as
is indicated above) then the inclusion of the hole terms
decreases the PE/A somewhat. At any rate, the calculated
PE/A will not be far from the value of -18 Mev which the
results of Moszkowski and Scotts) indicate for the
approximate contribution by 'S_ states to the total PE/A.
The numerical results which we have given above are very
encouraging and indicate the validity of our approach to

the many-body problem.



CHAPTER VII

SINGULARITIES IN THE K MATRIX AND THE ENERGY GAP

We have to this point assumed that the ground state
properties of nuclear matter can be described adequately in
terms of the IPAM. Bohr, Mottelson, and Pine326) have
observed however that the energy difference between the ground
state and the first excited intrinsic states of even-even
spheroidal nuclei is much larger than that which one would
expect if the intrinsic nuclear structure could be described
adequately in terms of independent particle motion. On the
basis of this observation, they have suggested that the
ground state of nuclear matter is a highly correlated state
(similar to the superconducting state of metals) separated
from the normal states by an energy gap.

Such an energy gap between the ground state and the
first intrinsic excitations of nuclear matter indicates an
important departure from independent particle motion. Indeed
one may wonder whether the IPAM approach to the discussion of
the ground state properties of nuclear matter is valid,
since it would seem that one must use instead an approach

similar to that used by Bardeen, Cooper, and Schrieffer (BCS)27)

-125-
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in their discussion of the superconducting state of metals.
(It should be mentioned that Katz28) has indeed developed an
approach to the nuclear matter problem which combines both
the IPAM and BCS model.) However the basic feature of the
BCS theory of superconductivity is that the highly correlated
states only involve single particle states in a small shell
near the top of the Fermi sea and wherein the total spin
and momentum of the correlated pair are each zero. Thus if
the energy gap is small we should expect that the IPAM
approach gives an adequate description of states far away
from the Fermi surface or of pair states with total momentum
much different from zero, so that it should be able to produce
many of the gross properties of the system (e.g., the average
energy per particle).

For states near the top of the Fermi sea having total 4
spin zero and small total momentum, we expect the IPAM
(or K matrix) approach to be inadequate, this inadequacy
manifesting itself by an abnormal behavior of the K matrix
for these states (e.g., it may be singular) since the K
matrix represents an effective potential between the particles.
Indeed, Emerylo) has proven that the K matrix for an infinite
system of fermions (when hole-hole interactions are included)
is singular if and only if there exists a gap in the energy
spectrum of the system. (Emery has also shown that the

presence of a singularity in the K matrix with the hole-hole
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interactions excluded is only a sufficient condition for the
existence of a gap.)

In this Chapter we shall examine the K matrix for the
case when the interaction vanishes in all hut lSO states in
order to see if indeed it has a singularity. This case was
discussed in the last Chapter and the K matrix is given by

(6.6). It is convenient here to write

(7.1) a (k)b (k) = (k'|V]|k)

(7.2) a (k)£ (x,P) = (x'|K|k,P)
so that from (6.2), (6.3), and (6.6) we have

(7.3) GV = r(k'lvlk)
(7.4) (k'lxlk'ﬁ) Eﬁ(k'lKlk P)

(7.5) (x'[K|k,P)= %k:{lilg

1-( ) dk"k"e (k" |V |x")C_ (k",P)
(@]

We have called the denominator of this expression
L(k,P) (see (6.7)). In our discussion here, as in the
preceding Chapter, we shall use the effective mass approxima-

tion (6.13) so we have

2.2

o
2
(7.6) L(k,P) = _!g_ J‘ dik'k'“(k' [V[k*)Co(k' P
(o] k' =k
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which becomes, when (5.23a) is used,

3 * k +P ! 12 1 t 1
(7.7a) L(k,P) = 1+(§%) fﬁ[j Frdk'k k'k #g k +
. — |
\/kF-P

Tk 2 VK Vicg-P? 2
v ] #A [ i 2 Y ke e
| -k 2.2
kP k- P 1o
. IkF"P dictic 2k |V [k :l
o k' “-k% -
k' 2-P2+k5
(7.7b) ®' = S

Recall that k £ \/ks—P2 for the initial particles to be
inside the Fermi sea.

The K matrix has a singularity when L(k,P) vanishes.
For most values of k and P, L(k,P) is positive and does
not differ too much from unity (see Figs. III and IV).
For some values of k and P however, the integrals in
(7.7a) can become large enough so that L(k,P) vanishes
as we shall now see. (Later in this Chapter we shall find
these values of k and P: it turns out that L(k,P) vanishes
only for P extremely close to zero and k extremely close

to kp, and it is for this reason that plots of ®|x|%,B)
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(Figs. III and IV) do not show any singularities.)
Let us consider first the case of P=0. We have

from (7.7)

(7.8) L(k,0) =

k
o 2 2
_ 1 t (ktlvlk') !_:;’k' gk'l “S )
'1“2 [j 2 - XJ 2., ]
k

We note that poles can occur in these integrals only

when k=kF. We write
L(k,0) =
2
3 oodkt{kt (k| V[kD -k%(k IV |k )}
= Ly~ m* (g V | e
=1 + (2ﬂ) > [ (kF[VIKF) I _TE__E + I —
h K k
F
k k
F P 5 5
- Xk2(k V] k) j dkt \ j dkt{gt (k'lVlk')-kF(kF|V|kF)} ]
FUEUUE ) 2,2 ) R

where now poles can occur only in the first and third

integrals.
Now
| gl
v k'2-k2 2k kF+k
F
f _dk' _ . 1 m’kF-k
k‘2 2 2k Kotk

F
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so that

(7-9) L(k,O) =

3 k
=1t %5 5 Q) (gl Vg | kpoc | +

+ terms which are finite when k - RF .

Now as k =+ kp, In(kg-k) + - oo so that since (kp|V|ky)<O
(i.e., the potential is attractive at the Fermi surface.
See (Fig. III or IV)), L(k,0) = co. Thus there exists a
value of k close to kp (call it k;) for which L(k;,0)=0 and
hence (¥|K|¥,P) is singular. It should be noted that the
zero of L(k,0) occurs closer to kF when A=0 than when
A=l (L.e., ky<ki).

It is of interest to see what happens to the singularity
when P is different from zero. To the authort!s knowledge,
no one has discussed this point quantitatively before,
although a qualitative discussion has been given by
Gottfried.gg) The conclusions we reach below are in

agreement with his.
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We shall follow the same procedure as above. We write

(7.7) as

(7.10a) L(k,P) =
k. +P k +P |
1,3 mx|, 2 F dk! T a0t 2 Gt [Vt -k [V [0 i !
"Lz D3[Rk V ] | =5 5t |

3 2 2
Vkﬁ@g Vk§@2

dk '\ 2(1 IV k) (k |V k)
+ K2k|V[K) '75“5 f Ao ol

k12 - k2
kg+ P kP
Vi Vk -p2
N sz(k|V|k)K I +Kf dk'{k'2(k'IVIK')KL-kz(kIVIKL&}
2 2 2 _ 2
kF-P kp~P
k=P kp=P , N
- N2k [V ) j dk? -xj dk'{k‘ (k! |V |k ) k 2(k |V ]k
k12K K12 -
k2 -PPk2
(7.10b) % = Pk

Poles can occur only in the first integrals on each line of

(7.10a). Let us here write

(7.11) of = V2 - P2 Bt = k4P 4! = k_-P
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We can evaluate the first integrals on each line of (7.10a)

to obtain

(7.12) L(k,P) =

3
) m* % k(k|V|k)[(l—x)%n|B'-k|+(l-K)K£n|a'-k|+k(l+K)£nIY'—kJ'+

:l_(-éj;—T >

>

+ finite terms
We notice that for k - y', (1+«)dn|y*-k| - O

k -+ a?y, ¢ln|af-k| - O

k + B'y (1-x)An|Bt-k| =+ O
Thus, when P # O L(k,P) is finite for all values of k. For
small values of P however L(k,P) can vanish as we shall now
see. Let us consider k -+ o' which is the maximum value k
can obtain for the initial particles to be inside the Fermi
sea. We have then

« dn|at-k| =+ 0O
(1-x)An|Bt-k| = in|pg*-a’|
(I+x)n|yt-k| = dn|at=y?|

Now

2

- V2. p2 - B
Br-af=ke+P - Vo-PT = kF+P'kF(l 2 2 + .ed)

F

= P
=P [?*O(kF)]
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and similarily

at-yt=p |:l+0( ):I
so that

(7.13) T(at,B) = 1-()° m; & (1) (a|V]a*MalgD) + finite terms
Now since (a'|V]a')<O (see Fig. III or IV), a non-zero value

of P (call it P;) can be found so that L(a',P;)=O. Further,

if P>P: then L(at,P)>0 and if P<P{ then L(at',P)<0.

We are thus led to the following picture. A zero of
L(k,P) (and hence a singularity of (¥|K|¥,P)) will exist for
some value of k when P=0. As P increases from zero, the
value of k for which L(k,P) vanishes moves closer to the
maximum of the k values (i.e., to Vk 2 2 ) reaching this
maximum when P=P;. When P exceeds P , (lelk,?) will no longer
have any singularities. As we shall see later in this
Chapter the numerical value of P; is extremely small.

We note that the conclusions reached above are valid
for any potential which vanishes in all but lSO states, is
separable in momentum space, and which is attractive
(i.e., has negative matrix elements) in the region of the
Fermi surface. It is worth noting also that the pair states

which give rise to the singularity in the K matrix

(i.e., pairs of particles near the top of the Fermi sea
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with total spin zero and small centre of mass momentum and
whose mutual interaction is attractive) are those which also
are considered responsible for superconducting phenomensa.

Let us turn now to equation (6.21) for L(k,P) in order to
obtain some numerical results. We are particularly interested
in the location of the zero of L(k,0) and the maximum value of
P for which a zero of L(k,P) exists. We shall later relate the
position of the zero of L(k,0) to the size of the energy gap.

Let us consider first the P=0 case. From (6.21) we have

(7.1%) L(k,0) =

=1+ ;2; -‘%’1"-[ (£,+1)1; (k,0)+15(k,0)+x {(f0+1)13(k,0)+14(k,0)}]

I;(k,0) = ﬁ%liinlzztzl—{;i2(xF+x)-Ciz(xF-xi}cos2x +

+ {w-Si2(xF+x)-Si2(xF—x)} sin2x]
Ig(k,0)= - ﬁ - % [{:012(XF+X)-C12(XF-X)} sin2x +
+ {:w-SiZ(XF+X)-SiZ(XF-X)} cossz

13(k,0) = ﬁ% [&n’iifi'— {Ci2(xF+x)—CiZ(xF-x)} cos2x -

- {SiQ(xF+X)-Si2(xF-X)} sinsz

B %(:{CiZ(XF+X)’Ci2(XF-X)}- sin2x -

I)_‘_(k,O)

- {Si2(xF+X)+SiZ(xF-x)} cos2x]
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We want to find the value of k for which this expression
vanishes. We expect it to be very close to kF and thus we
shall put k = kF in all but the singular terms. We shall
see that this is indeed justified. Making use of the fact
that2?

(7.15) when y + O Siy » O

Ciy - layy
where dny=.577216 (Buler-Mascheroni constant), we have then
for k = kF:

I,(k,0) = - :;i; (1-cos2xp)dn(1- jé-) +

+

E%; [£n2+(£n2YxF-CihxF)cos2xF - (m-Sikxp)sin2xy ]
I,(k,0) = { sin2xy dn(1- &) +
2 L SHRSXp M7 ke

+ £ [w+ln2+ (In2yxp-Cikxy) sindxy - (w-Sikxp)cos2xy |

I3(k,0) = - i (1-cos2xp)da(l- f;) +

*p
* - [tn2+ (An2yxp-Cikixg) cos2xy + Siltxp sin2xy ]
F
I, (k,0) = § sin2xdn(1- {5)

+ £ [tn2 + (An2yxp-Ciltxy) sin2xy, + Silxy cos2xy |
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that (7.14) becomes

b'e *
(7.162) L(k,0) = 1 - = wxp) (1)aCl- 15 + Flap)
(7.16b) w(xF) = ——lE [(f + 1) (l-costF) - Xp sianF]
2xF °
- m*
(7.160) F(XF) = - EE +
f +1)
+ T (1) |:( ;F {Ln2+(&n2YxF-CihxF)cosexF + (W-SiuxF)sinsz}
+ (In2yxp-Cilxy) sin2xy - (n-SihxF)COSZXF]
€ _+1)
_oax [ETP L
om I: Xg sn.n2xF costF]
We observe that
()+7Th)21'o t
(7.17) (g |V[kp) = —3—2 3 Cepre) [£030 0k ) ~kpr 3o (hpr ) |
(417?1)21'0
=T VG
so that (7.16) can be written (compare (7.9))
1.3 mx Kp k
(7.18) L(,0) = 130" M5 T (e |V [lp)a1- §2) + Plxg)
h
Now we have defined k.: by L(k.:,o) = 0, so that from (7.16)
*
m |1+F (%)
(7.19>1-;A=exp{ ) }

. me*w(xF)(l+x)
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Using the values of the parameters f, and r  given by (6.27)

we have for kp = 1.% fermi™t

- 1155

(7.20a)  wixp)

It

m* m* m*
- .5000 0 .3661 (1+\) o L6210 -

= - (01339 + o0960 X) %*—
Taking m* = m and neglecting the hole terms (A=0) we find

(7.20Db) F(XF)

from (7.19) and (7.20)

(7.21) 1 - = 4,70 x 10”7

Sl

Taking m*=m and including the hole terms (A=1) we find

(aad
]
o

(7.22) = 2.63 x 1073

In both cases the zero of L(k,0) is indeed close to ke
justifying our taking k=kF in all but the singﬁlar terms
above. We point out further that when m<m* the position of
the zero is closer to kp in each case.

) has shown that the size of the energy gap A is

Emerylo
related to the position of the pole of the K matrix with hole

*
terms included (which we call kl) by

2
L= 2 2 2
(7.23) o =455 (kg - k*])

We can use (7.19) to obtain an expression for 4. We remark

that in the spirit of the approximation leading to (7.19)we
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'3

Kk
: 2 %2 _ 2. %
write kF—kl = 2kF(l- kF) so that
4hPkg k]
(7.24) b= (1- EE )

The expression for A is then from (7.19)

bp 2k 2 mm | 1+F( )]
(7.25) A= ——E;E exp 2XF£; w(ii)

Using (7.20) and taking m*=m, we find

(7.26) A= .8 Mev

There have been no estimates of the energy gap of infinite
nuclear matter so it is difficult to say whether our number
is satisfactory. However we can use Figure 1. in the

paper by Bohr, Mottelson, and Pinesgé) to obtain a very rough
idea of this quantity. This Figure shows the energy of the
first excited intrinsic states of even-even spheroidal

nuclei vs. A, the atomic number. Bohr, Mottelson, and Pines
point out that if the inftrinsic structure could adequately

be described by an independent particle model, the first
intrinsic excitations of even-even nuclei would have on the

1 Mev. Their Figure 1 shows

average an energy of about 25 A~
this function and it is seen that it lies well below the

data. Let us assume then that the energy of the first
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intrinsic excitations of even-even nuclel is given by
A+ 25 A™T where 4 is the energy gap. We take A to be
independent of A, so that it is then the energy gap of
infinite nuclear matter. It is seen from Figure 1 of
Bohr, Mottelson, and Pines that in order to fit the data,
a value of A between .7 Mev and .9 Mev 1s needed. Our
value of .8 Mev seems not unsatisfactory then. Of course
to obtain an accurate value of A, the self-consistent value
of m* at the Fermi surface would have to be known very
accurately (see equation (7.25)).

Let us finally see what is the maximum value of P for
which a singularity of (E|K|E,?) can exist, that is, what
is the value of P;. In the expression (6.21) for L(k,P) we

put k equal to its maximum value (i.e. to Vk%—P2 Z o' from
(7.11)) and, anticipating that P; is small, put P=0 in all
terms but those which go to infinity when this is done.

We further use the asmptotic forms of the sine and cosine

integrals as given by (7.15). We find finally for P = O

me*w(xF)(l+X) o B e P
- -_— XF

(7.27) L(at,P) = 1 £ =

where w(xF) and F(XF) are given by (7.16b) and (7.1l6c).
We note the similarity between (7.27) and (7.16a). The
only difference on the RHS of the two equations is that

where In(1- ﬁ;) appears in (7.16a), in éi appears in
F F ‘
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(7.27). The value of P:, which is the maximum value of P
for which a singularity of (K|K|E,$) can occur, is given

by L(a',P;) = 0 so that from (7.27),

*
P wm[i+F(xF)]
(7-28) E‘?‘ = exp XFm*W(XF) (l"'k)

The RHS of (7.28) is identical to the RHS of (7.19). Thus

as given by (6.27), we have

using the values of fo and Ty

for ky = 1.% fermi™t and m* = m

*
p

(7.29) Eﬁ = %.70 x 1077
P*

(7.30) Ei = 2.63 x 1073

The value of P; is indeed close to zero justifying our
setting P=0 in all terms except those which are singular
when this is done. We note, perhaps superfluously, that
for m¥ < m the value of P; is smaller in each case.

We have seen that our pseudopotential does indeed
lead to a singular K matrix and thus predicts an energy

gap for infinite nuclear matter. We have seen further

that the singularity occurs only for particles whose
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relative momentum is very close to kF and whose centre
of mass momentum is almost zero. This is an important
prediction of our work since no other calculation, based
on a nucleon-nucleon interaction potential which fits
the scattering data for energies up to those relevant

in the many-body case, has yielded this result.



CHAPTER VIII

CONCLUSIONS

We shall conclude this thesis by giving in this Chapter
a brief summary of some of the main points we have discussed.

In this thesis we have applied the Feshbach-~Lomon
Boundary Condition Model for nucleon-nucleon interactions to
the Independent Pair Model (or Brueckner theory) of an
infinite nucleus. The main step in the process has been the
construction of a nucleon-nucleon interaction pseudopotential
which is equivalent to the Boundary Condition Model. Because
of the simple structure of this pseudopotential the integral
equation for the nuclear matter K matrix can be solved with-
out resorting to the perturbative approaches used in the
usual treatments. We would like to stress that we have used
a realistic model of the nuclear force (in that it gives a
reasonable fit to the two-nucleon data in the energy range
which is important for the many-body problem), and with it
we have been able to handle the equations of the Brueckner
theory quite simply.

One of the important points in our discussion has been
the treatment of the centre of mass momentum dependence of

the nuclear matter K matrix. Our treatment involves certain
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expansions only the first term of which has been given before.
It should be stressed that the expansions we have introduced
can also be used in the more standard treatments of the
many-body problem.

We have performed numerical calculations for the case

when the interaction potential vanishes in all but 1

SO states.
Our results for the potential energy per particle are very
encouraging and indicate the validity of our approach to the
many-body problem. In all of our discussion we have included
the hole-hole interactions and our numerical results for the
K matrix show the large effect on this quantity by these
interactions. Our results show further that, in agreement
with the rough calculations of Moszkowski and Sessler8),

the inclusion of the hole-hole interactions has a small
effect on the potential energy per particle.

As a final point we have investigated the singularity of
the nuclear matter K matrix for the case when the inter-
action vanishes in all but lSO states. We have been par-
ticularly concerned with the effect on the existence and
position of the singularity when the interacting particles
have a center of mass momentum different from zero. These
points can be investigated easily because we can solve the
K matrix exactly. Previous investigations of the nuclear
matter problem, using an interaction potential which fits

the two-body scattering data for energies up to those

relevant in the many-body case, have not included this
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point because in these cases the integral equation for the
K matrix can only be solved approximately by perturbative
methods. We have shown that the K matrix does have a
singularity and therefore that infinite nuclear matter
does have energy gap in its excitation spectrum. Further
the singularity occurs only for those particles whose
relative momentum is close to the Fermi momentum and whose
center of mass momentum is almost zero.

At present, a fit to the two-body scattering data is
being performed by Feshbach and Lomon using an improvement
over the simple Boundary Condition Model, namely, using the
Boundary Condition Model plus an exterior potential tail
obtained from the meson theory of nuclear forces. This
model will be applied to the nuclear matter problem with
the potential tail being handled by perturbative methods.
All of the techniques used in this thesis can be used in the
application of this improved model for the nucleon-nucleon
interaction to the nuclear many-body problem, but a detailed
discussion of this application is beyond the scope of this

thesis.



APPENDIX I

In this Appendix we shall show that

2. .
©dktk!*“j,(ktr)j,(k'rt)
(I.1) ¢ I i;g -kz%’ = - %% j%(kr)n%(kr') if rt>r

o
j£(kr')n%(kr) ifr > rt

where © means that the principal value of the integral is to

be taken.

We note first the following properties of the spherical
15) .

Bessel and Neumann functions

-2 = DY 5 ny 2= ny(a)

so that
j&(-z)jkﬁ-z')=j£ﬁz)jL(z')

j{K‘Z)n£K‘Z')= - jl(z)n&(z')

Thus we can write

2. . 2 .
©dkrtkt<] (k'r)J&(k‘r') 1 +® dk'k! h%(k'r)3£ﬂk'r')
(I.2a) (Pj ’52 Y =3 Pj %
(o] -0
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or, alternatively,

°°dk'k'23%(k'r)j%(k'r') 1 +mdk'k'2j&(k'r)h&(k'r')

i E
(I.2b) P{ R 5 0Jw TR

where h&(z) = jﬁ(z) + ig%(z).
We evaluate the integrals occurring on the RHS of
(I.2) by contour integrations. Consider the following

contours c1 and 02:

k!plane
- c
—_—— — P P / -\’\___.>~2...._
<D ?{/ c;

where we suppose that both Ccq and ¢, are closed in the upper
half plane by a semi-circle at infinity. We note now the
following asymptotic forms of j%(z) and h&(z)ls):

1 +i [z— %(J?ﬁl)]

5 COs [z— -:2L 17(%+l):| and h)L(z)-v :-ZL- e

when z-00, j&(Z)*
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so that when

(e-(zl+z2)—iv(%+l)+e—(zl-22))

. 1
Z03%, =+ ©, h&(izl)a&ﬂiz2) - 22z,

Therefore, if 2q and z, are both real, then if 212%5)

n%(izl)j%(izz) -+ 0 at least as fast as z£;2 .

Thus if r > r' we have

+®dk'k'2h&(k’r)j&5k'r‘) _ dk'k'2h£(k'r)jL(k'r')

(1.3) @[ R (¢ + ) 2 .2
- k2 - k A k'2 - k

o=

That is, because of the above arguments there is no contribution
to the contour integrals from the semi-circles at infinity.
The integrals occurring on the RHS of (I.3) can easily be

evaluated using Cauchy's integral formula.30) We find

dk'k'2h%(k'r)j&(k‘r')

(I.4%a) =-mkn,(kr) j,(kr*)+ imkj,(kr)j,(kr?')
35 L1212 R Iy AR
1
dk'k*%h, (k'r) §, (k'r") A .
(I.k4b) i TR = - wkn, (kr) §p(kr*)-imk], (kr) Jp (kr')
2

so that from (I.3)

o4

(v o] 2 .
dk'k*'“hy(k'r)j,(k'rt)
(1.5) ¢] 4 4

5 = - wkny (kr) j, (kr') when r>r'

o K19-k
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Thus from (I.2) and (I.5) it follows that

o 2. . |
dk*k*'“j,(k'r)j,(k'r?)
wj :{%2 - k’;f = - -’% 3 (kr)ny (krt) if r'> 7
(o]

j%(kr’)n£(kr) if r > rt

which is equation (I.1).
It is of interest finally to differentiate both sides
of (I.1) with respect to r. We find
=ak 'kt 33, (k'r) 3, (k'r?)

2
e = - -——-1Tk' ! t 1
el k|2 : k2 > J%(kr)n%(kr ) if rt> r

J
° 1
j&(kr')n%(kr) if » > r!?

and
3.1 .
©dkti? J&ik'r)axﬂk'r) w2 | ] 1
(] N = - J%(kr)n&(kr)+3%(kr)n&(kr)
0
Thus
, of dk'k'3j)'&(k'r)j£(k'r') Lo 5 dk'k‘3jj&(k'r)j&(k'r)
im
ot p k12 - k2 J k'e - k2

o) o)
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that is, the limit operation and the integration cannot be

interchanged. We have, in fact,

u)f dk'k"g’j);/(k'r)j&(k'r)

RN =
. K'e -k
t
© qktkt35 (ktr)j, (kir?)
=2 (um + 1) ¢ L
rle rle 1 5 k1< - k

(rt> r) (r'< r)



APPENDIX II

In this Appendix we shall show that the wave function

(see (4.9))

(ITI.1) |¥) =0 1\1;(15)12 ly)3|6)1{_....|w)A B,k seeeesk <kp

is an eigenfunction of the IPAM Hamiltonian (4.6) when the
Bethe-Goldstone equation (4.11) is satisfied. This has been
shown by Gomes, Walecka, and Weisskopf3) and in more detail
by Walecka3l), but we include this point here for the sake of
completeness.

We consider the eigenvalue equation
(II.2) () Hy - B)[¥) = - Y5 ¥)
i=1

where H, and lhB are given by (4.6). We obtain an equation
for IWuB) by multiplying both sides of (II.2) on the left by

the bra

1
V_z 3(Y| Ll'(b .'..A(wl
1

(The factor {f: has been included for convenience as will be
2
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seen below.) That is, from (II.2) we have

A
ooy (0] Z H,-E)|¥) =
i=1

(II.3) {%S 3(y|h(a

= - %3(YI)+(6|"'.A(“)|DQB|\Y)

Now by using the orthonormality of the single particle

wave functions|y) and the equation HiIY)izele)i’ we have

LHS of (II.3) = [ﬁl+H2—(E- z eYi] i%z []Wa5)12—|wﬁa)l2]
8

Y?fa ’
If we write
eop™E - z ey and |Wa5)12‘ Yl []¢a3)12-|wﬁﬂ)l2]
Y#a,pB
then
(IT.%4) LHS of (II.3) = (H1+H2-5a3)|wﬁ5)12

Let us now consider the RHS of (II.3). By using the
definition (%.6) of lhg and the properties of the projection

operators occurring in ., (see equation (4.7)), we can write
af

1
RHS of (II.3) =’V12|W§5)12+ ), 1)1 3(Y|V32|¢§5)32 +
¥

1 § ! 4
+ ) 19, 3(5|V13Wﬁ5)13 - L L sy (Y5|V|Wﬁp)
o] Yy ©
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1
where Z means summation over all states |y) (y#a or B)

v
where kY< kp, and where we now write Iy)l|6)2 = lyq85)

In order to simplify this expression we use the following
identities obtained from the completeness of the single

particle states |y):

A
z Z [Ylbg) (YMVNfaB)
Y

A
g inbg)(YblVI¢aﬁ)

A
V1olVaglio

lY)l 3(Yiv32‘W§B)32

n

A
L, 1r12) (ol Vg )
.

A
8)5 3(olVy3l¥0p) 15

where z means summation over all states |y). Thus we have

”
t \_" L N §
RHS of (IL.3) = (=) ) + ) ) +) ) =) Z)rylég)(yb|v|¢§ﬁ)
Y& yo vo yb
or RHS of (II.3) = - Z Z |Y162)(Y5|V[¢§B)
y

1
where z means summation over all states |y) where kY > kg

Y
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and also over both o and B. We can write now

RHS of (II.3) = - z z |Ylb2)(yb|V|¢§B)
y>F &>F

- lagBy) (aBIVIVap) - 18105) (Be [VI¥gp)

+ { ferms involving matrix elements of the forms
(a5|v1¢§5) and (Yp|V|¢§5) (v,6 # @ or B) which
vanish for an infinite nucleus since they do

not conserve centre of mass momentum}

But since V|W§B) is antisymmetric, only the antisymmetric
parts of the vectors (ap| and (Ba| contribute to the above

matrix elements, so that for an infinite nucleus,

(11.5) RHS of (I1.3) = - ) ) ly;8,) (yalVIvhy)
v>F &>F
- lagp3) (B [VI¥gp)
where

Ay _ _1
Ialﬁg) = ifz [Jalﬁg)"lﬁlaz)] .

Thus, if we are considering an infinite nucleus, we
have from (II.4) and (II.9)
A _ A A A
(H1+H2'EQB)|WQB)12’ - Z Z|Ylb2)(Y6IV|¢aB)—|alﬁz)(aB |VIWQB)
v>F 3>F

This is the Bethe-Goldstone equation (see (W.11)).



APPENDIX III

In this Appendix we shall consider

lim L(k,P)
kF -+ 0

where (6.21a)

*
LOksP) = 1+ 2B [ (£ 1)1, (k,P) T, (e PY 0 {(£#1) Ty (K, P) 4Ty, (i, PO} |

and where the I's are given by (6.21b) to (6.2le). To
investigate this limit, we expand various functions in
Taylor series about kF = 0. We note first the following

expansions of the cosine and sine integrals (equation (6.18))

ci2(a + x) = Ci2x + 2 cos2x + 0 (a°)
Siz2(a + x) = + Si2x + % sin2x + 0(a2)
where we have used Si(~x) = - Six and Ci(-x) = Cix. Thus

using the definition of ¢§ and 9: (equation (6.19)) we have

_ . 2 -
¢, = 20i2x + 0(a”) ¢, = 0(a)
+ _ - _ . 2
6, = 0(a) 6, = 25i2x + 0(a%)
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From the definition of a,B, and y (equation (6.15))

we have then

+ + _ 2 + + _ 2
by = #q = Olkp) b = ¢, = Olkp)
_ 2 - 2
65 - 6, = 0(kg) 6, - 6, = 0(kg)
Further,
2 2 2 2
-X 2 +X — 2
ta %—e’ 0ky) tn ”T—z‘- O(kp)
a =X Y -X
+X _ +X -
| B = ot An [ﬁ[ = 0(kg)
tn 8 + ciza-cizp = 0(k2) tn ¢ + Ci2y-Ci2a = 0 (k3)

where we have used also (7.15).

Thus using the above results, equation (6.20), and

equations (6.21b) to (6.2le) we have, when kp = 0,

I,(k,P) = ﬁ% sin2x
I,(k,P) +-f - % cos2x
I3(k,P) - 0
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Taking also m*=m, the expression (6.21a) for L(k,P) thus

becomes, when qu 0,

L(k,P) » 1 + r(fo+1) ﬁ% sin2x - E (1+ cos2xi]

Ao

= S4X F(fo+l)cosx + x sin%]

sinkr

0 .
——E?;— [(fo+l)coskro+kr051nkro]

using x = kr_ (6.15).

Finally from equation (6.23), which is the expression

for the K matrix when the interaction potential vanishes

in all but lSo states, we have, for kF - 0,

(I11.1)
A " 2
(E|K|E,B) ~ {

(f0+l)sinkr0-krocoskro }
(fo+l)coskro+kros:|.nkr0

2
= - &ﬁﬁ— tan o, using (6.26)

Thus in the limit as kF - 0, the diagonal element of the
K matrix for 180 states is proportional to the tangent of
the lS0 state phase shift, as indeed it should be by

(3.24).



Fig. I.

Fig. II.

Fig. I1II.

Fig. IV.

FIGURE CAPTIONS

The function Az%(k,P) (see equation (5.11))
as a function of k for P = .5 kp and 1=0,1,2,3.

Comparison of the energy-dependence of the
YLAM S_ phase shift of Breit et al.2?) witn
that of the 'S_ phase shift given by equation
(6.26) using our boundary condition parameters

(6.27) and those of Feshbach and Lomon (6.25).

The nuclear matter (K|K[E,3) as a function of
k for various values of P for the case when the

1g

interaction potential vanishes in all but o

states and when the hole-hole interactions are
neglected (see equation (6.23)). Also included
are the first Born approximation (i.e. (E|V1§).

See equation (6.22)) and the two-body (K |K|K)

(see equation (III.1)).

The nuclear matter (EIK[E;g) as a function of
k for various values of P for the case when
the interaction potential vanishes in all but

lSo states and when the hole-hole interactions
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Fig. VI.
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are included (see equation (6.23)). Also
included are the first Born approximation
(iee., (§|V|§). See equation (6.22)) and
the two-body (E|K|§) (see equation (III.1)).

The single particle potential U(kg) as a function
of k2 for the case when the interaction potential
vanishes in all but lS0 states (see equation
(6.31)). Also included are parabolas fitted

at k, = O and k2 = kF.

2

The single particle potential U(k2) as a function
of k2 for the case when the interaction potential
vanishes in all but lS0 states (see equation
(6.31)) and when the first Born approximation

for the K matrix elements (i.e., (K|V|K)) is used.

Also included is a parabola fitted at k2 =0

and k2 = kF.
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Figure I1

'S, Phase Shift vs Energy

. YLAM curve of Breit et al.2%

. Egn. (6-26) with f, =-.89
ro =.95 fermi

. Eqn. (6 -26) with Feshbach -Lomon !

Parameters
(f,=-1+0.082,r, =1.32 fermi)

~ |

|
50 100 150 200 < 300
Lab. Energy (Mev)  ~~

~




Mev —fermi3

-100

-200
ro =.95 fermi
ke = 1.4 fermi™
-300
-400
-500
-600 /1 (kIkIk B),P=0, m*=m |
[ 2.(kIKlk,P),P=5ke,m*=m
/ -2 l-. e _ *-
-700 / 3.(EiK|E,P),P—.9kF,m =m
/| 4 (k|Vv]k),ie. the First Born
/ approximation. for (kiK|k,P)
| | | L [ 1 | | |
o) | 2 3 4 5 .6 A .8 1.0

-161-
Figure III
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Figure IV
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