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Abstract 

Cyclical thrombocytopenia (CT) is a rare hematological disease characterized by pe­

riodic oscillations in the platelet count. Although first reported in 1936, the patho­

genesis and an effective therapy remain to be identified. Sinee besides fluctuations 

in platelet levels the patients hematological profile have been consistently normal, a 

destabilization of a peripheral control mechanism might play an important role in 

the genesis of this disorder. In this thesis, we investigate through computer sim­

ulations the mechanisms underlying the platelet oscillations observed in CT. First, 

we collected the data published in the last 40 years and quantified the significance 

of the platelet fluctuations using Lomb-Scargle periodograms. Our analysis reveals 

that the incidence of the statistically significant periodic data is equally distributed 

in men and women. The mathematical model proposed in this thesis captures the 

essential features of hematopoiesis and successfully duplicates the characteristics of 

CT. With the same parameter changes, the model is able to fit the platelet counts and 

to qualitatively reproduce the TPO oscillations (when data is available). Our results 

indicate that a variation in the megakaryocyte maturity, a slower relative growth rate 

of megakaryocytes, as weIl as an increased random destruction of platelets are the 

critical elements generating the platelet oscillations in CT. 
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Résumé 

La thrombocytopénie cyclique (TC) est une rare maladie hématologique caracterisée 

par des oscillations périodiques dans les plaquettes sanguines. Bien qu'elle fût évoquée 

pour la première fois en 1936, la maladie et une thérapie efficace restent à trouver. 

Puisque malgré les fluctuations au niveau des plaquettes, les profiles hématologiques 

des patients restent toujour normaux, une destabilisation du méchanisme de contrôle 

périphérique peut jouer un rôle important dans la formation de ce maladie. Dans cette 

thèse, nous recherchons à travers des simulations informatiques les mechanismes sous­

jacent aux oscillations des plaquettes observées dans TC. En premier lieu, nous avons 

collecté les données publiées ces 40 dernière années et quantifié l'importance des fluc­

tuations des plaquettes en utilisant les périodograms Lomb-Scargle. Notre analyse 

statistique révèle que les données périodiques sont équitablement distribuée chez les 

hommes et les femmes. Le modèle mathématique proposé dans cette thèse prend 

en compte les caractéristiques essentielles de la production des cellules sanguines 

et reproduit avec succès les charactéristiques de TC. Avec les même changement 

de parametèrs, le modèle reproduit bien le comportement des plaquettes sanguines 

et donne qualitativement les même oscillations que TPO (quand les données sont 

disponibles). Nos résultats indiquent que les éléments critiques générant les oscilla­

tions des plaquettes dans TC sont une variation dans la maturité du mégakaryocytes, 

un taux de croissance relativement lent des mégakaryo cytes , ainsi que une augmen­

tation aléatoire de destruction des plaquettes. 
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Chapter 1 

Introduction 

This chapter presents the physiological framework of the research project and in­

troduces the clinical features of cyclical thrombocytopenia (CT). CT is an unusual 

hematological disorder with dynamical character, and represents the object of our 

investigation. 

1.1 Hematopoiesis 

Over the last four decades available clinical data has allowed experimental hematol­

ogists to develop a model of hematopoiesis (blood cell production). Although the 

architecture of this pro cess is continually evolving, the general outlines are already 

established. There is compelling evidence that all the mature blood cells are gener­

ated from a relatively small population of morphologically undifferentiated cells called 

hematopoietic stem cells (HSC). In humans, the HSC originate from the yolk sac in 

the first weeks of embryonic development. At about week six, the stem cells migrate 

to the substance of the embryo where they proliferate first in the fetal liver and next 

in the spleen. From about the fifteenth week of gestation through the death of the 

individual the bone marrow becomes the major site of hematopoiesis. In the marrow 

of a healthy person, most of the HSC are quiescent in the Go phase of the cell cycle 

and constitutes the reserve pool which is called into differentiation in the event of a 

hematopoietic stress. The stem cells have the capacity of self-renewal and differentia­

tion. A small part of the total population from HSC is dedicated to peripheral blood 
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cell formation and another fraction of it maintains the reserve pool through division 

(12). 

1.1.1 Blood cells development 

Hemato.poiesls 
Maturittlon aMmffi!~tlal(hitl't 

Fig. 1.1 Hematopoietic regulation architecture (frorri 
http://www.userlogic.com/anll/ studyaids/maturationchart/maturation ..chart.html). 

The differentiation of pluripotential stem cells is an hierarchical multi-step pro­

cess involving many intermediate ceIl-types. The first step involves the commitment 

of the stem cells into one of the two major pathways, lymphoid or myeloid (Figure 

1.1). The common lymphoid progenitors can generate only T, B, or NK lympho­

cytes, which take specific functions in the immune system. The myeloid lineage is 
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more complicated. Three major branches can be distinguished: erythroid, megakary­

ocytic and phagocytic. The erythroid and megakaryocytic do not undergo further 

subdivision and give rise to platelets and respectively, red blood cells (RBC). The 

platelets have a major role in blood clotting and blood vessel repair, and RBC carry 

oxygen from the lungs to the tissues. The phagocytic pathway branches into mono­

cytic and granulocytic lineages. The latter divides into neutrophilic, eosinophilic and 

basophilie lines. Neutrophils fight against bacterial infection, eosinophils destroy var­

ious parasites and reduce allergie inflammations. Basophils release histamine and 

serotonin, and modulate sorne inflammatory responses. Lymphocytes, neutrophils, 

monocytes, eosinophils, and basophils are constitutive parts of white blood cells (also 

called leukocytes). 

1.1.2 Platelet biogenesis 

Megakaryopoiesis incorporates the commitment of the pluripotential hematopoietic 

stem cells to the megakaryocytic differentiation, the proliferation, the maturation, 

and the terminal differentiation of the megakaryocyte progenitors. The megakary­

oey te transition from immature cells to platelets starts with endoreduplication (du­

plication of the genome without mitosis), organelle synthesis, cytoplastic expansion, 

and formation of a microtubule array emanating from the centrosome (77). As the 

megakaryocyte matures, the nucleus becomes large and lobulated. DNA replication 

usually occurs at least three times during the complete sequence of endoreduplication 

to yield a mature megakaryocyte of ploidy 16 capable of platelet production (91). In 

addition to DNA and cytoplasmic expansion, an internaI demarcation membrane, a 

dense tubular network, an open canalicular system, and a channeled system for gran­

ule release are formed (77). The internaI demarcation membrane is connected to the 

plasma membrane and will become the external membrane of the proplatelets, the 

platelets precursors. The entire megakaryocyte cytoplasm is converted into a mass 

of proplatelets, the nucleus is extruded, and individual platelets are released from 

proplatelets ends (77). 

Platelets (or thrombocytes), the smallest corpuscular components of the human 

blood (2 - 4f1m diameter), are important for blood coagulation and for haemosta-
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sis (arrest of bleeding). They adhere to the sites of damaged tissue to produce a 

hemostatic plug, and represent the surface on which the coagulation factors are acti­

vated to form a fibrin clot. The typical shape of resting platelets is discoid, but upon 

activation it changes to globular form with pseudopodia (up to 5p,m long). 

Fig. 1.2 Resting (left) and activated platelets (right). Platelets 
circulate in a dormant state. Endothelial damage in vivo and 
the absence of the vessel wall in in vitro experiments determine 
a platelet responsiveness to activating stimuli (2). Photos from 
http://www.perfusion.com/perfusion/articles/general/9905-platelet­
anatomy/ 

1.1.3 Hematopoietic cytokines 

The proliferation of the stern cells and progenitor cells is controlled by a negative feed­

back system mediated by hematopoietic cytokines, which are hormones that regulate 

this pro cess through endocrine and paracrine mechanisms. 

Erythropoietin (EPO), which is the hormone that mediates the RBC production, 

is produced primarily in the kidney. A decrease in the number of RBC leads to lower 

oxygen levels in the tissue, which in turn trigger an increased production and release 

of EPO. Erythropoietin circulates in the blood to the bone marrow where it binds 

to the receptors on the surface of erythroid precursor cells, inducing their division 

and maturation. After a time delay due to division and maturation, a higher number 

of RBC are released into circulation, and the oxygen levels in the tissue increase 

accordingly. This cytokine has therapeutic applications: it is used to treat a variety 
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of types of anemia. 

Granulocyte colony stimulating factor (G-CSF) controls a similar negative feed­

back loop in the regulation of neutrophils. It has been shown that a decreasejincrease 

in the circulating neutrophil counts leads to an increasejdecrease in the production 

of G-CSF. G-CSF is widely used clinically to treat neutropenic patients (i.e. with 

low levels of neutrophils). 

Thrombopoietin (TPO), known as C-Mpl ligand or megakaryocyte growth and 

development factor, is the primary regulator of thrombopoiesis (platelet production). 

Human TPO is encoded by a single gene, located on the chromosome 3 (q26.3-q27). 

Although TPO is produced constitutively by the liver, rn-RNA specifie for TPO is also 

found in the kidney, marrow stroma and other tissues (22). It was found experimen­

tally that blood and marrow levels of TPO are inversely correlated to platelet count. 

This fact led to the hypothesis that thrombopoietin is mainly regulated by a consump­

tion pro cess in which TPO binds and activates the C-Mpl receptor on megakaryocytes 

and platelets, and then is removed from circulation ((32), (33), (60), (89)). Although 

the understanding of platelet regulation is rapidly evolving, the molecular basis of 

this pro cess is not completely elucidated. Substantial progress was achieved by the 

discovery and the cloning of TPO and its receptor in 1994 (49). This fact allowed 

the "simulation" of platelet formation in the laboratory for a better visualization 

and understanding of the process. It is believed that TPO stimulates hematopoietic 

stem cells to enter the cell cycle from their Go phase, accelerates proliferation and 

differentiation of megakaryocyte precursors, decreases precursor apoptosis, promotes 

megakaryocyte maturation, increases megakaryocyte ploidy and stimulates the release 

of platelets via the fragmentation of mature megakaryocytes (83). Moreover, TPO 

can act in synergy with other cytokines, and shares a high homology with EPO (22). 

Additionally, it plays an important role in myelopoiesis and erythropoiesis, acting on 

both lineage committed cells and on HSC (83). 
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1.2 Cyclical thrombocytopenia 

1.2.1 Cyclical thrombocytopenia as a dynamical disease 

Hematopoiesis is a homeostatic system, and consequently most disorders of its regula­

tion le ad to chronic failures in the production of either all or only one blood cell type. 

Among the wide rage of diseases affecting the blood cells, there are sorne which are 

characterized by predictable oscillations in one or more cellular elements of the blood. 

They are called periodic or dynamical diseases (38). Cyclical neutropenia (CN), peri­

odic chronic myelogenous leukemia (PCML), periodic auto-immune hemolytic anemia 

and cyclical thrombocytopenia (CT) are sorne classical examples. The investigation 

of their dynamic char acter offers an opportunity to enrich our knowledge about sorne 

regulating pro cesses of blood cell production and has a clinical significance. The in­

sights offered by a qualitative approach might help for a correct diagnosis and suggest 

therapeutic strategies. 

In this work we focus on cyclical thrombocytopenia, specifically on its dynamic 

features. To provide a better understanding of the CT clinical profile, we present a 

comprehensive review of the literature and describe the experimental findings, treat­

ment outcome, and current understanding of the pathophysiology. 

1.2.2 Clinical profile 

Cyclical thrombocytopenia is a rare hematological disorder described mostly in adults 

and characterized by periodic platelet count fluctuations of unknown etiology. It 

occurs predominantly in women and it was rarely observed in males. Sometimes this 

disease is associated with bleeding symptoms which have no apparent cause other 

than thrombocytopenia (low platelet count): purpura, petechiae, epitaxis, gingival 

bleeding, menorrhagia, easy bruising and gastrointestinal bleeding (see Figure 1.2.2). 

For humans, the normal range of circulating platelets is 150 x 109 - 450 X 109 

platelets/L with an average of 290 x 109 platelets/L. Newborn babies have slightly 

a lower level, but they are usually within the adult range by the three months of 

age. Although, in general, human platelet levels remain relatively stable for years, 

many factors can influence an individual's platelet count (e.g. exercise, racial origin, 
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Fig. 1.3 Bleeding symptoms in CT 
(rromhttp://heme-coag.uthscsa.edu/wwwbleed97/00quantplt.html) 
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sorne diseases, pregnancy). In CT the platelet counts oscillate from very low (1 X 109 

plateletsjL) to normal or very high levels (2000 x 109 plateletsjL). The literature 

contains 38 well-documented cases of platelet fluctuations (34 putative patients and 

4 healthy individuals) published between 1962 and 2005. AlI these reports have been 

sporadic, except for an apparently unique family described by Aranda and Dorantes 

(3), in which the platelet cycling was observed in 4 out of 9 siblings and their fa­

ther. Although CT is manifested mostly in adults with bleeding symptoms, our data 

collection includes the platelet count of two children ((15), (37)) and three cases of 

asymptomatic individuals ((71), (92)). 

The pathogenesis of CT is poorly understood and various mechanism have been 

proposed. The clinical findings suggest at least two pathways: immune-mediated 

platelet destruction (autoimmune cyclical thrombocytopenia) and megakaryocyte de­

ficiency and cyclical failure in platelet production (amegakaryocytic cyclical thrombo­

cytopenia). Autoimmune CT is thought to be an unusual form of immune thrombo­

cytopenia purpura (ITP) and is more common in females. The hematological profile 

of most of these patients reveals high levels of antiplatelet antibodies, shorter platelet 

lifespan at the platelet nadir and normal to high levels of marrow megakaryocytes. 

Amegakaryocytic CT is postulated to be a variant of acquired amegakaryocytic throm-
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bocytopenic purpura and is mainly characterized by the absence of megakaryocytes 

in the thrombocytopenia phase and increased megakaryocyte number during throm­

bocytosis. SeriaI tests for serum antiplatelet antibodies are negative and the platelet 

lifespan is normal. 

To determine the cause of cyclic megakaryocytopenia, Nagasawa et al. (74) ex­

amined the integrity of the megakaryocyte progenitor compartment just prior to the 

nadir and peak of platelet cycle. They noticed that in the autoimmune case the mean 

size of megakaryocytes does not change with the cyclic variations in the platelet count, 

while in patients with amegakaryocytic variety the number of colony-forming unit­

megakaryocyte (CFU-Meg), the megakaryocyte number and the cytoplasmic area 

fluctuated in synchrony with the platelet cycle. 

In all the reported cases, except for (36) and (70), besides oscillations in platelet 

count, the patient's hematological profile has been consistently normal. The periph­

eral red and white blood cell counts were within the normal range and the blood smear 

shows no morphological abnormalities or platelet clumps. In the case presented by 

Füreder et al. (36), erythropoiesis and granulopoiesis were slightly affected. The 

Menitove et al. (70) patient manifested a severe iron deficiency with anemia and 

reticulocytosis. 

A synchronization between the fluctuations in the platelet count and menses has 

been reported in sorne female patients ((46), (72), (94)). The fact that CT occurs also 

in men and women after menopause indicates that the pathogenesis of this disorder 

is not necessarily related to the menstrual cycle. For example, Cohen and Cooney 

(17) observe that platelet cycles are in phase with their patient's menstruation only 

when she was under exogenous hormone therapy, while other groups of investigators 

((47), (70), (99)) report no correlation between platelet oscillations and menses. 

1.2.3 Therapeutic attempts to treat cyclical thrombocytopenia 

Over time, various therapeutic measures have been tried. Since the general features of 

cyclical thrombocytopenia and immune thrombocytopenia purpura are very similar, 

many of the CT patients were misdiagnosed as ITP. Consequently, they received the 

typical ITP treatment like corticosteroids ((14), (15), (17), (29), (88), (95), (96)), in-
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travenous globulin ((4), (47), (56), (70), (93), (100)), plasma infusions (15), colchicine 

((70), (81), (86)), and were subjected to splenectomy unnecessarily ((3), (4), (21), 

(46), (56), (58), (70), (81), (82), (86), (88), (93), (94), (96)). Despite their limita­

tions, the case reports published in the literature suggest that traditional treatment 

appropriate for ITP does not have a benefic effect in CT cases (39). Up to now, 

no reliable therapy has been established, but danazol ((82), (94), (99)), cyclosporin 

A ((93), (100)), azathioprine (21), lynestrenol (95), glucocorticoids ((17), (29), (88), 

(94)) or hormonal contraception (46) have been shown to be effective in sorne cases. 

1.2.4 Thrombocytopenia associated with other syndromes and as a side 

effect of chemotherapy 

Although thrombocytopenia is common in HIV infection, it appears in association 

with other disorders, and it is an well-known side effect of chemotherapy, our analysis 

does not focus on these cases. When discussing about the causes and the management 

of cyclical thrombocytopenia it is important to distinguish between CT as an indi­

vi dual disorder and thrombocytopenia resulting from other causes. For completeness 

we present sorne examples. 

Chemotherapy-induced thrombocytopenia is a problem oncologists have been fight­

ing for years mostly because it represents one of the primary causes of morbidity and 

mortality in the treatment of cancer. It occurs because the chemotherapy drugs de­

stroy rapidly growing cells, such as cells in the bone marrow that generate platelets. 

Due to the low number of circulating platelets, the chemotherapy treatments need 

to be delayed or dose-reduced, diminishing the patients chances for the most optimal 

result. 

At the same time, the literature brings to attention cases of thrombocytopenia as a 

manifestation of myelodysplastic syndrome (79) or associated with other diseases like 

polycythemia vera (54), lymphatic-venous malformation (97) and Anaplasma spp. 

infection (39). 
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1.3 Organization of the thesis 

The first chapter presents the biological background of the project and introduces 

the clinical features of cyclical thrombocytopenia (CT). CT is a hematological dis­

ease with dynamic character and represents the object of our study. The first step 

in our investigation is the spectral data analysis of the platelet counts published in 

the literature (Chapter 2). Using periodogram analysis we test all data sets for the 

presence of statistically significant periodicity. To provide a better understanding of 

the mechanisms underlying the rhythmic fluctuations observed in this disorder, we 

employa mathematical model of hematopoiesis. The model development and the pa­

rameter estimation based on clinical measurements are presented in Chapter 3. The 

model is consistent with the physiological framework and is mathematically correct. 

Chapter 4 tackles problems connected to the mathematical study of the model: the 

existence and the uniqueness of solutions (Section 4.1), the investigation of the steady 

states (Section 4.2), and the linear stability analysis (Section 4.3). The remainder of 

the thesis is original work. Our goal is to explain through computer simulations the 

onset of platelet oscillations which characterize CT. A detailed numerical analysis of 

the model dynamics allows us to zoom in the parameter space, and to identify the 

parameters with essential role in generating a model response similar with CT data 

(Section 5.1). The hematopoietic model successfully duplicates the platelet counts of 

CT patients, and provides a qualitative fitting of the thrombopoietin levels (when data 

available). In the case of sorne hematological disorders caused by either megakary­

ocyte deficiency or increased platelet destruction, the thrombopoietin levels are not 

accurately predicted by the circulating platelet counts. Since the understanding of 

the molecular basis of thrombopoiesis is not completely elucidated, we compare the 

TPO production in autoimmune CT and amegakaryocytic CT using the predictions 

of our model (Section 6.1). The biological interpretation of the results, the compari­

son with the clinical findings, and the conclusions drawn from the previous modeling 

effort are synthesized in the last chapter (Chapter 6). 
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Chapter 2 

Spectral analysis of platelet data 

The focus of this chapter is to extract information about the oscillatory components 

of CT data. Searching the English literature from 1962 to 2006 we found 38 different 

clinical studies which report CT cases and publish the corresponding platelet counts. 

Although the data is presented either as cells/L or as cells/kg we maintain the same 

unit (cells/kg) and we use for conversion the fact that 70 kg adult has 6 L blood (18). 

2.1 Lomb-Scargle periodogram 

Many natural pro cesses are periodic and the best way to describe this periodicity 

is through Fourier analysis. Since the experimental measurements cannot be fully 

controlled, the data sequence to be analyzed is often unevenly spaced in time and 

may contain random observational errors. Interpolating the unevenly sampled data 

to equally spaced time intervals and applying direct Fourier techniques may alter 

the perceived frequency and the significance of the periodic signal. In 1976, Lomb 

(65) proposed an extension of the Fourier power spectrum to deal with even and 

unevenly sampled data. His worked was continued a few years later by Scargle (85) 

who improved the periodogram and clarified the statistical assessment of a peak in 

the periodogram as a noise or signal. 

Specifically, let Xj be the concentration of the platelets as measured at time t j , 

j = 1, N where N is the number oftotal data points. As usual, the me an and variance 
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of data values are defined by 

N 

2 1 ""( - 2 and a = N _ 1 ~ Xj - x) . 
j=l 

The Lomb-Scargle periodogram (also called Lomb normalized periodogram) defines 

the spectral power P(w) as a function of the angular frequency w = 27[1 by the 

following formula: 

P(w) 
_1_{ (L:.f=1 (Xj - x) cosw(tj - p))2 (L:f=l (Xj - x) sinw(tj - p))2} 

- 2 2 ""N 2 ( ) + ""N. 2 ( ) , a wj=l cos w tj - P Wj=l sm w tj - P 

(2.1.1) 
where p is a constant defined implicitly by 

The particular choice of p has a double significance. It makes the periodogram in­

variant to time translations and equivalent to a least square fitting of sine curves to 

data. The second aspect partially explains the efficiency of the Lomb normalized pe­

riodogram with respect to Fourier transform methods: the data is weighted per point 

instead of per time interval. To determine the presence or absence of a periodic signal 

we need to quantify the significance of a peak in the periodogram. Consider the null 

hypothesis that the values Xj are independent Gaussian random values. Scargle (85) 

normalized the Lomb periodogram by the total variance of the data a 2 . In this way, 

at any particular w, P(w) has an exponential probability distribution with unit mean, 

i.e. the probability that P(w) lies in a positive interval (z, z + dz) is e-zdz. Therefore, 

for M independent frequencies, the probability that none give values larger than z is 
(1 - e-z)M. It follows that the false-alarm probability of the null hypothesis, i.e. the 

significance level p of every peak we see in a periodogram, is given by 

(2.1.2) 
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Some crucial ingredients in calculating the false alarm probability are the choice of the 

frequency range and the number M of independent frequencies. Horne and Baliunas 

(48) performed numerical experiments for determining M in different situations. In 

general, the number of independent frequencies depends on the number of data points 

N, their spacing and the number of frequencies sampled. Their numerical experiments 

showed that M ~ N when the data points are approximately equally spaced (as in the 

platelet counts collected from the CT patients) or the sample frequencies oversample 

the frequency range. Press et al. (78) provide an effective way of computing M under 

the assumption that there is no important dumping. 

In determining the periodicity of the CT data we use a Matlab implementation 

of the algorithm proposed in Press et al. (78). In our work, an individual data set is 

considered periodic if the significance level p of the principal peak in the periodogram 

is less than 0.05. 

Remark 1. 1. The presence of a significant peak at one of the frequencies implies 

h h d ' . d' . h . d P 27r 1 t at t e ata set 'lS per'lO 'lC W'lt a per'lO = -:;; = 7' 

2. Horne and Baliunas (48) prove that any other normalization of the Lomb pe­

riodogram except for the total variance of data will annihilate the definition of 

the false alarm probability given by (2.1.2). 

3. For series sampled at constant time intervals, the Lomb periodogram yields the 

standard squared Fourier transformation. 

2.2 Results 

We found in the literature 38 case reports of patients diagnosed with cydical throm­

bocytopenia. Using periodogram analysis we tested aIl data sets for the the presence 

of statistically significant periodicity in the platelet counts. Some of these studies 

presented patients without any treatment ((3), (64), (81), (98), (100)), and others 

described subjects undergoing various therapies. Although most of the attempted 

therapeutic strategies were not successful, and the platelet counts continued to fluc­

tuate, the type of treatment and the drug dose might influence the pattern of platelet 
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Fig. 2.1 Drugs influence on platelet fluctuations. Cohen and Cooney 
(17) observed the temporal evolution of the platelet levels for a young 
female undergoing various therapies (Norinyl, C-Quens, prednisone) as 
well as off treatment. 
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oscillations. For example, Cohen and Cooney (17) observed the temporal evolution 

of platelet levels for a young female over a period of 22 months. First she was treated 

with Norinyl, then with C-Quens, followed by prednisone (Figure 2.1). As in many 

other cases, prednisone did not alter the platelet cycles. The time series recorded 

during treatment with Norinyl or C-Quens display sorne important differences com­

parable to the off-therapy periods. The significant period, the amplitude and the 

mean of the platelet counts change according to the type of treatment. Lomb-Scargle 

periodogram reveals a period of 24.8 days (significance level 0.5) under Norinyl, which 

changes to 99 days (significance level 0.05) under C-Quens, and to 29 days (signifi­

canee level 0.05) when the patient was off treatment. Although prednisone does not 

influence the platelet fluctuations, it was observed that various doses of it over a short 

time period can modify the oscillatory components of the time series. An example 

is the case of child with chronic thrombocytopenia purpura reported by Aranda and 

Dorantes (3). Analyzing the whole data set, regardless the dose of the drug, we find 

two significant periods (28 and 29 days, respectively). Under a constant dose of pred­

ni sone the platelet oscillations follow a regulated pattern with a significant period of 
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Fig. 2.2 Effect of various doses of prednisone on platelet cycles. The 
patient reported by Aranda and Dorantes (3) was treated with different 
doses of prednisone. 

approximately 29 days (days 159-427 in Figure 2.2). 
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Given the variety of the data data published in the literature, we focus firstly 

on the time series corresponding to the patients without any treatment, secondly on 

the cases when the therapy does not alter the platelet cycles and, in the end, on 

the situations when the patient was undergoing different therapies. Our analysis is 

displayed graphically in Figures 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, where each data set 

is identified as to source. Based on our criterion for statistical significance (p :S 0.05), 

only 22 out of 38 data sets are significantly periodic (11 males and 11 females). 

The period of platelet oscillations varies between individuals, with a shorter average 

period in female (26 ± 10 days) comparable to men (35 ± 12 days). There is a 

connection between the patient's diagnosis and the range of significant periods of 

platelet variations. The oscillations in autoimmune data have periods ranging from 

13 to 31 days which, on average, are shorter than the periods in amegakaryocytic 

cases. The latter vary from 19 to 64 days (Figure 2.3). Table 2.1 summarizes the 

results of our data analysis. For each patient we specify the sex, the diagnosis, and 

the significant period(s). 
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cases. 
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Remark 2. To help in deciphering the pattern of oscillations observed in CT, we 

search for other chamcteristic elements of the time series. Once a significant peri­

odicity P has been detected through periodogmm analysis, we can easily estimate the 

phase f and amplitude A of a sine wave that best fits the data using the function 

. (27ft j ) X j = Asm p+f , j = 1,N (2.2.1) 

If the time series has two significant periods Pl and P2 then we need two sine waves: 

j = 1,N (2.2.2) 

There is no apparent relationship between the mean of data, the period and the am­

plitude of oscillations in the platelet compartment. 
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Source and patient ID Sex Diagnosis Mean of the data Significant 
( x 1010 cells/kg) period(s) 

(days) 
Fogartyet al. (2005) M AI 1.7741 46 

Rice et al. (2001) F AI&AM 0.1042 27 
Kimura et al. (1996) M AI&AM 1.579 37 and 9 

Helleberg et al. (1995) F AI 0.9059 27 
Kosugi et al. (1994) F AI 0.3290 25 
Yanabu et al. (1993) F AI 1.9507 24 
Rocha et al. (1991) F AI 1.0455 21 and 10 

Menitove et al. (1989) F AI 1.1452 13 
Skoog et al. (1957) F AI 0.5625 26 
Bruin et al. (2005) M AM 0.6304 27 

Füreder et al. (2002) F AM 1.7806 27 
Zent et al. (1999) M AM 0.7267 30 

Hoffman et al. (1989) F AM 1.1260 64 
Aranda and Dorantes (1977) M AM 1.0984 29 

Cohen and Cooney (1974) F AM 0.8064 30 
Wilkinson and Firkin (1966) M AM 1.8701 41 

Wasastjerna (1967) M AM 1.1354 23 
Engstrom et al. (1966) M AM 1.7984 43 

von Schulthess and Gesser (1986), case 1 M Healthy 1.9858 23 
von Schulthess and Gesser (1986), case 2 M Healthy 2.9230 31 and 49 

Morley (1969), subject 8 M Healthy 1.7704 31 
Lewis (1974) F C-TPO 0.9180 23 

Table 2.1 Inventory of the CT patients. AI indicates autoimmune CT, 
AM denotes amegakaryocytic CT diagnosis, C-TPO stands for cycling 
TPO levels, and "healthy" are the asymptomatic patients. 

Rice et al. 2001 
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Fig. 2.4 The patient reported by Rice et al. (81) was responsive to 
thrombopoietic growth factor therapy. In our investigation we use the 
data collected one cycle prior to treatment. 
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Fig. 2.5 Left-hand panels: Published platelet counts of patients diag­
nosed with autoimmune CT. The horizontalline shows the normal platelet 
value in humans (2.14 x 1010 cells/kg). Right-hand panels: The cor­
responding periodograms (power versus frequency). The horizontallines 
specify the significance levels. 
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Fig. 2.7 Published platelet counts of patients diagnosed with autoim­
mune CT (Menitove et al., Skoog et al.) and cyclic TPO levels (Lewis) . 
AH the other notation as in Figure 2.5. 
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Chapter 3 

A mathematical model of 

hematopoiesis 

In the last decades mathematical modeling has became a powerful tool in deciphering 

the mysteries of biological systems. The focus of this chapter is to develop a phys­

iologically realistic model which can help in understanding the onset of oscillations 

observed in cyclical thrombocytopenia. 

3.1 DifferentiaI delay equations 

A variety of mathematical models for biological phenomena are most appropriately 

framed as differential delay equations (DDE). DDE, also known as differential-difference 

equations, are a special class of functional delay equations and one of their distinct 

features is that the evolution rate is described by differential equations which include 

information on the past history. 

DDE were initially introduced in the 18th century by Laplace and Condorcet 

and the basic theory concerning the stability of systems described by equations of 

this type was developed by Pontryagin in 1942. Although now there is a substantial 

theory available (important works have been written by Bellman and Cooke in 1963, 

El'sgol'c and Norkin in 1971, Hale in 1977, Kolmanovski and Nosov in 1986, Stépan 

in 1980), the global knowledge of DDE has not been widely exploited by the scientific 

community. This is changing with a rapidly growing use of systems with delays in 
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applied sciences, mostly in mathematical biology and engineering. The time required 

for a ceIl to mature, the time for the nerve impulse to travel along the axon and 

across the synapse, or the time for the hormonal signaIs to travel from their site of 

production to target organs are just few examples of delays in biological systems. 

Basic mathematical background 

As usual, IRn denotes the n-dimensionallinear vector space over IR with the Euclidian 

norm Ixi = Jxi + ... + x~, for x = (Xl, ... , xn) E IRn. G([a, bl, IRn) is the Banach 

space of continuous functions mapping the interval [a, b] into IRn with the topology of 

uniform convergence. Let r be a positive real constant. If [a, b] = [0, r] then we will 

adopt the notation G = C([O, rl, IRn). 

For a E IR, A ~ 0, X E G([a - r, a + A], IRn) and t E [a, a + A] we define X T E G 
as xAt) := x(t - T) for T E [0, r]. 

Let n c IR x C and f : n ----+ IRn. An equation of the form 

x(t) = f(t, xr(t)) (3.1.1) 

is caIled a delay differential equation (DDE) on n. 
If the right hand side of (3.1.1) is independent of t then the system is said to be 

autonomous. In this case we consider a = O. We say that the equation (3.1.1) is 

linear if f(t, cP) = L(t)cP + h(t) with L(t) a linear operator. Equation (3.1.1) is linear 

homogeneous if h 0 and linear nonhomogeneous if h =j:. O. 

Definition 1. (Kuang (1993), p.15) A solution of (3.1.1) on [a - r, a + A] is a 

function X which satisfies simultaneously the following three conditions: 

(i) X E C([a - r, a + A], IRn), 

(ii) (t, xr(t)) E n, 

(iii) xr(t) satisfies (3.1.1) for tE [a, a + A). 

Definition 2. (Kuang (1993), p.15) For given a E IR and'l/J E G we say that X 

is a solution of (3.1.1) with initial value 'IjJ at a, or simply a solution through (a, 'IjJ), 

if there is an A > 0 such that 
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(i) x is a solution of (3.1.1) on [0- - r, 0- + Al in the sense of Definition 1 and 

Theorem 3.1.1. (Kuang (1993), Theorem 2.1, p.19)(Existence) Assume 

that n is an open subset in lR x C and f is continuo us on n. If (0-, 'IjJ) E n then there 

is a solution of (3.1.1) passing through (0-, 'IjJ). 

Definition 3. (Kuang (1993), p.19) f(t,'IjJ) is a Lipschitz function in 'IjJ in a 

compact set K of lR x C if there is a constant k > 0 such that, for any (t, 'ljJi) E K, 

i E {1,2}, 

Theorem 3.1.2. (Kuang (1993), Theorem 2.2, p.19)(Uniqueness) Suppose 

that n c lR x C is open, f : n -t lRn is continuous, and is f(t, 'IjJ) Lipschitz in 'IjJ 

in each compact set in n. If (0-, 'IjJ) E n, then there is a unique solution of (3.1.1) 

through (0-, 'IjJ). 

For a careful derivation of the these results the reader is referred to (57). 

Remark 3. (3.1.1) is a very general type of equation and includes 

(i) ordinary differential equations (r = 0) 

±(t) = F(x(t)) 

(ii) differential difference equations 

±(t) = f(t, x(t), x(t - Tl), ... , x(t - Tm)). 

Due to the dependency on the past history, a solution is not uniquely defined 

by the value of x(t) at some specifie moment t. One has to specify an initial 

solution over an interval of length T, where T = maXi=l,m Ti. 
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3.2 Model development 

To our knowledge, the first mathematical model of hematopoietic regulation had 

been proposed by Lajtha et al. (63) in 1962 to describe stem cell proliferation and 

differentiation. This paper stimulated many biologists and biomathematicians, and 

since then numerous concepts have been cast into the frame of the mathematical 

models. 

Recently, Colijn and Mackey (18) synthesized a Go-type model for the HSC 

dynamics (66) with the mathematical models for leukocytes ((8), (43), (45», ery­

throcytes ((6), (67), (69», and platelets ((5), (83» into a comprehensive model of 

hematopoiesis. Their work was motivated by the existence of the dynamical dis­

eases which provide the opportunity to understand the regulatory mechanism in early 

hematopoiesis and its effect on the blood ceIllines. The model presented in (18) not 

only captures the essential characteristics of hematopoiesis but also offers an advan­

tage comparable with the earlier models consisting of one cellline or one line cou pIed 

to the stem cells. In the framework offered by Colijn and Mackey it is possible to 

analyze the effect of stem cell destabilization on the whole system and the echoes 

of one blood cell line fluctuations on the other compartments. For example, hema­

tological diseases like CN (19) and PCML (18) involve oscillations in aIl circulating 

hematological cells and their cause is better understood through a four-compartment 

model. 

Colijn & Mackey model (18) versus our model 

Since the model of Colijn & Mackey (18) has been shown to display the features 

of two dynamical diseases (PCML in (18) and CN in (19», we chose it as a st art­

ing point in our quantitative investigation of CT. Extensive numerical experiments 

showed that any induced oscillations in the platelet compartment destabilize the neu­

trophil line. Our successive attempts le ad to the conclusion that the hematopoietic 

model in this form cannot generate oscillatory solutions in platelet compartment while 

maintaining aIl the other variables at their steady state levels. The main cause of 

this phenomenon is the assumed dependence of the platelet differentiation rate on the 

number of circulating platelets. Since the molecular mechanisms of platelet regula-
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tion are not completely elucidated, given the similarities between erythropoiesis and 

thrombopoiesis, the authors (18) assumed that the platelet differentiation rate follows 

the same mechanism as in the case of erythrocytes, and depends on the number of 

circulating cells. Searching the literature, we found that experimental data suggests 

that the megakaryocyte compartment is maintained by an approximately constant 

influx of progenitor cells (13), Therefore, in our modeling work, we assume that the 

platelet differentiation rate is constant. For this reason, we will derive a new equa­

tion for the platelet dynamics and while maintaining the structure of the stem ceIl, 

neutrophil and erythrocyte compartments given in (18) (see Figure 3,1 for a cartoon 

representation), In the following, we present a brief model development, with a par­

ticular emphasis on the platelet compartment, The pluripotential, non-proliferating 

stem ceIls, the circulating neutrophils, platelets and erythrocytes are denoted by Q, 

N, P and R, respectively. We adopt the notation convention XT(t) := X(t - r) for 

any variable X, 
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Stem cell corn part ment 

The stem cells in the resting phase (or Go phase) of the cell cycle do not divide. There 

are only two ways that they can exit the non-proliferating compartment: either enter 

the proliferating phase at a rate j3( Q) or differentiate into erythrocytes, neutrophils 

and platelets at rate /'i,R, /'i,N and /'i,p, respectively. After re-entering the proliferating 

phase, the cells divide, taking a time TS to do so. Immediately after, the two daughter 

cells move into the resting phase. Using this notation, we can write a balance equa­

tion stating that the rate of change of HSC number is the difference between their 

production and their loss: 

dQ 
dt 

-j3(Q)Q 
'---v---" 

- (/'i,N(N) + /'i,p(P) + /'i,R(R))Q 
, 1 

v 

+ 2e-"(STS j3( QTS )QTS , ~ 

V' 

movement into 10ss due to differentiation cells reentering 

proliferation the Go corn part ment 

The last term contains the gain due to the movement of cells into the Go phase 

one generation time ago. The factor 2 describes the division of each ceIl into two 

daughter ceIls and e-"(STS corrects for the probability of the loss from the proliferating 

population. 

Platelet compartment 

Once a pluripotential stem ceIl is committed to this pathway, it undergoes a series of 

nuclear divisions and enters a maturation phase for Tp M days before being released 

into circulation. After TpS days the platelets are primarily lost to senescence at a 

rate of "'IP per day. Colijn & Mackey (18) proposed the following DDE to model the 

platelet variation: 

where the platelet differentiation rate /'i,p is given by 

/'i,p(P) = i P . 
1 + p r 
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We use a similar reasoning but under the approximation that the platelet differenti­

ation rate is constant. Therefore the change in the platelet counts is given by: 

(3.2.1) 

The main agent controlling the the peripheral platelet regulatory system through A p 

(the average number of platelets released per megakaryocyte) is thrombopoietin. Let 

V(t) denote the megakaryocyte volume and T(t) the TPO concentration at the time 

t. The available experimental data allows us to suppose that 

(i) Ap(t) oc V(t) and 

dV 
(ii) V(t) obeys the ordinary differential equation dt (t) = p,T(t)V(t). 

Solving the above equation we get: 

ft T(t')dt' V(t) = V(t - TPM )ef.LJt-TPM . 

Since the differentiation rate K,p is constant we can consider V(t - TPM) = Va. Hence 

- ft T(t')dt' Ap(t) = Aoef.LJt-TPM , 

where Ao denotes the minimal number of platelets produced per megakaryocyte. But 

1 ft T(t) := - T(t')dt' 
TPM t-TpM 

represents the average TPO concentration at the moment t. Hence 

Santillan et al. (83) model the TPO concentration un der the assumption that the 

number of megakaryocytes of age zero entering from the stem cell compartment is 

directly proportional to the thrombopoietin levels. They find: 

(3.2.2) 
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AdditionalIy, if we consider that TPO concentration is in dynamic equilibrium with 

the number of circulating platelets then ~~ = O. Therefore 

which implies 

T max represents the maximum TPO level in blood. 

Erythrocyte compartment 

The erythrocyte and platelet dynamics share common features and display sorne 

important differences. The primary difference between erythropoiesis and throm­

bopoiesis is related to the development of the precursor cells. In erythropoiesis, the 

stem cells undergo rapid proliferation and differentiation until they become reticu­

locytes, which mature and become circulating erythrocytes. In thrombopoiesis, the 

stem cells proliferate until they reach the stage of megakaryocytes, which no longer 

proliferate but undergo endoreduplication (83). Therefore the total variation of ery­

throcytes is modeled by: 

dR 
dt -"IRR 

'--v-" 
random Joss 

+ ARK,R(RrRM )QTRM , ' 
'V' 

cells entering from the 

stem cell compartment 

A -'YRTRS (R )Q - Re K,R TRM+TRS TRM+TRS 
, ,1 

'V' 

Joss due to senescence 

AlI the notation (except for AR) is analogous to those in equation (3.2.1). AR is the 

dimensionless parameter corresponding to the amplification stage due to cell division. 

N eutrophil compartment 

As the neutrophil precursors differentiate, their number is amplified by a constant 

factor AN which accounts for the stages of cell division. After TN days they become 

mature and are released into circulation. The neutrophils are randomly lost at the 

rate "IN. Their dynamics is governed by the equation: 
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dN 

dt 
-"(NN + 
~ 

random 10ss 

ANf'i,N(NTN)QTN , " v 
cells entering from 

the stem cell compartment 
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Forms of the feedback functions and of the stem cells re-entry rate into 

proliferation 

Hematopoiesis is a homeostatic system and depends on carefully balanced negative 

feedback loops. The last step of our model construction is to define appropriate 

for ms for the feedback functions and the stem cell re-entry rate into proliferation. 

Since it takes several days for cells to proliferate or to mature these feedback effects 

are delayed. 

In their age-structured erythropoietic model, Mahaffy et al. (69) assume that the 

numbers of precursors entering the erythrocytes line is linearly proportional to the 

erythropoietin concentration (E) and derive the equation: 

dE a 
dt - 1 + K Rm - f'i,E. 

r 

(3.2.3) 

We preserve this approximation and assume that the erythropoietin levels are in 

dynamic equilibrium with the erythrocytes numbers. Therefore 

dE = 0 and (R) E <X 1 
dt f'i,R <X l+KRm 

r 

R 
which implies f'i,R(R) = 1 + ~Rm' 

r 
The leukocyte feedback function f'i,N is derived by Bernard et al. (8) based on 

enzyme kinetic principles as: 

(3.2.4) 

The mitotic reentry rate from Go phase into proliferation should smoothly decrease 

when Q increases, have a finite maximum, adjustable infiection point and slope. A 

convenient function that captures this behavior and has helpful analytic properties is 
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the Hill function. Mackey et al. (67) write the stem ceIls re-entry rate to proliferative 

phase as: 
()2 S 

(3(Q) = kO()2s + QS 

ko is the maximum rate of ceIl movement from the resting phase into proliferation, 

()2 represents the Go stem ceIl population at which the rate of the ceIl movement 

from the resting phase into proliferation is half of its maximal value ko, and s is the 

sensitivity rate of reintroduction. Obviously, (3' (t) < 0 for t > 0 and limt-->oo (3(t) = O. 

Summarizing, the equations comprising the model are: 

where 

dQ 

1Jr 
ih 
ip 
dt 

- - ((3( Q) + K,N(N) + K,p + K,R(R)) Q + 2e-"(STS (3( QTS )QTS 

-'"'INN + ANK,N(NTN)QTN 

- -'"'IRR + AR ( K,R(RTRM )QTRM - e-"(RTRS K,R (RTRM +TRS )QTRM+TRS ) 

- -'"'IPP + ApK,P(QTPM - e-"(PTPsQTPM+TPS) 

(3(Q) 

T 

T(t) 

Ap(t) 

1 + Kppr 

_1_ ft T(t')dt' 
TpM Jt-TPM 
AoettTPMT(t) 

(3.2.5) 
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3.3 Parameter estimation 

The parameter estimation is one of the most important aspects of our modeling work 

since the biologically relevant choice of the parameters is crucial to establish the onset 

of oscillations observed in CT. Using experimental data published in the literature 

we can evaluate aIl the parameters outside the negative feedback functions. 

Bernard et al. (8) derived aIl the values corresponding to the stem cell and leuko­

cyte compartments. We use their evaluations except for the dimensionless amplifica­

tion parameter AN and the Hill coefficient Jo. AN has been estimated by Mackey (68) 

as 300,000 and we use this value. The normal range for Jo is 004 - 1.5 (43). In (8) 

the authors choose Jo = 0.8 only to make their model fit the data. Since our model 

estimates 

we set Jo = 004. 

The erythrocyte parameters are evaluated by Mahaffy et al. (69) based on exp er­

imental human data. To their information we add the dimensionless amplification 

parameter AR = 563,000 ((12), (18)) and the Hill coefficient f;,r mathematically esti­

mated in (18) as 1.1 days-l. 

Santilhin et al. (83) give the normal values of "(p, iPM, iPS and the mean platelet 

count P* = 2.5 X 108 cells/mi. Using the fact that 70 kg adult has 6 L of blood we 

find P* = 2.14 X 1010 cells/kg. For the platelet control dynamics we need to estimate 

few more parameters: the effective growth rate of megakaryocytes (/.1), the minimum 

number of platelets produced per megakaryocyte (Ao), the differentiation rate (fi, P ) 

and the maximum TPO concentration (Tmax ). The experimental measurements show 

that one mature megakaryocyte can give rise to 1,000-5,000 platelets (12). Therefore 

we choose Ao = 1000 platelets/megakaryocyte. By fitting the TPO concentrations 

versus the platelet count, Santillan et al. (83) evaluate 

T* = 0.005U /ml, Tmax = 32.18T*, 
K _ 31.18 

P - (p*)r' and r = 1.29. 
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Converting to cells jkg we get 

T* = 0.428Ujkg, Tmax = 13.773Ujkg and K p = 1l.66(xl010cellsjkgtr
. 

Deriving the model parameters we have to make sure that there is a balance between 

the influx and the effiux from the resting phase of the stem cell compartment. Math­

ematically, this means that at steady state the following relation should be satisfied: 

The above equation determines the normal value of the platelet differentiating rate: 

Once all the other parameters are estimated, it is easy to derive the effective growth 

rate of megakaryocytes: 
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Parameter Name Value Used Unit Source Physiological signification 
Stem Cell 

Compartment 
Q. 1.1 106 cells/kg (8) normal stem cell count 
'Ys 0.07 days-l (8) apoptosis rate 
TS 2.8 days (8) stem cell proliferation time 
ko 8.0 days-l (8) maximum rate of cell movement 

from the Go into proliferation 
(iz 0.095 106 cells/kg (8) Go-stem cell population at which the rate of cell 

movement from Go into proliferation is ~ 
s 2 (none) (8) controls the sensitivity of the mitotic 

reentry rate (3 to changes in the size of Go 
Neutrophil 

Compartment 
N. 6.9 108 cells /kg (8), (18) normal neutrophil count 
'YN 2.4 days-l (8), (18) random loss of circulating neutrophils 
TN 3.5 days (8), (18) leukocytes maturation time 
AN 3000 X 102 (none) (68) dimensionless amplification parameter 
Jo 0.4 days-l (18) 
61 0.36 108 cells/kg (8), (18) 
n 1 (none) (8), (18) 

Erythrocyte 
Compartment 

R. 3.5 10 11 cells /kg (69), (18) normal erythrocyte count 
'YR 0.001 days-l (69), (18) random loss of circulating erythrocytes 

TRM 6 days (69), (18) erythrocytes maturation time 
TRS 120 days (69), (18) erythrocytes aging time to senescence 
AR 5.63 X 105 (none) (12), (18) dimensionless amplification parameter 
Kr 0.5 days-l (18) 
Kr 0.0382 (1011 cells/kg)-m (69), (18) 
m 6.96 (none) (69), (18) 

Platelet 
Compartment 

P. 2.14 1010 cells/kg (83), (18) normal platelet count 
'YP 0.15 days-l (83), (18) random loss of circulating platelets 

TPM 7 days (83), (18) platelet maturation time 
TpS 9.5 days (83), (18) platelet aging time to senescence 

jJ, 1.7836 (U days/ kg)-l calculated effective growth rate of megakaryocytes 
Ao 0.1 X 104 (none) (12) minimum number of platelets produced 

per megakaryocyte when TPO is ~ 0 
K,p 0.028 days-l calculated platelet differentiating rate 
Kp 11.68 (101Ocells/kg) -r (83), (18) 
r 1.29 (none) (83), (18) 

T. 0.428 U/ kg (83) normal TPO concentration 
Tmax 13.773 U/ kg calculated maximum possible TPO concentration 

Table 3.1 Estimated equilibrium values for normal subjects. 
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Chapter 4 

Mathematical analysis of the model 

In the previous chapter we developed a mathematical model of hematopoiesis consis­

tent with the biological framework and evaluated the parameters based on the clinical 

findings published in the literature. For correct predictions, the DDE system (3.2.5) 

should also satisfy the mathematical requirements. This chapter is devoted to the 

analytical study of the mathematical model. The first natural steps are the existence 

and uniqueness of solutions, followed by the investigation of steady states. Since 

linear stability analysis reveals the dynamical behavior of the system in the neigh­

borhood of a stationary solution, we extract the all the possible information from the 

characteristic equation. 

4.1 Model properties 

Let T:= max{Ts,TN,TRM,TRS, TPS, TPM}. Given the dependence on the past history, 

the equations (3.2.5) should be defined for t ~ T and the initial conditions should be 

given on the interval [0, Tl. For our work, the most two important model properties 

are illustrated in the following propositions: 

Proposition 4.1.1. The DDE model (3.2.5) has a unique continuo us solution defined 

for aU t ~ T and for a continuo us initial condition. 

Proof. Direct consequence of Theorems 3.1.1 and 3.1.2. o 
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Since we study a biological population, it is necessary for the system (3.2.5) to gen­

erate positive solutions. 

Proposition 4.1.2. For nonnegative initial conditions, the solutions Q(t) and N(t) 

of (3.2.5) remain nonnegative for aU t 2: T. 

Proof. Claim 1: Q(t) 2: 0, Vt 2: T 

Suppose by contradiction that ::lto > T and ::le > 0 such that Q(t) > 0 for t < to, 

Q(to) = 0, and Q(t) < 0 for to E (to, to + E"). Eva1uating the equation (3.2) at to we 

get: 

~~ (to) = 2e-'Ys r s f3(Q(to - Ts))Q(to - TS) 2: o. 

At the same time, 

dQ (t ) _ l' Q(to + e) - Q(to) _ l' Q(to + e) 0 
- 0 - lm - lm < . 
dt ê->O e ê->O e 

Contradiction. Therefore Q(t) 2: 0 for aH t 2: T. 

C1aim 2: N(t) 2: 0, Vt 2: T 

Multiplying each term of equation (3.2) by e'YNt, we obtain: 

Exact1y as before, suppose by contradiction that ::lto > T and ::le > 0 such that 

N(t) > 0 for t < to, N(to) = 0, and N(t) < 0 for to E (to, to + e). For t = to, 

d
d (N(t)e'YNt) 1 = ANe'YNtKN(N(to - TN ))Q(to - TN) 2: o. 
t to 

On the other hand, 

which 1eads to a contradiction. Hence N(t) 2: 0 for aH t 2: T. D 
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4.2 Existence of steady states 

Mathematically, the steady states are obtained by setting the rates of change in (3.2.5) 

to zero: 
dQ = dN = dR = dP = ° 
dt dt dt dt 

Therefore the steady state values are defined implicitly by the solutions of the follow­

ing nonlinear system: 

(3(Q*)Q* - {- (f'i,N(N*) + f'i,p + f'i,R(R*)) + 2e-'YsTs (3(Q*) }Q* 

"(NN* ANf'i,N(N*)Q* 
"(RR* - ARf'i,R(R*)(l - e-'YRTRS)Q* 

"(pP* _ A~f'i,p(l - e-'YPTPS)Q* 

(4.2.1) 

Obviously, the trivial steady state (0,0,0,0) is a solution but is not the most inter­

esting equilibrium point because it corresponds biologically to the extinction of the 

cell population. We are interested only in positive solutions. 

Remark 4. A necessary condition for the existence of positive solutions of (4.2.1) is 

2e-'YsTs -1 > ° {::? "(STS < ln 2. Therefore J we will always work under this assumption. 

Proposition 4.2.1. The nonlinear system (4.2.1) has a unique positive solution. 

Proof. A simple calculation (see Appendix A) shows that the system (4.2.1) can be 

written as 

where 

a4N*(Ol + N;:) - Q* 

a5R*(1 + Kr R;:) - Q* 

asN* + agR* - Q* (o~ ~ Q! - a2 ) 

a6 P* exp ( - 1 + ~ pP: ) - Q * 

f'i,p 

ko~~2e-'YSTS - 1)' 

foANOr' 

(4.2.2) 
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'YR 

a7 - J-lTPMTmax, 

lo0r 
a4 k002 (2e-:!STS - 1) , 

K,r ag 

The coefficients ai, i E {2, 4,5,6,7,8, 9} are positive and depend explicitly on the 

delays. 

Claim 1: The existence and the uniqueness of Q* imply the existence and uniqueness 

of aH the other variables P*, R*, N*. 
Let 

FI (N*) '- a4N*(Or + N;:) 
F2(R*) .- a5R*(1 + KRR":) 

F3(Q*) .- Q*((J~~Q~ - a2) 

F4(P*) '- a6P* exp ( -1+::PJ) 

(4.2.3) 

The functions FI, F2 , F4 are continuous differentiable, strictly increasing, convex, and 

positive, with the property that Fi(O) = 0, i E {1,2,4}. Therefore each ofthem has 

an inverse on [0,00) with the same characteristics. Let Ii:= Fi-l, i E {1,2,4}. With 

the notation (4.2.3) the system (4.2.2) can be written as 

N* 
R* 

ash(Q*) + ag!2(Q*) 

P* 

-

-

-

h(Q*) 
!2(Q*) 
F3 (Q*) 

!4(Q*) 

The existence and the uniqueness of Q* is governed by the equation 

( 4.2.4) 

For simplicity, let G(Q*) := asll(Q*) + ag!2(Q*). Besides differentiability, mono­

tonicity (strictly increasing), and positivity, G has another important property. 
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Fig.4.1 The graphical representation of the functions Fi, i = 1,4 which 
corresponds to the steady state values of the coefficients (calculated using 
the numerical estimation from Table 3.1). Small perturbations from the 
equilibrium values do not change qualitatively the graphs of the functions. 

Claim 2: G is a concave function. 

lndeed, 

which implies 

Furthermore, 

fHQ*) - (F1-1)'(Q*) = F{(N*) 

f~(Q*) - (F2-
1
)'(Q*) = F~(~*) 

Claim 3: The system (4.2.2) has a unique positive solution. 

The solutions Q* of the system (4.2.2) are given by the intersection of the curves G 

and F3' Figure 4.2 captures the qualitative features of the curves described by the 

functions Fi, i = 1,4. Sinee G is a concave function, its graph intersects the graph of 
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F3 only in two distinct points: the origin and another positive point. Consequently, 

beside the trivial solution, the system (4.2.2) has a unique positive solution. D 

4.3 Linear stability analysis 

The primary consideration of this section is the stability of the unique positive steady 

state defined by Proposition 4.2.1. Due to the nonlinearity of the equations, we cannot 

discuss this problem in its total generality. Rather, we examine the system behavior 

in a small neighborhood of the fixed point. The small perturbation assumption allows 

us to approximate the system (3.2.5) by a linear difIerential delay equation and to 

carry out a linear stability analysis. 

4.3.1 Basic mathematical concepts 

We maintain the notation introduced in Section 2.1. The delay difIerential equation 

±(t) = f(t, XT(t)) with f : n ---+ ]Rn and n C ]R x C was denoted (2.1.1). 

Definition 4. A steady state of the system (3.1.1) is defined by the requirement that 

the solution x is constant in time, i.e. x(t) = xT(t) = a constant denoted X* (steady 

state value). 

Let z(t) := x(t) - x* be the deviation from the steady state. Therefore ZT(t) = 

xT(t) - x* and i(t) = ±(t) = f(t, xT(t)) = f(t, ZT(t) + x*). If we denote g(t, ZT(t)) := 

f(t, ZT(t) + x*) then the system (3.1.1) is equivalent to 

i(t) = g(t, zAt)) (4.3.1) 

Definition 5. Assume that 9 can be written as g(t, <p) = L(t, <p) + F(t, <p), where L 
âF 

is a continuous linear functional and F has the propeny that F(t, 0) = â<p (t, 0) = O. 

The system 

i(t) = L(t, ZT(t)) (4.3.2) 

is called the linearization of (4.3.1) about the trivial solution Z = o. 
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To analyze the stability of the null solution, we make the ansatz z(t) ~ ae).,t with 

a E IRn. Substituting in (4.3.2) we notice that a has a non-zero value only when 

~(À) = det(ÀI - L(e)"tI)) = 0 (4.3.3) 

Here 1 denotes the n x n identity matrix. Equation (4.3.3) is referred as the char­

acteristic equation of the system (4.3.2) and its solutions are the eigenvalues of the 

system. 

Definition 6. (Kuang (1993), Definition 4.1, p.25) We say that the solution 

z = 0 of (4.3.2) is 

(i) stable if'iO" E IR, 'iE E IR, ::IO(E,O") such that 

Otherwise z = 0 is called unstable. 

(ii) asymptotically stable if it is stable and ::Ibo = bo (0") such that 

(iii) uniformly stable if'iO" E IR, 'iE E IR, ::IO(E) such that 

(iv) uniformly asymptotically stable if it is uniformly stable and ::lb > 0 such that 

'i7], ::Ito(7]) such that 

The most important stability results used in this chapter are concentrated in the 

following theorems (for complete proofs see (41) and (57)): 
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Theorem 4.3.1. If sup{~(À) 1 ~(À) = O} < 0 then the zero solution of (4.3.2) is 

uniformly asymptotically stable. If ~(À) > 0 for some eigenvalue À then z = 0 is 

unstable. If ~(À) = 0 has a non-simple pure root then z = 0 is unstable. 

Theorem 4.3.2. If the null solution of (4.3.2) is uniformly asymptotically stable then 

the zero solution of (4.3.1) is also uniformly asymptotically stable. If ~(À) > 0 for 

some À satisfying (4.3.3) then the zero solution of (4.3.1) is unstable. 

In conclusion, carrying out the linear stability analysis of (3.1.1) is equivalent to 

determining conditions under which an the roots of the corresponding characteristic 

equation lie in the left half complex plane and are uniformly bounded away from the 

imaginaryaxis. 

Remark 5. Let À = J-l + 'lW be a root of the characteristic equation (4.3.3). 

(i) If J-l = ~(À) < 0 then the solution decays and approaches zero in an oscillatory 

fashion. 

(ii) If J-l = ~(À) > 0 then the solution oscillates and diverges to infinity. 

(iii) The boundary between these two situations (/1 = ~(À) = 0) defines a Hopf 

bifurcation, which is characterized by a pair of complex conjugated eigenvalues 

crossing the imaginary axis. 

4.3.2 Linearized system and characteristic equation 

In this subsection we write the linearization of the DDE model around the positive 

steady state (Q*, N*, R*, P*) and derive the characteristic equation. The roots of this 

equation give insight into the stability of the system in a neighborhood of the fixed 

point. 

Denote the right-hand side functions of the model equations (3.2.5) by 

Hl .- -(3(Q)Q - (KN(N) + Kp + KR(R))Q + 2e-7STS(3(QTS)QTs 

H 2 .- -"INN + ANKN(NTN)QTN 

H3 .- -"IRR + AR(KR(~RM )QTRM - e-"YRTRS KR(RTRM+TRS)QTRM+TRS) 

H4 .- -"IpP + ApKp(QTPM - e-'YPTPsQTPM+TPS) 
( 4.3.4) 
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Since Hi, i = 1,4 are smooth functions we can write the expansion in Taylor series 

around (Q*, N*, R*, P*): 

dq 

dt 

dn 
dt 

dr 

dt 

dp 

dt 

-

-

dQ 

dt 

dN 

dt 

dR 
dt 

dP 
dt 

The notation dd~ 1 * refers to the evaluation at the steady state, Le. 

Let (q, n, r,p) := (Q, N, R, P) - (Q*, N*, R*, P*) be the new variables. Assuming that 

the deviation from the steady state is very small and, consequently, (q, n, r,p)k for 

any k 2': 2 is negligible, the linearized system can be written in the following form: 

(4.3.5) 



4 Mathematical analysis of the model 47 

Simple algebra gives the linearization coefficients: 

al -((3(Q*) + ~N(N*) + ~P + ~R(R*) + (3' (Q*)Q*), 

a2 2e-'YSTS(3(Q*)Q* = a2(TS) > 0 

bl -"IN < 0 

b2 - AN~'rv(N*)Q* < 0 

b3 - ANK,N(N*) > 0 

Cl - -"IR < 0 

C2 AR~~(R*)Q* < 0 

C3 - AR~R(R*) > 0 (4.3.6) 

C4 -ARe-'YRTRS~~(R*)Q* = C4(TRS) > 0 

C5 -ARe-'YRTRS~R(R*) = C5(TRS) < 0 

dl 
P:-1(1 _ e-'YPTPS) 

-"IP - /-LAonpTpMKpTmaxQ* (1 + K pP;)2 

- dl (TPS, TPM) < 0 

d2 K pAoeJ1.TPMT. = d2(TPM) > 0 

d3 - -KpAoeTPMT.-TPS'YP = d3(TPS,TPM) < 0 

The system (4.3.5) can be expressed equivalently in the matrix form 
dX 
dt = AIX(t) + A2X(t - TS) + A3X(t - TN) + A4X(t - TRM) + A5X(t - TRM-

TRS) + A6X(t - TPM) + A7X(t - TpM - TPS), 

where 

q(t) a2 0 0 0 

X(t) = 
n(t) 

Al = diag(al,bl,CI,dl ), A2 = 
0 0 0 0 

r(t) 0 0 0 0 

p(t) 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

A3 = 
b3 b2 0 0 

A4 = 
0 0 0 0 

A5 = 
0 0 0 0 

0 0 0 0 c3 0 C2 0 C5 0 C4 0 

0 0 0 0 0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 

A6 = 
0 0 0 0 

A7 = 
0 0 0 0 

0 0 0 0 0 0 0 0 

d2 0 0 0 d3 0 0 0 

Therefore the characteristic equation associated with the system (3.2.5) is given by 

with À E C. After sorne calculations it reduees to 

(À - al - a2(Ts)e-·>.Ts )(À - bl - b2e-ÀTN )(À - Cl - c2e-ÀTRM - C4e-À(TRM+TRS)). 

'(À - dl) = o. 
(4.3.7) 

4.3.3 Subspaces of the stability region 

Following the discussion from Subsection 4.3.1, the stability of the trivial solution of 

(4.3.5) is governed by the real parts of the roots of the characteristic equation. Sinee 

equation (4.3.7) is a product of four transcendent al equations the following result is 

immediate: 

Lemma 4.3.3. All solutions of (4.3.7) have negative real parts if and only if all the 

roots of the transcendental equations 

À - al - a2 (TS )e-·>.Ts 0 

À - bl - b2e-ÀTN 0 

À - Cl - c2e-ÀTRM - C4(TRs)e-À(TRM+TRS) 0 

À-dl(TPM,TRS) 0 

have the same property. 

Remark 6. (i) If all the delays are set to zero then the model (3.2.5) reduces to 

four ODE and the corresponding characteristic equation is reduced to a polyno­

mial of degree four. In this case, the Fundamental Theorem of Algebra assures 

the existence of exactly four complex roots. 
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(ii) In contrast to ODE which require a finite number of points as initial conditions, 

the DDE necessitate an initial function defined on a time interval of length equal 

to the maximum delay. Consequently, the DDE model (3.2.5) is an infinite 

dimensional system. 

(iii) Although a transcendental equation has an infinite set of solutions, only a finite 

number of roots have the real part greater than a given constant. 

In the following subsections we analyze the transcendental equations from Lemma 

4.3.3. The intersection of their stability regions delimitates the zone in the parameter 

space where the model displays stability. 

4.3.3.1 Analytical technique 

To our knowledge, the only analytical and geometrical criterion devoted to the stabil­

ity of transcendent al equations with delay dependent coefficients belongs to Berreta 

& Kuang (10). Since their method is a powerful analytical tool in the next two 

subsections, we reproduce the main result. 

Consider the general equation 

(a) Pn(.'\, T) = 2:~=oPk(T)Àk and Qm(À, T) = 2:;:=0 qk( T)Àk, 

(b) n > m, 

(4.3.8) 

( c) Pk ( . ), qk (. ) : IR+ --+ IR continuous and differentiable functions of T with the 

property that Pn(O, T) + Qm(O, T) = PO(T) + qO(T) #- 0, 'lIT E IR+. 

We will assume further that the following conditions are satisfied: 

(1) If À = ZW, W E IR, then Pn(zw, T) + Qm(zw, T) #- 0, TE IR; 

(2) limsup {I ~:(~,';) 1 :1 À 1--+ 00, lRÀ ~ O} < 1; 

(3) For each T, F(w, T) =1 Pn(ZW, T) 12 
- 1 Qm(ZW, T) 12 has at most a finite number 

of real zeros; 
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( 4) If a positive root W ( T) of F (w, T) = 0 exists, then it is continuous and differen­

tiablein T. 

Remark 7. (i) Pn(À, T) are Qm(À, T) functions analytic in À and differentiable in 

T. 

(ii) The pmperty Pn(O, T) + Qm(O, T) = PO(T) + qO(T) =1- 0, "IT E ~+ is equivalent ta 

À = 0 not a mot of (4.3.8). 

(iii) Condition (1) expresses that Pn(À, T) and Qm(À, T) have no common imaginary 

mots. 

(iv) Condition (2) ensures that no mots are bifurcating from infinity. Also, there 

are only finite "gates" for mots ta cross the imaginary axis for a given T. 

For simplicity, we will drop the indices m and n. 

Since for increasing T the imaginary axis cannot be crossed by À(T) = 0 for sorne 

T > 0, we look for the occurrence of a pair of simple conjugate imaginary roots 

À = ±ZW(T), with W(T) real and positive, which crosses the imaginary axis at sorne 

positive T* value. 
----;---.,--

Note that P( -ZW, T) = P(zw, T) and Q( -ZW, T) = Q(zw, T) for aU T and w. There-

fore, without loss of generality, we can consider À = ZW(T), with W(T) > O. Substitut­

ing À = ZW(T) in (4.3.8) we obtain that W(T) must satisfy: 

(4.3.9) 

1 Q(ZW,T) 1
2=1- 0 because of the assumption (i). 

Lemma 4.3.4. If W(T) satisfies (4.3.9) then it is a mot of 

F(W,T) = o. (4.3.10) 
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Praof. Indeed, 

1 
sin(w( T)T) 

COS(W(T)T) 

51 

Furthermore, 1 = sin(w(T)T)+COS(W(T)T) = 1 ~~:~: ~~ 1
2 

=> IP(~w, T) 12= IQ(~w, T)1 2 => 

F(W(T), T) = IP(~w, T)1 2 -IQ(~w, T)1 2 = O. 0 

Let l be the set of aU T ;::: 0 defined by the following two conditions: 

(a) if TEl then W(T) is a positive root of F(w, T) = 0, 

(b) if T 1:- 1 then W(T) does not satisfy (4.3.10) (i.e. we cannot have stability 

switches). 

For any TEl, W(T) verifies (4.3.9). Therefore, we can define the angle e(T) E [0,27f] 

as the solution of (4.3.9): 

1 
sin e(T) = 

-fRP(~W, T)~Q(~W, T) + ~P(~w, T)fRQ(~W, T) 
1 Q(~w, T) 1

2 

fRP(~w, T)fRQ(~W, T) + r;;sP(~w, T)r;;sQ(~W, T) 
COSe(T) = 

1 Q(~W,T) 1
2 

Obviously, e(T) = W(T)T+2n7f,n E N. Henee, for any nE N we can define the maps: 
e(T) +2n7f 

Tn : 1 -----+ IR+, Tn(T) = W(T) and 

Sn : l -----+ IR, Sn(T) = T - Tn(T). 

Note that Sn are continuous and differentiable on l ((10), Lemma 2.1, p. 1147). 

The main result is the following: 

Theorem 4.3.5. (Berreta and Kuang (2002, Theorem 2.2)) Assume that 

W(T) is a a positive real raot of (4.3.10) defined for TEl, and at some T* E l, 

Sn(T*) = 0 for an n EN. Then: 

(i) a pair of simple conjugate pure imaginary roots of (4.3.8) exists at T*: 

À+ = ~W(T*) and À_ = -~W(T*). 
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(ii) the pair of imaginary roots (À+, À_) defined above crosses the imaginary axis 

from the left ta the right if o( T*) > 0 and from the right ta the left if o( T*) < 0, 

where 

Motivation: The occurrence of characteristic roots crossing the imaginary axis from 

left to right implies that the nontrivial periodic solution near the steady state changes 

from local stability to being unstable. 

4.3.3.2 The equation À = A + B(T)e->.T 

The transcendent al equation 

(4.3.11) 

belongs to the general class Pn(À, T) + Qm(À, T)e->.T = 0, where Pn, Qm are polyno­

mials in À with delay-dependent coefficients. Therefore we can apply Theorem 4.3.5 

to obtain the following result: 

Theorem 4.3.6. Consider the equation À = A+B(T)e->.T (4.3.10) and assume that 

IB(T)I > lAI and A + B(T) =f. 0, '\fT ~ O. Then: 

(i) The equation (4.3.11) has a pair of simple conjugate pure imaginary roots 

À+(T*) = 2W(T*), À_(T*) = -2W(T*), for W(T*) > 0 at T* E l, Sn(T*) = 0 

for some n END. 

(ii) The pair (À+, À_) crosses the imaginary axis from the left ta the right when 

O(T*) > 0 and from the right ta the left when O(T*) < 0, where 

Proof. In our case, 
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withpo(À) = -A, P1(À) = 1 and qo(À) = -B(T). The assumption A+B(T) =f. 0, 'lIT ~ 

° ensures that À = ° is not a root of (4.3.11). Hence a stability switch necessarily 

occurs when À = ±1,W, W > O. 

Let us check that the conditions (i)-(iv) imposed by Beretta & Kuang (10) are 

satisfied. (i) and (ii) are immediate. 

(iii) F(w, T) = IP1(1,w, T)1 2 
- IQo(1,w, T)1 2 = A2 + w2 - B2(T). For each T ~ 0, 

F(w, T) = Ogives the solution W(T) = ±JB2(T) - A2 which are real if IB(T)I ~ 

lAI· 

(iv) We saw that, without loss of generality, we can take only the positive solution 

of F(w, T) = O. Therefore we choose W(T) = JB2(T) - A2 with IB(T)I ~ lAI. 

Obviously w, as a fun ct ion of T, is continuous and differentiable. 

Claim 1: The equation (4.3.11) has a pair of simple conjugate pure imaginary roots. 

For our particular transcendental equation l = {T ~ ° IIB(T)I > lAI}, and the angle 

O(T) E [0,21f] is the solution of 

{ 

sinO(T) _ 

cos O( T) 

For any n E N define the maps: 

W(T) 
- B(T) 

A 
B(T) 

and 
( 4.3.12) 

The occurrence of stability switches takes place at zeros of the function Sn ( T). As­

suming that exists T* such that Sn(T*) = ° for some n, the equation (4.3.11) has a 

pair of simple conjugate pure imaginary roots À+ = 1,w( T*) and À_ = -1,w( T*) (by 

Theorem 4.3.5). 

Claim 2: 8(T*) = sign{ww'(-A + B2(T)T) +w2B2(W)} 

Using 

{ d~À } {( dÀ) -1 } sign dT = sign ~ dT 
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we can write 

{ d~V.·1 } {( dÀ) -11 } <5(T*) = sign - = sign )R -
dT À='!W(r.) dT À=~w(r.) 

Consider À = À(T) and differentiate the equation (4.3.11) with respect to T. We 

obtain 

B'e-ÀT - B( À + dÀ)e- ÀT 

B dT 
-.x=A: + BT 

B'-BÀ 

Therefore 
B 

(
dÀ)-ll 'tw-A +BT 
dT À=tW = B' - 'tBw 

-A+'tw B 
B + T 

-
B'-'tBw 

(-A + B2w + 'tw)(BB' + B2w) (-A + B2w + 'tw)(ww' + B2w) 
- -

(BB')2 + (B2w)2 (ww")2 + (B2w)2 

We have used that w2 + A2 = B2 (sinee W(T) is a root of F(w, T) = A2 + w2 - B2(T)) 

and ww' = B B'. Henee 

)R(dÀ)-lJ = ww'(-A + B2(T)T) +w2B2(W) 
dT À=tw(r.) (WW')2 + (B2w)2 

and 

o 
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4.3.3.3 The equation À = A + Be-Ar 

Hayes (40) was the first who provided a stability analysis of this type of equation. 

His work was continued and different methods of investigation can be found in Diek­

ermann (23), Kolmanovski & Nosov (53) and Stépan (90). 

Theorem 4.3.7. Let 

(4.3.13) 

with A and Breal constants. 

(i) The equation (4.3.13) has imaginary raots if 1 ~ 1 :::; 1. 

(ii) All the raots of the equation (4.3.13) have negative real parts if B :::; lAI and 
arccos( -~) 

T < T. . - ---;::::;:;==~ - cnt - V B2 _ A2 . 

(iii) When T = Tcrit a Hopf bifurcation occurs with period TH = 271' 
VB2 - A2 

Proof. Substituting À = f-L+'lW in (4.3.13) and separating the real and the imaginary 

parts, we obtain: 

f-L - A - Be-Il COS(WT) - 0 

W + Be-Il sin(wT) - O. 

(4.3.14) 

(4.3.15) 

The supremum of the real parts of the roots of the transcendent al equation varies 

continuously with T. Therefore, if there is a transition from stability to instability, or 

the reverse, as T varies, it must correspond to a purely imaginary root À = 'lW. We 

notice that the above functions are even in W (hence we can restrict our attention to 

W 2: 0) and they have singularities at W = k71', k E Z. 

(i) When f-L = 0 

W + B sin(wT) 0 

A+Bcos(WT) - 0 

(4.3.16) 

(4.3.17) 
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which implies 

w is real if IBI ~ lAI, Le. 1 ~ 1 ::; l. 

(ii) Therefore, if À = '/,w is a solution of (4.3.13) then w verifies (4.3.16) and (4.3.17). 

From (4.3.17) it follows that cos( w,) = - ~. Hence 

arccos( -~) arccos( -~) 1 A 1 

' - - whenever B::; l. - w - ylB2 - A2 

._ arccos( -~) _ arc cos ( -~) 
Define 'c:rit .- - . 

W ylB2 - A2 

Stability: A necessary (but not sufficient) condition in determining the boundary 

of the stability region is A + B ::; O. We need to analyze individually two regions 

in the subspace defined by A + B ::; O. 

Claim 1: When the parameters A and B satisfy the conditions A < 0, B > 0, 

and lAI> B, all the roots of (4.3.13) have negative real parts. 

For simplicity, consider the case when À is real. Since B < 0, the right hand 

side of the equation (4.3.13) behaves like a decaying exponential with negative 

value A + B < 0 at À = O. Therefore it will intersect the diagonal À = À at 

sorne negative point. 

Claim 2: In the region defined by B < 0 and lAI> B the stability changes 

wh en crossing the boundary , = 'crit. 

lndeed, in the region delimitated by B < 0 and lAI> B, the stability can change 

only when crossing the boundaries A = Band/or, = 'crit. When A = Band 
arccos( -1) . 

, = 0, À = A + B < O. Moreover, on A = B, 'crit = 0 = 00, l.e. the 

stability will change at an infinite time. Since we had stability for, = 0, we 

conclude that the solution remain stable. Therefore we have a stability switch 

only on the boundary , = 'crit. 

To summarize, the equation (4.3.13) is stable when B ::; lAI and, ::; 'crit. 
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stabl~region 

:Il 0 , ... , ......................... " ..................... . 

unstabl&re!ii~n 

o 
A 

Fig. 4.2 Stability region bounded by the curves T = Tcrit and A = -B. 

27r 27r 
(ii) The Hopf period is TH = - = yi . 

W B2 - A2 

o 

Proposition 4.3.8. (i) If A and B have the same sign then TH E [2Tcrit,4Tcrit). 

(ii) If A and B have different sign then TH > 4Tcrit· 

P""oof. - arccos( -~) . / 2 A2 _ arccos( -~) _ 27rTcrit 
l ' Tcrit - ::::} v B - - ::::} TH - A . 

ylB2 - A2 Tcrit arccos( -:8) 

(i) If A and B have the same sign then ~ > 0 and arccos( -~) E (~, 7r]. Therefore 

TH E [2Tcrit,4Tcrit). 

(ii) If A and B have different sign then ~ < 0 and arccos ( - ~) E [0, ~). Therefore 

TH > 4Tcrit· 

o 
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Remark 8. This result is important for our numerical simulations because it shows 

that, for nonpositive coefficients, long period oscillations cannot occur. 

Proposition 4.3.9. Let us assume that A + B =1= O. The roots of). = A + Be-AT can 

cross the imaginary axis only from left to right as 7 increases. If stability is lost at 

some critical value of 7 (or does not exist for 7 = 0), it can never be regained. 

Proof. By Theorem 4.3.5 the sense ofthe stability switch is given by the sign of 0(7*), 

where 

o( 7*) = Sign{ d~V\ 1 } = Sign{~(d)') 1 } 
d7 A=tW(T*) d7 A=tW(T*) 

Consider ). = ).(7) and differentiate equation (4.3.13) with respect to 7 to obtain 

When). = 'lW, 

d)' 

d7 

~(~~) -

-B'lwe-tWT 

1 + B7e-tWT 
-Bwsin(w7) 

(1 + B7COS(W7))2 + (B7sin(w7))2 

On the other hand, B COS(W7) = -A (by 4.3.17) and B sin(w7) = -w (by 4.3.16). 

Therefore 
~(d)') = w

2 
> 0 

d7 (1- A7)2 +w2 -

W = o( {::} ~(~~) = 0) corresponds to ). = 0 root of (4.3.13), Le. A + B = 0, 

which contradicts our assumption. Renee d(!).) = ~(~~) > 0 and the conclusion 

follows. 0 
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We resume the study of this type of two delay equation to the case required by our 

problem: A < 0, B < 0, C( 72) > O. 

Proposition 4.3.10. If A + B + C(72) > 0 then the characteristic equation has a 

root with positive real part. 

Proof. Let f(À) = À - A - Be->..Tl - C( 72)e->"(Tl+T2). f is continuous differentiable 

with f(O) = -A - B - C(72) < 0 and lim>..->oo f(À) = 00. Therefore, f has a positive 

root for aIl 71, 72 ~ O. 0 

Proposition 4.3.11. If A + B + C(72) < 0, A + B < C(72), and 0 < 1 + B7l -

C( 72) . (71 + 72) then all the roots of À = A + Be->..Tl + C( 72)e->"(Tl +T2) have negative 

real parts. 

Proof. Let À = J.L + 'lW E CC be a root of 

Separating the real and the imaginary parts in (4.3.18) we obtain: 

{ 
J.L - A - Be=J.LTlc~S(W7l) - Ce-J.LT2c~S(W(7l + 72)) = 0 

W + Be J.LTlsm(w7l) + Ce-J.LT2sm(w(7l + 72)) = 0 

(4.3.18) 

Let f(À, J.L) = J.L - A - Be-J.LTlcos(W7l) - Ce-J.LT2 coS(W(7l + 72))' Since cos(x) E [-1,1] 

for an x, it follows that f(À, J.L) ~ f - A - Be-J.LTI + Ce-J.Lh+T2 ),.. 
V' 

Claim 1: 9 is an increasing function. 

g'(J.L) - 1 +B7leJ.LTl - C(72)' (71 + 72) e-J,t(Tl+T2) 

g" (J.L) - B7f + C( 72) . (71 + 72) 2 e-J,t(Tl +T2) 

B < 0, C > 0 ==} g" (J.L) > 0 for aIl J.L ==} g' is increasing. Renee 

0< g'(0) < g'(J.L) :S lim g'(J.L) = 00 for aU J.L ~ 0, 
~ J,t->oo 

l+BTI-C(Tl +T2) 

(4.3.19) 

(4.3.20) 
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which implies that 9 is an increasing function on [0,00). 

Claim 2: All the roots of (4.3.18) have negative real parts. 

Sinee 9 is an increasing function on [0,00) it follows that 

g(f-L) 2: g(O) = -(A + B + C(72)) > 0 for all f-L 2: O. 

60 

Let ,\ = f-L + 'tW E C be a root of (4.3.18). Then f(,\, f-L) = O. But whenever f-L 2: 0, 

f('\, f-L) 2: g(f-L) 2: g(O) = -(A + B + C(72)) > O. Therefore f-L < O. 

o 

4.3.3.5 Conclusions 

The primary consideration of this subsection is to identify sorne regions in the pa­

rameter spaee where the model (3.2.5) displays stability or unstability. Performing 

a linear stability analysis around the unique positive steady state (Q*, N*, R*, P*) we 

found the characteristic equation as a product of four transcendental equations: 

(À - al - a2(7s)e- ÀTS )(À - bl - b2e-ÀTN )(À - Cl - c2e-ÀTRM - C4e-À(TRM+TRS») . 

. (,\ - dl) = o. 

First we summarize the properties discussed in the previous subsections for each of 

the equations involved in the characteristic equation. We confine our study to the 

particular case of the coefficients defined by (4.3.6). Their positivity jnonpositivity 

plays an important role and simplifies our study: a2, C4 > 0 and bl , b2, Cl, C2, dl < O. 

Lemma 4.3.12. The equation ,\ - bl - b2e-ÀTN = 0 with bl < 0, b2 < 0 is stable 
arc cos ( - r-) 

for 7N < 7crit = 2 and unstable otherwise. A Hopf bifurcation occurs when - Vb~ - br 
.. 2n 

7 = 7crit w'tth perwd TH = -;:=;;===:::;;: 
. Ib2 _ b2 
V 2 l 

Pro of. Immediate application of Theorem 4.3.7 for A = b}, B = b2. o 

Lemma 4.3.13. Assume that the coefficients of the equation À-al-a2(7S)e-ÀTs = 0 

satisfy al +a2(7) =1= 0 for aU 7 ;::: O. A pair of simple complex conjugate pure imaginary 
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mots À = ±ZW(T) can occur only when 0 < T < Tl 

changes can happen when T ~ Tl. 
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Proof. This equation is a particular case of the problem discussed in Theorem 4.3.6 

for A = al, B = a2, T = TS. The hypothesis al +a2(T) =1= 0, 'tIT ~ 0 ensures that À = 0 

is not a root of the transcendent al equation. Therefore a stability switch necessarily 

occurs when À = ±ZW(T) with W(T) > 0 solution of F(W,T) = a~ + w2 - a~(T). 

Precisely, W(T) = v'a~(T) - ai, which is real whenever la2(T)1 > lall, Le. T < Tl := 

ln 1:11 o 

Lemma 4.3.14. Consider the transcendental equation À - Cl - c2e-ÀTRM - C4(TRS)· 
·e-À(TRM+TRS) = o. 

(i) If Cl + C2 + C4( TRS) > 0 then the above equation has a mot with positive real part. 

(ii) Ifcl+c2+c4(TRs) < 0, Cl+C2 < C4(TRS), and1+c2TRM-c4(TRs)·(TRM+TRs) > 0 

then all the mots of the above equation have negative real parts. 

Proof. Direct consequence of Propositions 4.3.10 and 4.3.11 for A = Cl, B C2, 

C = C4, Tl = TRM, and T2 = TRS. 0 

Lemma 4.3.15. All the mots of the equation À-dl(TPM,TRS) = 0 have negative real 

parts. 

Proof. Since dl (Tp M, TRS) < 0 for aIl Tp M, TRS positive, the conclusion foIlows imme­

diately. 0 

AlI these properties lead to the next result: 

Proposition 4.3.16. If either one of the following conditions 

(i) Cl + C2 + C4(TRS) > 0 

.. arccos( -~) 
(ZZ) TN > Tcrit = . / 

vb~-bi 
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is satisfied then the positive steady state (Q*, N*, R*, P*) of the system (3.2.5) is un­

stable. 

Proof. The stability of the steady state (Q*, N*, R*, P*) is governed by the roots of 

the characteristic equation (4.3.7). Since all the roots of have negative real parts, the 

analysis is reduced to the study of equations: 

À - al - a2(Ts)e-ÀTS - 0 

À - bl - b2e-ÀTN 0 

À - Cl - c2e-ÀTRM - C4(TRs)e- À(TRM+TRS) 0 

(i) When Cl +C2+C4(TRS) > 0 the equation À-cl-c2e-ÀTRM -C4(TRs)e-À(TRM+TRS) = 

o has a root with positive real part (by Lemma 4.3.14). Therefore the steady 

state (Q*, N*, R*, P*) is unstable. 

(ii) The region in the parameter space delimited by bl < 0, b2 < 0, and TN > Tcrit 

is of unstability for equation À - bl - b2e-ÀTN = 0 (by Lemma 4.3.12), and 

consequently, for the characteristic equation of the model. 

D 
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Chapter 5 

Simulating Cyclical 

Thrombocytopenia 
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The focus of this chapter is to investigate the mechanism underlying the platelet fluc­

tuations in cyclical thrombocytopenia using the mathematical model of hematopoiesis 

(3.2.5). First, we want to understand the model dynamics by looking at the influ­

ence of each parameter on the stability of the steady state, and by analyzing the 

changes in the amplitude and the period of oscillations once stability is lost. Periodic 

hematological diseases like PCML and CN, which involve fluctuations in aIl blood 

ceIl lines, are believed to arise in the stem ceIl compartment in the bone marrow. 

Since an the reported cases of CT, except for Füreder et al. (36) and Menitove et 

al. (70), reveal that besides oscillations in platelet count the patient's hematological 

profile has been consistently normal, a destabilization of a peripheral control mecha­

ni sm might play an important role in the genesis of this disorder. For this reason we 

confine our numerical investigation to the set of parameters which generate periodic 

solutions in the platelet compartment and keep aH the other model variables at their 

steady state values. The next step of our investigation is to fit the simulated data 

provided by the model to the published platelet counts (see Figures 2.4, 2.5, 2.6, 2.7, 

2.8, 2.9, 2.10, 2.11). For this purpose we choose the simulated annealing algorithm 

(78), having as starting point in the parameter space the conclusion drawn from the 

previous numerical analysis. To increase the understanding of pathogenesis of cycli-
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cal thrombocytopenia, a few research groups ((15), (51), (100)) have measured the 

platelet levels as weIl as the thrombopoietin concentrations in their patients. The 

model duplicates not only the platelet cyclical patterns seen in cyclical thrombocy­

topenia but also the reported TPO levels. The hypothesis for the origin of platelet 

oscillations based on the model predictions is consistent with the clinical findings and 

may help to improve therapeutic strategies. 

Numerical Software: The delay differential equations comprising the model 

(3.2.5) are numericaIly integrated using a Runge-Kutta method (time step 0.05 days) 

incorporated in the mathematical software XPP (30). The initial conditions are 

the steady state values from Table 3.1 and approximately 200 days are discarded 

to eliminate transient behavior (see Appendix C for the XPP code). AlI the other 

experiments are performed with Matlab. 

5.1 Parameters influence on the model dynamics 

InitiaIly, we tried numerical experiments based on the existing notions of the mecha-

500 

'Yp days 

Fig. 5.1 Highly sensitive model response to an increased death rate of 
circulating platelets "(p. AU the other parameter values are taken from 
Table 3.1. 
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Fig. 5.2 Evolution of periodicity in platelet oscillations when the mat­
uration time of megakaryocytes TpM is modified. 

nisms of cyclical thrombocytopenia. The literature up to now explains the aetiology 

of this disease in terms of platelet destruction (autoimmune CT) or cyclical failure 

in platelet production (amegakaryocytic CT). Spectral data analysis revealed that an 

important feature of CT is the significant periods of platelet fluctuations. They vary 

between individuals and are in the range 13-64 days. Firstly, we increase the death 

rate of circulating platelets "IP to determine whether this change induces oscillations 

like those seen in autoimmune data. Although the model displays a highly sensitive 

response to small changes in "IP and the platelet counts st art immediately to oscillate 

(Figure 5.1), the period of fluctuations remains unchanged (~ 13 days). It is of inter­

est to discover how the mathematical model can generate oscillatory solutions with 

different periodicity. Repeated numerical integrations show that the main parameter 

controlling the period of platelet fluctuations is the maturation time of megakary­

ocytes TPM. Figure 5.2 captures the period evolution when TpM is varied over a large 

range. As it is illustrated in Figures 5.3, 5.4, and 5.5, changes in "IP or f-l do not 

significantly affect the period of platelet oscillations. Based on the hypothesis that 

the cyclical patterns in amegakaryocytic CT are secondary to the failure in platelet 

production, we decreased the platelet differentiation rate /î,p from its steady state 

value to much lower levels. This change did not lead to a bifurcation in the st ab ilit y 

of the steady state, and sustained oscillations in the platelet compartment. 

Cyclical thrombocytopenia involves either thrombocytosis (high platelet count), 
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Fig. 5.3 Changes in the period (days) and the amplitude (x 1010 
cells/kg) of platelet fluctuations wh en "IP and 7PM are varied simulta­
neously. AlI the other parameters are kept at their normal values (see 
Table 3.1). A small increase in "IP determines an oscillatory response 
with an increased amplitude but unchanged period. Similarly, perturba­
tions in 7PM values induce platelet oscillations with variable period and 
unchanged amplitude. 

thrombocytopenia (low platelet values) or an alternation of both. One way to sim­

ulate the low jhigh platelet levels is by decreasingjincreasing the minimal number of 

platelets released per megakaryocyte (Ao) and the effective growth rate of megakary­

ocytes (ft). 
The above discussion identifies a subset in the parameter space with an essential 

role in generating a model response similar with the CT platelet data: the platelet 

apoptosis rate bp), the effective growth rate of megakaryocytes (ft), the minimal 

number of platelets released per megakaryocyte (Ao), and the megakaryocytes matu-
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Fig. 5.4 Period evolution of platelet oscillations wh en TpM and J.L are 
varied simultaneously. AH the other parameters are kept at their normal 
values given in Table 3.1. Changes in J.L do not significantly affect the 
periodicity. 

0.4 

0.15 

Fig. 5.5 Period evolution of platelet oscillations wh en 'YP and TPM are 
varied simultaneously. AH the other parameters are kept at their normal 
values given in Table 3.1. Changes in 'YP do not significantly affect the 
periodicity. 
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Fig. 5.6 The significant periods found in reported cases of CT are linear 
combinations of the model delays. 
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ration time (TPM). None of the changes in the values of these four parameters perturb 

the stem ce Ils , erythrocytes or neutrophils normal levels. 

Given the relevance of the periodicity in the investigation of CT we are interested 

to discover the potential connections with the cell cycle duration. We fit the function 

with nI, n2, n3, n4, n5, n6 nonnegative integers, to the set of the significant periods 

found in CT patients. Each period can be expressed as a linear combinat ion of the 

stem cell proliferation time (TS), erythrocytes maturation time (TRM) , megakaryocytes 

maturation time (Tp M) and aging time of platelets (TPS). The reader is referred to 

Table 5.1 and Figure 5.6 for details. 

5.2 Simulated annealing method: description and advantages 

An important type of optimization problem is to find the" best" configuration of a 

system which can exist in a very large number of possible states. For example, of 

considerable interest to the chemical and solid state communities is to find the lowest 

energy configurations of thousands of molecules. The interpretation of the echoes of 
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__ '_H __ H_H ___ H_'"H_ 

Significant period P nI n2 n3 n4 n5 n6 calculated value error 
(days) of the period P (P- P) 

Autoimmune CT 
24.3256 1 0 2 0 0 1 24.3 0.0256 
12.8284 0 0 1 0 1 0 13 0.1716 
25.3133 1 0 1 0 1 1 25.3 0.0133 
20.7125 4 0 0 0 0 1 20.7 0.0125 
25.6095 2 0 1 0 2 0 25.6 0.0095 
45.5809 2 0 0 0 3 2 45.6 0.0191 
10.3564 0 1 0 0 1 0 10.5 0.1436 
27.1555 2 0 2 0 0 1 27.1 0.0555 

Amegakaryocytic CT 
63.5809 2 0 1 0 2 4 63.6 0.0191 
41.0863 2 0 0 0 1 3 41.1 0.0137 
43.2957 1 0 1 0 2 0 43.3 0.0290 
26.9331 0 0 1 0 3 0 27 0.0669 
22.8290 0 0 1 0 3 0 22.8 0.0669 
30.2663 1 0 3 0 0 1 30.3 0.0337 
29.2065 4 0 3 0 0 0 29.2 0.0065 
27.1946 2 0 2 0 0 1 27.1 0.0946 
33.2723 1 0 0 0 3 1 33.3 0.0277 
36.6502 2 0 2 0 0 2 36.6 0.0502 
27.0000 0 0 1 0 3 0 27 0.0000 

Table 5.1 The significant periods found in cyclical thrombocytopenia 
patients are linear combinations of the model delays. For each case we 
identify the best combination of coefficients ni, i E {1,6}, calculate P = 

nITS + n2TN + n3TRM + n4TRS + n5TpM + n6TpS and estimate the error 
p - P. The errors are very small and vary in the range [0,0.1716]. 

an explosion received by an receptor on the earth surface is another application of 

industrial significance. 

Up to now, simulated annealing proved to be one of the most successful tech­

niques for the large scale optimization problems where a desired global minimum is 

hidden among many local extrema. This method was introduced by S. Kirkpatrick, 

C. D. Gelatt and M. P. Vecchi in 1983 (52), and since then it effectively solved many 

practical problems. Two relevant examples are minimizing the travel distance for a 

salesman such that he will not have to visit the same city more than once and desig­

nating integrated circuits with million of elements placed such that the interference 

between the connected wires is minimized. 

The name of and the inspiration behind this method come from thermal annealing. 

At high temperatures the mole cules of a liquid move freely with respect to another. 

As the temperature is reduced, the thermal mobility is lost and the atoms tend to 

crystallize into a solid. If the sample is quenched (cooled quickly), then usually 
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the solid ends up in a polycrystalline or amorphous state. If the sample is annealed 

(cooled slowly) then an ample time is allowed for atoms to redistribute, increasing the 

chance of forming a perfect crystal. Actually, the crystal is the state with minimum 

energy of the system. 

Inspired by the physical pro cesses , Kirkpatrick et al. (52) introduce a global 

temperature parameter T to control the cooling rate of the system. The success of the 

method depends on the annealing schedule (the sequence of decreasing temperatures). 

The cooling schedule is not unique and it is a real challenge to find the appropriate 

one for each problem. For example, we would expect it to depend on the energy 

landscape. If some local minima are separated from the global minimum by deep 

valleys, then the algorithm needs a slower rate of cooling. Neal (75) noticed that 

the most commonly used is the geometric schedule, Le. T(t + 1) = CiT(t) , with 

o < Ci < 1. Some optimization problems are better solved with adaptive annealing 

schedules, where T (t + 1) depends on the states of the system visited up to time t + 1. 

We need four ingredients to define the simulated annealing problem: 

(i) a description of the system configurations, 

(ii) a random generator of state rearrangements, 

(iii) an objective (or energy) function, 

(iv) an annealing (or cooling) schedule. 

The algorithm works by simulating a random walk on the set of the configuration 

space that searches for low energy states. At each instant during the simulation we 

have a current state from which we randomly select a neighbor and consider whether 

or not to move at the new configuration and try again. 

The outline of a single simulated annealing run is as follows: 

(1) Randomly generate a solution array for the problem and compute its cost (Eo). 
They are the best-so-far values. 

(2) Set the temperature to the initial value. 
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(3) Run a Metropolis Monte Carlo simulation at this temperature by repeating the 

following steps: 

(a) Generate a new solution and calculate its energy (El)' 

(b) Determine if the new configuration is accepted or rejected. 

(bl ) If El < Eo the new solution is accepted and used as a starting point 

for the next step. The new configuration and its energy become the 

best-so-far values. 

(b2 ) The case El > Eo is treated probabilistically. The acceptance prob­

ability is given by P = exp( - El ; Eo). Generate random numbers 

uniformly distributed in the interval (0,1). One of this numbers is 

selected and compared to P. The new configuration is accepted only 

if this number is less than P. 

(4) Reduce the temperature by choosing the next value given by the cooling sched­

ule. If the new value of the temperature is greater or equal to the final fixed 

temperature then return to Step 3. Otherwise the run is finished and the best­

so-far values are stored and reported. 

The final effective temperature should be large enough such that the simulation 

is still able to visit aIl "energeticaIly" reasonable solutions. Otherwise the run might 

be trapped into a local minimum. 

Interestingly enough, a method known as simulated quenching, which involves the 

rapid decrease of temperature, is successfully used for optimization problems arising 

in biology or chemistry. 

5.3 Fitting the model simulations to the platelet data 

For our optimization problem we choose as an energy function the pointwise least 

square approximation between the clinical data and simulated platelet data provided 
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by the mathematical model: 

E= 

M is the number of points available, the superscript s indicates simulated data and 

the lack of a superscript denotes CT data. AIso, the bar indicates that mean was 

taken and the presence of P provides scaling information. We minimize the square 

root of the pointwise least square because it deforms the function monotonically, 

making the energy landscape less steep. Figure 5.7 shows a typical 3D representation 

of the objective function. 

40 

28 

l' 0.2 24 

Fig. 5.7 3D representation of the energy function constructed with 
Yanabu et al. (99) data in a small part of the parameter space. The 
simulated annealing algorithm finds the minimum energy state when 
"(p = 0.2738, TpM = 17.001, f-L = 0.23746. 

Initially, we tried the geometric cooling schedule with Ct very close to 1 (Ct = 0.999) 

but, for our situation, it was not slow enough to find the" optimum" configuration. 
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Although not very common, the constant thermodynamic speed schedule allows suf­

ficient time for finding the minimum energy state: 

VT2 

~T = - ccr(E) , where 

~ T difference between current and previous temperature, 

cr(E) - standard deviation of current energy, 

c - estimate of relaxation time, 

v thermodynamic speed (constant). 

We applied this approach to the CT data, comparing the model simulation to the 

platelet counts published in the literature. By varying the parameters "(p, jk, TpM, 

Ao, and, in some isolated cases, K,p and O2 , we were able to successfully duplicate the 

dynamic clinical features of CT. The simulated annealing output and platelet data 

recorded from the patients diagnosed with CT are presented in Figures 5.8, 5.9, 5.10, 

5.11. The left-hand panels contain the sampled simulation (model output sampled 

at the same time points as the clinical data) and the right-hand column shows the 

full platelet simulation generated by our model. Since the available experimental 

results associate autoimmune CT to an immune-mediated platelet destruction, we 

would expect that an increase in the rate of platelet clearance ("(p) would be the 

primary change necessary for duplicating some cases of CT. Indeed, "(p appears to 

be involved in fitting autoimmune data as weIl as in few amegakaryocytic situations, 

with significantly increased values in the first variety of the disease (average 0.3 with 

a standard deviation of 0.09) comparable to the latter (average 0.19 with a standard 

deviation of 0.01). 

The platelet differentiation rate (K, P ), the minimal number of platelets released per 

megakaryocyte (Ao), and the relative growth rate of megakaryocyte (jk) were changed 

while fitting the model to platelet data, as it was hypothesized that amegakaryocytic 

CT involves a megakaryocyte deficiency and a cyclical failure in platelet produc­

tion. Repeated numerical experiments indicate that there is no significant advantage 

varying K,p. In aIl cases but one (100), the fitting algorithm did not modify this pa­

rameter. Surprisingly, for the patient reported by (100) a stem cell parameter change 
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Source and patient ID "(p TPM J1 Ao rh Kp transient 
Normal values 0.15 7 1.7836 0.1 0.095 0.028 

Autoimmune CT r i ! ! 
Kosugi et al. 0.40317 16.995 0.044527 0.056734 NV NV 200 
Yanabu et al. 0.2738 17.001 0.23746 NV NV NV 212 
Rocha et al. 0.35764 14.0086 0.16654 NV NV NV 200 

Kimura et al. 0.2 26 0.17836 NV NV NV 216 
Skoog et al. 0.21923 20.0024 0.17913 0.016788 NV NV 203.5 

Amegakaryocytic CT i i ! 
Bruin et al. NV 16.598 0.200644 0.00050384 NV NV 215 
Zent et al. NV 19.656 0.1482 NV 0.05435 0.002332 198 

Hoffman et al. NV 40.044 0.048642 NV NV NV 205 
Wilkinson and Firkin 0.157238 27.839 0.21415 NV NV NV 205 

Engstrom et al. 0.19614 27.4434 0.17548 NV NV NV 205 
Aranda and Dorantes 0.20632 19.297 0.15719 NV NV NV 218 

Wasastjerna 0.39526 16.374 0.17911 NV NV NV 222 
C-TPO 
Lewis 0.22 18 0.17836 0.01 NV NV 215 

Table 5.2 Parameter estimates for the CT patients based on simulated 
annealing method. NV stands for the normal value taken from Table 3.l. 
i and l indicate the qualitative parameter change relative to the normal 
value. 

was necessary for fitting. Although it was sufficient to change Tp M, M, and K,p to the 

numerical values from Table 5.2 to mimic the platelet counts of this patient, stem cell 

levels increased to approximately 2.2 X 106 cells/kg. When reducing rh at about half 

of its normal value, stem cells returned to the equilibrium, while the platelet counts 

remained unchanged. In the simulated annealing results, the values of Mare drasti­

cally reduced relative to the normal value of 1. 7839 (U days/kg) -1. M varied between 

1/45 and 1/10 of the steady state value which is physiologically equivalent to a slower 

relative growth of megakaryocytes in all CT patients investigated in our study. These 

findings are in agreement with the clinical features of CT. Bruin et al. (15) and Zent 

et al. (100) described amegakaryocytic patients with small megakaryocytes in the 

ascending limb of the platelet count cycle (see Figure 5.13). Only in a few cases was 

it necessary to decrease Ao to simulate CT. Generally, this parameter was reduced to 

either half or 1/10 of its normal value. Interestingly, in a single case of amegakary­

ocytic CT (15) Ao was decreased by a factor of 200 compared to the steady state 

value. This is consistent with the clinical observations, since bone marrow aspirates 

in this patient showed small megakaryocytes with no release of platelets (15). 

Since the period of platelet fluctuations in CT data varies between individuals, 
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and TPM (megakaryocyte maturation time) is the parameter with the most promi­

nent influence on the platelet oscillations generated by the model, we allowed TPM 

to vary. What was not anticipated in this study is the major role played by TPM in 

reproducing the oscillatory patterns observed in CT. Furuyama et al. (37) presented 

an autoimmune case where the megakaryocytes are always abundant, but most of 

them are immature at platelet nadir and only 50% are mature at the time of high 

platelet count. AIso, Aranda and Dorantes (3) noticed that in their patient CT was 

related to a periodic variation in maturity of megakaryocytes. Our results indicate 

that megakaryocytes need about twice as much time as normal to maturate in autoim­

mune CT. In the patients with amegakaryocytic CT, which have on average longer 

periods of platelet fluctuations, TpM is elevated between two and six times the normal 

value. 

Sampled simulation: Kimura et al. t996 

5 -sampled simulation 
4.5 ·····data CT 

0.5 

20 40 60 80 
days 

Full simulation: Kimura et al. 1996 

100 
days 

Fig. 5.8 Output of the simulated annealing fitting and the published 
platelet data. Sampled (left) and full (right) simulation. 
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Fig. 5.9 Output of the simulated annealing fitting and the published 
platelet data. Sampled (left) and full (right) simulation. 
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Sampled simulation: Wilkinson et al. 1966 
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Fig. 5.10 Output of the simulated annealing fitting and the published 
platelet data. Sampled (left) and full (right) simulation. 
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Sampled simulation: Skoog et al. 1957 
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Fig. 5.11 Output of the simulated annealing fitting and the published 
platelet data. Sampled (left) and full (right) simulation. 
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5.4 Published TPO levels in cyclical thrombocytopenia 

patients 

Since thrombopoietin is the primary regulator of platelet production, abnormalities 

of this hormone or its receptor might be responsible for platelet fluctuations. Sorne 

research groups ((15), (51), (81), (100)) measured the platelet counts in CT patients 

as weIl as the temporal evolution of TPO concentration. Figure 5.12 shows that 

for each of the cases mentioned above our model provides a qualitative fitting of 

the published thrombopoietin levels. This fact validates the accuracy of our model 

predictions and suggests that the TPO oscillations are secondary to manifestations 

of sorne other pathology. 

Bruin et al. 2005: TPO levels 
10,,-~-~~-,..---,' •. -.. c'7.'lin-:ic-a7"1 d7"a-:-ta-:(A7':U"""'-m"'l) 100 
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Fig. 5.12 Qualitative comparison of predicted ('-') and published 
('- - -') TPO levels. 
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5.5 Hypothesis for the origin of oscillations in cyclical 

thrombocytopenia 

80 

A variety of modeling studies [(5; 6; 8; 19; 18; 20; 69; 80; 83)J have associated the 

onset of oscillations in hematological disease with a Hopf bifurcation induced by the 

change of one or more physiological parameters. Though the model we have developed 

here was too complicated for a complete stability analysis we hypothesize that the 

oscillations seen in CT and studied here are also due to a Hopf bifurcation. 

The mathematical model (3.2.5) successfully duplicated both the qualitative and 

quantitative features of CT. The platelet fluctuations in amegakaryocytic CT are 

caused by a cyclic inhibition of megakaryocytopoiesis, accentuated by an increased 

platelet maturation time and a reduced release of platelets per megakaryocyte. The 

critical parameter changes required to mimic the corresponding data are a severe 

decrease in J.-L, an increase in TPM between 2 and 6 times the normal value, and 

occasionally, a reduced Ao. 

In the case of auto immune CT, the most significant parameter changes recorded 

during the successful attempts to fit the amegakaryocytic data are an elevation of "'Ip, 

a decrease of J.-L, and an increase in TPM by a factor of 2. These results suggest that the 

onset of oscillations in autoimmune CT can be explained by an accelerated peripheral 

destruction of platelets, exacerbated by an increased maturation of megakaryocytes 

and a slow relative growth rate of megakaryocytes. 
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Fig. 5.13 Photomicrographs of the bone marrow biopsy for an 
amegakaryocytic patient (from Zent et al. (100), Figure 2, p. 454). A. 
Markedly decreased megakaryocytes (small arrows) while platelet count 
was decreasing towards nadir. Of the few megakaryocytes seen in the as­
pirated material (insert) sorne were atypical micromegakaryocytes (large 
arrow) with small nuc1ei and mature cytoplasm. B. Markedly decreased 
megakaryocytes (small arrows) with normal morphological features (in­
sert) while platelet count was increasing from nadir. 
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Chapter 6 

Conclusions 

6.1 Human TPO levels: megakaryocyte deficiency versus 

increased platelet destruction 

Over the years, clinical measurements have revealed a negative relationship between 

the TPO levels and platelet count. This fact led to the hypothesis that the endoge­

nous TPO level is mainly regulated by a consumption pro cess in which TPO binds 

to the C-Mpl receptor and then is removed from circulation. This consumption pro­

cess is directly dependent upon platelet mass ((32), (33), (60), (89)). However, there 

are sorne situations when the thrombopoietin levels are not accurately predicted by 

the circulating platelet counts. One exception is the case of hematological disorders 

caused by either megakaryocyte deficiency (like in aplastic anaemia) or increased 

platelet destruction (as in immune thrombocytopenic purpura) (25). Immune throm­

bocytopenic purpura (ITP) is characterized by persistent thrombocytopenia caused 

by circulating anti-platelet autoantibodies which results in platelet destruction by the 

reticuloendothelial system (55). Aplastic anaemia (AA) is a rare, potentially fatal 

disease, in which the bone marrow fails to pro duce sufficient blood cells for circula­

tion. Despite a similar degree of thrombocytopenia in both groups of patients, the 

levels of TPO in ITP cases are normal or slightly higher, while in AA patients they 

were markedly elevated ((25), (55), (73)). 

Besides increased platelet maturation time, the main causes of cyclical thrombocy-
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Fig. 6.1 TPO levels in patients with ITP and AA, measured by a sand­
wich ELISA. Reproduced from Kosugi et al. (55). 
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topenia are either immune mediated platelet destruction or deficiency of megakary­

ocytopoiesis. Since our model was able to fit the platelet data, and to duplicate 

quantitatively the TPO concentration (when data available), it would be of interest 

to predict and analyze the thrombopoietin levels for all CT cases. Precisely, we are 

interested to compare the TPO production in autoimmune CT and amegakaryocytic 

CT, and to determine if the levels of the hormone in the case of increased platelet 

clearance are as high as would be anticipated by the degree of thrombocytopenia. 

In all the cases studied TPO concentration mirrors the platelet count. An elevated 

production corresponds to a decrease in platelet count, and reciprocal. The reader 

is referred to Appendix B for the predicted TPO response in CT patients. These 

findings can be explained by the following reasons: 

(i) markedly increased platelet turnover rate (22). 

(ii) In cYclical thrombocytopenia, beside accelerated peripheral destruction of platelets 

and inhibition of the megakaryocytopoiesis, the mechanism of platelet fluctua­

tions involves other factors (e.g. periodic variation in the maturity of megakary­

ocytes, reduced number of platelets released per megakaryocyte). 

(iii) Modeling the TPO kinetics we followed the pathway argued by experimental 
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data from (32), (33), (60), (89), and we considered the thrombopoietin levels 

as a function of the total number of circulating platelets. 

6.1.1 TPO kinetics in our model 

The TPO kinetics in our model is based on the previous work of Santillan et al. (83). 

They assumed that the platelet production is controlled by a negative feedback mech­

anism mediated by TPO. The concentration of thrombopoietin, denoted T, satisfies 

the ordinary differential equation: 

dT = f(P) - T 
dt ~ ~ 

production destruction 

(equation (12) from Santillan et al. (83)) 

In determining the form of the production function f(P), which is dependent on 

the total number of circulation platelets P, and the normal values of the parameters 

involved, Santilhin et al. (83) used the experimental data for sheep with different 

degrees of induced thrombocytopenia provided by Kuter (62). A convenient function 

that captures the features of platelet-TPO relationship is 

ëij 

E 20 g 
.c. 
c: 15 
o 

~ 10 
2l 
8 5 

~ 

(equation (13) from Santillan et al. (83)) 

-data generated by Santillan et al. model 
":*'data trom Kuter 

1-
00 0.2 0.4 0.6 0.8 

platelet count (x normal count) 

Fig. 6.2 TPO concentration as a function of platelet count. Repro­
duced from Santillan et al. (83), Figure 2, p. 591. 
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Fig. 6.3 TPO and platelet dynamics after a bolus intramuscular in­
jection of thrombopoietin in healthy humans (experimental data from 
Harker et al. (42)). Reproduced from Santillan et al. (83), Figure 8, p. 
596. 
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Consider that TPO concentration is in dynamic equilibrium with the number of cir­

culating platelets. Then 

dT = 0 and T = ~ x 1 
dt fi, 1 + Kppr 

Denote by T and P the quasi-steady state esta-Èlished ÈY the experimental protocol. 

Therefore the normalized steady state values ~ and ; satisfy the equation 

Fitting the above equation to the Kuter's data (Figure 6.2) one finds the normal 

values of all parameters: 

a 
- = 32.18T*, 
fi, 

K = 31.18 
pr ' 

* 
r = 1.29. 
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Moreover, the model for plate let regulation production from (83) reproduces very well 

the dynamics of TPO concentration and platelet counts after a bolus intramuscular 

injection of thrombopoietin in healthy humans (see Figure 6.3). 

6.1.2 Are the TPO levels exclusively dependent on the platelet number? 

Since the mechanism of the regulation of the thrombopoietin production is not com­

pletely understood, it is difficult to explain why the patterns of reactive TPO pro­

duction against thrombocytosis in megakaryocyte deficiency and increased platelet 

destruction are different. Recently, sorne research groups formulated a hypothesis 

which is presented within the following context. 

Although it has not been clearly demonstrated up to now, it has been suggested 

that the TPO levels are not exclusively dependent on the platelet number, and the 

megakaryocyte mass play an important role in regulating the serum thrombopoietin 

levels in human subjects (87). To clarify this controversial point, Nagasawa et al (74) 

analyzed the relationship between the serum TPO level, platelet count, megakary­

ocyte and CFU-Meg number in a female patient whose megakaryopoiesis switched 

from ITP to amegakaryocytic phase during chemotherapy for lymphoma. They found 

that the TPO level was not suppressed in response to the platelet count, but the 

changes in the hormone were the mirror image of the variations in the megakaryocyte 

mass. Mukai et al (73) examined the thrombopoietin concentration, platelet and 

megakaryocyte counts in a patient with amegakaryocytic thrombocytopenia during 

steroid treatment. Their data showed that the decrease in the TPO concentration 

preceded the increase in platelet counts. Similarly, Oh et al. (76) measured the 

serum TPO levels in a woman diagnosed with cyclical thrombocytopenia. TPO de­

creased slightly before platelets began to rise. Engel et al. (26) examined three 

patients under chemotherapy intensified treatment. Again, the thrombopoietin re­

sponse preceded the platelet response by about one day. Unusual in their measure­

ments was the quantitative change in platelet and TPO dynamics over successive 

cycles. More precisely, while the platelet nadirs decreased with each cycle, the TPO 

concentration increased concomitantly. A possible explanation for the inadequate in­

crease in the thrombopoietin response over cycles is related to the loss in the number 
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of receptors on platelets and megakaryocytes, loss due to a cumulative damage of 

thrombopoiesis. Zent et al. (100) examined a male patient with amegakaryocytic 

thrombocytopenic purpura, and determined the TPO response to intrinsic changes 

in platelet and megakaryocyte mass in the absence of cytotoxic drugs, radiotherapy 

or antiplatelet antibodies. Thrombopoietin concentration rapidly decreased concomi­

tant with the increase in the megakaryocyte mass, and well before the next rise in 

platelet count. Based on these laboratory studies, sorne research groups ((26), (55), 

(74), (87), (100)) argue that the megakaryocytes have a great importance in the reg­

ulation of thrombopoietin metabolism, and consider the observed time lag between 

the TPO and platelet response as a consequence of this fact (26). Kosugi et al. (55) 

adopt this theory, and believe that it might explain the concentration of TPO in ITP 

versus AA. In ITP megakaryocytes are abundant in bone marrow and a great number 

of platelets enter the circulation. In contrast, in AA there is an insufficient number of 

megakaryocytes, and only few platelets are released into circulation. Therefore, one 

r:r .~ • ~ [_. /, ,~ -
~ OIOL---~5~---1~O------~1~5-------=20~----~25 

Fig. 6.4 TPO response related to the megakaryocyte number rather 
than platelet counts. Reproduced from Nagasawa et al. (74), Fig 1., p. 
243. 
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should expect higher hormone levels in patients with aplastic anaemia. 

The relative role of circulating platelets and bone marrow megakaryocytes in TPO 

regulation is uncertain. The understanding of the molecular basis of thrombopoiesis 

is under intense research and the years to come will clarify the questions unanswered 

up to now. 

6.2 A short review 

The goal of this research project was to explain through computer simulations the 

mechanism of the rhythmic fluctuations in the platelet count observed in cyclical 

thrombocytopenia. After a presentation of the physiological framework and the clin­

ical features of CT (Chapter 1), we analyzed the platelet data published in the liter­

ature. Since the data was unevenly sampled, it was possible to extract information 

about the oscillatory components through the Lomb-Scargle periodogram (Chapter 

2). To provide a better understanding of CT, we employed a mathematical model 

of hematopoiesis. The model, introduced in Chapter 3, had four compartments and 

was comprised by four delay differential equations. All compartments, with one ex­

ception, were based on the previous modeling work of Colijn and Mackey (18). The 

mathematical analysis performed in Chapter 4 showed that the model has a unique 

positive steady state which corresponds to the normal levels in healthy individuals 

(Section 4.2). The linear stability analysis around the positive equilibrium point 

revealed the model dynamics in a neighborhood of the fixed point, and identified 

regions in the parameter space where the model displays unstability (Section 4.3). 

Chapter 5 was entirely devoted to the understanding of the mechanisms underly­

ing the platelet fluctuations in CT. Our model successfully duplicated the platelet 

counts of CT patients and provided a qualitative fitting of the thrombopoietin levels 

(when data available). The fitting followed a simulated annealing algorithm with 

Metropolis acceptance rule and a constant thermodynamic speed schedule. In the 

case of sorne hematological disorders caused by either megakaryocyte deficiency or 

increased platelet destruction, the thrombopoietin levels are not accurately predicted 

by the circulating platelet counts. Since the understanding of the molecular basis of 

thrombopoiesis is not completely elucidated, we compared the TPO production in 



6 Conclusions 89 

autoimmune CT and amegakaryocytic CT using the predictions of our model (Sec­

tion 6.1). The biological interpretation of the results, the comparison with the clinical 

findings, and the conclusions drawn from the previous modeling effort are synthesized 

in the last chapter. 

6.3 Discussion and future directions 

The pathogenesis of CT is not clearly understood and remains speculative. Clinical 

attempts undertaken over the years to explain the aetiology of platelet fluctuations 

led to different conclusions. Generally, the onset of oscillations was explained in terms 

of immune-mediated platelet destructions or periodic failure of platelet production. 

To our knowledge, only two modeling works have been directed to the mathematical 

investigation of CT. Von Schulthness and Gessner (92) suggested that, in the case 

of their asymptomatic patients, the platelet control was biased close to a stability 

boundary (91), (92). Santillan et al. (83) formulated an age-structured model for the 

regulation of the platelet production, and reproduced the features of autoimmune CT 

by increasing the death rate of circulating platelets between twice and ten times the 

normal value. Moreover, they believed that auto immune and amegakaryocytic CT 

have a different dynamical origin. 

Our mathematical model (3.2.5) successfully duplicated the platelet counts of CT 

patients and provided a qualitative fitting of the thrombopoietin levels (when data 

available). The results of our investigation are in agreement with the clinical find­

ings, explain the experimental observations, partially support the conclusions drawn 

from the previous modeling effort, and uncover new factors responsible for the fluc­

tuating pattern in platelets. Based on the model simulations, we would suggest that 

autoimmune and amegakaryocytic CT share common features and display important 

differences. The variation in the megakaryocyte maturity, the relative growth rate of 

megakaryo cytes , as well as the random destruction of platelets are involved in both 

varieties of CT, but up to a different extent. Comparable to amegakaryocytic CT, in 

autoimmune CT the rate of platelet clearance is higher, the megakaryocytes spend 

less time in the bone marrow, and their relative growth rate is closer to the normal 

value. Additionally, the model was particularly sensitive to changes in Ao for sorne 
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amegakaryocytic patients, implying a diminished platelet release per megakaryocyte. 

Sometimes it was hard to clinically differentiate between autoimmune and amegakary­

ocytic CT. In few reported cases ((34), (51), (81)) the deficiency of platelets due to 

a fluctuating number of megakaryocytes was exacerbated by an increased platelet 

clearance caused by the presence of raised levels of platelet autoantibodies. Since in 

thrombocytopenic cases with autoimmune causes the TPO levels are not as high as 

it would be expected, it has been suggested that a measurement of the cytokine's 

concentration might help for a better diagnosis (74). 

Based on the laboratory results, it was postulated that in auto immune CT the 

platelet fluctuations are secondary to an elevated platelet destruction. The numerical 

experiments performed with our model show that increasing only "YP is not sufficient 

to reproduce the platelet data of autoimmune patients. 

Although this thesis ends with the formulation of a possible mechanism underlying 

the platelet rhythmic fluctuations in cyclieal thrombocytopenia, our work points to 

new directions for further research. Once we have identified the crucial parameters in 

duplicating the features of CT, we are ready to explore more systematic the model dy­

namics. One interesting idea would be to track the Hopf bifurcation point(s) believed 

to generate oscillations in the platelet compartment and to follow the branches of 

periodic solutions. Another topie would be related to the model improvement. Since 

it was speculated that the failure of megakaryocytopoiesis in amegakaryocytic CT 

appears at the stages of CFU-Meg ((21), (73)), a mathematical model whieh counts 

for the multiple levels of megakaryocyte transition from lineage committed cells to 

release of platelets could explore this possibility. 
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Appendix A 

Detailed calculations for the steady 

state(s) of the model (3.2.5) 

The computations from Section 4.2 show that the steady state values are defined 

implicitly by the solutions of the following nonlinear system: 

(J(Q*)Q* - { - (K,N(N*) + K,p + K,R(R*)) + 2e--YSTS (J( Q*) }Q* 

"(NN* - ANK,N(N*)Q* (A.O.l) 
"(RR* - ARK,R(R*)(l - e--YRTRS)Q* 

"(pP* - A~K,p(l - e--YPTPS)Q* 

Rearranging conveniently the terms in the 1 st equation we obtain: 

(A.O.2) 

Since 
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(A.O.2) is equivalent to 

a3 

Writing explicitly the differentiation rates /),N and /),R, and separating Q* in the 2nd 

and the 3rd equations of the system (A.O.l), we obtain: 

Q* = fo~:Oï N*(Or + N;:) and 
"-v--' 

as 

At steady state the average number of platelets released per megakaryocyte is 

and the normal TPO concentration is given by 

T _ Tmax 

*-l+Kpr 
P * 

Substituting these quantities in the 4th equation of (A.O.l) it follows that: 
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Let a7 := fl-TPMTmax. The above computations show that the nonlinear system (A.O.l) 
is equivalent to: 

Q* Q Q* 
al ()l n + N:; + a2 * + a3 l + Kr R": 

a4N*(()~ + N::) 

a5 R*(1 + KrRr:) 

Q* - a6 P* exp ( - 1 + ~PPJ) 

Sinee 

(A.O.3) 

(A.O.4) 

(A.O.5) 

(A.O.6) 

(from A.O.4) and Q* -a R 
l+KRm- 5 * (from A.O.5), 

r * 

equation (A.O.3) becomes 

which yields 

asN* + a9R* = Q* (()~ ~ Q~ - a2)' 

In conclusion, the investigation of the steady states of the model (3.2.5) is redueed 

to the study of the nonlinear system: 

a4N*(()r + N;;) 

a5R*(1 + KrR;:) -

asN* + a9R* 

a6P*exp ( - 1 + ~pP;) 

Q* 

Q* 

Q * (()~ ~ Q~ - a2) 

Q* 
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Appendix B 

Predicted thrombopoietin levels 

CT patients 

Aranda and Dorantes 1977 

Hoffman et al. 1991 

Wilkinson et al. 1966 
0r-~--~--~~~~~~ 

I
ŒE:I normal range of TPO (UIkg) 
--platelets (U~) 
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50 1 00 150 200 250 300 350 400 
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Fig. B.l Prediction of the thrombopoietin levels for amegakaryocytic 
patients. 

• ln 
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Fig. B.2 Prediction of the thrombopoietin levels for patients diagnosed 
with C-TPO (Levis et al.), amegakaryocytic CT (Wasastjerna), and 
autoimmune CT (aU the others). 
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Appendix C 

xpp code 

The mathematical model (3.2.5) is specified by four integral delay differential equa­

tions. Since the function 'int' incorporated in the software XPP performs a slow 

computation of the integrals, we chose to numerically approximate the average TPO 

concentration 

T(t) = _l_lt 

T(t')dt' 
TpM t-TPM 

using Newton-Cotes formulas. Below is an example which uses an ll-point Newton­

Cotes formula. 

# Steady state parameter values 

par AN=3000, AR=5.6276, kappaP=O.028, AO=O.l, miu=1.7836 

par gammaS=O.07, gammaN=2.4, gammaR=O.OOl, gammaP=O.15 

par Omax=13.77, KP=11.68, r3=1.29, fO=O.l, kappaRbar=1.1738, r2=1 

par tauS=2.8, tauNM=3.5, tauRM=6, tauRS=120, tauPM=7, tauPS=9.5 

par tauRsum=126 

par kO=8, theta2=O.095, s=2, thetal=O.36, KR=O.0382, rl=6.96 

# Initial conditions 

Q(O)=1.1 

N(O)=6.9 

R(O)=3.500 



C XPP code 

P(O)=2.143 

# Equations 

dP/dt=-gammaP*P+AO*exp(miu*tauPM*Omax*(O.0268/(1+KP*P~r3)+ 

O.0268/(1+KP*delay(P,tauPM)~r3)+O.1775/(1+KP* 

delay(P,O.1*tauPM)~r3)+O.1775/(1+KP*delay(P,O.9*tauPM)~r3)­

O.081/(1+KP*delay(P,O.8*tauPM)~r3)-O.081/(1+KP* 

delay(P,O.2*tauPM)~r3)+O.4549/(1+KP*delay(P,O.7*tauPM)~r3)+ 

O.4549/(1+KP*delay(P,O.3*tauPM)~r3)-O.4351/(1+KP* 

delay(P,O.6*tauPM)~r3)-O.4351/(1+KP*delay(P,O.4*tauPM)~r3)+ 

O.7137/(1+KP*delay(P,O.5*tauPM)~r3)))*kappaP* 

(delay(Q,tauPM)-exp(-gammaP*tauPS)*delay(Q,tauPM+tauPS)) 

dQ/dt=-(kappaN(N)+kappaR(R)+kappaP+beta(Q))*Q+2*exp(-gammaS*tauS)* 

delay(Q,tauS)*beta(delay(Q,tauS)) 

dN/dt=-gammaN*N+AN*kappaN(delay(N,tauNM))*delay(Q,tauNM) 

dR/dt=-gammaR*R+AR* (kappaR(delay(R,tauRM)) *delay(Q,tauRM) -

exp(-gammaR*tauRS)*kappaR(delay(R,tauRsum))*delay(Q,tauRsum)) 

# The negative feedback functions take the form of Hill functions 

beta(Q) = kO*theta2~s/(theta2~s+Q~s) 

kappaN(N)=fO*thetal~r2/(thetal~{r2}+N~{r2}) 

kappaR(R)=kappaRbar/(l+KR*R~{rl}) 

# 

@ delay=200, maxstor=10000, noutput=5, bounds=10e+l0 

@ xlow=200, xhi=500, total=500, ylow=O, yhi=ll 

done 
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