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Approximate MMSE Estimator for Linear Dynamic
Systems with Gaussian Mixture Noise

Leila Pishdad, Fabrice Labeau

Abstract—In this work we propose an approximate Minimum
Mean-Square Error (MMSE) filter for linear dynamic systems
with Gaussian Mixture noise. The proposed estimator tracks
each component of the Gaussian Mixture (GM) posterior with
an individual filter and minimizes the trace of the covariance
matrix of the bank of filters, as opposed to minimizing the MSE
of individual filters in the commonly used Gaussian sum filter
(GSF). Hence, the spread of means in the proposed method
is smaller than that of GSF which makes it more robust to
removing components. Consequently, reduction schemes with
lower computational complexity can be used with the proposed
filter without losing estimation accuracy and precision. This
is supported through simulations on synthetic data as well
as experimental data related to an indoor localization system.
Additionally, we show that in two limit cases the state estimation
provided by our proposed method converges to that of GSF, and
we provide simulation results supporting this in other cases.

Index Terms—Bayesian tracking, linear estimation, Gaussian
mixture noise, Gaussian sum filter, minimum mean-square-error
(MMSE) estimator

I. INTRODUCTION

The problem of estimating the unobservable state of a
dynamic system from its available noisy measurements is
prevalent in numerous signal processing contexts. Bayesian
tracking techniques have been used for this purpose by apply-
ing a probabilistic framework and approximating the posterior,
i.e. the conditional probability distribution function of the state
given the measurements. For the special case of Gaussian noise
with linear dynamic and measurement models, this posterior is
Gaussian and its sufficient statistics are optimally tracked by
a Kalman filter [1], [2]. The mean of this pdf acts as the state
estimate and it is proved to be the minimum mean-square error
(MMSE) estimator [3]. However, in many applications the
posterior distribution is not Gaussian. For instance, in event-
based state estimation the likelihood distribution is not Gaus-
sian, which leads to a non-Gaussian posterior distribution [4],
[5]. For the case of non-Gaussian distributions, Kalman filter
cannot optimally track the mean and covariance matrix of the
posterior(e.g. see [6]) and approximations should be made to
provide suboptimal solutions [2].

Gaussian sum approximation has been an attractive method
for estimating non-Gaussian distributions, since it provides
asymptotically unbiased estimations [7], with the desired
precision1 [3, Chapter8; Lemma 4.1]. Additionally, by using
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1The parameters of the approximated GM including the number of its
components, can be chosen such that the integral of the approximation error
over the sample space is as small as desired.

Gaussian mixtures (GM), the approximated pdf is represented
as a conditionally Gaussian distribution and this enables the
analytic evaluation of a closed-form expression for the belief
function. This is possible since, with GM distributions, the
multiple model approach can be used, where each component
in the GM corresponds to a model in the system and can
be tracked by a Kalman filter [8]. Hence, the partitioned
posterior can be estimated by a bank of Kalman filters, i.e.
the Gaussian sum filter (GSF). Consequently, GMs have been
widely used to model the different non-Gaussian distributions
in sequential Bayesian tracking, including the prior [3], [9],
[10], likelihood [4], [11], [12], predictive distribution [12] and
noise distributions [8]–[10], [13]–[17]. They have also been
used to directly approximate the posterior distribution [16],
[18]–[21].

With GM prior, likelihood, or predictive density, the poste-
rior is also a GM and the number of its components remains
constant over time, as long as the noise distributions are
Gaussian. For instance, in [3], it is shown that starting with
a GM prior with a finite number of components, and additive
white Gaussian noise, the predictive and posterior distributions
are GMs with the same number of components. However, for
GM noise distributions, the number of models in the system
and consequently the number of components in the posterior
grow exponentially over time. Hence, suitable GM reduction
algorithms should be used, to merge or remove some of the
components in the posterior as time progresses.

The mixture reduction algorithms can be categorized into
three classes. In the first group, Expectation maximization
(EM) is used to simultaneously predict and reduce the
GM [11]. The second class of reduction algorithms rely on
merging a pair or a group of components, i.e. replacing them
by their moment-matching Gaussian distribution. There are
different criteria for selecting the components to be merged.
For instance, in Gaussian pseudo Bayesian (GPB) estimators,
the components with the same state history are merged and
replaced by a single Gaussian distribution [8]. A less com-
putationally complex solution, also approximating a GM by
a single Gaussian, is interacting multiple models (IMM) [8]
which is used commonly as it requires fewer filters. Alter-
natively, in [16] the components are merged in the unlikely
regions of the distribution, and they are split in the likely
regions. Optimization techniques can also be used to select
the merging components such that a cost function quantifying
the dissimilarity between the GM distribution and the reduced
distribution is minimized. An example cost function used in
the literature is the Kullback-Leibler divergence (KLD) [22],
[23]. Finally, the last category of reduction schemes requires
removing a group of components [9], [10]. This class has
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the lowest computational complexity, especially since the
reduction can be done before tracking, making it possible to
avoid the evaluation of unused parameters. In the extreme case,
the active component of the posterior is determined and all the
other components are removed [14], [17]. This is equivalent
to making a hard decision about the model in effect and
hence the accuracy and precision of estimation is dependent
on the correct choice of this model. At the cost of increased
computational complexity, the performance of these methods
can be improved by applying resampling procedures [13].
Alternatively, in [15] a forgetting and merging algorithm is
proposed, where the components with weights smaller than a
given threshold are removed, and the components with close
enough moments are merged. A comprehensive review of the
reduction algorithms for GM distributions is provided in [24].

The MMSE estimator is the expected value of the poste-
rior [8]. Hence, GSF is the MMSE estimator of state2 [25],
[26]. However, due to using parallel Kalman filters in GSF,
the MSE of each individual filter is minimized irrespective of
the location of its mean with respect to the other components.
Yet, the total covariance matrix of the filter is a function of
both the individual filters’ state estimation covariance matrices
and the spread of their means.

In this work, we propose an approximate MMSE state
estimator called AMMSE, which, unlike GSF, minimizes the
trace of the total covariance matrix of the filter rather than
the traces of the covariance matrices of individual filters. For
this purpose, we re-derive the gains of individual filters such
that the trace of the total covariance matrix of the filter is
minimized. Hence, the spread of the means of the posterior
components in the proposed estimator is smaller than that
of GSF, making it more robust to removing some of the
components. Consequently, AMMSE estimator can be used
with the simplest and least computationally complex reduction
scheme and yet achieve better performance when compared
with GSF with the same reduction scheme. In other words,
rather than using more computationally complex reduction
schemes to improve the performance, we adjust the means of
the components of the posterior and simply use the component
with the largest weight as the state estimator, thus avoiding the
unnecessary evaluation of the parameters of the other com-
ponents. Additionally, through simulations we show that the
difference between the distributions of the estimated state in
GSF and AMMSE, as well as the true state is not statistically
significant. Hence, despite the fact that by changing the gains
of individual filters we are deviating from the true posterior,
the total state estimation of AMMSE converges to the MMSE
state estimation provided by GSF, and the true state.

The rest of this paper is organized as follows: In Sec-
tion II the system model is defined and the notation used
throughout the paper is introduced. Next, in Section III, we
provide the details of GSF. In Section IV, we present our
proposed AMMSE filter: first, in Section IV-A the gains of
individual filters in the proposed method are derived, and
then in Section IV-B it is compared with GSF in terms of

2If no reduction scheme is used and the distributions are GMs (not
approximated by GMs).

computational complexity and the convergence of the two
filters is analyzed. The numerical results are provided in
Section V, comparing AMMSE, GSF, Kalman and Matched
filters in terms of estimation accuracy with synthetic data
(Section V-A) and experimental data gathered from an indoor
localization system (Section V-B), and the convergence3 of
the state estimations of the filters and the true state is tested
with synthetic data. Finally, in Section VI we provide the
concluding remarks.

II. SYSTEM MODEL

Suppose a discrete-time linear dynamic system, in which the
state sequence {xk, k ∈ N}, evolves as a first-order Markov
process with additive noise with the initial state pdf p(x0).
Hence, using state-space representation, the dynamics equation
can be written as

xk = Fkxk−1 + vk, (1)

where the process noise, {vk, k ∈ N} are independent random
vectors with the pdfs {p(vk), k ∈ N} and Fk is the matrix
describing the linear relationship between the previous and
current state. If nx denotes the dimension of the state vector,
the process noise is of dimension nx and Fk is of size nx×nx.

In many applications, the state of the system cannot be
observed directly. Hence, it is desirable to estimate the unob-
servable state from the available measurements. If we denote
the measurement sequence by {zk, k ∈ N}, the relationship
between xk and zk is described by the measurement equation,

zk = Hkxk + wk, (2)

where the measurement noise {wk, k ∈ N} are independent
random vectors with the pdfs {p(wk), k ∈ N}, and it is
independent from the process noise. The matrix defining the
linear relationship between the current state and measurement
vectors, Hk, is a known matrix of size nz × nx, where nz is
the dimension of the measurement vector zk, and the noise
vector wk.

Having the above, Bayesian tracking techniques can be
used to probabilistically estimate the current state of the
system from the available measurements. This is done by
recursively estimating the posterior, p(xk|z1:k), where z1:k
represents the available measurements up to and including
time k. The recursive estimation of the posterior comprises
of two steps: prediction and update. In the first step, xk is
predicted using the previous measurements, i.e. p(xk|z1:k−1)
is estimated using Chapman-Kolmogrov equation on the pre-
vious posterior, p(xk−1|z1:k−1), and p(xk|xk−1). Next, in
the update phase, Bayes rule is used for updating the prior
and evaluating the posterior, p(xk|z1:k). The posterior is then
used for next iteration estimation. With Gaussian process and
measurement noise, the posterior distribution will be Gaussian
and its sufficient statistics, i.e. mean and covariance matrix, are
optimally tracked by a Kalman filter [1]. Additionally, since
the posterior is Gaussian, the filtered mean approximates the
state and it is the MMSE estimator [8].

3Convergence in distribution is tested using two-sample Kolmogrov-
Smirnov non-parametric tests.
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In this work we use GM models for the initial state,
as well as the process and measurement noise processes,
since they are mathematically tractable and they can be
used to approximate non-Gaussian distributions. Hence, the
process noise, vk is represented by a GM with Cvk

com-
ponents, with

{
ui
k, 1 ≤ i ≤ Cvk

}
the component means,{

Qi
k, 1 ≤ i ≤ Cvk

}
the component covariance matrices and{

Wi
k, 1 ≤ i ≤ Cvk

}
the non-negative mixing coefficients.

This can be written as:

p(vk)=

Cvk∑
i=1

Wi
kN
(
vk;ui

k, Q
i
k

)
, (3)

where
∑Cvk

i=1 Wi
k = 1, and N (x;µ,Σ) represents a Gaussian

distribution with argument x, mean µ, and covariance matrix
Σ. The measurement noise distribution is also represented by
a GM in a similar manner, and written as:

p(wk)=

Cwk∑
j=1

Pj
kN
(
wk;bj

k, R
j
k

)
, (4)

where, Cwk
is the number of components of the GM distribu-

tion with the non-negative coefficients
{
Pj

k, 1 ≤ j ≤ Cwk

}
,

and
∑Cwk

i=1 P
j
k = 1. The mean and covariance matrix of

component j, 1 ≤ j ≤ Cwk
are bj

k and Rj
k, respectively.

III. GAUSSIAN SUM FILTERS

With the GM noise distributions, i.e. (3)–(4),
the dynamic system defined in (1)–(2), can be
described as a Multiple Model system, with models{
M ij

k ; 1 ≤ i ≤ Cvk
, 1 ≤ j ≤ Cwk

}
, corresponding to

the different components or modes of the process and
measurement noises.4 Hence, the posterior can be partitioned
as follows:

p(xk|z1:k) =
∑
i,j

p
(
xk|z1:k,M ij

k

)
p
(
M ij

k |z1:k
)
. (5)

The mode-conditioned posterior, p
(
xk|M ij

k , z1:k

)
, is a

Gaussian distribution with the pdf,

p
(
xk|M ij

k , z1:k

)
= N

(
xk; x̂ij

k|k,P
ij
k|k

)
. (6)

where its parameters x̂ij
k|k and Pij

k|k can be tracked using the
mode-matched Kalman filter [1], [8] as follows:

x̂i
k|k−1 = Fkx̂k−1|k−1 + ui

k, (7)

P i
k|k−1 = Qi

k + FkPk−1|k−1F
T
k , (8)

ẑijk = Hkx̂
i
k|k−1 + bj

k, (9)

νij
k = zk − ẑijk , (10)

Sij
k = HkP

i
k|k−1H

T
k +Rj

k, (11)

Wij
k = P i

k|k−1H
T
k S

ij
k

−1
, (12)

x̂ij
k|k = x̂i

k|k−1 + Wij
k ν

ij
k , (13)

4For simplicity we assume a system of order one, where all the models
have the same history of states. This assumption can be easily relaxed.

Pij
k|k = P i

k|k−1 −Wij
k S

ij
k Wij

k

T
. (14)

where (.)
Tindicates the transpose of its argument.

Hence, defining

µij
k , p

(
M ij

k |z1:k
)
, (15)

we can write (5) as a GM distribution, with Cvk
Cwk

compo-
nents:

p(xk|z1:k) =
∑
i,j

µij
k N

(
xk; x̂ij

k|k,P
ij
k|k

)
. (16)

The coefficients µij
k can be evaluated as:

µij
k = p

(
M ij

k |zk, z1:k−1
)

(17)

=
p
(
zk|M ij

k , z1:k−1

)
p
(
M ij

k |z1:k−1
)

p(zk|z1:k−1)
(18)

=
N
(
zk; ẑijk , S

ij
k

)
p
(
M ij

k |z1:k−1
)

∑
lm

N
(
zk; ẑlmk , Slm

k

)
p
(
M lm

k |z1:k−1
) . (19)

Assuming that the current model is independent from the
previous model we have5

p
(
M ij

k |z1:k−1
)

=Wi
kP

j
k. (20)

Hence, we can write:

µij
k =

Wi
kP

j
kN
(
zk; ẑijk , S

ij
k

)
∑
lm

W l
kPm

k N
(
zk; ẑlmk , Slm

k

) . (21)

A. Reduction Schemes

As mentioned earlier, to avoid an exponentially growing
bank size, reduction schemes should be applied to the pos-
terior. In our work we use the less computationally complex
schemes: merging all components to their moment-matching
Gaussian distribution, and removing the components with
smaller weights.6

For the first method, the moment-matched Gaussian distri-
bution will have the following mean and covariance matrix:

x̂k|k =
∑
ij

µij
k x̂

ij
k|k, (22)

Pk|k =
∑
ij

µij
k

(
Pij
k|k+

(
x̂ij
k|k − x̂k|k

)(
x̂ij
k|k − x̂k|k

)T)
(23)

=
∑
ij

µij
k

(
Pij
k|k + x̂ij

k|kx̂
ij
k|k

T
)
− x̂k|kx̂

T
k|k. (24)

Alternatively, rather than making a soft decision about the
active model, it can be determined by a hard decision. This is
the approach used in [9], [10], [14], [17]. A simple scheme to
determine the active model is to choose the component with
the largest weight. Using this approach, if

ij = arg max
lm

µlm
k , (25)

5This assumption can be easily relaxed.
6Other metrics can be used to determine the active model.
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we have

x̂k|k =x̂ij
k|k, (26)

Pk|k =Pij
k|k. (27)

One of the advantages of using this method over replacing
the GM with its moment-matched Gaussian distribution, is
that by determining the active model before evaluating the
parameters of all components, computational resources can
be saved. Additionally, evaluating (22)–(24) is more compu-
tationally complex than (26)–(27). Besides the computational
complexity, by using a soft decision approach, we could be
getting drifted from the matched estimation. Specifically, at
every iteration only one model is active corresponding to the
Matched filter. By incorporating the outputs of the mismatched
filters in (22)–(24), the estimation accuracy and precision are
lost. However, if the active model, hence the Matched filter
are not chosen correctly, the soft decision method will provide
better estimations. For simplicity, we refer to the first method
as merge and the second as remove, e.g. GSF with the first
method as the reduction scheme is referred to as GSF-merge
in this paper.

Additionally, throughout this paper we use the term mode-
matched filter to refer to the filter estimating the mode-
conditioned state, from p

(
xk|M ij

k , z1:k

)
. The term Matched

filter, is used to denote the mode-matched filter corresponding
to the known active model, M∗k . Having the information about
the active model, (5) is simplified and the posterior of the
Matched filter will be

p(xk|z1:k) = p(xk|z1:k,M∗k ). (28)

Matched filter cannot be implemented without prior knowledge
about the active model and is only used for comparison
purposes (see Section V-A).

IV. AMMSE ESTIMATOR FOR GM NOISE

In this section we evaluate the gains of individual filters,
W ij

k such that the trace of the covariance matrix of the bank
of filters, (24) is minimized. Since this covariance matrix is
conditional on the measurements sequence, the evaluated gains
are functions of innovations.

A. Derivation of Filter Gains

For an arbitrary filter gain W ij
k , the state estimation error

covariance matrix for filter ij can be written as follows:7

P ij
k|k =P i

k|k−1 −W
ij
k HkP

i
k|k−1

− P i
k|k−1H

T
kW

ij
k

T
+W ij

k S
ij
k W

ij
k

T
(29)

Additionally, using (7) and (13), we can write

x̂ij
k|k =Fkx̂k−1|k−1 + ui

k +W ij
k ν

ij
k . (30)

Using this in (22), we have:

x̂k|k = Fkx̂k−1|k−1 + Uk + Sk, (31)

7For Kalman gain this equation is simplified as in (12).

where

Sk ,
∑
ij

µij
k W

ij
k ν

ij
k , (32)

Uk ,
∑
ij

µij
k u

i
k. (33)

To find the filter gains minimizing the MSE, the element-wise
partial derivatives of the trace of the covariance matrix with
respect to W ij

k is set zero, i.e.:

∂tr
(
Pk|k

)
∂W ij

k

=0. (34)

Thus, using (29), (30), and (31) in (24), we can write:8

−P i
k|k−1H

T
k +W ij

k S
ij
k + ui

kν
ij
k

T
+W ij

k ν
ij
k ν

ij
k

T

− Ukν
ij
k

T
− Skνij

k

T
= 0, (35)

and we have:

W ij
k =

(
P i
k|k−1H

T
k + Ukν

ij
k

T
− ui

kν
ij
k

T
+ Skνij

k

T
)

×
(
Sij
k + νij

k ν
ij
k

T
)−1

= Aij
k + SkBij

k , (36)

where

Aij
k ,

(
P i
k|k−1H

T
k + Ukν

ij
k

T
− ui

kν
ij
k

T
)

×
(
Sij
k + νij

k ν
ij
k

T
)−1

, (37)

Bij
k ,νij

k

T
(
Sij
k + νij

k ν
ij
k

T
)−1

. (38)

Using (32) and (36), Sk can be evaluated as follows:∑
ij

µij
k W

ij
k ν

ij
k =

∑
ij

µij
k Aij

k ν
ij
k + Sk

∑
ij

µij
k Bij

k ν
ij
k . (39)

Hence we have

Sk =
∑
ij

µij
k Aij

k ν
ij
k

1−
∑
ij

µij
k Bij

k ν
ij
k

−1 . (40)

Using (40) in (36) the the optimal gains for the individual
filters are computed and the estimated state, x̂k|k minimizing
the trace of the covariance matrix of the filter can be evaluated
from (31). However, changing the parameters of the compo-
nents in the posterior, leads to larger MSE when compared
with GSF, the MMSE filter.9 Specifically, the MSE of AMMSE
filter is the trace of the covariance matrix of the AMMSE filter
and it can be evaluated as follows:

MSEAMMSE , tr
(
Exk

{(
xk − x̂k|k

) (
xk − x̂k|k

)T ∣∣z1:k})
(41)

= tr
(
Pk|k +

(
x̂k|k − x̂k|k

) (
x̂k|k − x̂k|k

)T)
(42)

8We assume µijk 6= 0, since for µijk = 0 there is no need to evaluate the
parameters of filter ij.

9GSF is the MMSE estimator when no reduction scheme is used and
the noise distributions are GMs, rather than being approximated by GMs.
However, as shown in [25] even with mixture reduction, GSF-merge converges
to the MMSE filter.
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where Ex{g(x)} is the expected value of the function g(x)
with respect to the random variable x with pdf p(x), and
x̂k|k, Pk|k are the parameters of the MMSE filter evaluated as
in (22)–(24).

B. Comparison with GSF

In this section we compare GSF and the proposed AMMSE
filter in terms of computational complexity for one iteration
(Section IV-B1) and discuss the convergence of AMMSE
estimator to GSF (Section IV-B2).

1) Computational Complexity: In the prediction stage of
Bayesian tracking and the evaluation of the coefficients µij

k ,
both GSF and AMMSE have the same steps, hence the same
computational complexity regardless of the choice of the
reduction scheme. However, the reduction scheme affects the
computational complexity of estimating the state and covari-
ance matrix as well as the update stage of Bayesian tracking.
Specifically, merging the means and covariance matrices of
the components in (22)–(24) is more computationally complex
than simply removing the components with smaller weights
in (26)–(27). The update stage can be divided into three main
operations: evaluating the gains, the component means, and
covariance matrices. Depending on the reduction scheme, the
number of times that these parameters have to be evaluated
changes. For instance, in GSF-merge and AMMSE-merge,
the parameters of all Cvk

Cwk
filters in the bank have to be

evaluated. Hence, both GSF-merge and AMMSE-merge have
the same computational complexity for evaluating the gains,
component means and covariance matrices, as well as merging
the moments of the individual filters. For GSF-remove, each
parameter needs to be evaluated for the correct component
only. However, this is not true for AMMSE-remove, as the
gains are dependent. Thus, to compute Sk, the parameters Aij

k

have to be evaluated for all filters. Having Sk, the parameters
of the component with the maximum weight can be computed
with the same computational complexity as GSF-remove.
Hence, in terms of number of operations GSF-merge and
AMMSE-merge are similar, while AMMSE-remove requires
less operations and GSF-remove has the lowest computational
complexity. However, as shown in Section V this is at the
cost of degrading performance. The other three filters, i.e.
AMMSE-merge/-remove and GSF-merge show similar perfor-
mance with AMMSE-remove requiring the least number of
operations.

2) Convergence to MMSE Estimator: At iteration k, the
AMMSE state estimation, x̂k|k, converges in distribution to the
MMSE state estimation provided by GSF, x̂k|k. Using (41),
the convergence of the state estimations yields the convergence
of the MSEs. Hence, the MSE of the AMMSE filter converges
to the MSE of GSF-merge. Since it is not easily feasible to
provide an analytical proof for all cases due to the matrix
inversions in the evaluation of gains, we prove the convergence
for two limit cases in Appendix A, and use Kolmogrov-
Smirnov test for the other cases in Section V.

In the analytical proof in Appendix A, the convergence of
state estimations is proved by showing the convergence of
the parameters of the GM posterior, namely the coefficients,

µij
k , the means, x̂ij

k|k, and the covariance matrices, P ij
k|k, of

the components. Since these parameters are dependent on
the innovations of individual filters, νij

k , two limit cases are
considered: when the distance between innovations approaches
zero and when it goes to infinity. The first case applies
to a posterior with highly overlapping components, where
the likelihoods of all models are close to one. Contrarily,
when the distance between innovations approaches infinity, the
likelihood of the active model is close to one and all the other
components have negligible likelihoods. In other words, the
active model can be well determined by using the coefficients,
µij
k , of the GM posterior.
For general GM noise models, the analytical proof is not

straightforward, due to the matrix inversions in the gains,(
Sij
k + νij

k ν
ij
k

T
)−1

and Sij
k

−1
. Hence, in Section V, we pro-

vide Kolmogrov-Smirnov (KS) statistic for the distributions,
p
(
x̂k|k

)
and p

(
x̂k|k

)
under different types of GM noise pa-

rameters. Specifically, we use GM noise models with different
separations between components, and by running simulations
on synthetically generated data with these noise models, we
generate samples from the distributions p

(
x̂k|k

)
and p

(
x̂k|k

)
.

Using the KS test on these data, the hypothesis that the two
data samples belong to the same distribution, is accepted at
95% confidence level.

V. NUMERICAL RESULTS

We consider two scenarios: In the first scenario, we use
synthetically generated process and measurement noise pro-
cesses, whereas for the second scenario we gather experi-
mental data from an indoor localization system with ultra-
wideband (UWB) sensors. To be consistent, we use the same
process and measurement equations for both scenarios and
they only differ in the noise distributions.

For both scenarios, we consider an indoor localization
problem, in a 2D setting, and track the position in each di-
rection independently assuming noise distributions with time-
invariant statistics. The state vector contains the position and
the velocity, but only noisy information about the position is
observable and measured. Hence, in each direction we have
nx = 2, nz = 1, and

Fk =

[
1 ∆tk
0 1

]
, Hk =

[
1 0

]
, (43)

where ∆tk is the time interval between the measurements
zk−1 and zk. In our localization system, the time intervals
between measurements are multiples of 0.1080 s. Hence, in
our synthetic setting, we use ∆t = 0.1080 s for all iterations.

We use a random walk velocity motion model,

vk = vk ×
[
∆tk

1

]
, (44)

where vk is a univariate GM random variable.
For the experimental setup, the noise distributions are esti-

mated using the data gathered from the UWB sensors. For the
synthetically generated data, we assume the same distribution
for process and measurement noise.

The following filtering schemes are used and compared in
terms of root-mean-square error (RMSE):
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TABLE I
THE PARAMETERS OF THE GM MODELS USED FOR GENERATING

SYNTHETIC DATA

coefficients means
Model 1 [0.2, 0.2, 0.2, 0.2, 0.2] c [−50,−30, 0, 30, 50]
Model 2 [0.1, 0.1, 0.6, 0.1, 0.1] c [−50,−30, 0, 30, 50]
Model 3 [0.5, 0.1, 0.1, 0.1, 0.2] c [−50, 10, 30, 50, 80]

1) Kalman filter (KF)
2) GSF-merge/-remove
3) AMMSE-merge/-remove
4) Matched filter (for synthetically generated data)

A. Synthetic data

For the synthetically generated data, the process and mea-
surement noise are assumed to be i.i.d. samples from one of
the following GM models:

Model 1: Symmetric distribution with the components all
having the same coefficients.

Model 2: Symmetric distribution with components having
different weights.

Model 3: Asymmetric distribution.
The coefficients of the components are chosen such that the
distributions are zero mean. In our simulations, we assume
GM distributions with 5 components, each having a variance
of 1. The mixing coefficients and the means of the components
are given in Table I. The parameter c is used to vary the multi-
modality of the GM distributions.

Using the GM noise models in Table I, we generate the
measurements and estimate the state with Kalman filter, GSF-
merge/-remove, and AMMSE-merge/-remove, as well as the
Matched filter. To get the Matched filter estimations, we label
the generated data by the active noise models in effect, and
use this information to choose the correct filter in the bank to
achieve the Matched filter. To further investigate the effect
of multi-modality on the performance of these filters, we
vary the parameter c for the noise models in Table I and
evaluate the estimated state, and RMSE for all filters. For
each value of c, 1000 Monte-Carlo runs are used to estimate
the RMSE at 95% confidence level. We also approximate the
KL divergence between the GM noise distributions and their
corresponding moment-matched Gaussian density for each
value of c. Fig. 1 shows the RMSE of the filters for different
values of KL divergence between the used noise model and its
moment-matched Gaussian distribution. As can be expected,
as the divergence between the noise distribution and its
corresponding fitted Gaussian increases, the performance of
Kalman filter drops in terms of RMSE. This is due to the fact
that Kalman filter is best suited for systems with Gaussian
distributions, and it fails to provide good estimations for
multi-modal noise models. Additionally, since the component
variances of noise distributions are the same and by varying
c only the separation between the components changes, the
performance of the Matched filter remains the same for all
values of KL divergence. However, for GSF-merge/-remove,
and AMMSE-merge/-remove, the performance changes when
the KL divergence increases.

With all noise models, the performance of all filters are
close to the Matched filter for small KL divergences (as
shown in Section IV-B2). However, as the KL divergence
increases, RMSE increases for all filters, until it reaches its
maximum. This is due to the fact that with an increase
in the separation between the components, hence, the KL
divergence with the corresponding moment-matched Gaussian
distribution, the overlap between the components decreases.
However, this decrease is not enough for the filters to correctly
find the active model from the weights of components. In
other words, the posterior is multi-modal, hence it cannot
be well approximated by a single Gaussian. However, the
overlap between the components of the GM posterior leads to
drifting from the Matched filter estimation. Further increase
in the KL divergence results in improved performance for
AMMSE-merge/-remove and GSF-merge until they converge
to the Matched filter (as shown in Section IV-B2). However,
this is not the case for GSF-remove. Specifically, as the KL
divergence increases, the RMSE of GSF-remove decreases
until it reaches its minimum. But further increase in the KL
divergence results in increased RMSE for this filter. This is
because with GSF-remove the correct choice of the active
component is of particular importance. Although, with the
increase in KL divergence the component with the maximum
weight represents the active model most of the times, when
it fails and a wrong component is chosen, there is a larger
error due to the increased distance between the component
corresponding to the active model and the other components.

For all models, the performances of GSF-merge and
AMMSE-merge are very close, especially, for KL divergence
values greater than 1. To further investigate the relationship
between these two filters, we used the state estimations, x̂k|k,
and x̂k|k to test the hypothesis that they come from the
same distribution. Using Kolmogrov-Smirnov (KS) test, this
hypothesis is accepted at 95% confidence level for all noise
models and KL divergences. Additionally, since GSF-merge is
not the MMSE filter due to the reduction of GM posteriors,
we also carried out the two-sample KS hypothesis tests on the
state estimations from AMMSE-merge and the true state. The
hypotheses that the samples come from the same distributions
are accepted at 95% confidence level for all noise models for
KL divergences greater than 1. Moreover, to test the variances
of the two filters we used Ansari-Bradley10 test with the null
hypothesis that the variances of these two sample sets are
equal. The null hypotheses for Ansari-Bradley tests were also
accepted for all noise models and KL divergences greater than
0.04 at 95% confidence level.

The RMSE of AMMSE-remove is always smaller or equal
to the RMSE of GSF-remove. This is due to the fact that
with AMMSE, the means of components are evaluated such
that the trace of the total state estimation error covariance
matrix including the spread of means in (23) is minimized. By
contrast, in GSF the component means, x̂ij

k|k are minimizing
the trace of the covariance matrix of each individual filter Pij

k|k.
Hence, the component means are closer in AMMSE filter.

10Since the posteriors are not Gaussian the chi-square tests for normalized
estimation error squares (NEES) cannot be applied.
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Fig. 1. RMSE for the synthetic data generated using Models 1–3 vs. KL
divergence between the noise distribution and the moment-matched Gaussian

Consequently, when removing the components with smaller
weights as a reduction scheme, the performance is better.

Based on the results, it is evident that when the noise dis-
tributions are far from Gaussian (the KL divergence between
the noise distribution and the corresponding moment-matched
Gaussian density is large), GSF-merge, and AMMSE-merge/-
remove perform similarly regardless of the shape of the noise
model in terms of symmetry. This is particularly important,
since among these filters which achieve comparable estima-
tion accuracy, AMMSE-remove requires the least number of
operations by avoiding the evaluation of P ij

k|k (as shown in
Section IV-B1).

B. Experimental Data: Indoor Positioning System

In this section we provide the numerical results on the
experimental data gathered from the indoor positioning system
with off-the-shelf Ubisense UWB location sensors described
in [27]. The noise distributions are approximated by GMs.

To compare the performance of different filtering schemes,
in Table II we provide the RMSE in each direction. These
values are the average of RMSE over all our experiments.
Since the noise distributions are very close to their moment-

TABLE II
RMSE FOR EXPERIMENTAL DATA

x y
Kalman 88.1850 73.0512
GSF-merge 85.7485 74.3982
GSF-remove 110.4006 75.1093
AMMSE-merge 80.7388 71.3662
AMMSE-remove 101.8026 72.0491

matched Gaussian distribution11, Kalman filter is similar to
GSF-merge and AMMSE-merge in terms of RMSE. However,
by minimizing the trace of the total state estimation error co-
variance matrix and decreasing the spread of means, AMMSE
provides the best results in both directions and the performance
of AMMSE-remove is better than GSF-remove.

VI. CONCLUSION

In this paper, we propose an approximate MMSE (AMMSE)
state estimator, for linear dynamic systems with Gaussian
Mixture (GM) noise. For this purpose, we use a bank of
Kalman filters with adjusted gains to track the models cor-
responding to the different components of the GM noise
distributions. This is done by minimizing the trace of the
total state estimation error covariance matrix, including the
individual filters covariance matrices and the spread of their
means. Hence, comparing with Gaussian Sum Filter (GSF)
which minimizes the trace of the individual filters covariance
matrices by using parallel Kalman filters, our proposed method
has a smaller spread of means, and is more robust to removing
components. Specifically, we have shown through simulations
that unlike GSF, the performance of the proposed AMMSE
filter does not change when instead of merging all components,
we reduce the number of components by taking the component
with the maximum weight. This is specifically important for
applications which require lower computational complexities.
We have also shown that the distributions of state estimations
with GSF and AMMSE filter converge in two limit cases:
when the distance between the GM components approaches
zero and infinity. For the other cases, this is tested with
Kolmogrov-Smirnov test on the state estimations of the two
filters.

APPENDIX A
PROOF OF CONVERGENCE

Lemma 1: The estimated state of GSF and AMMSE filter
converge in distribution when the distances between innova-
tions approach zero.

Proof: Since the distances between innovations approach
zero, they all converge to the same value, ν∗k. In this case Sk
approaches

∑
ij

µij
k W

ij
k ν
∗
k. Now, using (35), we can write:

−
∑
ij

µij
k P

i
k|k−1H

T
k +

∑
ij

µij
k W

ij
k S

ij
k → 0, (45)

11The KL divergences between the GM approximations of the process and
measurement noise distributions and their corresponding Gaussian distribu-
tions are 0.4253 and 0.1759 in x direction and 1.1971 and 0.0200 in y
direction, respectively [27].
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which holds for GSF gains, Wij
k in (12). But since there is

only one unique solution for the set of equalities given in (35)
for all i, j, in limit the gains of the individual filters in GSF
and AMMSE become equal. Consequently, the parameters of
the GM posteriors for GSF and AMMSE filter will converge
in this limit case.

Lemma 2: The estimated state of GSF, AMMSE filter, and
the Matched filter converge in distribution when the distances
between innovations approach infinity.12

Proof: If we denote the active model by M∗k ,
ν∗k approaches zero and its likelihood approaches
1. On the other hand, for all the other models{
M lm

k ; 1 ≤ l ≤ Cvk
, 1 ≤ m ≤ Cwk

,M lm
k 6= M∗k

}
, the

innovations νlm
k increase and approach infinity and their

likelihood approaches zero. Thus, using (19), we have

µ∗k → 1;µlm
k → 0. (46)

Hence, after merging13

x̂k|k →x̂∗k|k; x̂k|k → x̂∗k|k, (47)

Pk|k →P∗k|k;Pk|k → P ∗k|k. (48)

Moreover, using (37)–(38), we can see that A∗k approaches
Wij

k and B∗k approaches zero, whereas for the non-matching
models both A∗k and B∗k approach zero. Thus,

x̂∗k|k → x̂∗k|k;P ∗k|k → P∗k|k. (49)
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