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ABSTRACT

Based on the creeping motlon and lubrication equations, a theory
for the behaviour of a straight chain consisting of a number of rigid
spheres in shear flow was developed. When the spheres are in contact with
one another, the chain should behave like a singie rigid rod; quantitative
confirmation was provided at low velocity gradients by experiments with
chains of spheres formed in an electric field. At high gradients the
chains broke. The periodic stretching of chains with non-zero gap width
was in qualitative agreement with the theory.

Chains of spheres held together by liquid menisci behaved like
flexible threads and formed disordered aggregates at high velocity gradients.
Aggregates of discs (rouleaux) behaved like deformable rods and were easily
broken as the discs sglid apart. Fore-aft symmetrical chains of non-uniform
spheres and symmetrical but non-linear aggregates of spheres and aggregates
of rods were also studied.
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FOREHORD

This thesis describes one of a continuing series of investigations
conducted in this laboratory on the behaviour of wvarlous suspensions to
provide basic knowledge on the rheology and stability of a variety of
important suspenslons such as fibres in water (used in papermaking) and _
blood. The present work extends the studies from single particles and their
interactions to ordered aggregates of rigld particles possessing various
degrees of flexibillity in shear flow.

The arrangemem; of the thesis requires some explanation. The
oi'iginal subject of the thesls research was coalescence and gggreg&tion in
two-dimensional dispersions of fluid drops (Appendices III and IV). Unfor-
tunatély, this work did not turn out to be as successful as was expected.

An interesting experimental technique 'v‘was developed; nevertheless, and some
useful experimental and theoretical work was done; although not considered
to be publishable as it now stands it has been written up for record pux;poaes
and is presented in Appendices III and IV. The related study (The Measure-
ment of Interfacial Tension from the Shape of a Rotating Drop) is given as
Appendix V in which form it is being published in the Journal of Golloid

and Im:,erfaciél Sclence.

The main body of the thesis (Parts I to IV) is concerned mainly
with chains of particles in shear flow. Parts II and III have been written
in a form suitable for publication in a scientific Jouimé.l with little oi- .
no further modification. Thus, each of this two parts is complete with its
own abstract, introduction, discussion and references. Certain additional
details which will not be published are given in Appendices I and II.
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PART I

GENERAT, INTRODUCTION

Physical properties of suspensions such as their rheology and
stability depend on the behaviour of single'pa.rt.icles and their inter-
aétions with one another. In very dilute suspensions of neutrally buoyant
particles; the particles are far apart and there is little particle
:!..nt.era.c'c.:l.on° With inc;-eas:l.ng particle concentration, however, the suspensions
are influenced both by interactions and by aggregate formation. The main
body of this thesis describes theoretical and experimental investigations
of ordered aggregates of rigid particles in simple shear Couette flow.

Earlier studies in this laboratory have dealt with the transla-
tional and rotary motlons and orientations of rigid spheresl) s rod 2’? ) ’
and di.scs‘*) in Couette flow. Numerous experiments have confirmed Jeffery's
theory5 ) for rigid ellipsoids, provided that the true particle axis ratio
rp is replaced by an experimentally determined equivalent ellipsoidal axis
ratio r,. Inberactions of rigid spheres®) and rods®) and the behaviour of
flexible fibreaé"B) and deformable dropsg-u) in Couette flow have also
besn studied; thess works have recently been reviewed in detail by
Goldsmith and Ma.sonlz) » The present investigation deals primarily with
chains of particles such_ as spheres and discs suspended in a liquid having
zero stiffness and iero tensile strength. These" chains were provided with
a finite tensile strength by bridging the gaps between the spheres with
nenisel of a second immiscible liquid. The aggregates thus formed ére of

interest in connection with various aspects of the flow of suspensions,

non-separating doublets of spheres!3 ) s the bending of i’ibrese) and breaking

of macromoleculesn’u’) in shear flow and other rheological properties of

such systems.



A theoretical treatment of the behaviour of chains of spheres
in shear Coustte flow is presented in Part II. The theory is based on the
Navier-Stokes equation in the creeping flow regime s where inertial effects
are negligible and the fluid is_ incompressible

vp = 354,
VeU=0;

p is the pressure in the fluid, g o the fluid viscosity and [ the fluid
velocity. In this regime of flow the equations are also represented by
the hydrodynamic lubrication eqnationsl5 "17).

If the spheres are in contact with one another; the theory
predicts that the chain should rotate as a rigid body, without relative
rotation of the spheres and without bending, in a spherical elliptical
orbit similar to that predicted by J e.t‘fery5 ) for a rigid prolate spheroid.
When there are small gaps between the spheres, the chain length should vary
periodically between a minimum when the chain is oriented at right angle
to the direction of shear flow and a maximum when parallel to it while chain
bending should be progressive in general. When a second immiscible liquid
is introduced to bridge the gaps, both chain stretching and bending increase
with decr/easing viscosity of the fluid introduced at any given gap width.

No attempi was made, however_., to take into aczount the effect of interfacial
tension.

Part III provides an experimental test of the theory of rotation
of linear chain of spheres developed in Part II and; in addition, includes .
studies of more complicated aggregates. Except for the breakage at high
veloclity gradients, c:ilé.ins of spheres rotated like rigid rods and in accord
with the theory developed in Part II. In addition, there was qualitative

agreement between the theory and experiment for chain stretching.



Chains of spheres held together by interfacial tension behaved
like flexible threads or fibres in Couette flow; the flexibility increased
with increasing velocity gradient and the number of spheres in the chain.
However; the experiments were limited to low velocity gradients since
three-dimensional aggregates formed at high gradients.

Aggregates of discs rotated like deformable cylinders. They were
distorted from linearity in shear flow and f£inally broken as the dises slid
apart. Aggregates of rods and non-linear but symmetrical aggregates of
spheres were also studied.

General discussion, suggestions for further research and claims
to original research form the last section (Part IV) of the main body of
the thesis. \
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PART II
CHAINS OF PARTICIES IN SHEAR FLOW I:

RIGID SPHERES ( THEORETTCAL )

ABSTRACT

Iff has been shown on the basis of the creeping motion
equations }a.nd lubrication theory that a straight chain consisting
of a mmber of rigid spheres in contact with one another should
behave in plane Couette flow like a single rigid body and that a
chain of spheres with non-zero gap width should stretch periodically
and in general bend progressively. Such a chain provides an inter-
esting physical model of threads, rouleaux o:? red blood cells and
other linear flexible structures.



1. INTRODUCTION

When an electric field is applied to a suspension of spheres in
a dielectric liquid, the spheres become arranged in linear chains aligned
in the direction of the fieldl’z) o It occurred to us that a stnd& of
ordered aggregates of particles, prepared in this and other ways which we
subsequently devised, would throw some light on several related problems
in suspensiocn rhéology such as the behaviour in shear flow of non-separating
doublets of spheres>?*), of roulesux of red-blood cells®) and flexible
threads®®), Preliminary experiments showed surprisingly that linesr chains
of spheres rotated in shear flow like single rigid bodies even though sach
aggregates as a whole have neither tensile strength nor stiffness.

On the basis of the creeping motion equations and lubrication

-theory we have been able to demonstrate theofeticaliy that a straight chain

consisting of a number of spheres in contact with one another should rotate
as a rigid body, without relative rotation of the spheres and without
bending, in a spherical elliptical orbit similar to that predicted by .
Jeffery’) for a rigid prolate spheroid. For chains of spheres with non-zero
gap width we have derived equations for chain stretching and bending; the
chain length should vary between a minimm when the chain is perpendicular
to the direction of shear flow and a maximum when parallel to it, while

the bending should generally be progressiver It should be pointed out that
although definite equations are obtained for such quantities, the equations
contain unknown constants so that some 6f the conclusions are qualitative,

Tests of the theory and experiments on more camplicated particle
chains are considered in the following Part'®),



2. THEORETICAL PART
(a) General

Cc;naider the motion of any aggregate of neutrally buoyant
particles in plane Couette flow whe_re‘ the creeping motlion equations are
valid. It then follows from the linearity of these equations that any
change in the value of the shear changes proportionstely the values of the
linear and angular velocities of the particles and that a reversal of the
shear reverses these motions. Tims, whether or not the aggregate breaks
up depends not on the shear but on the initial positions pr its member
particles. It can be shown by symmetry that in Couette flow & pair of
spheres either separate from each other or form a permanent doublet in
periodic motion. |

(b) Forces and Couples

Consider a rigid sphere B moving with a linear velocity
a= (ul, LY u3) at its centre and angular velocity @ = (wl, Wy m3) in
close proximity to a stationary sphere A (Figure 1la). Then according to
lubrication theor'y]l -13) » the force £ = (£, £, f3) and couple g= (85 855 83)
acting on sphere B about its centre due to the relative motion are given by

_ 2 .-l
‘fl = - % ¢} ob ulh
£, = mg ob('u2 - w3b)ln h (1)
£

3 = *uqc,b(u:5 + wzb)ln h
and
8 = h° as h—0

, = g b ('u3 -mb)lnh (2)

g3 = g b (- u, + -5- w3b)1n h,



_(a) (b)

X
'y
b
B
(i_t(i
A X3

Figure 1 Chain of 2 spheres (a) and n spheres (b).



where b 1s the radius of the two spheres, g o the viscosity of the
surrounding fluid, and h (<<b) is the gap width between the two spheres.
It follows fram (1) amd (2) that keeping f and g finite and letting
h—0, Oy U,y u, ©, and m3 all tend to zZero. Thus, for zero gap width
there can be no relative motion between the two spheres except possibly
a relative rotation of the spheres about a line joining their centres.

Hence for an initially straight chain of any number of spheres
(not necessarily all of the same size), if each sphere touches its neigh-
bouring spheres, then in shear or axw other flow where the fluid velocity
satisfies the creeping motion equatipns, the chain mmast remain straight
and cannot break up. The only possible _relative motion of the spheres is
a rotation about the chain axis.

- (c¢) Couette Flow

We now consider a straight chain of n spheres all with the same
radius b and take as origin of coé:rdina.tes its geometric centre (Figure 1b).
Such a chain is placed in a fluid undergoing plane Coustte flow for which
the undisturbed fluld velocity U = (Ul, Uss U3) taken relative to X, Xos XB
coordinate axes fixed in space is given by

Uy = A %5 (3)
with
1\3:.2 =T and otherwise qu= o, (4)

T being the veloclty gradient.
It has been shovm above that when h = O the only possible
relative motion of the spheres is a rotation about the chain axis. We

assume now that no such relative rotation exists. A coordinate gystem



i relatedby -

(x5 xz, x3) may now be chosen such that it is fixed in and moving with v
the cha.:ln of spheres, the xl-ax:!.a coinciding w:l.th the chain a:d.s (Fﬂsure lb).

‘The spheres in the cha.in are then la.bened l, 25 35 oo s.B in the negat:l.ve :
direc‘bion of the cha.'!.n aad.s, and the 1th gap deﬁ.ned to be the ga.p between

the ith and (1+1)th spheres. xS o . . SR
 The two coordinate systems (xl, xz, x3) and (xl, o x3) are

xi"‘“id‘.i’
‘1’“313’

m“ipdp pip:! =8y a"d

:“11 = com® ,

am=‘>-‘sin9cpat .l
ey = mm;

Ay = sinecos¢ ’

Goy = = ainﬁsin¢ + coaecosﬁcoaq s | - (6)

Gpg = = sin:écosq - cosBcosfsiny , |
@y = sindeind ,

Ggp = cosfsing + cosOsinfcosy ,
Ggg = cosﬁcosq - cosesinﬁsint

6, § and § being the three Euler angles (Figure 2).
The hydrodynamic force ,f‘ and couple é\, are defined to be the
force and couple acting upon the first to the ith spheres inclnsive as a

10



;gg ' The relative orientations of the fixed coordinate systan
_ )(1 » X,5 X3 of the Coustte flow field and the particle.
coordinate systema Xy, X, X3 and Xj, Xz, X3 so chosen '
that 'x; = x1 coincides with the axis of symmetry and Xz
axis lies in the X,x, plane., @ and 6 are the polar :

coordinates with respect to X, as the pola.r a:d.s, while  "

¢ is the angle between x, and X axes, .

11
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reanlt o:l.‘ the fluid mation uhere loca.l rorces a.nd cauples :i.n the neigh-
bourhood of the :I.th gap (:l.e. 9. thoae forces am ccmple- a.r.i.aing fran the
, relative mt.ion or the :L'hh and (:l.+1)th spheres) ha.ve been ond.ttad. | l'he -
| conple g s taken relat.’we to the po:lnt or “conbact" a.t the 11;1: gap.: 11-.

- may then be shmu’) rram the linea.rity of t.he creep:l.ng moti.on eqnations

: _that relative to the xl, xz, 13 axes, tha .forc.e fi m conple 8 are gimﬂ o
o 'rqbzlcm(ajl 21.)"'0122("'3223""‘33 23)] e

’lo" {" [%2‘“31 22) + c2:@.1.("‘33 21)] I'aa“’ | o

"oba ['"%23(“32 S5 = 933 22) + "31.1“‘1]
‘_ 8.%. = "o "[‘%31(“33 21) - D;'lz(“zl ar30] Lé?‘”z}
{'r[ 12(%510 22) - 1(“32"‘21)] + ”22"‘3} »

whsre @, sz, Wy are the components of the a.ngular velocity of the chain
along the x), x,, x; axes and where the tensors 61, o1, 1% ana ui 1)
depend on i and n only. '

Ir the inertia of the chain is neglected then the total force
and couple on the entire chainnmst van:l.ah'

A{n=§.\=.9v° | (9)

Substituting (8) into (9) gives the following expressions for the three
angular velocities: |



}qlml + 'YDn]_‘_.;,a(0;3‘,‘.;1.23 - a33aa.) =0
Mpgiy + T(Dgpn0ag0m = D3y is10p3) = O (20)

Moo + TDg) gy Gs = DpgyGy 8y) =

Eliminating g and w; from (7) and (8) by using (6) and (10) and mroduc:l.ng
anewcoord:l.natesystanx; X; x;auchthat '

£ex i
X3 = 008y ~ x;siny | @
Xg = xzsinq + x3cos¢

lead to the i'inal equations for the components of the hydrodynamic forece
F* and couple @ (abontthepomtofcontactattheithgap)alongx; g

gaxes

Fi = qo'tbzAi smzesin.@cosﬂi (12a)

Fj = 7, T°A% sinScosOsinfcosp (12b)

F = a,m° sind(a] st + &) cos®) (12¢)
and

Gi = q°1b3 Aj5' cosd (13a)

63 = 0T’ sind(Af sin’p + A:'; cosp) (13b)

G;' =gq o‘!bBAg sinScosSsingcosP , (13¢)

where the Aiﬂs depend on i and n cmlyu")o

13
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In plane Couette flow a chain at © = O rotates about the x, -axis
with angular velocity T/2; the couple Gi then being zero for all i since
the shear is equivalent to a rotation of 7/2 together with a flow which

\'.

cannot produce any couple on any sphere in the chain. Thus from (13a)

1_ |
A5 _ 0 (14)
and hence
Gi =0 for all © and 1. (15)

This shows that the aasm@ticﬁ ma&e earlier tl;xat, there is no relative
rotation of the spheres about the chain axis is indeed correct.
| It should be cbserved that while (10) was obtained for a chain
of equal sized spheres, the arguments could nevertheless be used to prove
(10) for gemeral axisymetric bodies with fore-aft symmstry. Similarly,
(12), (13), (14) and (15) can also be shown to apply to straight chains of
spheres of different sizes so long as the chain as a whole possesses fore—
aft symmetry.
(d) Rotation of Chain
Since the position of the chain with respect to the X.l, Xz, X3
axes is determined by the angles 6, § and 4, it is convenient to express
the chain's equation of motion in terms of these quantities alone. Thus,
upon differenfia‘bing (6) with respect to time t and expressing d(c,"ij)/dt in
terms of w; one may transform™) (10) into the form

v(02,, - D2
a8 _ M sinBcosOsinfcosd (16a)

dat an

%% = éz— (Dgalcoazﬁ + D;lzsinzﬁ) (16b)



p?
%{- = 'Tco.'.ael:-;";‘\lgéz - -;—(Dglzgj_nzgj + Dgalcoazﬁ)] . (16¢)

=

The spin of the chain about xl-axis is given by

-t
w = dy/dt + coso(df/dt) = -&%313- coso . an

It can be shown ﬁzrbheru") that the above equations of motion
may be pub'in the form

%% = mlsinecosesinﬁcosys , (18a)
B — (8,01 + By005%0) , (18b)
; |
W, =7 cosd , (18c)
where
n
U - Diip 1o T
TR T PTe @
If we let
By/B, = 2, (20)
then it can be shown*) that
2 2
re = 1 1 ry
= B, = B, = . (1)
Bl r2»+1’ 2 r§+l, 3 r§+1 .

(]

The equation of motion (18) for the chain then becomes identical to Jeffery's
equa.tionsg) for an ellipsoid of axis ratio Tge One therefore refers to this
quantity r o 28 the eguivalent ellipsoidal axls ratio of the chain of spheres.
Like (10), (12) also applies to general axlsymmetric bodies with fore-aft
symetry.

15
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(e) Chain Stretching and Bending

We now consider a straight chain of spheres in which the member
sphieres are separated by mall but finite gaps. We let h,(<<b) be the
gap width between the ith and (i+l)th spheres. If the inertia of the chain
is neglected, there can be no net force or couple acting on the chain or '
any part of it and therefore the hydrodynamic force F- and couple G acting
on any section of the chain from the first to the ith spheres mmst bbe
balanced by the force ,g\i and couple 21 (about the point of "centact" at the
ith gap) due to the relative motion between the ith and the (1+1)th spheres:

H+gl=0
and | (22)
g+d=o0.

The forces and couples along the Xl, Xz, 13 axes due to the
relative motion of the ith and the (1+1)th spheres are known from lubrication

theoryu ]‘3)

ot - - et - g =

Aol wh ke Yy o

53 = nagp (73 - 3) + w0z + G 1m 1y (23¢)
and

gy =0(n)° & B0 (2%2)

13 g - 7 (o

g3 = % m (5 - &’ by (24c)
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where Vi, V;, V;' and Qi‘, g;, ﬂ; are the respeétive XI', K;, Xg components
of the additional linear and angular velocities of the ith sphere (taken
at its centre) due to the relative motion of spheres in the chain.

The forces E\i and couples S{" acting on a chain with zero gap
width have already been given by (12) and (13), but they can also be used
as a good approximation for chains with amall gap width. Thus, by substituting
(12) (13) and (23) (24) into (22) one obtains sets of equations which determine
the state of the chain.

By balancing the forces Fi and % given by (12a) and (23a) res-
pectively, and noting that the gap width h, is related to the relative
velocity of the ith and (i+l)th spheres along the Xj-axis, i.e.,

-, )
one can showu") that
i
N . [, e
i 0 1lg2 1 (32+ 1) (B3c092¢ + stinzﬂ) ’

where (ho)i is h; at P =0 and C is a constant of integration identical to
the orbit constant in Jeffery!s theory” for rigid ellipsoidal particles.
It follows from (26) that the chain length for © = %/2 or C = = is glven by

i
n-1 B Al
2=20b+ ) (h) ( 2 318, 27)
;, o’d B3cosz,¢ + Basinzﬂ ¢
with 1
zm = 2nb + (ho):t. at § = mn (28)

i=



where V':'_, Vg, V;' and ni, ﬂé, (% are the respeétive X:|°_, x;, X; components
of the additional linear and angular velocities of the ith sphere (taken
at its centre) due to the relative motion of spheres in the chain.

The forces «?«1 and couples gf' acting on a chain with zero gap
‘width have already been given by (12) and (13), but they can also be used
as a good approximation for chains with small gap width. Thus, by substituting
(12) (13) and (23) (24) into (22) cne obtains sets of equations which determine
the state of the chain.

By balancing the forces Fi and ¥ given by (12a) and (23a) res-
pectively, and noting that the gap width hj_ is related to the relative

velocity of the ith and (i+l)th spheres along the X;-a.ld.s, l.e.,

whevi-we, (@)
one can show'® that
c%8 —A-i-
By = (o) [-G—zi-; BT (B3cisz¢ + stin2¢)] e

where (ho)i is by at P =0 and C is a constant of integration identical to
the orbit constant in Jeffery!s theoxw'?) for rigid ellipsoidal particles.
It follows from (26) that the chain length for © = n/2 or C = » 1s given by

i
n-1 B
3 3B
L= 2nb + (h) 1 (27)
;1 o’d B3c032¢ + stinzib

with

=1
2 in =2nb+;Zl(h°)i at P=mm (28)
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E
A

=1 :
3 .
£ =ab+ ;21 (B)y(r) " 1 st p=FEly ()

A simpler alternative model is to consider the chain to behave
as a rigid prolate spheroid and to calculate the axial force fi from
Jeffery!s equations, and from this to calculate in turn thé rate of approach
of the ith and (i+l)th spheres using the 1ubric_ation equation for this

338815 )

. However, although such a method gives a value for Ai, it possesses
& mumber of rather arbitrary assumptions.

From the balance of the Xg and Xg ’emnponents of forces given by
(12) and (23) and of couples given by (13) and (24), the equations for chain
bending may be deducedu’) o Thus it may be shown that in general there. exists

bending in both the xg and xg directions. For the particular case of

C=o or 8 = n/2
and | (30)
(n,) 4 ( - ) ¢
1n(h > | === 1 for s11 &
l o' d | 3By B3c052¢ + Bosin’p ?
it can be shownl® that
i
d(Axg) <
—%— =0 (1)

1 ﬁ%o_)i _ i ‘ Tysinzﬂ + Uycoszﬂ
b dt F1 1n(~h°) j,(stinzﬂi + B3cos‘2¢) ’

(32)

where (Axg)i and (Axg)i are the relative displacements of the ith sphere
with respect to the (i1+1)th sphere in the Xg and Xg directions respectively



and Tij and UiJ' are (m x m) ma.t.rices:u‘), .m. being n/2 for n even and
(n-1)/2 for n odd. Finally, it can be shown that (32) has the following

solution:

( O)i ‘ i
-ﬁg—- = Pi‘ban.l(reW) + Qi¢ P (33)

where P and Qi 14) depend on i, n and (ho)i only.
When there is a second fluid of viscosity 5 f£illing the gaps
between the spheres, (27) and (33) become

i

_l :lg- o -i—

By 3 318
£ = 2nb + ; (ho)i( 2 2 ) (310)
I= 33‘303 D + B,sin ? ‘

and
(50)1 qo Pi -1 l i

B =?1—[ tan " (r tand) + Q ¢] . | (35)

However, for such a case one would expect (34) and (35) to be modified as

a result of the forces between spheres arising from interfacial tension
effects. |

o DISCUSSION

It is shown above for a general aggregate of particles 1n Couette
flow that on the basis of the creeping motion equa.t:].ons_ (1) the motion is
reversible under a reversal of shear and (2) the e.xistence or non-existence
of aggregate break-up is independent of the shear.

The motion of a straight chain of spheres with zero gap widths is
shown on the basis of lubrication theory to be identicé,l to that for a
single rigid body except for a possible relative rotation of the spheres
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about the chain axis. However, from symmetry considerations and from the
linearity of the creeping motion equations it 1s seen that even such
relative rotation is impossible. '

When the gap widths are not zero, the chain is then capable of
stretching and bending. Equation (27) indicate's ‘that stretching is periodic
with a frequency twice that of the rotation about X ~axis and thet the chain
length reaches & maximum when the chain is parallel to the direction of flow
and a minimm when perpendicular to it'.} | '

In cqntfast to chain stretching, the chain bending as given by
(33) is gemerally progressive, since (Ax;)i/b increases by 2n(P* + Q) when
P increases by 2m, If for all i, P* + Q' = 0, however, the chain then bends
periodically, ‘each sphere coming back to ifbs exact ordiginal position when .¢
changes by 2. In another special case: Pi = Qi = 0 for all i, there is no
bending at all. On the other hand, (31) shows that if a chain is originally
in the XZXB plane (6 = n/2), it will always remain there.

Because of the variation of hi,- there must exist large pressures
within the gaps. These pressures, positive or negative (relative to the
pressure at infinity) according to whether the chain is under compression
or tenslon, may be calculated from lubrication theory by making use of (26).
Thus it may be shown that the order of magnitude of such a pressu;-e pp is
given by

1,

P, ~ (36)
P h, ?

where h_ is a typical value of (ho)i‘ Similarly it may be shown from
lubrication theory that due to the relative rotation of the spheres and of
the velocity of the spheres normal to the chain axis large pressures p, are
produced whose order of magnitude is given by



”1

/2

o h >/ ?1a(n_fv)

. (37)

For very small ho, P, is much greater than pp, showing that the greatest
positive or negative pressures in the gaps are of an order of magnitude
given by (37). It is seen that as b — O, this pressure tends to infinity,
indicating that for very small gap widths, one might expect the above
theory to be no longer valid as a result of cav:itation taking place in the
gaps between spheres.

When there is a second immiscible fluld between the spheres,
chain bending should increase with decreasing viscosity g of that fluid if
the gap widths are assumed constant. | |

~
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LIST OF SYMBOLS

ad, i, ... = defined by (I-15)

A, 3 833 = second-order tensors which define the flow in (X,, Xss x3)
and (x), xz,_;s) coordinates '

Bjs Byy By = defined by (19) and ()

b = radius of sphere

c = orbit constant

Fys Fps Fy = hydrodynamic forces in (xl, b O 13) coordinates

215 £5 25 = hydrodynamic forces in (x;, x,, x3) coordinates

31, 32, 33 = forces along x;’_, x;, X; axes due to the relative motion
of spheres when hi»> o

Gl’ G2, G3 = hydrodynamic couples about xl, Xz and X3 axes

815 8 & = hydrodynamic couples about X X, and x3 axes

919 &9 93 = couples about X;’_, Xg and Xg axes due to the relative
motion of spheres when h, >0

hy, (h o) i = gap width between the ith and the (i+l)th spheres at
p=Pand Pp=0

£ = chain length

Y = @) - Kn/h) __

n = total number of spheres in a chain

| pp = pressures in the gap genera.ted by relative motion of
spheres in the directions normal, and parallel to the
chain axis

P, o = defined by (I-34)

Tos rp = equivalent ellipsoidal, and true axis ratio

% = time
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T = period of rotation of the chain about X1 axis

Uy, Uy U, = fluid velocity along X;, X, and X; axes

Vs Uy Vg = additional linear velocity along x{ X and x3 axes
when hi > 0

x:l." Xz, 13 = coordinates fixed in space

X7, X35 1‘3’ = particle coordinates with X as the axis of symmetry,
see (11) o

x)» xz,‘ x5 = coordinates fixed in particle with x, as the axis of
symmetry

(&)Y, (&) = relative displacements between the ith and (1+1)th
| spheres in xg and X3° directions

) = a tensor relating (Xl, Zo» .XB) and (xl, X9 x3) coordinates,
see (§)

T = velocity gradient

1,9 3 = viscosity of suspending medium, of a second immiscible

| fluid in the gaps

6, 9, ¢ = Euler angles

g - = interfacial tension

01,. Qyy O = additional angular velocity about X{, Xg and Xg axes
when h, > 0 ’

W, Wy w3, = angular veloclity about X Xy a.nq. x3 axes



. PART III

CHAINS OF PARTICLES IN SHEAR FLOW TI:

SPHERES, DISCS AND RODS QEKPERIMENTALQ

The behaviour of ordered aggregstes of rigid spheres,
discs and rods in pla‘né Couette flow was studied.

Chains of spheres formed in ‘an electric field behaved like

rigid rods and good egreement with theory was obtained except for

‘breskage of the chains at high velocity gradients. Chains of spheres

held together by liquid menisci behaved like flexible threads and
formed disordered aggregates at high gradients.

Aggregates of dises (rouleaux) behaved like deformsble
rods and weie eesily broken as the discs slid apart. Bymetrical
but non-linear aggregates of spheres rotated like single spheres at
low velocity gradients.

It is shown that breakage of the chains of spheres may
result from cavitetion of the liquid between spheres.

<o



1. JINTRODUCTION

On the basis of the creeping motion equations, it has been shown
in the preceding pa.pe_rl) that a straight chain consisting of n spheres in
contact with each other behaves in shear flow like a single rigid body
even when there is no force holding the spheres together. Its motienm is
described by the equations¥

£ = 1B, sindcosdsingcosp , ()
% = 18,5157 + By005) @
. |
w =5 cosd 3)
with \ \
r -1 b
B. = e | B = 1 B, = e . (%)
S T 2 R’ 3 24

For comparison with experiment, however, it 1s more convenient to use the
integrated forms of (1) and (2):

tand o (5)
(ricoszﬁ + s:!.n2¢)1/2 ’
tang = r tan(ZY) , (6)

where C, the spher'iéa.'l. elliptical orbit constant, takes values from zero

to infinity as © changes from O to n/2 and where T, the period of rotation
about the X.l-axis, is given by

T=Fr, 1) - !

*1 synmbols have the same definition as in referencé (1).

26
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A chain with non-zero gap width is also capable of stretching
and bending. The stretching of the chain at © = /2 (C = ») is given by

B Egn-ii_
z=anb+z(h) . 23 MR (@)
3cos¢+Bsin¢' ‘
and the bending by
(ax0y
—55—4'—[?% Lr tang) + i) . )

Equation (8) spplies to amall stretching only (i.e., (£ - 2nb) <<2ub)
whilst (9) applies only to small chain bending L), It should also be
poin‘l;edoubthatalthpughAldepandsoniandndn]yand?ianindepend
on i, n and (ho)i only, they are all unknown.

‘A mmber of ordered aggregates of spheres, discs and rcds was
studied in plane shear Coustte flow. First, straight chains of metal
coated spheres were formed in an electric field to provide thread-like
particles of zero stiffness and zero tensile strength. The chains of
spheres were then given scme tensile sbrength by introducing a liquid
imniscible in the snspending medium such as water 80 that a meniscus bridged
the gaps between the spheres. The chains formed in an electric field rotated
in Couette flow like a rigld body=*>) and good agreement with the theory 1,4)
was obtained, though they were broken at sufficiently high velocity gradients..
The chains held together by interfacial temsion, however, behaved like
flexible threadss' 7) except tha.t, instead of breaking at high velocity
gradients, they formed three-dimensional aggregates. While the theoretical
equations did not allow quantitative comparison with experiment for chain
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stretching and bending because of unknown quantities in the equations,
they nevertheless provided a qualitative explanation.

Stacks of discs rotated like deformable rods; they bemt sasily
and finally broke apart by the sliding of their faces over one ancther.
Aggregates of rods also behaved like rigid bodies. Some non-linear but
symuetrical aggregates of spheres rotated sbout the xl-a.xis'atl-. an angular
velocity of /2 as for single rigid spheres® .

2. EXPERTMENTAL PART

Most of the experiments were conducted in the Coustte Mark 2
a.;:»pza.rm;us3 ) s consisting of two ‘steel goncéntric cylinders, electrically
insulated from one ancther and rotatiﬁg in opposite directions to establish
2 known 7 in the liquid in the anmulus®). The cylinder speeds could be
adjusted =o that there was no translational motion of the aggregate centre.
Observations were made by viewing along the X,-axis and photographing the
field with a still or a ciné camera; when necéssary a microscope was also
used;

The aggregates formed with polystyrene spheres and discss) and
nylon rods were suspended in a solution of Dow Corning silicone fluid
(density 0.97 g/cm.?) and Du Pont Freon-113 (1.56 g/cm.”) whose density
was matched to that of the particles (ca. 1.05 g/cm.>) so that there was
no appreciable sedimentation in the course of an experiment; the viscosity
1, of the solution was about 30 poises.



3. RESULTS AND DISCUSSION
(a) Rigid Chains of Spheres
(1) General |
| By applying an electric field of about 2 kv./cm. across the

Conette apparatus with the cylinders stopped,; spheres moved towards one
another as a result of mutual electrostatic attra.ction and became aligned
parallel to the Xz-a:d.s; the process was facilitated by coating the
spheres with aluninium to give them a large electrical conductivity and
by using a 60 c.p.s. altemting field to prevent electrophoretic move-
ment. In this way straight chains of up to 20 spheres formed. With the
electric field off and shear field on, the chains rotated at low T as
rigid l-u:;diesz’3 ) in accordance with the theory presented earlierl) s when
T was increased the chains broke (Figure 1). Most experiments were carried
out with the chains in the horizontal X2X3 plane (6 = 1;/2) and at values
of T at which the chains did not break.
(ii) Rotation

The angular velocity of the chain df/dt reached a maximum when
the chain was perpendicular to the direction of flow, i.e., § = mr and a
minimum when parallel to it, i.e., § = (2mHl)n/2, as can be seen from
Figure 2a where the curve represents (6), r, being calculated from (7) with
experimentally measured T and 7. When tand was plotted against tan(2nt/T),
a straight line was obtained with its slope equal to Tor giving experimental
verification of (6). This shows that such chains of spheres behave very
similarly to rigid rods.

The relationship between the two angles © and @ for a chain of
6 spheres not in the XZXB plane is shown by Figure 3 where the curve was
calculated fram (5) with r_ determined from (7). Fairly good agreement

<9
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Figure 1 Linear aggregate of spheres formed by applying an electric
field in the vertical (X;) direction (1). After removing
the field and start Couette flow, the aggregate rotates
counterclockwise (2,3); at a sufficiently high value of T
(0.6 secst ) it buckles (4,5) and breaks apart when
0P <1/2 (6). n=28, b =0.48 mn.



Figure 1 Iinear aggregate of spheres formed by applying an electric
field in the vertical (X;) direction (1). After removing
the field and start Couette flow, the aggregate rotates
counterclockwise (2,3); at a sufficiently high value of T
(0.6 sec:? ) it buckles (4,5) and breaks apart when
0<P <n/2 (6). n=28, b =0.48 mm.
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tan 8

0 - w/8 . w/4 3»/8 /2

Figure 3 The variation of 6 with $ for a chain of spheres not in
the X,X, plane (6 # n/2). n =6, r. = 5.05, 7= 0.170 sec. !
and C = 0,53. The. curve for C = 0,53 was calculated from
(5) with r, from (7). Different symbols (circles, triangles,
squares and diamonds for the four quadrants) were used to
show the trend of decreasing C; this is further illustrated
in the inset where the open circles (C = 0.93) were obtained
at several revolutions earlier than the closed circles

(C = 0.53) for the same chain and under otherwise identical
-.conditions. ' ' o ‘
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between the theory and the experiments was obtained, although the orbit
canstant C calculated from (5) showsd & tendency to decrease (Figure 3).
It is known® ) that for a single rigid rod, C is 'constant-whereas for a
flexible thresd C drifts to elther zero or infinity. Tims, in this respect
the chain of spheres is rather similar to a flexible thread, although no |
noticeable bending of the chain was observed. It should be pointed out
that any periodical chain stretch.l.ng can on],y cause & periodical change of C.

For suchachainnob i.n'l'.hex‘zx3 plane, it was foundthatthe
variation of P with ¢ satisfied (6) and that a spin ul o:l’.' the chain abmxh
its axis existed. The theoretical prediction tha.t ml'= O for a cha.in :l.n
the XX, plane (6 = 1/2) was confirmed by experiments using partially |
aluminium coated spheres.
(iii) Egnivalent axis ratio |

For a general axisymmetric body the true axis ratio T, is defined
.28 the ratio of the maximm body dimensions measured parallel to its axis
of synmietry to that measured perpendicular. For the chain of spheres, the
relation between the equivalent ellipsoidal axis ratio T and rp, equalling
n, is shown in Figure 4 where every point stands for an average value of Tge
Same results obtained for rigid cylinders by others 9) are included for
comparison.
(iv) Chain length

As expected from (8), the chain length v#r:l.ed periodically between
the maxima at § = (2mHl)n/2 and the minima at @ = mm, when the chain lay in
the X,X; plane, Since the change in length was small (Table I) the data are
presented in a plot of A4(P)/A%4(0) against P to illustrate the periodical
variation of the chain length with § (Figure 5a). However since the quantities

(ho)i and Ai in (8) are unknown, no quantitative comparison with experimen’c.é
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The relation between r. (calculated from (7) using the
measured T and 7) and rp(= n) for chains of spheres of
equal size formed in electric field. All points are mean
values with standard deviations less than 3%. The solid
circle represents a sing])e sphere. For comparison, the
data for rigid cylinders? (triangles) are shown,
including the value (rp = 1.7) at which re-/'r’, =1,
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TABIE I

Varia.t:l.on of length of linear chain of spheres
3 | gee.t (“max'.‘min')”mﬁ: |
s g -
0.2 b3
5 | Laue 5.8
| 2263 5.5
6 | 0.231 3.8
0.271 2.3
7 |  0.5L 2.4
04592 3.7
0.263 3.1
0.347 2.8
s 0.440 3.3
0.520 3.8
0.246 3.6
? 0.654 5.9
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Figure 5 (a) The periodic change in length for a chain of s hérés'

formed in an electric field. Az (@) =2 (B) - 2(n/4),
n=28, T=0.,263 - 0,520 sec’™. . |

(b) The variation of chain length with § for a chain of

-four spheres held together by 0.1% Aerosol AY solution.

Closed circles for T = 0,226 sec’), T = 101l.3 sec, %= 3.34
and open circles for 7T = 0.479 sec’l, T = 50.7 sec, 1= 3.59.
Increased bending reduced the chain length (end-to-end
distance) at higher 7. '




can be made. = These experiments were performed in the Couette Mark 4

10

apparatus ) arranged for simltaneous‘viewing along the Xz and X3

directions to ensure that the chain was indeed horizemtal (€ = w/2,
0L = 0), and that the change in length was real and not merely due to
foreshortening ai & < /2, as the particle rotated in the orbit given
vy (5). - | o
Equa.tion (8) also pmdicts that for given (h )i cha.:l.n stretching
is independent of 1. This was confimed experimentally in the sense that
‘no definite correla.tion between the variation of the‘ chain length and T
‘was found (Téble 1. |
| For a rigld particle the product T7 is independemt of T by (7).
However, since defornation varies with 7 for a flexible particle, TT
(it the motion of the particle is periodic to make T meaningful) may
also va.ry with 1 The constancy of TT was therefore used by Mason a'l'. 815 -7
as a test for the flexibility of the particle. For all the chains of
spheres studied, the standard deviations for both r_ and TT were found to.
be less than 3%,' offering another indication that such chains behaved
like rigid particles. | |
However, the chains broke at sufficiently high T, the breaking
always being preceded by chain bending as a rule near the centre.
Although bending started when the cha:.Ln was under campression (-n/2< P< 0),
breakup always occurred when it was under tension, i.e., when O <@ < n/2.
| Longer chains were mors easlly brokex.
— Bending was neither gradual nor smooth. The chain rotated
without any noticeable bending until immediately before its breakage when

a segment suddenly bent away from the chain axis (Figure 1). Such chain
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breakage ca.nnot be explained on the baeis of the creep:l.ng motion equations
s:l.nce i’b has been shown’ 1) tha.t the absence of brea.kage at low T tmnld _
imply that there woruld be no breakage for any value of 'I' -It was further
observed that if the shear was reversed after the breaking of a chain, |
the metion was not reversible in that the two parbs of the chain did not -
reattach themselves. The sbsence of bendiug :Ln rig:ld ehe.ins at low T ‘
| despi'be the appreciable chain stretching would suggest that 1n (9): Pi and
Q areveryamllforalli.

(v) Fore-a.f't. gzy_n try .

Several fore—aft symetrical cha.ins ('.l‘able II) formed in an
electr:.c field with twe eizee of almninim coated spheres wsre also studied. -
They rotated in Couette flow like a rigid rod; good agreement wi‘bh theory

a.nd plots similar to Figure 2 were obta:l.ned. Thus the ea:perimental reeulte
confirmed the theeretical predictj.on that a fom symmetrical chain |
consisting of unequal sized spheres ehould behave J.ike a chain of uniform
spheres,' if the spheres are all in contact with one another. It is noted
however that the ratio r /r  for these Pore-aft symuetrical chains (Table II)
was very close to unity as they (especially the last 3 in the table) re-
sembled prolate spheroids more closely bhan chains of wiiform spheres.

(b) Flexiblé Chains of Spheres
(i) General '

When a liquid immiscible with the suspending medium was introduced
in the gaps to bind the spheres together by interi‘a\cial tension, the chains
became very flexible. The large bending probably resulted from (1) the
lov'w viscosity of the fluid introduced, (2) a possible increase of the gap
width and (3) the interfacial tension causing the chain, once bent, to



TABLE II

v]’.'d_.nga‘.r}‘s'withfo“- »i :

 ephere diameters: 0.2 mu. (B) and 0.58 m. (s)

range of T | = |-, |
, r Te ‘rd/rp

chain structure |
L ' gecyk P

BssssB 0.070L - 0.1008 | 4.53 | 454 | 1.00
eBs 0.0252 - 0.5461 | 2.26 | 2.22 | 0.98
ssBes 0.0334 - 0.6747 | 3.52 | 3.98 | 1.13

sBsBs | ©0.0666 - 0.5001 | 3.89 | 3.95 | 1.01

® rt (end-to-end distance)/(diameter of big sphere) |




bend even more. lLarge stretching or breakage was, however, impeded by
interfacial tension. Thé effectiveness of the interfacial temsion o in
holding the chain together is determined by the size of the dimsnsionless
parameter o/5 bT, which was of the order of 10" for the experimental
conditions. | o | -

Unless otherwise stated the fluid used to hold the #pheres
together was a 0.1% aqueous Ae‘rbsql AY (Amerdcan Cyana.mid) aolution, ehqséh
to promote good welting of the spheres. | Only chaine conad.sting 'of from 2
to 6 spheres were studied in detail, as large aggregates tended to become
three-dimeneional.
| Short chains (n=2_or 3) were observed to be quite stiff and
showed reasonsbly good sgreement with the theory for rigld particles, a
plot similar to Figure 2 being obtained. For n >4 the chains beat so
much that the measurement of $ becams meaningless.

- The distance between adjacent sﬁizeres in & flexible chain was
seen to vary whilst the chain length as measured by its end-to-end distance _
varded with § (Figure 5b) in & mamer similar to that for a rigid chain.
However, for large T, a greater variation of chain length (Figure 5b)
resulted from larger chain bending.

(ii) Period of rotation

The orbit of a flexible chain depended on both n and T, the latter

being limited by the formatﬁn of non-linear aggregate and chain breakage.

Mason et _8;5-7) have termed the orbits of flexible fibres as "rigld, springy,

snake or S-turn and complex" in order of inereasing fibre flexibility.
According to fheir terminology and within the range of T limited by the
formation of the three-dimensional non-linear aggregate, the orbits of the
flexible chains were always rigid for n = 2, but could be springy for n = 3.

41
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@ | Sna.ke turns (F:Igure 6) became possible when n > handS-turnswhenn 5
Thus, the flexibility increased remarkably with n. . .
For:l.ncreasing 'r,theﬂ.eﬁ.ble chains with n = ZShmdan ,
4ncrease in the product TT (Fisnre 7) similer to that for flaxible threads5’7) -
4 For longer chmlns, however, ‘either at higher T or after prolonged shearj.ng |
- at low 7, a point could easd.ly be reached where the non—neighbouring spheres
were bronsht 80 eloaely 'bosether by the bending of the cha.'l.n that they were 5
u.nited by uater and never separhted a.gain (Fignre 8)., ‘The fomatien of such
non-l:l.near aggregate made it 1mpossib1e to test the consbancy oi’ 'J."f for |
' 1onger chains of spheree.. ” |
‘(m) Effect of an electgg &

- In scme cases (for n> 4) an electric field was superimposed on |
the shear field. The electric f:l.eld helped to keep the chains in the
herizonta.l XZX3 plane and to prevent the foma'bion of non-linear aggrega.tee
(Figure 9). At a low electric field strength; the rotation of the chains
was . retardedinthefirstandthirdqnadranbsmdspeededupinthe second
and fourth quadrants. The net effect, however, was an increase of the
period of rot_ationu‘).q At sufficiently high electric f:_l.eld strength, the
rotation of the chains could be impeded so that they no longer executed

camplete rotations. Further increase of the field strength could camse the
water bridges between the spheres to burst and split the chain,
(iv) Other bridging liquids

Chains of spheres held together by Ucon lubricant 50HB260 (g =1
poise, Union Carbide and Carbon Gerporation) s Blycerol (8 poise) and cyclo-
hexanol phthalate (230 poise) were formed in the same ways though with

greater difficulty, as those held together by water. OSurprisingly, these
chains all exhibited flexibility comparable to those with water. The more
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Fipure 6 Rotation of a long flexible chain of spheres bridged by
aqueous menisci which can be seen in the photograph.
The capability of independent movement by the two_ends
of the chain is characterdstic of the snake turn®.
n==6, T=0.0986 sec;l. '
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[e2)

Rotation of a long flexible chain of spheres bridged by
agueous menisci which can be seen in the photograph.
The capability of independent movement by the two_ends
of the chain is characteristic of the snake turn®).
n=26, 7=0,0836 secil.
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gg 2 Thg varlation of (a) TT and (b) ne with T, for a

~flexible chain consisting of 2. spheres bridged by . _ R
g.v a meniscus. ”The dashed lines. represent the awerage ‘““‘ S
’ values of TT and r, for rigid chains of 2 spheres., S







!

e S o I el
BRI RE O Tk 2
¥ L« s

SRR,
T »
L) ik

&

n
©
4
&
(=%
0
Gy
o
=]
ol
4]
Sy
c.
o
@G QO
VS
e
t—
¢~
e}

Y =

inear aggregat
=N

e
~
i .
2
S o
o w
o
@ =
(3]
W E
OV
<
O.D
-
o
O &
e O
o
o

ur

i



O

Figure 9 Rotation of a flexible chain of spheres
n=6, T=0,129 sec;*, T = 311.2 sec.

in a combined shear and electric field.
and AE = 0.5 kv/cm.
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viscous fluids, however, showed a much stronger tendency than water to
unite non-neighbouring spheres and form non-linear aggregates.

Ch.aiﬁ bending was not reversible; even when the flow was reversed |
before the formation of ncn-linear aggregates, the chains did not resume
their initial shape (Figure 10). |

As the three above liquids are much more viscous than water, it
became extremely d_:lfficulf. to keep the amount of the liquid to the bare
minimum just enough to hold the chain together. It was observed that when
there was too much fluid the chains bent and formed aggregates evem at T = 0,
Thus, the excess liquid present between the spheres might be expected to
increase the fle:d.bﬂ.itf of the chains and so offers éoune explanation for
the unexpectedly high flexibllity observed experimentally.

(c) Non-linear Aggregates of Spheres
Tetrahedral and some planar triangular and hexagonal aggregates
of spheres held together by aqueous Aerosol AY solution were briefly studied.
They all rotated in Couette flow with almost constant angular veloc_:ity
(Figure 2b) behaving like rigid spheres or discs at C = » . At high 7,
however, they were distorted and became disordered.

(d) Aggregates of Discs (Rouleaux)

Rouleaux conslsting of from & to 14 discs were studied; their
original rod-like shape was constantly distorted by the shear flow and they
exhibited a definite tendency to leave the horizontal x2x3 plane. Thus,
no analysis of the dependence of rouleau length on 9 was made.

When a rouleau was only slightly distorted from linearity, it
rotated in a manner quite similar to that for a rod (Figures 2c¢c and 11).

g



Figure 10 Irreversible rotation of a chain of 5 spheres held together by Ucon 50HBR60.
Flow reversed at (4); (1)-(4) counterclockwise and (4)-(7) clockwise rotation.

T = 0,0733 sec7l. These drawings are tracings of ciné pictures at intervals
of 20 sec.
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Rotation of a rouleau in Couette flow.
7 = 0.0251 sec’), T = 526.2 sec, ro = 1.
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After prolonged shearing, however, a roulea.n_ could be broken at T as low
as 0.03 sec.™l and the higher the .'!, the sooner it broke. It might therefore
be conjegtnred. that this type of break-up, preceded by gradual sliding of
the discs over one another, is axplainé.ble on the basis solely of the
creeping motion equations and hence is of an entirely different nature to
the breakagé of a chain of spheres. A rouleau appeared to be bent when there
was relative sliding between all neighbouring discs (Figure 12), but this
was rarely observed experimentally. It was far more common for two or more
 segnente (each consisting of a few discs) to slide sgainst each other and
finally break apart. ' |

Because of the constant distortion and tﬁe ease with which
rouleaux broke, experiments were limited to a narrow range of Y and thus
the variation of TT with T could not be used effectively as & measure of
flexibility, although the limited experimemtal data (Table IIT) did show
a general trend of increasing TT with increasing 7.

(e) Aggregates of Bods

For the sake of completeness, aggregates of rods were also briefly
studied, Two kinds of aggregates were possible: end-to-end or side-by-side,,
the former being very easily broken (Figure 13a) and attempts to measure |
its perdod of rotation failed. The side~by-side aggregates were less easily
broken; they rotated in Couette flow like rigid rods (Figure 13b), plots
similar to Figure 2 being obtained.

Aggregates consisting of 3 or more rods were formed but they were
easily broken and no detailed study was carried out.
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Figure 12 Bending and breaking-up of a rouleau in Couette flow.
n= 11, 7 = 0.0567 - 0.172 sec ™



.diachi;hgngibm_. digmgter 0.79 m., thickness 0,13 mm,

" PABIE III

’ mi t_eg of d:lscs

2| nr| et | e | g, |
g Bec. | ~ ‘ o
¢ | 132 | 0.026-0.067 | 12.8-1l | 0.92-1.23
| 9 | 1.48 0.025 - 0.160 12,7 ~ 4.6 0.78 = 1.19
10 | 1.65 | 0.024 - 0.096 | 13.5 ~15.3 | 0.89 - 1-,;1'.6‘.
11 |1.81 | 0.025 - 0.081 | 13.7 - 15.5 | 0.84 - 1.08
12 | 1.97 | 0.028 - 0.128 | 13.7-16.4 | 0.77 - 1.09
13 | 2.4 | 0.022 - 0.038 1.0 - 15.3 0.75 - 0.89
1 2.31 | 0.022 - 0,230 | 15.7 - 16.8 0.87 - 0.97

*rp: n x (thickneéss)/(diameter)
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Figure 13 (a) Breaking-up of end-to-end aggregste of rods.
.. n=2, 7T=0,0237 sec3t, . - .
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Figure 13 (b) Rotation of side-by-side aggrega'l;.e of rods.
n=2, T= 0,185 sec;l, T = 226.8 sec., T = 6.54.
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Figure 13 (a) Breaking-up of end-to-end aggregate of rods.
n=2, T=0,0237 secii.

Fi 13 (b) Rotation of side-by-side a.ggregat:e of rods.
n=2, T=0,185 sec;t, T = 226.8 sec., re = 6.54.
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- 4o__CONCLUDING REMARKS

_ The chains of spheres formed in an electric field behaved like

rigid rods, there being good agreement between the experimental results
and the theoretical equations of motioms. However, such a rigid chain
differed from the s:Lngle rigid rod by (l) the drift of C toward zero,
(2) the periodic variation of the chain length with § and (3) the breakage
at higher T. It was observed that since the chain only broke at high T and
since the motion after breaking was not reversible, the breakage cannot be
axplained purely on the basis of the linear creeping motlon equations. The
chain breakage might be due to one or more of the following effects:
(1) surface roughness of the spheres; (2) non-Newtonian behaviour of the
fluid due 'bo the very large velocity gradient experienced :i.n the gaps;
(3) cavitation and fluid ccmpressibility due to the very large negative and '
positive pressures existing in the gaps; (4) fluid inertia; (5) the mole-
cular nature of the fluid within the very narrow gaps; and (6) other surface
effects.

It has been shown™ that for emall gap widths the relative motion

between neighbouring spheres causes in the gaps large positive and negative
pressures, whose order of magnitude is given by

2,1/
h—rz.l.n(holb)

Thus, we may expect cavitation of the fluid when this pressure becomes

equal to the atmospheric pressure (minus fluid vapour pressure). Under ocur
experimental conditions this would océur at h_ ~ 10™° cm., a value of sphere
separation which could quite reasonably have occurred, so that rupture by
cavitation is feasibls.
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The chaine of spheres held together by a liquid behaved like

- flexible threads; although an improved mathematical treatment to take into
account the effect of the interfacial temsion would be very complicated,
such aggregates provide useful physical models of flexible threads’) and
rouleaux of red blood cellsl?) which 1t 1s proposed to study further.
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PART IV
CONCLUSION
1. GENERAL DISCUSSION

Since various specific aspects of this research have already been
discussed in Parts II and III, only some general similarities between chai’n‘s
of particles and flexible threads, -:mcx_'amolgcules\ and rouleaux of red blood
cells remain to be discussed.

Direct comparison has already been Me between chains of spheres
held together by liquid meniscil) and flexible threads?™); they are |
similar except for chain stretching a.nd formation of three-dimensional
aggregates by the flexible chains. With :lncreasi'ng velocity gradient and
the number of spheres in a chain, the flexible chains of spheres become more
flexible, and spend an increasingly larger pgrtion of the period of rotation
in a position »aligned near the direction of flow.

It has been known for some time that the viscosity of a polymer
solution can be reduced by high speed stirring é.s a result 'oi‘ mechanical
breakage of long-chain molecules. In their study of mechanical degradation
of polymers (polystyrene and DNA (deomibose nﬁcleic acid) in various
solvents) by comtrolled hydrodynamic shear, Harrington and Zimw’) showed that
the important quantity in the degradation process is not viscosity alome but
the product of shear rate and viscosity. This is to be expected on the basis
of the force equations developed in Part II. Furthermor_e, Harrington6) also
indicated on the basis of the hydrodynamic theory of laminar boundary layers
that polymer chains breaking in a hydrodynamic shear field are virtually
campletely extended along the streamlines of flow. This is in gualitative
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agreement with the studies of flexible threads in Coustte flow by Forgacs
and Mason3 o) o Although the degradation of polymers is further compliecated
by non-Newtonian behaviour of the polymer sclution and the coil-like
molecular structure, ea;iaeriments on the breakage of chains of particles in
Couette flow may provide further insights into the mechanizm of breakup

of polymer molecules.

The aggregates of rigid discs can be considered as plws.fl.oal ‘models'

of rouleaux formed by red blood cells (Figure 1). Human red blood cells are

flexible biconcave discs having a diameter of 8.5 ¥ O.41 microns7) and of
maximum and minimm thickness of 2.4 b 0.13 microns and 1.0 £ 0.08 microns.
It is of imberest to note that Goldamith®) has recemtly found that the
undsformed rouleaux of red bloéd cells rotated in orbits predicted for rigid
spheroids by Jeffery's theory’? with rg<1lforn <k, r~1forn=4 and
Te > 1 for n > 4, n being the number of cells in the réulea.uo These findings
are in qualitative agreement with the study of aggregates of rigid dises
described in Part III.

 Goldem1th®) also cbserved bending of rouleaux of red blood cells,
especially at higher velocity gradients and for rouleaux consisting of a
large nuamber of cells; they bend under the compressive force and then
straighten out under the tensile force in the succeeding quadrant. The
striking similarity in the bending of rouleaux and of flexible fibres is
illustrated in Figure 2. Goldamith's results®) indicate that bending for a
rouleau can occur at a velocity gradient 10'7 times that for a dacron filament
of the same diameter, indicating a bending modulus 107 that of dacron.

! 2. SUGGESTIONS FOR FURTHER RESEARCH

L. To study more extensively bending and breaking of chain of spheres;

especially under conditions of prolonged shearing at constant velocity



Figure 1. Ihotomicrographs of rouleaux o:f humn red 'blood cells S o
, showing two separate aggregates (upper) and’ networks = =
_of rouleaux. (lower). Courtesy of Dr. H.L. Goldsmith.
. ‘See algo Figu:res 11 and 12, Part :EII for comparison
with aggregates of r:lgid discs. '
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Figure 1 Photomicrographs of rouleaux of human red blood cells

showing two separate aggregates (upper) and networks
of rouleaux (lower). Courtesy of Dr. H.L. Goldsmith.

. See also Figures 11 and 12, Part III for comparison
with aggregates of rigid discs.

2



Figure 2 Striking similarity in the bending of flexible fibre
- and of roulean of human red blood cells in shear flow.
Courtesy of Drs. O.L. Forgacs end H.L. Goldsmith.
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gradient and for chain consisting of non-uniform spheres.

2, To study various other kinds of chains of particles such as (a) chains

“+.of 1iquid drops, (b) chains of liquid drops held together by meniscus of

a third liquid phase; (c¢) chains of rigld spheres held together by flexiblev
threads, (d) stacks of dises held together by liquid bridges and (e) linear
aggregates of rods held end-to-end by menisci. |

3. To study the behaviour of linear aggregates of particles in combined
ghear and electric fields. |

4. To study the interaction and collision of linear aggregates.

3, CLAIMS TO ORIGINAL RESEARCH

1. On the basis of the creeping motion and lubrication equations a theory
for the behaviour of a straight chain of spheres in shear flow was .developedo
The equations of motion for a chain of spheres in contact with one another
were experimentally verified.

2. A variety of ordered aggregates of rigid particles simulating fibres

of zero stiffness, 1:1near polymer molecules and rouleaux of red blood cells
were formed and their behaviour in Couette flow studied.

3, A centrifugal bubble cell was designed and built for the study of
deformation of a ﬁonolayer of bubbles. Theoretical equations for small
deformations were derived and solved nmumerically and confirmed experimentally.
4. A method of measuring interfacial tension from the shape of a rotating
drop was developed. Vonnegut's approximate solutions were extended to lower
speeds of rotation by numerical solutions of exact equations and a rotating
drop apparatus was designed and constructed.
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D APPENDIX I
THEORY OF CHAINS OF SPHERES: MATHEMATICAL DETAILS

(See Part ITI)

(1) Derivation of (7) and (8).

- It can be shown from the linearity of the creeping mobion
equations that the force and couple about the x;~axis for a section of the
chain from the first to the ith spheres inclusive are given by

= 2/n1 i ' '
£ = ap (Og p g *+ Lipy0) (I - 1)
and
i_ 4
g = 233 1% g * i) , (1 -2)
where
w 3 = angular velocity of the chain about xd-a:d.s,
8y = the second order tensor Ajk (see (3)) taken relative to
Xys Xns x3 coofdinate system,
Ci Ik = & third-order true tensor,
D}_Jk = a third-order pseudotensor,
Li 3 = a second-order pseudotensor,
Mij = & second-order true temsor,
and ¢t , i, , 1}, and ML, depend on the chain gecmet By symmet
: 13k Cijk® 43 13 épend on the ge ry only. symmelry |

of the body shape it may be shown that for i < (n-1):

(1) Ci = 0y except
(I - 3)
1 4 - | 1 SR S
Cl].l’ 0122 = 0133’ 0212 = (233q3 and szl C'331,,
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(11) Dy, = 0, except

4 (T =-4)
i :

Diz:a:“nliaz’ D§'31="D§21 m'”%m-nms |
(111) LL = 0, except 1-23 = - 1%‘2; (I-5)

(iv) E¢J=O, exceptﬂg'landl‘éz=l§3; ' (x - 6)

and for 1 = n:

(1) c‘;Jk = 0; T-7
(ii) Dzjkg 0.3 except

(I-~8)
Digs = = Digps Vpsy = = Dz and Djyp = = D55
n . _
(111) Z, = o; (1 - 9)
(iv) M?.j = 0, except M}, and M), =~1~1§3 . (I - 10)
Making use of the tensor transformation formmla
313 = %p1%3"pq
and mxbstitu'biné (4) for Couette flow into (I - 1) and (I - 2) give
fi = qobz('rci %3 %2k + I.ijw J) | (I - 11)
and
gi = qobB(m:{.jk“BJGZk + M}-ij) s (I-12)

which with the aid of (I - 3) - (I - 6) can be rewritten as (7) and (8).
(2) Derivation of (12) and (13) and the quantities A*,

Substituting (10) and (6) into (7) a.n& (8) leads to

£7 = 9, 0%(0]y; - 01, )ein%0singcosp
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oo

12
5= qo'rbz[ (ciz'lz - 523—2;2- sinfsinf(- sin@sing + cosbcosfcosy)

i p2
o+ (ci + M) sinBcosff(cosPainy + cosesinﬁsint)]

(1 ~13)

| : . i 2
f;‘ = "o"bz[(c.;ﬁz - -133—3-1—2- sinBsing(-sinfcosy — cosBcosPsinyg)

Yo

i
+ (c + 1—23—2‘2 sinScosP(cosfcosy ~ cosOsinfsinyg

e ]

Ml

g

gi = qo'rbB cosd

2
82 =g 7b3[(pi —}é—g-uiﬁ'-) sinfcosP(cosPcosy - cosOsinPsing)

+ (D;.]z - .M:j-i?_n.ilg. sinOsing(sinfcosy + cosecosﬁsint)]

Yo

(I-14)
8% = ﬂo'\’b3 [(1%31 - —% sinﬁcosj?)(-cosﬂsinﬁ ~ cosBsinfcosy)
+ (Di - -}-é-z—’é—l?-) sinfsing(~-sin@siny + cosecos]écosq)] »

which con be simplified to (12) and (13) by changing from X, X, x5 to

%%, X3, X} coordinates defined by (11). The quantities sl are then given by
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i
L
e e ke - 25,
1___1_'2,3113212 o
) W, 22’
i

Ai=%’-‘+0§21,
A§'=—;§%@2-D1'23, (I - 15)
£ = ém'@nlz’
A"7=D§31'}E&Dnl’

@2.

& ”@(Dgal D50) + (B, - D3gy) -

(3) Derdvation of (16).

1)

It has been showm™’ that

d(a.i )
—3t = Cipfig®id (1 - 16)
vhere

w, = angular velocity of the chain about x,~ axis, and

+ 1, if (L j k) is an even permutation of (1 2 3)
gk =4~ 1, if (i j k) is an odd permutation of (1 2 3)
O, otherwise.



It follows then that

d(ay,)
3t~ (93182 = Sn%3) + (933003 = 9053005 5

it - :nn (@031 ) (G5035 = Gag33)

' when @, and w, are eliminated with the aid of (10).
Differentiating (6) yields

d(ay, ao

3t sinea?,

which can then be cambined with (I - 17) to give (16a).
Similarly one can obtain

C,e)
== _,é_z[l’gal(“zl“sl) (ay 0853 = Gyg0sp) +

) |
D3, (8181 Mgy = Gpgtiss) + DBy 05 (03055 = 0y 005

d(a, )
_—:.]tz = g (0‘22“33 - a.320.23)[ M?_-L (a320.21 - 22a.31)

+ "é(”gm“él“zz - Dg?»lq'BZGZI)] >

which f£inally lead to (16b) and (16c).
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(T-17)
(1-18)
(I~19)
(I - 20)
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(4) Derivation of (18c).

4t 6 =0, the chain rotates with an sngular velocity w; = /2.
Thus from (17)

(-2

for all ©.

(5) Derivation of (21).

It follows from the definition of the quantities .DIZIB, Dg31 and

M’Z‘z that

1, = o - g G-
- and hence from (19)
By+By=1 and B, =By - B, . (T - 23)
If one lets
| B
2
ﬁi':re » (20)

then by solving (I - 23) and (20) simmltaneously one obtains (1), i.e.,

Bl:= g 9 Bzcr.-—z-—-‘-'——- P BB= 23 -
re+l re+l re-'+l

(6) Derivation of (26).

Substituting (12a) and (23a) into (22) and combining the resulting
equation with (25) give

dstsPostapeost = § 7 i g2 (1 - 24)
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With the help of (18), © and @ can be eliminated from (I - 24) which then
integrates to yield , ’ Ai
2 2 2 3nB
o ) [(0233 + B,)ain /BB, T + (¢%+ 1)B,c0s®/ B8, 1671
i Yol B,(C%+ 1)

. (I~ 25)

When h; is expressed in terms of Py (I~ 25) becomes (26).

(7) Derivation of (31) and (32).
The quantities (V% - Vgﬂ) and (V;' - V;'ﬂ) can be expressed in
terms of d(Xg)i/dt and dy/dt by the relations

- @ e |
aC o)i (I - 26)
—fl—dt =+ @ vy

Thus, upon using (I - 26) and substituting (12b) (12¢) (23b) and (23c)
into (22) one obtains

ﬂ.nhi

T et -
= - TbAZsinGcosOsingcosp

(T -27)
ndnh

a(ax)*
1[’ T+ ()t G - v+ ‘%ﬂ)]

= 'fbsme(A;'sinzﬂi + Alj;coszm s

while similarly from (13) and (24)

%rﬂ.nhi(ﬂéﬂ' - ré) = ’Tsinﬁ(A%sinzsé + A.jz'coszm

(T - 28)

%ﬂnhi(o%ﬂ - n;') = ’rA‘;ainecosesicho@ >
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where
@t = @t - @
' (1-29)
(Axg)i - (x;)i _ (X§)1+l .
If there is fore-aft symmetry with regard to the gap widths and
the chain contains n = 2m spheres, then in (I - 27) and (I - 28) there are
Jur independent variables: (8X3)% (Axg)i, Gl end @ for 1< 1< m. Since
(I - 28) is trivial for i = m, there are only (4m - 2) independent
equations in (I - 27) and (I -~ 28). The extra two equations neceas#rj
fop the determination of the 4m variables are.

()" = (sx)" =0, (1 - 30)

which also serve to define the straight line joining the centers of the
mth and (wHl)th spheres as the Xj-axls for a bent chain.

From fore-aft symmetry

BeEt wa B-d

and from (T - 27), (I -28) and (I - 30) one can obtain the following

solutions for ﬂé and 0;':

Taln ¥ 2 3 2
gjz- = - Zl lnhj(TiJsm D + U, yeo8 ?)

and o ' (I - 31)
v
= —3Lld ginecososinfcosd
o & Tom, >

¥ 3 #
where T, 45 Ui;j -and Si:l are (m x m) matrices.
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‘Substituting (I - 31) back into (I — 27) and (I - 28) leads to

K .
(AX; - (AXB)i Z. (Sijsinecosesinﬂcosﬂ)

. (I -32)
o) m L, 9 PoY .
._ﬁ___(“z : ith( 14° 2¢+U cos¢),
which can be rewritten with the aid of (16) (18) (21) and (26) as
( °)1 , ' 1 - 2(B,sin’p + B co32¢)
- - AKB [(0233 + B,ein 2¢ + B cos ¢) (B sin2¢ + B cos ¢)]
m
=,; (B si.n¢+B cosml/ (OZB +B sin¢+Bcos¢)
_bC-\[§3_ Slfi,nﬂcow
1a(t,) Ai ln[.._L_. +~ 02133 ]
3t ¢+ 1 (C+l)(B cos¢+B sin“p)
and ' (I-33
d(&"‘)i o 1 - 2(B,sin 26 + B coszm
dt - (sz [(CZB + B,s ¢ + B cos {6) (stin ¢ + B cos ¢)]1/

1
L | (8,508 + Bye0s°0) (7B, + BysinP + B0 p) 2

bC‘\/—(Tij i 2¢ + Uﬁcosz,@)
: J C?‘B s
In(h,) + 3—%-1- 1,1[ 4 3 ]

c3 1 (c +1)(B cos¢+B sin ¢)



e

and U,, being (m x m) matrices.

S130 Ta3 13

By imposing the restrictions (30), (I - 33) reduces to (31) and
(32). Integration of (32) then gives (33) with-

32 - BgU! i

e
Bl'\/ ln(h ) )3 -

5
(I - 34)
q =zl_i_1__u
B, Lalh,);
REFERENCE

1. Cox, R.G., Ph.D., Thesis, Cambridge University, 1964.



APPENDIX II
DETAILS OF EXPERIMENTS WITH CHAINS OF PARTICLES
1. COUETTE APPARATUS

The Couette Mark 2 apparatus consisting of two 'counter—roﬁating
cylinders has been described previously 152) s but for ‘the sake of complete-
ness -a brief description is given here, ‘

It can be shown that the transverse velocity V of the fluid in

the annular gap between the cylinders is given by

FS + “z“g)R _ ﬁ_‘*_ﬂz_’;iﬂi; , (1)
- B BR-8% b '

where Rl and R2 are the radii and ol and 02 the angular velocities of the
inner and outer cy].i.ndera respectively (Figure l). Thus at the stationary
layer for which V = O; the local velocity ﬁ.eld may be shown to be equi-~
valent to a simple plane shear of value 'T given by
2 + Q) |

T=—"%——= - @)
RS -~ ‘
2~ B

Hence if a particle;, small compared with the annular gap width, is plac'ed

at the stationary layer; it will experience a fluid motion which is a
plane shear of value T given by (2). S:ane cylinders of R, = 13.344 em.
and R, = 15.222 cm. were used in most exper:lments (2) can be written as

T = 0.6950N, + o.9oum2;aec.'1, (3)

where Nl and N2 are the RPM of the inner and outer cylinders. As the
two cylinders are driven by two separate and continuously variable motors,
O and 02 can be changed at will to make the stationary 1a.yer coincide

| ‘_ with the centre of a particle aggregate for prolonged study.

73



RZ‘QZ‘.

v
Xo

| 3)
an and Mason”’)
Figure 1 Principle of the Couette apparatus. (After Trevely
Jigure L
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A photograph of the Couette apparatus is shown in Figure 2. In
the centre are the two cylinders and the adjustable common support for -
the microscbpe and camera above and the microscope illuminator below the
cylinders. The outer cylinder has a sealed glass plate bottom to permit
i1lumination of the field from below. The motors and gear boxes are at
elther side of the Couette device. By means of three sets of reduction
worm gears a wide range of velocity gradiezité (0 to 40 sec.™ ) can be -
obtained. The speed controls and the tachometers are mounted on the right
hand panel, while the variable a.c. and d.c. voltage supplies and a
chopper device for timing are on the left hand panel.

Though similar to Mark 2 Couette apparatus in principle, the
Mark 4 device is more versatile and precise, Different sizes of trans-A '_
parent (lucite or epoxy resin) cy]@ders or discs can be mounted on‘ two - |
accurately machined concentric counter-rotating vertical spindles to allow
observation along both X1 and X2 directions. The cylinders or discs can
be machined in situ with a2 bullt-in lathe and the radial position of the

microscops mounted on a frame assembly can be determined accurately with

a dial gauge. In the experiments discussed in the text, the chains of
spheres were suspended in the anmulus between two concentric lucite cylinders.
Two copper strips — one inside the inner cylinder and another outside the

outer cylinder -~ acted as the electrodes.

2. _ PROCEDURES

(a) Formation of the Aggregates
Chains of spheres formed in electric field
Aluminum coated polystyrene spheres were introduced into the

Couette apparatus and haa.nipulated with a needle probe to be as close
together as possible along the X,-axis. They were then aligned in an



Figure 2 Photograph of Couette Mark 2 apparatus.
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electric field created by a potentiai difference of up to 7 kv. between
the gap with a 60 cycle a.c. power supply. When necessary tﬂe manipu.}ation
and electrdic aligxment. wore repeated until a sétisfa.ctorily straight chain
of spheres waé formed. For fore-aft symetricai chains of unequal sized
spheres, they must be arranged ‘;I.n the proper order before aligmment by
electric field. |

Chains of spheres held togesther by a fluid .

_Poljstyrene spheres were completely wetted with & fluld and then
arrayed with a needle probe into a chain at the edge of a microsébpe slide.
Care was taken to ensure that there was just enough fluid between the
spheres since too much fluid often resulted in the formation of non-linear
three-dimensional aggregate while too little fluid made the .cha.in easily
broken. The chaixi of éph_erea was then transferred into the Qonette apparatus
by gently dipping the slide into and ralsing it out of the suspending medium.
Non-linear aggregates of spheres '

Tetrahedral and some planar triangular and hexagonal aggregates
of spheres were formed by arranging a suitable number of spheres, all
enclosed in a drop of 0.1% Aerdsol AY solution, into the desirable order on
a microscope slide with a needle probe. Evaporation was allowed to proceed
until only a trace of water was left between the spheres and then the
aggregate was slowly and carefully shuffled into the Couette apparatus from
the slide.

Apgpregates of discs

The discs were wetted with the suspending medium and then piled
up one by one on a microscope slide with a needle probe. Extreme care was
taken to keep the rouleau as straight as possible. The rouleau was then
stuck to a needle probe sideways and dipped nearly horizontally into the
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suspending medium. Upon raising the probe with some light jerking the
rouleau was left in the Couette apparatus.
Aggregates of rods '

Aluminum coated rods were introduced into the Comette apparatus
and drawn together end-to-end with a needle probe. They were then a.ligned
in an electric field as described earlier for forming a chain with metal
coated spheres. Side-by-side aggregates of rods were more easily formed.

(b) Me&snr'emegts of g, 8 and t

The orientation of an aggregate is defined by its reference line
which for chains of spheres formed in an electric field is the chain axis.
For a flexible aggregate this referpnca lins is an imaginary straight line
Joining the centres of the two particles at both ends and for all the non-
linear aggregates studied it is any straight line passing through the
centres of 2 or 3 spheres. .The camera was aligned with one of its frames
parallel to the X,-axis so that the angle P could rea.dily be measured from
the photograph.

Since the camera looks down along the X.l-a.:d.a, the photographs
show the projection of an aggregate on the 1213 plane, Ther;, for a rigid

aggregate it follows by definition that

y
sing = 23 ’
)

where lo is the true aggregate length and .123 the length of the projection
of the aggregate on the X2X3 plane.

An electronic timing device called a chopper cuts off the light
path and registers on the movie film as dark frames at a suitable and
constant time interval and thereby provides a time scale.
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APFENDIX III
ROTATING BUBBLE RAFTS
ABSTRACT

A cell was designed and constructed in which a hexagonally
packed horizontal mohb]gyer (or raft) of uniform bubbles co'nld‘be rapidly
generated and then compressed by centripetal force. The deformation of
 individual bubbles and of the entire bubble raft was studied experimeatally
and falrly good agreement was obf.ained with ‘a theory derived a.nd solved
mumerdcally for small deformations.

1. INTRODUCTION

The stability of suspensions is of considerable academic and
practical interest. In this laboratory this problem has been approached
8:I.-J.O)

by a series of investigation on the coalescence of pairs of fluid

(gas or liquid) drops suspended ir a liquid in gravity, electric and shear
fields and combinations thereof. The present work is an extension of the
studies of drop coalescence phenomena from systems consisting of two
particles to muliliparticle systems particularly under conditions of high
pa.rbic;.e crowding. In order to simplify the systems, experiments were
conducted with the drops in a monolayer. In this connection the studies of
bubble rafts as models of crystal behaviour first suggested by Ma.rsha]lu')
and later extended by Bragg and others2-°) were very helpful.

Five cells were designed amd built in numerous attempts to bring
about coalescence of bubbles by compression. However, the experiments
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performed with them all proved to be abortive because of multilayer formation

or leakage of bubbles from the cells; finally a centrifugal bubble cell was
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designed and constructed which made it possible to generate and 'then
compress by centripetal forcet a hexagonally packed monolayer (or raft) of
uniform bubbles. Two solid surfaces confined the bubbles into a single
layer while compression of bubbles by centripetal force instead of a piston
eliminated bubble leakage. Although liquid/liquid systems can also be
studied by replacing the gas with the lighter liquid, this work was
hindered by the difficulty in finding a suitable system which neither wets
nor chemically attacks lucite of which the cell was max_ie., Consequently
only works on gas/liquid system are described here.

Although bubbles could be made to coalesce simply by ;Increasing B
the speed of cell rotationy, the study of coaléscexice was unsuccessful. It
is lnwmz'l’) that the rest time of a fluid drop at a flat interface between
two immiscible fluids follows aroughl;v Gaussian distribution even for a |
single given system. For a bubble raft, however, in addition to the distri-
bution of “rest time", there is also a distribution of the érigin of
coalescence. Another complexity arises from the fact that once coalescence
occurred, it spread out rapidly and drastically altered the experimental
conditions for further coalescence. LA Srief qualita.tivé .descript.ion of the
work done on coalescence was, however, given in Appendix IV.

The cell nevertheless has a number of interesting features and
was used to study the deformation of bubbles and bubble rafts and its use
for this application is discussed in detail here and in Appendix IV.

It was found that bubble deformation increased with increasing
speed of rotation w, bubble radius Ro’ bubble raft radius 3‘;, the distance
between the plston and the cover h, ‘but with decreasing radius of rotation
r; and that @ predominated all the other factors. By assuming that slightly

deformed bubbles were mainly spherical, theoretical equations were derived
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and solved mmerically. Fairly good agreement between the theory and the
experiments was obtained for low deformation (at w < 10 RFM).

2, EXPERTMENTAL PART

The centrifugal bubble cell is a disc-like cylinder mainly made
of lucite (Fignrés 1 and 2). After the cell was filled up with the
contimious phase liquid, as many as 15,000 bubbléé with radius of 1 m.
could be generated from a series of hypodermic needles within 100 seconds
by pumping air into and sucking liquid out of the cell simultaneously at the
same constant rate with an infusion/withdrawal pump (Harvard Apparatus Co.,
Dover, Mass.). To confine the bubbles in a monolayer, the pié‘t‘.on was raised;
the distance between the cover and the piston h was measured with a built-in
micrometer. In the rotating cell, the ‘bubbles were compressed .-a.s they

'moved radially imward and the contimuous liquid phase radially outward

because of the density difference. Photographs of bubbles under compression
were made through the transparent cover for detalled analysis; two electronic
flashes with flash duration less than 10"’ second were used to arrest the
motion. Further detailed description of the cell is given in Appendix IV.

As the contimous phase the very stable foaming solution used by
BraggB) was prepared (composition: oleic acid, triethanolamine, glycen.:'ine‘
and distih;l.ed water); its surface t,ension 7 was 25.9 and 25.7 dynes/cm.
measured at 25°C by a du Nuoy tensiomster and by the pendant drop method,
respectively and its density p was 1.027 g/ml. |

The bubble diameter was measured from the average distance between
the centres of two néighbouring bubbles é.long the three axes of symmetry;
the assumption that £ilm thickness was negligible in comparison to bubble

diameter was proved experimentally. The size of the bubble raft could be



Figure 1 Paotograph of centrifugal bubble cell.
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Figure 2 Centrifugal bubble cell (schematic).
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measured in terms of the total volume V and number N of the bubbles and
the radius of the bubble raft £. Since air is compressible, V was measured
from the volume of the liquid sucked out; 2 was simply measured from the
photographs of the circular bubble raft. |

It was found experiméntally. tha.t .B decreaéed. with increa.sing speed
of rotatn.on w, but at constant w, .B reached a conatant value very rapidly
(Figure 3). It is evident that there could be no relative motion between .
the liquid and the bubbles under equilibrium conditions. Henceforth the
radius of the bubble raft is taken $o be the equilibrium value. |

| As O increaééd from .zerp,‘th,e decreas’e in 4 was :l.nitial]qr very

* rapid, then slowed down gradually and thenﬁ:l_.nfcreased_ (F;Lgure 4). | Photo-
gréphic ev_'idence showed that coalescence occurréd at and al‘ter the point
where £ dropped suddenly. If w was kept belew the critical speed, there’,._was
no coalescence and the compression of the bubble i-a.ft was. reversible, as
illustrated by Figure 5. | . _

On the basis of these preliminary experiments, deformation as a
function of the variables involved was studied. When posSible, only one
variable was changed at a time. |

3. RESULTS

At w = O, the bubbles can be considered as spherical, each being
surrounded by six others in a hexagonal array. ﬁhen w > 0, however, the
bubbles are compressed horizontally by the centripetal force and as a
consequence they expand vertically allowing £ to decrease. Each deformed
bubble has six flat circles of contact which grow with increasing w until
finally a limibting deformation is reached where a bubble becames a cylinder
with hexagonal cross section and of height h. Although the exact shape of
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Figure 3 Change of radius of bubble raft with time. Initially
2 =12.78 cm. at w = 8.76 RPM when w was suddenly
increased to 52.59 RPM. Zero time is the moment when w
was suddenly changed.

0-20

o101~

I-!/to

0-05—

0-00, ) I
% 56 100 50
w (RPM)

Figure 4 The variation of bubble raft size with w.
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Figure 5 The reversibility of compression of the bubble raft.
Closed and open circles for increasing and decreasing
w, respectively.
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a deformed bubble is difficult to determine, & simplified model based on
the experimental cbservetions is shown in Figure 6.

The most readily mee.sura.ble quantities which reflect the. defomafion
are £ and the d;stance between the centres of two neighbouring bubbles 2R
(Figure 7); their variation with © is given in Table I. It is, »haweve‘r,
more convenient to use (1 - 3/3 ) and (l D) in displa.ying the results, .
since both increase with increas:lng defomation. ' |

~ The defomation increased with increasing w, R = z and h, but
with dec_;feeeing radins of rotation r (Figure 8). The rate of increase of 2
defema.tion; hmver,’ decreased with inc‘reasing w and finally approaches
zero at high w. The effects of r and J were most pronounced at medium w,
while the effects of R and h were always enha.nced by increa.sing w.

These reeults can be readily explained. Inereas:l.ng W, 30 a.nd
decreasing r increased the force acting on"_the bubbles and therefore the

bubbles suffered more defornation. -Dei_'omation increased with increasing
}Ro, because big bubbles are more easily deformed than small ones. It sheuld_

be pointed ocut that in studying the effect of Ro’ h was also changed. ‘Thus,
these two effects were superimposed. | Increasing h allowed the bubbles to
expand verticaJ_]_J more freely so that they moved closer together, resulting
ingrea.t.er deformation. ‘

The speed of rotauvion is; however, the predominating factor. At
low w, all other variables had little effect on deformation since the bubbles
were only slightly deformed. At medium w, these effects became more pro-
nounced since a wide range of deformation became possible. The effects of r

and Eo were masked at high w, since there could be no further deformation

- after the bubbles assumed the limiting shape of hexagonal cylinder. On the

other hand; the effects of Ro and h:were always enhanced by increasing w,
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(a) -~ (b)

(c) (d)

Figure 6 Shape of a bubble at various stages of deformation.

(a) Each bubble has six circles of contact which grow
with increesing w. The bubble is still mainly spherical
with radius RR, (R > 1). The distance between the centres
of two neighbouring bubbles is 2DR, (D < 1), R, being the
original bubble radius (bubble volume v = 4R /3).

(b) The six circles of contact Just touch one another.
The two parameters R and D are related by R =D/cos 30°.
(c) The bubble, having a hexagonal section in the middle,
can no longer be considered as a sphere.

(d) An extremely compressed bubble has the shape of a
cylinder with hexagonal cross section and of height h.



\
(X

)

,,
GII
3
]

-

2626

(A
(XK
®®
Yor
\
@'
VL7 AN

Y
@
,,
A

RVAS

", ./ N Y
00;» %\p%g

Figure 7 Photographs of bubbles undergoing various deformations. G(RPM) = 0 (a),
8.75 (b), 22.20 (), 35.72 (d), ¥9.42 (e) and 63.81 (f); R,=0.184 cm.
Tnereasing deformation causes the bubbles to move closer together.

{a) - {c) correspond roughly to Figure 6a-6b, (d) and {e) to Figure 6c
and {f) nesrly approaches Figure 6d.
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~'_'Detomt:lon od.’ :Lnd:l.vidml bub‘bles and of ‘bubble raft.
“(a). Befect of B, on the deformation of individusl bubbles.

R(em.)  £(em.)  h(em.)" ZRO/h

o - 0111 J10.T 0- 259 . 0.855
. 0.163 . 10.6 o.loo o. 815 .

AAJ.].a.'l:r 3.75cn. .

(b) Bffect of r on the wmtion od.’ individual bub‘bles.
n. 001% m, ‘ -7022 Cﬂ- h = OOh‘o
w(RPM): © 8,71, A 21.64, @ 3h 40, A& h8 55, x 61.h1.

(e) Bffect of £, on the defmticn of’ muviam 'bu'b'bles.

: 'R°=0.162 cn., h = 0.40 cm., * = 2.75 cm.

() em. ): 0 6.50, A 8.61, @. 11.30.

(a Effect of 3. on the defomtion dr the bnb'ble raft.
-'RO- 0.

0,40 cm.
FRC®E o 6.50, A8.76 () 11.30.

() EfFect of b on the deformetion of individusl bubbles.

= 0,157 em., 4 =10.30 em., r = 3.75. cm.
cm.) ® 0.30, A 0.3%, 0 0.38, A 0.h2.
(£) BEffect of h on deformation of the bubble ra.ﬁ;

Rg 0.108 cn-’ “o uo3m

h(cm.) ® 0.200, A 0.225, O 0.250.

94



030

020

1-D

010

0201 .

n

O 10

r, cm.

030

1
0 20 40 60

w (RPM)

0-30~

0-20

l-{/{o .

010

030
- 020
o
N
010
000 L L L
) 20 40 €0
@ (RPM)

"{/to

020

015
010
005
000 ! L T
o 30 60 90
w (RPM)

95



96

because the limiting shape of the extremedy‘deformed bubble itself varied
with R ‘and h. - _

In conclusion it may be. said thsx smsll bubbles are more rigid,
that a small bubble raft is less defornuﬂile and thax tnﬂﬂiles near the B
centre are more defonmed thsn those close to the edge of the bubble raft

The relative radial movement betueen the bubbles and the: fosming
solution in ths centrifugal field caused (l) compression and deformstion
of the individual bubbles and (2). thinning of the film separaung the
bubbles. Although both processes conxributed to the experimentally msasured
deformatien, 1t can be shown 19) that the effect of il thinnd.ng is neg].‘lgible" =
by comparison. ’ ' -

A knowledge of the shape of the deformed bubble is essential for
theoretical analysis of the deformation process. In the s:imp].‘lfied model
illustrated by Figm-e'_é, the bubble at low deformation ((a) and (b)) is
approximated by & sphere with six identical segments cut off at 60°-angle
interval and at high deformation ((c) and (d)) the bubble becomes mose like
a cylinder than a sphere. For amall deformations, the shape of the deformed
bﬁbble can be calculated. .

Tt can be shown'?) from (1) the constancy of bubble volume before
and during deformation (since the pressure in the liquid generated by
centrifugation and the excess pressure in the bubble are negligible in
comparison to the atmospheric pressure), (2) the balance of the forces acting
on’'a single flat circle of contact under equilibrium conditions and (3) the

constancy of the total number of bubbles.in the raft (when therp is no
coalescence) that
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LB -9RD +30° +2=0, (1)
f_z_-_z_g_g 97r(R- D2) 2)
* V3R przna
2 ,
2 = f Hr, (3)

o

where RR  is the radius of the deformed bubble, 2DR | the distance between
the centres of two neighbouring deformed bubbles, 4p the density q;i.fference
between the bubble and the foaming Qolution and all other symbols have
alreoady been defined.

Though these equations cannot be solved exactly, because both

D and R depénd on r, they can be reduced, by making some appro:dma.tionslg) s
to

2. £
£
2 - fo (1 + 28 + 3P)rar , 4)
2
/K 1/2
B=-%+{§1g e () -F(r)]} ) (5)
3 214
F , 6
(=) = izl (21 + 1)1{1'1( 1)! (©)
187
K =—28L @
V3 B_spu®
with
p=1-D, 0.110 28 >0 ; (8)
ea=R-1, 0.027 >a >0 ; (9)
and

2

¢~ R a0



98

Equations (8) and (9) define mathematically the region of small deformation
where the theory is valid. |

Equation (4) was solved mmerically with the results plotted in |
Figure 9 to give a picture of the complicated relationships between the
varié.bles.

In Figure 10, #/# was plotted against v in (a) and (b) for two
bubble rafts. The agreement was good at low w, but at higher ® the f.heqry,
predicted less than experimentally measured deformation. The deformation of
the individual bubble B was plotted against w in (c) and (d) for two r's and
against r in (e) for = 8.7L RFM, all data being taken from a single
experiment., It can be seen that ﬁthe§.> B xp. at small r, but Btheo.< B
at large r.

e@"

Although the theory is not in perfect agreement with the
experimental results, it does give correct qualitative rela.t‘idhships
between the variables (Figure 9). It may be noted that h does not appear
in the theoretical equations, as there is very little vertical expansion
in the stage of low défomation (from 2R to 2.054R_, since 1.027 >R >1)
and the experimental conditions were such (h > 2.25R°) that there was always
enough room for free vertical expansion.
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Figure 9 Numerical evaluations of Equation (4) for 7 = 25.8 dynes/cm.

and Af =1.027 g/ml.

(a) Effect of £, on the deformation of individual bubbles.
R,= 0,150 cm., r = 3.75 enm.

£ (em. )z (1) 5.00, (2) 7.50, (3) 10.00 ‘

(b) Effect of £,° on the deformation of the bubble raft.

"R, =0.150 cm,

£, (em. ): (1) 5.00, (2) 7.50, (3) 10.00.

(c Effect of r. w = T.50 RPM, R, =0.150 cm.

£, (em.): (1) 5.00, (2) 7.50, (3) 10.00.

(a) Effect of r. w = 10,00 RPM, £ = 7.50 cm.

B, (em.): (1) 0.100, (2) 0.150, (3) 0.200..

(e) Effect of R, on' the deform Gion .of indirldua.a. bub‘bles.
£,=T.50 cm., r = 2.7 :

BR,(cm. ): (1) 0.100, (z) o.150, (3) 0. 200.

(f) Effect of R, on the deformation o:f‘ the bubble ra.ft
£o="T.50 ecm.

Ro(cm.) (1) 0.100, (2) 0.150, (3) o. 200.
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Figure 10

Comparison between theory (curves) and experiment (points).
Deformation of bubble raft: (a) B = 0.163 cm., £, = 8.61 cm.;
(b) R, = 0.15T cm., £ = 11.30 em.

DPeformation of individual bubbles: R, = 0.158 cm., £.= 8.08 cm.
Effect of w for * = 0.75 em. (c) and r = 2.75 cm. (4).
Effect of r for w = 8.71 RPM!(e). 4

It should be pointed out that the theory is valid only for
small deformation (B < 9.110) and consequently there were
very Pew experimental points available for comparison in

this region. E
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APFENDIX IV

DETAIIS OF APFENDIX III

L. CENTRIFUGAL BUBBLE CELL

The cell (Appendix III, Figures 1 and 2) has an inner diameter
of 30 cm. ‘a.nd' a depth of 3 cm. On the bottom surface of the transparent
lucite cover a series of concentri¢ circles 1. cm. apart was engraved to
facilitate th_e measurenent of r. Wlﬂ.le an O-ring between the cover and the
cylinder rendefs the cell air tighit, a gas escape in the centrg;' of the cover
provides an exit for air and the undesirable foam generated in filling the
cell.

Two. interchangeable pistons with diameter of 2% cm. are available;
one made of lucite to allow transmitted illumination and another made of
carbon black epoiy resin to proﬁde a background of high contrast for
incident illumination. The cylinder, the piston and the cover all rotate
as a unit so that there is no shear stress between them. The position of
the piston is adjusted by turning the micrometer th;lmblé-and h can be read
off directly from the micrometer to 0.05 m. A key mechanism allows the
piston to be moved up or down even during cell rotation. _

Two separate channels were tunnelled through the cell from two
stationary inlets to the movable imner part of the cell. The 16 nozzles,
connected to the gas vchannel and evenlyldisbributed around the cylinder, can
be fitted with different sizes of hypodermic needles for the generation of
gas bubbles of desirable sizes. By means ‘of rotaryvé_eal tﬁe two channels
remain open even when the cell is rotating. | o

The centrifugal aggregation cell is driven by a Bepco variable
speed d.c. motor with a speed range of 300 -~ 3;000 RPM and maximum output
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of 1/4 HP. The speed of the motor is regulated by a controller, the scale
reading vo.f which is linearly proportional %o the motor speed throughout the
entire speed range. Through two c;&terent conbinstions of flywheels tao
ranges of cell speed of rotation az;e avallable, one from O to 150 RPM and
another from O to 300 RPM. The tachometer vi"s connected to a reduction pulley
so that w can be mea.aured to 0.03 RFM _

'.l'o carry out an experiment, the cell is first cleaned thoroughly
and then filled up with the foaming solution.. The bubbles are generated by
punping air into and sucking liquid outbf the cell simﬁitaneoualy at the
same constant rate. When enough bubbles are generated, the piston is reised .
to a distance slightly greater 'bha.n 2R below the cover. The bubbles are
then compressed by rotating the cell. Photographs of the bubbles are taken |
at various stages of compression for de‘bailed analysis.

2. THE RELATIVE TMPORTANCE OF BUBBIE
DEFORMATION AND FIIM THINNING

The packing of a monolayer o:@‘ uniform bubbles confined between the
piston and the cover is equi#alenb te that of the circles on a planel"?').
It can be shown that for hexagonal packing the number of circles per unit

area is

a=Yl, )
6a

where a is the radius of the circles., If there are N bubbles of radius B
in a bubble raft; then the total volume of the bubbles is

V=N bR g (2)
and the area necessary for hexagonal packing of all these bubbles is

=N a2
A== 1:.80 ’ (3)
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where 8 is the radius of the stationary bubble raft. Combining (1), (2)
and (3) leads to '

1/2
= #
v W
and , 6NRZ i)1/2 )
o (V3_ T * : ' (5

The radius of t_he bubble raft reaches minimum when the bubbles
are extremely compressed a.nd. fhey can be co_nsidered as cylinders with. hexa-
gonal cross sectién and with the height equal to h. If the total volmume of
the bubbles is fixed, then

V= nliinh ‘ (6)
and hence
y Y2
4 0= GR . (7
Dividing (7) by (4) gives -
2 2w, 1/2 = 1/2
2o (2 \Ig‘h =078 - (8)

o
In the special case when h = 2R (8) vecomes

% in

=8 = 0.778 . )

o

Thus, when h = 2R , ‘min is about 78% of lo and if h> 2R , £ . can be
reduced still further. '

If the distance between the centres of two neighbouring bubbles
in a stationary bubble raft is

—@+8EB,, (10)

where SRO is the f£ilm thickness at zero speéd, then the bubble raft can be
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considered as a raft of N egircles with radius R'o at the stationary state
and B at the extreme state of film thinning. It follows from (5) and (10)
that | '

Y
a4t (11)

o
Tt is clear from Table I that even whem 5 = 1072, i.e., & film thickness ia
the order cf lO"ch., ‘since R in all experiments is in the order of -]_.O'lcm., |
the maximm possible decrease in # due to film thinning alone is only i%.

Thus the change in # due to the defomtioh of the individual
bubbles is obviously n;nch more important in comparison with that due to £ilm

thinning. In fact, 'the effect of f£ilm thinning is negligible.

3. IIERIVATION AND APPROXIMATE SOLUTIONS

OF THE BUBBLE RAFT DEFORMATION _EQUATIONS
(a) Derivation

Under our exper:lmental conditions the pressure in the liquid A
generated by centrifugation (max. 5600 dynes/cm. ) and the excess pressure
in the bubble (max. 520 dynes/cm. ) are negligible in comparison with the
atmospheric pressure. Furthermore the temperature fluctuation during an
experiment was less than 1°C. Thus, the volume of the bubble remains constant
during deformation. ' ' :

According to our simplified model of a deformed bubble (Figure 1)
the volume of the deformed bubble 1is given by

v = 3n(B)> - 6v' , (12)

where

vt =

(13)
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TABIE I

Effect of film tM__

5 o | 0% | 1072 192 | 10t
1+3 1 1.,0001 - - 1,000 . 1,010 1_..100
@+8)T | 2 1 0.9999 | 0.999 0.990 0,909




(a) NON-DEFORMED BUBBLE
AE=EB=R,

(b) DEFORMED BUBBLE
AF'=FB'=RR, , R2I
A'E'=EB=DR, , D<I

Figure 1 Definition of dimensionless parameters D and R and constancy of bubble volume.

(c) VOLUME CONSTANCY

-g—erz-‘ 1
. 7Re
V=73

2 n(RR,) - 6v'

(R-DY (2R +D)

60T



 Bquating (12) with v= ym3/3 and simplifying the resulting equation
" give (III - 1)
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43 -9R2D +30° +2=10. (111‘-1) .

It must be pointed out that (III - 1) is valid only when the
aix circles of contact of the same bubble are isolated from one another.
The limiting state of deformation is reached when the circles of contact
just touch one another (Figure 6b, Appendix III), i.e., when |

D __2D
R = cos30° * ()

\3
By solving (III - 1) and (14) simultanecusly one obtains the following
limiting values of D and R: .
D = 0.8896 and R=1.027 . (15)
Thus, the range of low deformation can be exactly defined by
1>D >0.8896 or 1.027 2R 21 . (16)
If a ring with radius r and width dr is considered as an element
of the bubble raft, then the number of bubbles in it is 2nrndr. Since the
centripetal force acting on a bubble radially inward is LpﬁRzA’pwzr/B', the -
force acting on the periphery of the ring element is

aF = %ltsz sownrdr . (17)

Since the ring is also being pushed by the bubbles outside of it, the
total force acting on its periphery is

2
F= -;‘-Gtzﬁg pr2 fnrzdr . ' (18)
r

The force acting on a single bubble at a distance r from the centre of

the cell is )

£=F. o_8 i’v‘Apmz -l;); fnrzdr . (19)
r
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The error introduced by this approximating factor 2DR °/2nr is less than
one per cent when r > SRo’ and less than one-tenth of & per cent when
r> 1OR°. | .

in a rotating bubble raft, one can consider the deformed bubbles
as circles of variable sizes, only the distance between the two neighbouring
bubbles 2DR° becomes the dlameter of the circle.‘ The number of bubbles per
unit area is therefore given by ' |

3
6D23§ :
Substituting (20) into (19) finally yields
2
r=&¥zna§mm2%f?5-%£. (20)

r

Since the excess pressure in the bubble is given by &p = 2‘\'/RR°
and the area of the flat circle of 'géntact is uRg'?‘F(B‘.z - D2) (Figure 1), the
force acting on a single flat circl; of contact from inside the bubble is
therefore .21t‘TB°(R2 - 2)/3.

Since there is no shear and (Ré/ lo) << 1, the force is isotropic
and consequently the six circles of contact of the same bubble are equal in
area. Furthermore, (21) indicates that in a rotating bubble raft the bubbles
at equal distance away from the centre of the raft experience centripetal
force of equal magnitude. Thus, it is permissible to consider a bubble lying
on one of the axes of symmetry instead of any arbitrary one lying on the |
circumference. This greatly simplifies the geometry involved.

For a bubble lying on one of the three axes of symmetry, the
radial direction from bubble centre to raft cehtxéi_s is per[.;endicula.r to one
of the flat circle of contact. The force acting on a single bubble f and
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that on a single flat circle of contact F, is then related by the following

equation

f=F,+ 2chos60° = 2F, . (22)

In the equilibrium state, the force acting on a single flat circle
of contact must be balanced. Hence from (21) and (22),

£

2 9 (2 2)

»® 3 'Roapwznn

For a stationary bubble raft with radius 4 o the total number of
bubbles is 8 '
o “V-B_zf
N= | 2nrndr = = s (23)
° 6R§ '

since n ='\/,’_5'/6R§5 is independent of r. For a rotating bubble raft, the
number of bubbles per unit area is given by (20) and therefore

2
N=ﬁ—27‘ f—ﬁr‘-g- (24)
BB:O o D

However, as long as there is no coalescence, N is a constant. Equations

(23) and (24) can therefore be equated to give

2= f i, (IIT - 3)
g D
)
The remaining problem is to solve equaticns (11T 1-3) simultaneously
for the three unknowns R, D and 8. The main difficulty lies in the inte-

grations appearing in (III - 2) and (III - 3), since both R and D are

functions of r.
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(b) Approximate Sclutions
If we let

a=R~1 ‘ (III - 9)

and
p=1-D, (111 - 8)
then according to (16) the range of low deformation is defined exactly by
'0.027 >a>0 and 0.110> > 0. (25)

Making use of the following a.épmzd.ma.tions

R2=l.+2a, (26)
R =1+3, (27)
Dz=l-2ﬁ+§32, (28)
D3=1-3p+352, (29)
and D2 =1+28+38%, (30)

(III -~ 1) can be rewritten as a linear equation of a:

20(1 - 3p) - 38° =0 . (31)

The solution of (31):
2

“=§(iiiL3§7" (III - 10)

directly relates the two parameters; consequently it is now sufficient to

" use B only. After replacing R and D with 8, (III - 3) and (III - 2) becoms

32-'5‘5‘ y’ _
—g— = f(l + 28 + 38%)rdr (III - 4)
Q
and 2
2 3)
f 1L+ 28 + 3[32)r2dr = 181"(?32’ 4f_+ 38 PN (32)
) V3 R apuw (2 - 88 + 96°)
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respectively. However, these two equations are much too complicated to be
solved as integral equa.tionsB ~6) . In fact, even the differential equation
obtained by dif;ferenbiating (32) wi_th regpect to r is too complicated to be
solved. Further simplification is therefore necessary.

Equation.(BZ) can be rewritten as

2
: 2y 2 187
1+2 dr = ———=—3|? s
i[ (1 + 28 + 3p°)r V3TR°pr2[ ) (33)
where | £(B) = ﬁ[z(ﬁ)] | (34)
. apl
and g(p) =&=4pxr 28, (35)
2+ 88+ 98

It can be shown that in the region 0.110> B> O, g(B) can be replaced by
a linear function of B without introducing any significant error. When a
plot of g(B) vs. B is made, a straight line can be drawn to substitute for
the real curve and the slope of the straight line is found to be 2.5. The
plot is shown in Figure 2; the error introduced by this approximation is
shown in Table II to be less than one per cent in most cases. Thus;,

g(B) =1+ 2.58 ; (36)

and (33) becomes
2

f(l + 28 + 352)r2dr - 18T
r

. = B(L + 2.5) . (37)
1)
[¢)

Differentiating (37) with respect to r and letting

3 Ro.ﬁpm2

K (IIT - 7)

lead to

Kr(L + 58)dB + [KB(L + 2.58) + (1 + 28 +3p%)r%far =0 . (38)



115

1-30

1-24

g(B)

1106

1-00¢f

0-08

012
ﬁ; :

Figure 2 The approximation for g(B).

"The slope of the substituting
straight line is 2.5. '
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TABLE II
 The approximation g(B) =1 + 2.58
B g(8) | 1+2.5p | bsotmbe ?&fﬂ'g)
0.0000 | 1.0000 | 1.0000 | 0.0000 - 0.00
0.0100 | 1.0205 | 1.0250 0.0045 0.4k
0.0200 | 1.0421 | 1.0500 0.0079 0.76
0.0300 | 1.0648 | 1.0750 | 0.0102 0.96
0.0400 | 1.0888 | 1.1000 0.0112 1.03
0.0500 | 1.1140 | 1.1250 0.0110 0.99
0.0600 | 1.1407 | 1.1500 0.0093 0.82
0.0700 | 1.1689 | 1.1750 0.0061 0.52
0.0800 | 1.1986 | 1.2000 0.00L4 0.12
0.0900 | 1.2302 | 1.2250 |- 0.0052 | - 0.42
0.1000 | 1.2636 | 1.2500 |- 0,0136 | -1.08
0.1100 | 1.2990 1.2750 | = 0.0240 - 1.85




11*?

Though (38) cannot be solved analytically by the well known
methods for differential equations of the first order and of the first

» it can be reduced to an exact differential equation by intro-
dueing the approximation ‘

1+28 +3p°=1+28 +58%, - - 39)

which is quite reasomable, since 0.1102> B > 0, Then the solution of
(38) becomes |

' 2 2, 2, | |
f rzer /K dr + Kpre® /K + 2.5$2rer /K const. ‘ (40)

Substituting the boundary condition that

B=0 when r=2, (41)
into (40) and letting
ﬁzerz/ %ar = F(r) (42)
lead to |
F(£) = const. (43)

Substituting (43) into (40) and solving for B then yield

2
-r /K 1/2
B=w %— + {%5* 5;5'1';;'[1’(‘) - F(r)]} . (IIT - 5)

The values of B at two special cases can be obtained frem (III - 5)
even though F(r) is still unknown. (1) When r = L, F(r) = F(8), = 0;
(2) when w = 0; K— o r2/K—->Q, e"rzlK =1, 1I/K—0, B = 0. The first
case is the boundary condition and the second case states that there is no
deformation for stationary bubble raft.

After many unsuccessful attempts to integrate (42) by parts and
by various transformations and after frultless searches through the tables

510)

of :i.n’t‘.egra.'t.:i.ozz.s9 s integration by series was adopted. Thus,
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2 2 In 6 8
er/K-_:l-‘--E—--{- r2+ r3+—1-‘_4+ voee ' (A’h)
2IK® 31K 4K
and
2 had 21+
F(r) = 26T /Kdr = —L o (45)

S i+ ra - 1))

As can be proved with the ratio test7) s the series F(r) converges
rapidly, especially at small r and la.rge K. The approximation reached for
F(r) when r = Tpax 30d K = Kmin is therefore adequate for all other possible
values of r and K. Under our experimental conditions, T = 25.8 dymes/cm.,

Ap = 1-027 s/ml, rmm: = 1090 cm.’ (Ro)m = 00200 [+41: 1% and wnlax = 2000 RPM=

2.09 rad/sec. According to (III -~ 7), K = K in When R = (Ro.)max and

w=uw thus . .
2
K, =300 em® or K >10%m.? (46)

and (45) becomes

-}

F(r) = Z ;'*03
= (21 + 1)(1 - 1)!

If the ith temm is less than one per‘ cent of the first temm, then-

(2L +'1§(i TIT<I6°3 or (LG -1 > 30.

It can be seen from Table III that only the first five terms need

to be summed up and hence

2 21+
F(r) = ) L (I1I - 6)
& e+ 1 - )

The three equations derived earlier have been reduced to

2 )
2
-g— = f(l + 2B + 38%)rdr (III - 4)
° .



TABLE III

The approximation sum of the series F(r)

i | 20+1| (i~ 2)) | (284 1) (4~ 1) eI %‘)%_ ) § = 3‘23(1. ]
1| 3 1 3 333.3 333.3

2 5 1 5 200.0 533.3

3 7 2 L TLok3 604,73

4 9 6 54 18,52 623.25

5 | 1 24 264, 3.788 627.038

6 | 13 120 1560 0.6410 627.679

7 15 720 10800 0.09259 627.772

8 | 17 5040 85680 0.01167 627.783
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2
-r“/K 1/2 |
p=-3+ {515 + 2 [F) - Fﬁ"]} , (I - 2)
- 5 LR |
here. F(r) = § AIL -
were : S @+ uxita - ! ( ?
187
and ' k=-—= . -
T (111 - 7)

Substituting (III - 5) and (III - 6) into (III - 4) and integrating the
resulting equa.ﬁion give
' £,(8,2,K) =0, (47)

which can be solved for :

# = fz(“o’ K) . ' | (48)
By substituting (48) into (III - 5) the final solution for B can be
obtained: '

B ='f3(‘°9 K, r) ° (49)

For any given bubble raft, the quantities fp, 7T, Ro’ and 8 o are
known,; then 4 at any value of w can be calculated from (43) a.nd B at any
values of w é.nd r from (49). However, the steps involved here such as the
integration in (III - 4) and the solution of (47) are so complicated that
only a numerical solution is possible.

The basic requirement in the computer programming was to find out
for a given bubble raft at a given w a suitable value of £ such that the
relative difference between the left and the right hand sides of (III - 4) .
was less than one per cent. With this accepted value of £, the values of
B at different radii of rotation were then calculated from (III - 5). The

entire programme was then repeated for other desirable values of w,
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4o  COALESCENCE IN CENTRIFUGAL BUBBLE CELL

Iwo attempts to study coalescence in the centrifugal aggregation
cell were made: 1) coalescence of air bubbles at air/liquid interface in the
rotating cell and 2) coalescence of bubbles in rotating bubble raft.
Although they have not been successful, a brief summary is given here,

(a) Coalescence of Air Bubbles
at the Air[Id.gg_i‘ d Interface

According to a theory which Ghapﬁélearu) advanced for the approach
of a fluid drop to a liquid/liquid interface, the rest time of the drop
should increase when the force pushing them together is increased. This was
tested in the centrifugal aggregation cell since the centrifugal acceleration
can easily be changed by varying the speed of rotation and the radius of
rotation. _

Unfortunately the use of liquid/liquid systems was found to be
impossible because one of the liguid pair caused the cell to leak. When-air _
and aqueous Aerosol AY (American Cyanamide) solution were used as the two
fluid phases, the rest time of air bubble at air/Aerosol AY solution interface
could be measured under certain conditions.

Air bubbles were generated at a constant rate of n bubbles per
second. They then travelled through the aqueous Aerosol AY éolution because
of the density difference and finally reached the air/liquid interface.

When a steady state was reached, the mmber of bubbles reaching the interface
was equal to the mumber of bubbles disappearing (by coalescence) at the
interface and the net number of bubbles remaining at the interface N became
# constant. Then one has the relation

T =

8=

where T is the average rest time.
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 If the concentration of the Aerosol AY solutions, the speed of
rotation of the cell and the rate of the generation of bubbles were properly
chosen, the rest time of the air bubble could be measured. Otherwise,
bubbles might coalesce with one another on their way to the interface or form
layer thicker tha.n cne bubble at the interface. While only preliminary

results were obtained from these steady state measurzments because of the

difficulty in the proper choice of experimental' conditions, they indicate
agreement with Chappeleart!s theory.

(b) Coalescence of Bubbles in Rotating Bubble Raft
A rotating camera technique was developed for the experimental

study of coalescence of bubbles in rotating bubble raft. A 16 mm. Bolex

movie camera with a special wide angle lens (angle of view > 120°) and a
circular fluorescent lamp were mounted directly on the centrifugal aggregation‘
cell (Figure 3) so that there was no relative motion between the bubble raft,
the camera and the light source (Figure 4). Coalescence of bubbles in bubble
raft was found to be very complicatedo

The critical speed of rotation of the cell for coalescence, defined
as the speed below which no coalescence of bubbles took place, was not sharp.
It could be better described as a critical speed zone with latitude of about
5 RPN,

The first instance of coalescence could occur at different locations
in the bubble raft and after different times of cell rotation, but the
probability of coalescence was greater at smaller radii of rotation and with
increasing duration of cell rotation. Once a large bubble was formed by
coalescence, it was much more probable that further coalescence would occur
between the large bubble and the neighbouring small bubbles than betﬁeen
two identical small bubbles elsewhere in the bubble raft. Thus, one instance
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Figure 3 The arrangement for mounting the ciné camera and the
i circular fluorescent lamp directly on the centrifugal
bubble cell.






Photographs of a bubble raft in the centrifugal bubble cell taken with the
rotating camera technique. As cell speed increases from 10 RPM (a) to

133 RPM (b), the bubble raft "shrinks" and finally coalescence takes place
at about 3 minutes later (c). Distortion was caused by the wide angle lens;
the series of concentric circles are actually all 1 cm. spart. The white
circular belt is the reflection of the fluorescent illuminstion lamp.

o
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@ e : of coa.lescence led to a.nother and. coalescence epread ont from an cr:l.gin
R Although coalescence was occeeiona.'l_‘ly obeerved to take place in isolation ,
. with l:l.ttle or no further coalescence in the eurrounding a.rea., J.t very |
o otten epreed out :lmedie.tely and very ra.pidly for a. very short. per:l.od of
" time from the orlg:inal point: of. cealescence. & fow thousand bubbles could
» ¢ __g'--f-‘_-“" esce wlthin 10 seconds.. The direction of spread conld be either radially
o inuard or out\vmrd, or along a circmnference or a ep:l.rel There conld be more
- the.n one orig:l.n of. coe‘l.esconce. S o |
‘Ina bubble ra.tt, consist:l.ng or e few "cryst.e‘l.s" o;t’ bu:bbles, the N
' t.‘:Lrsl'. instance of coalescence was moet H.kely to ta.ke place at the boundaries
‘between cryetalso Once coa.lescence ccc‘umd, :Lt spread readily a.long t.he '
= boundar:l.es of the cryetals. 5 " L o |
| In summary it may lae qaid the'b the proba‘bﬂ.ity ef coalescence in
a rota.ting bubble ratt :anreaeed u:l.th increasing speed of rotetion, duration v

of the cell rotation, bubble size- and bubble raft size, bu'b with decreasing
'rad:lue of rotation, |
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__Apmnmvv |

* MEASUREMENT OF INTERFACIAL TENSION
: FROM THE SHAPE OF A ROEI.‘A‘I‘ING DROP

AB‘STRA(‘!T‘»

Vonnegut's approxlma.te solut:.on for the sha.pe of a.

o fluid d:rop 1n a horizonta.l rotating tube filled. with a. liquld

,,°f hlgher dens:Lty has 'been extended a.nd numer:.ca.l sol\rtions ‘ v
b'based on exact equations presented from whieh it is possi'ble to
| y calcula.te the 1nterfacia1 tensn.on from the length of the elongated
;drop along the axis of rota.tion when the d:cop volume, speed of
rotation and dens:.ty d:.fference between the two phases are lmown“ e
An experimental method is descrlbed and. results g:!.ven which show : :’
good agreement with other methods.-, The technique is conszdered : G
to be especially useful for systems in wh:.ch either phase is-
highly vn.scous or v:.scoelastic. The proposal by Vonnegut that
the method be used to measure surface pressure-a.rea. curves of -
insoluble monolayers is shown on theoretical grounds to have

limited applicability.



‘ teneion and- developed en eppro:dms.te theory in wh:.ch the bubble is
: _considered to be a cylinder with rounded ends. . ‘I‘he theory is only

- sultable for the application considered in this paper. :

429

S INTRODUCTION

When a fluid drop (phase l) is placed in a J.lquid of higher

density (phase 2) conta:.ned in a roteting horizonte... tube it becomes

- elongated a.long the a.xis o.f rotation until the deformation forces dne
o the. centrifugal field are ba.ls.nced by the interfacia.l tension. o

strictly valid at high speeds of rotetion, but Silberbergz) improved o

© it by calculsting correction fe,ctors for low speeds. The method involved

measuring the radius of the cylinder end thue required an optica.l

errrectiun fa.ctor which we have found to be a serious limitation. We '.':'.,

' hsve extended the theory by using exact equations for the bubble she.pe

and have developed an experimental method based on measuring the bubble e

length without the need for optical correction. : Y “
Rosentha13 ) has recently presented similar cslcula.tions by a v

somewhat different method, but his results are less detailed and less . -

2. THEORETICAL PART -
It is assumed, as-beforel;B ) s that the angular velocity of
rotation w is sufficiently high. that buoyancy due to gravity is'"ne‘gli.gible :
and that the drop is aligned on the horizontal edcis of r,ota.tion.‘ _
Cylindrical coordina.tee X, y are chosen (Fig. 1) with origin at thelleft-
hand end of the drop. The emgle between the normal of the :Lnterface at |

(x, y) and' the negative x-direction is 6, and the semi-axes are x o end Vo5
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 TUBE WALL

;gg; 1 Coordinate system to describe the shape of a drop . . S
rota.ting about a horizonta.l axis. T .

-

X ot~

%‘% _:;._gure 2 Shape of a rotating drop for various values of a. :
- The radius of curvature at the drop end serves as
the unit of length. : ‘



| . - across the interface.

~ the densities of the drop and the outer phase are dl a.nd. d (d. > dl)

.’131 g

and. the n.nteri‘acial tension is 'Y Because of symnetry, :.'b is suffic;ent.l_

.'oo cons:.der only the quarter drop between 0,0 s,nd x 0. y ..

' The pressure outs:.de the drop lS g:.ven by

’? . e o d2 Y

CPTRYTZ s SRR el

where a is the. radius of curvsture of the drop surface at the orn.g:.n. '_

Thus, at y inside 't.he drop S NG f : o ' : l o

dl“’Y

: ! =po+ a‘» ;o | L . (3)

i ﬁse that at the surface .
- Do , aa

2

~ where M= dz dl

The pressure d::.fference is bala.nced by the cap_llary pressure

w=1 @ 1), S ®
LS I : - -

. Where the principal curvatures are

o
wﬁ
5

X - ﬁ@ic/dyz =
1 1+ (dx/dy)2]3/2

’ o (6)

and

(]

1 dx/dy sin
P2 y[L+ (axay)?]H 2"

. (7)



Equating (4) and (5) yiéld.shfor. the equation of in'b:e'rface‘ .

dsin® | sin® _ 2 _ Adwy~ (e
&y oy a ¥ 2N

s which can be written in the dimenéionless i’orm ‘

TS e . g;in sin 2. - a.!z AT (9) CANEI

- Thus » the shape of the drop :Ls determined by the dimensionless
. pa.rameter o N

Equation (9) can be :.ntegra:bed 0 give

o

um-xu-q o .v', j(m) '
or
o troel S e

__xz(l - Q-_Yi)z]l/? |

where X = x/a. | .
‘Several useful relations follow readily:
1) When IT=7Y, sind = 1, hence from (12)

¥ -4 +4=0, | ()

one of whose roots gives Io as & function of a.




" Since v

2) D:.fferentiating (12) ylelds

dsme-(l LYZ}dY - f(is)f’-*- |

“wh:n.ch when mult:.plied on ‘bhe left-ha,nd side by tan® and 'bhe right-ha.nd
N side by dX/dY, and integrated between the origin and ( ) 1) ylelds

| A=, 3_ f xzdx o g

where V is the ,,velme .of the dfepf oﬁé__' f_inds‘f, from f(16) ’

h s_l“xo-l). e an

- )

where r is the ra.dius of a sphere of the same volume as the drop.

‘ 'Equation (17) reduces to a useful fonn 'bo convert a to r

a «

2z - 1)7V3 S :
3) At high w the drop is closely e.pprozdmated by a cylinder with rounded
ends. In the cylindrical part dsin®/dY = 0, 6 = 90° and Y =Y and (9)
becomes | | |

3 o -
‘q*ro -_2Y°+1—o. o - (19)

Combining (19) and (14) yields for a long cylindrical drop:

Y =3/2, L (20) .
and the highest possible value | |
| - «=26/21, | (21)
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Gombining (10) R (20) and (21) leads to Vonnegut's equa.t:.onl> N

-Adwy3

,’T

. For the lim:.t:.ng va.lue of a., (13) can be readlly :.ntegrated 'bo ya.eld for-
| . the enda of the cyl:i.ndr:.cal drop e ‘

: iS:ane Y = y/a = 3y/2y 5 th:.s equation is n.dentical to Vonnegu'b's ""'i:"‘
equation (16)1) o T i B SRR
o For 0 < a, < 16/27, (13) can be integra.ted by mak:mg the subati—- -‘
'_‘.‘bﬁti‘o‘r'l o S

}tp' | give‘“‘ |

x——rf )U2f0~i ‘@  »(§)f*

It q > qQ > q3 are the roots of the cubic term in the denom:ina.tor it can
be shown that
l—l-ﬁ% . CONN

The three roots are alwaye real over the possible range of a,

and are conveniently " a.lua.ted trigonometrically“) in the form

a3 = %_cos(% + 120°) + -:31'— ’

. where .

' cos¢=l-géza..
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. and @ is defined by
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. Since the interva.l of q over wh:.ch the n.nt.egra.l (25) must be evaluated

is ‘ql €q <1, the solut:.on 155 )
x=- -——(—3_: [qluk,m - (ql o) +
Q. ql q3) o o
(g qz)ta’@ Vi~ kzsm ¢] 0, (27) -
where F and E are the _ellipta.cx-. _in‘tegx_fa.lg‘».;oi‘? the f_ix_'S‘b and second k:.nd,
k2= Q@ ',";qz .
BTy’

SO
S,

ki qzsm a8 (0< g€ 1‘-) | o (28)

q=

At (x Y ) » 4=gq and 9= 0 the bra.cketed term in (27) vam.shes so
that | |
S C=X . L : . (29)

At the origin X =0, Y=0and q=1

X, = =R [P - (o) - ay)B008)) +

Va(q - a5)

(%L - q3)tan¢l V1l - k.smzﬁl] ] (30)

where P = ¢l when q = 1.
These equations allow the drop shape to be computed for any -

6) . Then all dimensions

value of « using tables of the elliptic integrals
ars known in wnits of a and can readlly be expressed in terms of »r us:.ng

(18). Instead of a the more convenient shape-determining factor cx® can
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" bo used by coubining (10) and (18): E

o’ =§E) =% -1. Gy

Table I feport.s the values of the most ‘im;»brtant dfbp paramete‘rs. .

. for various values of a, whilé Fig. 2 shows the drop vshapelfc;r sefverai'f. o

f_cases‘.* | : .

At values of a greater than in Table I (when the ééntra.l part. -

" of the drop is effectively cyls.ridriegl) the following oquations apply e

with suffidient. accﬁxfacy: A o o o : R | - L
. | as/2, (@

From (31):' . | .X°=cx'3+l. . ' ‘ ',.(34)‘ .
) From (31) and (32): j:: = %(crs) ¢ ’ - (35) o
s %5 207 |
Fromv(3h) and (35) _;‘2_3.9_;_3;[‘1%. . - . (36)
(¢x?)”
oy -1/3 e -
From (39) and (35)i 2= () | or y =2, 6D
CFrem (36) ana (7): | =Bl 1) . (38)
A "

Equation (37) is Voxmegut'sl), but for reasons stated earlier
(36) is more useful in experimental work; Fig. 3 shows xo/r and yo/ r as
a function of the independent variable cr3 -

# For all but the last six values of a in Table I, the shape parameters
were calculated by mumerical integration of (9), using an IBM 1620
computer. For the highest values of a this procedure was too time-

" cons and the table was completed by computing Xo, Y,, r/a and cr3

. from (30), (26), (18) and (31), respectively.
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TABIE T o
.Calculated Shape Parameters of a Rotating Drop. - IO Y
o r/a . orS x /e by

0 .} 1000 }.0 1 1,000 .1 -1,000 ::f- 1,000
0,05 | 1,017 | 0,0263 | 1,009 {. 0.996 . 1.013
‘0,10 - . | 1,037 . 0,0557 .1.,018 .} 0,090 ] 1,028 -
0,15 1,058 . 0,0888 ~1.029 1. 0,985 | 1,044 -
0.20 1,081, | .0.,1265 |' 1,042 | 0,980 .| . .1,063

- 0,226 1,095 0.1476 1.048 - 0,976 ' | ' 1.074
0.250 { 1,108 ©0.1703 | 1,086 | ©.0,973 .| 1,085 .
0.276" - -| 1,124 . ..0.1961 1,063 | 0,968 1,098
0,300 " |- 1,140 - 0.2222 1,072 <} 0,986 |- 1,111 |
0.326 - | 1,188 . 0.2521 " . 1,082 | 0,960 | 1,126 .
0,350 | 1.177 0.2864 ©1,002 0,966 . |- 1.143
0.375 1,198 .0,8227 | 1,104 - | 0.950 | 1,162
0.425 . |  1.260 '0.4146 | 1,132 7 | 0,937 | -1.209 °
0.450 - | -1.281 0.4727 . | 1,160 - 0,928 1,238 .
0,475 1,818 -~ | 0.5435 | 1.17 0,918 1.276
9,600 - |’ 1,363 0.6330 | 1.198 0,807 .| 1,321
0.526 ~ | 1.421 -0,7636 1,284 . 0,892 . 1,884
0.550 1,504 0,9354 | 1.287 - 0,869 1,481
0,556 1,526 0,9854 1,301 0,863 - 1.508
0.560 1,550 1.043 1.318 . 0,857 1,639
0.566 1,578 1,111 . 1,338 0,849 1.676
0.570 1.611 1.192 1.361 . 0,840 - 1.621
0.575 1,662 . 1,296 1,390 - | - o0.828 1.678
0.580 1,704 1,435 1.429 . 0,814 1.756
0.5825 1,737 1,528 . 1,455 0,804 1.809
0. 5850 1,779 - 1,648 1.488 0,792 1.878 .
0.5900 1,925 2,106 1,613 © 0,761 - 2,148

.-1 0.5910 1,986 2,314 1,660 . |- 0,734 2.276

. 0,5920 2,009 . 2.739 1.781 .~ 0,702 © | 2,688
0. 6922 2,150 2,944 1.834 "~ 0.688 ‘2,667
0,5924 2,217 3,227 1.907 0,670 2,846
0.5925 | 2,289 3,566 - 1,990 0,661 3.069

.. 0,69266 2,366 3,869 2,068 0.634 3,261
0. 69267 2,412 4,161 . 2,140 - 0.620° 3.462
0.60268 | 2,468 4,463 2,209 0,606 8.646




8
- Tj—TABLE I-+- EQUATIONS (36) and (37)~—
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o
s
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20 25 .



Sﬁberbergz) cencluded that (37) is applicable when the axis
ratio x /y_ > 3.5, in general agreement with the present calculations,
although the choice of this critical value :Ls arbitrary, and deéends on
the accuracy being sought. | |

3. EXPERIMENTAL PART

_ (a) spparatus
‘ The rotat.ing cell used (Fig. l..) is driven by a _/3 HP A.C.
motor (Bodine Electric Go., Chicago) through two DYNA minidrives |
(Ontario Drive and Gear Ltd.) comnected in series so that the spaed of
rotation of the a.ppara.tus is steady and can be varded continuously up
to 10,000 RPM; the speed is measuned to l RPM with a ta.chometer (Haslgr
Befne Ltd.). The clamp assembly on the left side of the photograph
(Fig. La) holds the rotating tube securely. |

The glass tube is 1% 0.000 cm. 1.d. and approximately 22 cm.

long. Since it is important to avoid vibration of the bubble; preclsion

bore tubing is used to provide good balancing at all speeda. At eéch
end of the tube there is a ground glass jo;lnt into ocne of which is fitted
an ordinary stopper and into the other one with a 1.5 . capillary in
the centre, both stoppsrs being spring loaded to providé a tight seal
(Fig. 4b).
(b) Procedure

A critical step in the measurement is the introduction of a
bubble of accurately known volume. After thoroughly cleaning the cell,
the stopper with the capillary is wetted with the heavier (phase 2)
liguid and inserted in one end of the tube. The tube is held vertically
and filled completely and allowed to stand so that any trappéd alr bubbles

139
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Figure 4(a) Photographs of rotating drop a.ppa.ratus showing whole
assembly and cathetometer for measuring drop length (top)
and detail of glass tube and fixed part of clamp
assembly (bottom).
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Figure 4(a) Photographs of rotating drop apparatus showing whole
assembly and cathetometer for measuring drop length (top)
and detail of glass tube and fixed part of clamp
assembly (bottom).




_&EEI.Q!L(.). Rotatlng drop apparatus (Schema.‘tlc) TR NN P e .
A - fixed part of clamp assenbly, . B - . removable part’ of clamp assembly,

. € - glass tubing, - D - two pins to prevent .the slip betireen glass tubing .
* and clamp assembly, E, F - ground glass stoppers, E ha.s capn.llary at its

~ center, G ~ cross sectn.on. o

T
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escape, ‘after which it is“:i;zclined*nearlywhorisonta.lly with the vo.pen‘ ‘
end up. A hypodermic needle fitted to a microburette is slowly inserted -
through the ca.pille.ry at the bl‘ow‘er ‘end and a carefully messured (to —

10 z"c.c ) volume of phase 1 is introduced which coalesced to form a
single bubble. The need.Le is slowly w:.thdram a.nd the upper open end

of the tube is closed W:Lth the ‘other stopper, w:.th ‘bhe excess phase 2

7 be:.ng expelled 'bhrough the capillary. In this way the drop was :.ntroduced

under very l:.ttle hydrestatic pressure. The tube is then’inserbed in the

= appa.ratus clamp. ‘ ‘
o The bubble length is measured using a hor:.zon’oal ca.thetometer e

over a range of speeds of rota.tion.. After -rea.chn.ng equ:.l:.br:.um the
drop length from tip to tip is measured 'hw:Lce at ea.ch speed of rots.t:.on, ’
from left to right and then in reverse. This reduces any error caused

by any inclination of the tube._” _

4. RESULTS AND DISCUSSION

'In all systems examined, except air and liquids of low

viscosity such as water, the drops had very sinooth surfaces and as

. predicted by the theoxry were elongated along 'l';he horizontal axis of

rotation with increasing speed of rotation (Fig, 5). A typical set of
results and calculations is given in Table II and shows that the z_nethod
gives constant values of 7T over a wide range of w.

A sumary of results for a variety of systems is given in

Table III, and some comparisons with the pendant drop and ring' tensiometer

methods are given in Table IV..



1000rPM 3000rerMm

1500RrPM 3500rPM

4000rrPM

2500rPM 4500RrPM

Figure 5 Photographs of a heptane drop (0.156 cm3 ) in glycerol
rotating at various speeds.
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TABLE II

Galculation and result of a typical experiment.

System: n-hexadecane/glycerol

¥V = 0.1900 em.>

M"= 0.485 g?cmo-s ‘

r = 0.3567 ca.

144

| ayr vci}a) S b:)_. R
RPM | radssec.” cm. - em,™3 dyne-cm.-l el
859 | 8.9 | L.048 | 1.469| 1.580| 34, 84 : ..: 28.,14‘ O | :
1207 | 126|133 | 263 36| eom | om0
1629 '17—0.6 | 1,786 | 2504 s 72'_ 126.1 ol 27,97
1957 | 20k9 | 2072 | 3.045| 8.22 1813 | 2.8
2160 | 226.2 2433 | 3.1 (10,05 | 2216 | 27.99
2454 | 256.9 | 2.819 | 3.952]12.90 | 2844 | 2833
264 | - 2768 3.091 | 4.334|15.05 | 33L.9 - 21,99
2947 308.6 3.530 | 4.949 | 18,70 | 412.3 28,00
3285 | 313.9 | 4.062¢ | 5.695 23.47 | 517.5 27,71
| 3639 | 3810 | 4579 | 6.420|28.36 | 625.3 28,14
4020 .l|.20»9 | 5.200 7.290 | 34.65 . 761;;0 28,12
1489 | 470.0 5.996 | 8.406| 43.27 | 954.1 28.06
Mean = 28.0
S.D. = 0.6

a) Interpolat.ed values from x,/r using Table I when xg /r < 2.209.
For greater values (36) is used. ,

b) Calculated from (11).
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TABLE TII

- Interfacial tension and other physica.l propér_t.iea

3 or‘experim'enta_l systems

Phase 1 ‘ Phase 2 | & "Tb B R
- g".cm."'.slv ‘po'ise‘: "vdyne.cm.';'{_ : o

w N e

&

 Heptane |  Glycerol | 0.576 | .8 | 284 .|
‘n-Hexadecane |  Glycerol | O.485 | & | 28,0

. Water s Cyclohexanoi 0.0l | 230 | 26.4 S
o o - phthalate S T ‘
 Water . | DowCorning | 0.302 | 130 | - 40.3
i | fluorosilicone| - o - .
 fluid FS-1265 |

Adr - 2% aqueous 11000 |7 1 65.3
‘ . solution of ST T PO S

Cyanamer P250
polyacrylamide
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TABLE IV

‘%> Comparison of 1nterfacial tension.measurement

by different methoda

o (""':e}mpérature‘:‘ '216.-1‘ 1°6)

, . . T (dyne.cm.~l)., SE - L
System . - ' ,11/12;-
’ ¥ Rotat%n§ drop Pend?n? drop Ring tensiometer -
. 3 ‘ 2 et . | .

Aif/glycerol = i7,66.ll f:;64.6»ﬁ5‘ ‘1‘ "63.4_ o | 1.02‘  ?(' -
| Heptane/glycerol |. 28.4 | 27.8 | 2 0 | 102 |
- nﬁHexadécanaﬁgIYCeroliuv f 28.0 f' .27}2 7'“";lf.. 27.3 - ;1.Q3'




Accura:be mea.suraments of w a.nd V are essential for this method, :

since T varn.es as wzv“ with n = 3/2. of the two requlrements the more ‘

difficult to meet is the second and it is the reé.son for the care ta.kéb |
in introducing the bubble into the cell, W:Lth a gas bubble, care mast be
taken to ‘prevent any chan,ge of V from va.r:x.a.t:.ons in temperature and .

'pressure. Although v changes with w, it 1s read:.ly shown in bubbles a.t

'atmospher:.c pressure tha.t the va.r:.a.t:.on in V from the centrz,fugal i‘:.eld o

is negllnra.ble .

It is theoret:.cally poss:.ble to determ::.ne ki w:.thout measur:.ng

v, since at h:.gh ® (36) is ..applz.ca.ble. Subst:.tut:.ng (ll) into (36) leads

to /3 : .
63 = H(—",;) +1, - (39)
. - 3x 21/3 ‘
where o G = 20 (AZw ) s - (40)
and | B it B =V

I the ‘drop lehgth is measured at two or more speeds, both the V and 7

can be calculated from s:imulta.neoﬁs equations such as

1/3
6@ = HIGTE) 1

————

/3 . (42)
1 1‘3 :
1

G‘z("'f) 2( ) + 1
It can easily be shown that the solutions of (42) are

_ 5 o
: G, -G
-. L 2y
e (13)

and 2 '
G-l - G2 Gl - G.?. /3 :
- Gl - nET) - G . w
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However this méthod was found to be impractical, because the
ratio G_.L(I:I1 - I:I.?')/I“I:L(C.”r:L - 2) was never much greater than unity. Thus,
a small error in w, and hence G and H,lead to a large error in 7.

1)

In accord with Vonnegut's observation™’ an air bubble in water
had a rippled surface. Although the exact cause of the ripples is not

known, it only occurred with systems of low vis’cosity and was probably

‘ due to the vibration from 'the motor drive.

Rayleigh7) showed that in a non-rotating field a cylindricé.l
drop developes axisymmetric standing waves of léngth excéeding the‘
circumference withvan accompanying decre_a;se‘ in interfacial area. More
closely related to present work lis the inves"bigation by Rosen'l;hail.3 ) who
found that a long bubble subje{;te,d to small a.}d.symmeti‘ic disturbénces '

in the axial direction is stable at all wave-~lengths if the ratio

(y)./(z ) |2 0.63, where (y.). is the actual radius of the cylinder
_ o’a’ Wo’b o’a .

and (yo)b is the equilibrium value given by (37). It then follows . :

readily from (37) that if there is a sudden change from W to w the

2
bubble will not break up provided that wz/wlZ 0.50.. In our experiments

no instability was cbserved when w was changed gradually or kept constant.
A sudden stop of the apparatus, howevér, éi‘ten resulted in the break-up
of the cylinder into two or more smaller drops in accordance with
Rayleigh's‘.theory'T’. 8) .

It should be remembered that w. is the speed of rotation of
the drop. Because of buoyancy, the drop axis does not cqinéide exactly
with the axis of rotation so that w of the drop may be slightly less
than that of thq tube. Thus, by assuming w drop =W e an error may be
introduced to yield a higher value of 7, which may explain why the

values obtained were consistently higher than those by the ring and



| @ “pendant drop methods (Table IV) One would expect, however, that this e
S error Hould disappear at high w a.nd/or "2 i
| L It should be pointed out that viscosity does not enter into '
: the theory, although in a very viscous system i'o takes longer for t.he
drop to rea.ch its equilibrium shape. P Thus this method is part.icularly‘
.. useful for viscous systems where, by contra.s'b; the more .conventional

':fv techniques may not be applicable.

Two non-Newbonian aqueous systeuns, -one pseudoplastic and t.he
.- other viscoelastic,were briefly vexami_ned. After three hours! rotation
E_f.}]'at 2025 :RPM an air bubble ‘:Ln a 0.1% solution of Carbopol 9h0 (Good-rich
,‘ ,.__,'_:‘Chemical) reached a stesdy but not an equilibrium Xq which depended . :
upon whether the final speed was reached by increasing or decreasing w, :' ' ‘
. .this is presumably due to the high yield value of the pseudoplastic o S

.;:;; Carbopol solution. However, an air bubble in a viscoelastic polyacry- - o
-~ lamide solution' (2% Cyanamer P250, American Cyanamid) af‘ber three hours"".
| rotation at 1530 RPM reached an equilibriun x, from which T was

B :.‘.'{.-'31";:-. . L

- ov aluated (Table III)., Thus, this meth iod may be applicable to visco-

P elastic molten polymer systems.

5. CONCLUDING REMARKS

Vonhegutl)

sﬁggest.ed that the method might be used to meagure ) |
surrace pressure-area curves of insoluble monolayers, since the surrace

" area A of the drop given by

. S e
A =un f °:W/1 + (dX/dI)z aw, W)
o . Lo .‘ .' ’ . .

can be controlled by changing We



i -,6n'e"6bt'ain’a o

" wh:lch 1ntegrates t05) ’ : s -

150

 Substituting for dx/"_dr'"fi'o’m;'(ls)' yields,

Y

a

- P L

- and mald.ns the substitution

q:l;g'.;ﬁ

.

\/—fcé q+)1f2

1=

8n

S 'where the symbols have the same mea.ning as in (30)

' VWhen ¢ = 0, the drop is spher:l.cal a.nd A/r = l.:n‘. = ]2 57.

A 81tc13+1
r

- B ), w8
a® m * Fa - U ( “

e - For much higher walues of cza the area of the cylindrical drop is given .
approximately by ' o ' '

2 3B G R

Thus, at cr3 = 29, axis ratio x /y is 20; but the surface area has only -

" doubled. The variation'in .surface area produced by cha.ng:l.ng the speed

. preesure-area isotherm:: .

- of rort.ation is therefore too amall to be used in evaluating a sur.f.ace -
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,

' radius of a sphere oi‘ the same volume as the drop
| cylindrical coordinate, sami major axie , '
_ .cylindriee.l “coordinate; r‘semi ,ininor axie '
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LIST OF SYMBOLS

_i.radn.us of curva.ture or the drop sur:t.‘ace a.t t.he originl. | ) T
eurtace area of the drop | B |
.a parameter defined by (ZL'L) e

: density of pha.ae 1 (drop) a.nd phase 2
=g-q L .
‘elliptic integra.l or the second and :‘.‘:Lrst kinds
‘defined by o) and (41) P .
= 'modulus of elliptic integral

= pressure outside the dr0p, &'b Y = 0

_"‘pressure inside the drop; at y =0

roots of cubic equation (eee 47)

: y/a

volume of drop

parameter defined by (10)

'interfacial tension

visdesity

- the angle between the normal of the interface "a.t.' (x,y) |

and the negative x-direction _
principal radii of curvature of drop surface .
amplitude of elliptic ;ntegral |
angular velocity |



