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Abstract

A three-dof 2PUR-2RPU redundantly-actuated parallel-kinematics machine, de-
signed for the machining of complex curved surfaces that require high-speed
and high-precision, is the object of study in this paper. The lower-mobility
PKM, consisting of two pairs of symmetric, limited-dof limbs, has the advan-
tages of high stiffness, simple kinematic chain, and reduced singularities. The
mobility of the robot is investigated via Lie-groups, instead of the well-known
Chebyshev-Grübler-Kutzbach formulas, which are not applicable to our case.
Then, the inverse-displacement, direct-displacement and corresponding velocity
relations are analyzed in detail. Next, by investigating the rank-deficiency of
the corresponding Jacobian, three types of singularities, those associated with
direct-kinematics, inverse-kinematics and combinations thereof, are analyzed in
depth, while constraint singularities are investigated by resorting to constraint
wrenches. Moreover, the workspace of both the reference point P and the tool
head, when a tool is added to the moving platform, are derived. It is notewor-
thy that the local and global dexterity indices are evaluated by resorting to the
characteristic length to homogenize the dimensionally inhomogeneous Jacobian
matrix at hand, then the condition number is minimized over the independent
posture parameters and the characteristic length via the first-order normality
conditions.
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1. Introduction

It is known that parallel-kinematics machines (PKMs), comprised of one or mul-
tiple kinematic chains, are attracting more and more attention in both academia
and industry [1]. A comprehensive enumeration of parallel-kinematics machines
and their applications, up to 2006, was provided by Merlet [2]. A more recent5

account is available in Chapter 18 of th Springer Handbook of Robotics [3].
However, the disadvantages of smaller workspace, limited dexterity and singu-
larity issues are obstacles in the application of PKMs, although they are slowly
finding their way into various application environments [3].

In the machining of workpieces with complex curved surfaces, lower-mobility10

2R1T1 PKMs, integrated either with a two-to-three degree-of-freedom (dof)
tool head or a two-dof gantry to form five-to-six dof hybrid kinematic machines,
have been considerably researched and subsequently applied. The Tricept [4],
Z3 head [5], Exechon [6, 7], and A3 head [8] are typical examples of successful
applications in the machining industry, which requires high speed and precision.15

Other applications include medical, such as minimally invasive surgery [9] and
lower-limb rehabilitation [10], which have the exact desired motion pattern,
namely, roll, pitch, and heave, as the PKM under study.

In response to the applications, many type-synthesis methods of 2R1T PKMs
were introduced, such as screw theory [11, 12], Lie-groups [13, 14], and conformal20

geometric algebra [15]. With the methods at hand, a variety of mechanisms were
designed and investigated, such as 3-PRS [16], 3-CUP [17], 3-CRS/PU [18], 3-
PUU [19], Tex3 [20], 2PRU-UPR [21], and 3-CRC [22], where P, R, S, C, U stand
for prismatic, revolute, spherical, cylindrical, and universal joint, respectively.

Compared with the aforementioned 2R1T PKMs without actuation redun-25

dancy, their redundantly actuated counterparts offer several advantages [23].
Indeed, actuation redundancy of overconstrained PKMs can further improve
rigidity and precision, while eliminating certain types of singularities. Based
on the effect of the redundant active joints on the mobility of a mechanism,
PKM redundancy can be basically classified into two types. When the ac-30

tive joints introduce a mobility higher than what is required, the mechanism is
said to be kinematically redundant; otherwise, the robot is redundantly actu-
ated [24, 25]. Many a study, however, focuses on actuation redundancy, with an
ever increased interest on stiffness and on an improved quality of manipulator
workspace [25, 26, 27, 28, 29].35

It should be noted that the design of a redundantly actuated lower-mobility
PKM with limbs of limited dof2 is a challenging task [30]. Although adding a
six-dof limb to a PKM without changing the mobility of the PKM is an easy
task, it is difficult to maintain the original mobility after adding a limited-
mobility limb. To the best of our knowledge, the types of redundantly actuated40

reduced-mobility PKMs with limited-dof limbs are currently rare. A brief list

1R: rotation; T: translation
2A limb is said to be of limited dof if it is supplied with less than six dof as an open chain.
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was provided by Xu et al. [30]. To fill the gap, a redundantly actuated 2PUR-
2RPU 2R1T PKM is proposed here, where actuated joints appear underlined.
When this PKM is used as a machine tool targeting complex curved surfaces,
it offers several advantages over their counterparts. First, two of its actuators45

driving the prismatic joints are mounted on the base, which reduces the mov-
able mass, thereby improving the dynamic response of the mechanical system.
Moreover, its architecture is symmetric, with two pairs of identical PUR and
RPU limbs, the former being composed of two cross links with the benefit of
eliminating Type-II singularities. Additionally, the chain has a simple kine-50

matic model and a higher stiffness. Last, but not least, the same PKM offers
an improved workspace. Despite all the said benefits, redundantly actuated
PKMs are subjected to several challenges. The first is the generation of internal
forces introduced by redundant actuation, which leads to control requirements
that cannot be satisfied with ordinary position-control schemes [31]. Moreover,55

motion control and mechanism calibration, among other challenges, should be
taken into consideration when designing and applying redundantly actuated
PKMs [32].

Performance evaluation is a key issue in the optimum design of PKMs. Most
performance indices, such as manipulability and condition number, tell alge-60

braic characteristics of the Jacobian matrix of a PKM, i.e., the dexterity of the
robot [33, 34]. However, when computing the Jacobian condition number, re-
quired to assess the robot dexterity, the disparate units of the matrix in question
prevent the computation of its norm. To cope with this problem, a characteristic
length [33] is introduced.65

The paper is organized as follows: We describe first the 2PUR-2RPU PKM
and analyze its mobility using Lie algebra in Section 2, followed by the inverse-
displacement and direct-displacement analyses in Sections 3. After the velocity
analysis in Section 4, four singularity types, namely, direct-kinematics, inverse-
kinematics, combined singularity, and constraint singularities, are analyzed in70

detail in Section 5. Considering the physical constraints imposed by the joints,
the reachable workspace is analyzed in Section 6. By resorting to the charac-
teristic length to render the Jacobian dimensionally homogeneous, performance
evaluation and dexterity analysis of the robot of interest are discussed at length
in Section 7. Finally, some remarks are given, together with the conclusions, in75

Section 8.

2. Description, Notation, and Mobility Analysis

2.1. Description and Notation

As shown in Figs. 1–3, the 2PUR-2RPU PKM is composed of a base platform
(BP), two identical PUR and two identical RPU limbs, both pairs actuated80

at the corresponding P joint, and a moving platform (MP). The ith limb for
i = 1, 2, 3, 4, is AiBiCi.

As shown in Fig. 1, a Cartesian coordinate frame, B(X,Y, Z), is attached
to the fixed base at the intersection O of the lines B1B2 and C3C4. A moving
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coordinate frame, P(U, V,W ), is attached to the moving platform at P , the85

midpoint of the line segment A3A4. Let the X- and the U -axes point in the di-

rection of vectors
−−−→
B1B2 and

−−−→
A2A1, respectively. Additionally, a limb-coordinate

frame Bi(Xi, Yi, Zi), for i = 1, 2, 3, 4, is attached to the ith limb at point Bi.
When i = 1, 2, the Xi-,Yi-axes of the limb frames are the revolute axes of the
respective U-joints, while the remaining two limb frames define the Xi-axes as90

the revolute joints, and the Yi-axes in the direction of
−−−→
BiAi, respectively.

Let: Ai, for i = 1, 2, denotes a landmark point of each of the two R joints
mounted on the MP, as shown in Fig. 3a; for i = 3, 4, Ai denotes the center
of each of the two U joints mounted on the MP, as shown in Fig. 3b. As well,
Bi, for i = 1, 2, denotes the center of each of the two U joints mounted on the95

BP; for i = 3, 4, Bi denotes a landmark point of each of the two fixed R joints.
Line B1B2 is horizontal. Moreover, each Ci, for i = 3, 4, is the intersecting
point between the vertical line of Bi and the horizontal plane of line B1B2.
Thus, one can appreciate that B1B2 ‖ C1C2, B3B4 ‖ C3C4 and B1B2 ⊥ B3B4.
Furthermore, each Di, for i = 1, 2, is the projection point of Ai onto the U -axis100

of the frame P. It is noteworthy that C1 and C2 are not fixed to the base but
move with B1 and B2, respectively, along the direction of the corresponding P
joint.

2.2. Mobility Analysis

2.2.1. The Displacement Lie-group and its Subgroups105

The motion of the moving platform of the PKM of interest is now investigated
by means of Lie algebra [35]. A total of 12 displacement subgroups of the
group of rigid-body displacements was first identified by Hervé [35] and then
applied by Angeles [36] to the qualitative synthesis of parallel manipulators.
Four subgroups, of interest to this study, are recalled for quick reference.110

1. R(A), the revolute subgroup of rotations about axis A.

2. P(e), the prismatic subgroup of translations along the direction of the
unit vector e.

3. F(w), the planar subgroup of one rotation about an axis parallel to the
unit vector w and two independent translations in a plane normal to the115

same vector.

4. T2(u,v), the planar-translation subgroup of translations in the directions
of the two distinct unit vectors u and v.

The definition of kinematic bond is recalled here: this is a set of displace-
ments stemming from the product of displacement subgroups [37], while a bond120

itself need not be a subgroup. Upon using the Lie subgroups for the mobil-
ity analysis of parallel manipulators, Li et al. [38] applied the Lie subgroups
of displacements to limited-mobility parallel manipulators and obtained an ex-
haustive enumeration of 3R2T five-dof symmetrical parallel manipulators. Here
we recall a list of mechanical generators of Lie subgroups of interest to the125

paper.

1. Mechanical generators of F(w)
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(a) {R(A,w) • R(B,w) • R(C,w)}
(b) {R(A,w) • R(B,w) • P(u)}, for w ⊥ u

2. Mechanical generators of T2(u,v)130

(a) {R(A,w) • R(B,w)}, for w ⊥ u,v

2.2.2. Mobility Analysis of the 2PUR-2RPU PKM

It is noteworthy that the well-known Chebyshev-Grübler-Kutzbach mobility
criterion fails to provide the mobility of the mechanism at hand, which is a
paradoxical chain in Hervé’s classification [39], thereby excluding the possibility135

of mobility analysis by this criterion. In the three types of kinematic chains
proposed by Hervé, only trivial chains can be analyzed by the above-mentioned
criterion [39], while the mobility of exceptional and paradoxical chains is to be
determined by resorting to other methods. A Lie-group analysis is used instead
to investigate the mobility of interest. It is noted that screw theory is another140

powerful tool to this end, very useful when Lie subgroups cannot be applied.
The motion set of the moving platform in a closed-loop chain is the in-

tersection of the kinematic bonds generated by all the limb-kinematic chains
connecting the BP to the MP, i.e.,

M =

n⋂
i=1

{Li} (1)

where M is the motion set of the moving platform, Li representing the ith145

kinematic bond generated by the ith-limb chain, and n the number of limb-
chains. Since there are two chains in the manipulator, the PURRUP chain L1

and the RPUUPR chain L2, the motion set of the platform can be found as the
intersection of the kinematic bonds of these two chains, i.e.,

M = L1 ∩ L2 (2)

Similarly, the motion set of each of the two chains can be obtained as the150

intersection of the two corresponding subchains, i.e.,

L1 = L11 ∩ L12 (3)

L2 = L21 ∩ L22 (4)

where L1 is the closed kinematic chain of Fig. 3a, L2 that of Fig. 3b. Moreover,
L11, L12, L21 and L22 are the four bonds of the subchains of limbs 1,2,3,4,
respectively, i.e.,

L11 = P(X) • R(B1, X) • R(B1, V ) • R(A1, V ) (5)

L12 = P(X) • R(B2, X) • R(B2, V ) • R(A2, V ) (6)

L21 = R(B3, X) • P(e1) • R(A3, X) • R(A3, V ) (7)
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L22 = R(B4, X) • P(e2) • R(A4, X) • R(A4, V ) (8)

It is recalled that the bond product is idempotent [37], i.e.,155

L(·) • L(·) = L(·) (9)

Therefore, the motion Mi generated by the symmetric chains can be identified
as

L1 = {F(V ) • R(B1, X)} ∩ {F(V ) • R(B2, X)} = F(V ) • R(X) (10)

L2 = {F(X) • R(A3, V )} ∩ {F(X) • R(A4, V )} = F(X) • R(V ) (11)

Thus, the motion set of the platform M is given as

{M} ≡{L1} ∩ {L2} = {F(V ) • R(X)} ∩ {F(X) • R(V )} (12)

={R(V ) • P(U) • P(W ) • R(X)} ∩ {R(X) • P(Y ) • P(Z) • R(V )} (13)

=P(p) • R(V ) • R(X) (14)

This three-degree-of-freedom motion set is not a Lie subgroup, as it lies outside
the 12 subgroups in Hervé’s classification [39]. The platform is capable of two160

rotations about corresponding skew axes, X and V , at right angles, and one

translation along the vector p =
−−→
OP , normal to V . It is noteworthy that none

of the 12 Lie subgroups identified by Hervé [35] involves two rotation subgroups.
We define α, β as the angles of rotation about theX and the V axes, respectively,
ζ as the translation along the direction of p.165

3. Displacement Analysis

3.1. Inverse-displacement Analysis

When the independent vector of pose variables x = [α, β, ζ]T of the moving
platform is given, the calculation of vector q = [q1, q2, q3, q4]T of actuated
joint variables of OB1, OB2, B3A3 and B4A4, respectively, called the inverse-170

displacement solution, is straightforward, as is usual in PKMs. As shown in
Fig. 4, the vector-loop equation [2, 40] for the ith link, for i = 1, 2, can be
written as

p + fi + ee0 = qiqi0 + ldi0 (15)

where fi =
−−→
PDi, for i = 1, 2, while qi0 is the unit vector of the ith actuator

displacement. Furthermore, e represents the distance between the two lines175

A1A2 and A3A4, while e0 is the unit vector in the opposite direction of the
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W -axis shown in Fig. 1. Finally, l represents the length of link BiAi, and di0 is

a unit vector parallel to
−−−→
BiAi, for i = 1, 2.

Likewise, referring to Fig. 5, for i = 3, 4, the vector-loop equation of the
RPU link can be obtained as180

p + fi = lili0 + ddi0 + qiqi0 (16)

where fi =
−−→
PAi, for i = 3, 4, while li represents the magnitude of

−−→
OCi, and li0

is the unit vector in the direction of
−−→
OCi, for i = 3, 4. Moreover, di0 is a unit

vector parallel to
−−−→
CiBi, and d the length of CiBi, for i = 3, 4.

Upon taking the norm of both sides of Eq. (15) and rearranging terms, while
considering that fi ⊥ e0, we obtain185

q2i + 2qTi0di0lqi + l2 − ζ2 − f2i − e2 − 2pT fi − 2epTe0 = 0, i = 1, 2 (17)

Hence, the inverse-kinematics solutions are obtained as

qi = −qTi0di0l ±
√

(qTi0di0l)
2

+ ζ2 + f2i + e2 − l2 + 2pT fi + 2epTe0, i = 1, 2
(18)

Similarly, upon taking the norm of both sides of Eq. (16) and rearranging
terms, while considering that p ⊥ fi for i = 3, 4, we obtain

q2i + 2qTi0(lili0 + ddi0)qi + l2i + d2 − ζ2 − f2i = 0, i = 3, 4 (19)

Therefore,

qi = −qTi0(lili0 + ddi0)±
√

(qTi0(lili0 + ddi0))
2

+ ζ2 + f2i − l2i − d2, i = 3, 4
(20)

thereby obtaining two solutions per actuator. Hence, 24 = 16 inverse-kinematics190

solutions for a given platform pose are possible.
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We investigate next the solution of the inverse-displacement problem. Let
the position vector of point Ai, for i = 1, 2, 3, 4, expressed in frames B and P,
be denoted by [ai]B and [ai]P , respectively. Furthermore, the rotation matrix
from P to B is represented by [Q]B, the subscript of the brackets identifying195

the coordinate frame in which a vector or a matrix is expressed. For brevity,
the subscript will be omitted whenever the coordinate frame is the fixed frame
B. The matrix rotating frame B to frame P is calculated below:

Q = Qx(α)Qy(β) =

1 0 0
0 cosα − sinα
0 sinα cosα

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 (21)

=

 cosβ 0 sinβ
sinα sinβ cosα − sinα cosβ
− cosα sinβ sinα cosα cosβ

 (22)

Moreover, we have

ai = QP [ai]P + p, for i = 1, 2, 3, 4 (23)

and200

[a1]P = [f1 0 − e]T , [a2]P = [−f1 0 − e]T (24a)

[a3]P = [0 − f3 0]T , [a4]P = [0 f3 0]T (24b)

where fi is the magnitude of fi; and p = [0 − ζ sinα ζ cosα]T denotes the

position vector of point P . Let θi denote the angle between Zi and
−−−→
BiAi for

i = 1, 2, and between Yi and Y for i = 3, 4. Moreover, ai can be obtained
through another rotation matrix Qi that represents the rotation from frame B
to frame Bi, thus obtaining205

ai = Qi[ai]Bi + bi, for i = 1, 2, 3, 4 (25)

with

Q1 = Q2 = Qx(α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 (26a)

Q3 = Qx(θ3) =

1 0 0
0 cos θ3 − sin θ3
0 sin θ3 cos θ3

 (26b)

Q4 = Qx(θ4) =

1 0 0
0 cos θ4 − sin θ4
0 sin θ4 cos θ4

 (26c)
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where the origin Bi of the respective limb frame, expressed in B, is obtained as

b1 = [q1 0 0]T , b2 = [q2 0 0]T , b3 = [0 − l3 d]T , b4 = [0 l3 d]T

(27)
and the position vector of point Ai, [ai]Bi, expressed in Bi, for i = 1, 2, 3, 4, is
given by

[a1]B1 = [l sin θ1 0 l cos θ1]T , [a2]B2 = [−l sin θ2 0 l cos θ2]T (28a)

[a3]B3 = [0 q3 0]T , [a4]B4 = [0 q4 0]T (28b)

Upon recalling Eqs. (23) and (25), and denoting the same position vectors of210

points Ai in the frame B through different paths, we substitute the right-hand
sides of these two equations with their corresponding entries, thus obtaining

l sin θ1 + q1 = f1 cosβ − e sinβ (29a)

l cos θ1 = ζ − f1 sinβ − e cosβ (29b)

q2 − l sin θ2 = −f1 cosβ − e sinβ (29c)

l cos θ2 = ζ + f1 sinβ − e cosβ (29d)

q3 cos θ3 − l3 = −f3 cosα− ζ sinα (29e)

q3 sin θ3 + d = −f3 sinα+ ζ cosα (29f)

q4 cos θ4 + l3 = f3 cosα− ζ sinα (29g)

q4 sin θ4 + d = f3 sinα+ ζ cosα (29h)

Now let

g11 = l sin θ1, g12 = l cos θ1 (30a)

g21 = l sin θ2, g22 = l cos θ2 (30b)

g31 = q3 sin θ3, g32 = q3 cos θ3 (30c)

g41 = q4 sin θ4, g42 = q4 cos θ4 (30d)

Upon substitution of expressions (30a) through (30d) into Eqs. (29a) through
(29h), gij can be obtained as215

g11 =
√
l2 − (ζ − f1 sinβ − e cosβ)2, g12 = ζ − f1 sinβ − e cosβ (31a)

g21 =
√
l2 − (ζ + f1 sinβ − e cosβ)2, g22 = ζ + f1 sinβ − e cosβ (31b)

g31 = ζ cosα− f3 sinα− d, g32 = l3 − f3 cosα− ζ sinα (31c)

g41 = ζ cosα+ f3 sinα− d, g42 = −l3 + f3 cosα− ζ sinα (31d)

10



Hence, the unique inverse-displacement solution for the 2PUR-2PUR PKM is
obtained as

q =


−g11 + f1 cosβ − e sinβ
g21 − f1 cosβ − e sinβ√

g231 + g232√
g241 + g242

 (32)

3.2. Direct-displacement Analysis

First, Eq. (32) leads to

g11 =f1 cosβ − e sinβ − q1, g21 = f1 cosβ + e sinβ + q2 (33a)

q3 =
√
g231 + g232, q4 =

√
g241 + g242 (33b)

Substituting gij from Eqs. (31a) to (31d) into Eq. (33), then squaring both sides220

of these equations yields

ζ2 + 2(q1e− f1ζ) sinβ − 2(f1q1 + ζe) cosβ + e2 + f21 + q21 − l2 =0 (34a)

ζ2 + 2(q2e+ f1ζ) sinβ + 2(f1q2 − ζe) cosβ − e2 + f21 + q22 − l2 =0 (34b)

ζ2 − 2(l3f3 + ζd) cosα+ 2(df3 − l3ζ) sinα+ d2 + l23 + f23 − q23 =0 (34c)

ζ2 − 2(l3f3 + ζd) cosα− 2(df3 − l3ζ) sinα+ d2 + l23 + f23 − q24 =0 (34d)

Upon adding sidewise Eqs. (34a) and (34b), then subtracting the former from
the latter, next proceeding likewise with Eqs. (34c) and (34d), we obtain

ζ2 + 2eζ cosβ + λ1 cosβ + λ3 sinβ + λ5 =0 (35a)

2f1ζ sinβ + λ2 cosβ + λ4 sinβ + λ6 =0 (35b)

ζ2 − 2µ2 cosα− 2dζ cosα+ µ3 =0 (35c)

(µ1 − l3ζ) sinα+ µ4 =0 (35d)

where

λ1 = f1(q2 − q1), λ2 = f1(q2 + q1), λ3 = e(q2 + q1) (36a)

λ4 = e(q2 − q1), λ5 =
q21 + q22

2
+ f21 − l2, λ6 =

q22 − q21
2

− e2 (36b)

µ1 = df3, µ2 = l3f3 (36c)

µ3 = −q
2
3 + q24

2
+ f23 + d2 + l23 µ4 =

q24 − q23
4

(36d)

11



Equations (35c & 35d) yield225

cosα =
ζ2 + µ3

2(µ2 + dζ)
, sinα =

µ4

l3ζ − µ1
(37)

Upon squaring both sides of Eq. (37), then adding them sidewise yields

(ζ2 + µ3)2

4(µ2 + dζ)2
+

µ2
4

(l3ζ − µ1)2
= 1 (38)

From the foregoing equation we obtain a sixth-degree polynomial in ζ:

ν0ζ
6 + ν1ζ

5 + ν2ζ
4 + ν3ζ

3 + ν4ζ
2 + ν5ζ + ν6 = 0 (39)

where νi, i = 0, 1, · · · , 6, is a function of the geometric parameters of the mech-
anism and its joint coordinates. Once ζ is known, Eq. (37) yields one single
value for α, while Eqs. (35a) and (35b) yield one single value for β. It can230

be concluded that the direct-kinematics of the moving platform admits six MP
poses, some feasible, some unfeasible, depending on the nature of the roots of
Eq. (39), some real, some complex. However, it is cumbersome to derive all
possible configurations of the moving platform through this approach. Hence,
for the purpose of control, a numerical method is recommended to solve the235

direct-displacement problem.

4. Velocity Analysis

4.1. Vector Loop-Equation

Differentiation of both sides of Eq. (15) with respect to time yields

vP + ωP × fi + eωP × e0 = q̇iqi0 + lωi × di0 for i = 1, 2 (40)

Upon dot-multiplying both sides of Eq. (40) by di0 to eliminate the passive240

variable ωi, we obtain

vTPdi0 + (ωP × fi)
Tdi0 + e(ωP × e0)Tdi0 = q̇iq

T
i0di0 (41)

which, after rearranging, becomes

dTi0vP + (fi × di0)TωP + (ee0 × di0)TωP = q̇id
T
i0qi0 (42)

Similarly, differentiation of both sides of Eq. (16) with respect to time yields

vP + ωP × fi = qiωi × qi0 + q̇iqi0 for i = 3, 4 (43)

Then, upon dot-multiplying both sides of Eq. (43) by qi0, we obtain

vTPqi0 + (ωP × fi)
Tqi0 = q̇i (44)

which, likewise, upon rearranging, becomes245

qTi0vP + (fi × qi0)TωP = q̇i (45)
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Now, tP = [vTP ωTP ]T denotes the twist of the moving platform, while keeping
in mind that only three of its six components are independent. We obtain, after
straightforward manipulations,

KptP = Jqq̇ (46)

where

Jq =


dT10q10 0 0 0

0 dT20q20 0 0
0 0 1 0
0 0 0 1

 , Kp =


dT10 (f1 × d10)T + e(e0 × d10)T

dT20 (f2 × d20)T + e(e0 × d20)T

qT30 (f3 × q30)T

qT40 (f4 × q40)T


(47)

4.2. Velocity Equation250

Differentiation of both sides of Eq. (32) with respect to time yields

Jrq̇ = Kt (48)

where t ≡ [α̇ β̇ ζ̇]T denotes the three-dimensional twist of the MP, composed of
the two independent angular speeds α̇ and β̇, along with the speed ζ̇. Further-
more,

Jr =


J11 0 0 0
0 J22 0 0
0 0 J33 0
0 0 0 J44

 , K =


0 K11 K13

0 K21 K23

K32 0 K33

K42 0 K43

 (49)

with255

J11 =g11, J22 = g21, J33 =
√
g231 + g232, J44 =

√
g241 + g242

K11 =− g11f1 sinβ − g11e cosβ + (ζ − f1 sinβ − e cosβ)(e sinβ − f1 cosβ)

K21 =g21f1 sinβ − g21e cosβ − (ζ + f1 sinβ − e cosβ)(f1 cosβ + e sinβ)

K13 =ζ − f1 sinβ − e cosβ, K23 = −f1 sinβ − ζ + e cosβ

K32 =− g31(ζ sinα+ f3 cosα) + g32(f3 sinα− ζ cosα)

K33 =g31 cosα− g32 sinα

K42 =g41(−ζ sinα+ f3 cosα)− g42(f3 sinα+ ζ cosα)

K43 =g41 cosα− g42 sinα

5. Singularity Analysis

When any of the two Jacobian matrices becomes either singular or rank-deficient,
as the case may be, the mechanism finds itself at a singularity, as explained
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below. At a singular configuration, the system loses either stiffness or mobil-
ity, thereby falling into either uncontrollable motion or deficient performance.260

From a result on the singularity analysis of PKMs [41], the singularity prob-
lem of general closed-loop kinematic chains, such as PKMs, can be divided into
three types: Type-I, direct-kinematics singularity; Type-II, inverse-kinematics
singularity; and Type-III, combined singularity. Besides the aforementioned sin-
gularities, there may exist other types in constrained PKMs, namely, constraint-265

singularities [42], which cannot be identified by the rank-deficiency of the Ja-
cobian matrices. At such singularities, the constraint wrenches degenerate,
thereby increasing instantaneously the degree of freedom of the MP. Thus, it
is essential to look for constraint singularities before eliminating the passive
velocities.270

Recalling Eq. (46) and considering the rank deficiency of the matrices con-
cerned, the three types of singularity are now identified, while constraint-singularity
is analyzed by resorting to constraint wrenches.

5.1. Type-I: Direct-kinematics Singularity

A singularity of this type occurs when the 4× 6 Kp matrix is rank-deficient. In275

order to characterize the rank-deficiency of interest, let

ni =

{
(fi + ee0)× di0, if i = 1, 2

fi × qi0, if i = 3, 4
(51)

Vector ni is normal to the plane defined by points P , Ai, and Bi. One can
readily notice that n1 and n2 are parallel, while n3 is parallel to n4. However,
the foregoing linear-dependency does not lead to the rank-deficiency of Kp. If
two or more of the vectors of Kp vanish, then the matrix is rank-deficient.280

Indeed, let us assume that

ni = 0, for i ∈ {1, 2} and nj = 0, for j ∈ {3, 4} (52)

which means that (i) line AiBi coincides with line PAi, for the PURRUP chain,
when i = 1, 2 and (ii) AiBi coincides with the V -axis of the moving frame P,
for the RPUUPR chain, when i = 3, 4. It is noteworthy, however, that only the
condition for i = 3, 4 is possible, as A1B1 and A2B2 cannot coincide with lines285

PA1 and PA2, respectively, because of interference. As a result, the mechanism
acquires one or more degrees of freedom in the presence of this singularity, even
when all the actuators are locked.

5.2. Type-II: Inverse-kinematics Singularity

On the other hand, the mechanism finds itself at an inverse-kinematics singular290

posture when Jq is singular. The determinant of the diagonal matrix Jq of
Eq. (47) vanishes if at least one of its first two diagonal entries does, i.e., if

dTi0qi0 = 0, for i ∈ {1, 2} (53)
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Under the above singularity, OBi ⊥ BiAi. The perpendicularity of these
two lines leads to a posture under which the axis of at least one of the legs is
perpendicular to its actuator direction, the mechanism thus losing one or two295

degrees of freedom instantaneously, depending on the number of perpendicular-
ity cases. This type of singularity, however, will not occur in the mechanism
at hand because of the geometric constraints imposed by the link shapes of the
two cross links, B1A1 and B2A2, by design.

5.3. Type-III: Combined Singularity300

The combined singularity occurs when both Kp and Jq are rank-deficient si-
multaneously. Since the second singularity is precluded by the geometry of the
robot, this third type of singularity is also precluded.

5.4. Constraint-Singularity

From the viewpoint of constraints, a kinematic chain with reduced mobility305

experiences internal constraint wrenches. The two limb chains, of four-dof,
exert one constraint on the three-dof MP. We define p⊥ as a unit vector that is
perpendicular to p in the plane spanned by lines A1B1 and A2B2. When p⊥ is
parallel to V , this constraint vanishes, and the MP, as a result, finds itself at a
posture of four dof instantaneously. Thus, Eq. (12) has the form:310

{M} ≡{L1} ∩ {L2} = {F(V ) • R(X)} ∩ {F(X) • R(V )} (54)

={R(V ) • P(p) • P(p⊥) • R(X)} ∩ {R(X) • P(p) • P(V ) • R(V )} (55)

=F(V ) • R(X) (56)

This means that the two-limb chains have the same constraints on the MP.
Under these constraints, the MP can undergo two independent translations and
two independent rotations. This type of singularities, however, will never occur
in the robot because of the geometric constraints imposed, ensuring that p⊥
cannot be parallel to V .315

6. Workspace Analysis

6.1. Physical Constraints and Algorithms

The reachable workspace of a PKM is defined as the set of points that can be
reached by the operation point in the moving platform, and the set of orien-
tations attained by the MP [2]. The concept is essential to determining the320

workspace boundaries, its singularities and voids, for the design and perfor-
mance analysis of a manipulator [43]. Compared with their serial counterparts,
PKMs have relatively small workspaces. Therefore, the workspace of PKMs is
an important concept that reflects their performance.

Point P , located at the center of the moving platform, is the reference point325

and can only move in the plane spanned by lines A3B3 and A4B4. An axially
symmetric tool, with its axis passing through P , as shown in Fig. 2, is to be
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Figure 6: Reachable workspace of a 2PUR-2RPU PKM

added, as the need arises. Hence, the workspace problem of the robot can
be significantly simplified by investigating the workspace of P first. We can
arbitrarily set β to be 0 because it does not affect the computation of the robot330

workspace with respect to the reference point P . By varying the remaining
coordinates, α and ζ, one can readily prove that the workspace “volume”3 V is
given by

V =

∫ ζmax

ζmin

ζ∆αdζ (57)

which, in this case, lies in a plane; V is the area reachable by the said point
P . Considering the architecture constraints of the manipulator, ζmax and ζmin335

denote the maximum and the minimum distance between P and O, ∆α being
the range of orientation of α. We assume that the motion range of each prismatic
actuator is within ±0.2 m, and its rotational range of motion is set as ±π/4.

6.2. Case Studies

The architectural parameters of the manipulator are selected as l = 0.6 m, l3 =340

0.4 m, fi = 0.3 m (for i = 1, 3), d = 0.1 m and e = 0 m. Upon considering
the physical constraints of the joints, we let ζmin = 0.1 m. Next we calculate
the range of ζ to obtain the reachable workspace of the manipulator. One
can readily show that the position of the largest ζ is reached when the two
U-joints of the PURRUP chain find themselves closest to the origin O. The345

3Quotation marks intended to acknowledge that, rather than a three-dimensional volume,
what we have is a two-dimensional region.
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two U-joints, however, cannot reach the said origin because of the physical
constraints imposed by themselves. We assume a limit qmin = 0.05 m for q3 and
q4. Therefore,

ζmax =

√
l2 −

(
f3 + f4 + 2qmin

2

)2

≈ 0.4873 m (58)

Upon recalling Eq. (57) one can readily find V = 0.1787 m2. Furthermore,
since a tool is added at the point P in machining applications, the workspace of350

the tool head is three-dimensional, as depicted in Fig. 6b, where the optimum
length of the tool is 0.2874 m, as derived from condition-number minimization
in Subsection 7.2. It is pointed out that, although the workspace of the tool
head lies in three-dimensional space, its dof is two rotations plus one translation,
obtained by fixing the length of the translational displacement ζ, then rotating355

the MP around two axes X and V with feasible α and β. With varied length of
ζ, the reachable workspace of the tool head is obtained by the aforementioned
geometrical approach.

7. Dexterity Analysis

7.1. Dexterity Indices360

It is of the utmost importance to establish and quantify the different perfor-
mance characteristics of a mechanism. As most kinematic performance mea-
sures are based on the Jacobian, and its invariants, such as determinant, eigen-
values, singular values, and condition number, it is an indispensable matrix in
understanding the motion of the end-effector [44]. Performance indices such as365

manipulability, defined as the square root of the determinant of JJT [45], and
the condition number of the Jacobian matrix [46] are well known. The Jacobian
J of interest is defined as:

J = J−1r K (59)

The foregoing 4 × 3 Jacobian J is the result of actuation-redundancy, namely,
the use of four actuators to control three independent pose variables.370

Since, in general, a Jacobian matrix is configuration-dependent, the above-
mentioned metrics are local performance indices that give an indication of how
far the manipulator posture is from a singularity. It is noteworthy that, in
fact, the determinant of a square matrix tells only if and when a matrix is
invertible, but it does not tell the invertibility of the matrix [33]. The maximum-375

singular-value based sensitivity indices [47] suffer from a significant limitations,
as they are scale-dependent. Hence, we investigate the numerical properties of
the Jacobian matrix using the condition number, rather than the manipulability
and the sensitivity.
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A posture-independent index, termed the kinetostatic conditioning index380

(KCI), introduced elsewhere [33], is given by

KCI =
1

κmin
× 100% (60)

Since the condition number is bounded from below, the KCI is bounded
from above by a value of 100%. Manipulators with a KCI of 100%, those with
a minimum condition number of 1.0, are termed isotropic, which is one of the
objectives of design optimization.385

In general, any Jacobian matrix includes both dimensionless entries and
entries with units of length, which prevents the computation of the condition
number [48]. To cope with this challenge, a dimensionally homogeneous Jaco-
bian, Jh, was proposed [33] by means of the concept of characteristic length. A
performance index, termed the global conditioning index (GCI), was introduced390

to represent the dexterity over the entire workspace, rather than at a certain
posture [49]. The GCI is defined as

GCI =

∫
W(1/κ)dV

V
(61)

where V is the volume of the workspace, W is the entire robot workspace and
κ is the condition number at a particular point of W.

It is pointed out, however, that several other approaches are available to395

cope with the limitations of scale dependence and inhomogeneity, inherent in
the Jacobian based metrics. A formulation for the kinematic equations, us-
ing the velocity of some points of the end-effector, rather than only one point
in it, thus leading to homogeneous Cartesian rates, was proposed by Gos-
selin [50]. However, this formulation requires that all joints be of the same400

type. Thus, kinematic-sensitivity indices for dimensionally inhomogeneous Ja-
cobian matrices, namely, the maximum rotation sensitivity and the maximum
point-displacement sensitivity, were introduced as two distinct metrics with a
clear physical meaning [51]. Although this is an alternative approach to dexter-
ity analysis, it entails a significant drawback, namely, being applicable only to405

uniformly actuated manipulators.
Other metrics, not based on the Jacobian, such as motion/force transmission

index [52] and power manipulability [53], lie outside the scope of this paper. The
former is based on the power coefficient to evaluate the motion/force transmis-
sibility from a wrench to a twist, while the latter concerns the study of power410

within the mechanism.

7.2. Condition-number Minimization

The condition number κ of a matrix J, our Jacobian, is defined as [54]:

κ = ‖J‖‖J−1‖ (62)
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where ‖ · ‖ denotes any norm of its matrix argument. Note that the Frobe-
nius norm is frame-invariant and analytic, i.e., it admits infinitely many deriva-415

tives w.r.t. it, gradient methods thus being applicable to minimizing the condi-
tion number over architecture parameters and posture variables. Therefore, the
Frobenius norm is used throughout this paper. Moreover, we use the homoge-
neous Jacobian, Jh, instead of the raw Jacobian, J, to allow for the computation
of the condition number κ, and hence,420

κ = ‖Jh‖‖Jh−1‖ (63)

where Jh is obtained upon normalization of J [33], namely,

Jh = J diag(
1

L

1

L
1) (64)

where L is the characteristic length, to be determined in the sequel. Of course,
this normalization calls for a redefinition of the kinematic variables, Cartesian
or joint coordinates, to ensure that the kinematic relations are preserved. It
is noteworthy that PKMs usually involve two Jacobians, namely, the forward425

Jacobian K and the inverse Jacobian Jr. The inverse Jacobian Jr is dimen-
sionally homogeneous because all four actuators are of the same class, namely,
prismatic joints. For the purpose of rendering the forward Jacobian matrix K
dimensionally homogeneous, we redefine it in the form [33]

K = [Kp ko] (65)

where the 4×2 matrix Kp is the position sub-Jacobian and the four-dimensional430

vector array ko the orientation sub-Jacobian. Hence, the homogeneous forward
Jacobian takes the form

Kh = [
1

L
Kp ko] (66)

Thus, the isotropy condition for Kh is

Kh
TKh =

 1

L2
KT
pKp

1

L
KT
p ko

1

L
kToKp kTo ko

 = σ21 (67)

where σ > 0 is a nondimensional scalar and 1 is the 3 × 3 identity matrix.
An architecture is considered isotropic as long as its corresponding Jacobian435

matrix can be rendered isotropic, i.e., with identical singular values, at least at
one configuration over the entire workspace [33]. If the isotropy condition does
not have a solution, i.e., the manipulator at hand cannot reach a configuration
that is isotropic, which is the case at point, then a configuration of minimum
condition number is sought.440

The condition number of Kh, a dimensionally-homogeneous rectangular ma-
trix, based on the Frobenius norm, is computed as

κ(Kh) =
1

3

√
tr(KT

hKh) tr[(KT
hKh)

−1
] (68)
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To yield the minimum value of κ(Kh) and the characteristic length of the opti-
mum architecture, we minimize κ2(Kh) instead, to simplify the ensuing calcu-
lating. Thus, the problem is now445

min
x
κ2(Kh) (69)

subject to three geometric constraints:

l > 0, l3 ≥ 0, ζ > 0 (70)

the design vector x being given by

x = [x1, x2, x3, x4]T ≡ [α, β, ζ, L]T (71)

Let

z = κ2(Kh) ≡ 1

9
tr(P) tr(P−1), P ≡ KT

hKh (72)

when z attains a stationary value, needed for a minimum, its partial derivative
with respect to x vanishes, i.e.,450

∂z

∂x
= 0 (73)

The foregoing partial derivative is now calculated. To this end, we recall some
key relations [55]

∂[tr(P) tr(P−1)]

∂xi
≡

∂ tr(P)

∂xi
tr(P−1)+tr(P)

∂ tr(P−1)

∂xi
=
∂ tr(P)

∂P

∂P

∂xi
tr(P−1)+tr(P)

∂ tr(P−1)

∂P−1
∂P−1

∂xi
(74)

which, after straightforward manipulations, leads to

∂P

∂xi
tr(P−1)− tr(P)P−1

∂P

∂xi
P−1 = O, for i = 1, 2, 3, 4 (75)

where O is the 3× 3 zero matrix.
The dimensionally homogeneous matrix Kh can be expressed in block form455

as

Kh =

[
0 a c
b 0 d

]
(76)

where

a =
1

L

[
K11

K21

]
, b =

1

L

[
K32

K42

]
, c =

[
K13

K23

]
, d =

[
K33

K43

]
, 0 =

[
0
0

]
(77)

20



Therefore,

P ≡ KT
hKh =

0T bT

aT 0T

cT dT

[0 a c
b 0 d

]
=

‖b‖2 0 bTd
0 ‖a‖2 aT c

dTb cTa ‖c‖2 + ‖d‖2


≡
[
p1 p2 p3

]
(78)

whose inverse can be readily derived:

P−1 ≡ 1

∆

(p2 × p3)T

(p3 × p1)T

(p1 × p2)T


=

1

∆

‖a‖2(‖c‖2 + ‖d‖2)− (aT c)2 (aT c)(bTd) −‖a‖2(bTd)
(bTd)(cTa) ‖b‖2(‖c‖2 + ‖d‖2)− (bTd)2 −‖b‖2(aT c)
−‖a‖2(dTb) −‖b‖2(cTa) ‖a‖2‖b‖2


(79)

where460

∆ ≡ det(P) = p1×p2 ·p3 ≡ ‖b‖2[‖a‖2‖c‖2−(cTa)2]+‖a‖2[‖b‖2‖d‖2−(bTd)2]
(80)

Thus,

tr(P) ≡ ‖a‖2 + ‖b‖2 + ‖c‖2 + ‖d‖2

(81)

tr(P−1) ≡ 1

∆
[‖a‖2(‖b‖2 + ‖c‖2 + ‖d‖2) + ‖b‖2(‖c‖2 + ‖d‖2)

− (aT c)2 − (bTd)2] (82)

Substituting Eqs. (78), (79), (81) and (82) into Eq. (75), a system of four equa-
tions is obtained. To find the optimum solution, the architecture of the robot
is given as l = 0.6 m, l3 = 0.4 m, f1 = 0.3 m, d = 0.1 m, e = 0 m and the initial
guess of x, including both the configuration variables α, β, ζ and the character-465

istic length L, were assigned as

xinit = [0, 0, 0.2, 0.2]T (83)

The Newton-Raphson method was implemented to obtain the optimum. It
should be noted that a direct-search method, Nelder-Mead simplex, not relying
on gradients, can also be used to solve the foregoing optimization problem with
similar results, although it takes a greater number of iterations to converge.470
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Figure 7: Reciprocal of condition number of Jacobian matrix

In this case, Mathematica reports a time of 0.2031 s and 1.2969 s for Newton-
Raphson method and Nelder-Mead simplex method, respectively. The results
thus obtained are displayed below:

xopt = [0, 0, 0.3, 0.2496]T (84)

whose last component, the characteristic length, is

L = 0.2496 m (85)

475

Using this number to homogenize the Jacobian of the robot, with the opti-
mum architectural parameters and postural variables, the minimum condition
number of interest is obtained as

κmin = 1.00013 ≈ 1.0 (86)

It is noteworthy that the value of ζ obtained via the minimization of the
condition number of K is different from its counterpart when minimizing the480

condition number of Jh, as given in Eq. (64). Thus, the position ζ = 0.3 m
here, should not be taken for granted as the value at the optimum posture.

Moreover, if a tool, with a length h, is added at the said point P , the
condition number of the resulting Jacobian, mapped from joint-rates to the new
tool-head velocity, will change accordingly. Thus the aforementioned method is485

used to obtain the optimum length of the tool; the result obtained numerically
is

h = 0.2874 m (87)

which yields a minimum condition number

κmin = 1.0270 ≈ 1.0 (88)
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which is quite close to isotropy. Now, as tools are usually obtained off-the-shelf,
the user is not in a position to fix their length. The logical approach here is to490

modify the MP so as to accommodate the tool in such a way that its protrusion
below the bottom of the MP be as close as possible to the optimum found above.

7.3. Kinetostatic Conditioning Index: KCI

Hence, with the results of optimum posture based on the minimum condition
number, the KCI of the PKM is495

KCI = 99.9869% (89)

One can readily conclude that the manipulator is closest to isotropy at a con-
figuration given by ζ = 0.4845 m, α = 0, β = 0. Notice that the value of ζ is
different from that of Eq. (84).

7.4. Global Conditioning Index: GCI

In order to evaluate the GCI, we resort to a numerical method because of the500

complexity of the expression of the condition number [49]. Moreover, since 1/κ
approaches zero at points near singularities, sample points near singularities
have a reduced impact on the result of the numerical computation of the GCI.
Therefore, a simplified numerical approach was introduced to approximately
calculate the GCI by a discrete sum [16]:505

GCI ≈ 1

N

N∑
i

1

κi
(90)

where the workspace has been discretized into a set of N points, κi being the
value of κ evaluated at the ith point. Thus the result obtained numerically is

GCI = 0.7447 (91)

8. Conclusions

A systematic kinematics-cum-dexterity analysis of a novel three-dof redundantly-
actuated PKM was reported. Firstly, the mobility of the mechanism is analyzed510

by means of Lie-group algebra. Then, closed-form solutions for the inverse-
displacement problem are obtained, whereas more complex direct-displacement
relations are derived in the form of a sixth-degree polynomial whose roots at a
given set of actuated joint variables call for a numerical method. Moreover, the
velocity analysis is conducted before analyzing the four types of singularities.515

In terms of characteristics of the Jacobian matrix, the condition number as well
as the KCI and the GCI, are used to characterize the robot dexterity. We cope
with the dimensionally inhomogeneity of the Jacobian matrices by means of the
characteristic length using the Newton-Raphson method. It was shown that the
KCI of the mechanism is close to its lower bound of unity, while its GCI is close520

to 75%, or quite acceptable.
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