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Summary

It is shown that the observed effects of streamline
curvature on turbulence are accounted for by the small curvature
terms which appear in the Reynolds stress equations and in the
turbulence model of Launder, Reece and Rodi (1973) . Because of
the smallness of these terms this is a surprising result but
their effect is shown to appear in a magnified form in the
effective eddy viscosity. A comparison is made between computed
solutions of the modelled Reynolds stress, mean momentum and
dissipation rate equations and experimental data for curved wall
jets and a curved free jet. The curvature effects are accurately
predicted when the small curvature terms are included. The
turbulence model implies that the effective eddy viscosity is
relatively insensitive to longitudinal accelerafion which seems

to be in reasonable agreement with experiment.



1. 1Introduction

There is now abundant evidence that turbulence is
very sensitive to small amounts of curvature of mean streamlines

and this has been emphasized recently by the review of Bradshaw

(1973) . The effect of curvature tends to increase the magnitude
U . .

of the turbulence shear stress when — 9y 1s negative, where
R+y/ oy

R is the radius of curvature of the mean streamlines (see fig. 1),
and to decrease it when this quantity is positive. This in turn
affects the development of the mean flow and, as a typical example,
Guitton (1970) found that the fractioﬁal change in the rate of
growth dyo of a wall jet on a convex (R positive) logarithmic
spiral siﬁface, for which % ig constant, is roughly eleven

times the ratio vy,/R whereR Yo is defined in fig. 1,

In curved flows the Reynolds stress equations contain
extra production terms compared to the equations for uncurved flow
so it is natural to examine them as a possible explanation of the
observed curvature effects. When this is done they are found to be
small, e.g. a 1% change due to curvature occurs in turbulence
production for an approkimately 10% change in turbulence shear
stress, and for this reason it may be thought possible to dismiss
them as indeed Bradshaw (1973) does. However, it is shown in this

paper that despite their small size they, in combination with

terms of similar order which arise in the turbulence model of .



Launder, Reece and Rodi (1973), do in fact account for the
observed curvature effects. The changes in turbulence
structure implied by Launder et al's model are investigated in
the hypothetical case of equilibrium flow, in which diffusion
and advection are negligible, and an expression for the
effective eddy viscosity is obtained which is very sensitive to
curvature. In addition, the model, with the additional terms
which arise in curved flow, has been incorporated into the
finite difference scheme of Spalding and Patankar (1967, 1969)
and the development of curved wall jets and a curved free jet
computed. The pressure gradient normal to the mean streamlines
is neglected in the computations thus restricting the validity
of the results to small curvature. Within the range of wvalidity

the computed results are in good agreement with experiment.

2. The Reynolds Stress Egquations and Turbulence
Model for Flow with Small Curvature

Consideration is restricted to two-dimensional
incompressible flows in which the curvature of the mean
streamlines is émall i.e. R = 0(x). Using the assumption of
local isotropy the Reynolds stress equations can then be
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written, to order U’ [y,) , as
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where ¢ is the dissipation rate, p is the fluctuating part of

the pressure, p is the density and b = Ué— + Va— . In (1) to

Dt OxX oy
(4) the assumption has been used that the Reynolds stresses uiuj

are of order <23> U? and that the triple correlations
X

2
ujusu are of order (¥3> U® which is approximately what is

X
found experimentally. Arnot Smith (1973) gives the full equations

for curved flow. The wall jet data of Irwin (1973) show that
the correlations between pressure and instantaneous velocity

gradients are of the same order as the main production term

3
uv 3y which is of order v ; hence the (1 + y/R) denominator
oy ‘ X
in (1) and (4) is retained. Adding (1) to (3) gives the

turbulence energy equation
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where g* = u? + v? + w2. In all the above equations and those
that follow the extra terms arising in curved flow are enclosed in

braces. It may be noted that the terms involving 3y are of
D4

the same order as those involving v so that inclusion of
R

curvature effects implies that those due to acceleration should
also be included. However, assuming that there is no significant
coupling between the two types of effect, which would seem valid

for small curvature, the production terms involving Y} will be

neglected until the discussion at the end of the papeg?

Launder et al (1973)provide a means of modelling the
various correlations of higher order than the Reynolds stresses
in (1) to (4). It is essentially the same as that proposed by
- Hanjalié and Launder (1972) except for the modelling of the
pressure-velocity gradient correlations which are now expressed

as a linear combination of the Reynolds stresses. Assuming the

model is valid in curved flow it gives
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where k = 3 q’, @ = (4C, + 10)/11, 8 = -(2 + 3C,) /11,

n = -(50C, + 4)/55 and v = (20C, + 6)/55. Launder et al
suggest the values 1.5 and 0.4 for the constants ci1 and c;
respectively. When a wall is nearby they proposed correction
terms for (6) to (9) but the form of these described in their
paper has since been modified (private communication). In

the present work the wall correction takes the form of an

C 28 k 9U
additional term in equation (9) equal to wl — —
Y Iy
k:y2 ‘
where 28 = = and Cw is constant. Details of how this

£
expression is arrived at are to be reported, Irwin (1974).

Good results in both boundary layer and wall jet computations
without curvature have been obtained with Cw = 0.03. For
curved flows the wall correction is not modified because it is
a fairly small term and, in any event, is not expected to have
the same invariant properties as the remaining part of the model.
A wall correction is necessary in the first place because a wall
appears to have an appreciable influence on pressure-velocity
gradient correiations implying that the surface integral in
Chou's (1945) exact expression for these correlations cannot be
neglected. The surface integral can be converted into a volume
integral by the method of images, Irwin (1974), which may be
more convenient for estimating the size of this effect.

If the diffusion terms, i.e. those involving triple

velocity correlations and pressure-velocity correlations, are.



small compared to the main production terms uv 2y ' ;Tég

oy oy

and the pressure-velocity gradient correlations, then it is

reasonable in the first instance to neglect the effect of
curvature on them. The pressure-velocity correlations are at
any rate neglected in the model. The data of Irwin (1973) and
Bradbury (1965) indicate that diffusion is indeed relatively
small in the region of maximum shear stress in a wall jet and
free jet respectively and it is these types of flow which will
be considered. The only modification made to Launder et al's
transport equation for the dissipation rate is to include the

extra curvature contribution to the 'generation' term.

3. The Magnitude of the Curvature Effects

To gain an insight into the likely magnitude of the
curvature effects implied by the Reynolds stress equations (1) to
(4) and the model of the pressure-velocity gradient correlations
(6) to (9) it is instructive to consider the hypothetical case
of an equilibriﬁm flow, defined as one in which diffusion and
advection are negligible.v Equations (1) to (5) then become,

omitting 3y production terms,
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Substituting (6) to (9) in (10) to (14) we find after rearrange-

ment
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where F = 915 . For small F, and the above values of Ci
c U c
oy

and C, (15) to (18) become

5
Y =0.463 (1 + 1.9 Fe) (19)
2k .

v2

— =0.232 (1 - 3.9 F) (20)
2k

ey

Y = 0.305 (21)
2k

YW= 0.178 (1 - 3.2 F) (22)
2k :



The wall correction has been omitted in the above
equations. If it is included it lowers the 0.178 factor in
(22) slightly and raises the 3.2 factor on FC but these changes

are fairly small and do not effect the order of magnitude of the

\_;2'

predicted curvature effects. It can be seen that the ratio =
u
is predicted to be quite sensitive to curvature, fractional
changes in its value being equal to almost -6 FC. This is an
interesting result because Guitton (1970) found it was precisely
this quantity which varied greatly with curvature in his

_experiments on self-preserving curved wall jets in still air.

In fig. 2 — and -— , calculated from (15) to (18), are
2 2k
u
compared with his hot wire data at y = .75 yo (see fig. 1),

where uv is at its maximum value, and it can be seen that the
predictions are in fair accord with experiment bearing in mind the
likely accuracy of hot wire measurements in high intensity turbulence.

The predicted changes in ¥ are probably too small to be detected

2k
by the measurements for FC < 0. For the purposes of this comparison
FC was calculated using FC = U U because y/R reached
R+y oy

values of nearly 0.3 in the experiments. The hot wire data of
Giles, Hays and Sawyer (1966) for the same kind of wall jets are

not shown because they may be inaccurate (Guitton (1970)) but they

2
do indicate the same trend for %:r. Thus, if we overlook the fact

uZ



that the outer part of a wall jet is not quite an equilibrium

flow,.the above results can be taken as an encouraging indication

that the predicted changes in turbulence structure are qualitatively

correct and of the right order of magnitude. 1In fact, in the

outer part of Irwin's (1973) self-preserving wall jet convection

and diffusion were found to be fairly small and tended to cancel.

Thus the equilibrium flow approximation may not be too inaccurate.
The above analysis predicts the structural changes in

the turbulence caused by curvature but does not give the changes

in the effective eddy viscosity or the mixing length. To investigate

these the energy equation (14) for equilibrium flow is written as
—-@J%g (h—&):: £ = fi? @3)

- where 18 is the dissipation lené%h scale. In an uncurved

‘equilibrium flow 2 is proportional to the conventional mixing

€
length. Substituting for k using (22) it is found that

\‘_*(_‘;} = 0.045 G£> (‘ F¢> (1-32(:} (W)Q
2= oo (4 () (1 |

since FC is small. Thus the effective viscosity contains a -11.6

factor on F

@4)

C according to the above model which is in approximate

agreement with what is observed experimentally, Bradshaw (1973).
It is possible that Sl,e/yo is also affected by curvature but (24)
combined with the experimental observations requires that it is

not affected very much. This is in cqﬁfrast to Bradshaw's (1973)

length scale L, defined as L = lHKL , which if used in a .
£



similar way to 28 above would give a factor of only -2 on FC.

In order to agree with observed curvature effects it is

therefore necessary to assume that L/yoe is also affected by
curvature, whereas this is not so in the case of QE/YO implying
that, of the two, 28 may be the more convenient and useful length

scale to use.

Thus it looks as though it may be possible to account
for curvature simply by including the extra curvature terms which
arise naturally in the Reynolds stress equations and Launder et

- al's model. The large predicted change in effective eddy viscosity

| occurs because the fractional change in X ig equal to about
2k
-3.2 FC which is then magnified by a further factor of about 3 in

the eddy viscosity. It is worth noting that in fig. 2 the slope

of ¥ yersus FC falls off as FC becomes increasingly negative

2k

being zero at about FC = —-.15 i.e. the turbulence becomes less

sensitive to curvature with increasing curvature. For positive Fo
the opposite is true and there appears to be an upper limit of

FC = 0.1 beyond which the turbulence can no longer sustain itself.

This upper limit is in quite good agreement with the data of So
and Mellor (1973) for a boundary layer on a convex surface. 1In
such a boundary layer FC increases with distance from the wall. The

measurements showed that for FC greater than about 0.15 the value

of X was essentially zero or, in the words of the authors, the
2k '

shear stress was 'turned off'. In the inner half of the boundary

layer F was appreciably less than 0.15 and the shear stress was

C



not 'turned off' so it is reasonable to assume that diffusion

of uv outwards occured. This would tend to maintain %Y at
2k
non zero values for somewhat greater F_., than would be the case

C
without diffusion which is consistent with the difference between

the measured and predicted critical values for FC.

4. Computed Results Compared.with Experiments

The turbulence model described in section 2, including the
wall correction, has been incorporated into the finite difference
scheme of Spalding and Patankar (1967, 1969). Six transport
equations are solved; the mean momentum equation, the four
Reynolds stress equations for two-dimensional flow, and the equation
for the dissipation. The details are to be reported in Irwin (1974).
The mean momentum equation is left unchanged from that for uncurved
flow, thus restricting the validity of the results to small
curvature. This procedure is permissible because for small curvature
the extra terms arising in the mean momentum equation ére small
compared to the changes due to curvature in the shear stress term,
Bradshaw (1973)f The normal stress terms are omitted from the
mean momentum egquation.

The boundary conditions are applied in the same way as
described by Hanjalié and Launder (1972) with the following
exceptions at a wall: the turbulence shear stress is matched to that
given by the skin friction which is in turn calculated from the

computed velocity profile and Patel's (1965) law of the wall; the



s

?three normal stresses are matched to u? = 5.2 .y
v = 0.61 uT2 and w2 = 2.9 uT2 where u_ is the skin friction

- velocity. The data of Guitton (1970) and Irwin (1973) show that

- Patel's law of the wall is valid in wall jets at the Reynolds number
. of the present computations and the above relations for the normal
stresses near the wall are in fair agreement with wall jet data.

The computed results are relatively insensitive to changes in the

- wall boundary condition on the normal stresses.

In fig. 3 the‘predicted rate of growth of wall jets on
’logarithmic spirals is compared with the data of Guitton (1970)

and Giles, Hays and Sawyer (1966). On a logarithmic spiral of given

X the value of dyo is constant to a close approximation so that

‘gach point in fig?XB represents a different wall jet. Guitton took
great pains to establish two-dimensionality thus tending to make

' his data more reliable and at zero yo/R the computed results agree
very well with his measured rate of growth, that of Giles et al being
somewhat higher. Of principal importance is the slope‘of the
computed curve at y¢/R = 0 which is in very good agreement with
the data and gives convincing evidence that inclusion of the
curvature terms as described in section 2 can give realistic resuits
without the need of an empiricél constant. Agreement is good up to
Yo/R of about 0.05 beyond which the computed g%i tends to fall
below the data. This is what might be expected since in practice

the pressure rise across the wall jet, which is ignored in the

computations, decreases with increasing x thus tending to augment



dyo and this effect is greater for high y,/R.

ax In figure 4 computed results are compared with
empirical laws for the growth of a wall jet on a circular cylinder
and for a free jet describing a circular arc. They are plotted

in the form of fractional changes in Yo due to curvature and

Yo, 1is the value of yo when R = ®, In the case of the free

jet y is measured from the velocity maximum and (Yo =Yo) /Yo,

is calculated from

(9= 4o/ 40w = (Box = tov) /(B0 * ov) @5)

where subscripts x and v stand for convex and concave sides
respectively. This formula can be used because Arnot Smith's
(1973) data shows that the sum of the rates of growth of the
two sides of the jet is almost exactly equal to that for the
uncurved case due to the opposite effect of curvature on each
side. Also shown in fig. 4 are results for the wall jet pre-
dicted by the model of Hanjalié and Launder (1972) with the
curvature terms included. Their full model was used as opposed
to the simplified version described in the latter part of their
paper. The wall jet on a circular cylinder is not self-preserving
because yo/R changes with x and thus the good agreement of the
model of section 2 with Guitton's empirical law indicates that
'history' effects are well modelled. The Hanjalié and Launder
model gives somewhat less curvature effect though still of

the same order of magnitude. 1Its inferior agreement with



experiment may be attributable to the fact that it takes no
explicit account of the influence of a wall on the turbulence

and is thus less physically realistic than the model of section 2.
In the case of the free jet Arnot Smith €found very little effect
of curvature and this is also found in the computed results. This
lends support to the assumption that the model of turbulence
diffusion need not include curvature terms since, as it stands,

it correctly accounts for the diffusion of properties from

one side of the jet to the other when an assymetry is Present.

Guitton's empirical law is based mainly on data at
high values of y,/R so, as supplementary evidence, fig. 5
shows a direct comparison with data from Guitton (1970) and
Fekete (1963). It is seen that agreement is good up to values
of yo/R = 0.15 beyond which the computed value of <% tends
to be low, again as might be expected because of th: neglect
of the pressure gradient normal to the surface.

Incorporation of curvature effects into thé pPresent
computer program was begun by Arnot Smith (1973) who reported
some tentative results when the work was in its early stages for
the curved free‘jet and wall jet on a circular cylinder. 1In
addition to the curvature terms described in this paper he also
made corrections to turbulence diffusion which are not used here.
However, an error has since been found in the correction to
diffusion and also a programming error; thus, his results,
although similar to some of those described above, are superseded

by the present ones.



5. Discussion and Conclusions

It has been shown in the above analysis and comparisons
with experiment that the curvature terms in the Reynolds stress
equations, although small, have an unexpectedly large effect.

It is therefore worth returning to the neglected production
terms involving 2u » which are of the same order, to see if

oxX
this is also true for them. For uncurved flow but when EE

ox

(implying also v ) is not negligible the terms in braces in

oy
(6) to (9) are zero and are replaced by
[(.z +‘$@+<_;>E‘ - P\/_i + Cp—\-/l)k} 92-1;]( n (6) _

Lpo - Crapr v - @ rq)e| 22 in (7)
Lp@@-7) 22 in (8)

and by zero in (9). Then for the hypothetical equilibrium flow

in which 2 is zero but 3y terms are retained it is possible
R dx

to obtain the following expressions for small Fa where

BU//BUI
Fa=—— ,-
ox/ oy

. = .463 (1 - 0.8 F.) | (26)
2k a

v .232 (1 + 1.6 F_)

—— = . + s F . 27
- a (27)
_"2"' R

w

Y = .305 (28)
2k

uv

== =0.178 (1 + 1.3 F_) (29)



Comparing (26) to (29) with (19) to (22) it can be seen that the
modelled turbulence structure is less sensitive to Fa than to

F.. Using the energy equation as before for small Fa

— t + 3 \
%!% = o.0LB Q%) (.- n.zF.‘> (H—\.z, FQ ()((3//?3)5 ()
S 0. 045 <%’-o> (I-HGF«) (9—%7‘2)\

Thus the effective eddy viscosity contains a factor of only
1.3 on Fa compared to the -11.6 factor on FC. This is in
agreement with experiment to the extent that there does not
appear to be any data that convincingly demonstrates that
turbulence is sensitive to flow acceleration in the same way
as it is sensitive to curvature (see Bradshaw's (1973) review).
In conclusion, it has been shown that the small terms
in the Reynolds stress equations and in Launder et al's model
for the pressure-velocity gradient correlations satisfactorily
account for observed curvature effects in jet flows. By examination

of equilibrium flow it is also shown how fairly small structural

changes in the turbulence can have a magnified effect on the

L
effective eddy viscosity without any change being required in £ .
Yo
Similar methods applied to the production terms involving GL%)
2 90X
indicate that, provided -£ does not change, the effective
Yo

viscosity is relatively insensitive to flow acceleration which

is what seems to be found experimentally.
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Fig. 1 (a) Coordinate system. (b) Wall jet notation.



Fig. 2 Effect of curvature on gz)e turbulence structure.
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Fig. 3 Wall jets on logarithmic spirals. -—e— computed,
O, data of Giles et al (1966) and Guitton (1970)
respectively.



Fig. 4

Wall jet on a circular cylinder and a free jet
describing a circular arc.

empirical
laws for the wall jet, Guitton (1970) , and the
free jet, Arnot Smith (1973); =--——- computed
using model of section 2; - wall

jet computation using model of Hanjalic¢ and
Launder (1972).
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Direct comparison with data for wall jet on a
circular cylinder. —e0 —, ——=——- computed with

and without curvature terms respectively; o0, A

data of Fekete (1963) and Guitton (1970) respectlvely.
Reynolds number £ 10*, (slot height)/R = 0.0074.



