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ABSTRACT 

In this thesis the Feshbach-Lomon Boundary Condition 
Model for nucleon-nucleon interactions is applied to the 
Independent Pair Model {or Brueckner theory) of infinite 
nuclear matter, and to the modified Brueckner theory 
which includes also the hole-hole interactions. This is 
accomplished by the construction of a pseudopotential 
which is equivalent to the Boundary Condition Model in 
the two-nucleon problem. The pseudopotential is then 
used in the many-body problem in place of the complicated 
phenomenological nucleon-nucleon potentials used in more 
standard treatments. Because of the very simple form 
of the pseudopotential, the integral equation for the 
nuclear matter K matrix can be handled relatively easily 
and without resorting to perturbative approaches. 
Further, the dependence of the K matrix on the centre of 
mass momentum of the interacting pair is treated more 
fully than in previous treatments. Numerical calculations 
are performed for the case when the nucleon-nucleon 
interaction vanishes in all but 1s

0 
states, and in particular 

the effects arising from the hole-hole interactions and 
from the centre of mass momentum dependance of the K matrix 
are discussed. The singularity of the K matrix, the 
presence of which has been associated with a superconducting 
state of the system, is investigated for the case when the 
interaction potential vanishes in all but 1s states. The 
question of whether a singularity exists wheR the inter
acting particles have a non-zero centre of mass momentum 
is also discussed. Finally a value for the size of the 
energy gap is found. 

iii 



TABLE OF COBA:PTS 

ACKNOWLEDGMENTS................................... ii 

ABSTRACT.......................................... iii 

CHAPTER I 

INTRODUCTION AND SUMMARY...................... 1 

CRAPTER II 

THE FESHBACH-LOMOB BOUNDABY CONDITION MODEL AND 
ITS REFORMULATIOB IN TERMS OF A PSEUDOPOTEBTIAL 7 

2.1 The Feshbach-Lomon Boundary Condition Model..................................... ? 
2.2 The Pseudopotential....................... 12 

CIIAPTER III 

THE TWO-BODY SCATTERING PROBLEM USING THE 
PSEUDOPOTENTIAL................................ 21 

3.1 Some Aspects of Scattering Theory......... 21 
3.2 Use of the Pseudopotential................ 29 

CHAPTER IV 

THE NUCLEAR MANY-BODY PROBLEM AND THE 
INDEPENDENT PAIR MODEL......................... 37 

~.1 Introduction.............................. 37 
~.2 The Independant Pair Model of Nuclear 

Mat ter. . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . l.to 

CRAPTER V 

USE OF THE PSEUDOPOTENTIAL IN THE NUCLEAR MANY-
BODY PROBLEM••••••••••••••••••••••••••••••••••• 67 

5.1 The K Matrix Elements for Singlet Spin 
States •••••••••••••••••••••••••••••••••••• 69 

iv 



TABLE OF CONTENTS (Cont'd) 

CHAPTER V (Cont 1d) 

The K Matrix Elements for Triplet Spin 
States •••••••••••••••••••••••••••••••••••• 
Expressions for the Potential Energy per 
Particle and the Single Particle Potential 
using the Pseudopotential ••••••••••••••••• 

CHAPTER VI 

INTERACTION IN 1s
0 

STATES •••••••••••••••••••••• 

CHAPTER VII 

SINGULARITIES IR THE K MATRIX AND THE ENERGY 
G.At> • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

CHAPTER VIII 

88 

97 

107 

125 

CONCLUSIONS.................................... 142 

AP PEND IX I • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ••• 

APPENDIX II ••.•••.•••••••.••••••••••••••••••.•••••• 

APPENDIX !!! ••••••••••••••••.••••••••.••••••••••••. 

FIGURE CAPTIONS •••••••••••••••••••••••••••••••••••• 

FIGURES I ~VI ••••••••••••••••••••••••••••••••••••• 

~RENCES ••••••••••••••••••••••••••••••••••••••••• 

v 

145 

150 

154 

157 

159 

165 



CHAPTER I 

INTRODUCTION AND SUMMARY 

This thesis will be devoted to applying the Feshbach

Lomon Boundary Condition Model for nucleon-nucleon 

scattering to the Independant Pair Model (or Brueekner 

theory) of an infinite nucleus. In this Introduction we 

shall give a brief summary of some of the previous and more 

standard works and we shall also indicate the contribution 

of this thesis to the field. 

The problem of explaining the properties of nuclei on 

the basis of the forces between the constituants is an old 

one in physics. The problem is in fact two-fold, since it 

involves, firstly, knowing the nature of the forces between 

nucleons, and secondly, once these forces are known, being 

able to handle the equations for a many-particle system. 

The first is indeed still an unsolved problem. Meson theory 

has been moderately successful in explaining the nuclear 

force and giving some of its qualitative features but most 

of the information about the forces between two nucleons 

has been obtained from nucleon-nucleon scattering experiments. 

To correlate the scattering data it has been customary to 
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represent the nuclear force by phenamonological local 

potentials. These potentials have become increasingly 

eomplex as more and more scattering data has been obtained. 

Assuming that nuclear forces can be represented 

adequately by such phenomonologieal local potentials, the 

problem is to ealculate properties of nuclei on the basis 

of these potentials. We have no knowledge of many-body 

forces so at most the theoretical nuclear physicist hopes to 

explain the properties of nuclei on the basis of the "known11 

two-body forces. In particular we wish to be able to 

calcUlate the energy per particle of a hypothetical 

configuration of nucleons called nuclear matter. The concept 

of nuclear matter results from an extrapolation of the semi

emperical mass formula of Weiszacker, which formula gives 

a good over-all fit to the binding energy of all known 

nuclei. It is believed on the basis of this formula that a 

very large number A of A/2 protons and A/2 neutrons would 

form a stable configuration with an energy per particle of 

approximately -15 Mev, provided that the Coulomb force 

between the protons did not exist. This hypothetical 

configuration is called nuclear matter. 

It was not until the work of Brueckner and associates1) 

that a systematic method for calculating the energy per 

particle of nuclear matter was devised. Brueckne~ 1 s idea 

was to replace the potential by a reactance matrix 
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(or K matrix), which is similar to the reactance matrix of 

scattering theory, and express the properties of nuclear 

matter (e.g., the energy per particle) in terms of this 

quantity. Bethe2) has discussed the theory in detail 

pointing out the complications and developing its logical 

consistency. The most lucid description of the physics behind 

the theory however has been given by Gomes, Walecka, and 

Weisskopf.3) Brueckner 1 s theory can be looked upon as an 

11independent pair model" of nuclear matter in that it consists 

of taking into account the interaction of any pair of particles 

as exactly as possible, neglecting the interactions of all 

other particles among themselves and vith the pair. The 

presence of the other particles is indirectly felt however 

through the exclusion principle. The energy of the system 

is then the sum of all the two body correlation energies. 

Extensive numerical calculations using the Brueckner theory 

of nuclear matter and phenomonological nucleon-nucleon 

potentials have been carried out, most notably by Brueckner 

and Gamme11) and by Moszkowski and Scott.~'5) In both cases 

excellent results have been obtained. It has been conjectured 

that an improvement over Brueekner 1 s theory can be obtained 

by including the so-called "hole-hole interactions".6'7) 

(These are explained later.) At present no extensive 

numerical calculations have been performed to investigate 

this conjecture. It is felt however that the inclusion of 
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these terms will cause large corrections to the form of the 

K matrix but quite small corrections to the energy per 

particle.8) 

In this thesis we shall also use the Brueckner theory 

(with the hole-hole interactions included) for our discussion 

of nuclear matter, but out starting point, naaely the 

description of nuclear forces, will be different from that 

used by other workers. The description we use is the 

Feshbach-Lomon Boundary Condition Mode19): the interaction 

in each state is represented by an energy independant boundary 

condition on the logarithmic derivative of the wave function 

of the two nucleons at an energy independant core. In 

presenting their model Feshbach and Lomon vere motivated by 

developments in the meson theory of nuclear forces which 

suggested that 1) use of simplified local potentials for 

describing nuclear forces is only possible if the nucleons 

are relatively far apart and, 2) there exists some region in 

which many virtual mesons are present, or alternatively in 

which the interaction energy is very large so that the behavior 

of the nucleons is relatively insensitive to their kinetie 

energy at infinity. This region has no sharp boundary but 

one ean say that an energy independant description will 

hold for sufficiently small interparticle distances. These 

two developments suggest the folloving phenomonological 

model for the nucleon-nucleon interaction. The energy 

independant core is represented by means of a set of energy 
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independant boundary conditions at some energy independant 

core radius r
0 

which may be state dependent. For r greater 

than r
0 

the nuclear forees are represented by potentials 

indicated by meson theory. In their original analysis of 

the experimental data however, Feshbach and Lomon dropped 

the local potential external to the core. The resulting model 

is called the Boundary Condition Model (BCM) and forms the 

starting point of our work. 

In order to apply the BCM to the Brueckner theory we must 

reformulate the BCM in terms of potential. This potential 

(or pseudopotential), which we give in the next Chapter, 

has an extremely simple form. It is much simpler than the 

usual phenomonological nucleon-nucleon potentials, and for 

this reason leads to a great deal of simplification of the 

many-body equations. 

In the course of our discussion of the Brueckner theory 

we go beyond previous treatments by introducing methods to 

handle the centre of mass momentum dependance of the nuclear 

matter K matrix. We introduce certain expansions only the 

first terms of which have been given before. 

In order to give some numerical results, we investigate 

in some detail the case when the interaction vanishes in 

all but 1s
0 

states. In this case the exact expression for 

the nuclear matter K matrix can be written quite simply. 

We investigate in particular the centre of mass momentum 
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dependance of the K matrix and the effect of the hole-hole 

interactions. 

As a final point, we discuss, for the case when the 

interaction vanishes in all but 1s
0 

states, the singularity 

of the nuclear matter K matrix which has been associated 

vith a superconducting state of nuclear matter.lO) 



CHAPTER II 

THE FESHBACH-LOMON BOUNDARY CONDITION MODEL AND ITS 
REFORMULATION IN TERMS OF A PSEUDOPOTENTIAL 

This Chapter will be devoted to a discussion of the 

Feshbach-Lomon Boundary Condition Model9) of nucleon-nucleon 

scattering, and to a recasting of this modal into a form 

making it more amenable for use in the nuclear many-body 

problem. 

2.1 The Fe3hbacA-Lomon Boyndary Condition Model. 

The Feshbach-Lomon approach to nucleon-nucleon scattering 

is radically different from the usual phenomenological models 

which have been suggested. Most of the models which have 

been suggested for the correlation of nucleon-nucleon scatter

ing data assume a local potential V(r,~,~) between the nucleons, 

where r is the internucleon radius vector, d represents the 

spin operators of each nucleon, and ~ the isotopie spin. These 

models have become more and more complex in structure as more 

scattering data has become available.ll) 

Progress in the meson theory of nuclear forces has 

indicated however that use of simplified local potentials 

for describing the nuclear forces is only possible if the 

-7-
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nucleons are relatively far apart. When the distance between 

the nucleons is less than one meson Compton wavelength, higher 

order affects, corresponding to the exchange of many mesons, 

must be taken into account. In this case, which is important 

in high-energy nucleon-nucleon scattering, a non-local 

potential must be used to describe the nuclear forces. 

Motivated by these developments, Feshbach and Lomon 

introduce an extrema non-local interaction to handle these 

higher order effects. In particular, they consider the inter

action in each state to be represented by an energy independant 

boundary condition on the logarithmic derivative of the wave

fUnction of the two nucleons, this logarithmic derivative 

taken at some energy independant core radius r
0 

which may 

be state dependent. For r greater than r
0

, they would assume 

the usual local potentials indicated by meson theory, for 

example, the static one and two pion exchange potentials 

(OPEP and TPEP). It should be noted that Feshbach and Lomon 

represent the higher order effects by an energy independant 

boundary condition. It is felt that in the region where the 

higher order effects are important (and thus where the inter

action energy is large) that the behavior of the nucleons will 

be relatively insensitive to their kinetic energy at infinity. 

In their original analysis of the experimental data, 

however, Feshbach and Lomon dropped the local potential 

external to the core. The resulting approximation, which 

we shall call the Boundary Condition Model (BCM), will be 
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the starting point for the work of this thesis. The more 

sophisticated model, that is, boundary condition plus 

potential tail, is now being used by Feshbach and Lomon for 

an analysis of nucleon-nucleon scattering data. For the 

present, however, let us proceed with a quantitative 

discussion of the BCM. 

The basic assumption of the BCM is expressed in terms 

of the boundary condition 

d'll(r) 1 

dr r=r 
0 

where ~ is a state or group of states with the same total 

angular momentum, and where F and r
0 

are energy-independent 

parameters. In particular, for two nucleons in a singlet 

spin state, ~ = tt(r), the radial wave function of the two 

nucleons in the center of mass coordinate system (t is the 

orbital angular momentum in units of h), and the boundary 

condition becomes 

A similar simple structure holds for the wave function 

of two nucleons in a triplet spin state when J, the total 

angular momentum, equals t. In this case, 'f = tJJ(r) 



-10-

and the boundary condition is 

(2.2) 

For the other two triplet states (that is, those where 

t=J±l) the situation is not quite so simple since there can 

be coupling between these states. In this case, ~ is a 

unicolumnar matrix 

and F is a real 2x2 hermitian matrix 

F = 

and the boundary condition is 

(2.3) 

fJ,J+l 

f r<t) 
J,J-1 J 

f(t) 
J 

Thus equations (2.1) to (2.3) form the BCM. The boundary 

conditions are clearly eqUivalent to the phase shifts 

and are therefore just another representation of the data. 

Indeed for singlet states of the neutron-proton system 
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where A~ is a normalization constant, ô~ is the phase shift, 

k is the relative wave number, and the h 1 s are spherical 

Hankel functions: 

where j~ is a spherical Bessel function and n~ is a spherical 

Neumann function. Thus we can wri te 

direct substitution of which into equation (2.1) leads to 

Here and in what follows a prime on a function means 

differentiation with respect to its argument. This equation 

has been given by Feshbach and Lomon {see their equation 7). 

They also show the relationship between the triplet boundary 

condition parameters, and the phase shifts and mixing para

meters for these states. We need not write down these 

equations here. 
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2.2 The Pseudopotential 

We would like to apply the BCM to the nuclear many-body 

problem. We shall discuss the many-body problem in some 

detail in Chapter IV, but it is sufficient for our purposes 

now to state that it is formulated in terms of the nucleon

nucleon potential. Now the BCM contains no reference to a 

potential, so we shall in this Section reformulate the BCM 

in terms ef a potential as the first step towards applying 

the model to the many-body problem. This potential, or 

pseudopotential, which we shall now construct will then be 

used in the many-body theory in place of the very complicated 

phenomenological potentials used in more standard treatments. 

Thus, we are seeking a potential which vanishes for 

r>r
0 

and such that the wave function of the Schrodinger 

equation describing the scattering of tvo particles via this 

potential satisfies the required boundary conditions, that 

is, equation (2.1), (2.2), or (2.3) depending upon the 

angular momentum of the state in question. We assert that 

such a potential is 

(2.5a)V(r) = ~ ~ [~ ~(r-r+ )-b{r-r- )JL]PooA m ~ r
0 

o, o 11 ar '\AN 

+~ 
m 

.t=O :t -v -v 

~ {[~JJ b(r-r! )-b(r-r~ >~]PJJl 
J=O OJJ JJ JJ 

+ c::- b(r-r~J)-b{r-r~J)~](PJ,J+l,l+PJ,J-l,l)} 
J 
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where m is the mass of one nucleon, r is the distance 

between the two nucleons, the fts and r
0
ts are the boundary 

parameters occurring in equations (2.1), (2.2), and (2.3), 

and the P's are projection operators having the property 

that PJ}J3 gives a non-zero result only when operating on a 

state having total angular momentum J, orbital angular 

momentum t, and spin s. The operator a. is defined by 

(2.5b) 
g.~ M - f - M + f( t) I•M 
~J,J-1,1- J,J-1 ~J,J-1,1 J ~J,J+1,1 

(2.5c) &1JM - f(t) î1M + f , M 
~J,J+l,l- J ~J,J-1,1 J,J+1 ~J,J+l,l 

(2.5d) ~lt~ts = 0 fort'# J;tl, S#l 

where the 'lf~ts are the orthonormal "spin-angle" wave 

functions. 12) (They are eigenfunctions of J 2 and Jz.) 

Finally, the 0-functions occurring in equation (2.5a) 

are Dirac o-functions. The arguments of the o-functions 

contain, for example, r~ and r~ by which we mean 
t t 

(2.5e) 

where E is an infinitesimally small number. We interpret 

the potential in the sense of e ~ o. 
We prove our assertion as follows. The Schrodinger 

equation describing the scattering of two particles (each 

of mass m) by a potential V is, in the centre of mass 

system, 

(2.6) 
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where k is the relative wave number. Now we can write 

<Xl +J 1 J+S 
(2.7) 'l' G,o) = I I I I *Jts(r) ·'t~ts<~,o) 

J=O M=-J S=O t=jJ-SI 

A .... where r stands for the angles the radius vector r makes 

with sorne coordinate axes, and 0 stands for the spin operators 

of the particles. Substituting equation (2.7) into the LHS 

of equation (2.6) yields 

LHS of (2.6) = 
+J 1 J+S 

2: 2: I ·y,~ts 
J=O M=-J S=O t=IJ-SI 

If Vis given by equation (2.5), then substituting equation 

(2.7) into the RHS of equation (2.6) yields 

RHS of (2.6) = 
00 

= 2: t{~ 
t=O m=-t 

00 +J { 
+ I I ·y,~J1 

J=O M=-J 
[ fJJ + - ..a.J -r- o(r-ro )-o(r-ro )ar tJJl 

OJJ JJ JJ 
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Equating both sides of equation (2.6) and using the ortho

gona1ity of the ·y,r s 1eads to the fo11owing equations 

( 8 ) Il 2 t 1<1+1) 2 2• a tw + r tw - 2 tua + k tw = 
r 

(2.8b) tJ"J1 + _r2 tJ,J1 - J(J+1) t + k2 t = r2 JJ1 JJ1 

= [frJJ + J ô(r-r0 )-ô(r-r~ )~ tJJ1 OJJ JJ JJ 

(2.8c) t" + 2 ,,,' - (J-1)J ,,, + k2 ,1, = 
J,J-1,1 r VJ,J-1,1 2 VJ,J-1,1 'J,J-1,1 r 

f(t) f 
= _l__ ô(r-r+ )t +( J,J-1ô(r-r+0J)-ô(r-r 0-J)~r)tJ,J-1 , 1 r

0 
oJ J,J+1,1 r 0 u 

J J 

(2.8d) t" + 2 t' - (J+l)(J+2) t + k2 t = 
J,J+1,l r J,J+1,1 2 J,J+l,l J,J+l,l r 

We will now show that tuo' the radial wave function of 

two particles in a singlet spin state with orbital angular 

momentum ~' satisfies the boundary condition (2.1). 
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Integrating both sides of (2.8a) from a and ~ where 

+ -Let us now take ~ ~ r and a ~ r • It is known that the 
ot ot 

wave function for a ~-function potential is continuous at 

the non-vanishing point of the ô-function but that its first 

derivative is discontinuous there. The same will be true of 

the wave function for our pseudopotential (i.e. v~ 0 {r~ ) = 
- t + 1 - / t 

V.t-t~ (r 0t) but t!:.t.O (r 0t) ;. "+'.t.-tO (r 0t)). Thus when we take 

~r0 and a~ r
0 

, all but the first two terms on the LHS 
t t 

of the above equation vanish and we are left with 

(2.9) '<+ • c- -~ <+ 'c-lt-to r o11 ) --+-,f,.tO r o11 ) - r "+'uo r o ) - tuo r o ) 
.-v .-v OJ. l t 

v 

or 

' + - ~ + v~o<ro ) - r v,.uo<ro ) 
' t ot v t 

which is the boundary condition (2.1). It should be clear 

from the methods we have used, that this result would still 

be obtained if we also included a potential inside the core, 

provided this potential is finite at r
0 

• We shall not 
l 

include such a potential however in the work of this thesis. 
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By performing identical operations on equations (2.8b) 

to (2.8d), we find that the function tJJl satisfies (2.2) 

and the functions tJ,J+l,l and tJ,J-l,l satisfy (2.3). 

This proves our assertion and thus the potential, or 

pseudopotential, given by equation (2.5) is completely 

equivalent to the BCM. We have now reformulated the BCM in 

terms of a potential as was our aim. 

The introduction of a pseudopotential to replace a 

boundary condition has also been considered by Huang and 

Yangl3) in another problem. They were interested in the 

hard sphere Bose gas and introduced a pseudopotential to 

replace the condition that the wave function must vanish on 

the surface of the spheres. As they point out, however, 

their pseudopotential, equation (12) in their paper, is quite 

general and could in fact have been used in the above nuclear 

problem. The Huang and Yang pseudopotential is really very 

complicated and for practical purposes must be replaced by 

some approximate form. No such approximation need be made 

with our pseudopotential. The difference in the form of 

our pseudopotential and that of Huang and Yang arises from 

the difference in the approaches taken for the derivation. 

Huang and Yang require the analytic form of the wave function 

inside the boundary radius to be identical to the form 

outside. They then construct a pseudopotential involving 

differentiai operators and delta functions at the origin so 

that the wave function is finite there. Thus, the solution 
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of the Schrodinger equation containing the Huang and 

Yang pseudopotential is a smooth function whereas the 

solution of the Schrodinger equation containing our 

pseudopotential has a discontinuons derivative at the 

boundary surface. Thus, even if the two wave functions 

were the same outside the boundary region, they would be 

different inside. We cannot attach any physical 

significance to the wave functions inside the boundary 

region so this difference should cause no concern. There 

may indeed be many pseudopotentials which we could construct 

to replace the BCM but we shall use (2.5) because of its 

simplicity. 

We should point out that the pseudopotential (2.5) 

is not hermitian. This is also true of the Huang and 

Yang pseudopotential and as they have mentioned, this 

non-hermiticity is unimportant in the two-body problem 

since in the region having physical significance (i.e., out

sida the boundary surface) the wave function is identical 

to the wave function for the physical potential. We can 

easily construct a hermitian pseudopotential from (2.5). 
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We have 

(2.10) V(r) = 

::;~ 
m 

+tt: 
m 

+ _g_ ô (r-r + ) - _g_ ô {r-r- >] PJJl 
r 0 oJJ r 0 oJJ 

JJ JJ 

This hermitian pseudopotential is also completely equivalent 

to the BCM as can be shown by the methods used above. The 

pseudopotential (2.10) differs from (2.5) by containing terms 

proportional to ~ , which operates only on functions to the 

left, and additional terms to take cane of the fact that the 

wave function for this pseudopotential is discontinuons at the 
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non-vanishing points of the ë-functions. Equation (2.10) 

is more complicated than (2.5) and we decided to use the 

simplest form possible hoping that the non-hermiticity would 

lead to no difficulties in the many-body problem. It is 

possible however that the non-hermiticity may lead to 

difficulties at high energies. 

As an illustration of the use of our pseudopotential 

(2.5) we shall examine in the next Chapter sorne aspects of 

the two-body scattering problem. As we shall see, we can 

solve the Schrodinger equation exactly when the potential 

is given by (2.5). 



CHAPTER III 

THE TWO-BODY SCATTERING PROBLEM USING THE PSEUDOPOTENTIAL 

In this Chapter we shall consider some aspects of 

scattering theory, and as an illustration of the use of 

our pseudopotential we shall apply the theory to the 

two-body scattering problem when the interaction potential 

is given by our singlet spin pseudopotential, that is, 

when the potential is given by the first line of (2.5). 

The first derivative of the wave function of the Schrodinger 

equation containing the pseudopotential is discontinuous 

and we shall point out explicitly here the way in which 

this discontinuity manifests itself. 

3.1 Some Aspects of Scattering Theory 

We consider the scattering of a particle of mass ~ 

from a potential V which is independent of spin and isotopie 

spin. The Hamiltonian H of the system then is 

H = H +V 
0 

where H
0 

describes the unperturbed motion of the particle. 

we shall take 
H = p2 

0 2~-J. 

-21-
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where p is the linear momentum of the particle. The eigen

states and eigenvalues of H
0 

are given by 

{3.la) 

{3.lb) 

-:+ The eigenvectors IK) forman orthogonal set with normalization 

and completeness conditions as follows 

(3.2a) 

{3.2b) 

..,. ..,. ..,. ' 
where dk = dkxdk

1
dk

3 
and o(K-k ) is a three dimensional Dirac 

o-function. Further, the projection of Jk) on the eigenstate 
-+-Jr) of the position operator of the particle is 

-+-where the eigenvectors Jr) forman orthogonal set with normal-

ization and completeness conditions 

I d1 ft) c11 = 1 
all space 

-+- -+- t ..... -+- f 
(rJr ) = o(r-r ) 
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We assume that H has the same continuous spectrum as 

H
0

• Now we shall be interested in the nstanding wave" 

eigenstates of H which we denote by l•k). They satisfy the 

equation 

(3.5a) 

where p denotes principal value. That this is indeed an 

eigenstate of H can be seen by multiplying both sides on 

the left by Ek-H
0

• We can write equation (3.5a) as 

where 

(3. 6) 

Gk is called the Greents operator for standing waves; it is 

a solution of 

(E-H ) G = 1 
0 

Let us consider the coordinate representation of 

lvk)' that is, (rJtk) = tk{~. From equations {3.5) and 

(3.3) we have 
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Now, 

.... I ..... .... ..... ..... 
(r!GkV!tk) = dr (rJGklr ){r IVIvk) 

using (3.lf.a). But 

using (3.2a), and using (3.6), (3.1) and (3.2b) 

(3. 7) 

so that 

(3.8) 

_.,1 J _.,n _.,, -..n _,.n 
Further, (r IVIvk)= dr (r JVJr )(r ltk) which for a local 

_.,, _.,n _.,r -+' -+u 
potentia1, (that is, one where (r IV!r) = V(r )ô(r -r )) 

becomes 

so that finaly we have 

.... ..... ..... ..... , 
where for convenience we now write (riGkJr ) = Gk{r,r ). 

We are also interested in the 11reactance operator, K" 

which is defined by 

(3.10) 
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Multiplying by (k1 ! we obtain an equation for the reactance 

matrix elements 

(3.11) 

which for a local potential becomes 

(3.12) 

W 1 d i . t 1 ti f ('it 
1 

1 Kl"t) • e can a so er ve an ~n egra equa on or A A 

Using equation (3.5) in (3.11) we have 

1 
(k 1 KI k) 

Finally, using (3.2) and (3.1) we get 

(3.13) 

where, for a local potential, 

We shall be concerned mainly with (3.9) to (3.14). 

Let us now suppose that V is a central potential, that 

is V= V(r). In this case the angle dependance of vk(~) is 
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particularly simple. We can write 

00 +-t. 
vk(t) = lm- L L it 'f~(r)YÎm (k)Y.tm (;) 

t=o m=-.t 

vhere the Y's are the usual spherical harmonies with 

orthonormality condition 

(3.16) 

The integration extends over the full solid angle, and the 

ô-functions on the RHS are Kronecker ô-functions. 

Now the expansion of the plane wave in terms of 

spherical harmonies is given by14) 

(3.17) 

Using equations (3.16) and (3.17) we can rewrite 

equation (3.8) in the form 

CIO +.t 
(3.18a) 

-+ ...... I I -f. A * A Gk(r, r ) = Gk(r,r 1 )Y.tm(r)Y.tm(r•) 
.t=O m=-0 

where 

(3.18b) 
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In Appendix I we show that 

CIO 

<3.19) 2. PI 
Tf 0 

::: 

if r' > r 

if r > r' 

Using equations (3.15) to (3.18a) we obtain the 

following integral equation for tt(r) from (3.9) 
k 

(3.20) 
CIO 

ti<r) = jt(kr) + J dr 1r 12 G~(r,r 1 )V(r')tk(r 1 ) 
e 

Further using (3.15) to (3.17) we can write equation 

(3.12) as 

CIO +t 
(3.2la) (k

1 
IKik) = (ltrr-) 2 L I 

where 
CIO 

(3.2lb) (k1 IK;)k) = J
0 

drr2jt(k 1 r)V{r)t~(r) 

Using (3.16), (3.17), and (3.21) we obtain the following 

integral equation for (k'l~lk) from (3.13) 

CIO dk"k112(k1 IV lk")(k"IK lk) Pf t t 
o k2 - ku2 

(3.22) (k'IK lk)=(k 1 IV jk)+ ~ 2. t t h2 Tf 
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where 

00 

(3.23) (k'IV~)k) = J
0 

drr2j,}k1r)V(r)jt(kr) 

Let us now consider equation (3.20) again. In the 

limit r ~ oo we get 

where we have made use of (3.19). Now the phase shift is 

defined by the requirement that as r ~ oo 

so that we have 

00 

l drr2 j 0 (kr)V(r)tl(r) 
0 'V 

which using (3.2lb) gives the important relationship 

(3.24) 

We have now discussed enough of the formal theory 

of scattering for our purposes and can now turn to a 

particular application of the theory. 
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3.2 Use of tne Pseudopotential 

We shall be cencerned in this Section with equations 

(3.20) to (3.2~). These equations have been derived for the 

scattering of a particle of mass ~ from a spin and isotopie 

spin independant central potential. These equations can be 

applied also to the scattering of two nucleons in a singlet 

spin state from an isotopie spin independant central 

potential when 2~=m, the mass of one nucleon, r is the 

distance between the two nucleons, k is their relative 

wave number, and ~ their orbital angular momentum. We shall 

then examine these equations when the potential is given by 

our pseudopotential for singlet spin and orbital angUlar 

momentum ~ states, that is for 

We shall see that we can solve {3.20) exactly using this 

potential. Substituting (3.25) into (3.20) yields 

(3.26a) t.t(r) = j.t{kr) + ~ g.t(r,a+)f.t{a+)-g.t(r,a·)tl<a-) 

For simplicity we now write •.t(r) = t~(r) (i.e., we drop the 

reference to k) and we also write 

2 2 , 2 ~dk 1 k12jt(k 1r)jt(k 1 r 1 ) 
(3.26b) gt{r,r') = b.:!.: G-t.-{r,r'):2a pr ----~-~------ _ 

m k T J k2-k 12 

_ 2 {j.t(kr)n.t(kr 1
) if r'>r 

= ka jt(kr 1 )nt(kr) if r >r 1 
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+ We now need expressions for tt<a ) '< -and tt a ) • We notice 

that tt(r) is a continuous function of r 
+ Thus, tt<a ) = tt(a) and therefore 

(3.27) 

using also g.t(a,a-) = g.t(a,a+) = g.t(a,a). 
1 

Consider lt(r) however: 

where 

since g.t(r,r 1 ) is. 

It is discontinuons at r=a- since g~(r,r 1 ) is discontinuons 

when r=r 1 : 

if r'>r 

if r >r' 

from differentiating equation (3.26b). 

'< -Thus, wha t do we mean by l.t a ) ? To answer this we look 

back at equation (2.9). It is seen there that we consider 

(3. 29) 1 -ft(a ) = 1 
lim _ l.t(a) 

a -+ a 
-where a < a 
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If the limit is not taken in this manner than the pseudo

potential will not lead to the required boundary condition. 

( 6 '< -In equation 3.2 a) we must interpret Vt a ) as given by 

(3.29) and we have then 

t( - +) t( - ) using gr a ,a =gr a ,a • The important point is that the 

value of the first variable must be less than that of the 

second. 

Now equations (3.27) and (3.30) can be solved for tt(a) 
1 

tt(a) and we find 

_ jt{ka) [1 + g;(a-,a)] -kjj(ka)gt(a,a) 
- f 

1 + g~(a-,a) - ~ gt(a,a) 

_ kji(ka)[l- ~ gt(a,ail+ ~ jt(ka)g;{a-,a) 
- f 

1 + g~(a-,a) - ~ gt(a,a) 

so 

Now, from (3.26b) and (3.28) 

gt(a,a) = ka2jt(ka)~(ka) 

g~{a-,a)= k2a2jl(ka)nt(ka) 
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Th us 

where we have made use of the relationshipl5) 

Finally then 

gt(r,a) ( ) We notice that for r>a, 2 = nt kr and from equation 
ka jt (ka) 

(2.4), 

{} = tan ét 

so that 

as it should be. 

Let us now consider (k'l~lk). Using (3.25) in (3.2lb) 

gives 
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which using (3.3~) becomes 

- kajf(ka)} 

- kant (ka). 

Again .t'rom equation (2.4), { } = tan b,t so that 

2 
(ki ~1 k) = - ~ tan b.t, 

Thus we see that equation (3.24) is indeed satis.f'ied. 

It is instructive for later work to rewrite {k'!Ktlk) 

with the g 1 s written in their integral form. From (3.33a) 

we have, using (3.26b) and (3.28) 

(3.33b) (k'J~Ik) = 

= b!a j (k
1
a) [f j (ka)-kaj

1
(ka)] 

--------~~~~--~~~-----~~~~---=-
dk"k112j.t(k"a) f.tj.t(k 11a)-k"ajl(k"a-) 

k2-kn2 

Cl) 

1-~ p J 
Tr 0 

Let us now solve direetly the integral equation (3.22) 

for (k 1 1 K_t.l k) • 
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We have 

substitution of which into (3.22) gives 

where 

(3.35) 

(3.36) 

dkflk"2jt (k"a +) (k" 1 K:f) k) 

k2 - k"2 

We now substitution equation (3.34) for (k 1 1~1k) into 

(3.35) and (3.36) to get equations for Ki(k) and K2(k). We 

find, using the definitions of g and gr' 
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the solutions of which are 

Substituting these expressions back into (3.34) gives 

finally 

(3.37) (k'l~lk)= 

Comparing the two equations for (k'l~lk), that is, (3.37) 

and (3.33a), we see that they are different and thus (kiKtlk) 

as given by (3.37) will not be proportional to tan ôtas it 

should be. We have used no illegal procedures in obtaining 

(3.37) from the integral equation (3.22) for (k 1 1~1k). 

However, by solving the integral equation for (k 1 1Ktlk) we 
1 

cannot take into account the fact that tt(r) is discontinuous 
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at r = a and it is for this reason that the two methods 

of obtaining (k'IK~Ik) give different results. The integral 

equation (3.22) for (k'l~lk) is ambigaous since (k'l~lk) 

given by (3.33a) and by (3.37) are both solutions. This 

does not mean that we cannot deal vith this equation however. 

We could deal vith this equation by dropping the distinction 
+ -between a and a in the pseudopotential, that is, by using 

simply a. In the final result however the distinction must 

be made, and the correct choice will be governed by the 

result obtained by constructing (k 1 l~lk) from the solution 

of the Schrodinger equation, that is, by (3.33). We emphasi~e 

this point here since in the next Chapter on the many-body 

problem we shall meet a similar integral equation. 

This completes our discussion of the tvo-body problem. 

We have given an exact solution of the Schrodinger equation 

for the case when the potential is given by our singlet spin 

pseudopotential and we have illustrated how the discontinuity 

in the first derivative of the wave function manifests itself. 

We shall now examine the much more complex nuclear many-

body problem and the application of our pseudopotential to 

this case. We shall see that in the many-body problem as 

in the above two-body problem, use of the pseudopotential 

instead of a more standard phenomenological nucleon-nucleon 

potential leads to equations vhich are much simpler to 

handle. 



CHAPTER IV 

THE NUCLEAR MANY-BODY PROBLEM AND THE 
INDEPENDENT PAIR MODEL 

4.1 Introduction 

In the next Chapter we shall apply the BCM, via our 

nucleon-nucleon pseudopotential (2.5), to the nuclear many

body problem. Firstly, however, we must make some 

introductory remarks about the problem. 

In this discussion we shall be concerned vith a 

hypothetical configuration of nucleons called ttnuclear 

matter". The concept of nuclear matter results from an 

extrapolation of the semi-empirical mass formula of 

Weiszacker, which formula gives a good over-all fit to the 

binding energy of all known nuclei. It is believed on the 

basis of this formula that a large number A of A/2 protons 

and A/2 neutrons would in their lowest energy state form a 

stable configuration with an energy per particle of 

approximately -15 Mev, provided of course that the Coulomb 

force between the protons did not exist. It is this 

hypothetical configuration that is called nuclear matter. 

A second property attributed to nuclear matter is 

constancy of density of nucleons, p = â , where 0 is the 

-37-
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volume of the configuration. It is known experimentally 

that the density of nucleons near the centre of all but the 

very lightest nuclei is roughly equal to .18 nucleons per 

(fermi)3 and it is this value which nuclear matter is 

assumed to possess. 

The problem then is to explain these properties of 

nuclear matter on the basis of the forces between the 

nucleons. We have no knowledge of many-body forces and 

only an incomplete knowledge of two-body forees as obtained 

by scattering experiments. At most then, one would hope to 

calculate the properties of nuclear matter assuming the forces 

between the constituants to be given by those indicated by 

two-body scattering experiments. 

Thus, we shall consider the following to be the 

Hamiltonian for nuclear matter: 

H= 
i=l 

A 
\' v .. L ~J 

i=l j=l 

where Ti is the kinetic energy operator for nucleon i and 

v1 j is the interaction potential between nucleons i and j 

which shall be taken to be given from scattering experiments. 

If IP) is the normalized wave funetion of the ground state 

of nuclear matter then the energy E of the ground state is 
A A A 

E = (\fi 1 I Ti + ~ L I v ij 1 'l' ) 
i=l 1=1 j=l 
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The earliest calculations to obtain E were perturba

tion calculations based on the independant particle madel 

of nuclear matter, and using the total interaction energy 

as the perturbation. Neither of the known perturbation 

methods yielded satisfactory results: the Wigner-Brillouin 

series converges too slowly and the Raleigh-Schrodinger 

series, when stopped at any given arder, contains terms of 

arder A2 (instead of A), which is clearly unphysical. These 

are the unlinked cluster terms. However, Goldstone, 16) 

in one of the most important papers in this field, 

considered the many-body problem using field theoretic 

techniques and obtained a new perturbation series in which 

no unlinked cluster terms appear. 

Goldstone 1 s elegant approach in terms of diagrams 

gives new series for 1 'il) and E and the problem then is 

to find some suitable approximation for them. The 

approximation series introduced first by Brueckner1) gives 

a good first approximation to the Goldstone series and 

consists in picking out all of the "ladder" diagrams in the 

Goldstone series for the energy. The Brueckner approxima

tion can be looked upon as an independent pair model of 

nuclear matter in that it considers the interactions between 

any pair of particles, neglecting the interaction of all 

the other particles among themselves and with the pair. 

The most lucid description of the physics behind the 
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Brueckner approximation has been given by Gomes, Walecka, 

and Weisskopf3) and this paper will be the starting point 

for our more quantitative discussion in the next Section. 

4.2 The Independant Pair Model of Nuclear Matter. 

Let us consider first the simplest of all models of 

nuclear matter, the degenerate Fermi gas model, wherein one 

completely ignores the interactions between the nucleons. 

Nuclear matter is considered to be a Fermi gas enclosed in a 

volume Q and composed of four different kinds of particles: 

A/4 protons of each spin and A/4 neutrons of each spin. The 

particles will occupy single particle levels which are 

eigenstates of the momentum opera tor. We denote a single 

particle state by la) where the letter a stands for the 

quantum numbers ~ ~ 

Ka' ~a' ~a where Ka is the momentum of the 

particle and ~a and ~a are the spin and isospin, respectively. 

If 1~) is the eigenvector of the position operator for a 

particle, then 

(4.1) 
lit .~ 

e a 

Thus, we consider the momentum and position eigenfunctions 

of a particle to have the following normalizations: 

(4.2) 
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The nuclear matter wave function is then a product of 

these single particle wave functions 

(4.3) 

where u is the antisymmetrizing operator. In the above, the 

subscripts 1,2, ••• ,A indicate which particle occupies which 

single particle level. There are A single particle levels 

occupied for a system of A particles. 

The total energy of the ground state of the system is 

the one where the particles occupy all levels up to the 

Fermi level and its energy is3) 

(4.4) 
2 

E = h.: 
0 2m 

0 

where kF is the Fermi momentum, and is related to the density 

- A. by p - ~ 

(4. 5) 
.., 2 l/3 

kF = <2 7r p) 

In the independent pair model of nuclear matter (IPAM) 

one goes beyond the above simple picture by including two 

particle correlations. That is, one treats the correlation 

between a given pair exactly and takes into account in an 

average fashion the other interactions of the particles among 

themselves and with the pair. One treats the scattering of 

two particles in nuclear matter in a manner similar to the 
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scattering of two particles in free space, there being 

one very important difference in these two cases however: 

the effect of the Pauli Principle. In the zeroth order 

approximation to the ground state of nuclear matter (i.e. 

equation (4.3)) all levels up to the Fermi level are 

occupied, and thus two particles in this Fermi sea cannot 

perform a real scattering process into different levels since 

these levels are already occupied by other particles. 

Although one assumes that the other particles do not interact 

directly with the pair, they still have an important effect 

on the interaction of the pair through the Pauli Principle. 

The mathematical formulation of this model was first given 

by Bethe and Goldstone17) and the physical ideas underlying 

the model were illuminated by Gomes, Walecka, and Weisskopf.3) 

The equation for the wave function of the two p~rticles is 

not the usual Schrodinger equation but the Bethe-Goldstone 

(BG) equation, which we shall now derive using the approach 

of Gomes, Walecka, and Weisskopf. 

In the IPAM the energy of the system is written as 

E = E
0 

+ 1
2 \ bE ~ a~ 

a,~ 

where the summation is over all occupied levels, and where 

bEa~ represents the energy shift coming from the interaction 

of a pair of particles in levels a and ~· Each bEa~ is 
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calculated by assuming that there is interaction only 

between the pair of particles in levels a and ~· Since the 

interaction vanishes in levels y # a or ~ the wave function 

of a particle in any of these levels is unchanged, that is, 

is still given by the zeroth order approximation. However, 

as a result of the interaction, the wave function l·a~) of 

particles in levels a and ~ is changed from a product of 

zeroth order wave functions and it is this new wave function 

which we shall now obtain. 

In order to obtain an equation for l·a~) we consider, 

in the spirit of the above discussion, the following equation 

(4.6) 
A 

H = ~ H + ù L i a~ 
i=l 

Hi = Ti+ ui 

A A 

Ùa~ = 1: 1: vij 
i=l j=l 

qi 
a 

qJ 
~ 

where Ti is the kinetic energy operator for particle i; Ui 

is a self-consistent single particle potential felt by 

particle i (Because of the translational invariance of 

nuclear matter, it cannot depend on the position coordinate 

of particle 1. It can depend on the momentum of the particle, 

of course.); v1 j is the interaction between particles i and 

j as determined from two-body scattering experiments; q! is 
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the following operator 

(4. 7) q~ = L !y)i i(yl + ja)i i(aj 
y>F 

where ~ means summation over all single particle states 
y>F 

jy) where ky > kF • 

In (4.7) the single particle states are eigenfunctions 

of T+U. That is, 

(4.8) (T+U) jy) = E jy) y 

where E = E(k ) is the energy eigenvalue. Since U is y y 
independant of the position coordinate, the single particle 

eigenfunctions are identical to those discussed in connection 

with the Fermi gas model at the beginning of this Section. 

The ground state of a system with the Hamiltonian (4.6) 

is the one in which only particles in levels a and ~ interact, 

that is, the levels la) and 1~) are 1nfluenced by the inter

action and their wave function is changed. We write the 

ground state wave function of the system as 

(4.9) 
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That is, we suppose that ka' k~, ky, ••• ,k
00 

are all less 

than kF. We consider the pair wave function lta~) to be 

normalized, i.e., <va~lta~)=l. The wave function (4.9) 

differs from (4.3) by having ltap) in place of ja) 1~), which 

from now on we shall write as jap). 

Now if we consider ltap) expanded in terms of the 

complete set of single particle eigenfunctions it is 

evident that because of the antisymmetrization ltap) cannat 

contain any components with wave numbers less than kF 

except for la) and jp). Thus we can write 

(4.10) 

The interaction Uap then is equivalent to the ordinary 

interaction in the levels a and p and vanishes for all ether 

levels as far as the ground state is concerned. Thus the 

Hamiltonian describes a system of particles moving in an 

average field but where a direct interaction takes place 

only between particles in levels a and p, giving justification 

to the appellation, independant pair modal. 

In Appendix II we show that if the wave function (4.9) 

is to be an eigenfunction of (4.6) the following equation 



-46-

must be satisfied. 

(4.11) 

This is the Bethe-Goldstone equation. The new symbols are 

as follows: lt!~) is the antisymmetric wave function of 

particles 1 and 2 (lt!~) = ~ [lta~)-lt~a)] ); Ea~ is the 

energy eigenvalue; and Qa~ the following operator: 

(4.12) Qa~ = Q + la~A)(a~Al, Q = L L lyo)(yol 
y>F o>F 

where ja~A) = --~ Qa~)-j~a)J • In equations (4.11) and 
V2. 

(4.12) we have, for simplicity, dropped the labels l and 

2 in some places. In the two-particle bras and kets 

(e.g. (yol and jyo)) the first letter refers to the state 

of particle l and the second to that of particle 2. 

It is worthwhile to point out that there can be no 

terms of the following form in Qa~ 

L jay)(ayj , (ka < kF) 
y>F 

since such terms would give rise to single particle virtual 

excitations and must be ruled out for nuclear matter by 

conservation of centre of mass momentum. 
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We sha11 now obtain an expression for the energy shift 

~Eap= Eap - Ea - EP due to the pair interaction. Substituting 

(4.12) into (4.11) gives 

(Hl+H2-Eap) I~!P) = - L L jyë)(yëiVI~!P) - japA)(apAIVJ~!P) 
y>F ë>F 

Multiplying by (apAI on the left yields 

(apAIH1+H2 - Eapi~!P) =- (apAIVI~!P) 

But (H1+H2) japA) = (Ea + EP) japA) and (apAI~!P) = 1 

so we get 

Ea + EP - Eap = - (apAIVI~!P) 

(4.13) bEap = (apAIVJ~!P) = (apjVl~ap) - (apjVj~pa) 

Now since ~Eap is the energy shift of a pair, the total 

energy of the system is then 

(4.14) 

where L means summation over all states ja) where ka<kF. 
a<F 

Using (4.13) we can obtain an important fact about the 

form of the spacial representation of I~!P), i.e. of 
-+-+ A A -t-t -
(r1r2 l~ap) = ~ap(r1r2 ). Writing Q as 1-Q where 

I lyë) (yë, 
y<F ë<F 
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we obtain from substituting into (4.11) 

(Hl+H2-ea~) lt!~)=-VIt!~)+ L L lyb)(ybiVIt!~)-la~A)(a~AIVIt!~) 
y<F b<F 

Let us consider the C11r2 j projection of this equation. We 

have 

LHS = (H1+H2-ea~)(r1r2 1t!~) 

RHs =-<r112 1VIt!~)+ L L <1112 lyb)(ybiVIt!~>-<1112 1af)Ca~Aivlt!~> 
y<F b<F 

Now, since V is diagonal in 1-space, 

where 

G(r-r') = I r~lr)<rlr')= fi I 
y<F y<F 

If V{r
1
r

2
) -+ o when jr1-r2 1 -+ oo we have then 

<1ir2 1VIt!~) -+ 0 

I I <11t2 lyb) <rb 1 v lt!~> -+ o 
y<F b<F 
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-+ -:t r where we have used also the fact that G(r-r ) is a delta 

r 
function of fini te width and vanishes as 11-1 1 -+ oo. 

Thus for j"r1-12 1 -+ oo the BG equation becomes 

But using (4.13) the RHS can be rewritten: 

so that 

Thus, at large distances the BG wave function "heals" to the 

unperturbed wave function of a pair. This important fact 

leads to the concept of the "healing distance" of the BG 

wave function and is a very important result from the model. 

Using (4.13) we can also obtain a simpler equation for 

the BG wave function. Substituting (4.13) into (4.11) yields 

Now (a~AIVIt!~) is infinitesimally small for a large volume 

of nuclear matter (for a square well potential of depth V
0 v b3 

and range b this term is of the order of -lf- ) and thus we 

can drop the second term on the RBS. Finally then, we have 
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the following BG equation for infinite nuclear matter 

(lt-.15) 

This is the form of the equation originally given by Bethe 

and Goldstone and we shall deal with this equation rather 

than the more complicated equation (4.11). 

The solution of (lt-.15) can be written 

or 

{l.t-.16) lta~)=ia~) + L L 
y>F b>F 

{y&)(y&IVIta~> 

e:a+e:~-e:y-e:~ 

The cencept of self-consistency arises in the following 

way. Since ae:ai3 is the energy shift of a pair, if a particle 

is in the state I3 then the interaction with all other particles 

must be ~ ~EaA henee we get a new single partiele potential 
a<F .., 

U' 

U' = \ A L ..,.Ea{3 
a<F 

To assure self-consistency we must choose U (equation 

(4.6)) so that the resulting U1 is as close to it as 

possible. 
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Thus we have the fallowing equations for the independant 

pair model of nuclear matter 

(4.17a) 

{4.17b) 

(4.17c) 

(4.17d) 

(yb)(yôiVItaa) 
ea+e~-ey-eô 

y>F ô>F 

h2k2 
= 2ma + U{ka) 

It should be noted that because of the self-consistency 

requirement the value •f the BG wave function lta~) is required 

for ka,k~ > kF. The wave runction in this case is taken to 

be (4.17a), using the principal value of the integral. We 

shall no longer use P to denote the principal value or an 

integral but will simply understand from this point on that 

all singular integrals arising will be taken te be principal 

value integrals. 

It should be noted turther that in this discussion we have 

completely neglected "propagation offthe energy shell 11 affects. 

This phrase was coined by Brueckner and the concept explained 

in some detail by Bethe2), by Brueckner and Gammel1), and by 
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Brueckner and Goldman18). The whole point of the matter 

is that the energy denominator oeeurring in (4.17a) cannot 

strictly speaking be written Ea + e~ - ey - e~ since the 

energies of the two partieles in the virtual excited states 

(i.e. in levels y and ~) depend not only on these states 

but also on the states of the two holes remaining below the 

Fermi sea. The wave function of the two particles in these 

states thus depends on four quantum numbers (y,& and two 

for the holes) and satisries an equation which is similar 

to (but more eomplicated than) equation (4.17a). In the 

energy denominators or this more eomplicated equation, the 

energy of the particles in the virtual excited states will 

depend on additional quantum numbers and the wave function 

describing these states will satisfy another more complieated 

equation vith still more complicated energy denominators 

occurring. This situation is repeated without end. 

Fortunately however the dependance on the additional quantum 

numbers is not great and what can be done is approximate 

the effect by introducing in the first step some average 

excitation energy in the energy denominator, thus terminating 

the infinite set or equations. Brueckner and Gammel1) have 

done this (they call the average excitation energy A) and 

their results are indeed net strongly dependent on A· As 

mentioned ab•ve, we shall neglect this complication entirely 

in this thesis. 
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Let us now introduce an operator K defined as follows 

(lt-.18) 

so that from (lt-.17) we have 

(4.19a) {a 1 J3'1KiaJ3) = 

(4.19b) 

Equations (4.19) were first introduced by Brueckner in 

his investigations of the nuclear many-body problem. Equations 

(4.18) and (4.19) will form the basis of the remainder of the 

work of this thesis. 

We shall now put (4.18) and (4.19) in a more useable form 

by noticing some properties of the two-body potential. This 

potential is diagonal in isotopie spin space (since we neglect 

charge) and further can connect only states of the same total 

spin of the two particles. Thus in equations (4.18a) and 

(4.19a) we can suppress the isotopie spin part of the wave 

function, and in addition we need only consider pure total 

spin states of the two particle system. Thus, we shall take 
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and 

ltk k ; Xsm ) in place of rtaA) 
1 2 s .... 

-:+ where we now write the wave vectors of particles 1 and 2 as K1 
-:+ -:+ -:+ 

run~2 rather than Ka and K!3' and where Xsms is the normalized 

spin eigenfunction. {If S is the total spin vector of the 

two particle system and Sz the z-projection of s, then 

Xsm is an eigenfunction of s 2 and Sz with eigenvalues 
s 

S{S+l) and m3 respectively.) 

From {4.18a) then, the equation for lvk k ; X3m ) is 
1 2 s 

+S 

+ I 

We now consider the coordinate representation of this 

equation. We can separate out the centre of mass motion 

provided V is independant of the centre of mass position 

coordinate of the two particles, as we now show. 
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We have 

(4.20) 

where we have used (4.1) to write 

Now let us introduce centre of mass and relative coordinates 

by 

(lt. 21) k = l(k -k ) 2 1 2 

where k is the relative momentum, 2P is the centre of mass 

momentum, 1 is the relative coordinate, and R is the centre 

of mass coordinate. 
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Now if V is independant of the centre of mass 

coordinate we can write 

so that 

where 

and where we have used 

From (4.20) we obtain the following equation for tkP(t)x8m 
s 

+ 1 
Q 

+S 

1: 1: 
1 P'±it

1 
l > kF m~ =-S 

e <1+t> +e (P-it> -e <1+it') -e ot-ït' > 
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• means summation over all ~ wherein 

Taking now Q ~ oo we replace the 

summation by an integral using 

(~.23) 

so that finally 

where 

The K matrix elements now are 
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where we def'ine 

From (4.26) and (4.24) we get the f'ollowing integral equation 
-:+ t 1 -:+ -;t for (lt ;Xsm' Kllf,~;x8m ) 

+S 

+ I 
mtt=-S s 

s s 

3 
(_l_) 

2Tr 

where (4.28) 

(Tt' .v 1 vlit.v ) = j d ..... r e-lt' ·1 
1t '"'Sm1 A'"'Sm s s 

The similarity between equations (4.24), (4.26), (4.27) 

and the two-body equations (3.9), (3.12), and (3.13) should 

be noted. In the two-body case it is possible to ef'f'ect a 

complete separation of' centre of' mass coordinates but in the 

BG case this is not possible because the lower limit of' the 
~ -;t 
1t integrals and the energy denominators have a ~ dependance. 

That a P dependance arises in the BG case and not in the 
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two-body case should not be surprising since in the former 

the two particles are moving against a background of other 

particles, whereas in the latter the particles are isolated 

in space. This P dependance complicates the problem 

considerably but in the next Chapter we shall introduce 

techniques to handle this. 

We shall now put (4.17c) and (4.17d) in more convenient 

forms. We make the observation that the potential can be 

written as 

where 1v+ connects 

isospin, 

lv- connects 

isospin, 

3v+ connects 

isospin, 

3v- connects 

isospin, 

only states having singlet spin, triplet 
1 1 and even parity (i.e., S

0
, n2, ••• ) 

only states having singlet spin, singlet 

and odd parity (i.e., 1P1 ,1F
3

, ••• ) 

only states having triplet spin, singlet 

and even parity (i.e., 3s1 , 3n1 , ••• ) 

only states having triplet spin, triplet 

and odd parity (i.e., 3P
0

, 3p
1

, ••• ) 

When V can be written in the above form, then indeed K can be 

written as 

K = 1K+ + lK- + 3K+ + 3K-

where1K+ connects the same states as does 1v+, etc. 
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Thus we have that 

(4.29) L L [<a~IK(a~)-(a~IK(~a)J = 
a<F ~<F 

= I 

The statistical factors can easily be understood. In the first 

term, for example, a factor 3 comes from summing over the 3 

isospin states, and another factor 2 arises from the exehange 

terms. 

We can write also 

(4.30) L [ (a~(Kja~)-(a~ IKI~a) J 
a<F 

The summations in (4.29 and (4.30) can be ehanged to 
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integrals using (~.23). In {~.29) we write 

Now from (~.21) d~1d~2 = 8dtdP, 
2 

rewrite one of the Q1 s as ~' 
2kF 

(~.31) 
-+ ~ 

2k. 3 
F 

and using (~.5) we can 

so that 

J 

The integral over ~ is over all values of ~ wherein 

IP+~I<k.F and IP-~I<kF. The integral over Pis over all 

values of P wherein P<k.F. 

In (~.30) we write 

But from (~.21) d~1=8d~ when ~2 is kept fixed so that we 

write 

The integral over ~ is over all values of ~ wherein 

~2 is fixed and 12~+~2 1 <kF. 
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Let us call E-E
0 

the potential energy (PE) of the 

system, then using (~.17d), (~.25), (~.29) and (~.31) we 

have 

(~.33) PE/A = 3~ 3 16n- kF 

Using (~.17c), (~.30), (~.25), and (~.32) we have 

(~.3~) U(k2) = 

= 1
3 j dit [3(Î; x

00
I1K+Ilt,:l"; -x

00
)+0t; 'X

00
11K-11t,,; -,t

00
) 

27T .,..... Tt 
j21i+K2 1 <kF 

In the above ~=lt+lt2 from (~.21). 

We have now put the self-consistent equations for the 

IPAM in a useable form. The procedure now is to solve (~.2~) 

for the BG wave function, use (~.26) to obtain the K matrix 

elements (or obtain the K matrix elements directly from (~.27)), 

calculate the new single particle potential from (~.3~), and 
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calculate the potential energy of the system from (4.33). 

Self-consistency is obtained by adjusting the energy 

denominators so that the single particle potential used 

there, is equal to the single particle potential calculated. 

The energy of the system will be a function of ~· If the 

nucleon-nucleon potential used provides an adequate description 

of the nuclear force, and if the IPAM gives a good description 

of nuclear matter, then, when kF is varied, E/A should attain 

a minimum of approximately -15 Mev when kF = 1.4 (fermi)-1 • 

Attempts to improve the IPAM (or the Brueckner 

approximation) have been made by including the so-called 

"hole-hole interactions". In the virtual excitations of the 

system, the interactions between the two particles above the 

Fermi sea have been taken into account, but no interactions 

of the two heles below the Fermi sea have been included. It 

has been conjectured that a madel which includes these 

latter interactions would give a better approximation to the 

many-body problem. 6'7) Of course, the interaction of the 

two heles is really a many-body interaction and thus including 

the hole-hole interactions means that we now include certain 

many-body interactions. As we pointed out in Section 4.1, 

the Brueckner approximation for the energy consists in 

picking out the nladder" diagrams from the Goldstone series. 

Including hole-hole interactions means including, in addition 

to the ladder diagrams, diagrams containing interactions 
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between the hole lines on the ladders. When hole-hole inter

actions are included, the BG equation (4.15) is changed to 

(4.35) 

Q = I I lrb)(ybl 
y<F b<F 

and the integral equation for lta~) nov is 

(4.36) lta~) = la~) + 

The principal value of the singular integral is to be taken. 

The new K matrix is given by 

+ ~ ~ (a'~' 1VIy0)(y&!Kla~) _ ~ L (a'a'IVIyô)(yôiKia~) 
L L e + eA-e -eb L ea+ eA-ey-eb 

y>F b>F a " Y y<F ô<F " 

and (4.24) and (4.27) become 

(4.38) tkP(r)xsm = 
s 
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t 

(4.39) Ci ; ?<Sm' 1 K!lt,Jt; X sm ) = 
s s 

....... ...... = ( lt ; ?( Sm t 1 V 1 K; ')( Sm ) s s 

J dlt" J " .,....u e('P+'ib+e(ît-ID - eCP+lf ) -e(Jt-K. ) 

In the above the principal value of the singular integral is 

to be taken. 

The wave tunction given by (4.35) (which we shall call 

the Bethe-Goldstone-Iwamoto (BGI) wave furiction) does not 

heal to the unperturbed wave function at large distance 

(when ka' k~ < kF) because of the pole in the second 

integral. However as Iwamoto7) has pointed out, the physical 

interpretation of the BGI wave function is different from 

that of the BG wave function. The BG wave function is the 

amplitude of the physical particle pair state compared to 

the degenerate Fermi gas ground state, but the BGI wave 

function is the amplitude of the physical hole pair or 

physical particle pair state compared to the physical A 

particle ground state. Thus there is no reason why the BGI 

wave function should heal to the unperturbed two-particle 

state. One can think of the BG wave function as a 
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Tamm-Dancoff amplitude and BGI wave function as a 

Tamm-Dancoff-Dyson amplitude. 

This completes our formal analysis of the nuclear 

many-body problem. We have set up the equations for the 

IPAM and for the IPAM including hole-hole interactions and 

we shall in the next Chapter examine these equations when 

the potential is given by our pseudopotential (2.5). 



CHAPTER V 

USE OF THE PSEUDOPOTENTIAL IN THE NUCLEAR MANY-BODY PROBLEM 

In this Chapter we shall apply the BCM via our pseudo

potential (2.5) to the IPAM equations of the last Chapter. 

The pseudopotential is equivalent to the BCM and we have 

in Chapter III used it in a discussion of the two-body problem. 

We found then that because of its simple structure certain 

equations could be solved exactly. We investigate now what 

success the model has in the many-body problem, and in 

particular in the IPAM of nuclear matter. We shall see 

that the simple structure of the pseudopotential allows us 

to handle the IPAM equations relatively easily and without 

taking recourse to perturbation methods. Thus we are able to 

use a realistic description of nuclear forces (the BCM) and 

still obtain simplicity in handling the IPAM equations. 

We shall be concerned with finding the K matrix elements. 

There are two methods we can use: We can solve (4.24) for the 

BG wave function then calculate the K matrix elements by 

(4.26), or we can solve directly the integral equation (4.27) 

for the K matrix elements. We shall use the latter method. 

(For simplicity we neglect for the moment the hole-hole 

-67-
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interactions since they can easily be taken into account at 

the end of the calculation.) It will be recalled from our 

discussion at the end of Section 3.2 that, in the two-body 

case, these two methods lead to different results since by 

solving directly the integral equation for the K matrix 

elements, it is not possible to take into account the 

discontinuity in the first derivative of the Schrodinger 

wave function. The same situation will prevail here 

since the first derivative of the BG wave function is also 

discontinuous at the core radius. We shall then do the 

following: We shall disregard the difference between r~ 

and r; in the pseudopotential, and then in our final results 

for the K matrix elements we shall interpret certain integrals 

similarly to the way they were interpreted when we constructed 

the two-body K matrix elements from the Schrodinger wave 

function. As a check on our results we should find in the 

singlet case that as kF ~ 0 the diagonal K matrix elements 

for each angular momentum state are proportional to the 

tangent of the phase shift. These remarks will become 

clearer later. The important point here is that we can 

disregard the difference between r~ and r; in the pseudopotential 

when we solve the integral equation (~.27) for the K 

matrix elements. 
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5.1 The K Matrix Elements for Singlet Spin States 

Let us consider first the singlet spin state pseudo

potential which from (2.5) is 

(5.1) 

The integral equation we want to solve is (~.27) for S:O, that 

is, 

( 5. 2a) 

(5.2b) 

ot' 1 KI Jt ,JI) =<!t' 1 v 1 itl + ( i,/ J ~lt" e-l <!t' [V 1 !t"J rit" 1 Kilt ,tt) 
!If:tit 1 >kF 

We neglect for the moment the hole-hole interactions since 

we can easily take these interactions into account at the 

end of the calculation. 

First we need (~
1

IVJit} which is defined by (~.28). Using 

(5.1) and the decomposition (3.17) we have 

( 5. 3a) ot'lvlit): ]dt e-it'·t V(r) eiK·1 

co +-t 
: I I 

,f.,:O m:-t 

(5.3b) 
(lf-rrh)2ro 

at(k') : m t jt(k'rot) 
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( 5. 3c) 

We now substitute the separable potential (5.3) into 

(5.2) and obtain: 
co +t 

Ut
1

1KîK,P):: ~ ~ at(k')Y-tm(k') [bt(k)Y1ro(k)+ 
.t::o m::-t 

1 3 1 " -1 * " " J (-) d[ e b (k")Y (k")([ jKj[,}t) 
2Tr ft .t -tm 

!It+lf 1 >kF 

That is 

co +t 
(5.4) (R1

IKIR,tt)::: L L at(k')Ytm(k') ftm(k,P) 
t::O m::-t 

where 

(5. 5) 

Now by substituting (5.4) into (5.5) we obtain a set of 

algebraic equations for the f 1 s: 
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Let us call the integral occurring in (5.6) 

Itm;L~(t,~), i.e., 

1 tt" -1 * dJ.t e b (k")a (k")Y (k")Y (kt1) 
tt .t L tm LJJ. 

l~+lt l>kF 

In constrast to the two-body case, we cannot immediately 

simplify this integral by using the orthonormality of the 

spherical harmonies since the region of integration is not 
ft 

spherically symmetric. The condition l~+t j>kF means that 
tt 

the integration is over all of t space exterior to the 

volume of two spheres each of radius ~' the distance between 
tt 

whose centres is 2P. If the origin of t is halfway along 

the line joining the centres of the spheres, then, for 

P<kF' the integration is over the darkened region in the 

following figure: 

Figure A 
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The lack of spherical symmetry of the integration region 
t 

prevents us from giving an exact expression for (~ IKI~'~) 

since (5.6) is an infinite set of coupled algebraic equations. 

For the special case when ~ = 0 the integration region is 

spherical and the equations uncouple. The difficulty then 

is in treating the non-zero centre of mass momentum case. 

In the more standard treatments of the Brueckner theory the 

same situation arises, of course, and what has been done is 

• either to assume (~ IKI~,P) is independant of P and thus 

equal to the value for P = o3) , or to treat the non-zero 

centre of mass momentum case in some average fashion. 1 ' 4'5) 

We shall make no such approximations. In the treatment we 

give below we shall assume for simplicity however that the 

energy denominator e is independant of the angles between 

the k-vectors and the P-vectors. (It is indeed independant 

of angles in some cases as we shall see in the next Chapter.) 

The methods we introduce below can be used to handle the 

case of angular dependent energy denominators but we do not 

include this most general case here. 

Let us concern ourselves now with the integral 

Itm;L~(~,P). This is a three dimensional integral but we 

shall introduce a technique for handling the angular integra-

ti ons. We note first that 
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.,...u ~ 

where 9 is the angle between K and r. We shall consider 

~ to be the z-axis for the coordinate system so that we 

can write (5.7) as 

I .tm ;LI' (11:, P) = J dk "k112d( cos()) ~e -lb .t ( k") aL (k 11 ) Y~ (9 ,cp )Y LI' ( 9 ,cp) 

k 112-2Pk"lcos9I+P2>k~ 

Now we define a function ~(k,P, jcos9l)by 

(5.8) ~(k,P, lcos91) = 1 

0 otherwise 

so that Itm;L~ can be written 

(5.9) Itm;L~(l,P)= 

~ +1 2rr 
J dk 11k112 J d(cose) j d'P e-1b-t,(k")a1(k")Y~(9,'P)Y1~(9,cp)~(k",P,[cose[) 

0 -1 0 

n 
Thus by introducing t;:(k" ,P, 1 cosS 1) we can extend the 1 integral 

over all of momentum space. This trick has also been used 

by Brueckner and Gamme11) and by Moszkowski and Scott4) 

but they further replace the function they have introduced 

by its angular average. We shall go beyond this 

approximation. 
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We now expand ~(k,P, jcos9j) in terms of Leg 

polynomials, P~(cose). These functions have the following 

properties:l9, 20) 

(5.10a) 

(5.10b) 

(5.10c) 

(5 .lOd) 

(5.10e) 

We write 

00 

~(k,P, jcos91) = I A~(k,P}P~(cose) 
~=0 

where using (5.10a) 

+1 
A~(k,P) = ?t;l J d(cose)~(k,P,Icosei)P~(cose) 

-1 
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We are concerned with P<kp· From the definition of 

~(k,P, lcos6) we have that 

1) if k ~' ~(k,~jcos6j) = 0 for alle, so that 

At (k,P) = 0 

2) if k > kF+P, ~(k,P, jcos6j) = 1 for all 6, so that 

using (5.10a), At(k,P) = ot,o 

3) if Vk;-P 2 < k < kF+P then 

At(k,P) = 2t~l J+K d(cos6)Pt(cos6) 
-K 

The integral can be evaluated using (5.10c). Using also 

C5.10d) we obtain 

if t even (t;iO) 

0 if t odd 

Fin ally then 

(5.lla) 
(X) 

C(k,P, jcos6j) = L A2tCk,P)P2tCcos6) = 
t=o 
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where for P<kF 

1 

0 

(5.11c) 

0 

0 

{5.11d) 

Thus we have 

(5.12) J dkk2d(cose)d~ = 

IP.:titl>kF 

+1 

J d(cose) 
-1 

2n' 

if k > kF + P 

i~2<k<kF+P 
if k < \} ~-P2 

if k :> kF + P 

if.Jk~-P2<k<kF+P 

J d~A2~(k,P)Y2~,0 (e). 
0 
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In this expression, ~ is considered to be the z-axis of the 

coordinate system. 

The first term in the series (5.11) is the angu1ar 

average of ~(k,P,Icos91) and is indeed equal to the function 

used by Brueckner and Gamme1 (equation (34) in their paper1)) 

and by Moszkowski and Scott (equation (III-7) in their 

paper4)). Thus their approximation consists of taking only 

the first term in our series (5.11). 

In Figure I we have p1otted Azt(k,P) for t=0,1,2,3 and 

P = ~ kF. We see that the A's osci1late more as t increases 

and that their amplitudes decrease as t increases. 

Substituting (5.11) into (5.9) yie1ds 

I-tm;LJl(1t,P) = 

00 +1 21r 

=J dk "kn2J d( cos9) I dcpe -lb t (k ")aL (k 11
) y~ (9 ,cp)YLJ.L (9 ,cp) x 

0 -1 0 

If we now assume that the energy denominator ese(F+È)+e(P-~)-
n n 

e(1+t )-e(P-~ ) is independant of angles, the angu1ar integra-

tions can be performed using 2la) 
+1 2rr 

(5.13) J d(cose)Jdcp Y; m (S,cp)Yt m (S,cp)Y;_m (9,,) = 
-1 0 3 3 2 2 ·~ 1 
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vhere (~~~1m2 1~m3 ) is a Clebsch-Gordan coefficient. 

We have finally that 

œ œ 

= L <ft!i) t (2a ,L,O ,)J.I.t,m) (2a ,L,O ,o l.t,o) J dk."k"2e -lb.t (k")a1 (k")A2a (k" ,P) 
a~ o 

if e is independent of angles. (I~;L)J. is now independant of 

angles because of the restriction to angular independant 

energy denominators.) We could, of course, let e have an 

arbitrary angle dependance and then expand it in terms of 

Legendre polynomials. For simplicity we have not included 

this most general case. 

Let us now note that (2a,L0).11~) is zero unless )J.=m, 2lb) and 

(2a,LOOI~) is zero unless L-.t is an even integer.2lc) Thus 

I .tm;LJ.I. is zero unless J.l.=m and L-.t is an even in te ger. The se 

facts are manifestations of the two symmetries possessed by 

the integration region (see Fig. A): There is cylindrical 

symmetry about P and reflection symmetry about a plane passing 

through the origin and perpendicular to P. The .first symmetry 

implies that )J.=m, and the second that L-~ is an even integer. 

Thus ve have coupling of S states to D states, S states to 

G states, etc. We note that the coupled terms occur for 

values of a different from zero, so that taking a=O only 

(as, in e.f.fect, Brueckner and Gamme11) and Moszkowski and 

Scott4) have done) means neglecting and coupling between 

the states. 
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Finally then we can write (5.6) as 

1 3 ~ ~ rt 21+ 1 t + (2rr) L L fLm(K,P)(2t+l) (2a,LOmltm)(2a,LOOitü) x 
L=O a=O 

We are still left with an infinite set of coupled algebraic 

equations but we have considerably simplified the situation 

by reducing the integrals to a single integration over k11 • 

Except for the restriction to angular independant energy 

denominators, no other approximations have been made. We 

can truncate the infinite set of equations by restricting 

ourselves to a finite set of angular momentum states. That 

is, if we suppose that the potential vanishes for states 

with angular momentum greater than ~max' say, (which in effect 

it does because of the angular momentum barrier) then 

this means a~(k) = b~(k) = 0 for ~>~max and thus the upper 

limit of the summation over L in (5.15) can be replaced by 

~max· 
Up to this point in this Section we have neglected the 

hole-hole interactions. When these interactions are included 
-:+ 1 -:+ '* the integral equation for (k IKik,~) is, from (~.39) with 
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8=0, 

(5.16) (k1 IKik,P) = (k1 
JVjk) + 

rather than (5.2). Proceeding in a manner identical to that 

following (5.2) we find that (5.~) still holds but now the 

equation for the f's is 

- dit e b (k11)a..(k")Y (k11 )Y (k 11 ) I If J-1 *,.. " 
:C --.~.~ .tm L)J. 

" ll"±lt 1 <~ 

We thus have to calculate a new integral, J~;L)J.(it,~: 

J • Of,t') = dlt e b (k")a (k")Y (k")Y (k") ..... I ~~ -1 * " ,... 
..tm,Ltt ..,. Tt" ~ L -tm L}.L 

(r±tt 1<~ 

We shall use a procedure identical to that used to reduce 

I..tm;L)J. to a single integral. We note that 

-=+" ;:t where e is the angle between K and r. We shall consider 
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1 as the z-axis for the coordinats system so that we can 

write J-tm;L)l as 

J-tm;LJ.L(i:,P) = Jdk .. k112 d(cos9)dcp e-1bt(k")a1 (k")Y2m.<e,<p)Y1 tJ.<e,<p) 

k "2+2Pk"!cos9 1 +P2<k; 

Now we define a function ~(k,P,Icos9!) by 

(5.18) ~(k,P,jcos9!) = i : otherwise 

so that J-tm;LJJ. can b.e written 

oo +1 2rr 

= I dk "k "2 Id ( c 0 se) I dcp e -lb t ( k tl) aL ( k lt) y 2m ( 9 '<p ) y L )l ( 9 'cp) ~ ( k" ' p ' r c 0 se 1 ) 

0 -:1 0 

We now expand ~(k,P,Icos91) in terms of Legendre poly-

nominals: 
00 
,--, 

~(k,P, lcose!) = ~ Bt(k,P)Pt(cose) 
t=O 

+1 

Bt(k,P) = 2t;l J d(cos 9) ~(k,P,Icosel) Pt (cos9) 
-1 

We are concerned with P<kF. (It should be noted that ~=0 if 
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P>kF.) From the definition (5.18) of ~(k,P,Icose!) we 

have that 

1) if k> Vk~-P2 ' ~(k,P' 1 cose 1) =0 for all e so that B-t (k,P) =0 

-1( 

B-t,(k,P) = 2t~l J d(cos9)Pt(cos9) 
'K 

k2+P2-~ 
'K :::: 2Pk 

This integral has been evaluated above and we have 

B
0
(k,P) = - 'K 

B,t (k,P) = j -[Pt+ 1 (:) - P,t_1 ( K l] if t even (t # 0) 

if t odd 

Finally then, for P<kF' we have 
00 

(5.19a) ~(k,P,rcose!> = ~ B2t(k,P)P2t<cose) 
.t=O 

(5.19b) B
0

{k.,P) :::: 1 if k<~-P 

-1(' if kF-P<k< -J k~-P2 

0 if k>-Jk2-p2 
F 
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(5.19c) 

t 1 O,B2t(k,P)= 0 

-[P2t+1(~)-P2t-1(~~ 

0 

(5.lld) 

Thus we have 

(5.20) J dkk2d(cos9)d~ = 

1 P±i1.ï <kF 

if k<kF-P 

if kF-P<k<~~k~-P2 

if k> -J k2-P2 
F 

00 t 00 +1 2Tr 

= L <4Ï!1) J dkk
2 J d(cose)J d~ B2t(k,P)Y2t,o<e) 

t=o o -1 o 

In this expression, 1 is considered to be the z-axis of the 

coordinate system. 

Using (5.19) and (5.13) we have 

(5.21) Jtm;L~(k,P)= 

00 1 00 

= L ( ~t!î) 2 
(2a, LOJ.L!tm) ( 2a, LOO 1-tü) J dk "k"2 e -lbt ( k ")aL (k 11 )B2a (k 11 ,P) 

a~ o 

if e is independant of angles. 
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Thus, finally, we can write the equation for the f's as 

where 

( 5. 23a) 

'Tt 21+1 t fLm(K,P)( 2t+l) (2a,LOmftm)(2a,LOOI~) x 

00 

x J dk"k" 2 e -lbt (k 11 )a1 (kU) C2a (k n ,P) 
0 

C
0

(k,P) = - À if k<kF-P 

if kF-P<k<lik~-P2 

if -J kj-P2<k<kF+P 

(5.23b) 

a10,C2a(k,P)= 0 if k<kF-P 

À.[P2a+l{K)-P2a-l(K8 if kF-P<k<-J~-P2 

P2a+l(K)-P2a-l(K) idk;-P2<k<~+P 

( 5 .lld) 
'K = 



-85-

(5.23c) 

{ 

0 when the ho1e-hole interactions are neglected 

"' = 1 when the ho1e-ho1e interactions are included 

That is, when À=û, c2a=A2a and when )\=1, c2a=A2a-B2a. We 

have introduced the quantity À in order to keep track of 

the terms arising because of the ho1e-hole interactions 

The f 1 s above are functions of the angles of t. It 

is convenient for later work to separate out this angle 

dependance. To this end we write 

(X) 

(5. 24) ftm(t,P) = L f~)(k,P) Y~(k) 
"-=0 

Substituting (5.24) into (5.22), mu1tiplying both sides by 

YÀm(k), integrating over k, and using the orthonormality 

of the Y1 s (3.16) yields the following equation for 

f~)(k,P): 

() ... ) 21+1 t fLm (k,P)( 2t+1) (2a,LOm!tm)(2a,LOOI~) x 

(X) 

x J dk"k112 e-lbt(k")a1(k 11 )C2a(ku,p) 
0 

where ô~ is a Kronecker ô-function. The equation for the 
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K-matrix elements is then, from (5.~) and (5.2~): 

CIO +t 
L L at(k') f~)(k,P) Ytm(k 1 )Y~(k) 

À.=û m=-t 

In arriving at the above equations we have disregarded 

the difference between r~ and r~ in the pseudopotential 

(2.5). As we pointed out at the beginning of this Chapter, 

we shall interpret the integrals in the equation for the 

f 1 s similarly to the way they were interpreted when we 

constructed the two-body K matrix elements from the 

Schrodinger wave function. Thus we interpret the integrals 

in (5.25) as follows: 

CIO 

(5.27) J dkk"2 e-1bt(k")a1 (k")C2a(k",P) = 
0 

. -That is, the argument of jt contains r
0
t. (Compare this 

integral with the integral occurring in (5.33b).) The 

similarity with the two-body case can be most easily seen by 

considering the nuclear matter K matrix elements when ~=O. 



We have in this case 

(5.28a) { -~ 
l +1 
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if k.<~ 

Using (5.25) to (5.28) we have then, when P = O, 

CIO +t 
(5.29a) ct' jKji,o) = (4rr)

2 I I (k. 1 IK.tlk.)Ytm(k')Y1m{k) 
t=o m=-t 

h 2r 
mo tj t (ka r o ) ~ ,t) t (kr o ) - kr o j l (kr o ) J 

= ----~-------t~------~t~--~t~---t~-------------

1- :rot( J :>.. J ~) dk"k "2e -lj-1-(k"r o.t.? ~tjt (k"r ot) -k"r otjl (k"r ~tl J 
kF o 

Equation (5.29b) differs from the two-body equation (5.33b) in 

three ways: 1) by having an integral proportional to ~(i.e., 

the hole-hole interaction term), 2) by having the lower limit 

of the first integral k.F rather than zero, and 3) by having 

different energy denominators. If in (5.29b) we take kF ~ 0 
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2 

ande= iL(k2-ktt2), then (5.29b) becomes identical to the m 

two-body equation (5.33b). In particular, we have in this 

limit that the diagonal eleme~ts (kiKtlk) are proportional 

to tan ôt where ôt is the phase shift (see equation (3.24)). 

We wish to point out that the limit obtained in this manner 

will not be the low density limit of (kiKtlk), this being 

proportional to the phase shift. 22) The difference in the 

limits lies in the interpretation of the singular integrals. 

When principal values of the integrals are taken the 

resulting limit must be proportional to the tangent of the 

phase shift. To obtain the low density limit a more 

sophisticated handling of the singular integrals is 

necessary, but we shall not discuss this point further in 

this thesis. 

This completes our discussion of the K matrix elements 

for singlet spin states. We have found that our pseudo

potential leads to a soluble set of algebraic equations, and 

in addition we have shown how non-zero centre of mass momentum 

affects can be taken into account exactly. 

5.2 The K Matrix Elements for Triplet Spin States 

The triplet spin pseudopotential is, from (2.5): 
2 

00 

{ f 
(5.30a) V(r) = ~ L [rJJ ô(r-r

0 
)-ô(r-r0 ) fr] PJJl 

J=O OJJ JJ JJ 
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where 

(5 30b) 9.llM - f î1M + f(t) 11M 
• ~J,J-1,1 - J,J-1 TJ,J-1,1 J ~J,J+1,1 

(5.30d) ~~ts = 0 otherwise 

The integral equation we want to solve is, from (4.27) with 

S=l, 

where 

(5.3lb) e = 
and 

We neglect for the moment the hole-hole interactions since 

we can easily take these into account at the end of the 

calculation. 



and 

so 

-90-

Now, 
CIO 

l it. """'r v = l;.7r \ 
e .n. "'Sm L.. 

s t=O 

t+S 
" Y tm (r) x Sm = 

t s L (tsm.f!Rs l JM) ~ts 
J=lt-sl 

(5.33) 
·ït ..... 

e~ •r X = 
lms 

We substitute (5.33) and (5.30) into (5.32) and use the 

orthonormality of the ~1 s to simplify the result. The 

calculation is very straightforward so we shall just quote 

the results. We suppose as a simplifying assumption that 

there is just one core radius r
0 

for each state (that is, 
J 

we take r
0 

= r
0 

). In this case we have 
JJ J 

CIO +J 
= L L L (J+(,l,M-m~,m~IJM)(J+~,l,M-m3 ,m3 jJM)aJ((k 1 )YJ+~,M-m'(k 1 )~ 

J=O M=-J {(~) S 
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where L means that the pair(~,~) takes the values (O,O), 
( t; t]) 

(l,-1), l1,1), (-1,1), (-1,-1) and where 

b (k) = - f(t) . (k ) J-11 J JJ+1 r o J 

We now substitute (5.3~a) into (5.31). The procedure is 

similar to that used for the singlet spin case. We can 

write 

(X) +J 

=I L L (J+t;,l,M-m~,m~jJ,M)aJt;(k')YJ+t; M-m 1 (k1 )fJMt (t,~,m8 ) 
J=O M=-J (t;~) ' S ~ 
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where the f 1 s are solutions of the set of algebraie equations: 

We ean use (5.8) and (5.11) to simplify the integral in 

(5.36). Further ife is assumed to be independent of angles 

then the angular integrations ean easily be done using (5.13) 

so that we have 

f dit" e-l b (ktt) a (k") y* ("'k")Y ("k") = 
A J~~ 1y J+~,M-ms L+y,~-ms 

"'* ..,.u 
1 r;tlt 1 > kF 

CIO 1 

= L [~f~~~!î]2 <2a,L+y,o,~-ms1J+~,M-ms><2a,L+y,oojJ+~,o) x 
a=O 

CIO 

x J dk"k"2 e-1 b (k")a (k")A (ktt P) 
J(~ Ly 2a ' 

0 
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Thus, when e is independant of angles we can write (5.36) as 

3 +1 00 00 

+ (~) L (J+~,l,M-mg,mgiJM) L L L (L+y,l,M-mg,mgiLM) x 

a=O 1=0 (yô) 

00 

x f LM-,!;. Cl.:t, P , m8) J dk "k" 2 e-l b (ku) a ( k") A ( k" p) 
~·ru J~~ Ly 2a ' 

0 

We can perform the summation over mg by making use of the 

following relation between Clebsch-Gordan and Racah 

coefficients: 23) 

(5.38) L (aba~le,a+~)(ed,a+~,y-a-~lcy)(bd~,y-a-~lf,y-a) = 
~ 

1 1 = (2e+l)2 (2f+l)2 (afa,y-ajcy) W(abcd;ef) 
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where W is a Racah coefficient. Using this relation we 

have 

(5.39) L(2a,L+y,o,M-m81J+~,M-mg)(J+~,l,M-m8,msiJM)(L+y,l,M-ms,msiLM)= 
mg 

=[2(J+~)+l]t (2L+l)t (2a,L,O,MIJM) W(2a,L+y,J,l;J+~,L) 

From (5.37) and (5.39) we have the following equation 

for the f 1 s: 

1 3 
+ ( 211) 

00 00 

L L I 
1=0 (yo) a=O 

.1. 
[2(L+y)+l] 2 W(2a,L+y,J,l;J+~,L) x 

x (2a,L,O,MIJM)(2a,L+y,o,oiJ+~,o) f1My 0(k,P,m8) x 

00 

x J dk 11k112e-l b (k")a (k")A (k" P) 
J(~ Ly 2a ' 

0 

It is clear from the last Section that in order to include 

the hole-hole interactions all we have to do is replace 

A2a(k",P) by c 2a(k 11 ,P) where c2a(k",P), is given by (5.23). 
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It is interesting finally to see which states are 

coupled. If we neglect c2a(k 11 ,P) for a different from 

zero then there is a considerable simplification of (5.4o). 

For a=O the Clebsch-Gordon coefficients then vanish unless 

L=J and unless y=~· In this case, there is then a single 

equation for fJMOO for each J and M and a set of coupled 

equations for fJM~~ (~,~)~(00) for~ J and M. Thus 

there is no coupling between states of different angular 

momentum other than the usual coupling due to the tensor 

force. 

In the more general case (a ~ 0) the situation is more 

complicated. The second Clebsch-Gordon coefficient vanishes 

unless L+y+J+~2lc) is even, the result being that all states 

with even orbital angular momentum couple together and 

all states with odd orbital angular momentum couple together. 

As in the singlet case however the infinite set of equations 

can be truncated by assuming the potential to vanish for 

states with J>Jmax· 

The f 1 s above are functions of the angles of k and of 

the quantum number m8 • It is convenient for later work to 

separate out these dependances. We can write 

(5.41) -+ 
fJM~~(k,P,m8 ) = 

~ +1 

=L ~ (J'+ô,l,M-m8 ,m81J'M)Y;.+6 ,M-ms(k) 
J•=o ô=-1 
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We substitute {5.41) into {5.4o), multiply both sides by 
~ h 

(J'+o,l,M-m8,m8 IJ1 M)YJ 1+ô,M-ms(k), integrate over k and 

sum over m8 , and use the orthonormality of the Y1 s (3.16) 

and the following relationship2lb) 

I<aba~lc',a+~)(aba~lc,a+~) = bec' 

13 
to obtain the equation for f{J'ô}(k P): 

JMt11 ' 

(5 .42) 

3 (X) (X) 

+{~) L L L(2L+l)t [2(L+y)+l] t W(2a,L+y,J,l;J+f),L)x 
L=O (yo) a=O 

x(2a,L,O,MIJM)(2a,L+y,oojJ+f),O) {J' o) 
fU.fro (k,P) x 

(X) 

xJ dk" k"2 e-l b (k")a (k")C (k" P) 
0 

J~11 Ly 2a ' 

The equation for the K matrix elements is then, from 

(5.35) and (5.41), 

(5.43) (1t1
; 'X lm' ( Klït,ï'; "X lm ) = 

s s 
(X) (X) +J +1 

= L L L L L (J+~,l,M-m~,m~IJM)(J 1+o,l,M-m8 ,m8 1J'M)x 
J=O J'=O M=-J (~11) o=-1 

(Jfo) A * A 

xaJ~(k')fJM~11 (k,P)YJ+~,M-m~(k
1 )YJ'+o,M-ms(k} 
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In arriving at the above equations we have disregarded 

the difference between r~ and r~ in the pseudopotential. 

We shall interpret the integrals in equation (5.42) for 

the f 1 s exactly as we did for the singlet spin case of 

the preceding Section. That is, we shall write the 

argument of the derivatives of the spherical Bessel 

functions as k"r~ • 
J 

5.3 Expressions for the Potential Energy per Particle and 
the Single Particle Potential using the Pseudopotential 

The general expression (4.33) for PE/A involves the 

following integral 

I -+ -+ -+-:t 
dk ( k; 'X Sm 1 K 1 k , t' ; )( Sm ) 

'*..... s s 
IY±k 1 <kF 

Using (5.20) and the expressions (5.26) and (5.43) for the 

K matrix elements this integral can easily be reduced to a 

single integral over k. 

For the singlet spin case the K matrix elements are 

given by (5.26) and using this and (5.20) we can write 

J dkk2d(cosS)d~(~IKI~;P) = 
IP+kl<kF 

co co 

=I I 
t=O 
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Since the f 1 s are independant of angles, we can immediately 

perform the angular integrations using (5.13), obtaining 

finally, 

(5.44) J dlt ('it!Kiit;lf) = 

!P+itl <kF 

+t 
~ ~ \ ~ lli.lt = L L L L <2À+l) (2a,t,O,mlÀ,m)(2a,toofÀO)~ 

t=O À=O m=-t a=O 

Similarly for the triplet case we can write, using 

(5.43) and (5.20), 

( 5 .45) J ditOt; X lm r Kflt;P; X lm ) = 
rr+itl<kF s s 

00 00 +J +1 

= I I I I I 
J=O Jf=Q M=-J (~fi) o=-1 

00 



-99-

We are interested in the summation of this expression over 

all values of m8 (see (4.33)). This summation can easily 

be performed using (5.38) and we find 

+1 
( 5 .46) I 

I ~~ ~p dk ( k; 'X lm 1 K 1 k , ; x lm ) = 

ms=-1 IP+kl<kF s s 

co co +J +1 co 

=I I I I I I (2J+l)t [2(J+~)+l] t (2a,JOM!J'M)~ 
J=O JI =Q M=-J ( ~T]) d=-l a=O 

The expression (4.33) for PE/A can thus be written 
kF 

(5.47) PE/A = ~(7TkF)-3 I dPP2 l(3 I + I ))( 
o L t even t odd 

co +t co t co 

)(I I I 
(2-f.,+l) ( 2a ,tom I f...m) (2a,toO(J...o)Jdkk2at(k)f~)(k,P)B 2À.+l 

J...=O m=-t a=O 0 

co +J +1 co 

+( I + 3 I ) I I I I<2J+l)• [2<J+~)+l J t x 

J( ~T]) J(tT]) J'=O M=-J d=-l a=O 
J+t; even J+~ odd 

)((2a,JOM[J 1 M) W(2a,J+~,J 1 ,l;J 1 +d,J)(2a,J+~,oo{J 1 +d,O)~ 

Jco 2 (J 1 d) J 
)( 

0 
dkk aJ~(k)fJM~T] (k,P)B2a(k,P) 

2a(k,P) 



-100-

+ In the above we have made use of the fact that K couples only 

states with even orbital angular momentum quantum number 

and K- couples only states with odd orbital angular momentum 

quantum number. 

Let us now consider the expression (4.34) for the 

single particle potential. It involves the following integral 

J -:+ -:+ -:+ -;1; 
dk ( k ; X Sm 1 K 1 k , t'; J( Sm ) 

s s 
j2k+k2 j <kF 

We shall simplify the integrals using techniques similar 

to those introduced in Section 5.1. We notice that 

-:+ -:+ where 9 is the angle between k and k2• We define a function 

t;(k,k2,cos9) by 

1 

0 otherwise 

so that we can write 
CIO +1 2:rr 

(5.49) J dkk2d(cose)d~ =J dkk2 J d(cose)J d~ ~(k,k2 ,cose) 
-:+ -+ 0 -1 0 

l2k+k2 j<kF 
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and 

J dk (k; X Sm 1 Klk,P; x Sm ) = 
s s 

j2k+k2[ <kF 
c:.o + 1 2Tr 

= Jdkk2 J d(cose) 
0 -1 

J ~ ~':;t ) dcp t;(k,k2 ,cose) (k; x Sm IK[k,.t:'; x sm 
s s 

0 

where k:2 is the z-axis of the coordinate system. 

is, 

We now expand ~ in terms of Legendre po1ynomia1s, that 

c:.o 

t;(k,k2,cose) = ~ D..e.,(k,k2)Pt(cose) 
.t=o 

+1 
D..e.,(k,k2) = 2t~1 J d(cose)~(k,k2 ,cose)Pt(cose) -1 

From the definition of ~(k,k2 ,cose) we have 

1) if k> ~(k2+~) or k< ~(k2-kF)' t(k,k2,cose) = 0 for alle 

so that Dt(k,k2) = 0 

2) if k< ~(kF-k2), t(k,k2,cose) = 1 for a11 8 so that using 

(5.10a), D..e.,(k,k2) = bt,o 

3) if ~ lk2-kF(<k< ~ (k2+kF) , 

1(2 

D..r_.<k,k2) = 2t~1 J dxPt(x) 
-1 

1(2 = 
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This integral can be evaluated using (5.10c). We find 

D
0
(k,k2) = ~ (K2+1) 

-t 7- o, D,t(k,k2) = ~~-t+l (K2)- pt-l(K2)] 

Finally, then, 
00 

(5.5la) ~(k,~,cose) = L Dt(k,k2)Pt(cose) 
t=o 

( 5 .5lb) 

D
0
(k,k2) = 1 

(5.5lc) 

(5.5ld) 

~(K 2+1) 
0 

0 

if k< ~(kF-k2) 

if ~lk2-~[<k< ~(k2+kF) 
if k> ~(k2+~)ork< ~(k2-kF) 

Thus, using (5.51), we can write (5.49) and (5.50) in the 

following forms: 

2rr 

Jd~ Dt(k,k2)Yt 0 <e) 
0 ' 
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( 5. 53) 

It shou1d be noted that in contrast to the expansions 

of ~(k,P, jcosel) and ~(k,P,Icosel) (equations (5.11) and 

(5.19) respective1y), the expansion above of ~(k,k2 ,cose) 
contains odd as we11 as even orders of spherical harmonies. 

The reason for this is that in this case the integration region 

does not possess reflection symmetry. 

Now for the sing1et spin case, the K matrix elements 

are given by (5.26) so using this and (5.53) we can write 

( 5. 54) 
co co +t 00 

I dk(kl Klk,P) = L L I L ( 2~!1)t): 
t=o À=O m=-t a.=O 

00 +l 2:lr 

xJdkk2 I d(cose) J d' at(k)f~)(k,P)Da(k,k2) x 

0 -1 0 

There is now one important point which much be noticed. There 

is a very comp1icated angle dependance of the integrand because 

of the P dependance of the f 1 s. That is, we have 



-104-

Because of this angle dependance of P, the integral above 

is very messy. The angu1ar integrations could of course 

be performed by an electronic computer, but for our present 

purposes here we shall assume that we can approximate P by 

P, where P is an average of P over angles or some other 

appropriate average. Using this assumption, the angular 

integration can easily be performed using (5.13) so we 

ob tain 

( 5. 56) 

~ ~ +t ~ t 
= L L L L <~}!î> {atom(m)(atoo{ÀO)x 
t=O À=O m=-t a=O ~ 

xJdkk2at(k)f~)(k,P)Da(k,k2) 
0 

Simi1arily for the triplet case we can write, using 

(5.43) and (5.53), 

( 5. 57) I dit (it; X lm 1 K[it,P'; X lm ) = 
I2It+it2 t <kF s s 

00 ~ +J +1 00 

[ 2fJ+~î+l J t =L: L: L: L: L: L: (J+t,l,M-m8,m8 !JM)x 2 J'+cs)+l 
J=O J'=O M=-J (t;;fj) cs=-1 a=O 
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We are interested in the summation of this expression over 

all values of m8(see (4.34)). This summation can easily 

be performed using (5.38) and we find 
+1 

<5-58) L 

+J cc cc 

= L L 
+1 cc 

L L L (2J+l)t ~<J+t,;)+l] t x L 
J=O JI=O M=-J (~q) ~=-1 a=O 

The expression (4.34) for the single particle potential 

can then be written 

- _L 
- 3 

2:Tr 
[ (3 I + 

even t 

0 

+(I +3I)Ï 
J(~q) J(~q) Jf=O 

+J +1 

L 2: 
M=-J cS=-1 

Ï (2J+l)t [2(J+~)+l]! 
a.=O 

J+t even J+t odd 
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+ In the above we have made use of the fact that K couples 

only states with even orbital angular momentum quantum 

number and K- couples only states with odd orbital angular 

momentum quantum number. 

This completes our manipulations with the formal 

expressions of the theory. In the next Chapter we shall 

apply these expressions and obtain some numerical results 

for the case of interactions in 1s
0 

states only. 



CHAPTER VI 

INTERACTION IN 1s
0 

STATES 

We have to this point in the thesis concerned our-

selves with applying the BCM, via our pseudopotential, to 

the IPAM (or Brueckner approximation) for nuclear matter, 

and with the casting of the equations involved into forms 

which can be used directly for numerical work. We have 

not as yet discussed whether our approach leads to meaning

ful numerical results. In this Chapter we shall discuss 

in sorne detail and give sorne numerical results for the case 

when the potential vanishes in all but 1s
0 

states. Of 

course by using this simplified potential we cannot expect 

to obtain the experimental equilibrium properties of 

nuclear matter, that is, (see Section 4.1) 

E/A ::: -15 Mev 

p =: .18 nucleons (fermi)3 so kF=:l.4 fermi-l 

h2k2 
PE/A=E/A - ~5 ___E ::: ~15 Mev - 24.4 Mev 

2m 

= - 39.4 Mev. 

We expect of course that the major contributions to the PE/A 

come from the interactions in 1s and 3s states. Indeed 
0 1 
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Moszkowski and Scott5) have done a calculation using the 

realistic two-body potential used by Brueckner and Gammel1), 

and have found a minimum E/A of -14.2 Mev at kF = 1.5 fermi-1 • 

Table III of their paper shows that for kF = 1.5 fermi-l 

the contribution to the PE/A by S states is -33.3 Mev, of 

which -18.6 Mev comes from 1s
0 

states and -14.7 Mev comas 

from 3s1 states. From Table II of their paper it is seen 

that for kF = 1.4 fermi-l (the experimental value) the 

total S wave contribution is -31.6 Mev. Although Moszkowski 

and Scott have not indicated the separate 1s
0 

and 3s1 
contributions at this value of kF' we shall suppose that 

the 1s
0 

contribution is approximately -18 Mev. Thus, by 

assuming an interaction in 1s
0 

states only we should find 

that for kr= 1.4 fermi-1 , PE/A = -18 Mev. 

Assuming the interaction V to vanish in al1 but 1s
0 

states we have then 

(6.1) 
~ ~~ 
(k';~, !Kik;~;xlm) = o 

s s 

and, from (5.3) and (5.26). 

(6.2) (k' IVIk) = ~ a
0
(k')b

0
(k) 

(6.3) (k' IKik,P)= ~ a0{k 1 )f~~)(k,P) 
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where f~~)satisfies (see equation (5.25)): 

3 QO 

(6.4) f(o)(k P)=b (k)+(.l..) f(o)(k P)J dk"k112 e-1b (k")a (k")C (k" P) 
00 ' 0 2~ 00 ' 0 0 0 ' 

0 

or 

{6.5) f{o)(k P)= _____ b....;:O:;....(_k) ________ _ 
00 ' 3 co 

1-(.l..) J dk"k"2 e-l b (k")a (k")C {k" P) 
2~ 0 0 0 ' 

0 

Thus, from (6.3) and (6.5), we have 

Let us consider the denominator of (6.6) which we shall 

call L(k,P): 

3 co 

(6.7) L(k,P)= 1-(fn_) J dk 11k"2e-1a
0
(k")b

0
(k")C

0
(k",P) 

0 

1 3 (417h) 2r
0 

œ ~ 
= 1-(-) I dk 11k"2e-1 j cknr ) rf j (k"r )-k"r j • (k"r-) c (k",PJ 

2~ m o o to o o o o o o 
0 

using (5.27). f
0 

and r
0 

are the 1s
0 

boundary condition parameters. 

In order to evaluate the above integral we shall use 

the effective mass approximation. That is, we assume that 

the single particle potential is of the form 

(6.8) U(k2) = U + U k2 
0 1 2 



-llO-

where U
0 

and u1 are independant of k2, so that the single 

particle energy e(k2) can be written 

n2k~ ~2 2 
(6.9) e(k2) = ~ + U(k2) = U

0 
+ (2m + U1)k2 

Defining the effective mass m* by 

(6.10) ~-t2 2m* - 2m + ul 

we have then 

(6.11) 

(6.12) 

The effective mass m* must be determined self-consistently. 

(There is no self-consistency requirement on U
0 

since it 

will not appear in the K matrix elements.) The single 

partic1e potential which we calculate from (5.59) will not 

have a simple quadratic k2 dependance, so that we shall find 

that m* is rea1ly k2 dependent. The self-consistency lies 

in finding a k2 independant value of m* for which the 

calculated single particle potential is as close as possible 

(at least for values of k2 of the order of kF) to the assumed 

single particle potential (6.11). 
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Using the effective mass approximation, the energy 

denominator e (see (5.2b)) can be written 

so that (6.7) becomes 

(6.1lt) L(k,P) = 

By defining new quantities x, xF' y, y-,p,a,~, and y by 

(6.15) x = kr0 xF = kFro 

y = k"r y- = k"r-o 0 

p = ...f.. 
kF 

a = r 0 -J~-P
2 = xF -J 1-p2 

~ = r 0 (kF+P) = xF (1+p) 

y = r 0 (kF-P) = XF (1-p) 

and using (5.23a), we ean write 

(6.16) L (k,P) = 

= 1+ ,;:* {Ct+). J") '-!~ [ !ojo(y) -yj:(y-) ]3o(y)(~;;:) 
a y 
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It will be recalled from (5.23c) that À takes the values 

0 and 1. When À = 0 only particle-particle interactions 

are counted, and when À=l both particle-particle and 

hole-hole interactions are counted. We recall further that 

the principal value of all integrals is to be taken. 

Now j
0

(y) = si~ so that 

(6.17a) L(k,P} = 

= 1 + 2 m* {CJ~ + À Ia) dysiny [cr 0 +1) siny - y cosy-] 
rr m 1 2 -x2 

a y 

2 2 
(Y -a ) 
2pXpS' 

The above integrals are elementary but tedious so we shall 

only quote the results. We have 

(6.17c) Jb dyy;~:;~osr (~:~;2)= * [.c~~-~:)sin2x-(Sb-e;)cos2~ 
a 

- o-b- rcos2b-cos2al 
OpXF L J 
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(6.17d) J
00

d!sin
2
I - 1 [~n f~l -;~cos2x + (Tr-e;) sin2x J 

y2-x2 -lfi 
~ 

00 

[+ s d!!Sin:[COSI - =+~+k ( Tr-e;) cos2~ (6.17e) ;~sin2x + 
y2 x2 

~ -

(6.17f) sy dysin2I _ 1 [~n 1 ~~~ 1 + ;~cos2x + e+ sin2x] y2-x2 - lfX y 
0 

(6.17g) JYdyisinycosy = - 1 [;- sin2x - e+ cos2xJ 
y2-x2 ~ y y 

0 

where, as in Jahnke and Emde2~), 
x 

(6.18a) Six = J dt sint 
t 

0 

00 

(6.18b) Cix =-S dtcost 
t 

x 

and where we have introduced the notation 

+ 
(6.19a) 9- = Si2(a+x) + Si2(a-x) a -

+ 
(6.19b) ;~ = Ci2(a+x) ± Ci2(a-x) 

Fu.rther 

(6.20) 
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A word about the importance of using cos y rather 

than cos y or cos y+ in (6.17e) is in order. A straight

forward ca1cu1ation of the fo11owing integra1s (compare 

(6.17e)): 

' 

shows that 

1) If both a and b are not infinite, then 

= 

2) If r > r 1 , then 

co co 

lim J 
r-+r 1 

dk"k"sink"rcosk."r' 1T J 
2 2 =+r.+ 

k" - k. .... a a 

3) If r < r 1 , then 

00 

lim J 
r-+r 1 

a 

dk .. i"sink"rcosk"r 
kt'2 - k.2 

That is, when one limit of integration is infinite the 

1imiting operation and the integration cannot be interchanged. 
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In particular then, 
00 

Thus finally we have 

(6.2la) L(k,P) = 

(6.21b) I 1 (k,P) = 

= ~ [tn ~~=:~1 -2(tn ~ + C12n-Ci2~)-(~;-~:)cos2x-(e~-e~)s1n2x] 

+ 4p~F [ tn ~ + Ci2a-Ci213 J + ~ [tnj ~:~ j - fi>~ cos2x+(v-e;> sin2x J 
(6.21c) I 2 (k,P)= - ~ + ~ [-<4>;-f/>:)sin2x +(e~-e~)cos2x] 

+ 8plxF [cos2j3-cos2a J -k [fi>~ sin2x + ('IT-e;) cos2x J 
(6.2ld) I

3
(k,P) = 

= ~ [tn ~~~=:~ j- 2(tn ~ + Ci2y-C12n)-(~:-~~)cos2x-(9~-e~)sin2x J 

+ ~ [ tn .!! + Ci2y-Ci2a] + J:: [tn 1 :r+x 1 - f/>- cos2x - e + sin2x] 
~pxF y ~x y-x y y 
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+ 8piF [ cos2a-cos2y J - ~ [ ~P~sin2x-e~cos2x J 

Reca11 from (5.3) that 

m 

sink1 r
0 

k'r 
0 

sinkr
0 

kro 
- coskr

0
] 

so that, from (6.6) and (6.7), 

(6.23) 
41Tn

2
r 0 sink'r 0 [ sinkr 0 J 

m k'r (fo+1) kro - coskro 

L(k,P) 

with L(k,P) given by (6.21) when the effective mass 

approximation for the energy denominator is used. 

As a check on our results we shou1d find on taking 
-+ -+ ';t' 6 kF-+ 0 and m*-+ m in {6.21) that (k!Kik,~) given by { .23) 

reduces to the S wave part of the two-body reactance matrix, 

that is, it shou1d be proportiona1 to the tangent of the 

S wave phase shift (3.24). In Appendix III we show that 

this is indeed the case. 
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In order to proceed with numerical calculations we 

need the values of the 1s
0 

boundary condition parameters, 

f
0 

and r
0

• Feshbach and Lomon9) have found these parameters 

by relating them to the scattering length and effective 

range, that is, from the low energy scattering data. They 

find 

(6.24a) f
0
=0.082-l 

l (6.24b) r
0
=1.32 fermi 

for proton-proton scattering 

(6.25a) f
0
=0.053-l 

1 (6.25b) r
0
=1.32 fermi 

for neutron-proton scattering 

These values are not sufficient for our purposes. We need 

parameters which fit the data over an energy range much 

larger than can be covered by the effective range 

approximation formulae. Indeed, the maximum energy of a 
. h2~ 

nucleon in the ground state of nuclear matter is 2mF = 4o Mev 

so that collision energies of the order of 8o Mev in the 

centre of mass system are possible. Thus we need values 

of the boundary condition parameters which fit the two body 

scattering data for laboratory energies up tc 160 Mev. 

Clearly at these energies the effective approximation 

formulae cannet be used. 
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In order to determine the parameters we have used the 

proton-proton scattering data of Breit et al. 25) Figure 1 

of this paper shows a plot of the 1s
0 

phase shift vs. lab 

energy. Now (2.4) gives the relationship with the phase 

shifts and the boundary condition parameters so we have, 

with ~ = o, 

(6.26) tan 
(f

0
+l)sinkr

0
-kr

0
coskr

0 
-(f

0
+1)coskr

0
-kr

0
sinkr

0 

using j
0

(x)= si~ and n
0
(x)= - co~x • We have adjusted 

f
0 

and r
0 

so that this expression gives an over-all fit to 

the YLAM 1s phase shift data of Breit et al for lab energies 
0 

up to 160 Mev. We find a fit with 

(6.27a) 

(6.27b) r = .95 fermi 
0 

In Figure II we have plotted Breit's YLAM 1s
0 

phase shift 

data and ô
0 

from (6.26) for these values of f
0 

and r
0

• 

For comparison, we have also plotted ô
0 

using the Feshbach 

and Lomon values of the parameters {6.24). 

Using the values of the parameters given by (6.27) we 
~ ~ ~ ~~ 

have plotted, as functions of k, (kiVIk) and (k!Kjk,~) as 

given by (6.22) and (6.23). In Figure III we show 
~ ~~ 

(kiKik,~) with m*=m for P=O, P=.5kF' P=.9kF for the case 

when the hole terms are neglected (À=O), and in Figure IV 
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we show (kjKjk,P) with m*=m for P=O, P=.5kF' P=.9kF when 

the hole terms are included (À=l). On each Figure we 
-+ -+ 

have also plotted (kiVIk), which incidentally is the value 

of (kiKik,P) when m*=O. We notice in both cases that 

(kjKjk,P) is quite different from (kiVIk), especially near 

the bottom of the Fermi sea (that is, for k << kF). Thus, 

the first Born approximation is a rather poor approximation 

for the K matrix elements. We notice in the case when 

the hole terms are neglected (see Fig. III) that for fixed 
-,+ -+-+ 

k less than kF' (kjKjk,P) decreases monotonically as P 

increases to kp• What is perhaps most striking however is 

the great effect the inclusion of the hole terms has on the 

K matrix elements. We see in particular that when the hole 

terms are included the K matrix elements become rather 

strongly dependent on P. 

Let us consider now the potential energy per particle, 

PE/A. From (5.47) we have for this case 

3 kF co 

(6.28) PE/A = ~ (~kF)- J dPP2 J dkk2a0(k)f~~)(k,P)B0(k,P) 
0 0 

which using (6.3) and (5.19b), can be written 

- _2_ 
- 2k3 

TT F 
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We have integrated this expression numerically using 

the plots of (~[KIU,P) vs. k (Figs. III and IV). To test 

the effect of various approximations we have performed the 

integration for the following five cases: 

1) ho le terms neglected (À=O),m*=m 

2) ho le terms included (À=l), m*=m 

3) ho le terms neglected, m*=m, ntr KI 1t, tt) = <iil Krit,o> 
4) ho le terms included, m*=m, <iii KI ii' ft) = <îtl K[it,o) 

5) CitiK[ii,~ = Ot[vlib (i.e., m*=O) 

In the first two cases above no approximation on P 

are made but in cases 3) and 4) we perform the integration 

assuming that (ît[K(it,P) is independant of P and equal to 

its value when P=O. In the last case we take (it[Kiit,P)=(lt(v{it) 

which is equivalent to assuming m*=O. The results are given 

in Table I. 

TABLE I 

PE/A for 1s
0 

states {Mev) .,.... .,..'P' Form of {KjKjk, ) 

-17.62 ho le terms neglected, m*=m 

-17.63 ho le term.s included, m*=m 

-16.6 ho le terms neglected, m*=m, P=O 

-13·3 ho le terms included, m*=m, P=O 

-10.4 m*=O 
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What is perhaps most remarkable about these results 

is that the PE/A for cases 1) and 2) are almost identical, 

that is, including the hole terms does not make a 

significant change to the PE/A despite the large change 

it makes to the K matrix elements (compare Figs. III and 

IV). Moszkowski and Sessler8) have also arrived at this 

conclusion by performing a crude calculation using an 

interaction containing a repulsive core and an exponential 

well. 

Our results indicate that non-zero centre of mass 

momentum effects are most important when the hole terms 

are included. Indeed, the difference between the results 

of cases 1) and 3) is about 1 Mev as compared with 4.3 Mev 

for the difference between the results of cases 2) and 4). 

Our results also indicate that the PE/A depends fairly 

critically on the value of m*. 

Let us consider now the calculation of the single 

particle potential U(k2). From (5.59) we have for this 

case 

0 
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which using (6.3) and (5.5lb) can be written 

t(kF+k2) 
+ J dkk2(i!Kik,~) 

tJkF-k2f 

Recall that r denotes some average of P. We have integrated 
..... -+ -+ 

this expression numerically using the plots of (kiKik,P) vs. k 

(Figs. III and IV). We have arbitrarily taken ~ = 0 (this 

is of course not the best choice of~), and Figure V shows 

U(k2) vs. k2 for the cases when the hole terms are neglected 

and included. Figure VI shows U(k2) for the case when 
-+ -+-:t .......... 
(k!Kik,~) = (kiVJk) (i.e. when m*=O). 

The validity of the effective mass approximation 

(6.11) can be checked by fitting parabolas to the calculated 

single particle potentials. On Figs. V and VI we have drawn 

parabolas fitted at k2=o and k2=kF' and an effective mass m*, 

which represents an average effective mass over the Fermi 

sea, can be determined from these parabolas. From (6.11) 

we have 

(6.32) 
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The values of m* calculated in this manner are as follows: 

TABLE II 

m* 
m 

-,.+ -+P' Form of (kiKJk, ) 

.63 ho le terms neglected, P' = 0 

.90 ho le terms included, tr = 0 

.74 m* = 0 

It is noted from Figure V that the single particle 

potential calculated with hole terms neglected can be fitted 

quite well with a parabola, indicating that in this case 

the effective mass approximation is quite good. The single 

particle potential calculated with hole terms included 

cannet be fitted to a parabola quite as well however, 

indicating that in this case it may be necessary to use a 

more elaborate energy denominator to obtain accurate 

results. 

Another value for the effective mass, namely the value 

at the top of the Fermi sea, can be calculated from the 

slope of U(k2) at k2 = kF. It is worth noting from 

Figure V that in the case when the hole terms are neglected 

this effective mass will not differ much from the average 
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effective mass calculated above, but that for the case when 

the hole terms are included the value will be somewhat less 

than the average value. Both methods of calculating the 

effective mass indicate that its value is greater when the 

hole terms are included. 

We have not attempted to calculate m* self-consistently 

and thus obtain an accurate value of the PE/A. From Table I 

however we see that the value must lie between - 17.6 Mev 

(m*=m value) and -10.4 Mev (m*=O value) and probably will 

be closer to the larger value. We note further that if the 

self-consistent value of m* calculated including hole terms 

is larger than that calculated neglecting hole terms (as 

is indicated above) then the inclusion of the hole terms 

decreases the PE/A somewhat. At any rate, the calculated 

PE/A will not be far from the value of -18 Mev which the 

results of Moszkowski and Scott5) indicate for the 

approximate contribution by 1s
0 

states to the total PE/A. 

The numerical results which we have given above are very 

encouraging and indicate the validity of our approach to 

the many-body problem. 



CHAPTER VII 

SINGULARITIES IN THE K MATRIX AND THE ENERGY GAP 

We have to this point assumed that the ground state 

properties of nuclear matter can be described adequately in 

terms of the IPAM. Bohr, Mottelson, and Pines26> have 

observed however that the energy difference between the ground 

state and the first excited intrinsie states of even-even 

spheroidal nuclei is much larger than that which one would 

expect if the intrinsic nuclear structure eould be deseribed 

adequately in terms of independant particle motion. On the 

basis of this observation, they have suggested that the 

ground state of nuclear matter is a highly correlated state 

(similar to the supercondueting state of metals) separated 

from the normal states by an energy gap. 

Such an energy gap between the ground state and the 

first intrinsie excitations of nuclear matter indicates an 

important departure from independant particle motion. Indeed 

one may wonder whether the IPAM approaeh to the discussion of 

the ground state properties of nuclear matter is valid, 

since it would seem that one must use instead an approach 

similar to that used by Bardeen, Cooper, and Schrieffer (BCS) 27) 
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in their discussion of the superconducting state of metals. 

(It should be mentioned that Katz28 ) has indeed developed an 

approach to the nuclear matter problem which combines both 

the IPAM and BCS model.) However the basic feature of the 

BCS theory of superconductivity is that the highly correlated 

states only involve single particle states in a small shell 

near the top of the Fermi sea and wherein the total spin 

and momentum of the correlated pair are each zero. Thus if 

the energy gap is small we should expect that the IPAM 

approach gives an adequate description of states far away 

from the Fermi surface or of pair states with total momentum 

much different from zero, so that it should be able to produce 

many of the gross properties of the system (e.g., the average 

energy per particle). 

For states near the top of the Fermi sea having total 

spin zero and small total momentum, we expect the IPAM 

(or K matrix) approach to be inadequate, this inadequacy 

manifesting itself by an abnormal behavior of the K matrix 

for these states (e.g., it may be singular) since the K 

matrix represents an effective potential between the particles. 

Indeed, EmerylO) has proven that the K matrix for an infinite 

system of fermions (when hole-hole interactions are included) 

is singular if and only if there exists a gap in the energy 

spectrum of the system. (Emery has also shown that the 

presence of a singularity in the K matrix with the hole-hole 
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interactions exeluded is only a sufficient condition for the 

existence of a gap.) 

In this Chapter we shal1 examine the K matrix for the 

case when the interaction vanishes in a11 blt 1s
0 

states in 

order to see if indeed it has a singularity. This case was 

discussed in the 1ast Chapter and the K matrix is given by 

(6.6). It is convenient here to write 

so that from (6.2), (6.3), and (6.6) we have 

(7.3) 

(7 )t) 

(7.5) 

(k'IV fih = ~(k' IV jk) 

(k' IKik,P)-
3 

as ~k~{V lk) 

1-(~) Jdk11k 11 e (k"IVIk")C
0

(k 11 ,P) 

0 

We have ca11ed the denominator of this expression 

L(k,P) (see (6.7)). In our discussion here, as in the 

preceding Chapter, we shal1 use the effective mass approxima

tion (6.13) so we have 

3 * 00 

(7.6) L(k,P) = 1+( 2~ ~ J dk:'k'
2

(k' JVIk')Co(k' ,P) 

h 0 k'2-k2 
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which becomes, when (5.23a) is used, 

+ 

_ À tF-P dk'k~~~~Jik') J 
0 

(7-'Tb) 
k'2-P2+ki 

1t"' = 2Pk 1 

Recall that k ~ l/ki-P2 for the initial partieles to be 

inside the Fermi sea. 

The K matrix has a singularity when L(k,P) vanishes. 

For most values of k and P, L(k,P) is positive and does 

not differ too much from unity (see Figs. III and IV). 

For some values of k and P however, the integrals in 

(7.7a) can become large enough so that L(k,P) vanishes 

as we shall now see. (Later in this Chapter we shall find 

these values of k and P: it turns out that L(k,P) vanishes 

only for P extremely close to zero and k extremely close 

to kF' and it is for this reason that plots of (~IKik,P) 
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(Figs. III and IV) do not show any singularities.) 

Let us consider first the case of P=O. We have 

from (7. 7) 

(7.8) L(k,O) = 

We note that poles can occur in these integrais only 

when k=kF. We write 

L(k,O) = 

where now poles can occur only in the first and third 

integrais. 

Now 

1 
k -k 1 

.tn k;+k 
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so that 

(7.9) L(k,O) = 

+ terms which are finite when k ~ kF 

Now as k ~ kF' ~n(kF-k) ~- oo so that since (~IVIkF)<O 

(i.e., the potential is attractive at the Fermi surface. 

See (Fig. III or IV)), L(k,O) ~ oo. Thus there exists a 

* * value of k close to kF (call it ~) for which L(~,O)=ü and 

hence (~IKI~,~) is singular. It should be noted that the 

zero of L(k,O) occurs closer to kF when À=O than when 

* * À=l (i.e., k1<k0). 

It is of interest to see what happens to the singularity 

when P is different from zero. To the author's knowledge, 

no one has discussed this point quantitatively before, 

although a qualitative discussion has been given by 

Gottfried. 29) The conclusions we reach below are in 

agreement with his. 
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We shall follow the same procedure as above. We write 

(7.7) as 

(7.10a) L(k,P) = 

Pales can occur only in the first integrals on each line of 

(7.10a). Let us here write 

( 7 .11) 
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We can evaluate the first integrals on each line of (7.10a) 

to obtain 

+ finite terms 

We notice that for k -+ y', (1 +'K)tn IY 1 -k 1 -+ 0 

k-+ a 1 , 'Ktnja'-kl -+ 0 

Thus, when P 1 0 L(k,P) is finite for all values of k. For 

small values of P however L(k,P) can vanish as we shall now 

see. Let us consider k -+ a 1 which is the maximum value k 

can obtain for the initial particles to be inside the Fermi 

sea. We have then 

1<' tn 1 a' -k 1 -+ 0 

Now 

= p G-+0(~) J 
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and similarily 

so that 

(7.13) L(at,p) 

Now since {at IVIat)<O {see Fig. III or IV), a non-zero value 

* * of P (call it PÀ) can be faund so that L(at,pÀ)=O. Further, 

* * if P>PÀ then L(a 1 ,P)>O and if P<PÀ then L(a',P)<O. 

We are thus led to the following picture. A zero of 

L(k,P) {and hence a singularity of (~IKik,P)) will exist for 

some value of k when P=O. As P increases from zero, the 

value of k for which L(k,P) vanishes moves closer to the 

maximum of the k values (i.e., to vk;-P2 ) reaching this 
* * .,.... rl-;=h maximum when P=PÀ. When P exceeds P , (KIKIK,r) will no longer 

have any singularities. As we shall see later in this 

* Chapter the numerical value of PÀ is extremely small. 

We note that the conclusions reached above are valid 

for any potential which vanishes in all but 1s
0 

states, is 

separable in momentum space, and which is attractive 

(i.e., has negative matrix elements) in the region of the 

Fermi surface. It is worth noting also that the pair states 

which give rise to the singularity in the K matrix 

{i.e., pairs of particles near the top of the Fermi sea 
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with total spin zero and small centre of mass momentum and 

whose mutual interaction is attractive) are those which also 

are considered responsible for superconducting phenomena. 

Let us turn now to equation (6.21) for L(k,P) in order to 

obtain some numerical results. We are particularly interested 

in the location of the zero of L(k,O) and the maximum value of 

P for which a zero of L(k,P) exists. We shall later relate the 

position of the zero of L(k,O) to the size of the energy gap. 

Let us consider first the p;Q case. From (6.21) we have 

(7.14) L(k,O) ; 

11 (k,O) : ~ [tnl ~~~l-fa2(xF+x) -C12(x_,.-xl} cos2x + 

+ {rr-Si2(xF+x)-Si2(xF-x)} sin2x] 

r2(k,O); - ~ - ~ [ [ Ci2(xF+x)-Ci2(~-x)} sin2x + 

+ { rr-Si2(xF+x) -Si2(xF-x)} cos2x J 
r 3(k,O) = ~ [tni:F::I- {ci2(xF+x)-Ci2(xF-x)} cos2x

F 

{ Si2(~+x) -Si2(xF-x)} sin2x J 
I4Ck,O) =- ~[{ci2(xF+x)-Ci2(xF-x)} sin2x 

{si2(xF+x)+Si2(xF-x)} cos2x] 
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We want to find the value of k for whieh this expression 

vanishes. We expect it to be very close to kF and thus we 

shall put k = 1tp. in all but the singular term.s. We shall 

see that this is indeed justified. Making use of the fact 

that24) 

(? .15) when y -+ 0 { Siy-+ 0 

l Ciy .... .t.nyy 

where .t.ny=.5??216 (Euler-Mascheroni constant), we have then 

for k = ~: 
I 1 (k,O) =- 4iF (l-cos2xF).t.n(l- ~) + 

+ ~ [t.n2+(tn2y~-Ci4xF)cos2xF - (~-Si4xF)sin2xF J 
F 

I 2(k,O) = k sin2xF .t.n(l- ~) + 
F 

+ k [ -1r+tn2+(tn2yxF-Ci4x,)sin2xF - (~-Si4xF)cos2xF J 
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so that (7.14) becomes 

X?R* 
(7.16a) L(k,O) = 1 --;rn- w(~)(1+~)tn(l- ~) + F(xF) 

F 

(7.16b) w(xF) = 
2
x1

2 [<r0 + 1) (1-cos2~) - ~ sin2xFJ 
F 

m* =-- + 2m 

We observe that 

(47Jh) 2r o 
= m jo(~ro) [rojo(~ro)-~roj~(kFro)] 

(411h)2ro 
m w(xF) 

so that (7.16) can be written (compare (7.9)) 

* * Now we have defined ~ by L(~,O) = 0, so that from (7.16) 

~ _ { mn ~+F(xF)J } 
(7.19) 1 - k - exp x m*w(x )(1+~) 

F F F 
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Using the values of the parameters f
0 

and r
0 

given by (6.27) 

we have for kF = 1.4 fermi-l 

(7.20a) 

(7.20b) F(xF) = - .5000 m: + .3661 (1+~) m: - .4621~ ~ 
= - (.1339 + .0960 ~) ~ 

Taking m* = m and neglecting the hole terms (~=0) we find 

from (7.19) and (7.20) 

* 
(7.21) 1 - :; = 4.70 x 10-7 

Taking m*=m and including the hole terms (~=1) we find 

(7.22) 

In both cases the zero of L(k,O) is indeed close to ~' 

justifying our taking k=~ in all but the singular terms 

ab ove. We point out further that when m<m* the position of 

the zero is closer to kF in each case. 

Emery10) has shown that the size of the energy gap 6 is 

related to the position of the pole of the K matrix with hole 

* terms included (which we call k1) by 

(7.23) 
2 

. - ~ (k2 - k*2) ~ - m* F 1 

We can use (7.19) to obtain an expression for ~. We remark 

that in the spirit of the approximation leading to (7.19)we 
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* 

k2-k*2 
k 

write = 2k2(1- J) so that F 1 F kF 

4h2k~ * 
(7.24) 1:::. = ( 

k1 
) 

m* 1--
kF 

The expression for 1:::. is then from (7.19) 

( 7. 25) 
( 

mn [1+F(~-J] 
exp 2x m* w(x ) F F ) 

Using (7.20) and taking m*=m, we find 

(7.26) 1:::. = .8 Mev 

There have been no estimates of the energy gap of infinite 

nuc1ear matter so it is difficu1t to say whether our number 

is satisfactory. However we canuse Figure 1. in the 

paper by Bohr, Motte1son, and Pines26) to obtain a very rough 

idea of this quantity. This Figure shows the energy of the 

first excited intrinsic states of even-even spheroida1 

nuclei vs. A, the atomic number. Bohr, Motte1son, and Pines 

point out that if the intrinsic structure could adequate1y 

be described by an independant particle model, the first 

intrinsic excitations of even-even nuc1ei wou1d have on the 

average an energy of about 25 A-l Mev. Their Figure 1 shows 

this function and it is seen that it lies well below the 

data. Let us assume then that the energy of the first 
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intrinsic excitations of even-even nuclei is given by 

~ + 25 A-l where ~ is the energy gap. We take ~ to be 

independent of A, so that it is then the energy gap of 

infinite nuclear matter. It is seen from Figure 1 of 

Bohr, Mottelson, and Pines that in order to fit the data, 

a value of D between .7 Mev and .9 Mev is needed. Our 

value of .8 Mev seems not unsatisfactory then. Of course 

to obtain an accurate value of ~, the self-consistent value 

of m* at the Fermi surface would have to be known very 

accurately (see equation (7.25)). 

Let us finally see what is the maximum value of P for 

which a singularity of (~IKI[,P) can exist, that is, what 

* is the value of P~. In the expression (6.21) for L(k,P) we 

put k equal toits maximum value (i.e. to\/k~-P2 ~ ar from 

* (7.11)) and, anticipating that P~ is small, put P=O in all 

terms but those which go to infinity when this is done. 

We further use the asmptotic forms of the sine and eosine 

integrals as given by (7.15). We find finally for P = 0 

( 7. 27) 
x~*w(xF)(l+~) 

1 (a' , P) = 1 - --=---mn-=----

where w(xF) and F(xF) are given by (7.16b) and (7.16c). 

We note the similarity between (7.27) and (7.16a). The 

only difference 

where tn(l- .k.) 
kF 

on the RHS of the two equations is that 

appears in (7.16a), tn ~ appears in 
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* (7.27). The value of PÀ, which is the maximum value of P 

for which a singularity of (kiKik,P) can occur, is given 

by L(a',P~) = 0 so that from (7.27), 

(7.28) 

The RHS of (7.28) is identical to the RHS of (7.19). Thus 

using the values of f
0 

and r
0 

as given by (6.27), we have 

for kF = 1.4 fermi-land m* = m 

(7.29) 
p* 

4.70 x 10-7 _Q. = kF 

* pl 
= 2.63 x 10-3 

kF 
(7.30) 

* The value of PÀ is indeed close to zero justifying our 

setting P=O in all terms except those which are singular 

when this is done. We note, perhaps superfluously, that 

* for m* < m the value of PÀ is smaller in each case. 

We have seen that our pseudopotential does indeed 

lead to a singular K matrix and thus predicts an energy 

gap for infinite nuclear matter. We have seen further 

that the singularity occurs only for particles whose 
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relative momentum is very close to kF and whose centre 

of mass momentum is almost zero. This is an important 

prediction of our work since no ether calculation, based 

on a nucleon-nucleon interaction potential which fits 

the scattering data for energies up to those relevant 

in the many-body case, has yielded this result. 



CHAPTER VIII 

CONCLUSIONS 

We shall conclude this thesis by giving in this Chapter 

a brief summary of some of the main points we have discussed. 

In this thesis we have applied the Feshbach-Lomon 

Boundary Condition Model for nucleon-nucleon interactions to 

the Independant Pair Model (or Brueekner theory) of an 

infinite nucleus. The main step in the process has been the 

construction of a nucleon-nucleon interaction pseudopotential 

which is equivalent to the Boundary Condition Model. Because 

of the simple structure of this pseudopotential the integral 

equation for the nuclear matter K matrix can be solved vith

out resorting to the perturbative approaches used in the 

usual treatments. We would like to stress that we have used 

a realistic model of the nuclear force (in that it gives a 

reasonable fit to the two-nucleon data in the energy range 

which is important for the many-body problem), and with it 

we have been able to handle the equations of the Brueckner 

theory quite simply. 

One of the important points in our discussion bas been 

the treatment of the centre of mass momentum dependance of 

the nuclear matter K matrix. Our treatment involves certain 
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expansions only the first term of which has been given before. 

It should be stressed that the expansions we have introduced 

can also be used in the more standard treatments of the 

many-body problem. 

We have performed numerical calculations for the case 

when the interaction potential vanishes in all but 1s
0 

states. 

Our results for the potential energy per particle are very 

encouraging and indicate the validity of our approach to the 

many-body problem. In all of our discussion we have included 

the hole-hole interactions and our numerical results for the 

K matrix show the large effect on this quantity by these 

interactions. Our results show further that, in agreement 

with the rough calculations of Moszkowski and Sessler8), 

the inclusion of the hole-hole interactions has a small 

effect on the potential energy per particle. 

As a final point we have investigated the singularity of 

the nuclear matter K matrix for the case when the inter

action vanishes in all but 1s
0 

states. We have been par

ticularly concerned with the effect on the existence and 

position of the singularity when the interacting particles 

have a center of mass momentum different from zero. These 

points can be investigated easily because we can solve the 

K matrix exactly. Previous investigations of the nuclear 

matter problem, using an interaction potential which fits 

the two-body scattering data for energies up to those 

relevant in the many-body case, have not included this 
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point because in these cases the integral equation for the 

K matrix can only be solved approximately by perturbative 

methods. We have shown that the K matrix does have a 

singularity and therefore that infinite nuclear matter 

does have energy gap in its excitation spectrum. Further 

the singularity occurs only for those particles whose 

relative momentum is close to the Fermi momentum and whose 

center of mass momentum is almost zero. 

At present, a fit to the two-body scattering data is 

being performed by Feshbach and Lomon using an improvement 

over the simple Boundary Condition Model, namely, using the 

Boundary Condition Model plus an exterior potential tail 

obtained from the meson theory of nuclear forces. This 

model will be applied to the nuclear matter problem with 

the potential tail being handled by perturbative methods. 

All of the techniques used in this thesis can be used in the 

application of this improved model for the nucleon-nucleon 

interaction to the nuclear many-body problem, but a detailed 

discussion of this application is beyond the scope of this 

thesis. 



APPENDIX I 

In this Appendix we shall show that 

(I.l) if r'2 r 

where uj means that the principal value of the integral is to 

be taken. 

We note first the following properties of the spherical 

Bessel and Neumann functions15): 

so that 

Thus we can write 
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or, alternatively, 

(I. 2b) 

where h~(z) = j~(z) + in~(z). 

We evaluate the integrals occurring on the RHS of 

(1.2) by contour integrations. Consider the following 

k'plane 

,...-, c2 
_____ ! \--~--

k'=-k k1 =k 

where we suppose that both c1 and c2 are closed in the upper 

half plane by a semi-circle at infinity. We note now the 

following asymptotic forms of j~(z) and h~(z)l5): 

J 
+i [z- 1T (~+l)J 

when Z-+OO, j~ (z)-+ ~ cos~- ~ v(~+l) and h~ (z)-+ ~ e 2 
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so that when 

Therefore, if z1 and z2 are both real, then if z1~z2 , 

1 h~(iz1)jt(iz2 ) ~ 0 at least as fast as z-z- . 
1 2 

Thus if r > r' we have 

That is, because of the above arguments there is no contribution 

to the contour integrals from the semi-circles at infinity. 

The integrals occurring on the RHS of (I.3) can easily be 

evaluated using Cauchy 1 s integral formula.30) We find 

(I.4a) 

(I.4b) 

so that from (I.3) 
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Thus from (1.2) and (1.5) it follows that 

if r 12; r 

if r 2; r' 

which is equation (I.l). 

It is of interest finally to differentiate both sides 

of (I.l) with respect to r. We find 

if r'> r 

if r > r 1 

and 

Thus 
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that is, the limit operation and the integration cannot be 

interchanged. We have, in fact, 

= 

(lim 
r 1-+ r 

+ lim) 
r'-+ r 

(r' > r) (r'< r) 



APPENDIX II 

In this Appendix we shall show that the wave function 

(see (4.9)) 

is an eigenfunction of the IPAM Hamiltonian (4.6) when the 

Bethe-Goldstone equation (4.11) is satisfied. This has been 

shown by Gomes, Walecka, and Weisskopf3) and in more detail 

by Walecka3l), but we include this point here for the sake of 

completeness. 

We consider the eigenvalue equation 

A 

(II. 2) ( L Hi - E) 1 \}') = 
i=l 

- ù l'l') 
a~ 

where Hi and Ùa~ are given by (4.6). We obtain an equation 

for !Vus) by multiplying both sides of (II.2) on the left by . 
the bra 

_1_ 
1[2 

(The factor ~ has been included for convenience as will be 
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seen be1ow.) That is, from (II.2) we have 

A 

(II. 3) ... ~ 3 (y l>t (ô 1 •••• A (ru 1 ( L Hi-E) 1 'l' ) = 
v 2 i=1 

Now by using the orthonorma1ity of the single particle 

wave functionsly) and the equation H. ly).=e ly)., we have 
l l y l 

If we write 

th en 

(II.lt) 

Let us now consider the RHS of (II.3). By using the 

definition (lt.6) of Ùa~ and the properties of the projection 

operators occurring in ùa~ (see equation (lt.7)), we can write 

1 

RHS of (II.3) =-V121v!~)l2+ L ly)l 3(yJV321v!p)32 + 
y 

r r r 

+ I Jô)2 3<ô1v13w!~)13 - I L Jy1ô2) (yôJVJv!~) 
y ô 
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where L
1 

means summation over all states ly) (y#a or p) 
y 

where ky< kF' and where we now write jy) 1 lô) 2 = ly1ô2). 

In arder to simplify this expression we use the following 

identities obtained from the completeness of the single 

particle states jy): 

v12lv!p)12 = L L IYlô2)CyôiVIt!r) 
y ô 

ly)l 3(yiV321t!p)32 = L lylô2)(yôjVIt!p) 
ô 

lô)2 3(ô(Vl31t!p)l3 = L !ylo2)(yo1Vft!P) 
y 

where L means summation over all states !y). Thus we have 
y 

1 t t r 

RHS of (II.3) = (- L L + L L + L L - L L)ly1ô2)CyoiVIt!P) 
yô yo yo yô 

Il Il 

or RHS of (II.3) I I A - - IY1 o2) (yo 1 Vltap) 
y 0 

Il 

where I me ans summation over all states ly) where k > kF y 
y 
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and also over both a and ~· We can write now 

RHS of (II.3) ~- L L ly1o2 )Cyo1VIt!~) 
y>F ô>F 

- lal~2)(a~IVIt!~)-l~la2)(~aiVIt!~) 

+ { terms involving matrix elements of the forms 

(aoiVIt!~) and (ypjVIt!~) (y,ô #a or p) which 

vanish for an infinite nucleus since they do 

not conserve centre of mass momentum} 

But since Vlt!P) is antisymmetric, only the antisymmetric 

parts of the vectors (apl and (pal contribute to the above 

matrix elements, so that for an infinite nucleus, 

(II.5) RHS of (II.3) ~- L L jy1o2)Cyo1VIt!P) 
y>F ô>F 

- jalp~)(a~AIVIv!P) 

where 

Thus, if we are considering an infinite nucleus, we 

have from (II.~) and (II.5) 

This is the Bethe-Goldstone equation (see (~.11)). 



APPENDIX III 

In this Appendix we shall consider 

lim L{k,P) 

kF -+- 0 

where (6.2la) 

* L(k,P) = 1+;: [(f 0+l)I1{k,P)+I 2 (k,P)+~{(f0+l)I3 (k,P)+I4(k,P)}] 

and where the I's are given by (6.2lb) to (6.2le). To 

investigate this limit, we expand various functions in 

Taylor series about kF = o. We note first the following 

expansions of the eosine and sine integrals (equation {6.18)) 

Ci2(a ± x) = Ci2x + â cos2x + 0 (a2) -x 

Si2(a _+x) = + Si2x + a sin2x + O(a2 ) - x 

where we have used Si(-x) = - Six and Ci(-x) = Cix. Thus 

using the definition of ~:and e; (equation (6.19)) we have 

~: = 2Ci2x + O(a2) 

9+ = O(a) a 
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l/Ja = 0 (a) 

e; = 2Si2x + 0 (a2) 
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From the definition of a,~, and y (equation (6.15)) 

we have then 

~+ ~+ = O(kF2) 
~ a 

Further, 

ta ~~2-x2 1 = 0(~) 
a.2-x2 

tn 1~1 = ~-x 
0(~) 

1 
~ 1 = O(k ) y-x F 

tn ~ + Ci2a-Ci2p = O(k~) 

where we have used a1so (7.15). 

Thus using the above results, equation (6.20), and 

equations (6.2lb) to (6.21e) we have, when kF ~ 0, 
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Taking also m*=m, the expression (6.2la) for L(k,P) thus 

becomes, when kF~ 0, 

L(k,P) ~ 1 +; [<f0+1) ~ sin2x - ~ (1+ cos2x)J 

= sinx 
x 

sinkr
0 = --::----.:::. kr

0 

using x= kr
0 

(6.15). 

[<f
0
+l)cosx + x sinx] 

Finally from equation (6.23), which is the expression 

for the K matrix when the interaction potential vanishes 

in all but 1s
0 

states, we have, for ~ ~ o, 

(III.l) 

= 4rrn2 
- mk tan oo using (6.26) 

Thus in the limit as kF * O, the diagonal element of the 

K matrix for 1s
0 

states is proportional to the tangent of 

the 1s
0 

state phase shift, as indeed it should be by 

(3.24). 



Fig. I. 

Fig. II. 

Fig. III. 

Fig. IV. 

FIGURE CAPTIONS 

The function A2t(k,P) (see equation (5.11)) 

as a function of k for P = .5 kF and t=O,l,2,3. 

Comparison of the energy-dependence of the 

YLAM 1s
0 

phase shift of Breit et al. 25) with 

that of the 1s
0 

phase shift given by equation 

(6.26) using our boundary condition parameters 

(6.27) and those of Feshbach and Lomon (6.25). 

-,.+ .......... 
The nuclear matter (kiKJk,P) as a function of 

k for various values of P for the case when the 

interaction potential vanishes in all but 1s
0 

states and when the hole-hole interactions are 

neglected (see equation (6.23)). Also included 
..... -+ 

are the first Born approximation (i.e. (kjVjk). 
-+ -+ See equation (6.22)) and the two-body (kiKik) 

(see equation (III.l)). 

-+ -1-:t The nuclear matter (kjKjk,~) as a function of 

k for various values of P for the case when 

the interaction potential vanishes in all but 
1s states and when the hole-hole interactions 

0 
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Fig. V. 

Fig. VI. 
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are included (see equation (6.23)). Also 

included are the first Born approximation 
-+ .,... 

(i.e., (k IV 1 k). See equation (6. 22)) and 
-+ -+ the two-body (kjKjk) (see equation (III.l)). 

The single particle potential U(k2) as a function 

of k2 for the case when the interaction potential 

vanishes in all but 1s
0 

states (see equation 

(6.31)). Also included are parabolas fitted 

at k2 = 0 and k2 = kF. 

The single particle potential U(k2) as a function 

of k2 for the case when the interaction potential 

vanishes in all but 1s
0 

states (see equation 

(6.31)) and when the first Born approximation 

for the K matrix elements (i.e., (kJVIk)) is used. 

Also included is a parabola fitted at k2 = 0 

and k2 = kF. 
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Figure II 

.. 
1So Phase Shift vs Energy 

1. YLAM curve of Breit et al. 25> 

2. Eqn. {6-26) with fo =- .89 
r o = .95 fermi 

3. Eqn. ( 6 -26) with Feshbach -Lomon 9 ) 

Parameters 
( fo = -1+0.082, ro = 1.32 fermi) 
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Figure III 
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Figure IV 
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