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ABSTRACT
We consider the scalar concentration field in the proximity of the turbulent/non-turbulent interface (TNTI) of a round momentum-driven
turbulent jet atRe = 10 600. Orthogonal cross sections of the jet are taken at 50 nozzle diameters from the nozzle exit using planar laser-induced
fluorescence. The conditional scalar concentration is evaluated along the interface-normal direction, identifying the thickness of the TNTI
region as 0.64λ (where λ is the Taylor microscale). Conditioning the scalar concentration within the TNTI revealed higher values of the passive
scalar in the vicinity of the boundary elements shaped by large vorticity structures, i.e., isosurface points with low curvature (flat regions),
small interface angle, and large radial distance from the jet centerline. In contrast, small vorticity structures near the boundary manifesting
with high interface curvature, high interface angle, and small radial distance are associated with lower concentration values. Using the current
experimental resolution, we find that high concentrations near the far boundary points persist up to a distance of 0.40λ–0.48λ into the TNTI
region, after which boundary points closer to the jet centerline exhibit larger concentration values along the interface-normal direction,
similar to the fully turbulent region. The cross correlation analysis showed that in regions characterized by low streamwise momentum, there
are positive, albeit small, scalar correlations between the non-turbulent and the TNTI regions. The latter may imply local detrainment of the
fluid particles containing the scalar at far radial positions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019860., s

I. INTRODUCTION

It is understood that the sharp and highly convoluted
turbulent/non-turbulent interface (TNTI) present at the outermost
boundary of free turbulent flows controls the transport of mass,
momentum, and scalars (e.g., heat) between the turbulent and the
non-turbulent (irrotational) fluid. For example, in non-premixed
combustion systems, combustion occurs at a low stoichiometric
mixture fraction, defined as the mass fraction of the fuel stream.
Low fuel mixture fractions are generally found at the outer edge
of the turbulent flow, i.e., within the TNTI. Therefore, the reaction
rate is greatly affected by the geometry of the interfacial layer.1 The
flow properties are governed by sharp gradients across the thick-
ness of the TNTI, when evaluating their conditional average relative

to the position of the boundary.2–5 The TNTI is a composite layer
consisting of two sublayers: a viscous superlayer (VSL),6–8 where vis-
cous diffusion dominates the evolution of the vorticity field, and a
turbulent sublayer (TSL),9,10 dominated by inviscid processes.

The TNTI geometry has been the subject of several experimen-
tal and numerical studies in recent years. It has been shown that the
thickness of the TNTI is comparable to the radius of the large vortic-
ity structures (LVSs) populating the outer boundary of free turbulent
flows,11 which scales with the Taylor microscale, λ. However, at high
Reynolds numbers, Reλ ≳ 200, the thickness of the TNTI begins to
scale with the Kolmogorov microscale, η = (ν3

/ε)1/4, due to the frag-
mented and less coherent shape of the LVSs close to the TNTI.12 It
has been observed that the probability density function (PDF) of the
TNTI position is nearly Gaussian in different turbulent flows such
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as jets,13 wakes,2 mixing layers,14 and boundary layers.15 In addition,
the PDF of the TNTI curvature reveals that the boundary is domi-
nated by smooth bulges with radii of curvature of the order of the
integral length scale and λ in shear-free turbulent fronts16 and other
free turbulent flows,17–22 respectively.

Another line of active research has been the local entrain-
ment velocity at the TNTI, vn, which is defined as the relative
velocity between the surface propagation velocity, us, and the local
fluid velocity at the TNTI, uI , i.e., vnn̂ = us − uI , where n̂ is the
local interface-normal unit vector. Previous studies in turbulent
jets showed that local entrainment processes mostly occur through
highly curved convex surface elements, defined looking from the
turbulent region.21,23,24 In contrast, flat and highly curved con-
cave TNTI points are associated with the most intense entrainment
events in wakes18 and mixing layers,19 respectively. Additionally, a
strong correlation between vn and the orientation of the TNTI rela-
tive to the mean flow direction has been observed, e.g., entrainment
happens mostly across cross-streamwise and leading edges, while
the interface propagates toward the turbulent region at the trailing
edge.21,25 The large scale aspects of the TNTI such as its position,
imposed by the largest eddies from the turbulent region,26,27 also
affect the local entrainment velocity. For example, more negative
values of vn (entrainment) are associated with interface points closer
to the jet centerline.21

Historically, the entrainment process was associated with the
large vorticity structures deep inside the turbulent core. These struc-
tures envelope large packets of ambient fluid, drawing them into
the turbulent region at the inward cusps of the TNTI, a process
known as inviscid engulfment.28,29 However, recent experimental
and numerical studies revealed that the amount of irrotational fluid
entrained into the turbulent flow due to the small scale molecular
processes in the proximity of the TNTI, i.e., nibbling, exceeds that of
the engulfment mechanism.3,13,30–32 The latter finding attests to the
original idea of Corrsin and Kistler,6 who noted that the entrainment
is brought about by the diffusive mechanisms across the contorted
TNTI. Nevertheless, the local diffusion of the TNTI into the irrota-
tional region is decorrelated with the local small scale turbulence.16,21

It is, in fact, the largest vorticity structures that control the entrain-
ment rate,26 mainly through two mechanisms. The first one is induc-
ing the irrotational entrainment wind to draw ambient fluid toward
the turbulent boundary.33 The second mechanism is increasing the
turbulent surface area by continuous convolution of the TNTI across
the full range of scales, along which small scale diffusion acts.2,19,34

This points out the multi-scale nature of the turbulent entrainment
process26 as described by the power-law behavior of the TNTI sur-
face area with a 3D fractal dimension of D3 = 2.3–2.4, or D2 = 1.3–
1.4 in two-dimensional cuts (e.g., Refs. 15, 22, and 35–40). Moreover,
the entrainment rate in pure turbulent jets (i.e., without buoyancy)
only depends on turbulence production,41 a mechanism controlled
by the straining rate of the largest eddy structures in the turbulent
flow.42

It is crucial to note that the local entrainment velocity of the
scalar TNTI, vϕn , is generally different from the propagation rate
of the vorticity TNTI, vn. The scalar TNTI resides inside its vor-
ticity counterpart for Sc > 1 due to the weak diffusive nature of
the scalar,43,44 and therefore, vϕn < vn. In contrast, when Sc is low,
the scalar isosurface propagates faster and is located outside the

vorticity TNTI. For scalars with Sc ≈ 1, the two TNTIs closely
coincide with only slight deviations.14,45

The evolution and characteristics of a passive scalar field with
low/moderate Sc near the TNTI have received attention previously.
For example, regions of high scalar gradient are generally correlated
with flat surface elements, independent of the sign of the curvature.46

When conditioning with respect to the TNTI orientation, Watanabe
et al.25 found the smallest conditionally averaged concentration gra-
dient near the trailing edge surfaces. Consistently, the scalar dissipa-
tion is shown to be much smaller near the trailing edge as compared
to that near the leading edge surfaces.47 In their direct numerical
simulations (DNS) of incompressible mixing layers with 0.25 ⩽ Sc
⩽ 8, Watanabe et al.43 showed a large difference in the scalar value
between the VSL and the TSL, due to the different origins of the fluid
particles in these sublayers. The latter leads to a peak in the condi-
tionally averaged dissipation profile between the VSL and the TSL,
independent of Sc. Furthermore, it has been shown that Sc,44,48 as
well as compressibility and heat release,49 can alter the dynamics of
the scalar mixing and topology of the scalar TNTI.

The main goal of the present study is to analyze the geome-
try of the TNTI in orthogonal cross sections of a turbulent round
jet using planar laser-induced fluorescence (PLIF). The sharply con-
torted TNTI is identified by applying a threshold to the scalar con-
centration field having a large Schmidt number (Sc = 2000). We then
proceed to obtain the geometric features of the outer boundary of
the interfacial layer. The geometry of the interface is characterized
by its curvature, κI , the cosine of the angle between its normal and
radial unit vectors, cos(ψI), and its radial position from the jet cen-
terline, rI . These parameters will be defined in Sec. III. To complete
the assessment of the interface geometry, the power-law behavior
of the TNTI is investigated using the box-filtering method. We also
examine the relationship between the value of the passive scalar at
the TNTI and the geometry of the interface. The latter contributes to
a better understanding of the scale of the vortical structures respon-
sible for the mixing of passive scalars, immediately after entrain-
ment of the fluid particles into the turbulent region. Finally, using
the conditionally averaged cross correlation profiles, we attempt to
explain the effect of the interface geometry on the local entrain-
ment/detrainment of the passive scalar. Accurate predictions of the
scalar behavior in the vicinity of the TNTI are important in many
engineering and environmental applications.

This article is organized as follows. Section II describes the
experimental facility, the data acquisition procedure, and the con-
ditional averaging method with respect to the TNTI position. In
Sec. III, we present the main results and discuss the relationship
between the TNTI geometry and the evolution of the passive scalar
field in its vicinity. Finally, in Sec. IV, a summary of our findings and
conclusions are presented.

II. EXPERIMENTAL METHOD
A. Apparatus

The experiments were carried out in a 1.7 × 1.5 × 0.9 m3 open-
top glass tank with walls of tempered glass to provide optical access
for the PLIF imaging. The tank was filled with water, and suffi-
cient time was allowed for the water to come to rest before the
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experiment. The jet was issued from a copper tube with an inner
diameter of d = 8 mm, which extends vertically for 1.6 m and after a
90○ bend extends horizontally for an additional 0.12 m (15 jet diam-
eters), thus ensuring a fully developed turbulent flow at the nozzle
exit. The dyed fluid was pumped to a constant-head reservoir posi-
tioned at ∼3 m above the nozzle exit. The purpose of the constant-
head was to feed the jet while maintaining a constant pressure dif-
ference with the supply reservoir. An outlet located just below the
inlet of the constant-head served to direct the excess dyed water
back to the supply to ensure a steady level in the head reservoir.
The flow rate was maintained at the desired level (4 l min−1) using
a flow meter (Omega FL50002A) with a ball valve to set the flow
rate and a solenoid valve to turn the jet on and off. The constant
flow rate resulted in a turbulent round jet with Re = Ued/ν = 10 600,
where Ue and ν are the nozzle-exit velocity and kinematic viscosity,
respectively. This Reynolds number is sufficient for the scalar field to
reach a well-mixed state.50 A schematic of the experimental facility
is shown in Fig. 1.

The laser beam used for the PLIF experiments originated from
a continuous argon-ion laser (Coherent Innova 90) operating in the
single-line mode at a wavelength of 514.5 nm and an output power
of 1 W. The passive scalar was disodium fluorescein with a high
Schmidt number of Sc = 2000 to minimize the effect of molecu-
lar diffusion and to prevent blurring of the images. Planar cross
sections of the jet were illuminated by a laser-sheet of 2 mm thick-
ness created by a laser scanning device, consisting of a focusing lens
and an eight-sided polygonal rotating mirror (Lincoln Laser Co.).
The rotating mirror spun at a maximum rate of 12 000 rpm and
scanned the laser beam across the measurement area, producing a
laser-sheet with relatively uniform density. The beam was directed
into the laser-sheet-forming optics using two mirrors (see Fig. 2).

The images were taken using a 2016 × 2016 pixel2, 12-bit
monochromatic CCD camera (pco.dimax) with an object lens of
55 mm. The fluorescent light emitted from the dye first reached an
optical filter (ThorLabs FGL550) attached to the lens, which rejected
the scattered light of the laser beam and only transmitted the fluores-
cent signal. The sensitivity of the camera was increased by means of

FIG. 1. Schematic of the experimental apparatus including the (a) tank, (b) dyed-
fluid supply reservoir, (c) pump, (d) ball valve, (e) constant-head reservoir, (f) flow
meter, (g) solenoid valve, and (h) jet nozzle. The figure is not to scale (side view).

FIG. 2. Schematic of the PLIF system consisting of the (a) tank, (b) laser, (c) mir-
ror, (d) laser scanning device, (e) laser-sheet, (f) CCD camera, (g) intensifier, and
(h) jet nozzle. The figure is not to scale (top view). The instantaneous scalar con-
centration field is represented in logarithmic scaling, with the TNTI and half-width
(where ϕ/ϕc = 0.5) isocontours shown by white and blue lines. The dashed line
intersects with the centerline and demarcates the upper and lower FOVs.

an image intensifier (Video Scope V34-1854) mounted on the cam-
era. The intensifier reduced the size of the usable field of view (FOV)
to a 1600 pixel diameter circle in the middle of the original FOV. The
coupling of the image intensifier and the camera rendered the effec-
tive central region more sensitive than the edges of the FOV, making
a pixel-by-pixel calibration necessary. An instantaneous PLIF image
is also shown in Fig. 2. As can be seen, the instantaneous inter-
face is highly contorted. The streamwise, transverse, and spanwise
coordinates are denoted x, y, and z, respectively. The radial coordi-
nate and azimuthal angle are represented by r and θ. The reader is
referred to Refs. 51 and 52 for additional details on the experimental
facility.

B. Data acquisition and flow characterization
Measurements for this study were performed in the far-field

at a downstream distance of x/d = 50 from the nozzle. The image
was focused such that each pixel corresponded to an area of
250 × 250 μm2 in the object field. At this resolution, the complete
orthogonal spatial extent of the jet was captured at the measure-
ment location. The data were recorded at a rate of 30 Hz with
30 ms exposure. The total duration of the experiment was about
44 s, during which a total of 1315 instantaneous scalar fields were
recorded. A pixel-by-pixel calibration was performed to convert
the intensity data, taken from the camera, to actual concentration
values for each scalar image. The calibration process consisted of
seven successive PLIF tests for homogeneous mixtures of known
(and increasing) dye concentration in a small container (1 × 0.5
× 0.5 m3), placed in the measurement location. Prior to the con-
version, the background intensity was determined without adding
any dye to the jet, and this was subtracted from each scalar intensity
field, i.e.,

ϕ(x = const; y, z)
ϕcalib

=
I(y, z) − Iback(y, z)

Icalib(y, z) − Iback(y, z)
, (1)
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TABLE I. Experimental parameters in the present study. The Taylor Reynolds number is defined as Reλ = u′2
1/2
λ/ν. The parameters Uc , u′2

1/2
, bϕ ,1/2, and ηB denote the

centerline velocity, rms velocity, concentration half-width, and Batchelor microscale, respectively. Note that here η = (ν3
/ε)1/4, λ = u′2

1/2√
15ν/ε, and ηB = η/

√

Sc. All
these quantities are measured at the jet centerline at a downstream distance of x/d = 50.

δ (PLIF pixel spacing) No. of scalar

Re Reλ Uc (cm s−1) u′2
1/2

(cm s−1) bϕ ,1/2 (mm) ε (cm2 s−3) η (mm) λ (mm) ηB (μm) (mm) fields

10 600 140 17.0a 4.59a 48.5 32.6a 0.13 3.11 2.9 0.25 (= 2η) 1315

aThe velocity data are taken from the study of Khorsandi.51

where ϕcalib is a uniform concentration field used for the pixel-by-
pixel calibration and Icalib(y, z) is its corresponding ensemble aver-
age intensity. The ensemble average of the background intensity due
to dark noise is denoted Iback(y, z). The validity of Eq. (1) depends
on the negligible attenuation of the laser light and linearity of the
fluorescent signal with concentration, which are both confirmed for
the present study.

All the flow properties are obtained for the upper half of the
FOV, as shown in Fig. 2. The isocontours of the TNTI and the con-
centration half-width encircle the jet centerline. The procedure for
determining the isocontours will be described in detail in Sec. II C.
The value of the concentration half-width, bϕ ,1/2, is calculated by
averaging the radial distance between the half-width points and the
centerline for all 1315 scalar concentration fields. The concentra-
tion half-width value is reported in Table I and is used to normalize
the measured lengths in this study. The resolution of the passive
scalar field at high Sc should be assessed relative to the Batchelor
microscale, ηB. As can be seen in Table I, the current experimen-
tal facilities do not resolve the smallest length scales of the scalar
concentration, and we are not able to fully capture the passive scalar
gradient. However, for high-Sc flows, as discussed in Sec. II C and the
Appendix, a PLIF resolution close to several times the Kolmogorov
microscale, η, should be adequate to obtain the conditionally aver-
aged concentration and root mean square (rms) concentration

profiles relative to the interface position in the outer regions of
the flow. The experimental parameters and measured lengths at the
jet centerline are summarized in Table I. Note that the parameters
regarding the velocity field are estimated from a previous study,51

undertaken in the same laboratory with a comparable Re.
Before proceeding to the conditional statistics and results, vali-

dation tests are performed, showing that the jet is representative of a
fully developed turbulent flow. Figures 3(a) and 3(b) show the radial
distributions of mean and rms scalar concentrations, normalized by
the ensemble averaged centerline concentration value, ϕc, and cen-

terline rms value, ϕ′2
1/2
c , respectively. The scalar value at a given

(r, θ) is approximated using bilinear interpolation. Subsequently, the
mean and rms concentrations at a given radial position are calcu-
lated as the azimuthally averaged values at the radius r. In general,
the profiles show good agreement with previous experiments car-
ried out in round jets,52–55 given the differences in the initial con-
ditions, Reynolds numbers, and employed techniques (e.g., PLIF,
smoke scattering, Raman scattering). Figure 3(c) presents the PDF
of the passive scalar at the centerline, normalized by ϕc. The PDF
roughly follows a Gaussian distribution, shown by the orange line,
which is in good agreement with the data of Papanicolau and List.56

The zero probability of finding pure unmixed fluid (ϕ ≈ 0) at the cen-
terline implies that the scalar concentration field is fully mixed deep
inside the turbulent core. In summary, the results of Fig. 3 follow the

FIG. 3. Large scale concentration statistics at x/d = 50, normalized by the centerline concentration and rms values. The radial position from the jet centerline, r, is normalized
by the downstream distance from the nozzle exit, x. (a) Mean and (b) rms profiles of scalar concentration are compared with the experimental results from the studies of
Becker et al.,53 Birch et al.,54 Dahm and Dimotakis,55 and Perez-Alvarado.52 (c) PDF of the scalar concentration at the jet centerline, r /x = 0, compared with the profile
reported by Papanicolau and List.56 In addition, shown with the orange line is the Gaussian fit to the present PDF.
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accepted behavior of a passive scalar reported in turbulent round jets
and, therefore, serve to validate the current study.

C. Conditional statistics
As mentioned earlier in the Introduction, the vorticity TNTI is

a composite layer made up of two sublayers: the viscous superlayer
(VSL) and the turbulent sublayer (TSL).9 Analogously, the scalar
TNTI is comprised of two sublayers, albeit with different charac-
teristics at different Sc.44 For example, for high-Sc flows such as in
the present study, Silva and da Silva44 proposed a viscous-convective
superlayer that closely follows the VSL in space and an inertial-
convective sublayer with a much smaller thickness compared to
that of the TSL. Nevertheless, for both TNTIs, these two sublayers
are bounded on one side by the outer boundary of the interfacial
region, which shall be called the TNTI outline hereafter, and by
the start of the turbulent core region on the other side. The TNTI
outline is often detected empirically by applying a low-magnitude
threshold to a scalar field, e.g., enstrophy,2,17 passive scalar,13,37 or
turbulent kinetic energy.15 Indeed, the TNTI outline defined using
the passive scalar generally does not coincide with that found with
the other scalar fields,43,44,48 except for Sc ≈ 1.14,45 Here, we detect
the TNTI outline by applying a threshold to the scalar concentra-
tion field following the procedure described in Refs. 37 and 58. We
proceed by introducing a conditional concentration, defined as the
pixel averaged concentration value across the FOV where the local
concentration exceeds the given threshold, ϕ > ϕt ,

ϕ̃ =
∑ (ϕn)

∣ϕ>ϕt

∑n∣ϕ>ϕt
, (2)

where n denotes the number of pixels. The threshold is then selected
as the concentration value where ϕ̃ exhibits a sharp change in its
derivative, i.e., inflection point. Similar to that reported by Mistry
et al.,37 islands of turbulent jet fluid (points where scalar concentra-
tion exceeds the threshold but are detached from the main scalar
field) have been excluded from the conditional averaging, while
holes (points inside the jet region with a concentration less than
the threshold value) are included. The conditional concentration
and its derivative are shown in Fig. 4. As the concentration thresh-
old, ϕt , approaches the mean centerline value, the detected turbu-
lent region breaks into several disconnected patches. Therefore, it
becomes progressively harder to distinguish between the main jet
fluid and the turbulent islands. However, the scalar concentration
threshold is usually much lower than ϕc, which allows us to identify
the detrained patches rather easily and remove them from the analy-
sis. The derivative of the conditional concentration, dϕ̃/dϕt , exhibits
sharp changes at two thresholds, i.e., ϕt/ϕc = 0.05 and ϕt/ϕc = 0.13
[see Fig. 4(b)]. The higher threshold is applied to each instantaneous
scalar concentration field to detect the turbulent region. The lower
threshold represents the average concentration value of the ambi-
ent (background) fluid and cannot sharply differentiate between
the turbulent and non-turbulent regions, as made evident by the
visual inspection of the instantaneous TNTI outlines after applying
ϕt/ϕc = 0.05. This phenomenon was also observed in the bimodal
histograms of the scalar intensity58 and vorticity,32 where the higher
threshold with the lower peak was selected to identify the inter-
face. The TNTI outline is then selected as the longest continuous

FIG. 4. (a) Conditional scalar concentration, ϕ̃, as defined in Eq. (2). (b) Derivative
of the conditional concentration, dϕ̃/dϕt , computed using a compact sixth-order
scheme.57 The conditional and derivative profiles are presented with semi-log and
linear scaling, respectively.

isocontour along ϕ/ϕc = 0.13, with the turbulent islands and non-
turbulent holes (as identified by the absence of the scalar) excluded.
Averaging the results over the 1315 instantaneous fields revealed that
the detached turbulent islands constitute 3.81% of the turbulent jet
fluid, while the contribution of the non-turbulent holes amounts
to 1.41%. The half-width isocontour can also be identified using a
similar procedure.

The conditionally averaged profiles (denoted ⟨⟩I), relative to
the position of the interface, are evaluated in a local coordinate sys-
tem normal to the TNTI outline, xn. The unit normal of the inter-
face is defined as n̂ = (∇ϕ/∣∇ϕ∣)I , where the subscript I denotes
points along the TNTI outline. Using this definition, the positive
directions of n̂ and xn point toward the turbulent core region [see
Fig. 5(a)]. In order to increase the accuracy, the spatial derivatives
are calculated by a sixth-order finite-difference compact scheme.57

The flow properties are interpolated onto xn using a bilinear inter-
polation method. In some cases, the status of the flow (turbulent
or non-turbulent) changes along the interface-normal coordinates
more than once, i.e., the interpolated points may cross the TNTI
outline, irrotational holes, or detached turbulent islands at points
other than their first crossing at the origin of xn. These points, as
well as those remaining along the xn direction, are discarded and not
included in the conditional averaging procedure. Flow quantities are
interpolated up to a distance of one concentration half-width from
the TNTI outline on both sides to ensure that all interpolated points
are within the FOV. Moreover, bϕ ,1/2 is sufficiently large so that
the interpolated points in the turbulent region pass the transitional
adjustment layer.13 Figures 5(b)–5(d) present several conditionally
averaged profiles.
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FIG. 5. (a) Part of an instantaneous scalar concentration field normalized by the mean centerline concentration at x/d = 50, presented with logarithmic scaling. The jet
centerline is located at (y, z) = (0, 0), with the radial position from the centerline calculated as r =

√

y2 + z2. In addition, shown is an example of the local coordinate system
xn used to compute the conditional statistics. The TNTI outline is the white isocontour along ϕ/ϕc = 0.13. Conditionally averaged profiles of (b) scalar concentration, (c)
scalar concentration rms, and (d) scalar concentration dissipation. The black circles (red triangles) in (c) denote the conditional scalar rms defined relative to the conditional
(conventional) mean concentration. The mean centerline concentration, ϕc , centerline velocity, Uc , and scalar half-width, bϕ ,1/2, are used for non-dimensionalization. The
narrow region, where the conditional concentration jump occurs, is shown by the gray bar. The turbulent region is defined as xn > 0, while the non-turbulent region is xn < 0.
The inset plots in (b)–(d) zoom in the gray bar with their x-axis normalized by the Taylor microscale, λ. The dashed and dashed-dotted lines represent xn/λ = 0 (TNTI outline)
and xn/λ = 0.32 (investigation point), respectively.

Previously, Watanabe et al.43 investigated the dependence of
the conditional mean scalar profile on Sc. Their simulations revealed
that for high Sc, the molecular diffusion has a negligible effect on the
averaged scalar concentration evolution across the TNTI, and that
the Kolmogorov microscale is a more relevant length scale at the
TNTI as compared to the Batchelor scale. Therefore, capturing the
conditionally averaged concentration profile does not require spa-
tial resolution down to ηB, and the current PLIF resolution (≈2η)
should be adequate for this purpose. The effect of the spatial resolu-
tion on the conditionally averaged profiles is further discussed in the
Appendix. The mean conditional concentration profile is depicted
in Fig. 5(b). The TNTI thickness is calculated as the span, starting
from the TNTI outline, across which the jump in the scalar con-
centration occurs. Similar to that reported by Eisma et al.,59 the
interfacial layer is identified as the region with a sharp scalar gra-
dient located between the linear fits (shown by blue dashed lines)
to the conditional concentration profile in both the turbulent and
non-turbulent regions. Using this method, we find the TNTI thick-
ness to be ∼0.64λ, which is in good agreement with the previous
results observed in different turbulent flows with comparable Re
(e.g., see Refs. 2, 11, 13, 25, 43, and 60). Furthermore, the ratio
between the TNTI thickness and η is ∼15 [or O(10)], consistent
with the constant scaling of the TNTI thickness and the Kolmogorov
microscale.12 The sudden increase in the concentration value could
also be observed in Fig. 2, as the isocontour of the scalar half-width
was close to that of the TNTI outline. Two differently defined con-
ditionally averaged scalar rms profiles are shown in Fig. 5(c). Their
difference lies in the average reference value from which we are mea-
suring the fluctuations, i.e., ⟨ϕ′2⟩1/2I = ⟨(ϕ − ⟨ϕ⟩I)2

⟩
1/2
I is defined

relative to the conditional mean, while ⟨ϕ′2⟩1/2I = ⟨(ϕ − ϕ)2
⟩

1/2
I

is defined relative to the conventional mean, ϕ. The conditionally

averaged rms defined with respect to the conventional mean is larger
in the non-turbulent region but smaller in the turbulent region.
The conventional (or classical) averaging smears out flow quantities
across the TNTI thickness. It is for this reason that the conditional
profile defined relative to ϕ experiences a more gradual transition
from the non-turbulent region to the turbulent region. Nonethe-
less, both profiles are governed by sharp jumps across the interfacial
layer with a local minimum within the TNTI region. The presence
of the local minimum at or near xn = 0 could be attributed to the
predefined nature of the TNTI outline, limiting the scalar fluctua-
tions at the boundary. Finally, the conditionally averaged profile of
scalar dissipation is provided in Fig. 5(d). The scalar dissipation is
defined as

χ = 2D
∂ϕ
∂xi

∂ϕ
∂xi

, (3)

where D is the molecular diffusivity. As expected, the conditional
concentration dissipation exhibits a narrow and strong peak within
the scalar TNTI, followed by a rather constant value in the turbu-
lent region. The region between the TNTI outline and the ⟨χ⟩I peak
has a thickness of 0.16λ and is characterized by highly inhomoge-
neous scalar mixing. This region could be perceived as analogous to
the VSL of the vorticity TNTI independent of Sc,43,44 where inho-
mogeneity is maximal.4,5 Therefore, an intermediate point between
the dissipation peak and the inner boundary of the TNTI region
(xn/λ = 0.64) is chosen in Sec. III B to study the scalar field within the
interfacial layer, e.g., at xn/λ = 0.32, as shown by a dashed-dotted line
in Figs. 5(b)–5(d). We note that resolution comparable to the Batch-
elor microscale is required to capture the true scalar concentration
gradient in the vicinity of the TNTI outline. However, as shown in
the Appendix, the location of the dissipation peak remains approx-
imately unaltered for decreasing spatial resolutions, and the sharp

Phys. Fluids 32, 095114 (2020); doi: 10.1063/5.0019860 32, 095114-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 6. Contour of the passive scalar dissipation field, χ, for the same region as
in Fig. 5(a), presented with logarithmic scaling. The TNTI outline is shown by the
thick black line.

jump, albeit underestimated, can be captured. Similar profiles of ⟨χ⟩I
can also be found in previous studies.14,44,48,61

The scalar dissipation field provides a more robust criterion to
detect the TNTI outline than the passive scalar itself.14,44 However,
χ is more susceptible to numerical errors and, hence, is harder to
measure than ϕ. Figure 6 shows the scalar dissipation rate for the
same region as in Fig. 5(a). As can be seen, large values of χ are con-
centrated in sheet-like structures,62 which are present near the TNTI
outline and also inside the turbulent core. The former is due to the
sudden transition from the non-turbulent to the turbulent region
[also see Fig. 5(d)], while the latter is attributed to the internal inter-
mittency (or ramp–cliff structures) of the passive scalar field.63 Large
values of χ can be seen in the top-right corner of Fig. 6, which are
apparently detached from the main turbulent jet. The same detached
island is also observed for the scalar concentration field in Fig. 5(a).
Our experimental data are limited to a two-dimensional description
of the flow, and without the volumetric information, whether the
detached regions are completely disconnected from the jet fluid or
are attached to the turbulent region in a different streamwise plane
cannot be determined. Nonetheless, as mentioned earlier, these 2D
disconnected regions add up to only 3.81% of the total jet area and
will not significantly affect the results. Since the turbulent and non-
turbulent regions are demarcated similarly by χ and ϕ contours, we
conclude that the present criterion for detecting the TNTI outline is
valid.

III. RESULTS
A. Geometric features of the TNTI outline

The evolution of the enstrophy and passive scalar fields has
been shown to be strongly correlated with the TNTI geometry.20,25,46

In addition, the interface geometry has not yet been experimentally
investigated for the orthogonal cross section of a high-Re turbulent

jet, as previous studies used streamwise and 3D cuts of the flow. It is
beneficial to first analyze the geometric characteristics of the TNTI
outline and then condition the value of the scalar concentration on
these properties. Specifically, we turn our attention to the radial posi-
tion of the TNTI outline, rI , its curvature, κI , and the cosine of the
interface angle, cos(ψI) (see Fig. 7). The radial position of the inter-
face is the Euclidean distance between the TNTI outline and the jet
centerline. The present TNTI outline is a planar curve, and therefore,
its curvature value can be evaluated using the expression

κI =
⎛
⎜
⎜
⎜
⎝

dy
ds

d2z
ds2 −

dz
ds

d2y
ds2

((
dy
ds )

2
+ ( dz

ds )
2
)

3/2

⎞
⎟
⎟
⎟
⎠
I

, (4)

where d
ds denotes the derivative operator with respect to the TNTI

outline length and is calculated as

d
ds
=

1
∣∇ϕ∣
(
∂ϕ
∂y

∂

∂z
−
∂ϕ
∂z

∂

∂y
). (5)

Using the current definition of n̂, convex (ridges) and concave
(bulges) surface elements are identified as κI > 0 and κI < 0, respec-
tively. The deviation of the interface unit normal from the inward
radial unit vector along the TNTI outline, r̂, is quantified by the
cosine of the angle between them,

cos(ψI) = r̂ ⋅ n̂. (6)

The TNTI outline tends to fold back on itself as cos(ψI) → −1, i.e.,
whenever r̂ oppositely aligns with n̂. Examples of different values of
cos(ψI) are provided in Fig. 7.

Figure 8 shows the PDF of the TNTI outline geometric fea-
tures. Similar to that reported by previous studies in round jets,13,21

the PDF of rI normalized by the scalar half-width follows a Gaus-
sian distribution [Fig. 8(a)]. The average value, standard deviation,

FIG. 7. Geometric features of the TNTI outline. The instantaneous scalar field,
normalized by the average centerline value, is presented with linear scaling. The
radial and normal unit vectors along the TNTI outline are shown by the blue and
orange arrows, respectively. The TNTI outline is shown by the thick white line.
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FIG. 8. PDFs of the (a) radial position of the TNTI outline, r I , (b) interface curvature, κI , and (c) cosine of the angle between the normal and radial unit vectors of the interface,
cos(ψI). The mean intermittency γ and average radial position rI = 1.46bϕ,1/2 are also shown in (a) by the black thick line and dashed line, respectively. The Gaussian fit is
shown in orange. The PDFs are all presented with logarithmic scaling.

and skewness of P(rI) are rI = 1.46bϕ,1/2, r′2I
1/2
= 0.30bϕ,1/2, and

r′3I /r
′2
I

3/2
= −0.09, respectively. The negative skewness of the distri-

bution is unlike those found in a number of studies in free shear
flows.5,13,14 However, those studies considered the interface enve-
lope by neglecting the inward corrugations of the TNTI outline,
which resulted in a positively skewed P(rI). Indeed, negative skew-
ness has been observed when considering the actual convoluted
TNTI outline.25 Figure 8(a) also presents the mean intermittency
factor, γ, calculated from the cumulative distribution of rI ,6 i.e.,
γ (rI) = 1 − ∫rI−∞ P(rI)drI for a fixed downstream location. It can
be seen that γ assumes a value of 0.5 at the average radial position.
The length of the TNTI outline (LI) is also calculated (not shown
here) for each instantaneous scalar field. The cumulative average of
LI converges to 12bϕ ,1/2. The interface length ranges from 6bϕ ,1/2 to
20bϕ ,1/2, which is an imprint of the large scale structures deforming
the TNTI outline.27

The curvature measures the rate of change in the tangent vector
along the TNTI outline. It can also provide insight into the size of the
eddy structures that form the TNTI; the lower the curvature value,
the larger the size of the vorticity structure. As noted in Refs. 21 and
46, planar visualizations are only capable of capturing one of the
principal curvatures (κ1 or κ2, where κ1 ⩾ κ2), depending on the ori-
entation of the intersecting plane. It is known that the 3D interface
of turbulent jets is skewed toward saddle-convex surface elements
(Kg = κ1κ2 < 0) with a positive mean curvature (2Km = κ1 + κ2

> 0).20,23,24 Therefore, the smaller principal curvature should be
skewed toward negative values. In the present study, the intersecting
plane produces orthogonal cross sections of the jet, where the result-
ing curvature, κI , is mostly formed by the lateral shear. The PDF
of κI normalized by the Taylor microscale is presented in Fig. 8(b),
showing a non-Gaussian distribution.21,22 The negative skewness of
the distribution implies that the component of the curvature that
we capture is in fact mostly the smaller principal curvature, κ2. The
peak of the PDF is located at κIλ ≈ −0.8, indicating a predominance
of concave elements at the TNTI outline. The radii of the vortic-
ity structures forming the TNTI outline can be approximated as

R ≈ 0.9λ, where R−1
=
√

2K2
m − Kg is the curvedness.18,19 How-

ever, as also noted in Ref. 22, the 2D studies are unable to recover
the value of the Gaussian curvature, Kg . Therefore, we evaluate the
curvedness solely by substituting the mean curvature value in its
expression, which results in an overestimation of the radius of the
vorticity structures. Nonetheless, the current two-dimensional anal-
ysis confirms that λ-sized vorticity structures dominate the TNTI
region of a round turbulent jet, similar to that found in previous
studies.11,18,19,22

The interface angle, ψI , is associated with the convolution of
the TNTI outline. The time-averaged cross section of a round jet
is a circle, where the radial and normal unit vectors are perfectly
aligned, and thus, cos(ψI) = 1 everywhere along the curve. The PDF
of P[cos(ψI)] can be appreciated in Fig. 8(c), showing that r̂ and n̂ are
preferentially aligned [cos(ψI) = ±1]. The higher peak, as expected,
is located at cos(ψI) = 1, while the lower peak at cos(ψI) = −1 indi-
cates the intense corrugation of the TNTI outline. The PDF also
presents a minimum at cos(ψI) ≈ −0.52, which corresponds to an
interface angle of ψI ≈ 120○ (shown by the black vertical line). Points
along the TNTI outline with cos(ψI) ≈ −1 are radially folded back
on themselves and are mostly formed by smaller vorticity structures
(see Fig. 7).

The instantaneous interface is highly contorted across a wide
range of scales as exhibited by its large scale indentations and
small scale wrinkles (Fig. 2). The multi-scale nature of the TNTI
outline and the entrainment process are best described using the
power-law (fractal) behavior of the interface. In order to investi-
gate the fractal property of the TNTI outline, each instantaneous
scalar field is spatially filtered using a 2D box-filter according to
ϕ̂(x) = ∫ϕ(x − x′)G(x′)d2x′, where G and ϕ̂ denote the box-
averaging filter kernel of width Δf and the low-pass filtered con-
centration field, respectively. We then apply the same threshold
ϕt/ϕc = 0.13 to each smoothed field and find the length of the
TNTI outline. The logarithmic plot of the ensemble averaged inter-
face length as a function of the filter width is shown in Fig. 9.
In addition, shown is the local slope of the filtered TNTI out-
line length, −d[log(LI/bϕ,1/2)]/d[log(Δf /λ)], where we find an
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FIG. 9. Fractal scaling of the TNTI outline length using spatial filtering. The fractal
dimension is calculated from the plateau of the local slope (gray bar). The vertical
dashed lines delimit the filter widths between which the local slope has a value of
−0.32 ± 0.01.

FIG. 10. PDF of the scalar concentration value at xn/λ = 0.32. The non-turbulent
part of the distribution is shown by the gray fill. The dashed line shows the passive
scalar threshold, ϕ0.32/ϕc = 0.13.

approximate plateau of−0.32± 0.01 between the filter widths of sizes
Δf = 2λ and Δf = 4.3λ. According to Mandelbrot,64 this results in a
2D fractal dimension of D2 = 1.32 ± 0.01, which resides well inside
the accepted range of D2 = 1.3–1.4, as previously found by recent
studies.22,36,37,39,40

B. TNTI concentration conditioned
on the interface geometry

Knowing the statistical behavior of the TNTI outline geometric
features, we now investigate the relationship between the scalar con-
centration value close to the TNTI outline (at xn/λ = 0.32, denoted
ϕ0.32) and rI , κI , and cos(ψI). Before proceeding further, all the inter-
polated flow points at xn/λ = 0.32 that have a non-turbulent status, as
well as their corresponding TNTI outline points, are removed from
the analysis. The PDF of the scalar concentration at xn/λ = 0.32 is
presented in Fig. 10 with its irrotational contribution, ϕ0.32/ϕc < 0.13,
shown by the gray fill. These non-turbulent points either crossed the
TNTI outline into the ambient region or are within an irrotational
hole. In any case, the removed points only amount to 1.38% of all
the realizations and therefore are expected to have a negligible effect
on the presented results. As can be seen, ϕ0.32 can be as low as 0.03ϕc
and can reach a maximum value of 0.72ϕc.

Figure 11 presents the joint probability density functions
(JPDFs) of ϕ0.32 and the geometric features of the TNTI outline. In
particular, we compare the ensemble average of the scalar concen-
tration, ϕ 0.32, with its conditional average, ϕ 0.32∣ f , by investigating
their relative difference, e = [ϕ 0.32∣ f −ϕ 0.32]/ϕ 0.32. Here, f represents
rI , κI , and cos(ψI) in each case. The conditional average of the scalar
concentration is defined as

ϕ 0.32∣ f = ∫ ϕ 0.32 P(ϕ 0.32∣ f )dϕ 0.32, (7)

where P(ϕ0.32| f ) denotes the PDF of ϕ0.32 conditioned on the inde-
pendent variable f. This method allows us to identify the favorable
conditions for accumulation of the passive scalar at the TNTI, realiz-
ing that ϕ0.32 is enhanced for e > 0. A similar approach was employed
by Mistry et al.,21 who studied the influence of the TNTI outline
geometry on the local entrainment velocity.

FIG. 11. JPDFs of ϕ0.32 and (a) radial position of the TNTI outline, r I , (b) interface curvature, κI , and (c) cosine of the interface angle, cos(ψI). The ensemble average of
the scalar concentration, ϕ 0.32, is shown by the gray dashed-dotted line, while its conditional average, ϕ 0.32∣f , is shown by the black thick line. The inset plots represent the
relative difference (in percentage), e, between the conditional and the ensemble average of ϕ0.32 in each case. The JPDFs are represented with logarithmic scaling.
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We begin the analysis by considering the dependence of the
scalar concentration value at xn/λ = 0.32 on the radial position of
the TNTI outline [Fig. 11(a)]. There is clearly a positive correla-
tion between ϕ0.32 and rI ; the value of ϕ 0.32∣rI exceeds that of ϕ 0.32
for radial positions larger than the mean value, i.e., rI > 1.46bϕ ,1/2.
However, a discrepancy in this trend is observed for the furthest
radial positions, beginning with the sudden plunge in the value of
ϕ 0.32∣rI after rI ≳ 2bϕ ,1/2. This phenomenon can be explained by
the limited life cycle of the vortical structures at the boundary of
the turbulent jet. Once these remote structures dissipate due to the
lack of shear, the scalar transport is diffusion limited. The contri-
bution of molecular diffusion to the total scalar transport at the
edges of the free shear flows is very small at high Sc.43 Without a
strong local velocity field, the flow near the boundary cannot mix
with the turbulent core region, and therefore, the concentration
value at xn/λ = 0.32 remains close to the diffused non-turbulent
value.

Figure 11(b) shows the correlation between ϕ0.32 and the curva-
ture of the TNTI outline. Similar to the work of Dopazo et al.,46 on
average, there is a higher scalar concentration close to the interface
for flatter regions of the TNTI outline. More specifically, there is a
higher level of the passive scalar in the region −4.6 < κIλ < 3.8, while
the remaining points along the TNTI outline with a larger absolute
curvature are negatively contributing to ϕ 0.32. The conditional con-
centration reaches its maximum value at κIλ = −0.2 and is only 2.6%
greater than its ensemble average, while ϕ 0.32∣κI can decrease by up
to 40% for large negative curvatures. This observation is consistent
with the findings of Fig. 8(b), showing a predominance of flat surface
elements formed by the large structures. Furthermore, the turbulent
flow in the vicinity of the highly curved convex (positive curvature)
surface elements is associated with more intense values of concentra-
tion compared to the flow near the highly curved concave (negative
curvature) shaped surfaces. This can be seen in the higher tail of
ϕ 0.32∣κI for κI > 0 compared with κI < 0.

Figure 11(c) depicts the relationship between the value of ϕ0.32
and the cosine of the interface angle. On average, there is an increase
in the value of the passive scalar near the TNTI outline where r̂ pref-
erentially aligns with n̂. Particularly, the conditional average of the
scalar concentration is intensified when cos(ψI) ⩾ 0.5. On the other
hand, ϕ0.32 is minimized as cos(ψI) → −1, i.e., the TNTI region is
characterized by lower concentration values when small vorticity
structures are present (see Sec. III A).

Summarizing the results of Fig. 11, there is an accumulation
of the passive scalar near the points along the TNTI outline with
moderate to large radial positions from the jet centerline. The con-
centration value is also enhanced in the proximity of low curvature
surface elements, independent of the curvature sign. The positive
alignment of the radial and normal unit vectors of the TNTI outline
also results in greater values of scalar concentration. These scenar-
ios (large rI , small κI , and cos(ψI)→ 1) are all brought about by the
action of large vorticity structures residing in the outermost bound-
ary of the turbulent flows. These findings highlight the role of large
scale motions in the local transport of the passive scalar close to the
TNTI outline.

So far, we have studied the dependence of the scalar concen-
tration close to the boundary on the geometric features of the TNTI
outline. It is also instructive to look at the conditionally averaged
passive scalar profiles [e.g., Fig. 5(b)] with further conditioning on
the different geometric features of the TNTI outline. These profiles
are denoted ⟨ϕ⟩I |f , where f represents the independent geomet-
ric variables as in Fig. 11. To find, say, the profiles of ⟨ϕ⟩I ∣rI , we
first identify the points along the TNTI outline that fall within a
specific range of radial positions. Thereafter, the evolution of the
scalar concentration along the interface-normal direction is col-
lected and averaged, using the same procedure as in Figs. 5(b)–5(d),
for that bundle of TNTI outline points. For example, the average
of the instantaneous concentration profiles for interface points with
rI/bϕ ,1/2 < 0.5 is shown by the black circles in Fig. 12(a), while the

FIG. 12. (a) Conditionally averaged profiles of scalar concentration for r I /bϕ ,1/2 < 0.5 (black circles), 0.5 ⩽ r I /bϕ ,1/2 < 1 (blue up-pointing triangles), 1 ⩽ r I /bϕ ,1/2 < 1.5 (red
right-pointing triangles), 1.5 ⩽ r I /bϕ ,1/2 < 2 (green stars), and r I /bϕ ,1/2 ⩾ 2 (orange squares). (b) Conditional profiles for κIλ < −10 (black circles), −10 ⩽ κIλ < 0 (blue
up-pointing triangles), 0 ⩽ κIλ < 10 (red right-pointing triangles), and κIλ ⩾ 10 (green stars). (c) Conditionally averaged concentration profiles for cos(ψI) < −0.5 (black
circles), −0.5 ⩽ cos(ψI) < 0 (blue up-pointing triangles), 0 ⩽ cos(ψI) < 0.5 (red right-pointing triangles), and cos(ψI) ⩾ 0.5 (green stars). The inset plots zoom in the gray
region with their x-axis normalized by the Taylor microscale. The dashed and dashed-dotted lines represent xn/λ = 0 (TNTI outline) and xn/λ = 0.32 (investigation point),
respectively.
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orange squares denote the profile for the furthest radial positions,
rI/bϕ ,1/2 ⩾ 2.

It is clear that the largest concentration values within the jet
occur close to the centerline. This is confirmed in Fig. 12(a), where
the boundary points closest to the centerline are associated with the
largest concentration values inside the fully turbulent region. How-
ever, as we have shown earlier in Fig. 11(a), the passive scalar in
the vicinity of the TNTI outline is maximized at far radial positions.
This trend is consistent with the behavior of ⟨ϕ⟩I ∣rI within the TNTI
region (the inset of Fig. 12), where we see the largest and smallest
concentration values for 1.5 ⩽ rI/bϕ ,1/2 < 2 and rI/bϕ ,1/2 < 0.5, respec-
tively. Hence, the passive scalar at the TNTI outline is governed by a
steeper gradient when there is lower streamwise momentum, which
results in molecular diffusion acting more rapidly. By the end of the
TNTI region at xn/λ = 0.64, the two profiles with the largest radial
positions attain an approximate plateau, and the trend in the tur-
bulent core region is already observed. Furthermore, the profiles of
⟨ϕ⟩I ∣rI with rI/bϕ ,1/2 < 1 exhibit a peak and then decrease within one
scalar half-width from the TNTI outline in the turbulent region. This
was expected as the interpolated flow points for these cases pass the
jet centerline and approach the bottom half of the turbulent region,
where the scalar concentration drops. Note that the fluctuations in
the profiles of the smallest (rI/bϕ ,1/2 < 0.5) and largest (rI/bϕ ,1/2 ⩾ 2)
radial positions are due to an insufficient number of TNTI outline
points [see Fig. 8(a)].

Figure 12(b) presents the conditionally averaged concentration
profiles for different curvature values of the TNTI outline, ⟨ϕ⟩I ∣κI .
Consistently with that shown in Fig. 11(b), the passive scalar at
the TNTI exhibits a sharper gradient for the flatter regions of the
TNTI outline (−10 ⩽ κIλ < 10). Deep inside the turbulent core,
however, the highly curved convex surface elements are associated
with a slightly larger scalar concentration. This is similar to the
behavior of the passive scalar as observed in Fig. 12(a), since it is
reasonable to argue that the eddy motions responsible for forming
the sharp ridges of the interface can also advect the TNTI outline
closer to the jet centerline. The profiles in the non-turbulent region
do not differ from each other, indicating that the passive scalar
field of the non-turbulent region is decorrelated from the interface
curvature.

The conditional profiles of ⟨ϕ⟩I ∣cos(ψI) in Fig. 12(c) show that
the averaged concentration values for the TNTI outline points with
cos(ψI) < 0.5 reach a plateau in the turbulent core region. Since the
angle between n̂ and r̂ is at least 60○ in these cases, the averaging path
along the interface-normal direction seldom moves toward the jet
centerline, which results in limited passive scalar profiles. There are
also higher values of the passive scalar in the non-turbulent region
for the radially contorted interface points [cos(ψI) < −0.5]. The lat-
ter can be explained by the fact that the non-turbulent interpolated
flow points corresponding to cos(ψI) < −0.5 are always in the neigh-
borhood of the TNTI region of another boundary point (Fig. 7).
Therefore, ⟨ϕ⟩I ∣cos(ψI) remains relatively large even deep inside the
non-turbulent region as cos(ψI)→ −1.

At this point, it is worthwhile discussing how the choice of the
investigation point (xn/λ = 0.32) affects the presented results. The
inset plots in Fig. 12 contain the necessary information to address
this point. It is evident from Figs. 12(b) and 12(c) that choosing any
other point between the TNTI outline (xn/λ = 0) and the inner limit
of the TNTI region (xn/λ = 0.64) does not significantly change the

presented results in Figs. 11(b) and 11(c), that is, for all the interface-
normal points within the TNTI region, the scalar concentration is
enhanced for flatter regions of the interface and cos(ψI) → 1. This
is, however, not the case for the conditioning with respect to the
radial position of the TNTI outline. Further boundary points (i.e.,
rI/bϕ ,1/2 ⩾ 1.5) have larger concentration values up to a distance of
xn/λ ≈ 0.40–0.48 from the TNTI outline [inset plot of Fig. 12(a)],
after which the trend changes to that of the turbulent core region.
Thus, the choice of xn/λ = 0.32 was to investigate the dependence of
the scalar concentration on the interfacial geometric features in the
immediate vicinity of the TNTI outline, before the transition to the
fully developed turbulent state.

We now consider the two-point spatial correlation of the scalar
concentration to further investigate the behavior of the passive scalar
near the TNTI outline. The cross correlation function, Cϕϕ(xn, δ), is
calculated in the interface-normal coordinates, using the two points
xn and xn + δ,25

Cϕϕ(xn, δ) =
⟨ϕ′(xn)ϕ′(xn + δ)⟩I

⟨ϕ′2(xn)⟩1/2I ⟨ϕ′2(xn + δ)⟩1/2I

, (8)

where the scalar fluctuations are calculated relative to the con-
ditional average, i.e., ϕ′(xn) = ϕ(xn) − ⟨ϕ(xn)⟩I [see Fig. 5(c)].
Although we do not have access to the velocity field, an attempt
is made to investigate the relevant scalar transport mechanisms
using the conditionally averaged cross correlation profiles. Since Sc
is high, the passive scalar is a reliable marker of the fluid parti-
cles, and to a reasonable extent, we can describe the behavior of
the flow using only the scalar field. Figures 13(a)–13(c) show the
cross correlation function at xn/λ = 0.32 with further condition-
ing on rI , κI , and cos(ψI), respectively. Within the TNTI region,
Cϕϕ(0.32λ, δ) decreases rapidly from a value of one at δ = 0, attain-
ing a negative minimum close to the TNTI outline in the non-
turbulent region. Interestingly, for all cases, Cϕϕ remains positive
at the TNTI outline and immediately becomes negative in the non-
turbulent region. The lack of correlation between xn/λ = 0.32 and
the non-turbulent region is partly associated with the removal of
all the non-turbulent flow points from ϕ0.32, as already seen in
Fig. 10.

The scalar transport takes place by the advection of the fluid ele-
ments containing the scalar and also by molecular diffusion.25,43 The
conditionally averaged profiles of Cϕϕ∣rI in Fig. 13(a) show that the
largest scalar correlations are associated with the furthest boundary
points. Molecular diffusion can even result in positive correlations
between the scalar at the TNTI and that in the non-turbulent region
when there is lower streamwise momentum, i.e., rI/bϕ ,1/2 ⩾ 2 [also
see Fig. 11(a)]. In contrast, the fluid parcels containing the scalar are
continually advected by the strong velocity field close to the jet cen-
terline, potentially into another y–z plane further downstream. The
latter suggests a lack of correlation across the scalar field, when the
origin of xn is located on the TNTI outline points with the smallest
radial positions. This is made evident in Fig. 13(a) by the negative
nearly zero Cϕϕ∣rI in the turbulent region for rI/bϕ ,1/2 < 0.5.

Within this framework, we can offer an explanation for
the relation between the local entrainment/detrainment process
and the radial position of the TNTI outline. The fluid elements
acquire the scalar concentration by the outward propagation of
the TNTI outline (entrainment), whereas the inward motion of the
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FIG. 13. Conditionally averaged cross correlation function Cϕϕ(xn, δ) at xn/λ = 0.32 with respect to the (a) radial position of the TNTI outline, r I , (b) interface curvature, κI ,
and (c) cosine of the interface angle, cos(ψI). The colored markers are the same as in Fig. 12. The dashed and dashed-dotted lines represent xn/λ = 0 (TNTI outline) and
xn/λ = 0.32 (investigation point), respectively.

interface toward the turbulent region causes the scalar concentra-
tion to smear out (detrainment). Recently, Mistry et al.21 found a
preference for fluid detrainment at far radial distances. Formerly
turbulent fluid particles are left in the non-turbulent region dur-
ing detrainment, and hence, there are positive scalar correlations
between the TNTI and non-turbulent regions when the radial posi-
tion is away from the jet centerline [Fig. 13(a)]. Watanabe et al.25 also
reported relatively large scalar correlations between the turbulent
and non-turbulent regions near the trailing edge, where the inter-
face frequently propagates toward the turbulent core. The validity
of this notion can be found by directly calculating the local entrain-
ment velocity of the scalar TNTI, vϕn = −D(∇2ϕ/∣∇ϕ∣)

I
, where vϕn ⩽ 0

denotes entrainment and vϕn > 0 denotes detrainment. However,
lack of sufficient spatial resolution prevents us from capturing the
full extent of the scalar gradient down to the Batchelor microscale,
which in turn hinders the accurate calculation of vϕn . Further study
on the local entrainment velocity of the scalar TNTI at high Sc seems
warranted.

The conditionally averaged profiles of Cϕϕ(0.32λ, δ) for the
interface curvature and cosine of the interface angle are depicted in
Figs. 13(b) and 13(c), respectively. Slightly weaker scalar correlations
in the turbulent region can be observed near the highly curved sur-
face elements, independently of the curvature sign, and also near the
boundary points where r̂ and n̂ are preferentially aligned. The same
geometric features are also associated with the strongest negative
correlations in the non-turbulent region.

We may summarize the findings of Figs. 12 and 13 as follows:
the evolution of the scalar concentration assembled in the interface-
normal coordinates strongly depends on the geometric features of
the TNTI outline. Large eddying motions near the TNTI outline
manifested in large radial positions, flat surface elements, and the
alignment of the radial and normal unit vectors promote a greater
scalar gradient at the TNTI. However, this description may change
in the turbulent region, implying different mechanisms responsi-
ble for the transport of the scalar near the TNTI outline and inside
the turbulent core. The small but positive correlation between the

scalar fluctuations of the TNTI and non-turbulent regions far away
from the centerline can be interpreted as the transport of the scalar
to the non-turbulent region due to detrainment. In addition, the
weakest scalar correlations between the TNTI and the turbulent core
belong to scenarios where a larger concentration difference exists
between those regions. It is also interesting that the cross correla-
tion function displays a more significant dependence on the radial
position of the interface as compared to the other two geometric
variables.

IV. CONCLUSION
The characteristics of a high-Sc passive scalar field near the

turbulent/non-turbulent interface of a round momentum-driven
turbulent jet have been experimentally investigated. Planar laser-
induced fluorescence measurements were performed to detect the
orthogonal TNTI outline at a fixed downstream position. In accor-
dance with that reported in previous studies (e.g., Refs. 2, 44, and
61), the conditionally averaged profiles of scalar concentration, con-
centration rms, and concentration dissipation assembled in the
interface-normal coordinates are all governed by sharp gradients
across the TNTI with a thickness O(λ).

We first studied the geometric features of the TNTI outline. The
PDFs of the radial position and curvature of the TNTI outline are
both negatively skewed; however, the former follows a Gaussian dis-
tribution, whereas the latter presents wide tails. The time-averaged
boundary has a circular shape, while concave surfaces predominate,
and there is preferential alignment between the radial and normal
unit vectors of the TNTI outline. Moreover, the least probable inter-
face angle is determined to be ψI ≈ 120○. To complete the analysis
of the interface geometry, we also showed the power-law behavior of
the TNTI outline with its fractal dimension of D2 ≈ 1.32 using spatial
filtering.

To elucidate the dependence of the passive scalar evolu-
tion on the interface geometry, we conditioned the concentration
value close to the TNTI outline on the aforementioned geometric
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FIG. 14. Schematic of the scalar field characteristics near the TNTI outline (blue)
based on the available data. The influence of different vorticity structures on the
concentration value is shown. The average boundary is shown by a dashed-dotted
arc. The inset is a zoomed-in view of the TNTI region (gray hatched) at far radial
distances. The behavior of the TNTI closer to the jet centerline is the opposite (not
shown).

variables. The results revealed an increase in the scalar concentration
value in the vicinity of the TNTI outline when the interface is char-
acterized by a moderate/large radial position, small curvature value,
and small misalignment between the radial and normal unit vectors,
all of which are caused by the large vorticity structures. Nonetheless,
the evolution of the scalar field changes toward the inner boundary
of the TNTI region, having greater concentration magnitudes along
the interface-normal coordinates when the origin of xn is closer to
the jet centerline (rI/bϕ ,1/2 < 1.5). Highly convex surface elements
also exhibit the largest concentration values deep inside the turbu-
lent core. Furthermore, using the conditionally averaged two-point
cross correlation function, we concluded that molecular diffusion
becomes important far away from the centerline and can induce
positive scalar correlations between the TNTI and non-turbulent
regions. This may suggest local detrainment of fluid elements across
the TNTI at regions characterized by low streamwise momentum,
consistent with that reported in Ref. 21. A schematic picture of the
aforementioned observations is illustrated in Fig. 14.

In this paper, we tried to link the coherent structures at the
edge of the turbulent jet11,60 to the local scalar field via geometric
features of the TNTI outline. However, higher resolution and addi-
tional information regarding the velocity field are required to further
support the presented results.

ACKNOWLEDGMENTS
The authors acknowledge the anonymous referees for valuable

comments. S. Gaskin acknowledges the financial support provided
by the Natural Sciences and Engineering Research Council (NSERC)
of Canada discovery grant (No. RGPIN 2016-04473).

APPENDIX: EFFECT OF THE SPATIAL RESOLUTION
ON THE CONDITIONAL STATISTICS

Watanabe et al.43 showed that the conditionally averaged scalar
profiles are less sensitive to molecular diffusion at high Sc. Here,

FIG. 15. Conditionally averaged profiles of (a) scalar concentration, (b) scalar con-
centration rms, and (c) scalar concentration dissipation as a function of various
filter widths, Δf . The inset plot in (a) presents the evolution of the average TNTI
thickness, ⟨δw⟩, against Δf . The horizontal line indicates ⟨δw⟩ for the original
(unfiltered) concentration field.
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we investigate the effect of the spatial resolution on the conditional
profiles presented in Figs. 5(b)–5(d), as well as on the thickness of
the TNTI. To this end, we filter the scalar concentration fields, as
explained in Sec. III A, and recalculate the conditionally averaged
variables. Indeed, using a range of filter widths from 0.24λ (≈5.7η)
to 1.05λ (≈25η), we were able to confirm the adequacy of the present
resolution to correctly identify the TNTI thickness.

Figure 15 shows the effect of spatial filtering on the condition-
ally averaged profiles of scalar concentration, concentration rms,
and concentration dissipation, respectively. The mean TNTI thick-
ness normalized by the Taylor microscale, ⟨δw⟩/λ, is calculated from
the linear fits made to the conditional concentration profile (see
Sec. II C) and is also shown in the inset of Fig. 15(a). The TNTI
thickness is an increasing function of the filter width, i.e., a lower
spatial resolution results in a thicker interfacial layer, similar to that
reported by Zhang et al.,65 who studied the effect of the spatial res-
olution on the TNTI of boundary layers. This is also consistent with
the smoothed concentration profile across the TNTI at lower spatial
resolutions. Interestingly, the TNTI thickness is rather insensitive
to spatial filtering for the smallest filter width, Δf = 0.24λ. This is
made evident by the apparent collapse of the conditional concentra-
tion profiles, corresponding to the no filter and Δf = 0.24λ cases.
The same observation holds true for the conditional rms profiles
[Fig. 15(b)], where we see only slight differences between the no filter
and Δf = 0.24λ cases. Thus, we conclude that the conditionally aver-
aged concentration and concentration rms are properly captured
using the present experimental resolution.

This is not the case for the conditional scalar dissipation profile
since the scalar gradient quite sensitively depends on the measure-
ment resolution. As can be seen in Fig. 15(c), with the decreas-
ing spatial resolution, the value and width of the dissipation peak
decreases and increases, respectively, consistent with the progres-
sively smoother concentration field. Hence, the conditionally aver-
aged scalar dissipation cannot be reliably computed at the resolution
afforded by the experiment. Nonetheless, the location of the dissipa-
tion peak (i.e., xn/λ = 0.16) seems to remain preserved, at least for the
first two filter widths, and we can capture the sharp jump, although
it is underestimated.

Finally, we note that although the current experimental reso-
lution (≈2η) is sufficient for calculating the conditionally averaged
concentration and concentration rms profiles, molecular diffusion
still strongly affects the evolution of the instantaneous scalar field
within the TNTI.43 We were able to confirm this notion by evaluat-
ing the PDF of ϕ0.32/ϕc, similar to Fig. 10 for each filter width (not
shown).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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