
Towards WCET Estimation
of Graph Queries@Run.time

Márton Búr∗ and Dániel Varró∗†
∗McGill University, Montréal, Canada

†MTA-BME Lendület Research Group on Cyber-Physical Systems, Budapest, Hungary
Email: marton.bur@mail.mcgill.ca, daniel.varro@mcgill.ca

Abstract—Recent approaches in runtime monitoring and live
data analytics have started to use expressive graph queries
at runtime to capture and observe properties of interest at a
high level of abstraction. However, in a critical context, such
applications often require timeliness guarantees, which have not
been investigated yet for query-based solutions due to limitations
of existing static worst-case execution time (WCET) analysis
techniques. One limitation is the lack of support for dynamic
memory allocation, which is required by the dynamically evolving
runtime models on which the queries are evaluated. Another open
challenge is to compute WCET for asynchronously communicat-
ing programs such as distributed monitors. This paper introduces
our vision about how to assess such timeliness properties and
how to provide tight WCET estimates for query execution at
runtime over a dynamic model. Furthermore, we present an
initial solution that combines state-of-the-art parametric WCET
estimations with model statistics and search plans of queries.

I. INTRODUCTION

A. Motivation and Problem Statement

In the past decades, model-based systems engineering has
been used in many traditional safety-critical (SC) applications
such as cars or aircrafts. However, modern cyber-physical
systems (CPS), like self-driving cars and autonomous robots,
pose several new challenges as they need to interact with a
continuously evolving environment over a heterogeneous com-
puting platform while still complying with safety regulations.

In traditional SC systems, models, queries and transfor-
mations offer great expressive power in modeling tools (like
Capella, Papyrus, Artop), but their use has been restricted to
design-time, i.e., no model queries or transformations run on
an aircraft at runtime. A main reason for this is that any piece
of software executed at runtime in a SC system needs to satisfy
various extra-functional requirements to ensure deterministic,
predictable behavior. For example, the calculation of worst-
case execution time (WCET) or schedulability analysis is
compulsory for real-time SC software deployed at runtime.

While the models@run.time initiative [1] has been promot-
ing the use of models, queries and transformations at run-
time with major recent advances [2]–[5], existing approaches
provide no timeliness guarantees required for any critical
applications. For example, while [3] claims "near real-time"
for online data analytics, a timely response is not guaranteed.
Similarly, the query-based runtime monitoring approach [2] is
unable to ensure that a query will justifiably complete on time
even in the absence of communication errors.

Such lack of guarantees is hardly surprising. On the one
hand, traditional real-time SC systems have been able to
compute such timeliness guarantees like WCET, but the de-
ployed software uses static memory allocation and a priori
bounded, low-level data structures - none of which provides
sufficient flexibility for modern autonomous or self-adaptive
CPS. Furthermore, fixed worst-case bounds obtained from an-
alyzing the computational complexity of an algorithm largely
overestimates execution time, thus they are impractical.

B. Challenges and Contributions

In this paper, we present the high-level research challenge
for assessing timeliness properties for model queries used
at runtime (referred to as queries@run.time). In particular,
we present a research agenda to assess worst case execution
time for graph-based query techniques used at runtime over
dynamically evolving graph-like runtime data and a hetero-
geneous computing platform with resource constraints that
is characteristic to many critical CPS applications. Existing
applications of such queries@run.time already include online
analytics [3] or runtime monitoring [2].

Moreover, we present initial results on how to compute high-
level (architecture-independent) WCET [6] for graph queries
executed on a single platform node, which is already a major
research challenge, and a major cornerstone of the long-term
research agenda. Since the dynamic growth of data prevents
global WCET estimates, our key idea is to provide WCET
guarantees relative to the size of the model (i.e., the number
of model objects and links between them) by exploiting model
statistics. As such, we can use existing tools for static WCET
estimation until the size of the model exceeds a certain limit, or
the structural characteristics of the model change significantly.

Up to our best knowledge, our proposal is the first attempt
to investigate timeliness properties of graph-based query tech-
niques used at runtime in a real-time CPS setting.

II. MOTIVATION

Since many IoT and CPS applications rely upon graph-
like knowledge representation, our concepts are generally
applicable to different domains. Nevertheless, we illustrate
these concepts in the context of runtime monitoring in an
open-source CPS educational demonstrator of a model railway
network, which is a representative application of using graph
models and graph queries at runtime [2], [3].

jinnes
Typewritten Text
Búr, M., & Varró, D. (2019, September). Towards WCET Estimation of Graph Queries@ Run. time. In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS) (pp. 233-238). IEEE. DOI: https://doi.org/10.1109/MODELS.2019.00007

jinnes
Typewritten Text

Fig. 1. Distributed runtime model for an open CPS demonstrator [2]

A. Runtime Monitoring by Graph Queries

Recently, various expressive rule or query-based specifi-
cation languages have been proposed [2], [7], [8] to spec-
ify monitoring goals and to drive monitor execution over
a continuously changing runtime graph model following the
models@run.time principle [1]. For example, safety monitors
captured by graph queries aim to automatically prevent trains
from collision and derailment in a model railway network
reported in [2]. The railway track is equipped with various
sensors (cameras, shunt detectors) capable of sensing trains
on a particular segment of the track, and these sensors are
connected to heterogeneous embedded platform units (e.g.
Arduinos, Raspberry Pis, BeagleBoards). These units also
control actuators that stop trains to guarantee safe operation.

We assume that runtime data is captured by runtime graph
model G = (N,E) where each node ni ∈ N is deployed on
some platform unit potentially in a distributed way. Changes
in the system are reflected by (periodically) updating the
runtime model based on sensor reads. As such, one obtains a
high-level and dynamically evolving data model, which offers
increased flexibility for modern CPS applications compared to
pre-allocated data buffers in a traditional real-time programs.

Example 1: The runtime graph model shown in Figure 1
captures the knowledge base of the three platform units (Unit
1 – Unit 3), the domain elements (s1–s8, tu1, tu2, tr1, and
tr2) as well as the links between them. Each platform unit
hosts model elements contained within them in the figure,
e.g. Platform unit 2 is responsible for storing attributes and
outgoing references of objects, i.e., hosts s3, s4, s5, and tr1.

Runtime monitoring programs are deployed to the same
physical platform. We assume that the (safety) properties
of interest are captured by high-level graph queries as in
[2]. Formally, a graph query ϕ(v1, . . . , vn) is a predicate
that consists of a conjunction of constraints expressed over
relational logic, which is more expressive than using low-level
statemachines or temporal logic formulae used in monitors of
traditional SC systems. Related languages provide a baseline
for other complex event processing or trace analysis techniques
[8]–[10] defined over graph models.

The execution of runtime monitors can potentially be hierar-
chical and distributed. Monitors may observe the local runtime
model hosted by a platform unit, and they can collect informa-
tion from runtime models hosted by different platform units.
Moreover, one monitor may request information from other
monitors, thus yielding a hierarchical monitoring network.

Example 2: Railway safety standards prescribe a minimum
distance between trains on track [11], [12]. The closeTrains
monitor definition captures a (simplified) description of the
minimum headway distance to identify violating situations
where trains have only limited space between each other. A
runtime monitor needs to detect if there are two different trains
on two segments, which are connected by a third segment.
Any match of this graph pattern highlights track elements
where passing trains need to be stopped immediately. Listing 1
presents the monitoring query closeTrains as a logic formula.

Listing 1. The closeTrains monitoring goal as a formula

CloseTrains(start , end) =
(1) Segment(start)∧
(3) ∃middle : ConnectedSegment(start ,middle)∧
(4) ConnectedSegment(middle, end)∧
(2) ∃train1 : CurrentTrain(start , train1)∧
(5) ∃train2 : CurrentTrain(end , train2)∧
(6) ¬(train1 = train2)

B. Local Search-based Graph Pattern Matching

Efficient graph query evaluation has decades of research
results frequently categorized into local search-based [13] or
incremental [14] approaches. As query-driven runtime mon-
itors are deployed over a physical computing platform with
resource constraints (e.g. CPU, memory), the increased mem-
ory usage of incremental approaches may be a critical factor.
Therefore, we assume that real-time query-based programs
follow a local search-based pattern matching approach (as
in [2]). Distributed graph query evaluation over fragmented
data was first presented in [15] while further algorithms were
reported in [16]–[18]. In [19], a distributed incremental graph
query layer was adapted and deployed to a cloud infrastructure.

For local search, monitors compute matches of a graph
query ϕ(v1, . . . , vn) along a search plan by assigning model
objects to variables v1, . . . , vn and evaluating the predicate of
the query. A search plan is an ordered list of search operations
(e.g., checking type of objects, navigating along references)
that traverses the runtime graph model in order to find all
complete variable bindings satisfying the query condition.

Example 3: For the example query presented in Listing 1,
a single search operation is created for each predicate in the
CloseTrains query formula. Such an operation either binds
variables to model objects or checks if the current variable
binding satisfies the corresponding predicate. The operation
ordering is shown at the beginning of each line. Assuming that
none of the query parameters are assigned an initial value, i.e.,
all matches over the complete (runtime) model are requested,
a possible search plan is the following: (1) substitute variable
start with a model object of type Segment, (2) navigate
along the reference of type CurrentTrain from start and
find a potential substitution for train1 , (3) then navigate from
start along a reference of type ConnectedSegment and
find a potential substitution for middle, (4) repeat navigation
along a ConnectedSegment link from middle to assign a
model object to variable end, (5) find a possible substitution

Fig. 2. Summary of high-level (platform independent) static analysis tech-
niques for computing WCET

for train2 by navigating from end via CurrentTrain, and
finally, (6) ensure that the model objects substituted to train1
and train2 are not the same. Once search step 6 is successfully
completed, a match is found and registered, and the execution
continues until all matches in the model are discovered.

III. RELATED WORK AND OPEN CHALLENGES

We overview the applicability of existing static and high-
level timing analysis approaches for queries@run.time.

a) Timing analysis techniques: Methods for efficiently
analyzing timing properties and computing precise WCET
bounds of programs have been actively researched since real-
time systems appeared. Detailed surveys on such methods are
available, for example, in [20] and [21]. Static WCET analysis
techniques have two major categories [21].

• High-level analysis works with the abstract flow of a pro-
gram, mainly using the control flow graph or the control
flow automata obtained from the source or machine code.
Such algorithms are presented in [6], [22], [23].

• Low-level analysis techniques [24]–[26] focus on
platform-specific details (e.g., memory, caches, pipelines,
and branch prediction) when assessing timing properties.

Various high-level, static WCET analysis techniques have
been developed to provide safe timing estimates for the exe-
cution of various types of programs. Figure 2 summarizes the
most popular methods used for WCET analysis. The implicit
path enumeration technique (IPET) [27] is commonly used
for this purpose. This technique analyzes the program paths
(control flow) to determine what sequence of instructions will
execute in the extreme case. The path analysis in IPET is based
on solving and integer linear programming problem.

Moreover, initial WCET analysis support has been provided
for distributed systems in [28] by breaking down the problem
into WCET analysis of communicating components using the
Hierarchical Timing Language (HTL). HTL organizes tasks
into a hierarchical, tree-like structure that has the complete

program as its root. All tasks are executed periodically, and
dedicated communicator processes coordinate the exchange of
information between the ones running on different hosts.

b) Runtime monitoring in resource-constrained environ-
ments: The tool polyLARVA [29] provides means to adjust the
possible overhead imposed by the runtime checks performed
during monitoring. The Brace framework [30] supports mon-
itoring in distributed resource-constrained environments by
incorporating dedicated units in the system to support global
evaluation of monitoring goals. LTL formulae are evaluated in
a fully distributed manner in [31] for components communicat-
ing on a synchronous bus in a real-time system. Additionally,
machine learning-based solution for scalable fault detection
and diagnosis system is presented in [32] that builds on
correlation between observable system properties.

c) Real-time database systems: Real-time database sys-
tems (RTDBS) [33] provide database support for applications
where time-constrained data access and temporal data validity
are required. A survey on such systems is available in [34].

Major limitations. We have identified the following major
limitations in the state-of-the-art in the context of queries-
@run.time (highlighted also in Figure 2).

• Existing resource constraint (CPU, memory) guarantees
for runtime monitoring are only provided when the ex-
pressiveness of the property language is limited, i.e., are
available for monitoring techniques relying on some form
of finite automata or temporal logic expressions. Modern
graph query languages can be more expressive than that.

• Currently, static WCET analysis requires that the program
is free from dynamic memory allocation, which sets a
theoretical bound on the available memory for program
data during design time. This is a known limitation of
WCET calculation as also pointed out by [35].

• Real-time databases support a relational data model, but
not graph data. They are not suited for deployment
over a distributed, decentralized platform where platform
units have resource limitations. Furthermore, they do not
support hard real-time applications.

• Estimates of query execution time for join operations
based on computational complexity [36] do not provide
tight WCET bounds, thus they are impractical.

Altogether, these limitations prevent the direct use of exist-
ing techniques for many CPS or IoT applications, and lead to
several open challenges.

d) Open challenges: To support queries@run.time in
CPSs, we need to address at least the following questions:
Q1: How to predict WCET of queries over dynamically

evolving graph data deployed on a single platform unit?
Q2: How to predict WCET for distributed queries executed

over a distributed runtime platform?
Q3: How to predict other non-functional properties of

queries@run.time such as memory use, performability,
mean execution time for real-time systems?

This paper provides a research agenda to address challenges
Q1 and Q2 and some initial ideas to solve challenge Q1. As
such, Q2 and Q3 remain open long-term challenges.

IV. OVERVIEW OF RESEARCH AGENDA AND KEY IDEAS

We outline the following research agenda for Q1 and Q2:
a) Query WCET problem (Q-WCET): is to determine

WCET bounds of a given query over evolving graph models
deployed on a single platform unit. The input parameters of
this problem are the graph model and the graph query itself.
Idea: Limitations of existing timing analysis approaches indi-
cate that calculating a single WCET for dynamically evolving
graph data may not be feasible. Instead, we propose a para-
metric WCET calculation where WCET bounds for queries
may depend on the model (i.e., WCET will likely increase
as the model grows). At design time, we rely on information
originating from the query search plan, and we reuse existing
WCET techniques and tools to compute a parametric WCET
formula [37] using the control flow graph derived after code
generation. Then, at runtime, this parametric WCET formula
is substituted with relevant parameters obtained from runtime
model statistics [13]. An example is given in Section V.

b) Distributed query WCET problem (DQ-WCET): gen-
eralizes the Q-WCET problem by allowing the graph model
and query to be distributed over a heterogeneous platform.
Here an extra input parameter (wrt. the Q-WCET problem) is
the actual allocation of the model fragments to the different
units of the platform, which results in significant increase in
evaluation time caused by network latency when different plat-
form units need to communicate. Furthermore, asynchronous,
reactive programs are performing the monitoring task, for
which WCET estimation is still an open problem.
Idea: On the one hand, as a partial solution to this problem, we
envision a query-specific refinement of the parametric WCET
computation that assigns different cost values for local and
remote invocations. An initial cost estimator can consider the
quality of service guarantees for message delivery deadlines
provided by the communication middleware and the maximum
number of links in the graph model that connect objects
allocated to different platform units for each reference type to
get a safe upper bound for the number of required interactions
over the network. On the other hand, further investigation
is needed to enable WCET calculation for asynchronously
communicating programs, which is a grand challenge in itself.

c) Distributed runtime-defined query WCET problem
(DRQ-WCET): enables to add query definitions at runtime. In
current queries@run.time solutions [2], this is not yet possible
since sources are generated and compiled at design time.
Idea: One way to address this limitation is to create a flexible
(interpreter-based or on-the-fly code generation) query frame-
work, where queries can be defined and added runtime. In
this case, one needs to ensure that the instructions in the query
plan are assigned safe WCET estimates, thus both a parametric
WCET formula and its value can be determined at runtime.

V. AN APPROACH FOR ESTIMATING WCET FOR
QUERIES@RUN.TIME

We introduce a general workflow (Figure 3) for computing
WCET for queries@run.time executed on a single platform
unit that involves both design time and runtime tasks.

a) From graph queries to source code: The process takes
the definition of a graph query as input. Then, a query-specific
search plan is computed, which serves as the input for code
generation. The code generator produces C source code that
is ready to be compiled for a target architecture and platform.
Tools like VIATRA [14] and eMoflon [38] provide required
modeling and code generation features from query definitions.

Example 4: For the closeTrains graph query along with its
search plan shown in Listing 1, a pseudocode of the generated
source code implementing the search plan is presented in
Algorithm 1 as a combination of loop (for) and branch (if)
statements. In line 1 (shortly, L1) the set matches serves as the
container of the results and it is initialized as an empty set.
The search algorithm is shown in L2-L11. It starts with a loop
that binds objects of type Segment to variable start. L3 and L4
show navigation along the currentTrain reference from start. If
an object of type Train is present on start, the search continues
by navigating twice along the connectedSegment reference in
each possible way, again, from start and binding variable end
(L5-L7). In L8-L9, the presence of a train is checked on end.
Finally, if train1 and train2 are bound to different objects
(L10), a match 〈start , end〉 is added to matches in L11.

Algorithm 1 Compute results of closeTrains
1: matches ← ∅
2: for start in {all Segment instances} do
3: train1 ← getCurrentTrain(start)
4: if train1 6= NULL then
5: for middle in getConnectedSegments(start) do
6: for end in getConnectedSegments(middle) do
7: if start 6= end then
8: train2 ← getCurrentTrain(end)
9: if train2 6= NULL then

10: if train1 6= train2 then
11: matches .add(〈start , end〉)

b) Program analysis: Next, a control flow graph (CFG)
is built from the source code that serves as the input for high-
level flow analysis using existing techniques like IPET [27].

Such a CFG consists of nodes representing variable assign-
ments, if-checks, and for loops, which are embedded into
each other, yielding a structured program composition that
facilitates analysis [39]. Edges in the CFG represent potential
continuations in execution (e.g. true/false branches for an if-
statement, internal or exit paths for a loop).

In addition, the source code also serves as the input for
certified or WCET-aware compilers (like CompCert or WCC
for the C language) that produce an executable ready for low-
level WCET analysis. This low-level WCET analysis is out of
scope for the current paper and left for future investigations.

WCET analysis on the source or machine code can be done
by using e.g. SWEET [40], OTAWA [41], or aiT [42].

Example 5: A CFG derived from Algorithm 1 is depicted
in Figure 4a where lines of the matching algorithm (lines L2-
L11) are represented by a CFG node. Loop nodes are created

Fig. 3. Overview of high-level WCET computation for queries@run.time

from for loops in L2, L5 and L6 (depicted as hexagons), if-
statements in L4, L7, L9, and L10 are added as decision nodes
(diamonds), and variable assignments in L3, L8, and L11 are
represented with basic blocks (rectangles). Furthermore, edges
in the graph represent potential control flow.

c) Parametric WCET computation: As the next step,
the result of CFG analysis needs to be combined with the
platform-specific instruction timing properties obtained from
low-level WCET analysis to create a parametric WCET for-
mula where the parameters are the data-dependent loop bounds
which are unknown at design time. Up to our best knowledge,
parametric WCET computation has only been prototyped in
SWEET, which highlights the lack of mature tool support.

In this paper, we use a parametric WCET computation
approach [43] that relies on the expression tree obtained from
the CFG instead of executing a computationally expensive
IPET [27]. An expression tree is built by using loop, leaf,
seq, and opt nodes. A loop has a single instruction as its body
and it is supplied with a symbolic loop bound bi encoding the
number of iterations that the loop is executed. A leaf node
represents a set of simple instructions and has a parameter
Ti that represents its WCET required for completion. A seq
node has a sequence of nodes as its children, while opt nodes
denote statements that are executed if certain conditions hold.

We assume that Ti intervals have a fixed upper bound,
however, the method presented in [43] allows supplying con-
text sensitive information (i.e., varying execution times) when
modeling execution times of instruction blocks within loops.

Example 6: A sample expression tree is depicted in Fig-
ure 4b. Symbolic loop bounds b1 − b3 are supplied for
loop1 − loop3 , respectively, while other instructions are mod-
eled as single basic blocks with assumed context independent,
constant execution times Ti during this high-level WCET
analysis. The parametric WCET formula computed from the
expression tree is ω(b1, b2, b3) = b1 · (T1+ b2 · b3 · (T2+T3)).

d) Runtime WCET bounds: At runtime, we extract the
required parameters from the runtime model and substitute
the respective values into the parametric WCET formula (e.g.,
for loop bounds) in order to compute concrete WCET bounds.
For that purpose, we adapt ideas from model-specific search
plans [13], [44], [45] which rely on model statistics to derive
efficient search plans for query execution. These runtime
statistics include the number of instances of each object and
reference type (denoted as Oi and Rj), and the average degrees
of outgoing references (Rj

Oi
) and are continuously maintained

(a) Control flow graph (b) Expression tree

Fig. 4. Inputs of static WCET analysis for CloseTrains query program

with model changes. Thus, WCET bounds change as the
underlying model evolves. Furthermore, a given set of updates
may impact individual WCET of multiple queries differently.

Example 7: At runtime, the parametric WCET formula
ω(b1, b2, b3) is instantiated with the actual parameter values
based on the runtime model presented in Figure 1. Namely, b1
get the total number of Segment instances, i.e., 12, b2 gets the
maximum degree of outgoing currentTrain graph edges among
any object of type Segment, i.e., 2, while b3 is set to the
same value as b2, i.e., 2. This way the actual WCET using the
statistics obtained from the snapshot of the runtime model is
ω(12, 2, 2) = 12·(T1+2·2·(T2+T3)) = 12·T1+48·T2+48·T3.
Now, if segment s8 in the railway network is shut down, i.e.,
no longer monitored and used by trains, the model would have
only 11 Segments in total. This way the actual WCET estimate
would drop to ω(11, 2, 2) = 11 · T1 + 44 · T2 + 44 · T3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discussed several high-level challenges
for estimating timing properties for queries@run.time used

in CPS or IoT systems where graph queries are evaluated at
runtime over graph models as data structures. In particular,
we showed why existing WCET analysis techniques are not
directly applicable for dynamically evolving data structures.
Then we presented initial results for a high-level static WCET
analysis technique for graph queries which combines design-
time and run-time analysis for parametric WCET estimation.
We illustrated these concepts for an open CPS case study.

Future work should investigate how tight the proposed
WCET estimations are compared to empirical execution times
on a given hardware. Moreover, adapting our WCET analysis
method to a distributed setting with significant network latency
is another future challenge. Finally, other extra-functional
properties can also be assessed for queries@run.time.

ACKNOWLEDGMENT

This paper is partially supported by MTA-BME Lendület
Cyber-Physical Systems Research Group, the NSERC RGPIN-
04573-16 project, and the MEDA program. Furthermore, the
authors would like to thank András Vörös, Kristóf Marussy,
Gábor Szilágyi, Ákos Hajdu and Gyula Sallai their help.

REFERENCES

[1] G. S. Blair, N. Bencomo, and R. B. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[2] M. Búr, G. Szilágyi, A. Vörös, and D. Varró, “Distributed graph queries
for runtime monitoring of cyber-physical systems,” in Fundamental
Approaches to Software Engineering, 2018, pp. 111–128.

[3] T. Hartmann, F. Fouquet, A. Moawad, R. Rouvoy, and Y. Le Traon,
“GREYCAT: Efficient what-if analytics for data in motion at scale,”
Information Systems, vol. 83, pp. 101–117, 2019.

[4] T. Vogel and H. Giese, “Model-driven engineering of self-adaptive
software with EUREMA,” ACM Trans. Auton. Adapt. Syst., p. 18, 2014.

[5] B. H. C. Cheng et al., “Using models at runtime to address assurance
for self-adaptive systems,” in Models@run.time, 2011, pp. 101–136.

[6] G. Logothetis and K. Schneider, “Exact high level WCET analysis of
synchronous programs by symbolic state space exploration,” Proceed-
ings -Design, Automation and Test in Europe, DATE, pp. 196–203, 2003.

[7] K. Havelund, “Rule-based runtime verification revisited,” Int. J. Softw.
Tools Technol. Transfer, vol. 17, no. 2, pp. 143–170, 2015.

[8] I. Dávid, I. Ráth, and D. Varró, “Streaming model transformations
by complex event processing,” in International Conference on Model
Driven Engineering Languages and Systems, 2014, pp. 68–83.

[9] L. Burgueño, J. Boubeta-Puig, and A. Vallecillo, “Formalizing complex
event processing systems in maude,” IEEE Access, vol. 6, 2018.

[10] W. Dou, D. Bianculli, and L. Briand, “Model-driven trace diagnostics
for pattern-based temporal specifications,” in Proceedings of the 21th
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems. ACM, 2018, pp. 278–288.

[11] M. Abril et al., “An assessment of railway capacity,” Transportation
Research Part E: Logistics and Transportation Review, vol. 44, no. 5.

[12] D. Emery, “Headways on high speed lines,” in 9th World Congress on
Railway Research, 2011, pp. 22–26.

[13] G. Varró, F. Deckwerth, M. Wieber, and A. Schürr, “An algorithm for
generating model-sensitive search plans for pattern matching on EMF
models,” Software and Systems Modeling, no. 2, pp. 597–621, 2015.

[14] Z. Ujhelyi et al., “EMF-IncQuery: An integrated development envi-
ronment for live model queries,” Science of Computer Programming,
vol. 98, pp. 80–99, 2015.

[15] S. Ma, Y. Cao, J. Huai, and T. Wo, “Distributed graph pattern matching,”
in Proceedings of the 21st international conference on World Wide Web.
ACM, 2012, pp. 949–958.

[16] R. Mitschke, S. Erdweg, M. Köhler, M. Mezini, and G. Salvaneschi,
“i3QL: Language-integrated live data views,” ACM SIGPLAN Notices,
vol. 49, no. 10, pp. 417–432, October 2014.

[17] M. Peters, C. Brink, S. Sachweh, and A. Zündorf, “Scaling parallel
rule-based reasoning,” in ESWC, 2014, pp. 270–285.

[18] C. Krause, M. Tichy, and H. Giese, “Implementing graph transfor-
mations in the bulk synchronous parallel model,” in Fundamental
Approaches to Software Engineering, 2014, pp. 325–339.

[19] G. Szárnyas et al., “IncQuery-D: A distributed incremental model query
framework in the cloud,” in International Conference on Model Driven
Engineering Languages and Systems. Springer, 2014, pp. 653–669.

[20] V. P. Kozyrev, “Estimation of the execution time in real-time systems,”
Programming and Computer Software, vol. 42, no. 1, pp. 41–48, 2016.

[21] R. Wilhelm et al., “The Determination of Worst-Case Execution Times:
Overview of the Methods and Survey of Tools,” ACM Transactions on
Embedded Computing Systems, vol. 7, no. 3, pp. 36:1—-36:53, 2008.

[22] C. Ferdinand et al., “Combining a high-level design tool for safety-
critical systems with a tool for wcet analysis of executables,” in Proc.
of the 4th European Congress on Embedded Real Time Software (ERTS).

[23] R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács, “Abc: algebraic
bound computation for loops,” in International Conference on Logic for
Programming Artificial Intelligence and Reasoning, 2010, pp. 103–118.

[24] F. Bodin and I. Puaut, “A wcet-oriented static branch prediction scheme
for real time systems,” in 17th Euromicro Conference on Real-Time
Systems (ECRTS’05). IEEE, 2005, pp. 33–40.

[25] R. Sen and Y. N. Srikant, “WCET estimation for executables in the
presence of data caches,” in Proceedings of the 7th ACM & IEEE
EMSOFT ’07, 2007, p. 203.

[26] I. Puaut, “WCET-centric software-controlled instruction caches for hard
real-time systems,” Proceedings - Euromicro Conference on Real-Time
Systems, vol. 2006, pp. 217–226, 2006.

[27] Y.-T. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” in ACM SIGPLAN Notices, vol. 30,
no. 11. ACM, 1995, pp. 88–98.

[28] A. Ghosal et al., “A hierarchical coordination language for interacting
real-time tasks,” in Proceedings of the 6th ACM & IEEE International
conference on Embedded software. ACM, 2006, pp. 132–141.

[29] C. Colombo et al., “polyLarva: runtime verification with configurable
resource-aware monitoring boundaries,” in International Conference on
Software Engineering and Formal Methods, 2012, pp. 218–232.

[30] X. Zheng et al., “Efficient and Scalable Runtime Monitoring for Cyber-
Physical System,” IEEE Systems Journal, pp. 1–12, 2016.

[31] A. Bauer and Y. Falcone, “Decentralised LTL monitoring,” Formal
Methods in System Design, vol. 48, no. 1-2, pp. 46–93, 2016.

[32] C. Alippi et al., “Model-Free Fault Detection and Isolation in Large-
Scale Cyber-Physical Systems,” IEEE Trans. Emereg. Topics Comput.
Intell., vol. 1, no. 1, pp. 61–71, 2017.

[33] K. Ramamritham, “Real-time databases,” Distributed and Parallel
Databases, vol. 1, no. 2, pp. 199–226, Apr 1993.

[34] G. Ozsoyoglu and R. T. Snodgrass, “Temporal and real-time databases: a
survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 7,
no. 4, pp. 513–532, Aug 1995.

[35] J. Herter and J. Reineke, “Making dynamic memory allocation static to
support WCET analyses,” Worst-Case Execution Time Analysis, 2009.

[36] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra, “Worst-case optimal join
algorithms,” Journal of the ACM (JACM), vol. 65, no. 3, p. 16, 2018.

[37] B. Lisper, “Fully Automatic, Parametric Worst-Case Execution Time
Analysis,” Proceedings of the Third International Workshop on Worst-
Case Execution Time (WCET) Analysis, pp. 99–102, 2003.

[38] A. Anjorin, M. Lauder, S. Patzina, and A. Schürr, “Emoflon: leveraging
emf and professional case tools.” in GI-Jahrestagung, 2011, p. 281.

[39] N. Wirth, “On the composition of well-structured programs,” ACM
Computing Surveys, vol. 6, no. 4, pp. 247–259, 1974.

[40] S. Bygde, A. Ermedahl, and B. Lisper, “An efficient algorithm for
parametric WCET calculation,” Journal of Systems Architecture, vol. 57,
no. 6, pp. 614–624, 2011.

[41] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, “OTAWA: an open
toolbox for adaptive wcet analysis,” pp. 35–46, 2010.

[42] C. Ferdinand and R. Heckmann, “ait: Worst-case execution time pre-
diction by static program analysis,” in Building the Information Society,
R. Jacquart, Ed. Boston, MA: Springer US, 2004, pp. 377–383.

[43] C. Ballabriga, J. Forget, and G. Lipari, “Context-sensitive parametric
wcet analysis,” in 15th International Workshop on Worst-Case Execution
Time Analysis (WCET 2015), 2015.

[44] G. Varró, K. Friedl, and D. Varró, “Adaptive graph pattern matching for
model transformations using model-sensitive search plans,” Electronic
Notes in Theoretical Computer Science, vol. 152, pp. 191 – 205, 2006.

[45] R. Geis, G. Veit Batz, D. Grund, S. Hack, and A. Szalkowski, “Grgen: A
fast spo-based graph rewriting tool, icgt 2006, a. corradini et al,” 2006.

