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Current finite-element �FE� models of the eardrum are limited to low pressures because of the
assumption of linearity. Our objective is to investigate the effects of geometric nonlinearity in FE
models of the cat eardrum with an approximately immobile malleus for pressures up to ±2.2 kPa,
which are within the range of pressures used in clinical tympanometry. Displacements computed
with nonlinear models increased less than in proportion to applied pressure, similar to what is seen
in measured data. In both simulations and experiments, there is a shift inferiorly in the location of
maximum displacement in response to increasingly negative middle-ear pressures. Displacement
patterns computed for small pressures and for large positive pressures differed from measured
patterns in the position of the maximum pars-tensa displacement. Increasing the thickness of the
postero-superior pars tensa in the models shifted the location of the computed maximum toward the
measured location. The largest computed pars-tensa strains were mostly less than 2%, implying that
a linearized material model is a reasonable approximation. Geometric nonlinearity must be
considered when simulating eardrum response to high pressures because purely linear models
cannot take into account the effects of changing geometry. At higher pressures, material nonlinearity
may become more important. © 2006 Acoustical Society of America. �DOI: 10.1121/1.2188370�

PACS number�s�: 43.64.Ha �BLM� Pages: 2859–2868
I. INTRODUCTION

Existing finite-element �FE� models of the eardrum �e.g.,
Funnell and Decraemer, 1996; Beer et al., 1999; Bornitz et
al., 1999; Eiber 1999; Ferris and Prendergast, 2000; Koike et
al., 2002; Gan et al., 2004� are limited to low pressure levels
because of the simplifying modeling assumption that the re-
lationship between applied pressure and the resulting dis-
placements is linear �i.e., that an increase in pressure results
in a proportional increase in displacement�. However, mod-
eling the response to high pressures would be useful in un-
derstanding the mechanics of impedance tympanometry in
which the static pressures that are used are so high that the
responses become nonlinear.

As one step toward our goal of developing and evaluat-
ing an FE model of the eardrum that is valid for high pres-
sures, we measured the shape and displacement patterns of
the cat eardrum in response to static pressures �Ladak et al.,
2004� by using phase-shift shadow-moiré topography, a non-
contacting optical technique that was originally adapted for
measurements on the eardrum by Dirckx et al. �1988�. Our
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experiments involved cyclically pressurizing the middle ear
up to ±2.2 kPa after immobilizing the malleus. The
immobile-malleus condition allows us to investigate the be-
havior of the eardrum in isolation from any possible nonlin-
earities of the cochlea and middle-ear structures. The
immobile-malleus data indicate that the eardrum response
itself is nonlinear at the pressures used in the study. In other
words, eardrum displacements do not increase in proportion
to the applied pressure; specifically, the displacements grow
less than in proportion to applied pressure, like that of a
stiffening structure.

In order to model the measured data, nonlinearities must
be added to current models. Two basic types of nonlinearities
must be considered in modeling the eardrum or any other
structure: material nonlinearity and geometric nonlinearity.
Material nonlinearity manifests itself as a nonlinear relation-
ship between stress and strain. Experimental measurements
on the pars tensa indicate that the relationship between stress
and strain is indeed nonlinear, with the material becoming
stiffer as it undergoes large stretches �Decraemer et al.,
1980�. For small changes in strain from an equilibrium state,

however, materials can often be approximated as linear.
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Geometric nonlinearity is related to changes in the shape
of the structure while the structure is being loaded. Large
displacements can significantly alter the shape and therefore
the stiffness of a structure as well as the line of action of
applied loads. For small displacements, geometric nonlinear-
ity can be neglected. However, for thin-shell structures such
as the eardrum, geometric nonlinearity starts to become im-
portant when the displacements are as large as the thickness
of the structure �Timoshenko and Woinowsky-Krieger, 1959;
Fung, 1965�. At the highest pressures in our experimental
study �±2.2 kPa�, eardrum displacements measured with an
immobile malleus are many times larger than the thickness
of the pars tensa �Ladak et al., 2004�, implying that geomet-
ric nonlinearity must be included in eardrum models when
simulating the response to such high pressures.

For soft tissues, both geometric and material nonlineari-
ties often occur together. We hypothesize that for our experi-
ments on the eardrum with an immobile malleus and for
pressures up to ±2.2 kPa, geometric nonlinearity must be
taken into account because the displacements are larger than
the thickness of the pars tensa. However, the relative impor-
tance of material nonlinearity is not clear. Although the mea-
sured displacements are large relative to the thickness of the
pars tensa, they are small relative to the overall dimensions
of the eardrum, and the resulting strains may also be small. If
the strains are indeed small, then linearizing the relationship
between stress and strain under these specific experimental
conditions may be a reasonable approximation.

The objective of this work is to investigate the effects of
geometric nonlinearity alone on the behavior of the eardrum
with an immobile malleus measured for pressure levels up to
±2.2 kPa, by incorporating such nonlinearity into our FE
models of the cat eardrum and by comparing computed dis-
placements with measured ones. To investigate the eardrum
in isolation from the loading effects of the middle-ear struc-
tures and cochlea, we confined our simulations to the case of
an immobile malleus as in the experimental study.

II. FINITE-ELEMENT MODELS

A. Mesh geometry

The response of the eardrum depends significantly on its
shape �Funnell and Laszlo, 1978; Funnell and Decraemer,
1996�, which can vary from subject to subject; hence, indi-
vidualized FE meshes were constructed from resting-shape
data measured in our previous experimental study �Ladak et
al., 2004�; the resting shape is taken to be the shape mea-
sured at the beginning of an experiment, with no pressure
applied to the eardrum. Meshes were defined for three cats
from the previous study �MY1216L, MY1630L, and
MY0923R� in which experiments were done with an immo-
bile malleus. A sample image of the resting shape for cat
MY1612L is shown in Fig. 1. The grey levels in the image
vary from black �points furthest from reader� to white �points
closest to reader�. A vertical profile through the pars tensa
just inferior to the manubrium is shown to the left of the
image, and a horizontal profile through the posterior pars
tensa is shown below the image. The locations of the profiles

in relation to the original image are shown by the dashed
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lines. The figure also shows a lateral view of the correspond-
ing eardrum mesh along with vertical and horizontal profiles
through the mesh corresponding to the profiles shown
through the moiré shape image. The procedure for construct-
ing an FE mesh from a moiré shape image has previously
been described in detail �Funnell and Decraemer, 1996�. The
mesh shown has a nominal resolution of 25 elements/
diameter �Funnell, 1983�. Each element of the mesh repre-
sents an S3R general-purpose shell element of the ABAQUS

commercial FE software package �Hibbit, Karlsson, and So-
rensen Inc., Pawtucket, RI�. This element is accurate for both
thin and thick shells. No elements are generated for the
manubrium, as it is assumed to be completely immobile
along its entire length in order to model our previously re-
ported immobile-malleus data. In some areas, the mesh only
appears to overlap the bony part of the ear canal; however,
here the eardrum is actually concealed by overhanging bone.
In such cases, the location of the periphery of the eardrum
was estimated by extrapolation as described by Funnell and
Decraemer �1996�.

B. Mechanical properties

As in previous simulations �e.g., Funnell and Decrae-
mer, 1996�, both the pars tensa and the pars flaccida are
assumed to be elastic, that is, the eardrum is assumed to
return to its resting shape upon the removal of applied pres-
sure. Because the purpose of this study was to investigate the

FIG. 1. Grey-level image of the resting shape of the eardrum of cat
MY1216L with corresponding FE mesh superimposed. The thick white line
encloses the visible portion of the eardrum. The grey levels in the image
vary from black �point furthest away from reader� to white �point closest to
reader�, whereas the mesh is shown in a uniform light grey. The regions of
the mesh corresponding to the pars tensa �PT�, pars flaccida �PF�, and manu-
brium �M� are labeled. The anterior �Ant�, posterior �Post�, inferior �Inf�,
and superior �Sup� directions are approximate because the cat eardrum is
actually tilted, and therefore the pars flaccida is both posterior and superior
�dorsal� and the manubrium runs in the antero-inferior to postero-superior
direction. The bottom panel shows horizontal profiles through the image
�black profile� and through the mesh �grey�, taken just posterior to the manu-
brium as indicated by the horizontal dashed line in the image. The left panel
shows vertical profiles through the image �black profile� and through the
mesh �grey�, taken through the pars tensa just inferior to the manubrium as
indicated by the vertical dashed line in the image. Mesh profiles are offset so
as not to overlap with image profiles.
effects of geometric nonlinearity, the material of the eardrum
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was assumed here to be linear, as in our previous simula-
tions. That is, the relationship between stress and strain is
assumed to be linear. Furthermore, again as in previous re-
ports, the pars tensa and the pars flaccida are assumed to be
isotropic and homogeneous. The pars tensa is characterized
by a single Young’s modulus or stiffness of 20 MPa, a thick-
ness of 40 �m and a Poisson’s ratio of 0.3; the pars flaccida
is assumed to have a Young’s modulus of 1 MPa, a thickness
of 80 �m and a Poisson’s ratio of 0.3 �Funnell and Decrae-
mer, 1996�.

The periphery of the eardrum is assumed to be fully
clamped to the ear canal, so that nodes on the boundary of
the model do not undergo translation or rotation. The bound-
ary of the manubrium is also assumed to be fully clamped in
order to simulate an immobile manubrium.

C. Solution procedure

For each model, static-displacement patterns were com-
puted in response to uniform static middle-ear pressures
from 0 to +2.2 kPa in steps of 0.1 kPa and from 0 to
−2.2 kPa in steps of −0.1 kPa. The static pressure is applied
to the medial �middle-ear� surface of the tympanic mem-
brane, such that positive pressures cause laterally directed
motions �into the external ear�, while negative pressures pro-
duced medially directed motions �into the middle ear�.

The FE method results in a system of equations of the
form

Ku = f , �1�

where K is a global stiffness matrix that is assembled from
the known geometry and material properties of each element,
f is a vector of applied nodal forces that is assembled from
the known applied pressure and geometry, and u is an un-
known vector of nodal displacements and rotations that
needs to be computed. In linear problems, both K and f are
constants and approximated as being independent of u; thus,
u can easily be computed as u=K−1f.

In geometrically nonlinear problems, however, the dis-
placements and rotations are large, and the dependence of K
and f on u cannot be ignored: Changes in the shape of the
structure as it is being loaded can significantly alter K and f.
Because K and f depend on u, simple matrix inversion can-
not be used to compute the unknown vector u. Instead, in
ABAQUS, an incremental-iterative solution procedure is used
to compute u at each pressure step. The nonlinear solution
procedure used in this work is well described in the literature
�e.g., Bathe, 1982�. Basically, each pressure step of size
±0.1 kPa is automatically broken into smaller increments,
the sum of which equals the applied step size. Applying the
total pressure step in small increments allows displacements
to be accurately computed as the pressure is increased to its
final level. At the beginning of each increment, an initial
stiffness matrix K0 is computed from the current geometry of
the mesh and its mechanical properties. Based on this stiff-
ness, a linear solution is computed and the geometry of the
mesh is updated. Generally, force equilibrium will not be
satisfied within the deformed mesh, and the residual vector

−1
defined by r= f−K u will be nonzero. ABAQUS uses New-
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ton’s method to find a deformed configuration that satisfies
force equilibrium and results in an approximately zero re-
sidual vector. Note that we calculate the solution in steps of
0.1 kPa instead of the larger step sizes used in the experi-
ments �see Sec. III A�. The smaller step size used with the
numerical solution procedure ensures convergence to an
equilibrium solution at each step.

III. RESULTS

A. Full-field displacement and strain patterns

Displacement patterns computed at a pressure of
+2.2 kPa from FE models for cats MY1216L, MY1630L,
and MY0923R, are shown by iso-amplitude contours in the
left-hand column of Fig. 2. In all plots, we present the com-
ponent of displacement perpendicular to the plane of the
tympanic ring. The difference in amplitude between adjacent
contours is 25 �m. As a guide, some of the contours are
labeled. Simulated eardrum displacements are maximal in
the postero-superior portion of the pars tensa, close to the
pars flaccida. Patterns for smaller positive pressures are simi-
lar to that for a pressure of +2.2 kPa. �The exact variations in
displacement as a function of pressure are described in Sec.
III B.�

For comparison, the right-hand column of Fig. 2 shows
our previously published displacement patterns measured
with the moiré method �Ladak et al., 2004�. In those experi-
ments, three cycles of pressure were applied to the middle-
ear cavity. Each cycle started from rest �i.e., zero pressure in
the cavities� and involved loading the eardrum by applying
positive middle-ear pressures in the order 0.1, 0.2, 0.4, 0.7,
1.1, 1.6, and 2.2 kPa, then unloading back to 0 Pa in the
reverse order. The eardrum was then loaded by applying
negative pressures to the cavities in the same order and un-
loaded in the reverse order. A moiré measurement is made
5 s after the pressure is adjusted to the new level, and re-
quires approximately 45 s. The figure shows the displace-
ments measured at a pressure of +2.2 kPa during the first
cycle; patterns for other positive pressures, including other
cycles, are qualitatively similar but with differences in size
as described in Sec. III B. Some of the iso-amplitude dis-
placement contours appear to end abruptly because the pe-
riphery of the eardrum is obscured by overhanging tissue.
The measured patterns are not smooth because they contain
small systematic errors associated with the moiré apparatus
�Ladak et al., 2000�. Nevertheless, a notable difference be-
tween the two sets of patterns �simulated and measured� is
that the maximal pars-tensa displacement in the simulated
patterns is located more superiorly than that in the measured
data. The sizes of the simulated and experimental maximal
pars-tensa displacements also differ. In cat MY1216L, the
maximum value based on the simulation is twice as large as
the measured value, and for cat MY1630L, the simulation-
based value is 1.5 times as large as the measured value. For
cat MY0923R, the simulation result is smaller than the mea-
sured value. The measured displacement pattern for cat
MY0923R exhibits local maxima in both the anterior and the

posterior pars tensa.
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FIG. 2. Simulated and measured iso-amplitude dis-
placement contours for a pressure of +2.2 kPa with an
immobile malleus. Computed patterns are shown on the
left, and corresponding measured data from Ladak et al.
�2004� are shown on the right. The measured data are
for the first cycle of pressurization. Displacements are
in microns and adjacent contours are 25 �m apart. In
cat MY0923R, measurements were made on the right
ear instead of on the left ear as in the other two cats. In
order to facilitate comparison of MY0923R with the
other cats, the image of the eardrum was mirrored to
look like the others. The triangles indicate points for
which results are plotted in Fig. 5.
FIG. 3. Simulated and measured iso-amplitude dis-
placement contours for a pressure of −2.2 kPa with an
immobile malleus, displayed as in Fig. 2. The negative
signs indicate that the displacements are directed medi-
ally.
2862 J. Acoust. Soc. Am., Vol. 119, No. 5, May 2006 Ladak et al.: Geometrically nonlinear model of the cat eardrum



Figure 3 shows displacement patterns, both simulated
and measured, for a pressure of −2.2 kPa. For large negative
pressures, the point of maximum pars-tensa displacement in
the simulated patterns is shifted inferiorly compared with
that for positive pressures. A shift in the inferior direction
can also be seen in the experimental data shown in the right-
hand column of the same figure; however, the degree of shift
is larger in the simulations than in the measured data. In both
the simulations and the experiments, the shift in the location
of maximum displacement occurs gradually with pressure.

FIG. 4. Simulated iso-amplitude displacement contours for cat MY1216L
for pressures of +1.1, +0.1,−0.1, and −1.1 kPa. Displacements are in mi-
crons. For pressures of +1.1 and −1.1 kPa, adjacent contours are 25 �m
apart, whereas for pressures of +0.1 and −0.1 kPa, adjacent contours are
2.5 �m apart. The square indicates the location of maximal pars-tensa dis-
placement.
This is illustrated in Fig. 4 which shows computed displace-
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ment patterns for +1.1, +0.1, −0.1, and −1.1 kPa for cat
MY1216L; the patterns for pressures of +2.2 and −2.2 kPa
are shown in Figs. 2 and 3, respectively. For negative pres-
sures close to zero �e.g., −0.1 to −0.2 kPa�, patterns are simi-
lar to those for positive pressures, with the location of maxi-
mum displacement occurring in the postero-superior region
of the pars tensa. As the eardrum is further loaded toward
−2.2 kPa, the location of the maximum moves inferiorly.
Trends in the experimental data are consistent with the com-
puted displacement patterns, but artifacts in the measure-
ments make it difficult to discern the shift.

For negative pressures, there are also differences in
maximal pars-tensa displacement magnitudes between the
simulations and the experimental data. Specifically, for
−2.2 kPa, the displacement magnitude in the simulation for
cat MY1216L is twice as large as the measured value. For cat
MY1630L the simulation result is half the size of the mea-
sured value, and for cat MY0923R the simulation gives a
result that is about one third the size of the measured value.

The FE models presented here are not truly subject spe-
cific because only the shapes of the models are individual-
ized to match each cat’s eardrum; the thickness and Young’s
modulus are not subject specific because these data were not
available. Nevertheless, subject-specific comparisons be-
tween simulations and measured data are made because in-
dividual eardrum shape significantly affects displacement
patterns.

Figure 5 shows the calculated maximum principal nomi-
nal strains at the two highest pressures used in this study. The
nominal strain is defined as

�N = V − I , �2�

where I is the identity matrix, V=�FFT and F=�x /�X is the
deformation gradient tensor which is computed from
knowledge of the initial location of a material particle at
some three-dimensional position in space specified by the
vector X and its new position x after deformation. The
nominal strain is computed with respect to the initial un-
pressurized state. Maximum principal strains represent the
largest possible strains in the tissue. The largest strains in the
pars tensa are generally less than 2%. In cats MY1216L and
MY1630L, however, strains of 3 to 5% occur in a very small
strip along the periphery of the postero-superior pars tensa.
Strains in the pars flaccida are generally less than 5% with a
few localized areas of higher strain. Although the calculated
strains are small, displacements are large because the ear-
drum has a relatively large diameter and is very thin.

B. Pressure-displacement curves

Figure 6 shows pressure-displacement curves for the lo-
cations indicated by triangles in the left-hand column of Fig.
2. Simulated pressure-displacement curves are shown in
black, whereas all cycles of measured data are shown in grey.
The measured curves are for the same locations indicated by
the triangles in Fig. 2. The measured curves vary from one
cycle of pressurization to the next and exhibit hysteresis. All
three measured cycles are presented for cats MY1216L and

MY1630L; however, only the second and third cycles are
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presented for cat MY0923R. As previously noted �Ladak et
al., 2004�, for cat MY0923R, the first cycle is considerably
different from the second and third cycles. After the first
cycle �not shown�, the response appears to stabilize. Hyster-
esis is pronounced in this cat as indicated by the large non-
zero displacement from the resting shape when the pressure
is increased from 0 to +2.2 kPa and brought back to 0 kPa.
There is only one simulated curve in the figure because the
material is assumed to be elastic, with no hysteresis. For
positive pressures, the simulated pressure-displacement
curves agree reasonably well with the measured data. For
negative pressures, displacements calculated from the non-
linear model for cat MY1216L are larger in magnitude than
measured values. In cats MY1630L and MY0923R, there is
substantial variation in measured displacements from one
cycle to the next, especially for negative pressures. The
variation for negative pressures may be due to mechanical
instability �Ladak et al., 2004�. In any case, for both cats,
simulated displacements fall within the range of measured
displacements.

Both simulated and measured displacements grow less
than in proportion to the applied pressure. For example, at a
pressure of +1.1 kPa, the displacement calculated from the
model for cat MY1216L is 73 �m; when the pressure is
doubled to +2.2 kPa, however, the displacement does not
double but increases by a factor of only 1.6, to 120 �m.
Similarly, the measured displacement increases by a factor of
1.6, from 84 to 136 �m.

Displacements were also computed from purely linear

models. The pressure-displacement curves in these cases are
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straight lines passing through the origin. Displacements cal-
culated from linear and geometrically nonlinear models
agree well with each other for low pressure levels. For in-
stance, at a pressure of 0.1 kPa the displacements calculated
from linear models are only 5 to 7% larger than those calcu-
lated from geometrically nonlinear models. For very high
pressures, however, the linear models predict much larger
displacement magnitudes than do the geometrically nonlin-
ear models. For instance, when a linear model is used, the
displacement magnitude computed for the point indicated by
the triangle in Fig. 2 for cat MY1216L is twice as large as
the value computed when a geometrically nonlinear model is
used.

For all cats, the discrepancy between simulated �linear
or nonlinear� and measured pressure-displacement curves is
greatest for points in the superior portion of the posterior
pars tensa. Simulation results here are larger in magnitude
than measured values, which is consistent with the observa-
tion that for positive pressures the point of maximum pars-
tensa displacement is located more superiorly in the simula-
tions.

C. Effect of nonuniformity

The location of the displacement maximum can be
shifted inferiorly in the simulations, to better match the mea-
sured patterns, by including nonuniformity in the models.
Since the mechanical behavior of the eardrum is sensitive to
both its thickness and its Young’s modulus �Funnell and Las-

FIG. 5. Calculated maximum principal nominal strains
for pressures of ±2.2 kPa with an immobile malleus.
zlo, 1978�, stiffening the superior region of the posterior pars
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tensa by increasing either the Young’s modulus or the thick-
ness can potentially shift the location of the maximum infe-
riorly. To demonstrate this, in the model for cat MY1216L,
we arbitrarily increased the thickness of the superior third of

FIG. 6. Computed �black� and measured �grey� pressure-displacement
curves for cats MY1216L, MY1630L, and MY0923R after mallear fixation,
for locations indicated by triangles in the left-hand column of Fig. 2. The
three cycles of measured data are from Ladak et al. �2004�. The arrows on
the measured curves indicate the temporal order of the measurements. Lat-
eral displacements are positive, whereas medial displacements are negative.
the posterior pars tensa from 40 to 80 �m. Figure 7 shows
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displacement patterns computed for pressures of +2.2 and
−2.2 kPa. Increasing the thickness in this region has the ef-
fect of shifting the pars-tensa maximum inferiorly for posi-
tive pressures by decreasing the size of displacements in the
postero-superior pars tensa; however, displacements in the
inferior region are not significantly altered. Although dis-
placements in the postero-superior region are smaller after
the increase in thickness, they remain larger than measured
values; no attempt was made to exactly match the simulated
and measured displacements by adjusting the thickness of
the pars tensa. The location of the maximum for negative
pressures does not shift as much and remains in the inferior
portion of the pars tensa.

IV. CONCLUSIONS AND DISCUSSION

When geometric nonlinearity is incorporated into FE
models, the calculated displacements increase less than in
proportion to the applied pressure for high pressures, i.e.,
those greater than about ±0.1 kPa. Such a lack of proportion-
ality was also observed in the experimental data. By contrast,
in linear simulations, computed displacements increase in
proportion to the applied pressure because the effects of
changing geometry on the stiffness matrix and on the direc-
tion of applied pressure are ignored.

For small pressures �both positive and negative� and for
large positive pressures, the position of the maximum pars-
tensa displacement is located more superiorly for the simu-
lation results than it is for the experimental results if uniform
mechanical properties are assumed for the model pars tensa.
This difference between experiment and theory is also
present in linear models �Funnell and Decraemer, 1996� and

FIG. 7. Computed iso-amplitude displacement patterns for cat MY1216L
for pressures of +2.2 and −2.2 kPa after increasing the thickness of the
superior third of the posterior pars tensa from 40 to 80 �m. Adjacent iso-
displacement contour lines �black� are 25 �m apart and are superimposed
on the FE mesh �grey�.
is not specific to the present addition of geometric nonlinear-
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ity. By including nonuniformity in the models �e.g., by in-
creasing the thickness of the superior portion of the posterior
pars tensa�, it is possible to shift the location of the maxi-
mum in the simulations toward the experimentally observed
location. Such a thickness increase is consistent with recent
experimental point-by-point thickness measurements
�Kuypers et al., 2005�. Differences between simulated and
measured displacement patterns and magnitudes can also be
reduced by varying the Young’s modulus of the pars tensa
across its surface. The value used here for the pars-tensa
thickness, adopted from our previous models and originally
based on a value reported by Lim �1968�, is considerably
larger than the values found by Kuypers et al. �2005�. Any
adjustment downward of this model parameter could be
counterbalanced by an increase in the value of the Young’s
modulus, as done by Fay et al. �2005�. The Young’s modulus
used here, also adopted from our previous models, was origi-
nally based on a value reported by Békésy �1949� for a
human-cadaver eardrum. The current work underscores the
need for detailed quantitative measurement of eardrum prop-
erties across its surface.

The similarity in displacement patterns and magnitudes
computed from the nonlinear models for small negative and
positive pressures is expected since for small pressures, be-
tween 0 and ±0.1 kPa, the behavior of the nonlinear models
is approximately linear, and a linearized model would predict
the same displacements �apart from sign� for both positive
and negative pressures. At higher negative pressures, the in-
clusion of geometric nonlinearity in the models accounts for
the change in location of the maximum displacement. The
same trends are observed in the measurements, where pat-
terns for small negative pressures are found to be similar to
patterns for small positive pressures, but the maximum is
found to shift inferiorly for higher negative pressures.

As already noted, eardrum displacement magnitudes are
significantly affected by the thickness, Young’s modulus, and
shape of the eardrum �Funnell and Laszlo, 1978�, all of
which can vary from one subject to the next. Furthermore, as
discussed above, displacement patterns are affected by varia-

tions in the thickness and Young’s modulus across the sur-
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face of an individual eardrum. Although we have taken into
account individual eardrum shape in our FE models, we have
not taken into account inter- and intra-individual differences
in eardrum thickness and Young’s modulus because of the
unavailability of such data. The discrepancies between cor-
responding simulated and measured displacement patterns
seen in Figs. 2 and 3 presumably arise in part because inter-
and intra-individual variations in thickness and Young’s
modulus were not taken into account. As discussed below,
the degree of malleus fixation may also affect eardrum dis-
placement magnitudes, but to a smaller degree.

Inspecting the left-hand column of Figs. 2 and 3 shows
that simulated displacement patterns vary between cats. In
constructing the models, only the shapes of the models were
individualized to the particular cat; the thickness and
Young’s modulus were assumed to be the same. Hence, any
variations in simulated displacement patterns between indi-
vidual models arise only from variations in the shapes. Fig-
ure 8 shows iso-depth contours for the measured resting
shapes of the three cats; the difference in depth between
adjacent contours is 0.1 mm. The depth of the eardrum is
approximately 1.5 mm for the three cats used in the present
study. However, there are subtle local variations in curvature
between the eardrums as indicated by local variations in
spacing between adjacent iso-depth contours. Simulated dis-
placement magnitudes have previously been shown to be
sensitive to both global �Funnell and Laszlo, 1978� and local
�Funnell and Decraemer, 1996� variations in curvature. There
is a noticeable difference in the lengths of the major and
minor axes of the tympanic ring. The sensitivity study of
Funnell et al. �1993� indicates that expansion or contraction
of the tympanic ring does affect displacement magnitude.

In our models, the eardrum was assumed to be isotropic.
This simplification is consistent with our previous models of
the cat eardrum �e.g., Funnell and Laszlo, 1978; Funnell and
Decraemer, 1996�. Funnell and Laszlo �1978� found that the
inclusion of anisotropy did not change the basic shape of the

FIG. 8. Iso-depth shape contours. Adjacent contours are
0.1 mm apart. Ticks along the horizontal and vertical
axes are 1 mm apart. For each cat, the thick black line
encloses the visible portion of the eardrum. For cats
MY1216L and MY1630L, measurements were made on
the left eardrum, whereas the right eardrum was used
for cat MY0923R. To facilitate comparison of cat
MY0923R with the other cats, the image of the eardrum
was mirrored to look like the others.
displacement patterns as compared to an isotropic model,
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although the maximal pars-tensa displacement did increase.
The actual nature and degree of anisotropy in the eardrum
are not known.

The present study is limited to the case of an immobile-
malleus condition. However, measurements indicate that the
lack of proportionality between pressure and eardrum dis-
placements is more pronounced with a normal mobile
malleus �Ladak et al., 2004�. Under normal conditions, ear-
drum response would be affected by the mechanical load
exerted on it by the rest of the middle ear and cochlea. One
source of nonlinearity in middle-ear response may be due to
an asymmetry in ossicular displacements at high static pres-
sures caused by slippage in the joints between the malleus
and the incus �Cancura, 1980; Hüttenbrink, 1988� and be-
tween the incus and the stapes �Hüttenbrink, 1988�. Another
source of nonlinearity in middle-ear response is thought to be
due to the annular ligament connecting the stapes to the co-
chlea, which limits the displacement of the stapes �Price,
1974; Price and Kalb, 1986�. Indeed, Price and Kalb �1991�
feel that this is the main source of nonlinearity in middle-ear
response at high pressures.

In the simulations, the manubrium is assumed to be
completely immobile along its length. This only approxi-
mately simulates the experimental condition. In the experi-
ments, an attempt was made to immobilize the malleus by
gluing a point on the mallear head to the middle-ear wall.
Although this does substantially reduce manubrial displace-
ments relative to the case where the malleus is not fixed in
this manner, it does not ensure that all points on the manu-
brium will be immobile �Ladak et al., 2004�. Indeed, the
experimental data in Figs. 2 and 3 indicate that the manu-
brium deforms. Specifically, the ratio of umbo displacement
after mallear fixation to the displacement without fixation
was 21% for MY1216L, 30% for MY1630L, and 31% for
MY0923R at a pressure of +2.2 kPa during the first cycle
�Ladak et al., 2004�. The ratio of the displacement of the
superior end of the manubrium after fixation to the displace-
ment before fixation was 7% for cat MY1216L, 17% for cat
MY1630L, and 22% for cat MY0923R �Ladak et al., 2004�.
As the focus of this study was to investigate the effects of
geometric nonlinearity on eardrum displacements, we have
for simplicity assumed the manubrium to be immobile along
its entire length. Although it would be more realistic to ex-
plicitly model the malleus with only its head constrained,
any resulting small displacements of the manubrium would
probably have only a very small effect on the displacements
of the eardrum. For example, Funnell and Laszlo �1978�
showed that doubling the ossicular-hinge stiffness in their
middle-ear model decreased the maximal pars-tensa dis-
placement by only 11%, with little change in the form of the
displacement pattern. The effects in the present case would
presumably be even smaller.

Material nonlinearity has been ignored in this work in
order to investigate the effects of geometric nonlinearity
alone. Uniaxial tension tests by Decraemer et al. �1980� on
strips of pars tensa cut out from the eardrum suggest that the
relationship between stress and strain is nonlinear for small
strains and approximately linear for high strain levels. Data

in their paper are presented as graphs of stress versus speci-
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men length instead of stress versus strain since the resting
length of the specimen could not be accurately determined in
order to compute strain. It is difficult to determine the resting
length of eardrum strips as they tend to wrinkle when no
stress is applied. A priori it is not clear in which portion of
the stress-strain curve �linear or nonlinear� the eardrum is
functioning because quantitative experimental data on ear-
drum prestress are not available; existing data based on per-
foration tests are of a qualitative nature �Békésy, 1949; Kiri-
kae, 1960� and their validity is questionable �Funnell and
Laszlo, 1982�. In any case, for small variations in strain with
pressure, the stress-strain curve may be linearized. The larg-
est pars-tensa strains computed from each of the models are
generally less than 2%, which implies that a linearized ma-
terial model is a reasonable approximation for most of the
pars tensa for pressures up to ±2.2 kPa, at least under the
condition of an approximately immobile malleus. For the
pars flaccida, material nonlinearity may be more important
since the strain variations are larger.

As our focus is to investigate the effects of including
geometric nonlinearity, we have not modeled the hysteresis
observed experimentally in the pressure-displacement curves
during cyclical loading, which would require the inclusion of
viscoelastic effects. This should then permit the quantitative
modeling of eardrum behavior during impedance tympanom-
etry, including the fact that differences in measurement pro-
tocols cause pronounced differences in tympanometric re-
sults �Osguthorpe and Lam, 1981�.
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