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Abstract

This work proposes a framework for fully-automatic gradient-based constrained aero-

dynamic shape optimization in a multistage turbomachinery environment. A turbo-

machinery solver which solves the Reynolds-averaged Navier-Stokes (RANS) equa-

tions to a steady-state in both rotating and stationary domains is developed. Charac-

teristic-based inlet and outlet boundary conditions are imposed, while adjacent rotor

and stator rows are coupled by mixing-plane interfaces. To allow for an efficient

but accurate gradient calculation, the turbomachinery RANS solver is adjointed at

a discrete level. The systematic approach for the development of the discrete adjoint

solver is discussed. Special emphasis is put on the development of the turbomachinery

specific features of the adjoint solver, i.e. on the derivation of flow-consistent adjoint

inlet and outlet boundary conditions and, to allow for a concurrent rotor-stator op-

timization and stage coupling, on the development of an exact adjoint counterpart

to the non-reflective, conservative mixing-plane formulation used in the flow solver.

The adjoint solver is validated by comparing its sensitivities with finite-difference

gradients obtained from the flow solver. A parallelized, automatic grid perturbation

scheme utilizing radial basis functions, which is accurate and robust as well as able to

handle complex multi-block grid configurations, is employed to calculate the gradient

from the adjoint solution. A sequential quadratic programming algorithm is utilized

to determine an improved blade shape based on the gradient information. The func-

tionality of the proposed optimization method is demonstrated by the redesign of

two different transonic compressor configurations. The design objective is to max-

imize the isentropic efficiency while constraining the mass flow rate and the total

pressure ratio. The influence of the constraints on the design problem is investigated

by comparing the results with those of an unconstrained optimization.
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Abrégé

Cette thèse présente un cadre algorithmique automatisé visant l’optimisation sous

contraintes de turbomachines. Nous formulons un solveur aérodynamique station-

naire pour les équations de Navier-Stokes moyennées (RANS) en repère fixe et tour-

nant. Des conditions limites basées sur la méthode de caractéristiques sont imposées

en entrée et sortie de domaine, tandis que le couplage rotor-stator est introduit grâce

à l’approche du plan de mélange. Les gradients nécessaires à la solution du problème

d’optimisation sont obtenus par la méthode adjointe, implémentée sous forme discrète

afin de garantir la précision du calcul des gradients. Nous discutons en détail la for-

mulation systématique des équations adjointes discrètes. Nous mettons l’emphase sur

les détails algorithmiques propres aux turbomachines, tels que les conditions limites

adjointes d’entrée et de sorties ainsi que le plan de mélange adjoint non-réfléchissant.

Nous présentons aussi un schéma de perturbation de maillage utilisant des fonctions

de bases radiales (RBF) afin d’inclure l’influence des termes géométriques dans le cal-

cul des gradients. La validation du solveur adjoint est démontrée en comparant les

gradients calculés à ceux obtenus par la méthode des différences-finies. Finalement,

ces gradients sont utilisé dans un algorithme quadratique séquentiel déterminant

la forme d’aube optimale. Nous présentons deux exemples d’optimisation d’aube

de compresseurs transsoniques maximisant l’efficacité isentropique tout en conser-

vant de débit massique et la perte de charge totale. L’impact de ces contraintes est

quantifié en comparant l’optimum atteint à la solution du problème d’optimisation

non-contraint.
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Nomenclature

This section lists the most important symbols and abbreviations used within this

dissertation. All symbols are defined again within the thesis upon their first appear-

ance. Some symbols represent more than just one quantity; to avoid confusion, these

symbols are re-specified whenever their definition is not self-explanatory. To limit

the length of this list, only the most important of the various symbols utilized to

describe the turbulence model are itemized in the nomenclature.

Vector quantities can be expressed in a variety of coordinate systems. In this

research, Cartesian, cylindrical, and, curvilinear coordinate formulations occur. Let

A and B be two arbitrary vector quantities, where A takes on a velocity-vector-like

form and B resembles the state vector of a Navier-Stokes-like equation system, then

their entries shall be indexed as follows:

- in Cartesian coordinates: A = [ ax1 , ax2 , ax3 ]T ,

- in cylindrical coordinates: A = [ ax1 , aϕ, ar ]T ,

- in curvilinear coordinates: A = [ aξ1 , aξ2 , aξ3 ]T ,

and

- in Cartesian coordinates: B = [ b1, bx1 , bx2 , bx3 , b5 ]T ,

- in cylindrical coordinates: B = [ b1, bx1 , bϕ, br, b5 ]T ,

- in curvilinear coordinates: B = [ b1, bξ1 , bξ2 , bξ3 , b5 ]T .

For brevity, the notation A = [ a1, a2, a3 ]T and B = [ b1, b2, b3, b4, b5 ]T shall be

adopted, whenever it is clear that the Cartesian coordinate system is used.
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Scalar Quantities

A Cross section

CDkω Cross diffusion term SST turbulence model

C1 Sutherland constant

C2 Sutherland temperature

c Speed of sound

cp Specific heat capacity

cj Equality constraint

ĉj Inequality constraint

cṁ Constraint on mass flow rate

cπ̄ Constraint on mass-weighted total pressure ratio

D Domain

d Distance parameter

E Specific total energy

e Specific internal energy

h Enthalpy

I Objective function

J Cell volume

J Jacobian determinate of the transformation matrix KKK
k Turbulent kinetic energy

k Thermal conductivity

kl Thermal conductivity based on laminar viscosity

kt Thermal conductivity based on turbulent viscosity

L Chord length

Lmix Mixing length

L Lagrangian function

lP Pitch length

M Mach number

ṁ Mass flow rate

Ns Number of surface grid points

Nv Number of interior volume grid points

NRBF Number of RBF points
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Nij Arc lengths ratio of algebraic grid perturbation scheme

PW Shaft power

Pτ Production term SST model

Pr Prandtl number

Prl Laminar Prandtl number

Prt Turbulent Prandtl number

p Pressure

q∞ Prescribed boundary quantities

R Specific gas constant

Re Reynolds number

Ri Riemann invariant

r Radius

rSRAD Support radius of RBF grid perturbation scheme

Snm Cell face metrics

s Entropy

T Temperature

t Time

Un Contravariant velocity

u+ Dimensionless velocity

uτ Friction velocity

V Volume

x1, x2, x3 Cartesian coordinates

x1, ϕ, r Cylindrical coordinates

y+ Dimensionless wall distance

αk Stage coefficients of the modified Runge-Kutta scheme

αϕ Inflow angle in circumferential direction

αr Inflow angle in radial direction

βk Blending coefficients of the modified Runge-Kutta scheme

Γ Freestream turbulence intensity

γ Ratio of specific heats

δ̂ij Kronecker delta function

ε Turbulent dissipation rate



ix

ε Smoothing coefficients for implicit residual smoothing

η Efficiency

λ Bulk (second) viscosity coefficient

λ Spectral radius

λ̃ Scaled spectral radius

Λ Scaled spectral radius at a cell face

µ Dynamic (first) viscosity coefficient

µl Laminar viscosity coefficient

µt Turbulent viscosity coefficient

ν Kinematic viscosity

νt Turbulent kinematic viscosity

ν(2) Pressure sensor for first-order difference of JST scheme

ν(4) Pressure sensor for third-order difference of JST scheme

π Total pressure ratio

ρ Density

ξ1, ξ2, ξ3 Curvilinear coordinates

τw Wall shear stress

φ Basis function of RBF grid perturbation scheme

Ω′ Vorticity magnitude

ω Specific dissipation rate

Vector Quantities

A Convective flux Jacobian matrix in physical space

AAA Convective flux Jacobian matrix in computational space

ARBF RBF volume point basis function matrix

C Perturbation matrix of algebraic grid perturbation scheme

δC Characteristic variable vector

ê Unit vector

F Convective flux vector in physical space

Fd Artificial dissipation flux vector in physical space

Fv Viscous flux vector in physical space

F̄ Averaged convective flux vector



x

FFF Convective flux vector in computational space

FFFd Artificial dissipation flux vector in computational space

FFFv Viscous flux vector in computational space

FFF Discrete convective adjoint flux vector

FFFd Discrete artificial dissipation adjoint flux vector

FFFv Discrete viscous adjoint flux vector

f Discretized convective flux vector

fd Discretized artificial dissipation flux vector

fv Discretized viscous flux vector

ÎHh Multigrid interpolation operator for the fine grid solution

IHh Multigrid interpolation operator for the residual

IhH Multigrid prolongation operator

KKK Transformation matrix physical/computational space

M Transformation matrix primitive/conservative variables

M−1 Transformation matrix conservative/primitive variables

MRBF RBF basis function matrix

n Unit normal vector

P Right eigenvector matrix of the convective flux Jacobian

P−1 Left eigenvector matrix of the convective flux Jacobian

PPP Search direction

Q Source term vector

QH Heat flux vector

QQQ Multigrid forcing function

R Residual vector in physical space

Rc Residual vector comprised only of convective terms

Rd Residual vector comprised only of dissipative terms

RRR Residual vector in computational space

R̂RR Residual vector excluding source term contribution

t̂ Unit tangent vector

U Absolute velocity vector

V Relative velocity vector

W Conservative variable vector
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W̃ Mixed-out conservative variable vector

δW̃c Boundary state correction for conservative variable vector

WP Primitive variable vector

W̃P Mixed-out primitive variable vector

X Cartesian coordinate vector

XC Cylindrical coordinate vector

Xs Surface grid points design variables

Xb Hicks-Henne bump functions design variables

Xv Interior volume grid points

XRBF RBF points

δXsb Grid sensitivity matrix surface grid points to Hicks-Henne bumps

δXvs Grid sensitivity matrix volume grid points to surface grid points

∆Xs Displacement vector of surface grid points

∆Xb Displacement vector of Hicks-Henne bump functions

∆Xv Displacement vector of volume grid points

∆XRBF Displacement vector of RBF points

ααα Design variable vector

βββ RBF coefficients

εεε Slack variables

ΛΛΛ Diagonal matrix of the eigenvalues of the flux Jacobian matrix

τττ Viscous stress tensor

ξξξ Curvilinear coordinate vector

ψψψ Adjoint variable vector

ΩΩΩ Angular velocity vector

Subscripts

0 Initial or reference quantity

B Quantity at domain boundary

D Domain cell quantity

f Freestream quantity

H Halo cell quantity

Hub Quantity located at the hub
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H Coarse grid quantity

h Fine grid quantity

i, j, k, l,m, n Cell and summation indices

in Inlet quantity

is Isentropic quantity

out Outlet quantity

R Rotor quantity

S Stator quantity

t Total quantity

rel Relative quantity

wall Quantity at a solid wall boundary

Superscripts

∗ Dimensionless quantity
∗,∗∗,∗∗∗ Smoothed residuals

avg Averaged quantity

k k-th stage within the modified Runge-Kutta scheme

n Time level

new Perturbed grid point

old Unperturbed grid point

T Transpose

Abbreviations
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AD Automatic differentiation

BFGS Broyden-Fletcher-Goldfarb-Shanno

CEV Constant eddy viscosity

CFD Computational fluid dynamics

CFL Courant-Friedrich-Lewy

ICAO International Civil Aviation Organization

KKT Karush-Kuhn-Tucker

LEAP Leading Edge Aviation Propulsion
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MPI Message Passing Interface

NLFD Nonlinear Frequency Domain

NSERC National Sciences and Engineering Research Council of Canada

RANS Reynolds-averaged Navier-Stokes

RBF Radial basis function

SD Steepest Descent

SNOPT Sparse nonlinear optimizer

SQP Sequential quadratic programming

SST Shear-Stress Transport
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Chapter 1

Introduction

More than fifty years after the development of the Rolls-Royce Conway, the world’s

first production turbofan, and after decades of extensive research in the field of jet

propulsion, modern turbofan engines have reached a stage where further improve-

ments are increasingly hard to obtain. On the other hand, the aviation industry

faces market demands which pose bigger challenges than ever before.

Over the past decades, the worldwide air traffic, both measured in passenger

kilometres and in the active aircraft fleet, has been growing continuously. Although

the future growth might temporarily stagnate due to economical, political or violent

extraneous events, in the long term, air traffic is concordantly expected to continue

its steady growth. In December 2012, the International Civil Aviation Organisation

(ICAO) reported that global air transport moved some 2.9 billion people in 2012,

while the United Nations agency said it expects the number to reach more than six

billion by 2030, cf. [1]. At the same time, ICAO announced that the total scheduled

passenger traffic grew by 5.5% in 2012, after an increase of 6.5% in 2011. These

numbers are in line with the organisation’s long term forecast, which expects an

annual growth of 4-5% over the next twenty years. However, along this generally

positive outlook, the aviation industry faces new challenges as well. In addition to

reducing the fuel burn to the lowest possible level, attention is focusing more and more

on topics such as the reduction of the pollutant emissions and the minimization of

noise pollution. To lower the environmental pollution, various aerospace associations

have progressively defined stricter standards and policies. For instance, in 2001 the

1
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Advisory Council for Aeronautics Research in Europe (ACARE) published a “Vision

2020” report, cf. [2], in which the committee established the following targets to be

met by the industry until 2020 (compared to the standard in 2001):

- the reduction of both the fuel consumption and the CO2 emissions by 50%,

- to lower the NOx footprint by 80%,

- and to reduce the noise perception by 50%.

Furthermore, ACARE identified three main contributors for achieving the above tar-

gets; new aircraft, more efficient engines, and an improved air traffic management.

For example, the advisory council suggested that by 2020 technology improvements

and advanced engine design capabilities should result in more economical aircraft

engines which emit 15-20% less CO2 in comparison to the 2001 standard.

To satisfy the ambitious market demands for more economic and environmental-

friendly jet engines, the industry faces the challenge to further advance the tech-

nically matured conventional turbofan configurations and, to meet the long term

requirements, to eventually develop and realize new and innovative aircraft engine

concepts. The latest generation of high-bypass turbofan engines, for instance the

CFM International LEAP engine jointly developed by GE Aviation and Snecma or

Pratt & Whitney’s geared turbofan engine PW1000G, which the US-based engine

manufacturer developed in collaboration with MTU Aero Engines, show remarkable

improvements in fuel burn and pollutant emissions. Yet, the long term goals are still

only fulfilled partially and, thus, the need for further advancements remains.

The recent design improvements can also be tributed to the development of new

and more sophisticated design tools. Especially, the aerodynamic design strategy

applied to compressor and turbine design benefited from the introduction of more

advanced, numerical design techniques, which were gradually developed over the past

decades. With the exponential growth of computational power and the extensive

research in the field of computational fluid dynamics (CFD), numerical simulations

have become more and more accurate and CFD is routinely employed in industry

as an analysis tool within a turbomachine’s standard aerodynamic design process.

High-fidelity computational solutions have tremendously improved the understanding

of the turbomachinery flow physics and offer valuable information that had to be
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obtained from expensive experiments before. As a result, the gas turbine efficiency

could be improved considerably by considering a more realistic flow environment

during the design process.

Further improvements in compressor or turbine efficiency demand a thorough

understanding of their complex flow physics. These include three-dimensional flow

phenomena, such as secondary flow effects or the interaction between tip leakage

vortices and passage shocks potentially appearing in transonic rotor flows, as well

as unsteady flow effects, for example caused by rotor-stator interactions in multi-

row configurations. Following the conventional inverse design approach, in which

the airfoil shape is determined based on a prescribed pressure distribution and flow

field, an improved aerodynamic compressor or turbine design depends largely on the

aerodynamicist’s experience and knowledge. However, due to the growing number

of aspects to be considered during the design process, the aerodynamicists face an

incrementally more challenging design problem, which makes further improvements

increasingly hard to obtain. Thus, the emerging trend is to use CFD not only for flow

analysis but to also incorporate numerical optimization techniques into the design

process. This direct design approach can guide the designer to find an improved

design and provides a means to gain better insight into the design space of the

underlying problem. As a consequence, automatic shape optimization has recently

gained significant attention within the field of compressor and turbine blade design.

However, considering that CFD flow simulations are still fairly time-consuming and

can take several hours or even days, the question of how to build an efficient numerical

optimization tool for automatic turbomachinery blade design arises naturally.

It is the motivation of this dissertation to find an answer to this question and

to propose a framework for efficient, but accurate, automatic aerodynamic shape

optimization in a turbomachinery environment. The development of such a design

tool can help to further advance the aerodynamic designs of modern compressors

and turbines and thus can contribute to the development of next-generation turbofan

engines which meet the challenging future market demands.

The following introductory sections present the concept of numerical optimiza-

tion applied to aerodynamic shape design, introduce the most common approaches,

and elaborate on their advantages and disadvantages. Based on the outcome of the
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comparison, an optimization method is selected and, thereafter, its characteristics

are discussed in more detail. Furthermore, a detailed review of the method’s role

in both academic and industrial research, from its first appearance to the current

state-of-the-art, with a focus on its application to compressor and turbine blade de-

sign, is provided. Then, the framework of the proposed automatic design process is

outlined. Afterwards, the motivation behind this work and the individual goals and

contributions of this research are highlighted. Finally, the structure of the thesis as

well as the content of the individual chapters is described.

1.1 Numerical Optimization for Turbomachines

Since its introduction into the field of gas turbine design to study turbomachinery

aerodynamics, CFD has played an important role in the aerodynamic design process

of compressor and turbine blades. However, CFD has mostly been employed as an

analysis tool to evaluate the aerodynamic performance of certain compressor and

turbine configurations or other aerodynamic devices. Only recently, more and more

attempts have been made to utilize CFD as a direct design tool for aerodynamic shape

optimization in a turbomachinery environment. The increase in computational power

led to the advent of reasonable-priced high performance computing platforms, which

together with the development of new and efficient analysis and design algorithms

opened the door for numerical optimization using CFD.

Optimization is the minimization or maximization of a function subject to con-

straints on its variables. In the context of automatic aerodynamic shape optimization

in turbomachinery this means: a numerical program tries to modify the geometry

of a certain flow device, e.g. a stator blade, such that a user-defined performance

parameter, e.g. the total pressure loss, is improved while satisfying the underlying

flow governing equations, e.g. the Reynolds-averaged Navier-Stokes equations.

Generally speaking, numerical optimization methods can be divided into two main

categories: non-gradient and gradient-based methods. Derivative-free optimization

techniques, such as genetic algorithms or grid search and non-linear simplex methods,

only require the evaluation of the prescribed objective function; no gradient calcula-

tion or Hessian estimate is needed. In theory, these methods are able to locate the
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global minimum within the defined design space. Yet, their applicability to complex

design problems is limited due to the extremely long runtime and huge computa-

tional cost resulting from the large number of function evaluations that are typically

necessary to converge to an optimum solution; especially when the evaluation of the

objective function is costly. Gradient-based optimization methods instead are usually

able to locate a local optimum within much fewer design iterations. However, since

these techniques require an estimate of the objective function gradient with respect to

the design variables, and possibly higher derivatives such as the Hessian, this second

group of methods depends on the smoothness of the variation of the objective func-

tion and the ability to produce continuous derivatives. Once the gradient information

is available it is used to determine a search direction suitable to optimize the design

problem. Then, a step into this direction of improvement is taken and the procedure

is repeated until a local optimum is found. The simplest gradient-based optimization

method follows the approach of the steepest descent. The technique is characterized

by a very low implementation cost and by the fact that it only requires the evalua-

tion of the objective function gradient to determine the search direction. However,

this popular method is relatively inefficient since it typically requires a considerable

amount of design iterations to converge to an optimum solution. Quasi-Newton meth-

ods feature superior convergence properties and usually are more efficient. At the

same time though, Quasi-Newton methods are computationally more expensive since

they estimate the Hessian in order to find a better suited search direction.

The estimation of the objective function gradient can be an expensive task and

often is the most time consuming portion of a gradient-based optimization algorithm.

Consequently, the performance of a gradient-based optimization method largely de-

pends on an efficient gradient calculation. Gradient information may be calculated

from a variety of different approaches, cf. Figure 1.1. For instance, finite-difference

offers a simple way to approximate the objective function derivatives. Each de-

sign variable is perturbed individually and a subsequent evaluation of the objective

function then provides the sensitivity derivatives via finite-differences. Hence, the

computational cost to obtain the gradient increases proportionally to the number of

design variables. Clearly, this direct approach rapidly becomes inefficient for design

problems where the number of design parameters is high and significantly larger than
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Figure 1.1: Gradient evaluation.

the number of functionals. Besides, the accuracy of the finite-difference gradient is a

function of the step size used to perturb the design variables. The appropriate step

length is not known a priori and thus has to be determined from a gradient study.

A step length too large violates the finite-difference approximation and a step length

too small may introduce significant subtractive cancellation errors. Utilizing the

complex step method circumvents this additional second disadvantage, since in this

case the gradient evaluation is absent of subtractive cancellation errors. Nonetheless,

the computational cost is still proportional to the number of design variables since

the complex step approach requires a separate function evaluation for each design

variable perturbation as well.

Control theory, on the other hand, offers a means to calculate the objective func-

tion sensitivities nearly independent of the number of design variables. Following this

so-called adjoint approach, the gradient is calculated indirectly by solving an adjoint

system, which complexity is of the same order as that of the underlying flow govern-

ing equations. All sensitivities are obtained at the cost of one flow solution and one

adjoint solution per function of interest. Thus, for cases where the underlying opti-

mization problem involves a large number of design variables, adjoint-based gradient

calculation is considerably more economical compared to the classical finite-difference

based techniques, especially if the evaluation of the objective function requires the

solution of an equation system as complex as the Euler or Navier-Stokes equations.

Yet, this approach requires the development of a second solver to calculate the solu-
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tion of the adjoint equations. This is not a trivial task and, thus, the cost involved

in developing an adjoint-based optimization method is considerably larger than in

developing a finite-difference based method.

Consequently, both derivative-free and gradient-based optimization techniques

have contrasting advantages and disadvantages. There is not one particular opti-

mization method that is generally superior to all the others. The key is rather to

analyse the design problem beforehand and to choose a method that is appropriate

for the specific mathematical model. For example, when developing a new aircraft

engine, in the conceptual design stage the designers must first decide on the number

and the type of engines based on the targeted aircraft. Then, the general characteris-

tics of the aircraft engine, such as thrust, bypass ratio, and overall pressure ratio, are

specified to meet the market requirements. The engine architecture is defined in terms

of number of spools, the key identities of the individual components are determined,

and important flow properties such as the total pressure and the total temperature of

the flow are prescribed at certain stations. During this preliminary design stage, low-

fidelity methods are often utilized to assess the designs. It is at this stage of the engine

design process where derivative-free optimization methods can play an important role

and may be able to reduce the turn-around time to come up with new designs. The

computational cost of the analysis tools employed at this design stage is typically low.

Hence, function evaluations are relatively cheap, which in turn drastically attenuates

the disadvantage of applying an optimization technique that requires a considerable

amount of function calls. Furthermore, gradient-free optimization algorithms handle

both integer and continuous variables, while gradient-based methods only work with

the latter. This makes derivative-free optimization methods well suited for prelimi-

nary design cases, since the capability of these algorithms to handle integer variables

and their ability to cope with objective functions that do not have smooth derivatives

provides the possibility to tackle design problems which involve integer or non-smooth

variables. Furthermore, the ability to search for the global optimum is a feature that

can be very beneficial within the preliminary design stage. On the other hand, at a

more advanced design stage where the basic engine configuration is laid out and high-

fidelity tools are utilized to refine the design, gradient-based optimization methods

usually represent the better choice, since at this design level function evaluations tend
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to be costly and thus the number of function calls is to be minimized. For instance,

the calculation of the three-dimensional, viscous flow field within a single-stage com-

pressor or turbine, and thus the evaluation of the objective function, typically takes

several hours for a steady-state solution or even days for an unsteady solution. More-

over, nearly all current turbomachinery design problems require a large number of

design variables, generally in the hundreds or even thousands, to guarantee an ade-

quate geometrical parametrization. Since finite-difference based gradient calculation

involves an equivalent number of flow evaluations, this classical approach is inefficient

as well. This leads to the adjoint approach. For aerodynamic shape optimization in

a turbomachinery environment using a high-fidelity CFD solver, the adjoint method

is considerably more economical and offers tremendous computational cost savings

over alternative approaches.

Based on the findings of the comparison, for the optimization framework de-

veloped within this research a gradient-based optimization method is selected and

preferred over a derivative-free technique. Furthermore, to guarantee an efficient gra-

dient and accurate calculation it is decided to compute the objective function deriva-

tives via the adjoint approach and to employ a Quasi-Newton method to determine

the search direction and, thus, an improved blade design. The gradient estimation

methodology utilized within the developed optimization framework is highlighted in

Figure 1.1.

1.2 Adjoint-Based Optimization and its Applica-

tion to Turbomachinery

The adjoint method, based on the mathematical theory for the control of systems

governed by partial differential equations, cf. Lions [3], was introduced into the field

of fluid mechanics by Pironneau [4] for solving elliptical problems in 1984 and ex-

tended by Jameson [5] to transonic flow problems in 1988. The adjoint equations can

be obtained from two different approaches. In the continuous approach the adjoint

equations are first derived from the governing equations and are discretized after,

i.e. control theory is applied to the differential equations governing the flow. In par-

ticular, the objective function and the governing equations are linearized with respect
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to the flow variables and design parameters and their variations are then combined

through the use of Lagrange multipliers, also called co-state or adjoint variables.

Collecting the terms associated with the variation of the flow variables provides the

continuous adjoint equation and its boundary conditions, while the terms associated

with the design variable variations form the gradient equation. The discrete approach

derives the adjoint system by applying control theory directly to the discretized flow

equations, i.e. the discrete adjoint equation and the corresponding gradient expres-

sion are obtained from the linearization of the underlying flow solver. A numerical

code based on the discrete adjoint approach typically requires more memory and

CPU time than a code based on the continuous adjoint formulation. However, a

discrete adjoint solver is naturally consistent with its flow solver, which is advan-

tageous in gradient-based optimization since it usually leads to better convergence

properties. A fully-linearized discrete adjoint solver produces the exact gradients of

the discretized functionals and the adjoint derivatives are identical to those obtained

from the flow solver. Another advantage of the discrete approach is that the adjoint

boundary conditions are obtained straightforward by linearizing the flow boundary

conditions, although their derivation can be challenging. For a more detailed analysis

and comparison of the two different approaches, see Nadarajah and Jameson [6, 7].

Over the last twenty years, the adjoint approach has been applied extensively to

external flow problems. In 1994 and 1995, Jameson [8, 9] introduced the continuous

adjoint method to the two-dimensional and three-dimensional Euler equations and

demonstrated its potential by successfully optimizing airfoils and wings. Since then,

both the continuous and the discrete adjoint approaches have been investigated for

various objective functions, cf. [10, 11, 12], and extended to increasingly complex

problems, such as the optimization of complete aircraft configurations in viscous

flow, cf. [13, 14], or airfoil design in an unsteady flow environment, cf. [15, 16].

Nonetheless, due to the complexity of formulating the adjoint approach and the

challenging task of properly defining the adjoint boundary conditions for internal flow

problems, the application of adjoint-based optimization to internal flows has been lag-

ging far behind. Only within the last few years efforts have been made to apply the

adjoint method to gradient-based optimization in a turbomachinery environment.

For instance, in 2003, Yang et al. [17] developed the continuous adjoint approach for
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gradient calculation and applied it to the inverse design of two-dimensional cascade

blades in an inviscid flow environment. One year later, Chung et al. [18] presented a

discrete adjoint formulation for a three-dimensional Euler solver and tested it success-

fully for inverse design applied to Rotor 37. Furthermore, Wu et al. [19] calculated

gradients based on the adjoint method and performed a constrained optimization of

the VKI turbine stator in inviscid flow and the Standard Configuration 4 turbine

stator in both laminar and turbulent flow. Papadimitriou and Giannakoglou [20, 21]

presented continuous and discrete adjoint formulations with objective function deriva-

tives based only on boundary integrals and applied them to compressor and turbine

blade design in two- and three-dimensional inviscid and viscous flows. Papadimitriou

and Giannakoglou [22] also introduced a total pressure loss objective function to the

continuous adjoint approach, which then was successfully minimized in compressor

and turbine cascades while maintaining the flow turning and the blade thickness. In

2008, Corral and Gisbert [23] developed a discrete adjoint solver to minimize the

secondary flow losses in a three-dimensional low pressure turbine vane by redesigning

the turbine hub end wall. Moreover, while Li et al. [24] utilized the continuous ad-

joint approach to perform aerodynamic shape optimization on a turbine cascade in

two-dimensional turbulent flow, an adjoint-based optimization of a three-dimensional

turbine stator in which the stagger angle was used as a design variable in addition

to the profile shape was presented by Luo et al. [25] in 2011. Luo et al. [26] also

applied the adjoint method to constrained multipoint optimization; they treated the

constraints by a penalty function approach and redesigned Rotor 67 through blade

profiling while considering three different compressor operation points. Finally, in

2010 and 2011, Mousavi and Nadarajah [27, 28] used the continuous adjoint ap-

proach to optimize the heat transfer in cooled gas turbine blades by defining the

profile shape, the location of the cooling hole and the coolant injection angle as the

design variables.

While in the last ten years the adjoint approach gained more and more attention

within the turbomachinery community, nearly all design cases were restricted to the

optimization of isolated stator or rotor configurations. Yet, similar to a flow mixing-

plane calculation, cf. Denton [29], a concurrent optimization of all rows in a multistage

compressor or turbine would lead to an optimized design reflecting the real flow envi-
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ronment to a higher degree than a redesign based on the isolated optimization of each

blade. Combining all redesigned blades obtained from isolated optimizations would

most likely lead to a multistage configuration that is less optimal than the redesign

produced by a true multistage optimization, in which all blades are optimized simul-

taneously. Adjoint solvers that allow for a multi-row optimization were presented by

Frey et al. [30], Wang and He [31, 32], and Walther and Nadarajah [33, 34]. Frey et

al. [30] adjointed a conservative mixing-plane based on Giles’ exact two-dimensional

non-reflecting boundary conditions to obtain the equivalent discrete adjoint bound-

ary formulation and performed a sensitivity analysis. Their adjoint gradients were

in good agreement with the corresponding finite-difference derivatives; however, no

optimization was performed. In 2010, Wang and He [31, 32] developed a conservative

adjoint mixing-plane which couples averaged co-states based on the one-dimensional

characteristics for their continuous adjoint solver. They applied their adjoint-based

optimization method to different test cases in both two- and three-dimensional vis-

cous flow including a single-stage transonic compressor and a three-stage industrial

transonic compressor. For all their test cases they documented remarkable efficiency

gains which demonstrated the potential of aerodynamic design optimization using

the adjoint approach in a multistage environment. Their design objective was to

minimize the entropy generation rate, while constraints were individually weighted

and included as penalty terms into the objective function. Following this approach,

the weights have to be determined by trial and error. Since different weights usually

lead to different designs, the choice of the weights is crucial and can be a time-

consuming task, as documented by Wu et al. [19] and Wang and He [32]. Walther

and Nadarajah [33, 34] developed the discrete adjoint equations for a turbomachinery

RANS solver and proposed a framework for fully-automatic constrained aerodynamic

shape optimization in a multistage turbomachinery environment. They derived an

exact adjoint counterpart to the mixing-plane formulation used in their flow solver

and utilized a sequential quadratic programming algorithm, which enabled them to

determine an improved blade design without having to introduce weights for each

constraint. They applied the optimization method to several compressor configu-

rations and presented redesigns which showed considerable efficiency improvements

while satisfying the prescribed constraints.
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1.3 Optimization Framework

Figure 1.2 summarises the design process of the optimization framework used within

this research and compares the adjoint approach with the traditional finite-difference

method. In an initial step, the design problem is specified, i.e. the geometry of

the flow device and the surrounding domain are discretized, the design variables are

defined, the design objective is selected, and the potential constraints are prescribed.

Then, the flow solution is calculated for the baseline geometry. The next step requires

the solution of the corresponding adjoint system. It is important to note that the

adjoint equations have to be solved separately for the objective function and each

constraint, i.e. m + 1 times where m is the number of constraints. The adjoint

solution then provides the information necessary to calculate the gradient for all

design variables without having to re-evaluate the governing equations. However,

the gradient calculation requires a separate perturbation of each design variable and,

thus, of the geometry as well as of the grid. Once the gradient calculation is complete,

the objective function derivatives and sensitivities of the constraints are provided to

the optimizer. The optimization algorithm then determines the shape modifications

based on the gradient information and, thus, proposes a new design. Afterwards, the

flow field is calculated for the modified geometry and the objective function as well

as the constraints are evaluated. In case the design objective is improved and the

constraints are met, the new geometry is accepted and the design cycle is started

again with solving the adjoint equations for the new design. This cycle is repeated

until the optimization converges to an optimum solution. In case the design objective

did not improve or constraints were violated, the shape modifications are discarded

and the algorithm returns to the optimizer where a new line search is performed and

a new shape is determined. This new geometry is then assessed again by calculating

the flow field and evaluating the objective function and the constraints. This sub-

cycle is repeated until a new geometry is found which improves the design objective

and satisfies the constraints.

If the finite-difference method is used instead of the adjoint approach, the main

structure will remain the same, as illustrated in Figure 1.2. However, the gradient

calculation differs and requires a separate flow evaluation for each design variable

perturbation, which makes the traditional approach inefficient and expensive.
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Figure 1.2: Design process of the proposed optimization method.



1.4 Research Objectives and Contributions 14

1.4 Research Objectives and Contributions

Numerical optimization, particularly the adjoint method, will gradually reform the

aerodynamic design process and eventually replace the traditional inverse design ap-

proach with a multidisciplinary direct design strategy. In the future, CFD-based

optimization tools will become an integrated part of the aerodynamic design process

and will be used routinely just like CFD flow analysis tools are employed today.

1.4.1 Research Objectives

The main objective of this dissertation is to contribute to the recent research efforts

made to apply gradient-based aerodynamic shape optimization methods to automatic

compressor and turbine blade design and to advance the state-of-the-art in the field

of adjoint-based gradient calculation for multistage turbomachinery flows. The mo-

tivation is to develop an efficient but accurate design tool that can help to improve

the aerodynamic design of current turbomachinery configurations and at the same

time provide the aerodynamicist with new design capabilities which will allow him

to gain better insight into the underlying design problem and, thus, will help him to

explore new approaches and designs.

The realization of this goal requires the development of an optimization framework

which includes both a fast numerical algorithm for flow analysis and a rapid adjoint

solver. Furthermore, the objective function gradients and the derivatives of potential

constraints need to be calculated efficiently. Lastly, the optimization method should

feature a rapid convergence to the optimum solution and provide a means to treat

constraints with little effort. Thus, this research work involves several independent

tasks and objectives.

Flow Solver. A flow solver is to be developed which solves the Reynolds-

averaged Navier-Stokes (RANS) equations in a multistage turbomachinery environ-

ment. Hence, the numerical algorithm requires the ability to solve the governing

equations in both rotating and stationary domains. Characteristic-based boundary

conditions are to be imposed at inlet and outlet boundaries in order to avoid reflec-

tions which can compromise the solution accuracy within the domain. To obtain a

steady-state multistage solution, adjacent rotor and stator rows have to be coupled by
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mixing-plane interfaces, which exchange averaged flow variables between two neigh-

bouring domains such that the fluxes across a rotor-stator interface are conserved.

Adjoint Solver. To allow for an efficient but accurate gradient calculation, the

turbomachinery RANS solver is to be adjointed at a discrete level. The systematic

approach for the development of the discrete adjoint solver shall be discussed in detail.

Special emphasis will be placed on the development of the turbomachinery specific

features of the adjoint solver, i.e. on the derivation of flow-consistent adjoint inlet and

outlet boundary conditions and, to allow for a concurrent rotor-stator optimization

and stage coupling, on the development of an exact adjoint counterpart to the non-

reflective, conservative mixing-plane formulation used in the flow solver. While the

development of the discrete adjoint solver will follow a similar approach as described

by Frey et al. [30], the treatment of the boundary fluxes in the underlying flow solver

will differ, hence, different adjoint boundary conditions will be obtained. Further-

more, in contrast to Frey’s adjoint solver, in which the numerical adjoint fluxes are

approximated by finite-differences, the present optimization method shall be based

on exact adjoint fluxes, which are to be obtained by manually differentiating the flux

routines of the primal solver. Using finite-difference approximated adjoint fluxes cir-

cumvents the work involved in linearizing the fairly complex flux discretization; yet,

it increases the computational cost and introduces an additional source of error. It

is worthwhile mentioning automatic differentiation (AD) as an alternative approach

to manual linearization. AD tools have been successfully applied to the adjoint ap-

proach, cf. [35], and can reduce the cost involved in developing the adjoint solver,

yet, at the expense of higher memory requirements. Therefore, in this work manual

differentiation is preferred. The dual adjoint solver shall be validated by comparing

its sensitivities with finite-difference gradients obtained from the primal flow solver.

Gradient Calculation. The adjoint method provides a means to calculate gra-

dients efficiently without having to re-evaluate the flow. However, the approach still

requires the computational grid to be perturbed for each design variable. Manual

grid perturbation defeats the purpose of an automatic optimization method with as

little user interaction as possible. Thus, an automatic grid perturbation algorithm

which is fast, accurate, and robust is to be implemented within this optimization

framework. The grid movement scheme shall be able to handle complex multi-block
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grid configurations.

Optimization Strategy. Once the sensitivities of the objective functional and

all constraints have been calculated with the help of the adjoint solver, a sequential-

quadratic programming (SQP) algorithm shall be employed to find an optimized

design. The SQP method offers an elegant way to treat constraints within an opti-

mization problem by building and solving a quadratic sub-problem constructed of the

objective and the linearized constraints and avoids the time-consuming task to deter-

mine penalty coefficients for the constraints, which is necessary with a penalty func-

tion approach, cf. [19, 32] The search direction will be determined by a Quasi-Newton

method, while a general line search technique shall be used to find the appropriate

step length into the direction of improvement.

Application. The functionality of the proposed optimization method is to be

demonstrated. Two different transonic compressor configurations are to be redesigned

considering both an inviscid and viscous flow environment. The objective shall be

to maximize the isentropic efficiency while constraining the mass flow rate and the

total pressure ratio. To investigate the influence of the constraints, an unconstrained

optimization will be performed as well and the results shall be compared.

1.4.2 Contributions

The main contributions of this thesis towards aerodynamic shape optimization meth-

ods for automatic turbomachinery design may be summarized as follows:

- Development of the discrete adjoint equations of a turbomachinery RANS solver

including a systematic approach for the derivation and efficient implementation

of flow-consistent adjoint boundary conditions and exact adjoint mixing-plane

formulations.

- A novel parallel grid deformation scheme based on a radial basis functions ap-

proach for highly-resolved complex three-dimensional viscous multi-block tur-

bomachinery grids.

- Introduction of the SQP method into an adjoint-based optimization framework

for multistage compressor design, which determines shape modifications that

improve the design objective while satisfying the prescribed constraints.
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1.5 Thesis Outline

The outline of the thesis follows the general optimization cycle described in subsec-

tion 1.3. First, chapter 2 presents the mathematical model employed within this

research and introduces the equations on which basis the flow solver is developed and

its solution is evaluated. The main features of the turbomachinery flow solver are

described in chapter 3. It develops the non-dimensional form of the field equations,

introduces some useful coordinate transformations, and presents the numerical dis-

cretization and solution methodology utilized to solve the RANS equations. Special

focus is put on the development of the turbomachinery-specific boundary conditions.

Chapter 4 then discusses the adjoint method in detail and elaborately describes the

development of the adjoint equations for the tubomachinery RANS solver. This

chapter especially expatiates on the derivation of the flow-consistent adjoint bound-

ary conditions and mixing-plane formulation. The gradient calculation, including the

choice of the design variables and two different grid perturbation schemes, as well as

the optimization strategy, including the treatment of the constraints, are presented

in chapter 5. Thereafter, the functionality of the proposed optimization method is

demonstrated in chapter 6. First, the developed method is validated by investigat-

ing both the flow and adjoint solutions and by comparing the adjoint gradients with

finite-difference sensitivities obtained from the flow solver. Then, two different com-

pressor configurations are re-designed under various flow conditions. Finally, chapter

7 summarises the main outcomes of this dissertation and provides some ideas for

future work.



Chapter 2

Governing Equations

This chapter presents the mathematical model employed within this research. The

equations introduced in the following sections form the basis on which the flow solver

is developed and its solution is evaluated. First, section 2.1 reviews the fundamental

thermodynamic relations and assumptions applicable to a perfect gas. The math-

ematical form of the flow governing equations as well as their boundary conditions

are presented, cf. sections 2.2 and 2.3. Thereupon, the concept of turbulence and

the approach utilized to model the eddy viscosity is briefly discussed in section 2.4.

Lastly, section 2.5 introduces some useful gasdynamic relations which are employed

to evaluate the flow solution and to quantify the aerodynamic performance of a com-

pressor.

2.1 Thermodynamics of a Perfect Gas

In pure aerodynamics, it is generally reasonable to assume that the working fluid

behaves like a calorically perfect gas, i.e. the specific heat capacity cp is constant and

does neither depend on the pressure nor on the temperature. For fluids with such

properties the equation of state takes the form

p = ρRT . (2.1)

The ideal gas law (2.1) relates the pressure p to the density ρ and the tempera-

ture T through the specific gas constant R which, for air, takes the value R =

18
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287.058 J/(kgK). Furthermore, the specific internal energy e can be calculated from

e =
1

γ − 1

p

ρ
, (2.2)

where γ is the ratio of specific heats defined as

γ =
cp

cp −R
. (2.3)

The specific total energy E is the sum of the internal energy and the kinetic energy,

i.e.

E = e+
|U|2

2
, (2.4)

where U = [u1, u2, u3]T is the absolute velocity vector and |U|2 = u2
1 + u2

2 + u2
3.

Combining Eqn. (2.2) with Eqn. (2.4) provides an alternative, convenient form of the

equation of state,

p = (γ − 1) ρ

[
E − |U |

2

2

]
, (2.5)

which expresses the pressure in terms of the conservative variables. Moreover, Fourier’s

law of heat conduction is usually used to calculate the heat transfer QH due to tem-

perature gradients ∇∇∇T , i.e.

QH = −k∇∇∇T , (2.6)

where k denotes the thermal conductivity coefficient and which is obtained from

k =
cpµ

Pr
, (2.7)

where µ is the dynamic viscosity coefficient and Pr is the Prandtl number. While, for

air, the Prandtl number is usually assumed to be constant, Pr = 0.72, the viscosity

coefficient may be calculated from the Sutherland equation defined as

µ = C1
T

3
2

T + C2

, (2.8)

where C1 = 1.458 · 10−6 kg/(ms
√

K) is the Sutherland constant and C2 = 110.4 K

represents the Sutherland temperature.
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2.2 Three-dimensional Navier-Stokes Equations

The three-dimensional Navier-Stokes equations, coupled with the continuity and en-

ergy equation, are typically accepted to describe the viscous compressible flow within

a turbomachinery environment and are used within this research as the underlying

governing equations. These equations, based on the fundamental works of Navier [36],

de Saint-Venant [37], and Stokes [38], describe the conservation of mass, momentum,

and energy through a system of coupled differential equations. The Navier-Stokes

equations can be written in a vector invariant form, i.e independent of the coordinate

system. For turbomachinery applications most commonly a cylindrical or Cartesian

coordinate formulation is adopted.

Multi-row turbomachinery applications involve rotating motions and require the

Navier-Stokes equations to be solved simultaneously in multiple blade rows, some

of which are stationary and some of which are rotating. Hence the question arises

whether it is best to cast and solve the governing equations in an inertial frame of

reference or in a rotating coordinate system. A flow solver utilizing a fixed frame

formulation in a rotating domain requires the computational mesh to be physically

moved, i.e. the metric terms associated with the mesh have to be recalculated after

each time step. A rotating frame code, on the other hand, allows to freeze the grid

motion and therefore usually represents the more convenient and computationally

cheaper approach. Two different possibilities exist to cast the governing equations

in a rotating frame of reference; either the relative or absolute velocities can be used

as the dependent variables. Employing a relative velocity formulation is useful for

problems in which the entire system is moving, e.g. the simulation of an isolated

rotor row. However, for problems such as multi-row turbomachinery calculations,

which involve interaction between stationary and rotating blade rows, the relative

velocity approach would require a transformation of the dependent variable vector

between fixed and rotating frames before information could be exchanged between

adjacent blade rows. Furthermore, when the Navier-Stokes equations are solved in a

rotating frame of reference, the acceleration of the fluid is augmented by additional

terms that appear in the momentum equations. Employing the absolute velocity

approach, the centripetal and Coriolis accelerations can be collapsed into a single

term which yields to simpler expressions. Therefore, in this research a flow solver is
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developed that solves the Navier-Stokes equations in a rotating Cartesian coordinate

system utilizing the absolute velocity formulation. The corresponding mathematical

form of the Navier-Stokes equations is presented in the following. For a more detailed

discussion and comparison of the different approaches in an inertial frame of reference

and rotating frame of reference as well as a comparison between the absolute and

relative formulations, the reader should refer to Chen et al. [39]

Using Einstein notation, i.e. summation over i = 1, 2, 3 is implied by a repeated

index i, the three-dimensional compressible Navier-Stokes equations in differential,

conservative form are given by

∂W

∂t
+
∂Fi

∂xi
− ∂Fvi

∂xi
= Q in D , (2.9)

where xi denotes the Cartesian coordinates, t is the time, and D is the domain under

consideration. The vector of conserved variables W, the inviscid flux vector F, and

the viscous flux vector Fv are described respectively by

W =



ρ

ρu1

ρu2

ρu3

ρE


, Fi =



ρvi

ρu1vi + pδ̂i1

ρu2vi + pδ̂i2

ρu3vi + pδ̂i3

ρEvi + pui


, Fvi =



0

τij δ̂i1

τij δ̂i2

τij δ̂i3

ujτij + k ∂T
∂xi


, (2.10)

while the source term Q comprises all potential body forces. In the above definitions,

δ̂ij is the Kronecker delta function, U = [u1, u2, u3]T is the absolute velocity vector,

and V = [v1, v2, v3]T is the relative velocity vector. Furthermore, the absolute velocity

is defined as the sum of the relative velocity and the entrainment velocity Ω × X,

where Ω = [Ω1,Ω2,Ω3]T and X = [x1, x2, x3]T . In a rotating rotor domain the source

term Q accounts for the effects due to the Coriolis force and centrifugal force and

reads as

Q =



0

−ρ(Ω2u3 − Ω3u2)

−ρ(Ω3u1 − Ω1u3)

−ρ(Ω1u2 − Ω2u1)

0


. (2.11)
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In a stationary stator domain the angular velocity Ω is zero and, hence, the source

term vanishes. In the present research work, the rotational axis of a rotor corresponds

to the x1-axis and the angular velocity is assumed to be constant, i.e.

V =


u1

u2 + Ω1x3

u3 − Ω1x2

 and Ω×X =


0

−Ω1x3

Ω1x2

 . (2.12)

Likewise, the source term simplifies to

Q =



0

0

ρΩ1u3

−ρΩ1u2

0


. (2.13)

Assuming a Newtonian fluid, the applied shear varies linearly with the strain rate

and the viscous stresses τij may be written as

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi

]
+ λ

[
∂uk
∂xk

]
δ̂ij , (2.14)

where µ is the dynamic (or first) viscosity coefficient and λ stands for the bulk (or

second) viscosity coefficient. The viscosity coefficients relate the momentum fluxes to

the velocity gradients. Following Stokes’ hypothesis the two coefficients are related

through λ = −2µ/3, i.e.

τij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δ̂ij

]
. (2.15)

The inviscid Euler equations are obtained from the Navier-Stokes equations by drop-

ping the viscous flux gradient ∂Fvi/∂xi in Eqn. (2.9).

Chapter 6 will present both three- and two-dimensional results. The correspond-

ing two-dimensional formulation of the Navier-Stokes equations is obtained by ne-

glecting the momentum equation for the x3-direction and by setting the velocity

components u3 and v3 to zero. Furthermore, in two dimensions, the rotor only per-
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forms are translational motion into the x2-direction. Consequently, the additional

rotational forces do not occur and the source term Q vanishes. The entrainment

velocity simplifies to [0,Ω2r]
T , where r is a length scale specific to the investigated

flow problem.

2.3 Boundary Conditions

At a solid wall, boundary conditions have to be applied to complete the mathematical

model. In case of inviscid flow, the velocity at the wall must be tangent to the slope

of the wall. This corresponds to a zero flux through the wall and thus

(U · n)wall = 0 , (2.16)

where n = [n1, n2, n3]T is the wall surface unit normal vector. For viscous prob-

lems, the no-injection and no-slip conditions are imposed and require an additional

boundary condition to the one above,

(U · t̂)wall = 0 , (2.17)

where t̂ = [t̂1, t̂2, t̂3]T is the wall unit tangent vector. This effectively means that the

velocity at the wall is zero. The above boundary conditions satisfy the momentum

equation. For the case of the energy equation, either an adiabatic or isothermal

boundary condition is required. In this work, an adiabatic boundary condition is

employed and defined as

(QH · n)wall = 0 . (2.18)

This translates to a zero heat flux through the normal of the wall.

2.4 Turbulence Modelling

Despite the exponential growth of computational power, the onset of turbulence at

high Reynolds numbers possesses a challenge to accurately solve the time-dependent

Navier-Stokes equations introduced in section 2.2. The direct simulation of turbulent
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flows still continues to present a significant problem and, as of today, is only feasible

for relatively simple flow problems at low Reynolds numbers. Instead, the effects

of turbulence usually have to be accounted for in an approximate manner. As a

consequence, a large variety of turbulence models were, and still are, developed,

cf. Wilcox [40].

2.4.1 The Reynolds-Averaged Navier-Stokes Equations

In 1895, Reynolds presented a first approach for the approximate treatment of tur-

bulent flows. Following this methodology, the flow variables are decomposed into a

mean value and an instantaneous, fluctuating part. Applying the so-called Reynolds

averaging procedure to the Navier-Stokes equations, cf. Eqns. (2.9) and (2.10), leads

to the well-known Reynolds-averaged Navier-Stokes (RANS) equations. The RANS

equations are formally identical to the Navier-Stokes equations except for an addi-

tional term which constitutes the so-called Reynolds-stress tensor and represents the

transfer of momentum due to turbulent fluctuations. For a detailed derivation of

the RANS equations and an elaborate discussion of the different Reynolds averaging

techniques the reader should refer to Wilcox [40] and Blazek [41].

The Boussinesq hypothesis, on which the most common turbulence models are

grounded, assumes that the turbulent shear stress is related linearly to the mean rate

of strain, i.e. the Reynolds-stress tensor is calculated as the product of a proportion-

ality factor, the so-called eddy viscosity µt, and the mean strain rate. Applying the

Boussinesq hypothesis to model the Reynolds-stress terms in the RANS equations,

the first viscosity coefficient µ is replaced by the sum of a laminar and a turbulent

component, i.e.

µ = µl + µt . (2.19)

Accordingly, the thermal conductivity coefficient k, cf. Eqn. (2.7), is substituted by

k = kl + kt = cp

(
µl
Prl

+
µt
Prt

)
. (2.20)

In Eqns. (2.19) and (2.20), the laminar viscosity coefficient µl is calculated from the

Sutherland equation, cf. Eqn. (2.7), and the turbulent viscosity coefficient µt has
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to be determined by a turbulence model. Both, the laminar and turbulent Prandtl

numbers are typically assumed to be constant and take the values Prl = 0.72 and

Prt = 0.9.

2.4.2 The SST Turbulence Model

For engineering applications, the RANS equations and the Boussinesq hypothesis

have become the basis for the simulation of turbulent flows and a large variety of tur-

bulence closures were developed to calculate the eddy viscosity µt. In this research,

Menter’s two-equation Shear-Stress Transport (SST) model [42, 43, 44] is used to es-

timate the turbulent viscosity coefficient. The SST turbulence model merges Wilcox’

k-ω model [40, 45] with the standard high Reynolds Number k-ε model and seeks

to combine the positive features of both turbulence models. In particular, the k-ω

model is employed in the sublayer and logarithmic part of a boundary layer, while

the k-ε model is utilized in the wake region of a boundary layer and in free shear

flows. Because of the switch to the k-ε model in the outer wake regions and free shear

layers, the SST model does not suffer from the deficiency of an undesirable freestream

dependency as it is the case with the k-ω model. Furthermore, the eddy viscosity def-

inition is modified in comparison to the original k-ω model such that it accounts for

the effect of the transport of the principal turbulent shear stress. The SST eddy vis-

cosity model is widely recognized to be superior to their alternatives, especially in the

prediction of adverse pressure gradient flows. In the following, the main components

and characteristics of the SST turbulence model are briefly discussed.

Following Menter [42], the conservative form of the SST model is defined as

∂ρk

∂t
= Pτ − β∗ρωk +

∂

∂xj

[
(µl + σkµt)

∂k

∂xj

]
, (2.21)

∂ρω

∂t
=

γ

νt
Pτ − βρω2 +

∂

∂xj

[
(µl + σωµt)

∂ω

∂xj

]
+ 2ρ(1− F1)

1

ρ

∂k

∂xj

∂ω

∂xj
, (2.22)

where the k-εmodel has been transformed into a k-ω-like formulation. Besides slightly

different modelling constants and a revised eddy viscosity definition, the main differ-

ence compared to the standard k-ω model is an additional cross diffusion term which

appears in the equation defining the specific dissipation rate ω, cf. Eqn. (2.22). The



2.4 Turbulence Modelling 26

production term Pτ , originally defined as Pτ = τij(∂ui/∂xj), is approximated using a

vorticity-based source term

Pτ = µtΩ
′2 − 2

3
ρkδij

∂ui
∂xj

. (2.23)

The approximation (2.23) is commonly used because the vorticity magnitude Ω′ is

usually readily available in most RANS solvers. Furthermore, the vorticity source

term is often nearly identical to the exact production term in boundary layer flows

and the use of the vorticity term can avoid some numerical difficulties sometimes

associated with the use of the exact source term. For more details the reader should

refer to [43]. A production limiter,

Pτ = min (Pτ , 20β∗ρωk) , (2.24)

is employed in the equation of the turbulent kinetic energy k to prevent the build-up

of turbulence in stagnation regions. The turbulent viscosity µt is computed from

µt =
ρa1k

max(a1ω,Ω′F2)
, (2.25)

where F2 is a function that is one in boundary layer flows and zero in free shear

layers. Specifically, F2 is a hyperbolic tangent function defined as

F2 = tanh(arg2
2) , (2.26)

with the argument

arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
, (2.27)

where

ν =
µl
ρ
, (2.28)

and d is the distance from the field point to the nearest no-slip boundary. Note, in

Eqn. (2.22), the turbulent kinematic viscosity νt is obtained from

νt =
µt
ρ
. (2.29)
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Each constant of the SST model is a blend of the constants of the inner k-ω model

and the outer k-ε model. In particular, if φ1 represents any constant in the original k-

ω model, and φ2 any constant in the transformed k-ε model, then φ, the corresponding

constant of the SST model given by Eqns. (2.21) and (2.22) is computed via

φ = F1φ1 + (1− F1)φ2 , (2.30)

where F1 is a second hyperbolic tangent function defined as

F1 = tanh(arg4
1) , (2.31)

with the argument

arg1 = min

[
max

( √
k

β∗ωd
,
500ν

d2ω

)
,

4ρσω2k

CDkωd2

]
, (2.32)

and CDkω, which represents the positive portion of the cross diffusion term of (2.22),

being calculated from

CDkω = max

(
2ρσω2

1

ω

∂k

∂xj

∂w

∂xj
, 10−20

)
. (2.33)

The choice of the terms within Eqn. (2.32) is detailed in [42]; they are selected such

that F1 goes to zero near the boundary layer edge and equals to one in the sublayer.

Finally, the closing constants are defined as

γ1 =
β1

β∗
− σω1k

2

√
β∗

, γ2 =
β2

β∗
− σω2k

2

√
β∗

, (2.34)

and

σk1 = 0.85 , σω1 = 0.5 , β1 = 0.075 ,

σk2 = 1.0 , σω2 = 0.856 , β2 = 0.0828 , (2.35)

β∗ = 0.09 , κ = 0.41 , a1 = 0.31 .
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At a solid wall, the turbulent kinetic energy and dissipation rate are obtained from

kwall = 0 and ωwall =
60ν

β1d2
wall

, (2.36)

where dwall is the distance from the solid wall to the closest point away from the wall.

Furthermore, for internal flow problems inflow conditions need to be defined. This

work follows the suggestions from Moore and Moore [46] and Koubogiannis et al. [47]

and the turbulent inflow quantities are calculated from

kin =
3

2
(Γuin)2 and ωin =

√
kin

β∗Lmix

. (2.37)

Here, Γ is the freestream turbulence intensity which is defined to be 0.08165% and

uin is the absolute inflow velocity. Lmix is the mixing length which is set to 4% of the

pitch length of the most upstream compressor row.

2.5 Turbomachinery Gasdynamics

The performance of a compressor is typically characterized by its total pressure ratio

and an efficiency factor that indicates how much additional work is required compared

to an ideal compressor. Furthermore, the rotational speed of the shaft and the

work necessary to produce the pressure rise are important quantities to evaluate a

compressor’s overall performance.

Ideal compression, i.e. assuming that no heat is added to or extracted from the

flow and that no energy transformations occur due to friction or dissipative effects,

is an isentropic process. For the isentropic flow of a perfect gas a pressure increase

can be related to a change in temperature through

T3

T2

=

(
p3

p2

) γ−1
γ

, (2.38)

or in terms of total flow quantities through

Tt,3
Tt,2

=

(
pt,3
pt,2

) γ−1
γ

, (2.39)
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where, following typical labelling procedure for gas turbines, 2 represents the state

before the compression and 3 the state after the compression. Since

h = cpT and ht = cpTt , (2.40)

a pressure rise can only be realized with an increase in enthalpy h. Thus, a compressor

must perform work on the fluid, which is achieved through the following process: The

rotor reduces the relative kinetic head of the fluid and adds it to the absolute kinetic

head, i.e. the relative velocity decreases in a rotor section while the absolute velocity

component increases. In the downstream stator row the increased absolute kinetic

head of the fluid is reduced again, which in turn leads to a pressure rise.

In reality, a compression is not isentropic; instead the entropy increases and, as

displayed in Figure 2.1, additional work is needed to compensate for the inefficiency

and to obtain the desired total pressure ratio. The shaft power necessary to obtain

a specific change of enthalpy and ultimately a certain pressure rise is defined as

PW = ṁ ·∆ht = ṁ · (ht,3 − ht,2) = ṁ · cp(Tt,3 − Tt,2) , (2.41)

where ṁ is the mass flow rate through the compressor

ṁ = ρUnA , (2.42)

and Un = u1n1 + u2n2 + u3n3 is the contravariant velocity, i.e. the velocity normal to

the cross section A. Hence, the compressor work per massflow is equal to the change

in the specific enthalpy of the flow from the entrance to the exit of the compressor.

Relating the real compressor work necessary to obtain the desired total pressure rise

to the ideal case provides the isentropic efficiency

ηis =
∆ht,is
∆ht

=
Tt,3,is − Tt,2
Tt,3 − Tt,2

. (2.43)

Combining Eqn. (2.39) with Eqn. (2.43) finally yields

ηis =
π
γ−1
γ Tt,2 − Tt,2
Tt,3 − Tt,2

, (2.44)
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where π is the total pressure ratio of the compressor, i.e.

π =
pt,3
pt,2

. (2.45)

Figure 2.1: Isentropic compression process vs. actual compression process.

As it can be seen above, total flow quantities play an important role in evaluating

the performance of a compressor or turbine. For flows at higher Mach numbers

(typically M > 0.3) the Bernoulli principle, which in a simplified form states that

the total pressure is the sum of the static pressure and a dynamic component, is

invalid. Instead, total conditions can be obtained through the following relations.

Considering adiabatic flow, the static and total enthalpy are related through

ht = h+
|U|2

2
, (2.46)

where again |U|2 = u2
1 + u2

2 + u2
3. From Eqn.(2.40), the total and static temperature

are related likewise,

Tt = T +
|U|2

2cp
, (2.47)

or can be expressed as a function of Mach number only,

Tt
T

= 1 +
γ − 1

2
M2 . (2.48)
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The local Mach number M is defined as the ratio of the speed of the flow to the speed

of sound in the surrounding medium, i.e.

M =
|U|
c

, (2.49)

where the speed of sound c may be calculated from

c =
√
γRT . (2.50)

Considering isentropic flow, i.e. assuming that the flow can be brought to rest isen-

tropically, total conditions for other flow quantities such as pressure and density can

be defined through the isentropic relations and take a form similar to Eqn. (2.48).

Substituting the absolute velocity U with the relative velocity V and using the rela-

tive Mach number

Mrel =
|V|
c

, (2.51)

where |V| =
√
v2

1 + v2
2 + v2

3, yields the corresponding total quantities in a rotating

frame of reference.

Mach number contour plots are often used to visualize the computed flow solu-

tion of a numerical simulation. In case of inviscid flow, e.g. if the Euler equations are

considered, the Mach number distribution on a blade surface can provide valuable

information to evaluate the flow field. However, for viscous flow, where the physical

boundary conditions require the flow velocity to be zero on a solid wall, plotting

the actual Mach number on a blade surface does not provide any useful informa-

tion. Thus, the so-called isentropic Mach number is usually displayed instead. The

isentropic Mach number is the Mach number that would be obtained on the blade

surface if no losses would occur in the flow. It can be computed from the isentropic

flow relations using the formula

Mis =

√√√√[(pt,f
p

) γ−1
γ

− 1

]
2

γ − 1
, (2.52)

where pt,f is the total pressure in the freestream outside of the boundary layer. Using

the relative total pressure, the isentropic Mach number in a rotating frame of reference

is obtained.



Chapter 3

Flow Solver

This chapter describes the main features of the turbomachinery flow solver devel-

oped within this research. First, a non-dimensional form of the field equations,

presented in section 2.2, is derived in section 3.1. While the RANS equations are

solved in a Cartesian Coordinate system, it is more convenient and natural to apply

boundary conditions in a turbomachinery environment using cylindrical coordinates.

Section 3.2 discusses the mathematical relations between the two different coordi-

nate systems. Finally, section 3.3 presents the numerical discretization and solution

methodology utilized to solve the non-dimensionalized governing equations. Both,

the spatial and temporal discretization schemes are discussed, the different types of

discrete boundary conditions are presented, and the various convergence acceleration

techniques utilized to speed up the convergence to steady-state are described.

3.1 Non-dimensionalized Navier-Stokes Equations

To reduce round-off errors due to the limited precision of computers, all physical

quantities are normalized and non-dimensionalized such that they have the same

order of magnitude. Generally, arbitrary reference quantities can be used to non-

dimensionalize the governing equations. For external flow problems free-stream quan-

tities are typically utilized. However, far-field conditions do not exist in turboma-

chinery flows, thus, different scaling parameters have to be employed. In this work,

the following characteristic variables are used: The chord length L [m] of the most

32
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upstream blade row at midspan, the inlet total temperature Tt,in [K], the inlet total

pressure pt,in [N/m2], the specific gas constant R [J/(kgK)] of the fluid, and the in-

let viscosity µt,in [m2/s] calculated from the inlet total temperature. Utilizing these

scales leads to the following dimensionless quantities, denoted with the superscript ∗,

x∗i =
xi
L
, t∗ =

√
RTt,in

L
t , p∗ =

p

pt,in
, T ∗ =

T

Tt,in
, ρ∗ =

RTt,in
pt,in

ρ ,

u∗i =
ui√
RTt,in

, c∗ =
c√
RTt,in

, e∗ =
e

RTt,in
, E∗ =

E

RTt,in
, (3.1)

µ∗ =
µ

µt,in
, k= k

µt,inL
, Ω∗i =

L√
RTt,in

Ωi , R∗ = 1 , c∗p =
γ

γ − 1
.

Substituting the dimensionless variables (3.1) into Eqns. (2.9)-(2.15) yields

pt,in√
RTt,inL

∂W∗

∂t∗
+

pt,in√
RTt,inL

∂F∗i
∂x∗i
− µt,in

L2

∂F∗vi
∂x∗i

=
pt,in√
RTt,inL

Q∗ , (3.2)

where W∗, F∗i , F∗vi, and Q∗ are the state vector, the inviscid and viscous flux vectors,

and the source term in non-dimensional form, respectively. Multiplying Eqn. (3.2)

with
√
RTt,inL/pt,in provides

∂W∗

∂t∗
+
∂F∗i
∂x∗i
−
µt,in

√
RTt,in

pt,inL

∂F∗vi
∂x∗i

= Q∗ . (3.3)

Equation (3.3) represents a set of differential equations which is identical to that of

the dimensional Navier-Stokes equations. The only difference is an additional term

which acts as a scaling factor for the viscous fluxes and is a function of inlet quantities

only. The scaling factor can be further transformed using the equation of state, the

definition of the Reynolds number Re = ρUnL/µ, and the isentropic relations. After

some algebra the final form of the non-dimensionalized Navier-Stokes equations is

obtained,

∂W∗

∂t∗
+
∂F∗i
∂x∗i
− γMin

Rein

µt,in
µin

(
1 +

γ − 1

2
M2

in

) 1+γ
2(1−γ) ∂F∗vi

∂x∗i
= Q∗ . (3.4)

For the sake of brevity, the remainder of this paper will drop the asterisks and refer-

ence is henceforth made to non-dimensional variables only.



3.2 Coordinate Transformation 34

3.2 Coordinate Transformation

The three-dimensional non-dimensionalized Navier-Stokes equations are solved in a

Cartesian coordinate system. However, in a turbomachinery flow environment it is

more convenient to apply certain boundary conditions, cf. subsection 3.3.3, using

cylindrical coordinates. Therefore, at these computational boundaries the variables

are transferred between the two different coordinate systems according to their math-

ematical relation. With reference to Figure 3.1, where both coordinate systems are

right-handed if thought of as (x1, x2, x3) and (x1, ϕ, r), the following relations apply,

x2 = r cosϕ , (3.5)

x3 = r sinϕ , (3.6)

r =
√
x2

2 + x2
3 , (3.7)

ϕ = arctan

(
x3

x2

)
. (3.8)

Any vector quantity can be transferred from a Cartesian coordinate formulation to

Figure 3.1: Cartesian and cylindrical coordinate systems employed within the flow
solver.
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the cylindrical coordinate system and vice versa through

êϕ = −êx2 sinϕ+ êx3 cosϕ , (3.9)

êr = êx2 cosϕ+ êx3 sinϕ , (3.10)

êx2 = êr cosϕ− êxϕ sinϕ , (3.11)

êx3 = êr sinϕ+ êxϕ cosϕ . (3.12)

Moreover, in cylindrical coordinates the absolute velocity U = [ux1 , uϕ, ur]
T is related

to the relative velocity V = [vx1 , vϕ, vr]
T through

vx1 = ux1 , (3.13)

vϕ = uϕ + Ω1r , (3.14)

vr = ur . (3.15)

The two inflow angles αϕ and αr prescribed at an inlet boundary, cf. subsection

3.3.3, are defined in Figure 3.2. With respect to the cylindrical coordinate system

the following relations apply to any vector,

ux1 = |U| cosαr cosαϕ , (3.16)

uϕ = |U| cosαr sinαϕ , (3.17)

ur = |U| sinαr , (3.18)

where again |U| =
√
u2

1 + u2
2 + u2

3,

3.3 Numerical Discretization

Except for some simplified flow problems, it generally is not possible to solve the

Navier-Stokes equations analytically due to the non-linear character of the coupled

system of partial differential equations. Instead the solution usually has to be ap-

proximated in an iterative manner. A vast number of solution strategies exist; most

of which follow a similar approach. First, the physical domain is discretized by divid-
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Figure 3.2: Prescribed inflow angles.

ing it into a number of geometrical elements. The discrete elements form a grid and

the dependant variables of the governing equations are then calculated iteratively at

discrete grid locations to approximate the continuous flow solution. Grid generation

has become an important field of research since the accuracy of a flow solution sub-

stantially depends on the quality of the underlying grid. A large number of different

grid generation strategies exist and the choice of the type of grid is usually based

on the complexity of the geometry and the physical character of the flow problem

under consideration. For example, the type of geometrical elements can differ; in

two-dimensional problems typically quadrilaterals or triangles are chosen and three-

dimensional grids are often built of tetrahedra or hexahedra. In addition, the spatial

arrangement of the individual elements and the choice of indexing between these ele-

ments can vary, which leads to structured and unstructured grids. Furthermore, the

nature of the flow usually determines certain grid properties such as local resolution

levels. Viscous flow problems require highly-resolved grids close to the surface of the

airfoil so that the boundary layer and its interaction with shocks can be resolved

accurately. This typically leads to grids with large aspect ratios, which may pose a

challenge for the flow solver to fully-converge the field equations. In an inviscid flow

environment, large gradients do not occur in the vicinity of the surface of the airfoil,

except for shock waves. Consequently, a more uniform and regular grid is sufficient
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to provide accurate numerical approximations. A more detailed discussion on grid

generation techniques, including important quality requirements, can be found in

[48]. After a grid has been generated, the governing equations are discretized. Most

numerical methods developed for the solution of the Navier-Stokes equations employ

the so-called method of lines. This approach allows for a separate discretization of

the temporal and spatial derivatives, i.e. numerical approximations of different levels

of accuracy can be used in space and time. Spatial discretization schemes can be

divided into three main categories: finite-difference, finite-volume, and finite-element

methods. Temporal discretization schemes are typically classified into explicit and

implicit time integration methods. The choice of the right time-stepping scheme also

depends on the nature of the flow problem. While unsteady flows require a time-

accurate simulation, in steady-state calculations time accuracy is not a concern and

the solution accuracy is only determined by the approximation order of the spatial

discretization, which in turn opens up the possibility to utilize certain techniques

to speed up the convergence process. For more detailed information on the various

numerical discretization schemes, the reader should refer to [41] and [49].

In this research, curvilinear, structured multi-block grids are used to discretize the

physical domain under consideration. The linear address space and straight-forward

indexing of structured grids greatly simplifies the evaluation of flux gradients and

boundary conditions and, thus, are preferred over unstructured grids. The multi-

block approach reduces the challenge of generating high-quality grids for complex

geometries. Following this strategy the physical space is first divided into a number of

topologically simpler parts which are then meshed individually. A parallelized multi-

block solver is used to solve the three-dimensional compressible RANS equations on

the point-to-point matched multi-block grid system. Message Passing Interface (MPI)

standard is used for communication between processors during the flow calculations.

In accordance with the method of lines, Eqn. (2.9) can be rewritten in semi-discrete

form as

V ∂W

∂t
+ R(W) = 0 , (3.19)

which is now a system of coupled, ordinary differential equations in time. V is the

volume and R(W) is the residual containing the convective and dissipative flux gra-

dients, the source term as well as all boundary conditions. Based on Eqn. (3.19)



3.3 Numerical Discretization 38

the flow governing equations are spatially discretized in a cell-centered finite volume

method framework by using a second-order central-difference scheme for the convec-

tive and viscous flux gradients coupled with a blended first- and third-order artificial

dissipation scheme [50]. Time integration is achieved by using a five-stage modified

Runge-Kutta method. Multigrid and local time-stepping techniques as well as im-

plicit residual smoothing are employed to speed up the convergence of the solution

process to steady-state. The next subsections describe the numerical discretization

schemes, the artificial dissipation scheme, and the convergence acceleration tech-

niques used in this work in more detail.

3.3.1 Spatial Discretization

This subsection deals with the discretization of the spatial derivatives of the gov-

erning equations, i.e. with the numerical approximation of the residual term R(W)

introduced in Eqn. (3.19). It describes the finite-volume methodology utilized in this

work, the numerical approximation of the individual flux terms, and the discretization

of the source term.

Finite-Volume Technique

The finite-volume method is preferred over the classical finite-difference formulation

because it allows for an arbitrary grid. The method preserves the conservation laws

at a discrete level and, thus, ensures the global conservation of mass, momentum, and

energy. Following the finite-volume approach, hexahedral control volumes are defined

based on the grid in order to evaluate the flux gradients and the source term. This

flow solver employs a cell-centered discretization scheme, hence, the control volumes

coincide with the cells of the grid. All flow variables are stored at the cell centers and

the source term is calculated using these quantities. The flux gradients, however,

are evaluated at the six faces of each hexahedra. Since the flow variables are not

readily available at the flux faces, either the flow quantities or the fluxes have to be

interpolated to the cell boundaries.

When using a body-fitted, structured grid, it is useful to introduce a mapping

function between the Cartesian coordinate system (x1, x2, x3) and the curvilinear

coordinates (ξ1, ξ2, ξ3) describing the grid. Figure ?? illustrates the control volume
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of a specific cell (i, j, k) in physical and computational space; the ξ1-, ξ2-, and ξ3-

coordinates correspond to the index-directions i, j, and k, respectively. The red

point is located at the centroid of the cell, while the six blue points represent the six

flux faces. The transformation from the physical to the computational space is then

defined by the metrics

Knm =

[
∂xn
∂ξm

]
, J = det(K) , K−1

nm =

[
∂ξn
∂xm

]
, (3.20)

for n,m = 1, 2, 3. Applying the mapping to the Navier-Stokes equations provides the

field equations in computational space, where they read as

∂(JW)

∂t
+
∂FFFn
∂ξn
− ∂FFFvn

∂ξn
= JQ in D . (3.21)

The inviscid and viscous flux gradients are now defined with respect to the compu-

tational cell faces by

FFFn = SnmFm and FFFvn = SnmFvm , (3.22)

where Snm = JK−1
nm represents the projection of the ξn cell face along the xm axis.

The face vector normals are obtained from

nSnm =
Snm
|Snm|

with |Snm| =
√
S2
n1 + S2

n2 + S2
n3 . (3.23)

Applying the same metric transformation to the semi-discrete form of the Navier-

Stokes equations, cf. Eqn. (3.19), the ordinary differential equation can be re-written

for a specific cell (i, j, k) as

∂(JW)i,j,k
∂t

+RRR(W)i,j,k = 0 , (3.24)

where all terms comprised in the residualRRR(W) are now defined in the computational

space. Treating the source term separately,

RRR(W)i,j,k = R̂RR(W)i,j,k + (JQ)i,j,k , (3.25)
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Figure 3.3: Control volume for cell (i, j, k) in the physical domain (left) and the
computational domain (right).

and expanding the remaining residual terms into its individual flux contributions

yields

R̂RR(W)i,j,k =
∂FFF1

∂ξ1

+
∂FFF2

∂ξ2

+
∂FFF3

∂ξ3

− ∂FFFv1

∂ξ1

− ∂FFFv2

∂ξ2

− ∂FFFv3

∂ξ3

, (3.26)

where each partial derivative accounts for the net flux into one of the three compu-

tational directions. Using a second-order central-difference scheme to discretize both

the convective and viscous flux gradients, e.g.

∂FFF1

∂ξ1

= fi+ 1
2
,j,k − fi− 1

2
,j,k , (3.27)

where the ±1
2

notation indicates that the quantity is defined at a flux face, provides

the discrete form

R̂RR(W)i,j,k = fi+ 1
2
,j,k − fi− 1

2
,j,k + fi,j+ 1

2
,k − fi,j− 1

2
,k + fi,j,k+ 1

2
− fi,j,k− 1

2

− fv
i+1

2 ,j,k
+ fv

i− 1
2 ,j,k
− fv

i,j+1
2 ,k

+ fv
i,j− 1

2 ,k
− fv

i,j,k+1
2

+ fv
i,j,k− 1

2

, (3.28)

with f and fv being the convective and viscous fluxes at the six faces of cell (i, j, k).

Second-order accurate central-difference schemes allow for an odd-even decoupling

of the numerical solution and are prone to generate oscillations and overshoots at
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shock discontinuities. For stability reasons it is therefore necessary to add additional

dissipative terms to the numerical scheme to damp these high frequency errors. Thus,

Eqn. (3.28) is expanded to

R̂RR(W)i,j,k = fi+ 1
2
,j,k − fi− 1

2
,j,k + fi,j+ 1

2
,k − fi,j− 1

2
,k + fi,j,k+ 1

2
− fi,j,k− 1

2

− fv
i+1

2 ,j,k
+ fv

i− 1
2 ,j,k
− fv

i,j+1
2 ,k

+ fv
i,j− 1

2 ,k
− fv

i,j,k+1
2

+ fv
i,j,k− 1

2

(3.29)

− fd
i+1

2 ,j,k
+ fd

i− 1
2 ,j,k
− fd

i,j+1
2 ,k

+ fd
i,j− 1

2 ,k
− fd

i,j,k+1
2

+ fd
i,j,k− 1

2

.

where fd represents the added artificial dissipation term. A more detailed discussion

of the concept of artificial dissipation and the scheme employed within this work is

presented in subsection 3.3.2.

Discretization of the Convective Fluxes

The cell-centered flow variables are viewed as cell averages and arithmetic averaging

is used to approximate the convective fluxes f at the cell boundaries. Thus, the

convective flux at a face has equal contributions from the two cells sharing the face,

fi+ 1
2
,j,k =

1

2
(fi+1,j,k + fi,j,k) . (3.30)

The fluxes i− 1
2
, j ± 1

2
, and k± 1

2
are calculated accordingly. This produces a three-

point stencil for each flux gradient and a seven-point stencil for the entire convective

flux contribution to the residual of a particular cell, cf. Figure 3.4. In particular, the

residualRRR(W)i,j,k is a function of the convective fluxes calculated at the cells (i, j, k),

(i± 1, j, k), (i, j ± 1, k), and (i, j, k± 1). In Eqn. (3.30) both fluxes, fi+1,j,k and fi,j,k,

are evaluated using the metrics of the flux face they have in common, i.e.

fi± i
2
,j,k =

1

2

(
S1m

i± 1
2 ,j,k

Fmi±1,j,k
+ S1m

i± 1
2 ,j,k

Fmi,j,k

)
, (3.31)

fi,j± i
2
,k =

1

2

(
S2m

i,j± 1
2 ,k

Fmi,j±1,k
+ S2m

i,j± 1
2 ,k

Fmi,j,k

)
, (3.32)

fi,j,k± i
2

=
1

2

(
S3m

i,j,k± 1
2

Fmi,j,k±1
+ S3m

i,j,k± 1
2

Fmi,j,k

)
, (3.33)

where summation over m = 1, 2, 3 is implied by a repeated index m.
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Figure 3.4: Stencil of the spatial discretization scheme for the convective flux gradient.

Discretization of the Viscous Fluxes

The numerical evaluation of the viscous fluxes fv at the cell boundaries is a more

complex task due to the necessity of approximating the partial derivatives of the

velocities appearing in the viscous stress tensor, cf. Eqn. (2.14), and the temperature

gradients introduced to the energy equation by Fourier’s law of heat conduction,

cf. Eqn. (2.6). A second-order accurate discretization of the viscous fluxes is obtained

from the following procedure: As defined in Eqn. (3.22), the viscous boundary flux

fv in computational space is calculated from the physical boundary flux Fv through

the transformation

fv
i± i

2 ,j,k
= S1m

i± 1
2 ,j,k

Fvm
i± i

2 ,j,k
, (3.34)

fv
i,j± i

2 ,k
= S2m

i,j± 1
2 ,k

Fvm
i,j± i

2 ,k
, (3.35)

fv
i,j,k± i

2

= S3m
i,j,k± 1

2

Fvm
i,j,k± i

2

, (3.36)

where m again implies summation over m = 1, 2, 3. The physical flux itself has to

be interpolated to the face center. It is computed at the mid-point of a cell face as
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the arithmetic average of the flux quantities defined at the four vertexes of the face.

Thus, the flux vector at the face (i+ 1
2
, j, k) expands to

Fvm
i+1

2 ,j,k
=

1

4
( Fvm

i+1
2 ,j+

1
2 ,k+

1
2

+ Fvm
i+1

2 ,j−
1
2 ,k+

1
2

+ Fvm
i+1

2 ,j+
1
2 ,k−

1
2

+ Fvm
i+1

2 ,j−
1
2 ,k−

1
2

) . (3.37)

From Eqns. (2.10) and (2.15) it follows that the viscous flux at the vertex (i+ 1
2
, j +

1
2
, k + 1

2
) can be written as

Fvm
i+1

2 ,j+
1
2 ,k+

1
2

=



0

τmnδ̂n1

τmnδ̂n2

τmnδ̂n3

unτmn + k δT
δxm


i+ 1

2
,j+ 1

2
,k+ 1

2

(3.38)

with the viscous stress tensor

τmn
i+1

2 ,j+
1
2 ,k+

1
2

= µi+ 1
2
,j+ 1

2
,k+ 1

2

[
∂um
∂xn

+
∂un
∂xm

− 2

3

∂ul
∂xl

δ̂mn

]
i+ 1

2
,j+ 1

2
,k+ 1

2

. (3.39)

In Eqns. (3.38) and (3.39) the (i + 1
2
, j + 1

2
, k + 1

2
) subscript is placed outside the

brackets to avoid repeating the subscript for every term within the brackets. To

approximate the stress tensor and the heat flux components of the viscous flux at the

cell vertex, auxiliary control volumes are formed for each vertex by joining the cell

centers of the eight cells that share the same vertex. As illustrated in Figure 3.5, the

auxiliary control volume for the vertex (i + 1
2
, j + 1

2
, k + 1

2
) is consequently specified

by the eight cell centers (i, j, k), (i+ 1, j, k), (i, j + 1, k), (i+ 1, j + 1, k), (i, j, k + 1),

(i+ 1, j, k + 1), (i, j + 1, k + 1), and (i+ 1, j + 1, k + 1). The velocity components u,

the coefficient of thermal conductivity k, and the temperature T at a cell vertex are

obtained from averaging the cell center values of the eight cells forming the auxiliary

control volume. The first viscosity coefficient µ, which is a combination of the laminar

and turbulent viscosity, i.e.

µi+ 1
2
,j+ 1

2
,k+ 1

2
= (µl + µt)i+ 1

2
,j+ 1

2
,k+ 1

2
, (3.40)
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Figure 3.5: Stencil of the spatial discretization scheme for the viscous flux gradient.

is estimated by applying the same averaging technique. Hence, any of these quantities

is calculated as

Ti+ 1
2
,j+ 1

2
,k+ 1

2
=

1

8
( Ti,j,k + Ti+1,j,k + Ti,j+1,k + Ti+1,j+1,k

+ Ti,j,k+1 + Ti+1,j,k+1 + Ti,j+1,k+1 + Ti+1,j+1,k+1) . (3.41)

The velocity and temperature gradients at the vertexes are calculated by a transfor-

mation to the computational coordinates. For example, the gradient of the velocity

component um into the Cartesian direction xn is defined as[
∂um
∂xn

]
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

Ji+ 1
2
,j+ 1

2
,k+ 1

2

[
∂ûm1n

∂ξ1

+
∂ûm2n

∂ξ2

+
∂ûm3n

∂ξ3

]
i+ 1

2
,j+ 1

2
,k+ 1

2

, (3.42)

where J is the volume of the auxiliary control volume, which is approximated by

averaging the volumes of the eight cells that share the vertex using Eqn. (3.41).

The velocity gradient in the computational domain, for example ∂ûm1n/∂ξ1, can be
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calculated by taking an average of the velocity differences in the ξ1-direction, i.e.[
∂ûm1n

∂ξ1

]
i+ 1

2
,j+ 1

2
,k+ 1

2

=
(ûm1n,i+1,j,k

− ûm1n,i,j,k
) + (ûm1n,i+1,j+1,k+1

− ûm1n,i,j+1,k+1
)

4

+
(ûm1n,i+1,j+1,k

− ûm1n,i,j+1,k
) + (ûm1n,i+1,j,k+1

− ûm1n,i,j,k+1
)

4
, (3.43)

where û is the velocity multiplied with the cell metrics interpolated to the cell center

by averaging the two corresponding face metrics

ûm1n,i,j,k
=
S1n

i+1
2 ,j,k

+ S1n
i− 1

2 ,j,k

2
umi,j,k . (3.44)

The formulation described to compute the viscous flux, guaranties conservation and

produces a second-order accurate algorithm. The stencil of the numerical scheme

extends over twenty-seven cells.

Discretization of the Source Term

While both, the convective and viscous flux gradients are evaluated at the cell faces,

the source term Q is calculated at the cell center. Since the flow variables are readily

available at the centroid of the control volume, its evaluation is straight forward. From

Eqn. (3.25) it follows that the residual RRR(W)i,j,k has the source term contribution

(JQ)i,j,k, where J is the volume of the cell (i, j, k).

3.3.2 Artificial Dissipation

Considering a simplified one-dimensional inviscid flow problem such as depicted in

Figure 3.6, where a flux only occurs in the i-direction, the Cartesian Coordinate sys-

tem coincides with the computational coordinates, and the face vectors are assumed

to be all of size one, then the second-order central-difference scheme employed to

approximate the convective fluxes, cf. Eqns. (3.38) and (3.39), reads as

fi+ 1
2

=
1

2
(Fi+1 + Fi) , (3.45)
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and provides the residual contribution

R(W)i = fi+ 1
2
− fi− 1

2
=

1

2
(Fi+1 + Fi − Fi − Fi−1) , (3.46)

which reduces to

R(W)i = fi+ 1
2
− fi− 1

2
=

1

2
(Fi+1 − Fi−1) . (3.47)

Equation (3.47) illustrates that the residual for cell i is only a function of the flow

variables in the two neighbouring cells (i + 1) and (i − 1), but is independent of its

current solution at cell i. A solution that takes on the value 1 at all odd cells and

the value −1 at all even cells, would satisfy the flow problem in the steady-state

limit. This phenomenon is called odd-even decoupling. Oscillations resulting from

discontinuities in the flow solution or introduced by round-off errors are not damped

out and would make the numerical scheme unstable if it is not further modified.

Figure 3.6: Uniform grid for the simplified one-dimensional flow problem.

The idea behind the concept of artificial dissipation is to add additional difference

operators to the numerical scheme which couple the equation, suppress the tendency

for odd-even point oscillations, and increase the dissipation in the vicinity of discon-

tinuities to limit overshoots near shock waves. The artificial dissipation scheme used

within this research is a blend of adaptive second- and fourth-order differences which

result from the sum of additional first- and third-order fluxes. This scalar dissipation

scheme was first introduced by Jameson, Schmidt and Turkel [50], hence the name

JST dissipation scheme, and is defined as

Fd = ε(2)∆x3λ

p

∣∣∣∣∂2p

∂x2

∣∣∣∣ ∂W

∂x
− ε(4)∆x3λ

∂3W

∂x3
, (3.48)

where ε(2) and ε(4) are adjustable constants and λ is the spectral radius of the flux

Jacobian matrices. The discrete formulation of the artificial dissipation flux may be
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written as

fd
i+1

2 ,j,k
= f

(2)
d
i+1

2 ,j,k
− f

(4)
d
i+1

2 ,j,k
, (3.49)

with

f
(2)
d
i+1

2 ,j,k
= ν

(2)

i+ 1
2
,j,k

Λi+ 1
2
,j,k(Wi+1,j,k −Wi,j,k) , (3.50)

f
(4)
d
i+1

2 ,j,k
= ν

(4)

i+ 1
2
,j,k

Λi+ 1
2
,j,k(Wi+2,j,k − 3Wi+1,j,k + 3Wi,j,k −Wi−1,j,k) . (3.51)

The dissipative fluxes at the cell faces i− 1
2
, j± 1

2
, and k± 1

2
are calculated accordingly.

In Eqn. (3.50), d(2) is a first-order flux term that is proportional to the normalized

second difference of pressure. The term ν(2) acts as a pressure sensor,

ν
(2)

i+ 1
2
,j,k

= ε(2)max(σi,j,k, σi+1,j,k) , (3.52)

where

σi,j,k =
|pi+1,j,k − pi,j,k + pi−1,j,k|
pi+1,j,k + pi,j,k + pi−1,j,k

, (3.53)

and ε(2) = 1. In smooth flow regions the pressure gradient term becomes negligible,

thus, d(2) is inactive and the artificial dissipation is reduced to the lowest possible

level; only the third-order flux will be active and provide background dissipation. In

flow regions with large pressure gradients however, e.g. close to a shock wave, the

first-order flux is activated. The introduction of the first-order dissipative flux term

adds an upwind biasing to the second-order central-difference scheme and allows for

the capture of pressure discontinuities.

In Eqns. (3.50) and (3.51), Λi+ 1
2
,j,k is a scaled spectral radius term interpolated

to the cell face through

Λi+ 1
2
,j,k =

1

2

(
λ̃ξ1,i+1,j,k + λ̃ξ1,i,j,k

)
, (3.54)

where λ̃ξ is the scaled spectral radius of the flux Jacobian in the ξ1-direction of the

computational domain. The spectral radii are scaled to improve the convergence

properties of the numerical scheme on stretched meshes for viscous flows, cf. [51, 52],
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using the formula

λ̃ξ1 =

[
1 +

(
λ̃ξ2

λ̃ξ1

)σ

+

(
λ̃ξ3

λ̃ξ1

)σ]
λ̃ξ1 . (3.55)

with σ = 2/3. The spectral radius is the largest eigenvalue of the flux Jacobian

matrix and is given by

λ̃ξm = |Sm1v1 + Sm2v2 + Sm3v3|+ c(S2
m1 + S2

m2 + S2
m3) , (3.56)

where vl is the relative velocity and c is the speed of sound. Multiplying the first-

order dissipative flux with the spectral radius helps controlling the magnitude of the

dissipative term, which is especially important in viscous shear layers. The magnitude

of the dissipative term has to be considerably smaller than the magnitude of the

viscous flux gradient, otherwise the dissipative terms would corrupt the quality of

the flow solution. In the boundary layer of viscous flows the flow velocity tangential

to the surface is slowly reduced to zero; the spectral radius scaling ensures that the

artificial dissipation is reduced simultaneously.

In Eqn. (3.51), another pressure-based sensor ν(4) is used to switch off the fourth-

order differences at shocks and in flow regions of high pressure gradients, where they

would introduce oscillations. The sensor is defined as

ν
(4)

i+ 1
2
,j,k

= max(0, ε(4) − ν(2)

i+ 1
2
,j,k

) , (3.57)

where ε(4) typically is set to 1/32, which guarantees that ε(4)−ν(2) < 0 in the vicinity

of flow discontinuities.

The stencil of this compact artificial dissipation scheme spans over two cells in

each direction, therefore, requiring information from a total of thirteen cells.

3.3.3 Discrete Boundary Conditions

Any numerical simulation can only consider a certain part of the real physical do-

main. Truncating the domain leads to artificial boundaries in addition to the natural

solid wall boundaries. At these boundaries the numerical scheme must be modified

and numerical boundary conditions have to be applied such that the flow physics are



3.3 Numerical Discretization 49

reflected adequately. The numerical treatment of the boundary conditions requires a

particular care, since an improper implementation can result in an inaccurate simu-

lation of the real system. Furthermore, the convergence properties of the numerical

scheme as well as its stability can be negatively influenced.

The following types of boundary conditions are generally encountered in the nu-

merical solution of the Euler and the Navier-Stokes equations in a turbomachinery

environment:

- solid wall boundaries,

- inflow and outflow boundaries,

- periodic boundaries,

- boundaries between blocks,

- rotor-stator interfaces.

The numerical treatment of these boundary conditions, which is based on the concept

of halo cells, is described in the following. For clarity, the subscript “D” shall indicate

a domain cell, the subscript “H” shall represent a halo cell, and the subscript “B”

shall determine the domain boundary which coincides with the cell face shared by a

domain and halo cell.

Solid Wall Boundary Conditions

For inviscid flow, the physical model requires the velocity at a wall to be tangent to

the slope of the wall. This corresponds to a zero flux through the wall. In a viscous

flow environment, the no-injection and no-slip conditions require the tangent velocity

components to be zero as well. Thus, the convective terms in all flux directions vanish

at solid walls. In computational space, assuming that the wall surface lies in the ξ1ξ2-

plane, cf. Figure 3.7, this leads to the following physical requirements:

Sn1u1,B + Sn2u2,B + Sn3u3,B = 0 (3.58)

at a stationary wall and

Sn1u1,B + Sn2(u2,B + Ω1x3) + Sn3(u3,B − Ω1x2) = 0 (3.59)
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at a rotating wall, where n = 3 in case of inviscid flow and n = 1, 2, 3 for viscous

flow. Accordingly, at a wall boundary the convective flux reduces to

FFFn,B =



ρ(Sn2Ω1x3 − Sn3Ω1x2)

ρ(Sn2Ω1x3 − Sn3Ω1x2)u1 +Sn1p

ρ(Sn2Ω1x3 − Sn3Ω1x2)u2 +Sn2p

ρ(Sn2Ω1x3 − Sn3Ω1x2)u3 +Sn3p

ρ(Sn2Ω1x3 − Sn3Ω1x2)E


B

(3.60)

in case of a stationary surface. If the domain is non-rotating and an absolute frame

of reference formulation is employed, i.e. Ω1 = 0, then Eqn. (3.60) further simplifies

to

FFFn,B =



0

Sn1p

Sn2p

Sn3p

0


B

, (3.61)

i.e. only the pressure is required at the wall. At a rotating wall the convective flux is

given by

FFFn,B =



0

Sn1p

Sn2p

Sn3p

p(Sn1u1 + Sn2u2 + Sn3u3)


B

. (3.62)

Figure 3.7: Solid wall boundary in computational space in the ξ1ξ2-plane.
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Again, in Eqns. (3.60)-(3.62) n = 3 in case of an inviscid flow environment and

n = 1, 2, 3 for viscous flow. All three wall boundary types are encountered in this

turbomachinery flow solver. For instance, in a rotating rotor domain the convective

flux at the stationary casing is described by Eqn. (3.60), at the boundary of a rotating

rotor blade it is given by Eqn. (3.62), and at the stationary stator blade, which is

located within the non-rotating stator domain, the convective flux is described by

Eqn. (3.61).

Halo cells are introduced and the halo state vectors are specified such that the

physical correct boundary fluxes at a wall are obtained directly from the cell-centered

scheme utilized within this flow solver. Since the scheme estimates the convective

fluxes at a cell face by averaging the fluxes calculated from the state solutions of the

two cells sharing the boundary, the halo states

w1,H = w1,D , (3.63a)

w2,H = w2,D − 2n1[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.63b)

w3,H = w3,D − 2n2[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.63c)

w4,H = w4,D − 2n3[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.63d)

w5,H = w5,D , (3.63e)

provide the correct boundary fluxes for inviscid flow, while the halo states

w1,H = w1,D , (3.64a)

w2,H =−w2,D , (3.64b)

w3,H =−w3,D − 2w1,DΩ1x3 , (3.64c)

w4,H =−w4,D + 2w1,DΩ1x2 , (3.64d)

w5,H = w5,D , (3.64e)

satisfy the physical model for viscous flow. The boundary states WB can be obtained

by averaging the conserved variables stored in the halo cells WH and the states of

the domain cells next to a wall WD,

WB =
1

2
(WD + WH) , (3.65)
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which yields

w1,B = w1,D , (3.66a)

w2,B = w2,D − n1[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.66b)

w3,B = w3,D − n2[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.66c)

w4,B = w4,D − n3[w2,Dn1 + w3,Dn2 + w4,Dn3 + w1,DΩ1(x3n2 − x2n3)] , (3.66d)

w5,B = w5,D , (3.66e)

for inviscid flow and

w1,B = w1,D , (3.67a)

w2,B = 0 , (3.67b)

w3,B =−w1,DΩ1x3 , (3.67c)

w4,B = w1,DΩ1x2 , (3.67d)

w5,B = w5,D , (3.67e)

for viscous flow.

To complete the solid wall boundary conditions, the pressure has to be determined

at a wall. As for the density and total energy, a simple zeroth-order extrapolation

through the wall is used within this work. Thus, the pressure of the domain cell is

copied to the halo cell which corresponds to a zero pressure gradient at the wall,

pB = pH = pD . (3.68)

Inlet and Outlet Boundary Conditions

At the inlet and outlet of the computational domain, characteristic-based boundary

conditions using Riemann invariants are imposed. The method extrapolates the

outgoing waves based on interior information and calculates incoming waves using

the prescribed freestream conditions. To simplify the treatment of inlet and outlet

boundaries, the inlet and outlet planes are defined such that they coincide with

the ξ2ξ3-plane. Thus, the axial velocity component u1,B is normal to the domain

boundaries, while the components u2,B and u3,B are tangent to the inlet and outlet
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planes.

Assuming subsonic inflow, there are four incoming characteristics and one outgo-

ing characteristic at the inlet. Hence, four quantities have to be prescribed. These

are the total pressure pt,in, the total temperature Tt,in and the circumferential and

radial inflow angles αϕ and αr. The outgoing Riemann invariant

Ri = u1,D −
2cD

γ − 1
, (3.69)

is used to express the velocity normal to the boundary u1,in as a function of the speed

of sound at the boundary and some interior quantities,

u1,in =
2cin

γ − 1
+Ri . (3.70)

Combining Eqns. (2.48)-(2.50) with Eqns. (3.16)-(3.18), the total temperature at the

inlet can be written as

Tt,in =
c2

in

γR

[
1 +

γ − 1

2

u2
1,in

c2
in

(
1 + tan2 αϕ +

tan2 αr
cos2 αϕ

)]
. (3.71)

From Eqn. (3.70) follows

u2
1,in =

4c2
in

(γ − 1)2
+

4cin

(γ − 1)
Ri+Ri2 , (3.72)

which is used with Eqn. (3.71) to form

Tt,in =
c2

in

γR
+
γ − 1

2γR

(
4c2

in

(γ − 1)2
+

4cin

(γ − 1)
Ri+Ri2

)
αx , (3.73)

where

αx = 1 + tan2 αϕ +
tan2 αr
cos2 αϕ

. (3.74)

Rearranging Eqn. (3.73) yields a quadratic equation which solves for the speed of

sound at the inlet boundary,

cin =
−B +

√
B2 − 4AC

2A
, (3.75)
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with

A =
2

γ − 1
+

1

αx
, B = 2Ri , and C =

γ − 1

2
Ri2 − γRTt,in

αx
. (3.76)

The remaining boundary quantities can then be determined from the prescribed inlet

quantities, the isentropic relations, and the equation of state. In particular,

Tin =
c2

in

γR
, pin = pt,in

(
Tin

Tt,in

) γ
γ−1

,

ρin =
pin

RTin

, |U|in =
√

2cp(Tt,in − Tin) . (3.77)

The inlet velocity can be decomposed into its individual components using Eqns. (3.11),

(3.12), and (3.16)-(3.18). This completes the calculation of the primitive variables

WP,in =
[
ρ, u1, u2, u3, p

]T
in
, (3.78)

at the boundary. The conservative variable vector at the inlet boundary may now be

obtained from the transformation

Win = MinWP,in , (3.79)

where Min is a transformation operator relating the flow variables to the primitive

variables; cf. appendix A.1 for a detailed definition of the transformation matrix M.

At a subsonic outlet boundary, there are four outgoing characteristics and one

incoming characteristic. Hence, one quantity, namely the static pressure pout, is

specified. In case the outlet follows a stator row, the exit pressure is chosen to be

constant across the entire outlet plane. However, if the blade row upstream the outlet

is rotating, a radial equilibrium outlet boundary condition is applied. In this case,

the specified exit pressure is only applied at the hub, i.e. at the position of minimum

radius. The static exit pressure across the remaining outlet plane is calculated from

the assumption that the radial velocity is negligible, so that the pressure gradient is

given by
∂p

∂r
=
ρu2

ϕ

r
. (3.80)
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Thus, the exit pressure is obtained from

pout = pout, Hub +

(
r

rHub

− 1

)
ρDu

2
ϕ,D . (3.81)

This outlet boundary condition satisfies the requirement that the outflow is in radial

equilibrium. The entropy is then extrapolated from the interior domain, i.e.

sout =
pout

ργout

=
pD

ργD
, (3.82)

which provides the density at the boundary,

ρout = ρD

(
pout

pD

) 1
γ

. (3.83)

Thereafter, the speed of sound can be determined from

cout =

√
γ
pout

ρout

. (3.84)

Together with the information obtained from the outgoing Riemann invariant

Ri = u1,D +
2cD

γ − 1
, (3.85)

this allows for the calculation of the velocity normal to the outlet boundary

u1,out = Ri− 2cout

γ − 1
. (3.86)

The velocity components tangential to the outlet plane are extrapolated from the

interior domain,

u2,out = u2,D , u3,out = u3,D , (3.87)

while the temperature can be calculated as in Eqn. (3.77). Lastly, the outlet boundary

states Wout are constructed from the the primitive variables WP,out through the

identical transformation as at the inlet boundary, i.e.

Wout = MoutWP,out , (3.88)
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where Mout is defined as in Eqn. (A.3).

Periodic Boundary Conditions

Flows through axial compressors and turbines are usually assumed to be periodic

in the circumferential direction. This assumption greatly reduces the computational

cost since in this case it is sufficient to only model one blade-to-blade section instead

of the entire annulus.

The concept of halo cells simplifies the treatment of periodic boundaries. Scalar

quantities, such as the density and pressure, are simply copied from the domain cell

next to a periodic boundary into the halo cell of the other corresponding periodic

boundary. The treatment of vector quantities, e.g. the velocity, depends on the type

of periodicity. In case of translational periodicity the vector quantities can be copied

just like the scalar quantities. In case of rotational periodicity the rotation of the

coordinate system has to be accounted for. Figure 3.8 illustrates the circumferential

periodicity typically encountered in turbomachinery flows as well as within this work.

The state of the domain cell (red-colored) marked by the circle (or square) defines

the accordingly marked boundary state (blue-colored). However, here the Cartesian

velocity components u2 and u3 cannot be directly exchanged between two periodic

boundaries. Instead, they are first transferred into the cylindrical components uϕ

and ur using Eqns. (3.9) and (3.10). Afterwards, the vector quantities are exchanged

in their cylindrical form and are then transferred back into Cartesian components,

cf. (3.11) and (3.12). This procedure yields the halo states

w1,H,II = w1,D,I , (3.89a)

w2,H,II = w2,D,I , (3.89b)

w3,H,II = (w3,D,I cosϕ,I + w4,D,I sinϕ,I) cosϕ,II

+ (w3,D,I sinϕ,I − w4,D,I cosϕ,I) sinϕ,II , (3.89c)

w4,H,II = (w3,D,I cosϕ,I + w4,D,I sinϕ,I) sinϕ,II

− (w3,D,I sinϕ,I − w4,D,I cosϕ,I) cosϕ,II , (3.89d)

w5,H,II = w5,D,I , (3.89e)
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and ensures that the fluxes at two corresponding periodic boundaries are identical.

The states at a periodic boundary may be obtained from Eqn. (3.65).

Figure 3.8: Periodicity in circumferential coordinate direction.

Block-to-Block Boundaries

The multi-block approach greatly simplifies the generation of high-quality grids for

complex geometries. Furthermore, the computational time can be reduced dramati-

cally if the blocks are distributed to different processors and, thus, multiple processors

are used to solve the governing equations in the computational domain. However, it

also complicates the numerical solution process as information has to be exchanged

between neighbouring blocks since the temporal development of the solution in a

particular block depends on the solution in its neighbouring blocks.

In this work, the multi-block approach is implemented utilizing the concept of halo

cells. Furthermore, the flow solver requires the grid lines of two adjacent blocks to

match at a block-to-block interface. Every block is extended by two additional levels

of cells at its six boundaries. The halo cells of a particular block possess the same

geometric properties as the first two domain cells of the neighbouring block and thus

two adjacent blocks overlap each other by two cell levels. The flow variables are then

exchanged between two neighbouring blocks after every stage of the Runge-Kutta

time-stepping scheme, cf. subsection 3.3.4, by copying the domain states of one block

to the corresponding overlapping halo cells of the adjacent block. This boundary

treatment allows the standard spatial discretization scheme to be extended until the

block interfaces and guarantees that the boundary flux is equivalent to one that
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would be obtained on a single-block grid. In case two neighbouring blocks are solved

on different processors, MPI standard is used for communication between the two

processors.

Rotor-Stator Interface

To allow for a concurrent rotor-stator and hence multi-row flow simulation, it is

necessary to couple a rotational rotor domain with its neighbouring stationary stator

domain during the solution process of the governing equations. In this flow solver,

rotor-stator interfaces are treated based on Chima’s steady averaging-plane approach

for multistage turbomachinery flow analysis [53]. A mixing-plane interface is shown

schematically in Figure 3.9 at a constant radial section, where the rotor and stator

domains have been displaced axially for clarity. Similarly to the inflow and outflow

boundaries, the orientation of the blade row interface is always chosen to be normal

to the x1-axis, i.e. only fluxes into the axial direction have to be considered at the

mixing-plane interface. To further simplify the treatment, the boundary conditions

are developed in a cylindrical coordinate system.

Figure 3.9: Schematic mixing-plane interface at constant radius.

There are two fundamental requirements on a rotor-stator interface; the conser-

vation of the fluxes across the mixing-plane and a non-reflective behaviour at the
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domain interface to allow for a close spacing between adjacent blade rows. For any

averaging-plane method, averaged flow properties must be transferred between the

blade rows at the domain interfaces. Following Chima’s approach, mixed-out cir-

cumferential averages of the primitive variables are calculated from all cells at a

constant radius on both sides of the interface and are used as boundary values in the

neighbouring domain. The differences between the local domain states next to the

boundary and the boundary states are then treated as characteristic perturbations

and Giles’ 1D characteristic theory [54] is applied to drive the difference to zero.

The definition of mixed-out variables is based on the assumption that sufficiently

far upstream or downstream of the boundary under consideration the flow field is

circumferentially uniform and that the flux based on the uniform primitive variables

is equal to the average flux at the boundary. Following Wyss et al. [55], the mixed-out

primitive variables W̃P are calculated as

p̃ =
1

γ + 1

(
F̄x1 +

√
F̄ 2
x1

+ (γ2 − 1)(F̄ 2
x1

+ F̄ 2
ϕ + F̄ 2

r − 2F̄ 2
1 F̄

2
5 )

)
, (3.90)

ũx1 =
F̄x1 − p̃
F̄1

, (3.91)

ũϕ =
F̄ϕ
F̄1

, (3.92)

ũr =
F̄r
F̄1

, (3.93)

ρ̃ =
F̄1

ũx1
, (3.94)

with the averaged fluxes

F̄ =
1

lP

∫ lP

0

F dA at r = const. , (3.95)

where lP is either the rotor or stator pitch area, dA is the face normal of each cell, and

r is the radius. Hence, the discrete version of the integral in Eqn. (3.95) represents

a summation over all domain cells next to a rotor-stator interface at constant radius

into the circumferential direction. The flux vector in Eqn. (3.95) is formulated in
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cylindrical coordinates and defined as

F =



ρux1

ρux1ux1 +p

ρux1uϕ

ρux1ur

ρux1E +pux1


. (3.96)

Based on the mixed-out primitive variables (3.90)-(3.94), averaged values of all other

flow quantities can be defined. The mixed-out conservative variable vector W̃ =

[w̃1, w̃x1 , w̃ϕ, w̃r, w̃5]T is then copied into the adjacent mixing-plane domain where

it serves as the boundary state. The average Mach number is then checked in the

neighbouring domain to determine whether the flow is subsonic or supersonic and

characteristic boundary conditions are utilized to correct the boundary states. Thus,

the mixing-plane boundary condition may be written as

WB,R = W̃S + δW̃c,RS , (3.97)

WB,S = W̃R + δW̃c,SR , (3.98)

where the subscripts R and S indicate values obtained from or calculated for the

rotor and stator domain, respectively. Giles’ 1D characteristic theory provides the

boundary state correction δW̃c. For example, the boundary correction for a rotor

domain is calculated from

δW̃c,RS = P̃δCRS , (3.99)

where δC = [δc1, δcx1 , δcϕ, δcr, c5]T is the vector of characteristic variables and P̃ is

the right eigenvector matrix of the convective flux Jacobian which is obtained from

diagonalizing the Jacobian system. For a more detailed discussion of the diagonal-

ization procedure and the transformation between conservative and characteristic

variables the reader should refer to appendix A.3. Here, the right eigenvector matrix

is defined as specified in Eqn. (A.23), but built of mixed-out variables. For subsonic

flow at an inlet boundary, i.e. the downstream domain of a rotor-stator interface,

the four incoming characteristics δc1, δcx1 , δcϕ, and δcr are set to zero. In case of

supersonic flow the fifth characteristic δc5 is incoming and, hence, null as well. For
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subsonic flow at an exit boundary, i.e. the upstream domain of a rotor-stator in-

terface, only the fifth characteristic δc5 is incoming and thus is discarded, while for

supersonic flow all characteristics are outgoing and have to be extrapolated from the

interior domain. The outgoing characteristics can be determined from

δCRS = P̃−1δWRS , (3.100)

where P̃−1 is the left eigenvector matrix of the convective flux Jacobian as specified

in Eqn. (A.22) and again is constructed using mixed-out quantities. In Eqn. (3.100),

δWRS is the difference between the local domain value next to the mixing-plane

interface and the boundary state, i.e.

δWRS =



ρD,R −ρ̃S
ρD,Rux1,D,R −ρ̃Sũx1,S
ρD,Ruϕ,D,R −ρ̃Sũϕ,S
ρD,Rur,D,R −ρ̃Sũr,S
ρD,RED,R −ρ̃SẼS


. (3.101)

The boundary values for the stator domain are obtained accordingly by substituting

R with S and vice versa. During the convergence of the governing equations this

procedure leads to equal mixed-out primitive variables on both sides of the mixing-

plane interface, which guarantees the conservation of the circumstantially averaged

fluxes.

3.3.4 Temporal Discretization

This subsection deals with the discretization of the temporal derivatives of the gov-

erning equations, i.e. with the numerical approximation of the term ∂W/∂t described

in Eqn. (3.19).

This work employs an explicit multistage time integration scheme and utilizes

Jameson’s modified Runge-Kutta approach, cf. [50]. Multistage schemes advance the

solution in a number of so-called stages between the current time n and the next time
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level n+ 1. Jameson’s modified Runge-Kutta scheme reads as

W(0) = W(n)

W(k) = W(0) − αk∆tR(W(k−1)) for k = 1, 2, . . . ,m (3.102)

W(n+1) = W(m) ,

where m is the total number of stages and the residual R(W(k−1)) is evaluated with

the solution W(k−1) of the previous stage. The residual at each stage of the scheme

is defined as

R(k) = R(k)
c + R

(k)
d , (3.103)

with

R(k)
c = Rc(W

(k)) , (3.104)

R
(k)
d = βkRd(W(k)) + (1− βk)R(k−1)

d , (3.105)

where R
(k)
c includes the residual contributions from the convective flux gradient and

the source term, while R
(k)
d is composed of the residual contributions from the viscous

flux gradient and the artificial dissipation. From Eqns. (3.102) and (3.104) it can be

seen that only the zeroth solution and the latest residual need to be stored, which

reduces the memory requirements compared to the classical Runge-Kutta schemes.

The stage coefficients αk and the blending coefficients βk are optimized to maximize

the time step and to improve the numerical stability for the selected spatial dis-

cretization method. Research has shown, cf. [52], that it is not necessary to evaluate

the dissipative fluxes at each stage and that the computational cost can be reduced

without comprising the stability of the time stepping scheme by only evaluating the

dissipative operators at some stages. In this work, a five stage Runge-Kutta scheme

is employed where the dissipative fluxes are evaluated at stages (1), (3), and (5). The

coefficients for the scheme are

α1 = 0.25 , α2 = 0.1667 , α3 = 0.375 , α4 = 0.5 , α5 = 1.0 , (3.106)

β1 = 1.0 , β2 = 0.0 , β3 = 0.56 , β4 = 0.0 , β5 = 0.44 . (3.107)
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3.3.5 Convergence Acceleration

Despite the continuous growth in computational power, CFD simulations are still

fairly time-consuming and can take up to several hours or even days. To minimize

the amount of time needed to obtain a converged solution, many numerical tools

have been developed in order to accelerate the solution of the governing equations

to steady-state. In this subsection, the convergence acceleration techniques utilized

within this work are briefly discussed.

Local Time Stepping

The convergence of a time integration method typically can be accelerated by in-

creasing the time step. However, for every numerical scheme, especially if an explicit

time integration technique is utilized, a maximum step size exists after which the

scheme becomes unstable. The maximum local time step can be determined by the

Courant-Friedrich-Lewy (CFL) condition. It states that the domain of dependence of

the numerical method must at least contain the domain of dependence of the partial

differential equation. This means, the time step of the numerical scheme should not

be larger than the time required to transport information across the stencil of the

spatial discretization scheme.

Considering an inviscid flow environment, the time step limit for a specific control

volume (i, j, k) can be estimated from the relation

∆ti,j,k = CFL
Vi,j,k

(λ̃ξ1 + λ̃ξ2 + λ̃ξ3)i,j,k
, (3.108)

where V is the volume and λ̃ξm are the spectral radii of the convective flux Jacobian

matrices calculated from Eqn. (3.56). The maximum CFL number generally depends

both on the selected time stepping scheme and the spatial discretization. Here it

is a function of the stability region of the modified Runge-Kutta scheme, cf. sub-

section 3.3.4. From the CFL condition and Eqn. (3.108) it follows that the time

step limit decreases with the local grid resolution. A conservative approach, which

also produces a time-accurate solution, would be to calculate the smallest maximum

time step in the entire computational domain and use this fixed time step for the

time integration of the discretized governing equations in every control volume. For



3.3 Numerical Discretization 64

flow problems in which the physical domain can be spatially discretized using a grid

with cells of similar size this approach is reasonable. However, for viscous flow prob-

lems, which require highly resolved and stretched grids close to a wall, the fixed time

stepping approach becomes impractical since it would require an excessive amount

of iterations. For stationary flow problems in which the transient solution is of no

importance, the solution process to steady state can be strongly accelerated by in-

tegrating the discretized governing equation in time using the largest possible time

step for each control volume instead. Employing a variable time stepping approach,

the state vector in each cell is advanced using a local time step which only satisfies

the stability limit for that cell. This approach greatly accelerates the convergence

of the governing equations but leads to a temporally inaccurate transient solution.

Since in this work only steady-state calculations are performed, this is irrelevant and

the local time stepping technique can be applied.

In a viscous flow environment, the time step calculated from Eqn. (3.108) has to

be augmented to include the maximum eigenvalues of the diffusion operator. The

reader should refer to [56] and [52] for a detailed discussion of the maximum time

step estimate for viscous flows.

Implicit Residual Smoothing

While the local time stepping approach speeds up the time integration to steady state

by increasing the time step, implicit residual smoothing accelerates the convergences

by enabling the selection of a higher CFL number. The general idea is to replace the

residual of a specific cell with a weighted average of the surrounding residuals. The

residual smoothing technique adds an implicit character to the explicit Runge-Kutta

scheme and improves the damping of high frequency error components of the residual.

In three dimensions it can be formulated as

−εiR(W)∗i−1,j,k + (1 + 2εi)R(W)∗i,j,k − εiR(W)∗i+1,j,k = R(W)i,j,k , (3.109)

−εjR(W)∗∗i,j−1,k + (1 + 2εj)R(W)∗∗i,j,k − εjR(W)∗∗i,j+1,k = R(W)i,j,k , (3.110)

−εkR(W)∗∗∗i,j,k−1 + (1 + 2εk)R(W)∗∗∗i,j,k − εkR(W)∗∗∗i,j,k+1 = R(W)i,j,k , (3.111)
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which represents a second-order central-difference operator. R(W)∗, R(W)∗∗, and

R(W)∗∗∗ denote the smoothed residuals in i-, j-, and k-directions, respectively. The

implicit equation system (3.109)-(3.111) is solved for the smoothed residuals in each

coordinate direction using a tridiagonal solver. The smoothing coefficients εi, εj, and

εk are functions of the spectral radii of the convective flux Jacobian. A complete

discussion of the stability character and overall benefit of this acceleration method is

provided by Jameson and Baker in [57] and Turkel et al. in [58].

Multigrid

The multigrid method is one of the most powerful and most effective convergence

techniques. The basic idea behind the multigrid approach is to successively coarsen

the grid, to advance the solution on these auxiliary grids, and to calculate a correction

factor which can be used to drive the solution on the original grid faster to steady

state. On the coarser auxiliary grids larger time steps can be employed, while at the

same time the numerical effort is reduced. Information is exchanged more rapidly

and travels faster through the computational domain. In consequence, disturbances

are more quickly expelled through the outer boundary. Moreover, the low frequency

errors on the fine grid become high-frequency errors on a coarser grid. Since most

numerical schemes reduce high-frequency errors efficiently, but take a long time to

damp low-frequency errors, the multigrid technique helps to reduce all error compo-

nents quickly, which accelerates the convergence significantly. On structured grids,

successively coarser grids can easily be generated by simply selecting every other grid

point in each direction to obtain the next coarser level. This procedure results in the

agglomeration of eight grid cells to form one coarser grid cell. The multigrid method

is tributed to Brandt [59], who developed it for elliptic partial differential equations

and Jameson [60], who introduced the concept of multigrid to the hyperbolic Euler

equations. In the following, the major steps of the multigrid strategy are briefly

explained.

Based on the latest flow solution W
(n)
h , where h denotes the fine grid, a new

residual term R(W
(n)
h )h can be evaluated. In a first step, both the fine grid solution
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and the residual are transferred to the coarse grid by

W
(0)
H = ÎHh W

(n)
h and R(W

(n)
h )H = IHh R(W

(n)
h )h , (3.112)

where H denotes the coarser grid, ÎHh is an appropriate interpolation operator for the

fine grid solution, and IHh is the residual transfer operator. For the solution vector,

the cell-centered scheme used within this work employs a volume-weighted averaging

to the control volumes that will form the new cell on the coarser level, i.e.

W
(0)
H =

∑
Vi,j,kW(n)

hi,j,k∑
Vi,j,k

, (3.113)

where
∑

implies summation over the eight cells (i, j, k), (i + 1, j, k), (i, j + 1, k),

(i+ 1, j+ 1, k), (i, j, k+ 1), (i+ 1, j, k+ 1), (i, j+ 1, k+ 1), and (i+ 1, j+ 1, k+ 1). To

ensure that the low-frequency errors of the fine grid are smoothed on the coarse grid,

a conservative transfer operator IHh has to be used for the residual interpolation as

well. In case of a cell-centered scheme the coarse grid residual is obtained by simply

adding up all the fine grid residuals that form the new coarse grid cell, i.e.

R(W
(n)
h )H =

∑
R(W

(n)
h )h , (3.114)

where
∑

implies summation over the same eight cells specified for Eqn. (3.113). To

retain the order of accuracy of the fine grid solution on the coarse grid, a forcing

function QQQ has to be defined and added to the coarse grid residual. It is defined as

the difference between the transferred residual and the residual calculated from the

initial solution on the coarse grid,

QQQH = R(W
(n)
h )H −R(W

(0)
H )H , (3.115)

and ensures that the solution vector on the coarse grid is primarily driven by the

transferred fine grid residuals during the first modified Runge-Kutta step. Hence,

the time stepping scheme on the coarse grid may be written as
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W
(0)
H = W

(n)
H

W
(k)
H = W

(0)
H − αk∆tH [R(W

(k−1)
H )H +QQQH ] for k = 1, 2, . . . ,m (3.116)

W
(n+1)
H = W

(m)
H .

The second step of the multigrid scheme represents the calculation of a new so-

lution on the coarse grid, i.e. Eqn. (3.116) is advanced in time by performing one

or several iterations. Within this flow solver, only one iteration is performed on the

coarser grids. The first two steps are repeated until the coarsest grid level is reached.

Then the solution is interpolated back from the coarsest grid to the next finer level.

First, the coarse grid correction is computed. Then the correction is interpolated to

the finer grid. Hence, the new solution on the finer grid can be written as

W
(n+1),new
h = W

(n+1)
h + IhH(W

(n+1)
H −W0

H) , (3.117)

where IhH denotes the prolongation operator. Once the solution on the finest multigrid

level is updated, the multigrid cycle is restarted. Alternative strategies for traversing

the grids can be derived; in this research so-called W-cycles are employed.



Chapter 4

Discrete Adjoint Solver

This chapter develops the discrete adjoint equations for the turbomachinery RANS

solver described in chapter 3. First, the general adjoint principle is discussed in an

algebraic approach, cf. section 4.1. Afterwards, the systematic approach for the de-

velopment of the discrete adjoint solver is presented. The discrete adjoint equations

are derived by applying control theory directly to the set of discrete field equations,

cf. section 4.2. Special emphasis is put on the development of the turbomachin-

ery specific features of the adjoint solver, i.e. on the derivation of flow-consistent

adjoint boundary conditions and, to allow for a concurrent rotor-stator optimiza-

tion and stage coupling, on the development of an exact adjoint counterpart to the

non-reflective, conservative mixing-plane formulation used in the flow solver, cf. sec-

tion 4.3. Finally, the discretization and linearization of the various objective functions

employed within this work is described in section 4.4.

4.1 Adjoint Principle

A gradient-based optimization method uses the gradient of an objective function with

respect to the design variables ααα to determine a search direction suitable to optimize

the design problem. The gradient of a scalar objective function I = I(W,ααα) may be

written as
dI

dααα
=
∂I

∂ααα
+

∂I

∂W

∂W

∂ααα
, (4.1)

68
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and can be numerically estimated via finite-differences. Once the sensitivities δW =

∂W/∂ααα are calculated, this direct approach allows for the evaluation of many func-

tionals in a short period of time. However, for a large number of design variables,

the calculation of δW becomes an expensive procedure since it requires the evalua-

tion of the governing equations for each design variable perturbation. The adjoint

approach eliminates the dependence of the gradient on the flow variable sensitivity

and is considerably more efficient if the number of design variables exceeds the num-

ber of objective functions. This is the case for nearly all current turbomachinery

design problems, since usually a large number of design variables are required for an

adequate geometrical parametrization. The adjoint equations are obtained from the

following procedure. First, the variation of the steady-state governing equations,

∂R

∂ααα
+
∂R

∂W

∂W

∂ααα
= 0 , (4.2)

is introduced, where R = R(W,ααα) is the residual vector defined as in Eqn. 3.19.

Second, multiplying Eqn. (4.2) by the transpose of a Lagrange multiplier ψψψ and sub-

tracting the variation of the governing equations from the variation of the objective

function (4.1) produces the augmented Lagrangian function

dI

dααα
=
∂I

∂ααα
+

∂I

∂W

∂W

∂ααα
−ψψψT

[
∂R

∂ααα
+
∂R

∂W

∂W

∂ααα

]
. (4.3)

Regrouping Eqn. (4.3) yields

dI

dααα
=
∂I

∂ααα
−ψψψT ∂R

∂ααα
+

[
∂I

∂W
−ψψψT ∂R

∂W

]
∂W

∂ααα
. (4.4)

Since ψψψ is an arbitrary differentiable function, it may be chosen in such a way that the

terms within the brackets of Eqn. (4.4) cancel each other and, thus, the gradient of the

objective function can be evaluated directly from the geometrical variations without

having to re-compute the flow variable sensitivities. This procedure determines the

adjoint equation, which can be expressed, both for an algebraic equation and for a

system of partial differential equations, as[
∂R

∂W

]T
ψψψ =

[
∂I

∂W

]T
. (4.5)
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The adjoint vector ψψψ defines the solution to the adjoint system and corresponds to the

state vector W of the flow governing equations. The flux-like term [∂R/∂W]Tψψψ rep-

resents the adjoint counterpart to the flux gradients appearing in the field equations,

while the linearized objective function [∂I/∂W]T on the right hand side of Eqn. (4.5)

acts like a source term and drives the adjoint solution. The adjoint system (4.5)

can be solved similarly to the flow governing equations in a time-marching manner

by adding a pseudo-time derivative term ∂ψψψ/∂t to the equation. The complexity of

the system is of the same order as that of the underlying flow governing equations

and, thus, the computational cost to produce the adjoint solution is comparable to

the cost of finding the flow solution. Identical to the flow equations, multigrid, local

time-stepping, and implicit residual smoothing can be employed to accelerate the

convergence to steady state. After a solution to the adjoint system has been calcu-

lated, the gradient of the objective function with respect to the design variables is

obtained from the simplified gradient expression

dI

dααα
=
∂I

∂ααα
−ψψψT ∂R

∂ααα
. (4.6)

The gradient formulation (4.6) is free of the flow variable sensitivities δW, i.e. the

gradient can be calculated without having to re-compute the flow solution and is

obtained at the cost of n grid perturbations for n design variables. Note however, the

adjoint equation, i.e. Eqn. (4.5), provides information for the sensitivity calculation

of one objective functional only. Thus, each function of interest requires a separate

adjoint calculation.

4.2 Discrete Adjoint Equations

This section discusses the derivation of the discrete adjoint field equations for the

turbomachinery RANS solver presented in chapter 3. The crucial step in discretizing

the adjoint equations, i.e. Eqn. (4.5), is the derivation and implementation of the

left-hand-side, i.e. to obtain the exact linearization of the residual with respect to the

flow variables. Since turbomachinery specific functionals typically depend only on

the state at certain boundary planes, the linearized objective function, i.e. the right

hand side of Eqn. (4.5), usually acts as a boundary source term. Its derivation will
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be discussed in a separate section along with the adjoint boundary conditions.

The discrete form of the adjoint equations, cf. Eqn. (4.5), for the steady-state solu-

tion of the discrete field equations defined in computational space (3.24), i.e.RRR(W) =

0, is given by ∑
i

∑
j

∑
k

[
∂RRR
∂W

]T
i,j,k

ψψψi,j,k = R.H.S. , (4.7)

where
∑

i,
∑

j, and
∑

k implies summation over all domain cells in the i-, j-, and

k-directions. Expanding the linearized residual provides

∑
i

∑
j

∑
k

[
∂FFFn
∂W

− ∂FFFvn

∂W
− ∂FFFdn

∂W
− ∂(JQ)

∂W

]T
i,j,k

ψψψi,j,k = R.H.S. , (4.8)

for n = 1, 2, 3 and where JQ is the source term contribution from potential body

forces, here the Coriolis force as well as the centrifugal force, and FFF , FFFv, and FFFd are

the discretized convective, viscous, and artificial dissipation fluxes respectively. The

final set of discrete adjoint equations for a specific cell (i, j, k) is obtained by further

expanding the linearized discrete fluxes for each cell and collecting every term that is

a function of the state vector at cell (i, j, k). Thus, the resulting equations depend on

the details of the numerical scheme used to solve the flow governing equations. In the

underlying numerical scheme, cf. subsection 3.3.1, the convective flux at a cell face is

calculated by taking the average of the flux contributions from the two cells next to

the face. Hence, the calculation of the total convective flux balance for a certain cell

requires information from six adjacent cells. The viscous flux through a cell face is

calculated by taking the average of the fluxes computed at the face vertexes, where

the vertex flux is calculated from the flow variables in the eight surrounding cells.

Thus, the viscous flux is a function of its own and the twenty-six surrounding cells.

The stencil of the artificial dissipative scheme spans over two cells in each direction,

therefore, requiring information from a total of thirteen cells.

This illustrates that a full linearization of the discretized RANS equations proves

to be a daunting task, due to the need to keep track of the contributions from

numerous terms and cells. The development cost of the method increases rapidly with

the order and size of the stencil of the numerical scheme. To reduce the complexity

of deriving and implementing the adjoint equations, the turbulence model has not
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been linearized within this research. Instead, the adjoint solver takes advantage

of the so-called constant eddy viscosity (CEV) approximation, which assumes that

the variation of the turbulent viscosity is negligible. For the validity of the CEV

approximation, see Marta and Shankaran [61].

The following four subsections illustrate the development of the individual flux

and source term contributions to the discrete adjoint equations for the spatial dis-

cretization scheme employed in the turbomachinery RANS solver. First, the residual

of each flux gradient is expanded and its individual terms are linearized. For a par-

ticular cell (i, j, k) the variation of the residual is given by

δRRRi,j,k = [δFFFn − δFFFvn − δFFFdn − δ(JQ)]i,j,k , (4.9)

with the abbreviations

δFFF =
∂FFF
∂W

δW , δFFFv =
∂FFFv

∂W
δW , (4.10)

δFFFd =
∂FFFd

∂W
δW , δ(JQ) =

∂(JQ)

∂W
δW . (4.11)

Then, the individual adjoint contributions are derived and the adjoint fluxes are

constructed by collecting the relevant terms.

4.2.1 Contribution from the Convective Fluxes

This subsection develops the contribution from the convective flux gradients of the

governing equations to the discrete adjoint equations. All other flux contributions as

well as the source term contributions are temporarily neglected.

From Eqn. (3.29) it follows that, for a particular cell (i, j, k), the convective flux

gradient produces the residual contributions

FFF i,j,k = fi+ 1
2
,j,k − fi− 1

2
,j,k + fi,j+ 1

2
,k − fi,j− 1

2
,k + fi,j,k+ 1

2
− fi,j,k− 1

2
. (4.12)

Linearizing the convective terms consequently provides the sensitivities

δFFF i,j,k = δfi+ 1
2
,j,k − δfi− 1

2
,j,k + δfi,j+ 1

2
,k − δfi,j− 1

2
,k + δfi,j,k+ 1

2
− δfi,j,k− 1

2
. (4.13)
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The utilized second-order central-difference scheme averages the fluxes at the cell

boundaries before the flux gradients are computed, cf. Eqn. (3.30). Thus, the varia-

tions of the convective fluxes computed at the cell faces are given by

δfi± 1
2
,j,k =

1

2
(δfi±1,j,k + δfi,j,k) , (4.14)

δfi,j± 1
2
,k =

1

2
(δfi,j±1,k + δfi,j,k) , (4.15)

δfi,j,k± 1
2

=
1

2
(δfi,j,k±1 + δfi,j,k) . (4.16)

Introducing the metric terms, the convective flux variations can be expressed as a

function of the fluxes defined in the physical space, cf. Eqns. (3.22) and (3.31)-(3.33),

and may be written as

δfi± 1
2
,j,k =

1

2

[
δ
(
S1m

i± 1
2 ,j,k

Fmi±1,j,k

)
+ δ

(
S1m

i± 1
2 ,j,k

Fmi,j,k

)]
, (4.17)

δfi,j± 1
2
,k =

1

2

[
δ
(
S2m

i,j± 1
2 ,k

Fmi,j±1,k

)
+ δ

(
S2m

i,j± 1
2 ,k

Fmi,j,k

)]
, (4.18)

δfi,j,k+ 1
2

=
1

2

[
δ
(
S3m

i,j,k± 1
2

Fmi,j,k±1

)
+ δ

(
S3m

i,j,k± 1
2

Fmi,j,k

)]
, (4.19)

where summation over m = 1, 2, 3 is implied by a repeated index m. Expanding

Eqns. (4.17)-(4.19) yields

δfi± 1
2
,j,k =

1

2

[
δS1m

i± 1
2 ,j,k

Fmi±1,j,k
+ δS1m

i± 1
2 ,j,k

Fmi,j,k

+ S1m
i± 1

2 ,j,k
δFmi±1,j,k

+ S1m
i± 1

2 ,j,k
δFmi,j,k

]
, (4.20)

δfi,j± 1
2
,k =

1

2

[
δS2m

i,j± 1
2 ,k

Fmi,j±1,k
+ δS2m

i,j± 1
2 ,k

Fmi,j,k

+ S2m
i,j± 1

2 ,k
δFmi,j±1,k

+ S2m
i,j± 1

2 ,k
δFmi,j,k

]
, (4.21)

δfi,j,k+ 1
2

=
1

2

[
δS3m

i,j,k± 1
2

Fmi,j,k±1
+ δS3m

i,j,k± 1
2

Fmi,j,k

+ S3m
i,j,k± 1

2

δFmi,j,k±1
+ S3m

i,j,k± 1
2

δFmi,j,k

]
. (4.22)
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Utilizing the chain rule, these expressions can be further modified to produce

δfi± 1
2
,j,k =

1

2

[
δS1m

i± 1
2 ,j,k

Fmi±1,j,k
+ δS1m

i± 1
2 ,j,k

Fmi,j,k

+ S1m
i± 1

2 ,j,k
(AmδW)i±1,j,k + S1m

i± 1
2 ,j,k

(AmδW)i,j,k

]
, (4.23)

δfi,j± 1
2
,k =

1

2

[
δS2m

i,j± 1
2 ,k

Fmi,j±1,k
+ δS2m

i,j± 1
2 ,k

Fmi,j,k

+ S2m
i,j± 1

2 ,k
(AmδW)i,j±1,k + S2m

i,j± 1
2 ,k

(AmδW)i,j,k

]
, (4.24)

δfi,j,k+ 1
2

=
1

2

[
δS3m

i,j,k± 1
2

Fmi,j,k±1
+ δS3m

i,j,k± 1
2

Fmi,j,k

+ S3m
i,j,k± 1

2

(AmδW)i,j,k±1 + S3m
i,j,k± 1

2

(AmδW)i,j,k

]
, (4.25)

where Am are the convective flux Jacobians ∂Fm/∂W as defined in the appendix

A.2.1. Hence, the linearization of the convective flux gradient at cell (i, j, k) pro-

duces the seven flow variable sensitivities δWi,j,k, δWi±1,j,k, δWi,j±1,k, and δWi,j,k±1.

Substituting Eqns. (4.23)-(4.25) into Eqn. (4.13), discarding the terms which include

metric variations δS since these terms contribute to the gradient and not to the

adjoint equations, and reordering yields

δFFF i,j,k =
1

2

[
( S1m

i+1
2 ,j,k
− S1m

i− 1
2 ,j,k

+ S2m
i,j+1

2 ,k

−S2m
i,j− 1

2 ,k
+ S3m

i,j,k+1
2

− S3m
i,j,k− 1

2

) Am,i,j,kδWi,j,k

+S1m
i+1

2 ,j,k
Am,i+1,j,kδWi+1,j,k − S1m

i− 1
2 ,j,k

Am,i−1,j,kδWi−1,j,k

+S2m
i,j+1

2 ,k
Am,i,j+1,kδWi,j+1,k − S2m

i,j− 1
2 ,k

Am,i,j−1,kδWi,j−1,k

+S3m
i,j,k+1

2

Am,i,j,k+1δWi,j,k+1 − S3m
i,j,k− 1

2

Am,i,j,k−1δWi,j,k−1

]
.(4.26)

As stated above, the discrete adjoint equations for a specific cell (i, j, k) are obtained

by expanding the linearized residual for each cell in the computational domain and

by collecting every term that is a function of the state vector at cell (i, j, k). Con-

sequently, the linearized convective flux gradient at cell (i, j, k) contributes to the

adjoint fluxes of the cells (i, j, k), (i± 1, j, k), (i, j ± 1, k), and (i, j, k ± 1), while the
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adjoint flux FFF at cell (i, j, k) has contributions from the convective flux gradients F
of the same seven cells, i.e.

FFF(ψψψ)i,j,k =

[
∂FFFm
∂W

]T
i+1,j,k

ψψψi+1,j,k +

[
∂FFFm
∂W

]T
i,j+1,k

ψψψi,j+1,k +

[
∂FFFm
∂W

]T
i,j,k+1

ψψψi,j,k+1

+

[
∂FFFm
∂W

]T
i−1,j,k

ψψψi−1,j,k +

[
∂FFFm
∂W

]T
i,j−1,k

ψψψi,j−1,k +

[
∂FFFm
∂W

]T
i,j,k−1

ψψψi,j,k−1

+

[
∂FFFm
∂W

]T
i,j,k

ψψψi,j,k . (4.27)

Substituting Eqn. (4.26) into each term ∂FFFm/∂W of Eqn. (4.27) and keeping only

the terms that are functions of the variation δWi,j,k provides the contribution from

the convective fluxes to the discrete adjoint equations

FFF(ψψψ)i,j,k =
1

2

[
−S1m

i+1
2 ,j,k

AT
m,i,j,kψψψi+1,j,k − S2m

i,j+1
2 ,k

AT
m,i,j,kψψψi,j+1,k

−S3m
i,j,k+1

2

AT
m,i,j,kψψψi,j,k+1 + S1m

i− 1
2 ,j,k

AT
m,i,j,kψψψi−1,j,k

+S2m
i,j− 1

2 ,k
AT
m,i,j,kψψψi,j−1,k + S3m

i,j,k− 1
2

AT
m,i,j,kψψψi,j,k−1

+ ( S1m
i+1

2 ,j,k
− S1m

i− 1
2 ,j,k

+ S2m
i,j+1

2 ,k

−S2m
i,j− 1

2 ,k
+ S3m

i,j,k+1
2

− S3m
i,j,k− 1

2

) Am,i,j,k . (4.28)

Rearranging Eqn.(4.28) yields a more convenient formulation of the adjoint fluxes,

FFF(ψψψ)i,j,k = −1

2

[
S1m

i+1
2 ,j,k

AT
m,i,j,k(ψψψi+1,j,k −ψψψi,j,k)

−S1m
i− 1

2 ,j,k
AT
m,i,j,k(ψψψi−1,j,k −ψψψi,j,k)

+S2m
i,j+1

2 ,k
AT
m,i,j,k(ψψψi,j+1,k −ψψψi,j,k)

−S2m
i,j− 1

2 ,k
AT
m,i,j,k(ψψψi,j−1,k −ψψψi,j,k)

+S3m
i,j,k+1

2

AT
m,i,j,k(ψψψi,j,k+1 −ψψψi,j,k)

−S3m
i,j,k− 1

2

AT
m,i,j,k(ψψψi,j,k−1 −ψψψi,j,k)

]
. (4.29)
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Thus, the convective discrete adjoint flux is built of the transpose of the local con-

vective flux Jacobian multiplied with the fluxes produced by the co-state differences

between the neighbouring and current cells, which are evaluated at the corresponding

cell faces and therefore multiplied with the appropriate face metrics.

4.2.2 Contribution from the Viscous Fluxes

This subsection deals with the contribution from the viscous flux gradients of the

Navier-Stokes equations to the discrete adjoint equations. All other flux contributions

as well as the source term contributions are temporarily neglected. The procedure

is similar to the derivation of the discrete convective adjoint fluxes illustrated in

the previous subsection; however, the task of producing the viscous counterpart is

more complex due to the larger stencil of the numerical scheme originating from the

necessity of approximating the partial derivatives of velocity appearing in the viscous

stress tensor and the temperature gradients present in the energy equation.

From Eqn. (3.29) it follows that, for a particular cell (i, j, k), the viscous flux

gradient produces the residual contributions

FFFvi,j,k = −fv
i+1

2 ,j,k
+ fv

i− 1
2 ,j,k
− fv

i,j+1
2 ,k

+ fv
i,j− 1

2 ,k
− fv

i,j,k+1
2

+ fv
i,j,k− 1

2

. (4.30)

Linearizing the viscous terms consequently provides the sensitivities

FFFvi,j,k = −δfv
i+1

2 ,j,k
+ δfv

i− 1
2 ,j,k
− δfv

i,j+1
2 ,k

+ δfv
i,j− 1

2 ,k
− δfv

i,j,k+1
2

+ δfv
i,j,k− 1

2

. (4.31)

The variations of the viscous fluxes at the cell faces can be calculated from the

physical boundary flux sensitivities through the transformation

δfv
i± 1

2 ,j,k
= δ

(
S1m

i± 1
2 ,j,k

Fvm
i± 1

2 ,j,k

)
, (4.32)

δfv
i,j± 1

2 ,k
= δ

(
S2m

i,j± 1
2 ,k

Fvm
i,j± 1

2 ,k

)
, (4.33)

δfv
i,j,k+1

2

= δ
(
S3m

i,j,k± 1
2

Fvm
i,j,k± 1

2

)
, (4.34)

where summation over m = 1, 2, 3 is implied by a repeated index m. Expanding
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Eqns. (4.32)-(4.34) by the chain rule yields

δfv
i± 1

2 ,j,k
= δS1m

i± 1
2 ,j,k

Fvm
i± 1

2 ,j,k
+ S1m

i± 1
2 ,j,k

δFvm
i± 1

2 ,j,k
, (4.35)

δfv
i,j± 1

2 ,k
= δS2m

i,j± 1
2 ,k

Fvm
i,j± 1

2 ,k
+ S2m

i,j± 1
2 ,k
δFvm

i,j± 1
2 ,k

, (4.36)

δfv
i,j,k+1

2

= δS3m
i,j,k± 1

2

Fvm
i,j,k± 1

2

+ S3m
i,j,k± 1

2

δFvm
i,j,k± 1

2

, (4.37)

and, thus, produces terms that are multiplied to metric variations and terms that

are functions of the flow variable sensitivities. The metric variations will be ignored

in the remainder of this section since these terms are attributed to the gradient.

The second-order accurate discretization scheme utilized to calculate the viscous

fluxes estimates the viscous fluxes at the cell faces by averaging the flux quantities

defined at the four vertexes of the face. Thus, the variation of the viscous flux vector

at cell face (i+ 1
2
, j, k) expands to

δFvm
i+1

2 ,j,k
=

1

4

(
δFvm

i+1
2 ,j+

1
2 ,k+

1
2

+ δFvm
i+1

2 ,j−
1
2 ,k+

1
2

+ δFvm
i+1

2 ,j+
1
2 ,k−

1
2

+ δFvm
i+1

2 ,j−
1
2 ,k−

1
2

)
. (4.38)

The variations at the other cell faces take on similar expressions. From Eqns. (2.10)

and (2.15) it follows that the sensitivity of the viscous flux at the vertex (i + 1
2
, j +

1
2
, k + 1

2
) can be written as

δFvm
i+1

2 ,j+
1
2 ,k+

1
2

=



0

δτmnδ̂n1

δτmnδ̂n2

δτmnδ̂an3

δunτmn + unδτmn + δk δT
δxm

+ kδ δT
δxm


i+ 1

2
,j+ 1

2
,k+ 1

2

, (4.39)

with n = 1, 2, 3 and the Kronecker delta function δ̂. The variation of the viscous fluxes

at all other cell vertexes are defined in a similar fashion. The further derivation of

the discrete viscous adjoint fluxes is split up into two sections, which develop the

contributions from the momentum and energy equations separately.
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Contribution from the Momentum Equation

The contribution from the momentum equation to the discrete viscous adjoint fluxes

arise from the variation of the stress tensor terms δτmn. The linearized stress tensor

terms defined in Eqn. (4.39) expands to

δτmn
i+1

2 ,j+
1
2 ,k+

1
2

=

{
µ

[
δ

(
∂um
∂xn

)
+ δ

(
∂un
∂xm

)
+

2

3
δ

(
∂ul
∂xl

)
δ̂mn

]}
i+ 1

2
,j+ 1

2
,k+ 1

2

. (4.40)

Note, the viscosity coefficient µ is treated as a constant and hence its variation is

zero. The stress tensor is a function of the primitive variables WP = [ρ, u1, u2, u3, p]
T

and not directly of the flow variables W = [ρ, ρu1, ρu2, ρu3, ρE]T . Therefore, it is

convenient to first calculate the sensitivities and adjoint contributions with respect

to the primitive variables. From Eqn. (4.40) it can be observed that the variation

of the stress tensor produces the primitive variable sensitivities δu1, δu2, and δu3.

At the end of the derivation the viscous adjoint fluxes are then multiplied with a

transformation operator to express the adjoint fluxes in terms of the flow variable

sensitivities such that the discrete viscous adjoint fluxes can be added to the discrete

convective and artificial dissipation fluxes, i.e.

δFFFv =
∂FFFv

∂W
δW =

∂FFFv

∂WP

∂WP

∂W
δW =

∂FFFv

∂WP

M−1δW , (4.41)

where the transformation matrix M−1 = ∂WP/∂W is provided in the appendix,

cf. Eqn. (A.4).

With the definition of the velocity gradients, cf. Eqn. (3.42), Eqn. (4.40) may be

written as

δτmn
i+1

2 ,j+
1
2 ,k+

1
2

=

{
µ

[ (
1

J

[
δ
∂u∗m1n

∂ξ1

+ δ
∂u∗m2n

∂ξ2

+ δ
∂u∗m3n

∂ξ3

])

+

(
1

J

[
δ
∂u∗n1m

∂ξ1

+ δ
∂u∗n2m

∂ξ2

+ δ
∂u∗n3m

∂ξ3

])

+
2

3

(
1

J

[
δ
∂u∗l1l
∂ξ1

+ δ
∂u∗l2l
∂ξ2

+ δ
∂u∗l3l
∂ξ3

])
δ̂mn

]}
i+ 1

2
,j+ 1

2
,k+ 1

2

(4.42)
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where J is the volume of the auxiliary control volume, which is approximated by

averaging the volumes of the eight cells that share the vertex, cf. subsection 3.3.1.

Following Eqn.(3.43), the variation of the velocity gradient δ(∂u∗m1n
/∂ξ1) defined in

the computational domain is given by

δ

[
∂u∗m1n

∂ξ1

]
i+ 1

2
,j+ 1

2
,k+ 1

2

=
1

4

(
δu∗m1n,i+1,j,k

− δu∗m1n,i,j,k
+ δu∗m1n,i+1,j+1,k+1

− δu∗m1n,i,j+1,k+1

+ δu∗m1n,i+1,j+1,k
− δu∗m1n,i,j+1,k

+ δu∗m1n,i+1,j,k+1
− δu∗m1n,i,j,k+1

)
, (4.43)

The linearization of the other velocity gradient terms in Eqn. (4.42) take on similar

expressions. In Eqn. (4.43), δu∗ are the sensitivities of the velocities multiplied with

the cell metrics interpolated to the cell center by averaging the two corresponding

face metrics; for example

δu∗m1n,i,j,k
=
δS1n

i+1
2 ,j,k

+ δS1n
i− 1

2 ,j,k

2
umi,j,k +

S1n
i+1

2 ,j,k
+ S1n

i− 1
2 ,j,k

2
δumi,j,k . (4.44)

Hence, the variation of the stress tensor generates additional metric variations which

contribute to the gradient formulation.

The derivation shows that the stress tensor sensitivity δτmn
i+1

2 ,j+
1
2 ,k+

1
2

produces

velocity variations in eight cells; namely (i, j, k), (i+1, j, k), (i, j+1, k), (i, j, k+1), (i+

1, j+1, k), (i+1, j, k+1), (i, j+1, k+1), and (i+1, j+1, k+1). From Eqns. (4.38) and

(4.31) it follows that the contribution from the momentum equation spans over the

entire stencil of the second-order accurate spatial discretization scheme. Therefore,

the linearized viscous flux gradient δFFFvi,j,k produces flow variable sensitivities in its

own and the twenty-six surrounding cells. The momentum equation contributes terms

multiplied with the velocity variations δum at each of these cells. Accordingly, the

discrete viscous adjoint flux FFFv at cell (i, j, k) has contributions from the viscous flux

gradients FFFv of its own and the twenty-six surrounding cells, i.e.

FFFv(ψψψ)i,j,k =
[
δFFFTvmψψψ

]
i+1,j+1,k

+
[
δFFFTvmψψψ

]
i+1,j,k+1

+
[
δFFFTvmψψψ

]
i−1,j,k+1

+
[
δFFFTvmψψψ

]
i,j+1,k

+
[
δFFFTvmψψψ

]
i,j+1,k+1

+
[
δFFFTvmψψψ

]
i+1,j−1,k−1

+
[
δFFFTvmψψψ

]
i+1,j,k−1

+
[
δFFFTvmψψψ

]
i,j,k+1

+
[
δFFFTvmψψψ

]
i−1,j−1,k

+
[
δFFFTvmψψψ

]
i−1,j+1,k−1

+
[
δFFFTvmψψψ

]
i,j+1,k−1



4.2 Discrete Adjoint Equations 80

+
[
δFFFTvmψψψ

]
i−1,j,k

+
[
δFFFTvmψψψ

]
i−1,j,k−1

+
[
δFFFTvmψψψ

]
i−1,j−1,k+1

+
[
δFFFTvmψψψ

]
i,j−1,k+1

+
[
δFFFTvmψψψ

]
i,j−1,k

+
[
δFFFTvmψψψ

]
i,j−1,k−1

+
[
δFFFTvmψψψ

]
i+1,j+1,k−1

+
[
δFFFTvmψψψ

]
i+1,j+1,k+1

+
[
δFFFTvmψψψ

]
i,j,k−1

+
[
δFFFTvmψψψi

]
i+1,j−1,k

+
[
δFFFTvmψψψ

]
i+1,j−1,k+1

+
[
δFFFTvmψψψ

]
i−1,j−1,k−1

+
[
δFFFTvmψψψ

]
i+1,j,k

+
[
δFFFTvmψψψ

]
i−1,j+1,k

+
[
δFFFTvmψψψ

]
i−1,j+1,k+1

+
[
δFFFTvmψψψ

]
i,j,k

, (4.45)

with the abbreviation δFFFvm = (∂FFFvm∂WP)M−1. Substituting Eqn. (4.42) with

Eqn. (4.43) and Eqn. (4.44) into Eqn. (4.45) and collecting all the terms that are

multiplied with the variations δumi,j,k provides the discrete adjoint flux due to the

momentum equation with respect to the primitive variable variations. Multiplication

with the transformation matrix M−1 finally provides the momentum flux contribu-

tion in terms of the flow variable sensitivities. For a more detailed discussion of

the construction of the discrete adjoint momentum flux the reader should refer to

Nadarajah [56].

Contribution from the Energy Equation

The contribution from the energy equation to the discrete viscous adjoint fluxes can

be expressed as

δFvm
i+1

2 ,j+
1
2 ,k+

1
2

=

(
δunτmn + unδτmn + kδ

∂T

∂xm

)
i+ 1

2
,j+ 1

2
,k+ 1

2

. (4.46)

The coefficient of thermal conductivity k is treated as a constant and hence its vari-

ation is zero. Following Eqn. (4.46), the contribution from the energy equation can

be divided into three parts: the variation of the stress tensors δτmn, the contribu-

tion from the velocity variations δun, and the variation of the temperature gradients

δ(∂T/∂xm). As done for the development of the contribution from the momentum

equation, it is convenient to first calculate the sensitivities and adjoint contributions

with respect to the primitive variables. From Eqn. (4.46) it can be observed that

the variation of the energy equation produces the primitive variable sensitivities δu1,

δu2, δu3, and δT . Utilizing the ideal gas law the temperature can be expressed as

a function of density and pressure; hence, the temperature variations can easily be

transferred into variations of density and pressure.
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The variation of the stress tensor terms from the energy equation produces prim-

itive variable variations similar to the terms obtained in the momentum equation.

The only difference is that the energy equation stress tensor sensitivities are multi-

plied with the velocities un. However, this has no impact on the development of the

adjoint contributions. Thus, the linearization of the stress tensor terms is not further

discussed; the reader may refer to the previous section for a detailed derivation of

the stress tensor sensitivities.

The second contribution originates from the variation of the velocity components

at the face vertexes. The numerical scheme estimates these velocities by averaging

the velocity values of the eight cells that share the same vertex, cf. Eqn. (3.41).

Accordingly, the variation of the vertex velocity expands to

δun,i+ 1
2
,j+ 1

2
,k+ 1

2
=

1

8
( δun,i,j,k + δun,i+1,j,k + δun,i,j+1,k + δun,i+1,j+1,k+

δun,i,j,k+1 + δun,i+1,j,k+1 + δun,i,j+1,k+1 + δun,i+1,j+1,k+1). (4.47)

The velocity sensitivities at the other face vertexes are defined in a similar manner.

The third contribution to the discrete viscous adjoint fluxes is provided by the

variation of the temperature gradient. Utilizing the ideal gas law (2.1), the tem-

perature gradient can be expressed in terms of the primitive variables, pressure and

density,
∂T

∂xm
=

∂

∂xm

(
p

ρ

)
. (4.48)

Thus, the variation of the temperature gradient is given by[
kδ

∂T

∂xm

]
n,i+ 1

2
,j+ 1

2
,k+ 1

2

=

[
kδ

∂

∂xm

(
p

ρ

)]
n,i+ 1

2
,j+ 1

2
,k+ 1

2

, (4.49)

which can be expressed in terms of a pressure and a density variation,[
kδ

∂T

∂xm

]
n,i+ 1

2
,j+ 1

2
,k+ 1

2

=

[
k
∂

∂xm

(
1

ρ
δp− p

ρ2
δρ

)]
n,i+ 1

2
,j+ 1

2
,k+ 1

2

. (4.50)

The modified temperature gradient in Eqn. (4.50) is treated in a fashion similar to

the velocity gradients in the momentum equation, cf. Eqns. (3.42)-(3.44).

The final discrete adjoint flux contribution from the energy equation is obtained
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through the following steps: First, substituting the stress tensor variations derived

in the previous section, the velocity variations (4.47), and the temperature varia-

tions (4.50) into Eqn. (4.46) completes the linearization of the flux from the energy

equation. Second, substituting the linearized energy flux into Eqn. (4.45) and again

keeping only the terms that are functions of the primitive variable variations at cell

(i, j, k) provides the discrete adjoint energy flux. Third, multiplication with the

transformation matrix M−1 yields the adjoint energy flux in terms of the flow vari-

able sensitivities. A more elaborate derivation of the discrete adjoint energy fluxes

can be found in Nadarajah [56].

4.2.3 Contribution from the Source Term

This subsection develops the contribution from the source term to the discrete adjoint

equations. All flux contributions are temporarily neglected.

The source term only occurs and contributes to the adjoint equations when the

governing equations are formulated in a rotating frame of reference. From Eqn. (3.25)

it follows that, for a particular cell (i, j, k), the source term, which accounts for the

effects due to the Coriolis force and centrifugal force, produces the residual contribu-

tion (JQ)i,j,k, where J is the volume of the cell and Q is obtained from Eqn. (2.11).

Thus, the linearization of the source term is straight forward to derive;

δ(JQ)i,j,k =

(
∂(JQ)

∂W
δW

)
i,j,k

=

(
J ∂Q

∂W
δW

)
i,j,k

, (4.51)

where

∂Q

∂W
=



0 0 0 0 0

0 0 0 0 0

u2 0 0 Ω1 0

u3 0 −Ω1 0 0

0 0 0 0 0


. (4.52)

Accordingly, the adjoint contribution from the source term is simply given by(
∂Q

∂W

)T
ψψψ = [ 0, 0,−Ω1ψ4, Ω1ψ3, 0 ]T . (4.53)
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4.2.4 Contribution from the Artificial Dissipation Fluxes

This subsection develops the contribution from the artificial dissipation scheme to

the discrete adjoint equations. All other flux contributions as well as the source term

contributions are temporarily neglected.

From Eqn. (3.29) it follows that, for a particular cell (i, j, k), the artificial dissi-

pation flux produces the residual contributions

FFFdi,j,k = −fd
i+1

2 ,j,k
+ fd

i− 1
2 ,j,k
− fd

i,j+1
2 ,k

+ fd
i,j− 1

2 ,k
− fd

i,j,k+1
2

+ fd
i,j,k− 1

2

. (4.54)

Linearizing the artificial dissipation terms consequently provides the sensitivities

δFFFdi,j,k = −δfd
i+1

2 ,j,k
+ δfd

i− 1
2 ,j,k
− δfd

i,j+1
2 ,k

+ δfd
i,j− 1

2 ,k
− δfd

i,j,k+1
2

+ δfd
i,j,k− 1

2

. (4.55)

The artificial dissipation scheme employed in the flow solver is a blend of adaptive

second- and fourth-order differences, cf. subsection 3.3.2. The variation of the discrete

artificial dissipation flux may be written as

δfd
i+1

2 ,j,k
= δf

(2)
d
i+1

2 ,j,k
− δf (4)

d
i+1

2 ,j,k
, (4.56)

with

δf
(2)
d
i+1

2 ,j,k
= ν

(2)

i+ 1
2
,j,k

Λi+ 1
2
,j,k(δWi+1,j,k − δWi,j,k) , (4.57)

δf
(4)
d
i+1

2 ,j,k
= ν

(4)

i+ 1
2
,j,k

Λi+ 1
2
,j,k(δWi+2,j,k − 3δWi+1,j,k + 3δWi,j,k − δWi−1,j,k) , (4.58)

where the variations of the pressure sensor terms ν(2) and ν(4) as well as the sensi-

tivities of the spectral radius Λ are neglected. Although the sensor terms and the

spectral radii are functions of the state vector and thus will generally contribute to

the adjoint equation, in this work these terms are treated as constants and their vari-

ations are ignored since the magnitude of the dissipative terms is lower than those of

the convective and viscous fluxes. The dissipative flux sensitivities at the cell faces

i− 1
2
, j± 1

2
, and k± 1

2
are calculated similarly as the sensitivity at i+ 1

2
in Eqn. (4.58).

The stencil of the artificial dissipation scheme spans over two cells in each di-

rection, therefore, requiring information from a total of thirteen cells. Accordingly,
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the linearized artificial dissipation flux δFFFd at cell (i, j, k) contributes to the adjoint

fluxes of the cells (i, j, k), (i±1, j, k), (i±2, j, k), (i, j±1, k), (i, j±2, k), (i, j, k±1),

and (i, j, k±2), while the corresponding dissipative adjoint flux FFFd at cell (i, j, k) has

contributions from the artificial dissipation scheme of the same thirteen cells, i.e.

FFFd(ψψψ)i,j,k =

[
∂FFFd

∂W

]T
i−2,j,k

ψψψi−2,j,k +

[
∂FFFd

∂W

]T
i−1,j,k

ψψψi−1,j,k +

[
∂FFFd

∂W

]T
i,j,k

ψψψi,j,k

+

[
∂FFFd

∂W

]T
i+1,j,k

ψψψi+1,j,k +

[
∂FFFd

∂W

]T
i+2,j,k

ψψψi+2,j,k +

[
∂FFFd

∂W

]T
i,j−2,k

ψψψi,j−2,k

+

[
∂FFFd

∂W

]T
i,j−1,k

ψψψi,j−1,k +

[
∂FFFd

∂W

]T
i,j+1,k

ψψψi,j+1,k +

[
∂FFFd

∂W

]T
i,j+2,k

ψψψi,j+2,k

+

[
∂FFFd

∂W

]T
i,j,k−2

ψψψi,j,k−2 +

[
∂FFFd

∂W

]T
i,j,k−1

ψψψi,j,k−1 +

[
∂FFFd

∂W

]T
i,j,k+1

ψψψi,j,k+1

+

[
∂FFFd

∂W

]T
i,j,k+2

ψψψi,j,k+2 . (4.59)

Substituting Eqns. (4.56)-(4.58) into each term ∂FFFd/∂W of Eqn. (4.59) and discard-

ing all terms that are not functions of the state variable sensitivity δWi,j,k provides

the contribution from the artificial dissipation flux to the discrete adjoint equations

FFFd(ψψψ)i,j,k =
[
ν

(4)

Λ,i− 3
2
,j,k

]T
ψψψi−2,j,k −

[
ν

(2)

Λ,i− 1
2
,j,k

+ 3ν
(4)

Λ,i− 1
2
,j,k

+ ν
(4)

Λ,i− 3
2
,j,k

]T
ψψψi−1,j,k

+
[
ν

(4)

Λ,i+ 3
2
,j,k

]T
ψψψi+2,j,k −

[
ν

(2)

Λ,i+ 1
2
,j,k

+ 3ν
(4)

Λ,i+ 1
2
,j,k

+ ν
(4)

Λ,i+ 3
2
,j,k

]T
ψψψi+1,j,k

+
[
ν

(4)

Λ,i,j− 3
2
,k

]T
ψψψi,j−2,k −

[
ν

(2)

Λ,i,j− 1
2
,k

+ 3ν
(4)

Λ,i,j− 1
2
,k

+ ν
(4)

Λ,i,j− 3
2
,k

]T
ψψψi,j−1,k

+
[
ν

(4)

Λ,i,j+ 3
2
,k

]T
ψψψi,j+2,k −

[
ν

(2)

Λ,i,j+ 1
2
,k

+ 3ν
(4)

Λ,i,j+ 1
2
,k

+ ν
(4)

Λ,i,j+ 3
2
,k

]T
ψψψi,j+1,k

+
[
ν

(4)

Λ,i,j,k− 3
2

]T
ψψψi,j,k−2 −

[
ν

(2)

Λ,i,j,k− 1
2

+ 3ν
(4)

Λ,i,j,k− 1
2

+ ν
(4)

Λ,i,j,k− 3
2

]T
ψψψi,j,k−1

+
[
ν

(4)

Λ,i,j,k+ 3
2

]T
ψψψi,j,k+2 −

[
ν

(2)

Λ,i,j,k+ 1
2

+ 3ν
(4)

Λ,i,j,k+ 1
2

+ ν
(4)

Λ,i,j,k+ 3
2

]T
ψψψi,j,k+1

+
[
ν

(2)

Λ,i+ 1
2
,j,k

+ 3ν
(4)

Λ,i+ 1
2
,j,k

+ ν
(2)

Λ,i− 1
2
,j,k

+ 3ν
(4)

Λ,i− 1
2
,j,k

]T
ψψψi,j,k , (4.60)
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with the abbreviations ν
(2)
Λ = ν(2)Λ and ν

(4)
Λ = ν(4)Λ. Regrouping the terms in

Eqn. (4.60) yields the final discrete adjoint artificial dissipation flux

FFFd(ψψψ)i,j,k =
[
ν

(4)

Λ,i+ 3
2
,j,k

]T
(ψψψi+2,j,k −ψψψi+1,j,k) +

[
ν

(4)

Λ,i− 3
2
,j,k

]T
(ψψψi−2,j,k −ψψψi−1,j,k)

−
[
ν

(2)

Λ,i+ 1
2
,j,k

+ 3ν
(4)

Λ,i+ 1
2
,j,k

]T
(ψψψi+1,j,k −ψψψi,j,k)

−
[
ν

(2)

Λ,i− 1
2
,j,k

+ 3ν
(4)

Λ,i− 1
2
,j,k

]T
(ψψψi−1,j,k −ψψψi,j,k)

+
[
ν

(4)

Λ,i,j+ 3
2
,k

]T
(ψψψi,j+2,k −ψψψi,j+1,k) +

[
ν

(4)

Λ,i,j− 3
2
,k

]T
(ψψψi,j−2,k −ψψψi,j−1,k)

−
[
ν

(2)

Λ,i,j+ 1
2
,k

+ 3ν
(4)

Λ,i,j+ 1
2
,k

]T
(ψψψi,j+1,k −ψψψi,j,k)

−
[
ν

(2)

Λ,i,j− 1
2
,k

+ 3ν
(4)

Λ,i,j− 1
2
,k

]T
(ψψψi,j−1,k −ψψψi,j,k)

+
[
ν

(4)

Λ,i,j,k+ 3
2

]T
(ψψψi,j,k+2 −ψψψi,j,k+1) +

[
ν

(4)

Λ,i,j,k− 3
2

]T
(ψψψi,j,k−2 −ψψψi,j,k−1)

−
[
ν

(2)

Λ,i,j,k+ 1
2

+ 3ν
(4)

Λ,i,j,k+ 1
2

]T
(ψψψi,j,k+1 −ψψψi,j,k)

−
[
ν

(2)

Λ,i,j,k− 1
2

+ 3ν
(4)

Λ,i,j,k− 1
2

]T
(ψψψi,j,k−1 −ψψψi,j,k) . (4.61)

4.3 Discrete Adjoint Boundary Conditions

If fully linearized, the discrete adjoint equations derived in the previous section rep-

resent the exact counterpart to the discretized field equations. However, to obtain

physically correct boundary fluxes, the standard numerical scheme used in the tur-

bomachinery RANS solver is modified at the boundaries of a computational domain,

cf. subsection 3.3.3. First, boundary conditions are applied, which define the state

vector at the boundary WB as a function of the flow variables in the computational

domain WD and, at the inlet and outlet boundary, as a function of some prescribed

constant quantities q∞, thus WB = WB(WD, q∞). Second, the evaluation of the con-

vective and viscous fluxes using the boundary states WB then provides the physically

correct boundary flux FFFB, hence FFFB = FFFB(WD, q∞). Third, at boundary faces the

artificial dissipation flux is set to zero.



4.3 Discrete Adjoint Boundary Conditions 86

Recall, to obtain the exact discrete adjoint flux of a particular domain cell (i, j, k),

it is necessary to fully linearize the residual and to collect all terms that are functions

of the state vector at cell (i, j, k). If the discretized boundary flux is a function of

the state at cell (i, j, k), then the linearized boundary flux ∂FFFB/∂WD consequently

contributes towards the total adjoint flux of cell (i, j, k) and produces the adjoint

boundary flux [∂FFFB/∂WD]TψψψD. It is the author’s experience that the inclusion of

the adjoint boundary fluxes are vital and that an inaccurate implementation of the

adjoint boundary terms can significantly corrupt the adjoint solution and, thus, the

objective function gradient. The crucial step in calculating the adjoint boundary

flux is the exact linearization of the boundary flux with respect to the states in the

domain it depends on. Using the chain rule, the linearized boundary flux can be

expanded into
∂FFFB

∂WD

=
∂FFFB

∂WB

∂WB

∂WD

(4.62)

and, thus, can be written as the product of the flux Jacobian matrix AB = ∂FFFB/∂WB,

which is evaluated using the boundary state WB, and the transformation matrix

TTT BD =
∂WB

∂WD

, (4.63)

which represents the linearized flow boundary condition. While the formulation of

the flux Jacobian is identical for any type of boundary condition, the transformation

matrix TTT BD is boundary-type-specific. To simplify its derivation, it is desirable to

construct the transformation matrix as a composition of several matrices and ele-

mentary transformations.

The remaining part of this section presents the development of the transformation

matrices and, hence, flow-consistent adjoint boundary fluxes for the various discrete

boundary conditions employed in the turbomachinery RANS solver.

4.3.1 Solid Wall Boundary Conditions

In this subsection the transformation matrices for the inviscid and viscous wall bound-

ary conditions are derived.

In both cases it is straightforward to write the state vector at the boundary as

a function of the flow variables in the domain. The transformation matrix is the
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Jacobian matrix of this function. For an inviscid wall with slip boundary condition

and a zeroth-order pressure extrapolation, cf. Eqn. (3.66), the transformation matrix

is given by

TTT BD =



1 0 0 0 0

−n1Ω1(x3n2 − x2n3) 1− n1n1 − n1n2 − n1n3 0

−n2Ω1(x3n2 − x2n3) − n2n1 1− n2n2 − n2n3 0

−n3Ω1(x3n2 − x2n3) − n3n1 − n3n2 1− n3n3 0

0 0 0 0 1


. (4.64)

For an adiabatic, viscous wall with no-slip condition and a zeroth-order pressure

extrapolation, cf. Eqn. (3.67), the transformation matrix reads as

TTT BD =



1 0 0 0 0

0 0 0 0 0

−Ω1x3 0 0 0 0

Ω1x2 0 0 0 0

0 0 0 0 1


. (4.65)

Multiplying the inviscid or viscous transformation matrix with the flux Jacobian eval-

uated at the boundary, taking the transpose of the product, and then multiplying the

resulting matrix with the adjoint solution in the domain provides the flow-consistent

adjoint boundary flux for a solid wall boundary.

4.3.2 Inlet and Outlet Boundary Conditions

To obtain physically correct boundary fluxes at an inlet or outlet, characteristic-based

boundary conditions using Riemann invariants are applied in the flow solver, cf. sub-

section 3.3.3. The corresponding transformation matrix is obtained by linearizing

these imposed flow boundary conditions. Since all boundary quantities are expressed

in terms of the domain states through local relations only, the derivation of TTT BD is

lengthy but relatively simple.

At a subsonic inlet, the outgoing Riemann invariant Ri, the prescribed total tem-

perature Tt,in, and the circumferential and radial inflow angles αϕ and αr are combined
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to form a quadratic equation which solves for the speed of sound cin. The remaining

boundary quantities are then determined from the prescribed inlet quantities, the

isentropic relations, and the equation of state. To obtain the transformation matrix

TTT BD at the inlet boundary, first the outgoing Riemann invariant, cf. Eqn. (3.69), is

linearized, providing

δRi =
∂Ri

∂WD

=



−u1
ρ

+
c

p

(
E − |U |2

)
1

ρ
+

c

p
u1

c

p
u2

c

p
u3

− c

p


D

, (4.66)

where all quantities are calculated from the domain states. Afterwards, the variation

of the speed of sound δcin, cf. Eqns. (3.75) and (3.76), is calculated utilizing the chain

rule, i.e.

δcin =
∂cin

∂WD

=
∂cin

∂Ri
δRi , (4.67)

with

∂cin

∂Ri
=

−1− (γ − 1)Ri

2αx

[√
γRTt,in
αx

(
2

γ − 1
+

1

αx

)
− (γ − 1)Ri2

2αx

]−1

2

γ − 1
+

1

αx

, (4.68)

where

αx = 1 + tan2 αϕ +
tan2 αr
cos2 αϕ

. (4.69)

With this information and the relations of Eqn. (3.77), the variation of the inlet

temperature Tin and the linearized inlet velocity |U |in are straightforward to obtain,

namely

δTin =
∂Tin

∂WD

=
∂Tin

∂cin

δcin , (4.70)
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where
∂Tin

∂cin

=
2cin

γR
, (4.71)

and

δ|U|in =
∂|U|in
∂WD

=
∂|U|in
∂Tin

δTin , (4.72)

with
∂|U|in
∂Tin

= −
√

cp
2(Tt,in − Tin)

. (4.73)

Utilizing the chain rule again provides the variations of the individual velocity com-

ponents

δu1,in =
∂u1,in

∂WD

=
∂u1,in

∂|U|in
δ|U|in = cosαr cosαϕδ|U|in , (4.74)

δu2,in =
∂u2,in

∂WD

=
∂u2,in

∂|U|in
δ|U|in = (sinαr cosϕ− cosαr sinαϕ sinϕ)δ|U|in , (4.75)

δu3,in =
∂u3,in

∂WD

=
∂u3,in

∂|U|in
δ|U|in = (sinαr sinϕ+ cosαr sinαϕ cosϕ)δ|U|in , (4.76)

as well as the sensitivity of the inlet pressure

δpin =
∂pin

∂WD

=
∂pin

∂Tin

δTin =
γ

γ − 1

pt,in
Tt,in

(
Tin

Tt,in

) 1
γ−1

δTin , (4.77)

and the density variation

δρin =
∂ρin

∂WD

=
∂ρin

∂pin

δpin +
∂ρin

∂Tin

δTin =
1

RTin

δpin −
pin

RT 2
in

δTin . (4.78)

This completes the linearization of the primitive variables ∂WP at the boundary with

respect to the domain states, ∂WP,B/∂WD. The transformation matrix can now be

constructed through the matrix multiplication

TTT BD =
∂WB

∂WP,B

∂WP,B

∂WD

(4.79)

where ∂WB/∂WP,B is the transformation matrix M provided in Eqn. (A.3), i.e.

δw1,B = δρin , (4.80a)
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δw2,B = ρinδu1,in + u1,inδw1,B , (4.80b)

δw3,B = ρinδu2,in + u2,inδw2,B , (4.80c)

δw4,B = ρinδu3,in + u3,inδw3,B , (4.80d)

δw5,B = Einδρin + ρin

[
R

γ − 1
δTin + u1,inδu1,in + u2,inδu2,in + u3,inδu3,in

]
. (4.80e)

At a subsonic outlet, the entropy is extrapolated from the interior domain, which

provides the density at the boundary. Together with the information obtained from

the outgoing Riemann invariant and the prescribed static pressure, this allows for a

calculation of the missing flow variables. The transformation matrix is constructed in

a similar fashion as at the inlet. First, the outgoing Riemann invariant, cf. Eqn. (3.85),

and the density formulation, cf. Eqn. (3.83), are linearized, providing

δRi =
∂Ri

∂WD

=



−u1
ρ
− c

p

(
E − |U|2

)
1

ρ
− c

p
u1

− c

p
u2

− c

p
u3

c

p


D

, (4.81)

and

δρout =
∂ρout

∂WD

=

(
pout

pD

) 1
γ

δρD −
ρD

γpout

(
pout

pD

) γ+1
γ
[
δpD −

pD

pout

δprad

]
, (4.82)

where

δρD =
∂ρD

∂WD

=



1

0

0

0

0


D

and δpD =
∂pD

∂WD

= (γ − 1)



|U|2
2

−u1

−u2

−u3

1


D

, (4.83)
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and δprad is either null or, in case the radial equilibrium boundary condition is applied,

δprad =
∂prad

∂WD

=

(
r

rHub

− 1

)


u2
ϕ

0

− 2uϕ sinϕ

2uϕ cosϕ

0


D

. (4.84)

Thereafter, the variation of the speed of sound can be determined

δcout =
∂cout

∂WD

=
1

2

√
γ

ρoutpout

[
−pout

ρout

δρout + δprad

]
, (4.85)

and the individual velocity components can be linearized. The sensitivity of the

velocity component normal to the outlet boundary may be calculated from

δu1,out =
∂u1,out

∂WD

= δRi− 2

γ − 1
δcout , (4.86)

while the velocity components tangential to the outlet plane are straightforward to

obtain since they are simply extrapolated from the interior domain, i.e.

δu2,out =
∂u2,out

∂WD

=
1

ρ



−u2

0

1

0

0


D

and δu3,out =
∂u3,out

∂WD

=
1

ρ



−u3

0

0

1

0


D

. (4.87)

The temperature variation is obtained from the relation described in Eqn. (4.70).

Finally, TTT BD can be constructed through the same matrix multiplication employed

at the inlet boundary, cf. Eqns. (4.79) and (4.80).

In case of supersonic inflow, all characteristics are incoming, thus, the boundary

states are calculated from the prescribed inlet quantities only. Consequently, the

transformation matrix equals zero. At a supersonic outlet boundary, where all char-

acteristics are outgoing, the transformation matrix TTT BD equals the identity matrix.
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4.3.3 Periodic Boundary Condition

The discrete adjoint periodic boundary conditions are straightforward to implement.

In case of translational periodicity a periodic boundary is equivalent to a block-to-

block boundary and both scalar and vector quantities are simply copied from the

domain cell next to a periodic boundary into the halo cell of the other corresponding

periodic boundary, cf. subsection 3.3.3. The adjoint variables are treated accordingly.

In case of rotational periodicity the rotation of the coordinate system has to be

accounted for and the transfer of the adjoint variables follows the procedure described

in Eqn. (3.89), thus

ψ1,H,II = ψ1,D,I , (4.88a)

ψ2,H,II = ψ2,D,I , (4.88b)

ψ3,H,II = (ψ3,D,I cosϕI + ψ4,D,I sinϕI) cosϕII

+ (ψ3D,I sinϕI − ψ4,D,I cosϕI) sinϕII , (4.88c)

ψ4,H,II = (ψ3,D,I cosϕI + ψ4,D,I sinϕI) sinϕII

− (ψ3,D,I sinϕI − ψ4,D,I cosϕI) cosϕII , (4.88d)

ψ5,H,II = ψ5,D,I , (4.88e)

where the subscripts H, D, I, and II correspond to the cell indexing used in Fig-

ure 3.8. This procedure ensures that the adjoint fluxes at two corresponding periodic

boundaries are identical.

4.3.4 Block-to-Block Boundaries

The treatment of the adjoint variables at a block-to-block boundary is identical to the

treatment of the flow variables at a block-to-block interface, cf. subsection 3.3.3. The

blocks are extended by two additional levels of cells at each boundary face. These

halo cells possess the same geometric properties as the first two domain cells of the

neighbouring block, which ensures that the domain and halo cells perfectly overlap.

After every stage of the Runge-Kutta time-stepping scheme, the adjoint variables are

then exchanged between two neighbouring blocks by copying the domain states of one

block into the overlapping halo cells of the adjacent block. This boundary treatment
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ensures that the correct adjoint boundary fluxes are obtained at a block-to-block

interface. Similarly as in the flow solver, the adjoint solver uses MPI standard for

communication between multiple processors.

4.3.5 Rotor-Stator Interface

This subsection discusses the development of the exact adjoint boundary condition

for Chima’s steady averaging-plane approach [53] described in subsection 3.3.3. Fol-

lowing this approach, mixed-out circumferential averages of the primitive variables

are first calculated from all cells at a constant radius on both sides of an interface and

are used as boundary values in the neighbouring domain. The differences between the

local domain values next to the boundary and the boundary values are then treated

as characteristic perturbations and Giles’ 1D characteristic theory [54] is applied to

drive the differences to zero. Hence, the mixing-plane boundary condition involves

nonlocal quantities which make a boundary state depend on many interior cells. The

state vector at a boundary is a function of the state vector in its adjacent domain

cell and the mixed-out averages from the neighbouring domain. Figure 4.1 shows

a schematic mixing-plane interface and illustrates the dependency of the boundary

states. The state in the red rotor boundary cell is a function of all red domain cells.

Thus,

WB,R = WB,R

(
WD,R,W̃S

)
= WB,R

(
WD,R,

∑
j

WD,S,j

)
, (4.89)

where R and S represent respectively rotor and stator quantities and W̃ is the state

vector built of mixed-out primitive variables.
∑

j implies summation over all cells

located at the same radial section of the mixing-plane interface in the neighbouring

domain. Accordingly, the state in the green stator boundary cell depends on all green

domain cells, hence

WB,S = WB,S

(
WD,S,W̃R

)
= WB,S

(
WD,S,

∑
j

WD,R,j

)
. (4.90)

From Eqns. (4.89) and (4.90) it follows that the adjoint flux for a domain cell next

to a rotor-stator interface has adjoint boundary flux contributions from both sides of
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Figure 4.1: Dependency of the boundary states at a mixing-plane interface.

the mixing-plane, namely(
AB,R

∂WB,R

∂WD,R

)T
ψψψD,R +

∑
j

(
AB,S,j

∂WB,S,j

∂WD,R

)T
ψψψD,S,j (4.91)

for a domain cell on the rotor side and(
AB,S

∂WB,S

∂WD,S

)T
ψψψD,S +

∑
j

(
AB,R,j

∂WB,R,j

∂WD,S

)T
ψψψD,R,j (4.92)

in case of a domain cell on the stator side. The various boundary states contributing

to the adjoint flux of both a rotor and stator domain cell are visualized in Figure 4.2.

The red-colored boundary states contribute to the adjoint flux of the red domain cell,

while the green domain cell has contributions from all green-colored boundary states.

In Eqns. (4.91) and (4.92), AB,R and AB,S are the flux Jacobians evaluated at the

boundary, while

TTT BD,R =
∂WB,R

∂WD,R

and TTT BD,SR,j =
∂WB,S,j

∂WD,R

, (4.93)

TTT BD,S =
∂WB,S

∂WD,S

and TTT BD,RS,j =
∂WB,R,j

∂WD,S

, (4.94)
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are the transformation matrices to be determined. Chima’s averaging plane approach

calculates the boundary states from

WB,R = W̃S + δW̃c,RS , (4.95)

WB,S = W̃R + δW̃c,SR , (4.96)

where W̃ is again the averaged conservative variable vector obtained from the mixed-

Figure 4.2: Boundary states contributing to the adjoint flux of a cell next to a
mixing-plane interface.

out primitive variables and the boundary state correction δW̃c is obtained through

Giles’ 1D characteristic theory. Linearizing Eqns. (4.95) and (4.96) provides the

corresponding transformation matrices. In particular, the boundary contribution to

the adjoint flux of a rotor domain cell next to a mixing-plane interface is specified

through the transformation matrices

TTT BD,R =
∂δW̃c,RS

∂WD,R

and TTT BD,SR,j =
∂(W̃R,j + δW̃c,SR,j)

∂WD,R

, (4.97)

where the term W̃S appearing in Eqn. (4.95) could be dropped since it does not

directly depend on the states in the rotor domain. The transformation matrices
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defining the adjoint boundary flux contribution to the adjoint flux of a stator domain

cell next to a rotor-stator interface are given by

TTT BD,S =
∂δW̃c,SR

∂WD,S

, and TTT BD,RS,j =
∂(W̃S,j + δW̃c,RS,j)

∂WD,S

, (4.98)

where here the term W̃R could be dropped since the variation ∂W̃R/∂WD,S equals

zero. All four terms δW̃c,RS, W̃R, δW̃c,SR, and W̃S appearing in Eqns. (4.97)

and (4.98) are functions of the mixed-out quantities. Hence, the calculation of the

transformation matrices involves the linearization of the equations defining the mixed-

out primitive variables. Furthermore, to obtain the linearization of δW̃c,RS and

δW̃c,SR it is necessary to differentiate the 1D characteristics.

The further development of the adjoint boundary flux contribution is split up

into two sections, in which the linearization of the individual terms will be discussed

separately. First, the differentiation of the mixed-out flow variables W̃R and W̃S

will be presented in more detail. Then, the linearization of Giles’ 1D characteristics

δW̃c,RS and δW̃c,SR will be derived.

Linearization of the mixed-out flow variables

For the sake of brevity, in this subsection the indices associating quantities to a spe-

cific rotor or stator domain cell will be dropped. Henceforth, the linearization of the

vector of mixed-out flow variables δW̃ represents both the variations ∂W̃R,j/∂WD,R

and ∂W̃S,j/∂WD,S.

Utilizing the chain rule, the linearization of the mixed-out flow variables can be

expanded to produce

δW̃ =
∂W̃

∂WD

=
∂W̃

∂F̄

∂F̄

∂WD

, (4.99)

where F̄ are the averaged fluxes obtained from either the rotor or stator domain cells

located next to a rotor-stator interface, cf. Eqn. (3.95). With Eqn. (3.96), which

formulates the flux vector in a cylindrical coordinate system, the linearization of the

averaged fluxes is obtained straightforward from

δF̄ =
∂F̄

∂WD

=
1

lP

∂FD

∂WD

, (4.100)
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where lP is either the rotor or stator pitch area and ∂FD/∂WD represents the flux

Jacobian expressed in cylindrical coordinates and defined as in the appendix A.2.2.

The variation ∂W̃/∂F̄ is derived by first defining the mixed-out flow variables W̃ =

[w̃1, w̃x1 , w̃ϕ, w̃r, w̃5]T in terms of the averaged fluxes,

W̃ =

[
F̄ 2

1

F̄x1 − p̃
, F̄1,

F̄1F̄ϕ
F̄x1 − p̃

,
F̄1F̄r
F̄x1 − p̃

,
p̃

γ − 1
+
F̄x1 − p̃

2
+

F̄ 2
ϕ + F̄ 2

r

2(F̄x1 − p̃)

]T
, (4.101)

and then linearizing the averaged conservative variable vector with respect to the

averaged fluxes to provide

∂δW̃

∂F̄
=



F̄ 2
1B1 + 2D1 1 F̄1F̄ϕB1 +D3 F̄1F̄rB1 +D4

1
2 (D5B1 + T1)

F̄ 2
1B2 −D2

1 0 F̄1F̄ϕB2 −D1D3 F̄1F̄rB2 −D1D4
1
2 (D5B2 + T2 −D5D

2 + 1)

F̄ 2
1B3 0 F̄1F̄ϕB3 +D1 F̄1F̄rB3

1
2 (D5B3 + T3 + 2D3)

F̄ 2
1B4 0 F̄1F̄ϕB4 F̄1F̄rB4 +D1

1
2 (D5B4 + T4 + 2D4)

F̄ 2
1B5 0 F̄1F̄ϕB5 F̄1F̄rB5

1
2 (D5B5 + T5)


(4.102)

with the abbreviations

D = (F̄x1 − p̃)−1 , D1 = F̄1D , D2 = F̄x1D , (4.103)

D3 = F̄ϕD , D4 = F̄rD , D5 = (F̄ 2
ϕ + F̄ 2

r ) , (4.104)

and

Bi = D2 ∂p̃

∂F̄i
, Ti =

3− γ
γ − 1

∂p̃

∂F̄i
, (4.105)

where the linearization of the mixed-out pressure is given by

∂p̃

∂F̄
=

γ2 − 1

(γ + 1)F̄x



−F̄5

F̄x

γ2 − 1
+
γ2F̄x1

γ2 − 1

F̄ϕ

F̄r

−F̄1


, (4.106)



4.3 Discrete Adjoint Boundary Conditions 98

with

F̄x =
√
F̄ 2
x1

+ (γ2 − 1)(F̄ 2
x1

+ F̄ 2
ϕ + F̄ 2

r − 2F̄x1F̄5) . (4.107)

This completes the linearization of the mixed-out flow variables.

Linearization of Giles’ 1D characteristics

The calculation of the boundary contribution from Chima’s steady averaging plane

to the adjoint flux of a domain cell next to a rotor-stator interface requires the

linearization of Giles’ 1D characteristics. In the following, the derivation focuses on

the development of the adjoint boundary flux from the mixing-plane interface on the

rotor side. The stator side adjoint flux contribution is obtained by substituting the

subscript R with S and vice versa. From Eqn. (4.97) it follows that the characteristic

contribution to the adjoint boundary flux on the rotor side is specified through the

transformation matrices

∂δW̃c,RS

∂WD,R

and
∂δW̃c,SR

∂WD,R

, (4.108)

where the index j, which indicates summation over all cells in the neighbouring

domain at the same radial section, has been neglected for the sake of brevity.

The transformation matrix ∂δW̃c,RS/∂WD,R can be expanded to produce

∂δW̃c,RS

∂WD,R

=
∂(P̃δCRS)

∂WD,R

, (4.109)

where δC = [δc1, δcx1 , δcϕ, δcr, δc5]T is the vector of characteristic variables and P̃ is

the right eigenvector matrix of the convective flux Jacobian built of the mixed-out

variables from the stator domain. Since P̃ does not depend on the state vector WD,R,

Eqn. (4.109) can be simplified to

∂δW̃c,RS

∂WD,R

= P̃
∂δCRS

∂WD,R

, (4.110)

with the characteristic variables δCRS defined as in Eqn. (3.100). While the left

eigenvector matrix P̃−1 is independent of the rotor flow variables as well, the lin-
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earization of the vector of flow variable perturbations, cf. Eqn. (3.101), yields the

identity matrix. Thus, at an inlet boundary with supersonic inflow, where all five

characteristics are incoming, the transformation matrix ∂δW̃c,RS/∂WD,R equals to

zero. At a supersonic outlet boundary, where all characteristics are outgoing, the

corresponding transformation matrix simplifies to the identity matrix. For subsonic

inflow, the linearized 1D characteristics take on the expression

∂δW̃c,RS

∂W̃P,R

=



B11 B21 B31 B41 B51

B12 B22 B32 B42 B52

B13 B23 B33 B43 B53

B14 B24 B34 B44 B54

B15 B25 B35 B45 B55


, (4.111)

where Bij = TiZj with Ti and Zj being defined as follows

T1 = C1 , Z1 = 1
2
C2|Ũ|2 + ũx1 c̃ , (4.112)

T2 = C1(ũx1 − c̃) , Z2 = − C2ũx1 − c̃ , (4.113)

T3 = C1ũϕ , Z3 = − C2ũϕ , (4.114)

T4 = C1ũr , Z4 = − C2ũr , (4.115)

T5 = 1
2

(
C1|Ũ|2 − ũx1 c̃−1 + C−1

2

)
, Z5 = C2 , (4.116)

C1 = (2c̃2)−1 , C2 = γ − 1 . (4.117)

At a subsonic outlet boundary the transformation matrix may be written as

∂δW̃c,RS

∂W̃P,R

=



B11 B21 B31 − ũϕ B41 − ũr B51 − (ũ2ϕ + ũ2r)

B12 B22 B32 B42 B52

B13 B23 B33 + 1 B43 B53 + ũϕ

B14 B24 B34 B44 + 1 B54 + ũr

B15 B25 B35 B45 B55


, (4.118)
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where Bij = T1iZ1j + T2iZ2j with

T11 = 1 , T21 = C1 , (4.119)

T12 = ũx1 , T22 = C1(ũx1 + c̃) , (4.120)

T13 = ũϕ , T23 = C1ũϕ , (4.121)

T14 = ũr , T24 = C1ũr , (4.122)

T15 = 1
2
|Ũ|2 , T25 = 1

2

(
C1|Ũ|2 + ũx1 c̃

−1 + C−1
2

)
, (4.123)

Z11 = 1− C2C1|Ũ|2 , Z21 = 1
2
C2|Ũ|2 − ũx1 c̃ , (4.124)

Z12 = 2C2C1ũx1 , Z22 = − C2ũx1 + c̃ , (4.125)

Z13 = 2C2C1ũϕ , Z23 = − C2ũϕ , (4.126)

Z14 = 2C2C1ũr , Z24 = − C2ũr , (4.127)

Z15 = − 2C2C1 , Z25 = C2 , (4.128)

C1 = (2c̃2)−1 , C2 = γ − 1 . (4.129)

Utilizing the chain rule greatly simplifies the derivation of the second characteristic

boundary contribution ∂δW̃c,SR/∂WD,R of Eqn. (4.108). The transformation matrix

can be expanded to produce

∂δW̃c,SR

∂WD,R

=
∂δW̃c,SR

∂W̃P,R

∂W̃P,R

∂W̃R

∂W̃R

∂F̄R

∂F̄R

∂WD,R

, (4.130)

where the last two terms ∂W̃R/∂F̄R and ∂F̃R/∂WD,R are readily available since

they were already derived during the discussion of the linearization of the mixed-

out flow variables, cf. subsection 4.3.5. Moreover, the term ∂W̃P,R/∂W̃R simply is

the primitive transformation matrix M−1, cf. Eqn. (A.4); this time evaluated using

mixed-out quantities. Thus, the only term missing to complete the derivation is

the first term of Eqn. (4.109), i.e. the 1D characteristics δW̃c,SR differentiated with

respect to the mixed-out primitive variables W̃P,R. Using Eqn. (3.99) this term can
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be expanded to produce

∂δW̃c,SR

∂WP,R

=
∂(P̃δCSR)

∂WP,R

, (4.131)

where both the characteristics δCSR and the right eigenvector matrix P̃ are func-

tions of the mixed-out primitive variables from the rotor domain. Similarly, the

left eigenvector matrix P̃−1 and the vector defining the jump perturbation δWSR,

cf. Eqns.(3.100) and (3.101), both comprise mixed-out primitive variables from the

rotor domain. The linearization of Eqn. (3.101) yields the negative identity matrix.

For supersonic flow at the inlet boundary the transformation matrix of the charac-

teristics equals zero again, while at a supersonic outlet boundary the transformation

matrix simplifies to

∂δW̃c,SR

∂WP,R

= M̃ , (4.132)

where M̃ is defined as in Eqn. (A.3) and evaluated using mixed-out rotor quantities.

Developing the transformation matrices for a subsonic inflow or outflow boundary is

more tedious, due to the numerous terms that have to be carried forward during the

derivation. At a subsonic inlet the linearization yields

∂δW̃P,SR

∂W̃P,R

=



B11 + C3
T1
ρ̃

B21 + C3
D2

ρ̃
B31 + C3

T3
ρ̃

B41 + C3
T4
ρ̃

B51 + C3
D5

2ρ̃

B12 B22 + C3T1 B32 B42 B52 + C3T2

B13 B23 B33 + C3T1 B43 B53 + C3T3

B14 B24 B34 B44 + C3T1 B54 + C3T4

B15 − C3
T1
p̃

B25 − C3
D2

p̃
B35 − C3

T3
p̃

B45 − C3
T4
p̃

B55 − C3
D5

2p̃


(4.133)

with Bij = TiZj, where Ti and Zj take on the expressions

T1 = C1 , Z1 = ρc̃(ũx1 − ux1)(2ρ̃)−1 , (4.134)

T2 = C1(ũx1 − c̃) , Z2 = C2ρ
2c̃(ũx1 − ux1) , (4.135)

T3 = C1ũϕ , Z3 = C2ρ(ũϕ − uϕ) , (4.136)

T4 = C1ũr , Z4 = C2ρ(ũr − ur) , (4.137)
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T5 = 1
2

(
C1|Ũ|2 − ũx1 c̃−1 + C−1

2

)
, Z5 = ρc̃(ũx1 − ux1)(2p̃)−1 − 1 , (4.138)

D2 = C1ũx1 − (4c̃)−1 , D5 = C1(|Ũ|2 − ũx1 c̃) , (4.139)

C1 = (2c̃2)−1 , C3 = ρc̃(ũx1 − ux1) + ρC2C4 − p̃ , (4.140)

C2 = γ − 1 , C4 = 1
2
|Ũ|2 − ũx1ux1 − ũϕuϕ + ũrur + E.(4.141)

At a subsonic outlet boundary the transformation matrix may be written as

∂δW̃c,RS

∂W̃P,R

=



B11 + C6
T21

ρ̃
B12 + C6

D2

ρ̃
B13 + C6

T23

ρ̃
B14 + C6

T24

ρ̃
B15 + C6

D5

2̃ρ

B21 B22 + L1 B23 B24 B25 + C6T22 + C5ũx1

B31 B32 B33 + L2 B34 B35 + C6T23 − C5ũϕ − L3

B41 B42 B43 B44 + L2 B45 + C6T24 − C5ũr − L4

B51 − C6
T21

p̃
B52 − C6

D2

p̃
B53 − C6

T23

p̃
B54 − C6

T24

p̃
B55 − C6

D5

2̃p


(4.142)

where Bij = T1iZ1j + T2iZ2j and

T11 = 1 , T21 = C1 , (4.143)

T12 = ũx1 , T22 = C1(ũx1 + c̃) , (4.144)

T13 = ũϕ , T23 = C1ũϕ , (4.145)

T14 = ũr , T24 = C1ũr , (4.146)

T15 = 1
2
|Ũ|2 , T25 = 1

2

(
C1|Ũ|2 + ũx1 c̃

−1 + C−1
2

)
, (4.147)

Z11 = − ρC2C1|Ũ|2 , Z21 = 1
2
C2|Ũ|2 − ũx1 c̃ , (4.148)

Z12 = 2C2C1ũx1 , Z22 = − C2ũx1 + c̃ , (4.149)

Z13 = 2C2C1ũϕ , Z23 = − C2ũϕ , (4.150)

Z14 = 2C2C1ũr , Z24 = − C2ũr , (4.151)

Z15 = − 2C2C1 , Z25 = C2 , (4.152)

D2 = C1ũx1 + (4c̃)−1 , D5 = C1(|Ũ|2 − ũx1 c̃) , (4.153)

C1 = (2c̃2)−1 , C4 = 1
2
|Ũ|2 − ũx1ux1 − ũϕuϕ − ũrur + E, (4.154)
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C2 = γ − 1 , C5 = ρ− ρ̃− 2C1(ρC2C4 − p̃) , (4.155)

C3 = γC−1
2 , C6 = − ρc̃(ũx1 − ux1) + ρC2C4 − p̃ , (4.156)

L1 = C6C1 + C5 , L3 = ρ(2ũϕ − uϕ) , (4.157)

L2 = L1 − ρ , L4 = ρ(2ũr − ur) . (4.158)

This completes the development of the adjoint boundary flux contribution from the

the rotor-stator interface. The derived adjoint mixing-plane boundary condition is

consistent with the averaging-plane utilized in the flow solver. Note, the adjoint

boundary flux is formulated in a cylindrical coordinate system, while the adjoint

field equations are solved in Cartesian coordinates. Thus, once all individual mixing-

plane contributions are calculated and exchanged between the blade rows, the adjoint

boundary flux has to be transferred into a Cartesian coordinate formulation before

it can be added to the adjoint field equation.

4.4 Linearization of the Discrete Objective Func-

tion

The right hand side of the adjoint equation (4.7) is obtained through linearizing the

discretized objective function I. Turbomachinery specific functionals are typically

evaluated at the boundaries of the computational domain, most frequently at the

inlet and exit plane. Hence, the linearized objective function is given by

∂I

∂WD

=
∂I

∂WB

TTT BD , (4.159)

where TTT BD = ∂WB/∂WD is the boundary-type-specific transformation matrix dis-

cussed in section 4.3. However, it is now multiplied with the linearization of the

objective function with respect to the boundary state. Since the functionals are

usually integrated and either area-averaged, mass-averaged, or mixed-out quantities,

∂I/∂WB depends on the underlying averaging technique. For instance, let q̄ be a
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mass-averaged and normalized scalar quantity defined as

q̄ =
1

q0

∑
i

[
q(ρUnA)

]
i∑

i

[
ρUnA

]
i

, (4.160)

where Un is the velocity component normal to the boundary, A is the surface, and q0

is the initial mass-averaged quantity. Then, its linearization is given by

∂q̄

∂WB,i

=
1

q0

∑
i

[
ρUnA

]
i

[
(ρUnA)i

∂qi
∂WB

+ (q − q̂)∂(ρUnA)i
∂WB

]
, (4.161)

where

q̂ =

∑
i

[
q(ρUnA)

]
i∑

i

[
ρUnA

]
i

. (4.162)

Note, while different averaging techniques might lead to nearly identical function

values, the linearized function might differ noticeably and, thus, might affect the

adjoint solution.

The design objective for the test cases presented in this work is to minimize the

entropy generation rate, which is equivalent to maximizing the isentropic efficiency

but results in simpler sensitivity expressions. The discrete objective function is de-

fined as the difference between the normalized mass-averaged entropy at the outlet

and inlet

I =
1

s0 · ṁout

∑
Bout

[s(ρUnA)]i −
1

s0 · ṁin

∑
Bin

[s(ρUnA)]i , (4.163)

where s0 is the initial entropy at the outlet and s = p/ργ. Furthermore, constraints

are prescribed on the mass flow rate ṁ as well as on the mass-weighted total pressure

ratio π̄ through the expressions

cṁ =
1

2

[
ṁ

ṁ0

− 1

]2

and cπ̄ =
1

2

[
π̄

π̄0

− 1

]2

, (4.164)

where ṁ0 is the initial mass flow rate defined as in Eqn. (2.42) and π̄0 is the initial ratio

between the mass-weighted total pressure at the outlet and inlet, cf. Eqn. (2.45). The

linearization of the entropy objective function (4.163) is obtained from Eqn. (4.161),
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where

∂s

∂WB

=
1

ργ



−γp
ρ

+ (γ − 1)
|U|2

2

− (γ − 1)u1

− (γ − 1)u2

− (γ − 1)u3

γ − 1


(4.165)

and

∂(ρunA)

∂WB

=



0

n1A

n2A

n3A

0


. (4.166)

The linearized constraints take on the expressions

∂cṁ
∂WB

=
1

ṁ0

[
ṁ

ṁ0

− 1

]
∂ṁ

∂WB

and
∂cπ̄
∂WB

=
1

π̄0

[
π̄

π̄0

− 1

]
∂π̄

∂WB

, (4.167)

where the variation of the mass flow rate ∂ṁ/∂WB is defined as in Eqn. (4.166) and

the linearization of the mass-weighted total pressure ratio ∂π̄/∂WB may be calculated

from Eqn. (4.161). The inlet total pressure is prescribed and, thus, does not change

between subsequent design iterations. Therefore, it can be treated as a constant and

only the total pressure at the exit boundary has to be linearized. The variation of

the total pressure with respect to the conserved variables yields the expression

∂pt
∂WB

=

[
1 +

γ − 1

2c2
|U|2

] 1
γ−1



|U|2

2
(γ − 2) − (γ − 1)

4c2
|U|4

−u1(γ − 2) +
(γ − 1)

2c2
|U|2u1

−u2(γ − 2) +
(γ − 1)

2c2
|U|2u2

−u3(γ − 2) +
(γ − 1)

2c2
|U|2u3

(γ − 1) − (γ − 1)

2c2
|U|2


. (4.168)



Chapter 5

Gradient Calculation and

Optimization Strategy

This chapter discusses the gradient calculation for the adjoint approach and presents

the optimization strategy employed to determine an improved design. Section 5.1

introduces the different kinds of design variables utilized within this work, elaborates

on their advantages and disadvantages, and develops the gradient formulation for the

different choices of design variables. Furthermore, the two different grid movement

schemes used to perturb the computational grid are introduced. Section 5.2 presents

the optimization algorithm used to determine the shape modifications and illustrates

the treatment of the constraints within the framework of a sequential-quadratic pro-

gramming algorithm.

5.1 Gradient Calculation

Once the adjoint system is solved and the co-state solutionψψψ is available, the objective

function gradient can be calculated through the simplified expression

dI

dααα
=
∂I

∂ααα
−ψψψT ∂R

∂ααα
, (5.1)

which is free of the flow variable sensitivities δW. Thus, the gradient can be evalu-

ated without having to re-compute the flow solution; cf. section 4.1 for the derivation

of Eqn. (5.1). The partial derivative ∂I/∂ααα is zero for functionals which are only

106
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evaluated at the inlet or exit plane of the computational domain, since these bound-

aries are fixed. This is the case for the design objective and constraints employed

within this research, cf. section 4.4; hence the gradient expression further simplifies

to
dI

dααα
= −ψψψT ∂R

∂ααα
. (5.2)

In this work, the remaining partial derivative ∂R/∂ααα is approximated through finite-

differences, i.e. the residual is evaluated for the initial and perturbed design vari-

ables. Simple first-order forward differences are used. Since each variable has to be

perturbed individually, n grid perturbations are necessary for n design parameters

and, thus, the cost of the gradient evaluation is proportional to the number of de-

sign variables. Nonetheless, gradient calculation through Eqn. (5.1) or Eqn. (5.2) is

dramatically faster than through the forward approach defined in Eqn. (4.1).

In the following two subsections the choice of the design variables is discussed and

the approach utilized to perturb the computational grid is presented.

5.1.1 Design variables

The choice of the design variables is one of the most crucial steps in any optimization

procedure. The success of an optimization does not only depend on the selected ob-

jective function but also on the choice of the right design variables. At the same time,

it is important to deliberate and understand the relation between the design objec-

tive and a potential design variable. In case the objective and the design variables

are only loosely coupled the effectiveness of the optimization might suffer. On the

other hand, if the design objective is extremely sensitive to the occurring changes in

the design variables or if their relation possesses a highly non-linear character, then

the robustness of the optimization will most likely be negatively affected. Ideally,

the selected design variables have a large influence on the design objective, while at

the same time they provide a design space that guarantees a robust design problem.

Furthermore, the choice of the design variables often depends on the stage of the

design process at which the optimization problem is formulated. For instance, during

the design of a new gas turbine a design task could be to increase the total pressure

built-up throughout the compressor. In an earlier, more conceptual design stage, the
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number of compressor stages could serve as the design variables. At a later stage,

where the conceptual design is mostly frozen and the number of compressor stages

cannot be modified, the number of blades defined within each blade row could be

used as the design variables. Even later, towards the final stages of the design pro-

cess where the blade count is decided on as well, the blade geometry itself could serve

as the design parameter. Apart from constraints related to the current design stage,

geometrical constraints may be present due to requisites posed by other disciplines.

For example, an aerodynamic shape optimization should not violate any structural

requirements. Moreover, from a computational perspective, the available resources

and time as well as the computational cost typically influence and limit the choice of

the design variables.

In this research, design problems at earlier conceptual design stages are not in-

vestigated. Instead, the optimization problems posed are to redesign some given

compressor configurations, which serve as the baseline design. The blade geometries

are chosen to be the design variables, thus, the optimizer tries to meet the design

objective by modifying the shape of the blades. In a computational domain, this

naturally translates to changing the surface grid points. However, there exist several

other ways to modify the shape during a design process as well; e.g. surface perturba-

tions using Hicks-Henne bump functions, B-spline control points, etc. The following

two sub-sections describe the two different types of design variables used within this

work.

Surface Grid Points

Using the surface grid points as design variables, i.e. ααα = Xs, ensures that there is

no restriction on the achievable geometry. Equation (5.2) becomes

dI

dXs

= −ψψψT ∂R

∂Xs

, (5.3)

where Xs represents the grid nodes selected as design variables. As stated above,

in this research the partial derivative ∂R/∂Xs is approximated via finite-differences.

However, the gradient could also be calculated analytically by utilizing the chain rule,
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i.e.
∂R

∂Xs

=
∂R

∂Xv

∂Xv

∂Xs

, (5.4)

where Xv are the interior volume points and the grid sensitivity ∂Xv/∂Xs is a func-

tion of the employed grid perturbation scheme, cf. subsection 5.1.2. If every sur-

face grid point is used, then the complete design space, including the solution that

achieves the global minimum, is attainable. However, the independent displacement

of a single point violates the assumption that the surface geometry is continuous.

Yet, this is irrelevant for gradient calculation using the adjoint approach since the

evaluation of the adjoint sensitivity ψψψT (∂R/∂Xs) does not require a re-calculation

of the flow field for the perturbed geometry. In addition, point-wise gradients are

typically highly non-smooth, which, throughout the optimization, would gradually

lead to non-smooth geometry profiles. Therefore, it is necessary to either smooth

the calculated gradient or the shape modifications determined from each gradient

calculation. Within this optimization framework the modified geometry is smoothed

after every design cycle; a second-order implicit smoothing technique is utilized to

obtain an optimized blade shape without discontinuities.

For the two-dimensional design cases presented in the subsections 6.2.5, 6.2.6,

and 6.3.5, the surface grid points are used as the design variables. However, for

the gradient validation conducted in the subsections 6.2.4 and 6.3.4, so-called Hicks-

Henne bump functions are selected as design variables instead. This is necessary

since, as mentioned above, point-wise gradients cannot be used with the finite-

difference method. Perturbing the geometry with the smooth Hicks-Henne bump

functions ensures that the perturbed geometry remains smooth and, thus, enables

the re-calculation of the flow solution to obtain finite-difference gradients.

Hicks-Henne Bump Functions

Complex three-dimensional geometries require highly-resolved grids. When using the

surface grid points as the design variables this usually leads to a very large number of

design variables; more than 10,000 parameters would be common. Since the gradient

calculation using the adjoint approach does not require a re-evaluation of the flow

equations for each design variable perturbation, it is generally feasible to use surface

grid points as design variables even for such highly-resolved grids, whereas the cost
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would be prohibitive if the gradients were computed by the classical finite-difference

method. Nevertheless, the computational cost of the gradient calculation still scales

with the number of design variables, since each design variable has to be perturbed

individually. Computationally cheap grid perturbation schemes, such as algebraic

algorithms, are often tailored to specific grid configurations and their implementation

rapidly becomes complex when employing them to more general multi-block solvers

such as that one used within this work. Other mesh movement schemes that are

better suited for multi-block solvers are usually more costly, as shown in the next

subsection. Thus, despite the remarkable advantages of the adjoint approach, there

is still a need to keep the number of design variables low.

Therefore, in the three-dimensional design cases presented in the sections 6.3.6

and 6.3.7, Hicks-Henne bump functions [62] are utilized as design variables instead

of the surface grid points, thus ααα = Xb. Using these functions, the number of de-

sign variables can be reduced to less than 1,000 parameters. Another advantage of

employing these smooth functions is that they ensure that the perturbed geometry

remains smooth both during the gradient calculation and throughout the optimiza-

tion. Hence, no additional gradient or geometry smoothing has to be performed.

In this research work, the Hicks-Henne bumps are defined through a modified sine

function given by

∆Xs,i = ∆Xb,j

[
sin
(
πx̂

log 0.5
log tl,1,j

1,i

)]tw,1,j [
sin
(
πx̂

log 0.5
log tl,2,j

2,i

)]tw,2,j
. (5.5)

The bump function (5.5) determines the amount of perturbation ∆Xs,i normal to the

surface of the i-th surface grid point Xs,i that is located in the vicinity of the j-th

bump Xb,j and the parameters provide the flexibility to place the bump at strategic

points where a redesign is preferred while leaving other parts of the blade intact.

For example, the maximum bump magnitude is provided by the coefficient ∆Xb,j

and its location is defined by the two parameters tl,1,j and tl,2,j, which specify the

reduced coordinates in chord-wise and radial direction respectively. The coefficients

tw,1,j and tw,2,j control the width of the j-th bump. The bigger the value of tw, the

more local the bump function will be. x̂1,i and x̂2,i define the location of a specific

surface grid point ∆Xs,i in reduced coordinates. Here, the reduced coordinate x̂1,i is
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defined along the grid line of the surface point running into the chord-wise direction

and x̂2,i represents the reduced coordinate of the second grid line running into the

radial direction. The values of x̂1 are 0 and 1 at the leading edge and trailing edge

respectively, while x̂2 takes on the values 0 at the hub section and 1 at the casing

section.

If geometric parameters not handled directly by the solver are chosen as design

variables, the chain rule has to be applied to express the gradient of the objective

function with respect to these design variables. Thus, for Hicks-Henne bump func-

tions the gradient formulation (5.2) becomes

dI

dXb

= −ψψψT ∂R

∂Xb

, (5.6)

where now the sensitivity ∂R/∂Xb is approximated via finite-differences. The resid-

ual perturbation may be also calculated analytically from

∂R

∂Xb

=
∂R

∂Xv

∂Xv

∂Xs

∂Xs

∂Xb

. (5.7)

In Eqn. (5.7), the grid sensitivity ∂Xv/∂Xs again depends on the underlying grid

perturbation scheme, while the second partial derivative ∂Xs/∂Xb is a function of the

chosen design variables. In case of Hicks-Henne bump functions it can be obtained

with little effort; from Eqn. (5.5) it follows

∂Xs,i

∂Xb,j

=

[
sin
(
πx̂

log 0.5
log tl,1,j

1,i

)]tw,1,j [
sin
(
πx̂

log 0.5
log tl,2,j

2,i

)]tw,2,j
. (5.8)

5.1.2 Grid Perturbation

Grid deformation schemes play an important role in numerical aerodynamic shape

optimization. As the shape of the body at hand changes, the computational grid must

adapt to conform to the deformed geometry. Thus, grid perturbation is required dur-

ing the gradient calculation and at the end of each design cycle to update the current

design. Re-generating each of these grids manually defeats the purpose of an efficient

optimization framework with as little user interaction as possible. Re-generating the

grids through automatic grid generation can be a challenge to implement since it may
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still require adjustments from a user to ensure adequate quality. Furthermore, if the

re-generated grid is comprised of a different distribution or number of grid cells, an

interpolation scheme would also be needed to interpolate data from the previous grid.

Alternatively, the current grid can be deformed based on the displacements of the

surface nodes. This approach is favourable in the sense that it can be implemented as

an automated process while maintaining a consistent grid connectivity and grid sen-

sitivity. Thus, this grid deformation approach is preferred and implemented within

this optimization framework. Consequently, the gradient expressions (5.2) may be

rewritten in a general form, as

dI

dααα
= −ψψψT ∂R

∂Xv

∂Xv

∂Xs

∂Xs

∂ααα
, (5.9)

where ααα are the design points and represent either the surface grid points Xs or

Hicks-Henne bump functions Xb. Xv are again the interior volume points; their

location is a function of the surface grid points, which in turn may depend on some

other control points such as Hicks-Henne bump functions. As already stated above,

the grid sensitivity

δXvs =
∂Xv

∂Xs

(5.10)

is a function of the underlying grid movement scheme. In case an automatic grid

generator is used and the grid sensitivities cannot be determined analytically, the

partial derivative ∂Xv/∂Xs has to be estimated via finite-differences.

Design cases which produce large shape changes demand robust grid deformation

schemes which are typically computationally expensive. Many different grid move-

ment schemes have been devised over the past couple of decades, each with its own

advantages and disadvantages; algebraic grid movement schemes [63, 64], schemes

utilizing Laplace smoothing [65], linear spring analogy methods [66, 67], grid movers

based on the equations of linear elasticity [68, 69], schemes developed for B-spline

surface control volumes [70], and grid deformation schemes employing radial basis

functions [71, 72, 73, 74], just to name a few. In this work two different grid movement

schemes are employed, both of which are discussed in the following two subsections.

First, an algebraic grid deformation approach, which is used for two-dimensional de-

sign optimization, is discussed. Afterwards, a radial basis function grid movement
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scheme, which is more suited for complex multi-block grid configurations and which

is utilized within three-dimensional shape optimization, is presented.

Algebraic Grid Perturbation

On structured grids, algebraic grid movement schemes usually are inexpensive and rel-

atively easy to implement. The algebraic scheme employed within the two-dimensional

optimization framework developed in this research is based on a grid perturbation

method introduced by Jameson [63], which modifies the current location of the vol-

ume grid points based on the known surface grid point perturbations. The method

propagates the displacement of the surface nodes into the interior domain along the

respective normal grid lines. First, the arc length between a surface point and the

grid point at the edge of the computational domain is calculated along the grid line

that connects both points. Then the grid points at each location along this grid line

are attenuated proportional to their arc length distance from the surface point and

the total arc length between the surface and the computational domain boundary.

For a single-block grid, the algorithm can be described as

xnew
1,i,j = xold

1,i,j + Cij
(
xnew

1,i,1 − xold
1,i,1

)
for j = 2, . . . , jmax , (5.11)

xnew
2,i,j = xold

2,i,j + Cij
(
xnew

2,i,1 − xold
2,i,1

)
for j = 2, . . . , jmax , (5.12)

where the grid is assumed to be oriented such that a point (i, 1) is located on the

surface and a node (i, jmax) represents a point at the boundary of the computational

domain. i is the current grid index which runs along the geometry and the ij-th

entry of the matrix C can be defined as

Cij = 1− (3− 2Nij)N 2
ij , (5.13)

where Nij is the ratio of the arc length from the surface to the current grid point and

the total arc length from the surface to the edge of the computational domain along

the grid point, i.e.

Nij =

∑j
l=2

√
(x1,i,l − x1,i,l−1)2 + (x2,i,l − x2,i,l−1)2∑jmax

l=2

√
(x1,i,l − x1,i,l−1)2 + (x2,i,l − x2,i,l−1)2

. (5.14)
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The grid sensitivities ∂Xv/∂Xs for this algebraic deformation scheme are obtained

straightforward from linearizing Eqn. (5.12), thus,

δXvs = C . (5.15)

This simple grid perturbation scheme has been found to be very robust, yet, it pos-

sesses some major drawbacks as well. The simplicity of the method lies in the ef-

fortlessness of producing new grid point locations along a grid line. However, this

advantage disappears in case of unstructured grids due to the lack of a continuous grid

line extending from the surface to the boundary of the computational domain. Even

for multi-block solvers, which typically have to handle various different grid config-

urations, this efficient property of the grid perturbation method is mostly removed.

Implementing the algebraic deformation scheme in a more general way, increases

the computational cost of the method and specifically the complexity of the imple-

mentation. For example, various blocks with differently oriented coordinate systems

might exist between a surface point and the corresponding boundary point. To be

applicable to the two-dimensional multi-block solver used within this research, the

algorithm described above is adjusted. First, the matching pair of surface/far-field

grid points are determined with the help of the block connectivity information. Then,

the interior grid points located at the faces of each block are modified; the block face

deformations are obtained from expressions similar to those presented above. At this

step, special care is required to ensure that the face and vertex points which share

various blocks are perturbed identically on each of these blocks. Afterwards, the

interior block points are perturbed based on the modifications of the face nodes.

Grid Perturbation Based on Radial Basis Functions

Extending the algebraic grid perturbation scheme presented in the previous subsec-

tion to three dimensions, while keeping it general enough to handle complex three-

dimensional multi-block grids, would further increase the complexity of the imple-

mentation and the computational cost. Thus, the algebraic scheme is discarded in

favour of a more general grid movement scheme based on radial basis functions.

Radial basis functions (RBF) are used in many applications to interpolate scat-
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tered data, for a grid perturbation scheme the interpolation function may be described

as

∆Xv,n =

NRBF∑
i=1

βiφ
(
||Xv,n −XRBF,i||

)
, (5.16)

where ∆Xv,n is the interpolated displacement of the n-th volume mesh point Xv,n,

NRBF is the number of RBF points, βi are coefficients that are solved to satisfy the

condition that the interpolation function recovers the known displacement at the

RBF points XRBF,i, φ is the basis function, and ||Xv,n − XRBF,i|| is the Euclidean

distance between point Xv,n and the RBF point XRBF,i defined as

||Xv,n −XRBF,i|| =
√

(x1,v,n − x1,RBF,i)2 + (x2,v,n − x2,RBF,i)2 + (x3,v,n − x3,RBF,i)2 .

(5.17)

Wendland’s C2 basis function with support radius is adopted in this work because it

provides a good combination of mesh quality and matrix conditioning. It is given by

φ(ξ) = (1− ξ)4(4ξ + 1) for ξ < 1.0 , (5.18)

φ(ξ) = 0 for ξ ≥ 1.0 , (5.19)

where ξ = ||Xv,n−XRBF,i||/rSRAD with rSRAD being the support radius. Any grid point

outside this region is not displaced.

The RBF interpolation function (5.16) can be conveniently expressed through

matrices when considering the entire set of grid points. First, the RBF coefficients βββ

must be solved for the coordinates x1, x2, and x3 such that the known displacements

of the RBF points ∆XRBF are recovered, i.e.

∆XRBF = MRBFβββ . (5.20)

The displacements of the volume grid points ∆Xv can then be expressed as

∆Xv = ARBFβββ = ARBFM
−1
RBF∆XRBF . (5.21)
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The matrices are defined as

MRBF =



φr1,r1 φr1,r2 . . . φ1,NRBF

φr2,r1 φr2,r2 . . . φr2,NRBF

...
...

. . .
...

φNRBF,r1 φNRBF,r2 . . . φNRBF,NRBF


NRBF×NRBF

, (5.22)

and

ARBF =



φv1,r1 φv1,r2 . . . φv1,NRBF

φv2,r1 φv2,r2 . . . φv2,NRBF

...
...

. . .
...

φNRBF,r1 φNRBFr2 . . . φNRBF,NRBF


Nv×NRBF

. (5.23)

Here, φrn,rj represents φ(||XRBF,n − XRBF,j||/rSRAD), i.e. the basis function between

the RBF point XRBF,n and the RBF point XRBF,j, while φvn,rj stands for the basis

function between the volume point Xv,n and the RBF point XRBF,j, cf. Eqns. (5.16)

and (5.17). Nv is the number of volume points and ∆XRBF is the vector of known

RBF point displacements. An RBF interpolation function must be solved for every

coordinate direction x1, x2, and x3.

If the RBF-based grid deformation scheme is utilized for grid perturbation during

the gradient calculation, then formulation (5.9) expands to

dI

dααα
= −ψψψT ∂R

∂Xv

∂Xv

∂XRBF

∂XRBF

∂Xs

∂Xs

∂ααα
, (5.24)

where in the above equation, ∂Xv/∂XRBF represents the RBF grid sensitivity, while

∂XRBF/∂Xs is a NRBF × Ns matrix which maps the designated RBF surface grid

points to all grid points on the surface. In block form this second sensitivity can be

represented as
∂XRBF

∂Xs

=

[
IRBF

0

]
, (5.25)

where IRBF is an identity matrix of size NRBF × NRBF. Linearizing Eqns. (5.20) and
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(5.21) provides the RBF grid sensitivity as

∂Xv

∂XRBF

= ARBFM
−1
RBF . (5.26)

Figure 5.1 illustrates the typical multi-block grid configuration used to spatially

discretize the various blade rows investigated within this research. The task of an

optimization would be to modify the blade geometry (color: red), and thus the blade

surface points, such that the design objective is met. At the same time, both the

hub geometry and the casing (color: blue) are frozen and are not part of the design

space. The remaining outer boundaries of the computational domain are made of

an inlet and outlet plane (color: green) and two corresponding periodic boundaries

(color: orange, for clarity only one periodic boundary is depicted). Accordingly, all

grid points on the blade surface can be defined as RBF points and their displacements

become the RBF displacements. As the grid is deformed, it has to be ensured that

not only the hub and casing but also all other outer boundaries are not perturbed.

Consequently, all grid points located on these planes can be added to the RBF matrix

as well, with their displacements forced to zero. Thus, in its full and most simple form,

the RBF grid deformation scheme assumes every blade surface grid point and every

point located on the other boundaries of the computational domain to be an RBF

point. The known displacements of every blade surface grid point are then accurately

recovered, while the scheme would prevent the hub geometry and the casing as well

as the outer planes from being deformed. In this form, the deformation scheme

is robust and the grid quality is well maintained. Unfortunately, when applied to

highly-resolved three-dimensional grids, the method becomes expensive and requires

a vast amount of memory, since a geometry defined by many boundary grid points

would imply an equally large amount of RBF points. Adding all these points to the

RBF matrix MRBF, the system of equations simply becomes too expensive to solve

in a reasonable amount of time. Speeding up the RBF grid movement scheme can

be achieved by reducing the number of RBF points and, hence, by neglecting some

boundary grid points. However, at the same time this deteriorates the accuracy and

robustness of the deformation scheme. Thus, a compromise between computational

cost and grid quality has to be made and the trade-off has to be investigated carefully.
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Figure 5.1: Multi-block grid structure for a single-stage transonic compressor.

In this research work, several measures are undertaken to reduce the computa-

tional cost to a reasonable level while compromising the quality of the grid perturba-

tion as little as possible. As it can be seen from Figure 5.1, both periodic boundaries

and especially the inlet and outlet planes are located relatively far from the blade

surface that is redesigned. Changes in the blade geometry are propagated into the

interior domain through the RBF scheme but also attenuate more and more as fur-

ther they travel. Accordingly, blade shape modifications produce only very small and

almost negligible grid perturbations close to the outer boundaries. Therefore, it is

not necessary to include every outer boundary point as an RBF point. Investigations

have shown that it is sufficient to only include the four vertex points of each inlet or

outlet plane into the RBF matrix. Furthermore, at a periodic boundary it usually is

enough to only load every eighty to twelfth grid point in each coordinate direction

as an RBF point. The displacements of the excluded outer boundary grid points are

simply forced to zero. Although they do not provide any information to the defor-

mation scheme, the grid quality remains high and the introduced inaccuracies are

negligible. Moreover, tests have shown that it usually is not necessary to define every

surface point of the modified geometry as an RBF point. Loading only every third

blade surface point into the RBF matrix produces grids with comparable qualities
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but at considerable less cost. On viscous grids the grid quality suffers noticeably if

even fewer blade surface points are included into the deformation scheme. However,

on inviscid grids the number of RBF points can be reduced even further by load-

ing only every fourth or fifth blade surface perturbation. Inviscid problems do not

require such highly-resolved grids near a solid body. Hence, the distance from the

surface to the first interior grid point is much larger and consequently the aspect

ratio is considerably smaller than it is for viscous grids. This poses less strict quality

requirements on the grid deformation scheme. Similarly, the number of RBF points

included from the surfaces defining the hub and casing geometry can be reduced; as

larger the distance to the modified blade, as fewer points will be loaded into the RBF

matrix.

However, the grid movement scheme can not only be accelerated by reducing

the size of the RBF matrix MRBF, but also by minimizing the size of the volume

point matrix ARBF and by parallelizing the computations. Therefore, the RBF grid

deformation scheme is split into two stages. On the first stage, only the interior

domain points defining the faces of each block are perturbed based on the informa-

tion provided from the reduced RBF matrix. This operation is performed on the

root processor. Once the skeleton of the multi-block grid configuration is modified,

cf. Figure 5.2, the perturbations are communicated to each processor via MPI. After-

wards, the block interior points are perturbed based on its block face deformations

calculated on the first stage. Hence, on this second stage, the face perturbations be-

come the RBF points which define a new RBF matrix. Thus, all information required

is locally available and provided from the block to be perturbed. Consequently, the

second stage can be parallelized and every processor only perturbs the blocks it is

assigned to from the pre-processor load balancer. The RBF matrix of the second

stage can be reduced as well by only loading every third or fourth perturbed face

point into the new RBF matrix.

This completes the RBF deformation scheme. Figures 5.2 and 5.3 show an ex-

ample perturbation and illustrate the two stages of the grid movement scheme. A

bump is placed on the rotor suction side at 70% span and 50% of the rotor chord

length; the grey-colored plane in Figure 5.1 locates the 70% span section within the

compressor configuration. For demonstration purposes the size of the bump ampli-
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Figure 5.2: Perturbed skeleton after the first stage of the RBF grid perturbation
scheme.

tude is exaggerated. The blade geometry usually experiences smaller modifications

throughout an optimization. Figure 5.2 depicts the multi-block configuration after

the first stage of the grid perturbation scheme, i.e. the skeleton is already adjusted

(color: red) while the interior grid points are not yet modified, and compares it with

the baseline skeleton (color: black). The final modified grid is illustrated in Figure 5.3.

The enlargements demonstrate that the grid quality of the perturbed grid remains

high despite the neglected RBF points. However, it is important to note, that the

measures described to speed up the deformation scheme cannot be generalized and

would have to be adjusted on different grid configurations.

5.2 Optimization Strategy

Once the objective function gradient is obtained, one can generally employ any opti-

mization method to find an improved airfoil shape. Experience has shown that even

a simple optimization method, such as the Steepest Descent (SD) method in combi-

nation with a fixed step length, is able to provide reasonable results for unconstrained
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Figure 5.3: Perturbed grid after completion of the RBF grid perturbation scheme.

optimization problems. However, difficulties occur when the SD method is applied

to constrained or multi-objective design problems. In such a case, the objective func-

tion is usually defined as a weighted sum of the constraints and the main objective.

The weights have to be determined individually for each constraint and every design

problem by trial and error which can be a time-consuming task, cf. [19, 32].

A sequential quadratic programming (SQP) algorithm instead offers a more el-

egant way to treat constraints in a design problem. Optimization within an SQP

framework avoids the need to determine the penalty coefficients by including the

constraints directly into the design problem. Considering a general optimization

problem

min I(ααα) w.r.t. ααα ∈ Rn

subject to cj(ααα) = 0, j = 1, . . . ,m1 (5.27)

ĉj(ααα) ≥ 0, j = 1, . . . ,m2

where I(ααα) is the objective function to be minimized, cj(ααα) and ĉj(ααα) represent the

equality and inequality constraints respectively, and ααα are the design variables, the
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SQP algorithm determines an appropriate search direction by the following procedure.

First, inequality constraints can be converted into equalities by introducing a set of

slack variables εεε, i.e. ĉj(ααα) − εj = cj(ααα) = 0. For example, a linear inequality

constraint l1 ≤ ĉ1(ααα) ≤ l2 is replaced by ĉ1(ααα) − ε1 = 0 together with the bounded

slack l1 ≤ ε1 ≤ l2. Second, a Lagrangian function L(ααα,λλλ) = I(ααα)−λλλTc(ααα) is defined.

Third, taking the derivative of the Lagrangian function yields the first-order Karush-

Kuhn-Tucker (KKT) conditions

FL(ααα,λλλ) =

(
∂L
∂ααα
∂L
∂λλλ

)
=

(
∇I(ααα)−A(ααα)Tλλλ

c(ααα)

)
= 0, (5.28)

where A(ααα)T = ∇c(ααα). Taking again the derivative provides

F′L(ααα,λλλ) =

(
∂2L
∂ααα∂ααα

∂2L
∂ααα∂λλλ

∂2L
∂λλλ∂ααα

∂2L
∂λ∂λλλ

)
=

(
∇2
ααααααL(ααα,λλλ) −A(ααα)T

A(ααα) 0

)
. (5.29)

Then, the search direction PPP is obtained by applying Newton’s method to the KKT

conditions, i.e. PPP = −FL(ααα,λλλ) · F′L(ααα,λλλ), where PPP = [pααα, pλλλ]
T .

In this research, SNOPT [75], a general-purpose software package for constrained

optimization embedded into an SQP framework, is used to determine an improved

airfoil shape. Slack variables are used to convert inequality constraints to equalities.

The search direction is determined by the Quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method, while a general line search technique is used to find an

appropriate step length, cf. Gill et al. [76] for more details. The gradients of the

objective function and each constraint have to be provided to SNOPT. Hence, m+ 1

adjoint solutions, where m = m1 + m2 is the number of all equality and inequal-

ity constraints in the design problem, are necessary to determine the new search

direction.



Chapter 6

Results

In this chapter, the functionality of the proposed optimization method is demon-

strated. First, the flow solver is validated against experimental data available for

some classical flow problems, cf. section 6.1. In the remainder of this chapter, two

different transonic axial flow compressor configurations are then optimized, where

both configurations are redesigned considering various flow conditions and dissimi-

lar geometrical set-ups, cf. sections 6.2 and 6.3. In each of these two sections, first

the respective design case is introduced. Then, the flow and adjoint solutions are

discussed and evaluated. Next, the adjoint solver and gradient calculation routines

are validated by comparing the adjoint sensitivities of various functionals with finite-

difference gradients obtained from the primal flow solver. Lastly, several uncon-

strained and constrained optimization cases are discussed, in which the respective

test configuration is redesigned in order to increase the isentropic efficiency.

It is worthwhile to mention that although the proposed optimization framework

is only applied to compressor configurations, it can readily be applied to multi-row

turbines as well.

6.1 Flow Solver Validation

Before moving towards the actual design cases, in this preliminary section the flow

solver is validated. To do so, numerical results obtained for three classical flow

problems are presented and compared against experimental data.

123
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6.1.1 Flat Plate

First, the implemented SST turbulence model is validated. Therefore, the incom-

pressible turbulent flow over a flat plate, as described in [77], is investigated. The

flow conditions are as follows: the freestream Mach number isM = 0.2, the freestream

static temperature takes on the value T = 294, 44K, the freestream static pressure

is given by 101.35kPa, and the angle of attack is α = 0.0◦. Furthermore, the length

of the flat plate is 5.09 meters. This particular flow problem was first investigated

experimentally by Wieghardt and Tillmann [78]; their measured data serves at the

reference for this validation case.

A Cartesian grid is used to model the flow problem numerically, cf. Figure 6.1.

111 grid points are distributed in the axial direction and 81 grid points are used

to discretize the domain normal to the viscous wall. The grid is clustered in the

streamwise direction near the leading edge of the plate, which is located at x = 0.0,

to resolve the locally occurring high flow gradients accurately. At the same time the

gird is clustered normal to the plate to ensure that the boundary layer is sufficiently

resolved but that an unnecessary amount of cells in the freestream region is avoided.

The non-dimensional wall distance is y+
avg < 1.0. To obtain a uniform velocity profile

Figure 6.1: Computational grid for the flat plate test case.

at the leading edge location of the plate, the fourteen upstream grid points at h = 0.0

are treated as an inviscid wall. As depicted in Figure 6.2, both the flow solver and the

turbulence model show a slow convergence rate, which is due to the incompressible

nature of the low Mach number flow and since neither preconditioning nor multigrid

is employed to accelerate the solution process to steady-state. Although after 50,000

iterations the flow solution is only converged by a few orders, the calculated flow

field is already sufficiently accurate, cf. Figures 6.3 and 6.4. In these plots, the
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Figure 6.2: Convergence of maximum density residual (left) and maximum turbulent
kinetic energy residual (right), flat plate.

predicted velocity profiles are compared with the experimentally measured data from

Wieghardt and Tillmann [78] at several axial locations; the dimensionless velocity u+,

defined as u+ = u/uτ with the friction velocity uτ =
√
τw/ρ and τw being the wall

shear stress, is plotted against the dimensionless wall distance y+ = uτy/ν, where y
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Figure 6.3: Velocity profiles along the flat plate.
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Figure 6.4: Velocity profiles along the flat plate.

is the distance to the wall. It can be observed that the numerical solution is in good

agreement with the experiment and that the turbulence model correctly predicts the

growth of the boundary layer. Hence, the results of this validation case demonstrate

that the flow solver and the SST model accurately calculate turbulent boundary layer

flows.
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6.1.2 Sajben Transonic Diffuser

The Sajben transonic diffuser serves as the second validation case. The configuration

was introduced by Sajben and co-workers, who studied the set-up experimentally in

an effort to investigate the impact of self-excited unsteady fluctuations at inlets on

the transonic flow system within a diffuser typical for supersonic aircraft propulsion

systems, cf. [79, 80, 81, 82]. The study produced a vast amount of experimental data

at a variety of flow conditions, including static wall pressure distributions and veloc-

ity profiles at numerous streamwise locations, such that the Sajben diffuser became

a popular test case for the verification and validation of CFD codes investigating

internal compressible flows, cf. [83].

The computational grid for the two-dimensional convergent-divergent Sajben dif-

fuser is shown in Figure 6.5 (top); 81 grid points are used to discretize the diffuser in

the axial direction and 51 grid points are distributed in the radial direction. Here x is

the axial coordinate and h∗ is the height of the throat. A more detailed description of

the geometry is provided in [83]. The flow field is assumed to be fully-turbulent with

an inlet Reynolds number of Rein = 7.4 · 105. The wall spacing is chosen such that

the turbulent boundary layer is resolved to y+
avg = 0.9. The inlet and outlet boundary

conditions for the Sajben diffuser weak shock case are provided in Table 6.1; both

upper and lower viscous walls are assumed to be adiabatic.

The prescribed pressure ratio ps,out/pt,in = 0.82 results in the transonic flow field

depicted in Figure 6.5 (bottom). The subsonic flow at the inlet, Min = 0.46, ac-

celerates through the convergent section of the configuration, reaching sonic speed

at the throat x/h∗ = 0.0, and accelerates further to reach a peak Mach number of

approximately Mmax = 1.3 just before a shock terminates the supersonic zone at

Tt,in [K] 277.78

pt,in [kPa] 135.00

ps,out [kPa] 110.66

αin [◦] 0.00

Table 6.1: Inlet and outlet boundary conditions for the Sajben transonic diffuser
weak shock case.
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Figure 6.5: Computational grid (top) and Mach number contours (bottom) for the
Sajben transonic diffuser weak shock case.

the beginning of the divergent section. From there on, the flow continues to decel-

erate subsonically until the exit of the diffuser, where an averaged Mach number of

Mout = 0.48 can be measured. The subsonic flow region downstream the shock con-

tains rapidly growing boundary layers; however, the shock is not strong enough to

induce flow separation at the upper wall and the flow remains attached throughout

the divergent section of the nozzle. The convergence of the flow solver, represented

by the decrease in the L∞-norm of the density residual, and the SST turbulence

model, illustrated by the reduction of the L∞-norm of the residual of the turbu-

lent kinetic energy, are illustrated in Figure 6.6. Figure 6.7 compares the computed

static pressure distributions along the top and bottom surfaces of the diffuser with

the experimentally measured values. The numerical results compare very well with

the experimental data; both the predicted shock location and strength match the

experiment almost perfectly. Figure 6.8 plots the calculated velocity profiles at four

different axial locations x/h∗ downstream of the shock against the experimental mea-

surements. The core velocity and the velocity profile near the lower wall predicted

by the flow solver are in high agreement with the experimental data. Only further

downstream in the near-wall region of the upper surface a discrepancy between the

numerical solution and the experiment can be identified. Similar observations were
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Figure 6.6: Convergence of maximum density residual (left) and maximum turbulent
kinetic energy residual (right), Sajben transonic diffuser weak shock case.
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Figure 6.7: Surface pressure distribution along the upper (left) and lower (right) wall,
Sajben transonic diffuser weak shock case.

made by other authors including Yoder, cf. [84], who investigated different turbulence

models and concluded that the numerical results obtained with the k-ε turbulence

model more accurately match the experimental data near the upper surface, whilst

the SST model better predicts the velocity data near the lower surface of the diffuser.
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Figure 6.8: Velocity profiles at four axial locations, Sajben transonic diffuser weak
shock case.

6.1.3 Mark II Turbine Vane

The Mark II turbine vane serves as the third validation case. This configuration was

first investigated by Nealy et al. [85], who experimentally studied the heat trans-

fer distribution over the surfaces of highly-loaded turbine nozzle guide vanes under

various flow conditions. Nealy and co-workers varied aerodynamic parameters such

as the exit Mach number, the Reynolds number, the turbulence intensity, and the
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wall-to-gas temperature ratio to obtain data over a wide range of gas turbine en-

gine operation points. The detailed measurements were made publicly available with

the intend to serve as verification data for numerical simulations. As a result, the

internally cooled Mark II turbine vane became a well-established test case which is

particularly used to validate conjugate heat transfer models. A detailed description

of the configuration can be found in [86].

Figure 6.9 (left) depicts the block-structured grid of the two-dimensional cascade.

The entire computational domain consists of 12,200 grid points, where the blade sur-

face is represented by 177 grid points and the channel section between two adjacent

vanes is discretized by 97 grid points. The turbulent boundary layer is accurately

resolved with a non-dimensional wall distance of y+
avg = 0.1. In the presented valida-

tion study, the Mark II cascade is investigated for the aerodynamic set-up described

in [86] as case 4311; Table 6.2 provides the corresponding inlet and outlet bound-

ary conditions. Furthermore, the viscous blade surface is assumed to be adiabatic,

i.e. this validation study is purely aerodynamic and not the subject of heat transfer

investigations. With an inlet Reynolds number of Rein = 4.5 · 105, the flow field is

fully-turbulent.

Figure 6.9 (right) shows the Mach number contours for the calculated flow solu-

tion. Despite a relatively large pressure ratio of ps,out/pt,in = 0.60, the inflow velocity

is low and results in an average Mach number of approximately Min = 0.2. Starting

from the leading edge stagnation point, the flow accelerates along the highly-curved

blade suction side to supersonic speeds until a strong shock, located at approximately

40% axial chord length, abruptly decelerates the flow to subsonic regimes. The strong

adverse pressure gradient and the high blade curvature cause the flow to separate.

Tt,in [K] 803.00

pt,in [kPa] 276.47

ps,out [kPa] 165.88

αin [◦] 0.00

Table 6.2: Inlet and outlet boundary conditions for the Mark II turbine vane
case 4311.



6.1 Flow Solver Validation 132

Figure 6.9: Computational grid (left) and Mach number contours (right) for the Mark
II turbine vane.

However, as observed in the enlargement of Figure 6.9 (right), the flow reattaches

after a short distance. Downstream of the shock, the flow remains subsonic until the

exit, where a Mach number of Mout = 0.9 is reached. Both, the flow solver and the

turbulence model converge by more than nine orders within less than 1500 multigrid

cycles, cf. Figure 6.10. Comparing the calculated surface pressure distribution along
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Figure 6.10: Convergence of maximum density residual (left) and maximum turbulent
kinetic energy residual (right), Mark II turbine vane.
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the vane’s suction and pressure side with the experimental data shows that the flow

solver predicts the flow field very accurately, cf. Figure 6.11. The shock location as

well as the pressure recovery in the aft part of the blade are captured and agree well

with the measurements.

Figure 6.11: Surface pressure distribution over the Mark II turbine vane.

6.2 Configuration D

In this section, the proposed optimization framework is applied to the two-dimensional

2.5-stage Configuration D compressor considering a fully-turbulent flow environment.

After introducing the test case in subsection 6.2.1, a grid study is performed to de-

termine the appropriate grid dimensions and evaluate the flow solution, cf. subsec-

tion 6.2.2. Then, in subsections 6.2.3 and 6.2.4, the adjoint solution is discussed and

the adjoint sensitivities are validated. Finally, two optimization cases, an uncon-

strained redesign as well as a constrained optimization of the multistage compressor,

are presented and compared with each other in subsections 6.2.5 and 6.2.6.
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6.2.1 Test Case

The first test case is a 2.5-stage transonic axial flow compressor known as Config-

uration D. This two-dimensional model compressor, designed and used by Hall and

co-workers to investigate unsteady flows in multistage turbomachines, cf. [87] and

[88], consists of three rotor and two stator blades (R1-S1-R2-S2-R3), each made of

NACA four digit series airfoils. The geometric and aerodynamic design parameters

of the Configuration D compressor are provided in Table 6.3. All lengths are non-

dimensionalized by the chord length of rotor R2. The blade rows are closely spaced,

as it is typical in modern compressors, cf. axial gab in Table 6.3. The 2.5-stage model

compressor is operated at a total pressure ratio of π = 3.0, the translational rotor

speed in the x2-direction is defined as Ωx2 = 1.18, and the respective radial length

scale is r = 1.0. In this research work, a fully-turbulent viscous flow environment

is investigated, while Hall and co-workers examined an inviscid flow field. Yet, the

design goal is still to match the overall total pressure ratio. Accordingly, some other

aerodynamic design parameters, e.g. the pressure ratio ps,out/pt,in, have to be slightly

adjusted, which in turn leads to slightly different flow quantities at the five flow sta-

tions. Figure 6.12 depicts the block-structured grid of the multistage compressor and

shows the different flow stations at which the aerodynamic parameters are evaluated.

Station 0 is located at the inlet plane, station 5 represents the outlet, and stations

2, 3, and 4 are located at the center of the axial gab, where the adjacent blade rows

are coupled by a mixing-plane interface. O-grids are used to discretize the domain

around the blade surface. H-topology grids are utilized to model the remaining pas-

sage. The final grid dimensions are determined by an elaborate grid study; its results

are discussed in the following subsection 6.2.2.

6.2.2 Flow Solution

The grid dimensions of the structured multiblock grid for the Configuration D model

compressor, depicted in Figure 6.12, are determined by a grid study, in which the nu-

merical solutions obtained on grids with different dimensions are compared. Starting

from the coarsest grid, the grid dimensions are successively doubled until a grid-

independent flow solution is established.
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Row or flow station 0 1 2 3 4 5

Number of blades — 26 32 40 50 62

NACA 4-digit airfoil — (3.5)506 (4.5)506 (4.5)506 (4.5)506 (4.5)506

Chord — 1.539 1.25 1.0 0.8 0.645

Blade-to-blade gap — 1.231 1.0 0.8 0.64 0.516

Axial gap — 0.31 0.25 0.20 0.16 —

Stagger angle — -44.0 43.0 -49.5 52.0 -55.0

Abs. flow angle 28.6 55.6 38.2 63.1 48.4 68.4

Rel. flow angle -53.3 -41.4 -60.4 -46.4 -66.1 -55.0

Abs. Mach number 0.626 0.747 0.483 0.679 0.404 0.619

Rel. Mach number 0.919 0.563 0.769 0.446 0.660 0.379

Static pressure 0.768 1.049 1.263 1.608 1.935 2.320

Abs. total pressure 1.000 1.519 1.482 2.191 2.165 3.005

Rel. total pressure 1.325 1.302 1.866 1.847 2.592 2.562

Table 6.3: Geometric and aerodynamic design parameters of the 2.5-stage Configu-
ration D compressor.

CFD flow solvers often are not able to cope with multistage turbomachinery flow

problems, if the flow field in the computational domain, which consists of several

stationary and fast-translating blade rows, is not initialized adequately. To avoid nu-

merical stability problems, in this work the following initialization strategy is applied:

First, a meaningful starting solution is established by solving the inviscid Euler equa-

tions and progressively increasing the back pressure and translational velocity until

the desired exit pressure and the required rotor entrainment velocity are obtained.

Only then the viscous terms are included. Furthermore, for particularly challenging

flow problems it is advantageous to first calculate a meaningful flow field by employ-

ing a first-order artificial dissipation scheme, before switching to a more accurate but

often less stable second-order accurate numerical scheme.

Starting from a first-order viscous flow solution, the numerical code reduces the

maximum density residual by eleven to twelve orders and a converged second-order

turbulent flow solution for the Configuration D test case is obtained within less than

2500 multigrid cycles on each grid investigated, cf. Figure 6.13 (left). Figure 6.13
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Figure 6.12: Computational grid and flow stations for the 2.5-stage Configuration D
compressor.

(right) illustrates that the SST turbulence model converges at a similar rate. As de-

picted in the figure, the maximum turbulent kinetic energy k residual also drops by

elven to twelve orders within the same number of multigrid cycles. The specific dis-

sipation rate ω possesses similar convergence properties. Figures 6.14 and 6.15 (left)

show the calculated flow field near the Rotor 1 blade, while Figure 6.15 (right) illus-

trates the corresponding non-dimensionalized surface pressure distribution of Rotor 1
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Figure 6.13: Convergence of maximum density residual (left) and maximum turbulent
kinetic energy residual (right) after initialization with first-order solution.
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for the various grid resolutions investigated. All numerical results predict a shock at

approximately 40% of the suction side chord of Rotor 1; however, on the coarsest grid

the shock is slightly smeared. Furthermore, compared to the medium and fine grid

distributions, the static pressure provided from the coarse grid solution is slightly

lower on both the suction and pressure side. On the other hand, the numerical so-

lution obtained on the medium grid is almost identical to the fine grid solution; not

only for the Rotor 1 domain but also for the downstream blade rows S1-R2-S2-R3

where the flow remains subsonic and the numerical solution is less critical to the grid

resolution. A comparison of the main aerodynamic design parameters, cf. Table 6.4,

confirms that the medium grid resolution is sufficiently fine. The differences in the

total pressure and temperature ratio as well as the change in the mass flow rate

(normalized with the mass flow rate of the fine grid solution) between the medium

and the finest grid are negligible. Therefore, the medium grid is selected and used

for the optimization cases presented in the following subsections. The final grid di-

mensions are summarized in Table 6.5. To resolve the boundary layer accurately the

wall-spacing is chosen such that y+
avg = 1.4.

Grid Coarse Medium Fine

π 3.014 3.010 3.011

Tt,out/Tt,in 1.389 1.388 1.388

ṁ/ṁfine 1.002 0.999 1.000

Table 6.4: Design parameters for different grids, Configuration D.

Row R1 S1 R2 S2 S3

Grid points 15325 12850 12850 7634 8237

Surface grid points 225 225 225 161 145

Blade-to-blade passage 97 97 97 81 81

Table 6.5: Grid dimensions of the selected medium grid, Configuration D.
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Figure 6.14: Relative Mach number contours for the coarse grid (left) and medium
grid (right), Configuration D, Rotor 1.

Figure 6.15: Relative Mach number contours for the fine grid (left) and surface
pressure distribution for different grid dimensions (right), Configuration D, Rotor 1.

6.2.3 Adjoint Solution

After having selected the grid dimensions such that it is guaranteed that the con-

verged flow solution is sufficiently accurate and grid independent, the adjoint equa-

tions can be solved based on the information provided by the calculated flow field.
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The final solution of the adjoint system naturally depends on its own convergence

level, but is also a function of the flow solution. Hence, the accuracy of the adjoint so-

lution can be sensitive to the convergence level of the flow governing equations. Both,

an inadequately converged flow or adjoint solution may impact the gradient accuracy

in a negative manner and deteriorate the quality of the optimization. On the other

hand, converging both the flow and adjoint systems to a level far beyond a necessary

level, considerably increases the computational cost of the optimization and, thus,

should be avoided. As a consequence, an initial convergence study is performed in

which the convergence levels of both the flow and adjoint equations required for an

accurate gradient calculation but efficient optimization are determined.

In the following, the first design cycle of the optimization cases presented in

subsections 6.2.5 and 6.2.6 is investigated. The adjoint equations are solved for the

entropy functional, which serves as the design objective in both optimization cases.

Four test cases are considered. Table 6.6 summarized the number of multigrid cycles

performed to solve the flow and adjoint equations and provides the final convergence

level for each calculation. Figure 6.16 (left) illustrates the convergence history of the

maximum density residual for the Configuration D compressor; the convergence of the

adjoint equations is shown in Figure 6.16 (right). It can be seen that a fully-converged

flow solution is obtained after approximately 1000 multigrid cycles. Although the

underlying grid is identical to the medium-sized grid selected in subsection 6.2.2, the

convergence now is slightly faster, which is due to an improved flow initialization.

Furthermore, it can be observed that considerably more multigrid cycles are necessary

to converge the adjoint system to a similar level as the flow equations. The reasons

for this are twofold. First, the adjoint solution is calculated without an appropriate

Case Flow Cycles Adjoint Cycles ||Rρ||∞ ||Rψ1 ||∞

C1 1200 12000 5.24e−11 1.10e−10

C2 600 6000 5.77e−8 1.27e−6

C3 300 3000 1.63e−5 1.54e−2

C4 150 1500 1.22e−3 2.60e+0

Table 6.6: Test cases investigated in the convergence study, Configuration D.
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Figure 6.16: Convergence level of maximum density residual (left) and maximum
co-state ψ1-residual (right) for various multigrid cycles, Configuration D.

initialization. Second, for complex viscous flow problems, the adjoint system tends to

become stiff and the CFL number as well as the number of multigrid levels employed

have to be reduced, compared to the values used within the flow solver, to guarantee

numerical stability.

Depending on the test case, the adjoint solutions are calculated based on flow

solutions which were converged to different levels. Despite this, the convergence

curves of the various adjoint calculations match almost perfectly, which suggests

that converging the flow equations further than in the test cases C4 and C3 does

not further improve the accuracy of the gradient calculation. At the same time,

the number of iterations used to solve the adjoint equations differs, cf. Table 6.6.

Figure 6.17, which shows the difference in the co-state solution ψ4 between the fully-

converged test case C1 and the partially-converged test cases C4 (left) and C3 (right),

indicates that converging the adjoint equations beyond the levels of test case C3 does

not alter the adjoint solution significantly. Table 6.7 confirms these findings and

depicts the maximum error in the adjoint solution ∆ψψψ of the cases C2, C3, and

C4 compared to the fully-converged test case C1. Note, the differences originate

from converging both the flow and adjoint equations only partially. For comparison

purposes, the minimum and maximum values of the adjoint solution of case C1 are



6.2 Configuration D 141

Figure 6.17: Error in adjoint solution ψ4 for test case C4 (left) and test case C3
(right), ∆ψ4 = ψ4,C1 − ψ4,C4/C3, Configuration D.

provided as well. To ultimately determine the impact on the gradient accuracy, the

adjoint sensitivities are calculated for each test case. Table 6.8 summarizes these

results and shows the maximum error in the gradient for all partially-converged test

cases. For the cases C2 and C3, the gradient error is at least four to five orders

smaller than the gradient value itself. Hence, the convergence study demonstrates

that for these test cases, the inaccuracies introduced by converging both the flow

and adjoint equations only partially, are beyond significance for the calculation of

accurate adjoint sensitivities.

Consequently, the results suggest that the convergence levels obtained in the test

case C3 lead to a sufficiently accurate flow and adjoint solution. However, during the

optimization the blade geometries change and the rate of convergence varies. Thus,

to ensure that the equations are converged adequately at every design cycle, the

multigrid cycle set-up employed in test case C2 is applied in the design cases presented

in subsections 6.2.5 and 6.2.6. This means, the robustness of the optimization is

i ψi,C1 |∆ψi,C4| |∆ψi,C3| |∆ψi,C2|

1 0.34 . . . 3.22 3.02e−2 3.91e−5 1.03e−7

2 -1.58 . . . 1.44 1.14e−2 1.56e−5 1.04e−7

3 -0.87 . . . 3.59 2.77e−2 3.58e−5 9.54e−7

4 -0.80 . . . -0.10 1.37e−3 1.85e−6 1.19e−7

Table 6.7: Minimum and maximum value of adjoint solution for test case C1 and
error of test cases C2, C3, and C4, Configuration D.
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Row GC1 |∆GC4| |∆GC3| |∆GC2|

R1 −7.87e−2 . . . 4.95e−2 1.04e−3 1.40e−6 1.00e−11

S1 −2.17e−2 . . . 1.57e−2 6.56e−4 8.40e−7 1.00e−11

R2 −3.49e−2 . . . 1.69e−2 3.84e−4 2.10e−6 1.00e−10

S2 −3.55e−2 . . . 2.78e−2 4.84e−4 3.50e−7 1.00e−10

R3 −4.55e−2 . . . 3.17e−2 2.79e−4 5.70e−7 1.00e−10

Table 6.8: Minimum and maximum gradient for test case C1 and error of test cases
C2, C3, and C4, ∆G = GC1 −GC4/C3/C2, Configuration D.

increased at the expense of a higher computational cost.

The convergence study performed in this subsection determines the required num-

ber of flow and adjoint iterations to ensure that the error in the adjoint solution, com-

pared to the fully-converged calculations, is negligible. However the study does not

verify the correctness of the adjoint solution itself. Its actual correctness is verified

in the gradient study presented in the following subsection 6.2.4.

6.2.4 Gradient Validation

Before presenting the redesign of the Configuration D model compressor, the adjoint

solver as well as the implemented gradient calculation routines are validated. This is

done by comparing the sensitivities obtained from the dual adjoint solver with finite-

difference gradients calculated from the primal flow solver. The finite-difference gra-

dients are obtained from a simple first-order forward difference approximation, i.e. the

function of interest is evaluated both for the unperturbed design and based on the

solution for the perturbed geometry. Next, the difference between the two function

values is calculated and divided by the perturbation step, which then provides the

corresponding finite-difference approximation of the design variable sensitivity. To

ensure that the perturbation step does not affect the accuracy of the finite-difference

gradient, the appropriate step size is determined from a separate gradient study.

The main motivation of this gradient validation is to validate the turbomachinery

specific features of the adjoint solver, i.e. to verify the correctness of the imple-
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mented adjoint wall, inlet and outlet boundary conditions, as well as to ensure the

flow-consistency of the derived adjoint mixing-plane formulation and the linearization

of the various functionals. Since the characteristic-based inlet and outlet boundary

conditions and the flow treatment at a mixing-plane interface are derived from the

linearized Euler equations, the corresponding adjoint transformation matrices TTT BD

are identical for both inviscid and viscous flows. Similarly, the linearized objective

function does not depend on the flow physics. Only, the wall boundary condition

changes, thus, the adjoint transformation matrix at a wall depends on the flow gov-

erning equations. However, as illustrated in subsection 4.3.1, the linearization of

the wall boundary condition is straightforward for both inviscid and viscous flows.

Hence, in this section the adjoint boundary conditions and the developed adjoint

mixing-plane formulation are validated based on the inviscid Euler equations.

Test Case I: R1

The isolated Rotor 1 of the Configuration D model compressor serves as the first two-

dimensional test case. The inviscid grid is of the same multi-block topology as the

viscous grid shown in Figure 6.12; however, the computational domain is extended

at the second flow station to push the outlet further downstream. Figure 6.18 (left)

depicts the flow solution for this test case. The back pressure is chosen such that the

rotor is operated within a transonic flow regime. A supersonic flow region develops

in the front part of the rotor suction side, which is terminated by a strong shock

before the rotor passage entry. Figure 6.18 (right) shows the ψ4-contours of the

adjoint solution, i.e. the co-state variable corresponding to the energy equation, for

the entropy functional defined in Eqn. (4.163). For the gradient evaluation, 78 Hicks-

Henne bump functions are equally distributed along the blade; 39 design variables

on the suction side and 39 bumps on the pressure side. The calculated adjoint

sensitivities are compared with the finite-difference gradients in Figure 6.19. It can

be observed that the adjoint sensitivities agree very well with the gradient obtained

from the forward approach. Note, the discontinuity at the 39th design variable, which

is located at the leading edge (LE), origins from the fact that the Hicke-Henne bump

function is not defined at the leading edge point; cf. Eqn. (5.5) where tl,1 and tl,2

cannot take on the values 0 (trailing edge) and 1 (leading edge).
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Figure 6.18: Relative Mach number contours (left) and ψ4-contours (right), Config-
uration D, test case I: R1, objective function: entropy generation rate.
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Figure 6.19: Gradient comparison, Configuration D, test case I: R1, objective func-
tion: entropy generation rate.

Test Case II: R1-S1-R2

A second test case, which consists of the first three rows of the Configuration D

model compressor, is used to verify the accuracy of the adjoint mixing-plane bound-

ary condition within a two-dimensional flow environment. Two rotor-stator interfaces

appear within this test case; the first one couples Rotor 1 with the downstream Sta-

tor 1 and the second mixing-plane exchanges the flow variables between the Stator 1

and Rotor 2 domains. Figure 6.20 illustrates the ψ1-contours of the adjoint solution,

i.e. the co-state variable corresponding to the continuity equation, calculated for the
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total pressure ratio functional, cf. Eqns. (4.167) and (4.168). The plot clearly depicts

that the path of information propagation in the adjoint system is opposite to that of

the flow governing equations. A wake develops at the Rotor 2 leading edge and prop-

agates into the physical upstream direction. The wake is mixed-out at the upstream

adjoint mixing-plane and a jump occurs in the local adjoint values across the domain

interface. The adjoint gradients of the three blades are compared with the corre-

sponding finite-difference gradients in Figures 6.21 to 6.23. Again, 78 Hicks-Henne

functions are used as design variables and the bumps are equidistantly distributed

along each blade surface. The plots show that the adjoint sensitivities of all blades are

in good agreement with the finite-difference gradients. Since the objective function

is active at the exit plane only, this test case particularly verifies that the derived

adjoint mixing-plane formulation passes the objective function information correctly

through the averaging-plane interfaces.

Figure 6.20: ψ1-contours, Configuration D, test case II: R1-S1-R2, objective function:
total pressure ratio.

Figure 6.22 suggests that there is a larger discrepancy between the adjoint and

finite-difference gradients in the vicinity of the stator leading edge. However, the am-

plitudes of the stator sensitivities are much smaller than those of the rotor sensitivities

and the absolute differences are of the same order as they are for the rotor gradients.

Furthermore, the discrepancy is restricted to the near leading edge region, where the

smoothness of the Hicks-Henne bumps is compromised by the function’s leading edge

discontinuity and, thus, the accuracy of the finite-difference gradients is questionable

in itself. As can be seen in subsection 6.3.4, the adjoint and finite-difference gradients



6.2 Configuration D 146

generally conform well in the blade leading edge region.
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Figure 6.21: Gradient comparison Rotor 1, Configuration D, test case II: R1-S1-R2,
objective function: total pressure ratio.
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Figure 6.22: Gradient comparison Stator 1, Configuration D, test case II: R1-S1-R2,
objective function: total pressure ratio.
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Figure 6.23: Gradient comparison Rotor 2, Configuration D, test case II: R1-S1-R2,
objective function: total pressure ratio.

6.2.5 Unconstrained Optimization

First, an unconstrained optimization case is investigated. The objective is to reduce

the entropy generation rate, which is equivalent to increasing the isentropic efficiency.

After solving the flow equations and the adjoint system as described in chapters 3

and 4, the objective function gradient is efficiently calculated using the approach

presented in section 5.1. The gradient is then provided to the optimizer, which

determines the blade shape modifications through the SQP algorithm outlined in

section 5.2. For all two-dimensional design cases the surface grid points are used as

design variables, which leads to highly non-smooth gradients. Although generally

it is not required, the calculated gradient is slightly smoothed by a second-order

implicit smoothing technique before providing it to SNOPT. The smoothing acts

as a preconditioner and allows for the calculation of much larger steps, and thus

accelerates the convergence. However, too large a smoothing parameter degrades

the gradient information and can result in the calculation of a suboptimal search

direction, which then negatively affects the optimization. Accordingly, the amount

of smoothing is kept as low as possible to keep the gradient information as accurate
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as possible. As a consequence, the shape modifications calculated by SNOPT are

non-smooth as well and have to be smoothed to obtain an optimized blade geometry

without kinks. The same implicit smoothing technique as for the gradient smoothing

is employed; however, this time a large smoothing coefficient is used. Furthermore,

geometrical constraints are assigned to the rotor and stator leading and trailing edge

grid points to preserve the original blade radii. No maximum thickness constraint

is prescribed to the blade profiles. At each design cycle, the computational domain

is first initialized with the flow solution at the previous design cycle and, then, 600

multigrid cycles are performed to evaluate the new flow field. Depending on the blade

shapes, the density residual drops by six to eight orders, which has been shown to be

sufficient for optimization, cf. subsection 6.2.3. The adjoint system is converged to a

similar level.

Figure 6.24 depicts the flow solution obtained for the Configuration D baseline

design. The compressor operates at a total pressure ratio of π = 3.01 and has

a baseline efficiency of ηis = 95.31%. The relative Mach number contour plot

illustrates that the flow accelerates to supersonic speeds in the front region of the

Rotor 1 suction side, before a shock reduces the flow velocity to subsonic regimes.

According to the numerical solution, the flow separates after the steady shock front,

Figure 6.24: Relative Mach number contours, Configuration D, baseline design, ηis =
95.31%.
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Figure 6.25: Boundary-layer flow after Rotor 1 shock: flow separation for baseline
design, Configuration D.

cf. Figure 6.25. Yet, despite the strong shock, the expansion of the separation bubble

is restricted to the vicinity of the rotor suction side surface and the flow re-attaches

almost immediately. It should be stressed, that no experimental results are available

and, thus, the existence of the separation bubble predicted by the turbulence model,

cannot be verified. In the downstream stator and rotor rows the flow does not exceed

Mrel = 1.0 and remains attached to the blade profiles. At the four rotor-stator

interfaces, the local flow solution is discontinuous; note the mismatching contour lines

at the averaging plane interfaces in Figure 6.24. Nonetheless, the circumferentially

averaged fluxes are conserved across each mixing-plane interface.

Figure 6.26 displays the corresponding adjoint solution for the Configuration D

baseline design, which shows the co-state solution ψ1 corresponding to the continu-

ity equation for the entropy functional. The plot confirms a phenomenon already

observed in Figure 6.20; information within the adjoint system propagates in the

direction opposite to the path it travels in the flow governing equations. At every

blade leading edge a wake develops and propagates into the physically upstream di-

rection until it is mixed-out at a rotor-stator interface, where the adjoint solution is

discontinuous due to the nature of the mixing-plane boundary.
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Figure 6.26: ψ1-contours, Configuration D, baseline design, objective function: en-
tropy generation rate.

Figure 6.27 depicts the gradient distribution for the Rotor 1 and Stator 1 blades

at the first design iteration. The design variables within the red-dashed boxes rep-

resent the leading edge (LE) and trailing edge (TE) points which are geometrically

constrained and remain unchanged throughout the optimization. Clearly, the gra-

dient amplitudes of the Rotor 1 design points are larger than those of the Stator 1

design parameters, which indicates that the rotor geometry has more influence on

the design objective than the stator. This becomes evident when considering the rea-

sons for the entropy increase. While in the stator domain the entropy generation is

rather small and due to viscous effects only, the main source for the entropy increase

throughout the first compressor stage is the strong rotor shock and the accompanying

shock/boundary-layer interaction. Consequently, the highest gradient values occur in

the near-shock and leading edge regions. The gradient amplitudes of the downstream

rotor and stator blades are of the same magnitude as the Stator 1 amplitudes since

in these blade rows the flow remains subsonic as well, cf. Figure 6.28.

The final optimized compressor geometry, obtained after eleven design cycles, is

compared with the baseline design in Figure 6.29. The Rotor 1 geometry experiences

the largest profile changes, where the suction side is modified noticeably. While the

suction side curvature is reduced in the supersonic flow region, it is increased in the
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Figure 6.27: Gradient for Rotor 1 (left) and Stator 1 (right), Configuration D, baseline
design, objective function: entropy generation rate.
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Figure 6.28: Gradient for Rotor 2 (left) and Rotor 3 (right), Configuration D, baseline
design, objective function: entropy generation rate.

subsonic flow region after the shock. Rotor 2 and Rotor 3 undergo similar, but less

distinct shape modifications. The stator geometries experience only slight modifica-

tions, with primarily a reduction in the curvature on the forward suction side. In

the redesigned Rotor 1, the flow acceleration in the supersonic region is consequently
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Rotor 1 Optimization
Stator 1 Baseline

Stator 1 Optimization

Rotor 2 Baseline

Rotor 2 Optimization
Stator 2 Baseline

Stator 2 Optimization

Rotor 3 Baseline
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Figure 6.29: Shape modification Configuration D, unconstrained optimization.

slowed down leading to a weaker shock, cf. Figure 6.30. The weaker shock/boundary-

layer interaction results in a thinner boundary-layer and the flow remains attached

in the optimized design, cf. Figure 6.32. Comparing the entropy field of the baseline

design with that of the optimized design, cf. Figure 6.31, where δs = s0 − sopt and

hence δs > 0 indicates a lower entropy level in the optimized design, shows that the

weaker shock in turn leads to a reduced entropy generation after the shock and in the

downstream boundary-layer of Rotor 1. The slight entropy increase in the optimized

design (blue coloured region) compared to the baseline design (δs < 0) just upstream

of the shock is due to a change in the shock location. As depicted in Figure 6.33 (left),

the overall entropy generation rate drops during the optimization by 23.1% and the

isentropic efficiency increases by 1.04% to 96.35%. Furthermore, Figure 6.33 (left)
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Figure 6.30: Relative Mach number contours, Configuration D, optimized design,
unconstrained optimization, ηis = 96.35%.

Figure 6.31: Difference in entropy field, δs = s0−sopt, Configuration D, unconstrained
optimization.

illustrates that the optimization terminates after 18 design iterations. However, the

final geometry providing the largest entropy decrease, is already obtained after eleven

design cycles; only design iterations marked by coloured symbols represent a design

improvement over the previous geometry. The last seven design iterations marked

by uncoloured symbols indicate additional line searches in which a design proposed
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Figure 6.32: Boundary-layer flow after Rotor 1 shock: attached flow for optimized
design, Configuration D.

by the optimizer did not lead to an improvement in the objective function; SNOPT

aborts the optimization after unsuccessful function evaluations. As it can be seen

from Figure 6.33 (right), both the mass flow rate as well as the total pressure ratio

change during the unconstrained optimization by 0.67% and 0.17% respectively.
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Figure 6.33: Normalized objective function and isentropic efficiency (left), change
in mass flow rate and total pressure ratio (right), Configuration D, unconstrained
optimization.
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6.2.6 Constrained Optimization

An improved compressor efficiency of a few percentage points already leads to sig-

nificant fuel burn savings. Thus, the unconstrained optimization of the transonic

compressor stage discussed in subsection 6.2.5 shows a remarkable efficiency gain.

Yet, it also reveals that other aerodynamic performance measures change during the

design process. However, in most cases at least some of these measures are crucial

and are not allowed to change to keep the optimization problem well-posed, e.g. the

blade loading due to structural-mechanical reasons or the mass flow rate as it is a

global rather than an engine-component-restricted design parameter. Therefore, it

usually is necessary to constrain some aerodynamic performance measures during the

optimization. Accordingly, in this subsection the compressor efficiency is maximized

while constraining the mass flow rate and the total pressure ratio. The bounds on the

constraints are defined such that the mass flow rate can vary within ±0.25% and the

total pressure ratio is allowed to change by ±0.02% of its original value. The uncon-

strained optimization presented in the previous subsection produces mass flow rate

variations and total pressure ratio changes that exceed the limits of the constrained

design case by several fold; thus, this constrained optimization case represents a

rather challenging design problem.

The SQP formulation described in section 5.2 enforces the specified constraints

through the following procedure. For instance, if the mass flow rate is allowed to vary

within ±0.25%, then an inequality constraint given by −0.25% ≤ cṁ ≤ +0.25% is

obtained. Slack variables are introduced and the inequality constraint is transformed

into an equality constraint cṁ − ε = 0, where −0.25% ≤ ε ≤ +0.25%. The SQP

algorithm then generates a sequence of iterates that satisfies the linear constraints

and converge to a point that satisfies the nonlinear constraints (i.e. the slack variables

stay within the specified bounds) and the first-order condition for optimality.

The final design of the constrained optimization case is reached after 32 design

cycles; or 56 design iterations including the additional line search iterations. Thus,

overall the optimization requires 56 flow evaluations and 168 adjoint calculations.

Figure 6.34 (left) compares the baseline surface pressure distribution of Rotor 1 with

the surface pressure distributions obtained for the unconstrained and constrained

Rotor 1 redesigns and documents a reduced flow acceleration in the supersonic flow
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region and correspondingly a weaker shock on both optimized blades. The optimized

Rotor 1 geometries are illustrated in Figure 6.34 (right). Similar to the unconstrained

optimization case, the shape modifications of the Rotor 1 geometry exceed those

of the other blade geometries. However, compared to the unconstrained redesign

the rotor blade curvature is reduced less in the constrained optimization case. The

constraints prevent larger profile modifications. The relative Mach number contour

and the entropy comparison plots, cf. Figures 6.35 and 6.36, confirm that the redesign

leads to a weaker shock and show a thinner boundary layer on the Rotor 1 suction

side, which in turn reduces the generation of entropy. Yet, it also can be observed

that the shock occurring in the final design of the constrained optimization case is

stronger than the Rotor 1 shock observed in the unconstrained redesign.

Rotor 1 Baseline

Rotor 1 Unconstrained

Rotor 1 Constrained 

Figure 6.34: Surface pressure distribution (left) and shape modification (right) for
Rotor 1, Configuration D, baseline design vs. constrained optimization cases.

Figure 6.37 (left) depicts the convergence of the objective function and the in-

crease in the isentropic efficiency throughout the constrained optimization and com-

pares the results against the unconstrained redesign. Iterations marked by coloured

symbols again represent a new design cycle, i.e. a modified geometry that yields an

improvement in the objective function while simultaneously satisfying the constraints,

whereas iterations marked by uncoloured symbols indicate unsuccessful line searches
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Figure 6.35: Relative Mtheseach number contours, Configuration D, optimized de-
sign, constrained optimization, ηis = 96.01%.

Figure 6.36: Difference in entropy field, δs = s0 − sopt, Configuration D, constrained
optimization.

in which either the design objective did not improve or constraints were violated. Fig-

ure 6.37 (right), in which the dashed red lines define the bounds on the constraints,

displays that the constraints are satisfied at each design cycle. It is worthwhile to

mention, that it is the total pressure ratio constraint which prevents the numerical
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program from finding a more efficient compressor design. The optimization eventu-

ally terminates, when the optimizer is unable to find a feasible solution where there

is a step length into the search direction that guarantees an improvement in the ob-

jective function while satisfying the constraints. In the constrained design case, the

objective function is reduced by 16.7%, which in turn leads to an efficiency increase

to 96.01% (+0.70%). The total pressure ratio increases by only 0.019%, while the

mass flow rate increases by 0.11%.
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Figure 6.37: Normalized objective function and isentropic efficiency (left), change in
mass flow rate and total pressure ratio (right), Configuration D, constrained opti-
mization.

Figure 6.37 (right) also indicates that in the constrained optimization case the

search direction changes during the redesign. During the first 29 design iterations

the total pressure ratio drops and the mass flow rate increases until both constraints

are active. At the 30th design iteration, SNOPT changes the path of the optimiza-

tion and in subsequent design iterations the total pressure ratio increases while the

mass flow rate starts to decrease, while a precipitous improvement in the entropy

reduction and isentropic efficiency increase is observed in Figure 6.37 (left). A com-

parison of the Rotor 1 shape at the 30th design iteration with the final optimized

design, cf. Figure 6.38, provides a geometrical illustration of the sudden change in



6.2 Configuration D 159

the search direction. While the suction side curvature is constantly reduced in the

supersonic flow region of Rotor 1 from the first until the last design cycle, the aft

part of the blade remains nearly unchanged until the 30th design iteration. At this

juncture, the profile curvature is increased in the mid and trailing edge region of the

airfoil, which leads to higher flow turning and consequently increases the work and

the total pressure ratio as depicted in Figure 6.37 (right). Thus, the constrained

optimization case demonstrates the effectiveness of employing a sequential quadratic

programming algorithm within the proposed adjoint-based optimization framework,

where the evaluation of the gradient of the constraints via the adjoint approach re-

duces the total computational cost, but most importantly the SQP method provides

a means to find feasible optimum solutions which may not be realizable through a

penalty function approach.

Baseline

Design Iteration 30

Design Iteration 53

Figure 6.38: Shape modification Rotor 1 throughout the constrained optimization of
Configuration D.

A comparison of the aerodynamic performance measures, total pressure ratio π,

work ht, and isentropic efficiency ηis between the optimized rotor designs and the

corresponding baseline rotors provides another interesting insight into the physical

changes occurring during the optimization. First, from Table 6.9 it can be seen that

the design objective, to maximize the compressor’s isentropic efficiency, is achieved by

increasing the isentropic efficiency of each individual rotor. The greatest performance
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∆π [%] ∆ht [%] ∆ηis [%]

Rotor 1, Unconstrained +0.1044 −2.7100 +2.9179

Rotor 2, Unconstrained −0.0658 −1.3741 +0.0500

Rotor 3, Unconstrained −0.0365 −0.9024 +0.0636

Rotor 1, Constrained +0.4778 −0.8388 +2.0841

Rotor 2, Constrained −0.2461 −1.5270 +0.0523

Rotor 3, Constrained −0.2823 −1.4547 +0.0381

Rotor 1, Constrained 30th +0.1183 −0.9310 +1.2081

Rotor 2, Constrained 30th −0.0591 −0.6246 +0.0465

Rotor 3, Constrained 30th −0.1170 −0.7101 +0.0016

Table 6.9: Comparison of the aerodynamic performance of each optimized rotor
design of Configuration D.

improvements are obtained for Rotor 1 (∆ηis = +2.08% and +2.92%), while the

efficiency increase observed for the Rotor 2 and Rotor 3 rows is considerably smaller

(∆ηis ≤ +0.06%). This is in agreement with the observations made earlier. The

efficiency benefit of the optimized Rotor 1 row is mainly due to the weaker shock and

the resulting thinner boundary layer. Since the entropy production within the Rotor 2

and Rotor 3 rows is due to viscous effects only and hence at a much lower level, the

efficiency improvement is consequently smaller as well. Second, a comparison of the

rotor work, ht = Ω2r · (u2,out − u2,in), reveals that the work decreases in each rotor

row. In the unconstrained test case, the work performed by the optimized Rotor 1

is 2.71% less than the work done by the corresponding baseline rotor. The work

of the optimized Rotor 2 and Rotor 3 rows drops by 1.37% and 0.90% respectively.

Accordingly, the total pressure ratio drops in both the second and third rotor rows.

However, Table 6.9 depicts that, despite a work decrease compared to the baseline

design, the total pressure ratio increases for the Rotor 1 row. The reduced shock

losses outweigh the effects of the work decrease and are responsible for the increased

total pressure ratio. Third, comparing the different optimized designs with each other

shows that the aerodynamic performance of the rotor rows of the constrained design
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case differs. In the constrained design case, the work load for Rotor 1 is initially

reduced as observed in the unconstrained design case. At the 30th design cycle, the

work performed in the first transonic rotor row is 0.93% less than in the baseline

configuration. However, after the change in the search direction that is documented

in Figure 6.37 (right), the work load increases again due to the increase in profile

curvature and higher flow turning, cf. also Figure 6.38. The final design shows the

Rotor 1 work load is 0.84% less than that of the baseline design and, hence, is 0.09%

higher than at the 30th design cycle and noticeably higher than in the final design of

the unconstrained case. Similarly, the total pressure ratio of Rotor 1 is considerably

increased after the change in the search direction and therefore is much higher than

in both the baseline and the unconstrained optimized solution. At the same time,

the drop in the total pressure ratio for Rotor 2 and Rotor 3 is larger than in the

unconstrained design case.

Table 6.10 summarizes the aerodynamic performance parameters of the multi-

stage compressor obtained for the constrained optimization case and compares them

with the values from the baseline design and the unconstrained optimization. Despite

the quite strict constraints on the total pressure ratio and the mass flow rate, the

constrained optimization case leads to a considerable efficiency improvement. Al-

though a small efficiency deficit exists compared to the unconstrained optimization,

the constrained redesign ensures that other crucial aerodynamic parameters do not

change during the optimization process, which is not necessarily the case for the

unconstrained optimization.

ηis [%] π
ṁopt
ṁ0

Baseline 95.31 3.00997 1.0000

Unconstrained 96.35 3.00485 1.0067

Constrained 96.01 3.01054 1.0011

Table 6.10: Performance comparison between the original and optimized multistage
compressor designs, Configuration D.
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6.3 Darmstadt Rotor No. 1

In this section, the single-stage axial flow compressor Darmstadt Rotor No. 1 is

investigated and redesigned considering various geometrical and physical settings.

Subsection 6.3.2 discusses the results of an initial grid study, verifies the numerical

solution by comparing it against experimental and computational data published by

various authors, and determines the final grid dimensions. The subsections 6.3.3

and 6.3.4 show the adjoint solution and validate the adjoint gradients by comparing

them with sensitivities obtained from finite-differences. Afterwards, several numer-

ical optimization cases are presented. First, a two-dimensional section slice of the

transonic compressor configuration is redesigned considering a fully-turbulent viscous

flow environment, cf. subsection 6.3.5. Then, the developed optimization framework

is applied to the entire three-dimensional Darmstadt Rotor No. 1; thus, the complete

domain between the hub and casing is considered. However, for the sake of simplicity

the rotor gap is removed and the blade is extended until the casing. The results of a

constrained optimization considering inviscid flow are discussed in subsection 6.3.6.

The redesign obtained from an optimization assuming a fully-turbulent flow field is

presented in subsection 6.3.7.

6.3.1 Test Case

The second test case is a three-dimensional single-stage transonic axial flow com-

pressor, commonly known as Darmstadt Rotor No. 1, which was developed at MTU

Aero Engines, Munich, Germany and extensively tested at the Darmstadt University

of Technology, Germany. The original rotor was designed as a bladed disk made of

titanium with conventionally stacked blade sections, cf. Figure 6.39. From the mid

1990s to the early 2000s, the transonic compressor was representative of a front stage

of contemporary high pressure compressors. Its main aerodynamic design parameters

are given in Table 6.11. For a detailed description of the compressor rig and the

experiments the reader should refer to Blaha et al. [89]; a cross section of the test

rig is depicted in Figure 6.40. Numerical investigations were presented by Fritsch et

al. [90] and Höger et al. [91] To simplify the computational model, in this research

work the rotor gap is removed and the rotor blade is extended until the casing. Fig-
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Figure 6.39: Transonic compressor blade disk rotor made of titanium.

Number of rotor blades 16

Number of stator blades 29

Rotational speed 20,000 rpm

Total pressure ratio 1.5

Mass flow rate (corrected) 16.0 kg/s

Rotor tip speed 398 m/s

Inlet Rel. Mach number (tip) 1.35

Inlet Rel. Mach number (hub) 0.70

Rotor aspect ratio 0.88

Stator aspect ratio 1.50

Rotor solidity (hub/mid/tip) 1.9/1.5/1.2

Stator solidity (hub/mid/tip) 2.0/1.6/1.3

Annulus diameter 0.38 m

Table 6.11: Design parameters Darmstadt Rotor No. 1.
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ure 6.41 depicts a section slice through the three-dimensional block-structured grid

at 50% span. Similarly as for the Configuration D test case, O-grids are used to

discretize the domain in the vicinity of a blade surface, while H-topology grids are

utilized to model the remaining passage. A dimensionless wall distance of y+
avg = 1.0

guarantees that the viscous boundary layer effects are modelled accurately. The grid

independence of the flow solution is verified by a second grid study, cf. section 6.3.

The numerical results are further verified by comparing them with experimental data.

Figure 6.40: Cross section of Darmstadt compressor test rig.

6.3.2 Flow Solution

The appropriate grid dimensions of the structured multiblock grid for the Darmstadt

Rotor No. 1 compressor, depicted in Figure 6.41, are determined by a grid study

similar to one performed for the two-dimensional Configuration D compressor. The

numerical solutions are obtained on two grids of the same topology but different

number of grid points are compared. Starting from the coarser grid, the grid dimen-

sions are doubled in axial, circumferential, and radial directions to obtain the second

grid. The dimensions of the finer grid are as follows: The rotor domain consists

of 1,129,285 grid points, while 827,424 grid points are used to discretize the stator
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Figure 6.41: Computational grid for Darmstadt Rotor No. 1, section slice at 50%
span.

domain. The rotor and stator blade surfaces are represented by 197 and 145 grid

points respectively, 65 grid points are used to discretize the channel section between

two adjacent rotor or stator blades, and 117 grid points are distributed in the radial

direction. To resolve the boundary layer accurately, the wall-spacing is chosen such

that y+
avg = 1.0.

The same initialization strategy as for the Configuration D test case is employed.

Before solving for the viscous Navier-Stokes equations, a meaningful starting solution

is established by solving the inviscid Euler equations and progressively increasing the

back pressure and rotational velocity until the desired exit pressure and the required

rotor entrainment velocity are obtained. Figure 6.42 illustrates the convergence of

the maximum density residual for the flow calculations on both grids. The two

computations are started from a previously calculated viscous flow field that was only

converged by approximately three orders. Within less than 5000 multigrid cycles, the

flow solver then fully converges the governing equations on the coarser grid, whereas

on the fine grid the density residual is reduced by six orders.

A comparison of the main aerodynamic design parameters, cf. Table 6.12, confirms

that the resolution of the fine grid is sufficient. In fact, even the coarser grid provides

reasonable results; the differences in the total pressure and temperature ratio as

well as the change in the isentropic efficiency and the mass flow rate between the

coarse and the fine grids are negligible. Yet, some slight local differences in the flow
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Figure 6.42: Convergence of maximum density residual, Darmstadt Rotor No. 1

solution, e.g. in the location and clarity of the shock, can be observed when comparing

the flow field predicted on the coarser grid with the flow solution calculated on the

finer grid. The compressor stage pressure ratios are also in good agreement with the

numerical and experimental results provided by Fritsch et al. [90] and Höger et al. [91]

for the compressor design point. The isentropic efficiency values are over-predicted;

however, this was to be expected since in the presented research work the rotor gab

is not modelled. Based on these observations, the fine grid is selected and used for

the optimization cases presented in the following subsections.

In addition to the viscous grid, a grid for inviscid flow is generated. Due to

the absence of a boundary layer in inviscid flow, it is not necessary to resolve the

Design parameter π Tt,out/Tt,in ηis [%] ṁ/ṁfine

Coarse Grid 1.505 1.138 89.43 0.995

Fine Grid 1.504 1.138 89.49 1.000

Numerical [90] 1.491 — 88.3 —

Experiment [90] 1.483 — 86.7 —

Table 6.12: Design parameter comparison, Darmstadt Rotor No. 1.
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spatial domain in the vicinity of a blade as detailed as in viscous flow problems.

Consequently, the number of grid points can be reduced. For the inviscid grid,

460,265 grid points are used to discretize the rotor domain and the stator domain

consists of 367,900 grid points. As in the viscous grid, the rotor and stator blade

surfaces are represented by 197 and 145 grid points respectively; however, only 49

grid points are used to discretize the channel section between two adjacent rotor or

stator blades and only 65 grid points are placed in the radial direction.

6.3.3 Adjoint Solution

The convergence levels of both the flow and adjoint equations required for an accurate

gradient calculation are determined from the same convergence study described in

subsection 6.2.3. To reduce the number of multigrid cycles necessary to converge

the equations to a sufficient level, both the flow solution and the adjoint solution are

initialized with approximate solutions obtained from a previous numerical calculation.

In the following, the results for the entropy functional are presented exemplary, i.e. the

study in which the adjoint equations are solved for the main design objective of the

optimization cases. The conclusions that can be drawn from the investigation of other

functionals such as the mass flow and total pressure ratio constraints are similar to

those presented below.

Two cases are considered, both of which are summarized in Table 6.13. The

convergence of the flow governing equations is depicted in Figure 6.43 (left), whereas

the convergence of the adjoint equations is illustrated in Figure 6.43 (right). The

results resemble those of the Configuration D compressor; the convergence curves of

the different adjoint calculations match almost perfectly, despite the fact that the

convergence level of the underlying flow solutions is different. Table 6.14 shows the

Case Flow Cycles Adjoint Cycles ||Rρ||∞ ||Rψ1 ||∞

C1 5000 5000 7.39e−10 1.43e−11

C2 2500 2500 1.48e−7 4.54e−7

Table 6.13: Test cases investigated in the convergence study, Darmstadt Rotor No. 1.
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Figure 6.43: Convergence level of maximum density residual (left) and maximum
co-state ψ1-residual (right) for various multigrid cycles, Darmstadt Rotor No. 1.

maximum difference between the partially-converged adjoint solution of test case C2

and the fully-converged solution of test case C1. The impact on the gradient accuracy

is depicted in Table 6.15. It can be observed that the differences between the adjoint

sensitivities of the two test cases are negligible for both the rotor and stator blades.

The results of the convergence study demonstrate that the convergence levels

obtained in the test case C2 lead to a sufficiently accurate flow and adjoint solution

and confirm that generally it is not necessary to converge either equations by more

i ψi,C1 |∆ψi,C2|

1 -1.85 . . . 6.01 1.43e−6

2 -0.78 . . . 4.32 1.07e−6

3 -1.81 . . . 2.45 1.19e−7

4 -1.17 . . . 1.12 1.04e−7

5 -1.64 . . . 0.21 1.07e−6

Table 6.14: Minimum and maximum value of adjoint solution for test case C1 and
error of test cases C2, Darmstadt Rotor No. 1.
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Row GC1 |∆GC2|

Rotor −4.48e−2 . . . 5.82e−2 1.00e−10

Stator −2.08e−2 . . . 2.30e−2 1.00e−11

Table 6.15: Minimum and maximum gradient for test case C1 and error of test case
C2, ∆GC2 = GC1 −GC2, Darmstadt Rotor No. 1.

than five to six orders to obtain accurate gradient information. For the design cases

presented in the following, the number of flow and adjoint iterations are chosen

accordingly.

6.3.4 Gradient Validation

To further strengthen the confidence in the accurateness of the developed adjoint

boundary conditions, the adjoint solver and gradient routines are validated for the

second compressor configuration as well. Two different set-ups of the Darmstadt

Rotor No. 1, for which the adjoint sensitivities are compared with finite-difference

gradients, are considered. The finite-difference gradients are calculated as described

in subsection 6.2.4; the adjoint boundary conditions and the mixing-plane formulation

are again validated based on the inviscid Euler equations.

Test Case I: 2D section at 55% span

First, a two-dimensional flow environment is assumed and only the section slice at

55% span is analysed. The inviscid flow solution, depicted in Figure 6.44 (left), is

calculated on a two-dimensional multiblock grid which possesses the same topology

as the 50% span cut shown in Figure 6.41. Similar as in the previous test cases,

a supersonic flow region develops in the front part of the rotor suction side and a

strong shock, located just in front of the rotor passage, abruptly decelerates the flow to

subsonic regimes. The rotor passage flow itself, as well as the flow in the downstream

stator domain, remains subsonic. Figure 6.44 (right) visualizes the adjoint solution

for the co-state variable ψ1, i.e. the adjoint variable corresponding to the continuity

equation, for the mass flow rate functional. Again, 78 Hicks-Henne bump functions
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Figure 6.44: Relative Mach number contours (left) and ψ1-contours (right), Darm-
stadt Rotor No. 1, test case I: 2D section at 55% span, functional: mass flow rate.

are defined as design variables and are equidistantly distributed on both the rotor

and stator blades. Figures 6.45 to 6.47 compare the adjoint sensitivities with the

finite-difference gradients for different functions of interest. For all three functionals

the adjoint sensitivities match the gradients obtained from the forward approach

very well and, thus, confirm that the adjoint boundary conditions and the adjoint

mixing-plane formulation are flow-consistent and accurate.
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Figure 6.45: Gradient comparison rotor (left) and stator (right), Darmstadt Rotor
No. 1, test case I: 2D section at 55% span, functional: entropy generation rate.
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Figure 6.46: Gradient comparison rotor (left) and stator (right), Darmstadt Rotor
No. 1, test case I: 2D section at 55% span, objective function: total pressure ratio.
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Figure 6.47: Gradient comparison rotor (left) and stator (right), Darmstadt Rotor
No. 1, test case I: 2D section at 55% span, objective function: mass flow rate.

Test Case II: 3D Configuration

To verify the adjoint boundary conditions and particularly the adjoint mixing-plane

formulation in a three-dimensional flow environment, the entire Darmstadt Rotor
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No. 1 compressor is investigated, i.e. in this last gradient verification test case the

complete domain between the hub and casing is considered. The flow solution is

visualized in Figure 6.48. From the relative Mach number contour plot it can be

observed, that at 50% span the shock structure extends into the rotor passage, where

it stretches across the entire cross section. Thus, at the midspan section the passage

is chocked. Figure 6.49 displays the ψ2-contours of the adjoint solution, i.e. the

co-state variable corresponding to the momentum equation in the x1-direction, for

the entropy generation rate as the objective function. In this test case, 81 Hicks-

Henne bump functions are equidistantly distributed on each blade at 50% span;

i.e. 41 design variables are defined on the midspan section between leading (LE)

and trailing edge (TE) on each suction and pressure side. Figure 6.50 compares the

Figure 6.48: Relative Mach number contours, Darmstadt Rotor No. 1, test case II:
3D configuration, plotted section slice: 50% span.
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Figure 6.49: ψ2-contours, Darmstadt Rotor No. 1, test case II: 3D configuration,
objective function: entropy generation rate, plotted section slice: 50% span.

adjoint sensitivities with the finite-difference gradient for the entropy functional; the

vertical axis on the left plots the rotor gradients while the sensitivities of the stator

blade are scaled by the vertical axis on the right. The gradient comparison for the

total pressure ratio functional is depicted in Figure 6.51. The adjoint sensitivities

match the finite-difference gradients very well and the plots verify the accuracy of

the three-dimensional adjoint solver. The results particularly confirm that the three-

dimensional adjoint boundary conditions are flow-consistent as well.

This completes the gradient study. The remaining sections of this chapter present

several optimization cases in which both compressor configurations are redesigned.
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Figure 6.50: Gradient comparison rotor and stator, Darmstadt Rotor No. 1, test
case II: 3D configuration, objective function: entropy generation rate.
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Figure 6.51: Gradient comparison rotor and stator, Darmstadt Rotor No. 1, test
case II: 3D configuration, objective function: total pressure ratio.
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6.3.5 Optimization in Two-Dimensional Viscous Flow

Before redesigning the entire Darmstadt Rotor No. 1, first a two-dimensional section

slice of the transonic single-stage compressor is examined and optimized in isolation.

Since three-dimensional flow effects typically are less dominant in the midspan re-

gion, the compressor geometry is extracted and investigated at 55% span. Figure 6.52

depicts the block-structured grid of the section slice in more detail. The rotor do-

main consists of 9529 grid points, while 7021 points are used to discretize the stator

domain. The rotor and stator blade surfaces are represented by 197 and 145 grid

points respectively, 65 grid points are used to discretize the channel section between

two adjacent rotor or stator blades.

Figure 6.52: Computational grid for the 55% span section of Darmstadt Rotor No. 1.

In the following, the two-dimensional section slice of the transonic compressor is

redesigned while considering a fully-turbulent viscous flow environment. Figure 6.53

depicts the relative Mach number contours for the baseline design and illustrates

that the flow field in the rotor domain is highly transonic. The inlet Mach number

is supersonic, Mrel,in = 1.13, and a detached bow shock forms upstream of the rotor

leading edge. The supersonic flow region extends until the rotor suction side and

is terminated by a strong normal shock located at approximately 50% chord just in

front of the rotor passage entry. The isentropic efficiency obtained from the numerical

solution is 90.92% and the total pressure ratio of the baseline design is 1.495. The

objective of this study is again to increase the isentropic efficiency by reducing the
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Figure 6.53: Relative Mach number contours, Darmstadt Rotor No. 1, 55% span
section, baseline design, ηis = 90.92%.

entropy generation throughout the single-stage compressor. Similarly as for the Con-

figuration D compressor, two optimization cases are investigated; an unconstrained

optimization and a constrained design case, in which the efficiency of the Darmstadt

Rotor No. 1 is maximized while constraining the mass flow rate (±0.1%) and the to-

tal pressure ratio (±0.02%). The surface grid points are utilized as design variables;

however, the original blade radii are preserved by assigning geometrical constraints

to the rotor and stator leading and trailing edge points. Furthermore, no specific

maximum thickness constraints are prescribed to the blades. To speed up the con-

vergence process, at each design cycle, the computational domain is initialized with

the previous flow solution and, then, 1500 multigrid cycles are performed to evaluate

the flow field. Depending on the airfoil shapes, the residual typically drops by eight to

nine orders. As shown in the convergence studies presented in subsections 6.2.3 and

6.3.3, it is generally sufficient to converge the flow equations by four to five orders;

however, to increase the robustness of the optimization and to ensure an accurate

adjoint solution as well as gradient calculation, the number of iterations is chosen to
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be higher than usually necessary. The adjoint system is initialized accordingly and

is converged to a similar level as the flow equations.

Figure 6.54 illustrates the adjoint solution ψψψ1, i.e. the co-state variable corre-

sponding to the continuity equation, for the entropy generation rate at the first

design iteration. The corresponding gradient distribution is depicted in Figure 6.55,

where the design variables within the red dashed boxes are the geometrically con-

strained leading edge (LE) and trailing edge (TE) points. Comparing both the rotor

and stator gradients, one observes that the largest gradient amplitudes occur on the

rotor suction side (SS) near the location of the shock. This reconfirms that the rotor

suction side geometry is highly sensitive to the design objective, while, as indicated

by the small gradient amplitudes associated with the stator design points, the stator

geometry only has a minor influence on the objective functional. These observations

confirm the conclusions that can be drawn from the flow solution, cf. Figure 6.53,

which suggests that the entropy production in the stator domain is negligible com-

pared to the losses and entropy rise generated by the rotor shock.

Figure 6.54: ψ1-contours, Darmstadt Rotor No. 1, 55% span section, baseline design,
objective function: entropy generation rate.
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Figure 6.55: Gradient for rotor (left) and stator (right), Darmstadt Rotor No. 1,
55% span section, baseline design, objective function: entropy generation rate.

The unconstrained optimization requires nine design cycles to reach an optimum

design (27 function evaluations including all additional line searches), whereas the

constrained optimization converges to the final solution within 22 design cycles (over-

all cost: 69 flow evaluations and 207 adjoint calculations). The final blade geometries

of both optimization cases are compared with the baseline design in Figure 6.56.

Throughout the unconstrained optimization, the stator geometry remains nearly un-

changed. Likewise, the rotor pressure side is modified only slightly. As suggested by

the gradient plots, the largest profile modifications occur on the rotor suction side;

the profile curvature is reduced in the supersonic flow region but increased in the

subsonic flow region after the shock. Similarly as in the unconstrained optimization,

in the constrained design case the shape modifications of the rotor geometry exceed

those of the stator geometry. However, in the constrained optimization the stator

shape is modified and both the suction and pressure sides are pushed downwards

in the aft part of the airfoil. Furthermore, the rotor blade remains thicker in the

supersonic flow region and the pressure side is now adjusted noticeably, especially

towards the rotor trailing edge. Moreover, it can be observed that the maximum

thickness of the optimized rotor blades is located at different chord lengths. In the

constrained design case the maximum rotor thickness is reached further upstream.



6.3 Darmstadt Rotor No. 1 179

Baseline

Unconstrained

Constrained

Figure 6.56: Shape modification Darmstadt Rotor No. 1, 55% span section.

As discussed further below, these additional shape modifications can be attributed

to the constraints and their gradients, which control the mass flow rate as well as

the total pressure ratio and ensure that the constraints stay within their prescribed

bounds.

The shape modifications of both the unconstrained and constrained optimization

cases lead to a reduced flow acceleration in the supersonic flow region and yield op-

timized designs which produce a weaker and more oblique shock than the baseline

geometry, cf. Figures 6.57 (left) and 6.58 (left). The entropy contour plots 6.57 (right)

and 6.58 (right), where δs = s0 − sopt and hence δs > 0 indicates a lower entropy

level in the redesigns, show that the shock structures of the optimized designs gener-

ate less entropy than the normal shock occurring in the baseline design. Comparing

both optimized designs with each other, the entropy plots illustrate as well that the

unconstrained optimization reduces the entropy generation further; especially in the

boundary-layer downstream of the rotor shock, where the entropy level is lower in

the absence of constraints. In the constrained design case, the mass flow and total

pressure ratio constraints prevent the realization of profile modifications which would
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Figure 6.57: Relative Mach number contours (left) and difference in entropy (right),
Darmstadt Rotor No. 1, 55% span section, unconstrained optimization, ηis = 92.86%.

Figure 6.58: Relative Mach number contours (left) and difference in entropy (right),
Darmstadt Rotor No. 1, 55% span section, constrained optimization ηis = 92.46%.

enable a further reduction of the shock strength to the level obtained from the un-

constrained optimization. The stronger shock/boundary-layer interaction generates

higher losses, which manifest themselves in the higher entropy level observed within

the boundary-layer. At the same time, in the unconstrained optimization the rotor

shape modifications only aim to reduce the entropy generation. However, as a side

effect they also cause an increase in the mass flow rate and the total pressure ratio,

cf. Figure 6.59 (right) further below. In the constrained design case the rotor suction

side is modified to reduce the shock strength as well, but also such that the con-

straints stay within their prescribed bounds. The aforementioned upstream-shift of

the maximum rotor thickness and the profile modifications on the rotor pressure side

control the mass flux and ensure that it is maintained throughout the optimization.
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Figure 6.59 (left), which displays the convergence of the objective function through-

out the optimization, confirms these observations. During the unconstrained opti-

mization, the overall entropy generation rate drops by 22.5%, while the constrained

design case reduces the objective functional by 18.4%. Accordingly, the isentropic

efficiency increases to 92.86% (+1.94%) for the unconstrained optimization and to

92.46% (+1.54%) for the constrained design case. Thus, out of both optimization

cases, the unconstrained redesign yields a slightly better efficiency (+0.40%); how-

ever, at the same time both the mass flow rate and the total pressure ratio increase

by 1.48% and 0.26% respectively and, thus, experience changes that exceed the pre-

scribed bounds of the constrained optimization by severalfold. Figure 6.59 (right)

displays the changes in the mass flow rate and the total pressure ratio throughout

the redesign; the dashed red lines define the bounds on the constraints. For the

constrained optimization, the constraints stay within their prescribed bounds at each

design cycle; in case a constraint is violated, the solution is not accepted and a new

line search is performed. The final optimized design shows a mass flow rate increase

of only 0.03% and a negligible total pressure ratio deficit of 0.02% compared to the
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baseline design. The constrained optimization terminates after the 22nd design cy-

cle, where the total pressure ratio constraint prevents the numerical program from

finding a more efficient compressor design. Table 6.16 summarizes the aerodynamic

performance parameters of the single-stage transonic compressor obtained for the

constrained optimization case and compares them with the values from the baseline

design and the unconstrained optimization.

ηis [%] π
ṁopt
ṁ0

Baseline 90.92 1.49491 1.0000

Unconstrained 92.86 1.49884 1.0148

Constrained 92.46 1.49462 1.0003

Table 6.16: Performance comparison between the original and optimized compressor
designs, Darmstadt Rotor No. 1, 55% span section.

6.3.6 Optimization in Three-Dimensional Inviscid Flow

After having discussed two two-dimensional design cases, in this subsection a three-

dimensional optimization is presented in which the entire Darmstadt Rotor No. 1 is

redesigned while considering an inviscid flow field. The objective of the optimization

remains the same, i.e. to increase the stage efficiency by minimizing the entropy gen-

eration throughout the single-stage compressor. The baseline design, cf. Figure 6.60

(left) which shows the flow solution at midspan, is operated at a total pressure ratio

of 1.63 and the isentropic efficiency obtained from the numerical solution is 88.78%.

The difference between the numerical total pressure ratio and the experimental value,

cf. subsection 6.3.2, is mainly due to the fact that in the current CFD simulation

both the viscous effects as well as the rotor gab are neglected. While an initial un-

constrained optimization of the transonic compressor stage results in a remarkable

efficiency gain, it also shows that other aerodynamic performance measures, includ-

ing the mass flow rate and the total pressure ratio, change during the design process.

Consequently, a second constrained optimization is performed, in which the com-

pressor efficiency is maximized while restricting the change in the mass flow rate to
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Figure 6.60: Relative Mach number contours (left) and adjoint ψ2-contours (right)
for Darmstadt Rotor No. 1, inviscid design case, plotted section slice: 50% span,
functional: entropy generation rate.

±0.25% and the variation of the total pressure ratio to ±0.10%.

In the optimization case presented below, 81 Hicks-Henne bump functions are

evenly distributed on each suction and pressure side; thus, overall 324 design variables

are utilized to control the blade shapes. Nine radial sections are defined between the

hub and tip of each blade (from 10% span to 90% span) and at every radial section

nine Hicks-Henne bump functions are placed between the trailing edge and leading

edge (from 10% to 90% of the chord length). No specific geometrical constraints are

prescribed to the rotor and stator blades. However, the selected locations of the bump

functions ensure that the trailing and leading edge radii as well as the near hub and

tip sections of the blades are maintained throughout the optimization. Furthermore,

the hub geometry and the compressor casing are not modified during the redesign. To

reduce the number of iterations necessary to sufficiently converge the flow equations

and the adjoint system, at each design cycle the computational domain is initialized

with the flow and adjoint solutions from the previous design iteration. Following this

procedure, only 1200 multigrid cycles are required to reduce the density residual and

to converge the adjoint equations by six to eight orders.

A physical interpretation of the adjoint equation helps understand the adjoint

solution depicted in Figure 6.60 (right) and ultimately the geometrical changes oc-

curring during the redesign. From Eqn. (4.5) it can be observed that the product

of the adjoint co-state vector ψψψ and the variation of the flow residual [∂R/∂W]T
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determines the change to the objective function. On the discrete level, the adjoint

solution in the computational cell (i, j, k) represents a vector counterpart to the flow

solution in that particular cell. For instance, as stated by Shankaran [92], the adjoint

co-state ψ1 corresponds to the density and can be interpreted as the change required

to be induced to the mass flux to cause a change in the objective function of interest.

Similarly, the adjoint co-states ψ2 to ψ4 represent the counterparts to the momentum

quantities ρu1, ρu2, and ρu3 and signify the change required in the momentum flux

to change the objective function. In particular, a positive adjoint solution ψ1 (or ψ2

to ψ4 or ψ5) indicates that the density flux (or momentum flux or energy flux) should

be increased to meet the design objective. Accordingly, a negative co-state solution

suggests a decrease in the corresponding primal flux. The adjoint solution for the

entropy generation rate functional, cf. Figure 6.60 (right), shows that the sign of the

co-state variable ψ2 changes on the rotor suction side from a positive value in the

supersonic flow region to a negative value in the subsonic flow region. Hence, the

adjoint solution indicates that an increase in the x1-momentum flux in the forward

part and a decrease in the x1-momentum flux in the aft part of the rotor suction

side will improve the design objective. Combining this information with the gradient

trends depicted in Figure 6.61, which illustrates the rotor and stator gradients at

70% span, confirms that the objective function is particularly sensitive to geometry

variations on the rotor suction side and suggests that a reduced profile curvature in

the front part of the rotor suction side will reduce the entropy generation. From the

gradient distributions it further can be observed that, similar to the two-dimensional

design cases, the gradient amplitudes of the rotor design points are larger than those

of the stator design points. The highest gradient values occur again in the near-shock

region on the rotor suction side, which attests that the rotor geometry has more in-

fluence on the design objective than the stator shape. This is obvious since in the

stator domain the entropy generation is due to dissipative effects only. In fact, due

to the assumption of an inviscid flow environment and the fact that no shock losses

occur in the stator domain, the entropy increase within the stator row is a result

of the artificial dissipation introduced by the numerical scheme. The rotor shock is

responsible for most of the entropy produced within the compressor stage.

The final optimized compressor stage is obtained after twelve design cycles; the
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Figure 6.61: Rotor (left) and stator (right) gradient at 70% span, Darmstadt Rotor
No. 1, inviscid design case, baseline design, functional: entropy generation rate.

overall cost of the constrained optimization, which includes additional line searches,

amounts to fifteen flow and 45 adjoint evaluations. The optimization terminates when

the optimizer is unable to find a solution that improves the objective function without

violating the total pressure ratio constraint. Figure 6.62 compares the geometry of

the redesigned blades with the baseline geometry at 25% span, 50% span, and 75%

Baseline
Redesign

75% Span
50% Span
25% Span

Figure 6.62: Shape modification of rotor (left) and stator (right), Darmstadt Rotor
No. 1, inviscid design case, constrained optimization.
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span. For clarity the radial sections have been displaced. As indicated by the gradient

distributions, the stator geometry undergoes only small modifications. In the front

part the suction side curvature is slightly reduced, especially towards the hub region.

The rotor blade experiences larger profile changes, both the suction and pressure sides

are modified noticeably. As expected, the suction side profile curvature is reduced in

the supersonic flow region and increased in the subsonic flow region after the shock.

The rotor geometry modifications grow larger towards the tip region, which is a

result of the increasing shock strength in the radial direction. In the redesign, the

flow acceleration in the supersonic region is slowed down again, leading to a weaker

shock, cf. Figure 6.63. Furthermore, as illustrated in Figure 6.63 (left), in the baseline

design the supersonic flow region extends into the rotor passage and at both the 50%

span and 75% span sections the shock stretches from the rotor suction side to the

pressure side of the neighbouring blade. The sections are chocked. In the redesign,

the shock location is pushed upstream and out of the rotor passage; the flow within

the rotor passage remains subsonic, cf. Figure 6.63 (right). Figure 6.64, which depicts

the relative Mach number distribution on the rotor blade, confirms these observations

and shows that the flow on the rotor pressure side remains subsonic over the entire

span.
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Figure 6.63: Relative Mach number contours of Darmstadt Rotor No. 1 baseline
design (left) and redesign (right) at 75% span (top), 50% span (center), and 25%
span (bottom), inviscid design case, constrained optimization.
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Figure 6.64: Relative Mach number distribution on the rotor suction side (top) and
rotor pressure side (bottom) of the baseline design (left) and redesign (right), inviscid
design case, constrained optimization.

The weaker rotor shock in the redesign leads to a smaller entropy rise across the

shock and within the entire compressor stage. Throughout the constrained optimiza-

tion, the overall entropy generation rate drops by 19.9% and the isentropic efficiency
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increases by 2.02%, cf. Figure 6.65 (left). Figure 6.65 (left) also depicts the conver-

gence of the objective function and the increase of the isentropic efficiency for the

aforementioned unconstrained optimization case. In the absence of constraints, the

final design is reached after 22 design cycles (23 flow and adjoint evaluations including

additional line searches), which provides an efficiency increase of 2.61%. However, at

the same time both the mass flow rate and the total pressure ratio increase by 1.55%

and 0.27% respectively and, thus, exceed the bounds prescribed on the constrained

optimization. Figure 6.65 (right) monitors the changes of the constraints through-

out the redesign, where the dashed red lines define the bounds on the constraints.

In the case of the constrained optimization, a design proposed by the optimizer is

automatically rejected if it does not improve the design objective or violates a con-

straint (design iterations marked by uncoloured symbols represent such unsuccessful

line searches) and new step lengths are tested for the given search direction until a

feasible solution is found. After the fifteenth design iteration, the optimizer cannot

find an improved design without surpassing the lower bound on the total pressure ra-

tio and consequently the optimization terminates. The final optimized design shows
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Figure 6.65: Normalized objective function and isentropic efficiency (left), change
in mass flow rate and total pressure ratio (right), Darmstadt Rotor No. 1, inviscid
design case.
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ηis [%] π
ṁopt
ṁ0

Baseline 88.78 1.63190 1.0000

Unconstrained 91.39 1.63659 1.0155

Constrained 90.80 1.63038 1.0001

Table 6.17: Performance comparison between the original and optimized compressor
designs, Darmstadt Rotor No. 1, inviscid design case.

a total pressure ratio deficit of only 0.09% and a negligible change in the mass flow

rate of 0.01% compared to the baseline design.

The results of the optimization of the Darmstadt Rotor No. 1 in an inviscid

flow field are summarized in Table 6.17. Despite the relative strict constraints on

the total pressure ratio and the mass flow rate, the constrained optimization case

leads to considerable efficiency improvements and, at the same time, ensures that the

constrained aerodynamic parameters do not change during the optimization process.

6.3.7 Optimization in Three-Dimensional Viscous Flow

In this last optimization case, the entire single-stage transonic compressor is re-

designed while considering a fully-turbulent viscous flow environment. The design

objective is again to increase the stage efficiency by minimizing the entropy gener-

ation rate; however, this time no additional constraints are prescribed. Figure 6.66

depicts the relative Mach number contours for the baseline design at 50% span and

displays the isentropic Mach number distribution, cf. Eqn. (2.52), on the blade sur-

faces. The isentropic efficiency obtained from the numerical solution is 89.49% and

the flow solver predicts a total pressure ratio of 1.50. The stage pressure ratio is

in good agreement with the numerical and experimental results provided by Fritsch

et al. [90] and Höger et al. [91] for the compressor design point (πexp = 1.48 and

πnum = 1.49). The isentropic efficiency (ηis,exp = 86.7% and ηis,num = 88.3%) is over-

predicted, which was to be expected since in the presented research work the rotor

gab is not modelled.
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Figure 6.66: Relative Mach number contours, Darmstadt Rotor No. 1, viscous design
case, plotted section slice: 50% span, baseline design, ηis = 89.49%.

Again, Hicks-Henne functions are utilized as design variables and 81 bumps are

equidistantly distributed on each suction and pressure side. The unconstrained opti-

mization terminates after eighteen design iterations, which includes one unsuccessful

line search. The rotor geometry experiences shape modifications which are generally

similar to those observed in the inviscid design case, cf. Figure 6.67. Since the main

reason for the entropy increase within the rotor row is the strong shock and, thus, is

due to an inviscid physical phenomenon, this is not surprising. However, while the

stator geometry remained nearly unchanged throughout the inviscid optimization, in

the present design case the stator blade is modified noticeably. In the viscous design

case, the entropy generation in the stator domain is not only caused by the artifi-

cial dissipation introduced by the numerical scheme, but also due to the dissipative
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Figure 6.67: Shape modification of rotor (left) and stator (right), Darmstadt Rotor
No. 1, viscous design case, constrained optimization.

nature of the Navier-Stokes equations. Viscous effects, such as the stator boundary-

layer and the downstream wake, make the stator geometry more sensitive to the

design objective. Especially towards the hub region, where the flow turning is the

highest in order to maximize the work output of the stage, the optimizer reduces the

profile thickness and the suction side curvature of the stator blade significantly. This

reduces the flow acceleration in the front part as well as the deceleration in the aft

part of the stator suction side and consequently produces a more uniform flow field,

which in turn leads to a thinner boundary-layer and reduced entropy generation.

The rotor shape modifications lead to a weaker and more oblique shock, which

in turn attenuates the entropy generation across the shock discontinuity and in the

downstream boundary-layer. Comparing the flow field of the optimized design with

that of the baseline design, cf. Figure 6.68, illustrates that particularly in the near

tip region, i.e. in the area where the highest relative flow velocities occur, the shock

strength could be reduced considerably. Furthermore, the shock location is pushed

upstream and the flow acceleration from the rotor leading edge stagnation point to-

wards the pressure side is reduced. Accordingly, the supersonic flow region which

occurs on the rotor pressure side in the vicinity of the leading edge diminishes no-

ticeably throughout the optimization, cf. Figure 6.69, although it is not completely

eliminated as in the inviscid design case.
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Figure 6.68: Relative Mach number contours of Darmstadt Rotor No. 1 baseline
design (left) and redesign (right) at 75% span (top), 50% span (center), and 25%
span (bottom), viscous design case, constrained optimization.
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Figure 6.69: Isentropic Mach number distribution on the rotor suction side (top) and
rotor pressure side (bottom) of the baseline design (left) and redesign (right), viscous
case, constrained optimization.



6.3 Darmstadt Rotor No. 1 195

Figure 6.70 shows the entropy at the exit plane downstream the stator for both

the baseline (top) and optimized (bottom) design. The redesign leads to a reduced

entropy level in several regions across the outflow plane; the most important ones

are highlighted by dashed boxes. Particularly noticeable is the entropy reduction in

the stator wake between 20% and 70% span as well at the lower entropy levels close

to the hub and tip. Since the hub geometry and the casing are not modified during

the optimization, these improvements are due to the changes in the rotor and stator

geometry only.

Figure 6.70: Entropy contours baseline design (top) and optimized design (bottom)
at the compressor exit plane, Darmstadt Rotor No. 1, viscous design case, constrained
optimization.
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As depicted in Figure 6.71 (left), the optimization reduces the objective func-

tion by 17.2%, which leads to an isentropic efficiency increase by 1.62%. Although

no constraints were prescribed on the mass flow rate and total pressure ratio, in

this particular design case both measures do not change considerably. Figure 6.71

(right) displays the changes these two aerodynamic parameters experience during

the redesign. For illustration purposes, the bounds on the constraints applied in the

previous inviscid optimization case are shown as well. It can be observed, that both

parameters change considerably less than observed in the inviscid optimization. At

every design cycle the mass flow rate stays within ±0.50% of the reference mass flow

rate, while the total pressure ratio never exceeds a change of ±0.10%. The final

design possesses a total pressure ratio deficit of 0.07% and the mass flow rate differs

by 0.13% compared to the baseline design.
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Figure 6.71: Normalized objective function and isentropic efficiency (left), change
in mass flow rate and total pressure ratio (right), Darmstadt Rotor No. 1, viscous
design case.

Due to the various viscous wall boundaries, which demand a highly resolved grid

in the vicinity of the rotor and stator blades as well as near the hub geometry and the

casing, the three-dimensional multi-block grid of this last design case poses the most

demanding challenges on the RBF-based grid deformation scheme utilized to modify

the computational grid throughout the optimization such that it conforms to the
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continuously deformed blade geometries. Nevertheless, as illustrated in Figure 6.72,

the grid for the final optimized compressor configuration, which is obtained after

seventeen grid deformations, shows no noticeable quality deteriorations compared to

the grid of the baseline design. Figure 6.73 depicts a cut through the final multi-

Figure 6.72: Final grid after optimization (top) and baseline grid before optimization
(bottom), 33% span cut, Darmstadt Rotor No. 1, viscous design case.

block configuration extracted at 75% span and compares its skeleton (color: red) with

the skeleton of the baseline grid (color: blue). The geometry modifications and the

resulting deformations of the skeleton are clearly visible. The corresponding grid

including the perturbed interior grid points for the optimized design is illustrated in

Figure 6.74. The enlargements demonstrate that the grid quality remains remarkably

high, even within the boundary-layer where the grid is highly stretched. The RBF

scheme propagates the geometry deformation into the domain, where the calculated
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grid point modifications slowly attenuate and eventually tend to zero well before

the outer boundaries of the computational domain are reached, cf. subsection 5.1.2

for more details. Furthermore, the interior grid point adjustments are calculated

such that the grid remains smooth and quality parameters such as the aspect ratio,

orthogonality, expansion factor, and skewness are maintained. Thus, the developed

RBF-based grid perturbation scheme ensures that the grid quality remains high, even

after a large number of consecutive grid perturbations for complex three-dimensional

viscous multi-block grid configurations. Moreover, its novel two-stage approach, in

which first the skeleton is deformed on the root processor and then the remaining

interior grid points are adjusted in parallel, as well as the various measures imple-

mented to speed up and reduce the memory footprint of the algorithm enable the

calculation of high-quality grid deformations in a timely manner. In this particu-

lar case investigated here, 48 cores are used at the second stage of the deformation

scheme to move the interior grid points; the time of one grid perturbation amounts to

approximately 0.15% of the overall cost of one design cycle (which here includes one

flow and adjoint solution, the gradient calculation, and the final grid perturbation)

or to approximately 0.5% of the time required to solve the flow governing equations

alone.

Figure 6.73: Perturbed skeleton after the first stage of the RBF grid perturbation
scheme 75% span cut, Darmstadt Rotor No. 1, viscous design case.
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Figure 6.74: Perturbed grid after completion of the RBF grid perturbation scheme,
75% span cut, Darmstadt Rotor No. 1, viscous design case.



Chapter 7

Conclusion

This chapter presents the main conclusions which can be drawn from this research. It

highlights the contributions and key aspects of the proposed optimization framework

and lists several topics which remain open for future work.

7.1 Adjoint Solver for Turbomachinery Flow

This dissertation presents the development of the discrete adjoint counterpart of a

turbomachinery RANS solver using manual differentiation. The thesis discusses the

derivation and accurate linearization of the flow boundary conditions, including the

implemented mixing-plane formulation, as well as the resulting adjoint boundary

fluxes in detail. The development of an exact adjoint mixing-plane allows for a

concurrent rotor-stator optimization and, hence, is of particular importance when

applying an adjoint-based aerodynamic shape optimization method to multistage

turbomachinery design.

The research reveals that even a slightly inaccurate implementation of the adjoint

boundary terms can adversely effect the accuracy of the adjoint solution and, thus,

the objective function gradient. An inaccurate gradient information in turn may

affect the convergence of the optimization algorithm and ultimately the quality of the

optimized design. It is concluded and should be stressed that the inclusion and the

correctness of the adjoint boundary fluxes is vital and a prerequisite for an accurate

optimization.

200
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Against this background, a major advantage of the discrete adjoint approach is

that the adjoint boundary conditions, are obtained straightforward by linearizing

the discretized flow boundary conditions. Yet, as illustrated in this thesis, their

derivation can be challenging, especially if a boundary condition involves non-local

quantities. This, for instance, is the case for the mixing-plane formulation, where

averaged quantities are transferred between adjacent blade rows.

It may be summarized that the crucial step in calculating any adjoint boundary

flux is the exact linearization of the flow boundary flux with respect to the states

in the domain it depends on. The research addresses this aspect and demonstrates

that, to simplify the development of the flow-consistent adjoint fluxes for the various

boundaries (e.g. solid walls, inlet and outlet interfaces, mixing-plane), it is advis-

able to construct the different adjoint fluxes from a composition of several matrices

and elementary transformations. It is shown that this approach considerably reduces

the development cost, since in this case the implementation of the different adjoint

boundary conditions largely boils down to selecting and combining the appropriate

adjoint matrices and transformations. As depicted in this work, the adjoint bound-

ary fluxes produced by the objective functional and potential constraints can be

constructed in a similar fashion and by reusing the same matrices and elementary

transformations. Consequently, this approach provides a means to easily implement

new objective functionals and minimizes the development work involved in adding

additional constraints to the optimization framework.

Gradient verification studies are performed for various set-ups of each investigated

compressor and show that the adjoint sensitivities are in very high agreement with

the finite-difference gradients predicted by the flow solver. Thus, the results of these

sensitivity analyses verify both the accuracy of the developed adjoint solver as well as

the correctness of the gradient calculation routines. Furthermore, the adjoint equa-

tions and their solutions are interpreted and put into physical context; the analysis

leads to various conclusions. First, the adjoint sensitivities, defined as the product

of the adjoint co-state vector ψψψ and the variation of the flow residual [∂R/∂W]T ,

determine the geometrical changes occurring during an optimization and, thus, ulti-

mately the change to the objective function. Second, on the discrete level, the adjoint

solution in a certain computational cell represents a vector counter-part to the flow
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solution in that same cell. Consequently, the adjoint co-state vector corresponds to

the flow variable vector and signifies the change required to be induced to the primal

flux to cause a change in the function of interest. Third, this particularly means

that a positive adjoint solution indicates that the primal flux should be increased to

meet the design objective and a negative adjoint solution suggests a decrease in the

corresponding primal flux.

7.2 Grid Perturbation and Design Variables

To fully benefit from the advantages of the adjoint approach, it is important to

employ a robust grid perturbation scheme for turbomachinery grids which allows

for an efficient but accurate gradient calculation. At the same time, the scheme

must produce grids without deteriorating quality, even after a repeated number of

perturbation cycles. Moreover, the choice of the design variables is crucial and can

largely influence the outcome and success of an optimization. In this work, several

grid deformation schemes and different kinds of design variables are studied and the

following are the conclusions of this research.

An algebraic grid deformation scheme is employed for all two-dimensional design

cases and is found to be relatively inexpensive and very robust. Even after a large

number of design iterations and grid perturbations the grid quality remains high and

both flow and adjoint solvers converge well. Yet, it is realized that the computational

cost and particularly the complexity of the development increase considerably when

implementing an algebraic perturbation scheme in a general way such that it can

be applied to multi-block grids. To make things worse, the limited generality of

algebraic schemes pose severe restrictions on their applicability to a variety of multi-

block grid configurations, especially those that are typically used for the calculation of

turbomachinery flows. For instance, O-grid configurations, as they are utilized within

this work and which are commonly used in turbomachinery CFD, do not provide

continuous grid lines from the blade surface to the boundary for the entire grid.

Unfortunately, this is a requirement for algebraic perturbation schemes and, thus, it

is infeasible to deform certain parts of such a multi-block grid when employing an

algebraic approach. Consequently, the algebraic perturbation scheme is discarded in
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favour of a more general grid movement scheme based on radial basis functions (RBF).

The RBF-based perturbation scheme is applied to all three-dimensional design cases

and stands out for its generality as well as straightforward applicability to grids

of various complexity. Investigations demonstrate that the standard version of the

scheme is extremely robust and maintains the grid quality, even for large geometrical

perturbations. However, it also is observed that the RBF scheme is expensive and

requires a vast amount of memory; up to the point that the standard scheme becomes

too expensive to use with highly-resolved viscous grids such as that of the Darmstadt

Rotor No. 1 test case. Two novel contributions are presented in this thesis that

reduce the memory footprint and consequently lower the computational cost of the

RBF-based deformation scheme. First, through a significant reduction of the RBF

points by selecting only a subset of the surface points. Second, by splitting the

deformation process into two stages, which allows for a partial parallelization of the

grid perturbation scheme. These measures reduce the cost of the deformation scheme

to a reasonable level without compromising the grid quality and make it applicable

to highly-resolved viscous three-dimensional turbomachinery multi-block grids.

The surface grid points serve as design variables for all two-dimensional design

cases and the optimization results show that the choice of the surface grid points

leads to a wide design space and provides sufficient flexibility to obtain a design with

considerable performance improvements. Furthermore, it is found that it is necessary

to manually restrict the design space by prescribing geometrical constraints on the

leading and trailing edge points of the blades to avoid the generation of unrealistic

blade shapes. It requires some tedious trial and error to determine the ideal range to

be restricted and how to treat the subsequent grid surface points such that the blade

profile remains smooth. Hicks-Henne bump functions are used as design variables for

all three-dimensional design cases instead; there are two primary advantages over grid

points. First, there is no need to separately smooth the shape modifications. Second,

their convenient formulation provides a means to easily modify and distribute the

bumps such that no additional geometrical constraints have to be prescribed. Due

to these advantages, and despite the fact that choosing Hicks-Henne bump functions

over surface grid points slightly restricts the design space and the attainable geometry,

it is concluded that Hicks-Henne bump functions represent the favourable choice of
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design variables for the problems investigated in this work.

7.3 Constrained Compressor Optimization

The proposed optimization method is used to redesign two different transonic axial

flow compressor configurations while considering various flow conditions and different

geometrical set-ups. The following are the primary conclusions from the results of

the numerous optimization cases.

Most unconstrained optimization cases yield a remarkable increase in isentropic

compressor efficiency while allowing other crucial design parameters such as the mass

flow rate and the total pressure ratio to change drastically. The constrained redesigns

often produce a comparable compressor efficiency improvement to the unconstrained

cases, while maintaining both the mass flow rate and total pressure ratio within tight

bounds. This demonstrates that the sequential quadratic programming (SQP) algo-

rithm introduced into the developed adjoint-based optimization framework, provides

a means to control the variation of crucial aerodynamic measures with little effort.

Since the bounds of the constraints can readily be modified, the design problem can

easily be further restricted or relaxed to better understand the relationship between

the constraints and the objective function. In particular, the SQP method avoids

the time-consuming task of determining appropriate constraint penalty coefficients

by trial and error, which typically is required when employing a weighting function

approach in which an aggregate function is defined as the sum of the main objective

and the constraints. Furthermore, the design cases show that optimization within a

SQP framework guarantees that the constraints stay within their prescribed bounds

at every design cycle. In contrast, when using a penalty function approach, bounding

each constraint by manually prescribing penalty coefficients can result into an expen-

sive trial and error series of simulations. To avoid ill-conditioning of the optimization

problem, the penalty coefficients are gradually increased, thus further increasing the

computational expense. Finally, as demonstrated by the constrained optimization of

the Configuration D compressor, the active set strategies employed in the SQP algo-

rithm, i.e. the treatment of the constrained problems through Lagrangian function

formulations, allow for a change in the search direction to further improve the design
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objective. Thus, optimization within a SQP framework provides a means to find

feasible optimum solutions which may not be realizable through a weighting function

approach.

The various successful redesigns validate the potential of the developed optimiza-

tion framework. The benefits of the optimization method are not limited to the gen-

eration of optimized geometrical designs. The analysis of the optimization, i.e. the

information provided by the adjoint sensitivities for the objective function and con-

straints, the convergence history of the optimization, and the interpretation of the

calculated blade shape modifications, prove to be extremely valuable as well. The

proposed optimization method may serve as a direct design tool, but also represents

an important analysis tool which can be used to investigate the underlying design

space. Thus, it can help the designer to better understand the design problem at

hand and may ultimately assist him in further advancing the aerodynamic designs of

modern compressor and turbine configurations.

7.4 Future Work

This dissertation developed a fully-automatic adjoint-based optimization method for

constrained aerodynamic shape optimization in a viscous multistage turbomachinery

environment. The general functionality and potential of the method was demon-

strated by redesigning two different compressor configurations. At the same time,

the developed optimization framework possesses several limitations and the following

future work could greatly improve its potential and further advance the state-of-the-

art in automatic shape optimization methods for turbomachinery design.

- Implementation of additional design variables. Representing the blade

geometry and controlling the shape during an optimization via B-splines would

further ease the handling of geometrical restrictions. Although Hicks-Henne

bump functions generally yield smooth profile modifications as well, these “ar-

tificial” design variables cannot be used to parametrize the actual blade geom-

etry. Furthermore, Hicks-Henne design variables perform rather poor in the

vicinity of blade leading and trailing edges; a deficit that would be overcome by

employing a B-spline parametrization. Moreover, adding design variables such
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as blade twist and sweep, and utilizing them in combination with the surface

design variables, would enhance the design flexibility, extend the design space,

and lead to larger design improvements.

- Optimization of hub geometry and casing. The aerodynamic performance

of a compressor or turbine is not only determined by the rotor and stator blade

designs but also by the hub geometry as well as the casing. Especially in the

near hub and tip region the flow field is noticeably affected by the hub geometry

and the casing. Thus, extending the current optimization framework such that

it allows for a concurrent redesign of the blades, hub geometry, and casing

would increase the optimization potential considerably.

- Implementation of new functionals and application to more complex

design cases. Adding additional objective functions and constraints would

further increase the applicability of the optimization method and would al-

low to tie the optimization to various new design aspects. For instance, the

optimization method could be applied to high-lift airfoil design. Considering

a given multistage turbine, the number of blades per row would be reduced

and the remaining blades could then be redesigned such that the loss increase

is minimized while enforcing the total pressure ratio and work output of the

original turbine configuration. The overall blade loading and its distribution

represents an important aerodynamic design parameter, especially for high-lift

airfoil design. It could be introduced into the design problem either as a con-

straint or as a design objective to obtain a specific blade loading or to study the

effects of front- and aft-loading. The complexity of the design cases could also

be increased by including the turbine cavities in order to investigate secondary

flow phenomena or the rotor gab in a transonic compressor to study near-tip

designs and to minimize the losses due to the interaction of the tip-leakage

vortex with the passage shock.

- Multi-point optimization and application to robust design. Multi-point

optimization capabilities could be added to the present optimization framework

with little effort. This extension would allow to improve a compressor or turbine

design not only for a certain operating point (e.g. peak efficiency), but would
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enable the inclusion of additional operation points (e.g. off-design), therefore

leading to a more robust design and annihilating the risk of improving the

configuration for a specific operating point while deteriorating the overall op-

erability of the compressor or turbine. Additionally, the optimization method

could then be applied to design tasks such as improving a fan design with re-

spect to inflow-angle deviations or increasing the robustness of a compressor

with respect to pressure ratio variations.

- Unsteady multistage optimization. Utilizing a mixing-plane approach, the

proposed optimization method provides the capability to carry out aerodynamic

shape optimization in a steady-state multistage turbomachinery environment.

This framework represents a tremendous improvement over an isolated redesign

of each individual row; yet, it naturally would lack accuracy in comparison to

an unsteady multistage optimization method. Extending the current optimiza-

tion framework to unsteady flows would require the development of both a fast

numerical algorithm for unsteady flow analysis and a rapid unsteady adjoint

solver. The nonlinear frequency domain (NLFD) approach, which represents a

spectral-like scheme that recasts the unsteady governing equations in the tem-

poral domain into a stationary equation system in the frequency domain using

Fast Fourier Transform, provides a technique to solve periodic flow problems

eight to ten times faster than other time-accurate schemes, cf. McMullen [93].

Therefore, the scheme is especially suited for turbomachinery flows. The exten-

sion of the current framework for unsteady multistage optimization employing

an unsteady NLFD-based adjoint solver would represent a major advancement

in the field of aerodynamic shape optimization for turbomachines.

- Advancement of grid perturbation schemes. Grid perturbation is a cru-

cial part of an automatic optimization method. Despite the considerable im-

provements made in this research, the computational cost of a flexible deforma-

tion scheme for complex three-dimensional viscous multi-block grids is by no

means negligible and it is important to further advance the schemes currently

available to obtain an even more efficient optimization tool.



Appendix A

Appendix
For convenience the appendix lists some common transformation matrices and oper-

ators related to the Euler and Navier-Stokes equations. These matrices are utilized

both within the flow and adjoint solver, in particular when constructing the flow and

adjoint boundary conditions.

A.1 Primitive variable transformation

The conservative variables, defined as

W =
[
ρ, ρu1, ρu2, ρu3, ρE

]T
, (A.1)

can be related to the primitive variables WP, given by

WP =
[
ρ, u1, u2, u3, p

]T
, (A.2)

through the transformation matrix

M =
∂W

∂WP

=



1 0 0 0 0

u1 ρ 0 0 0

u2 0 ρ 0 0

u3 0 0 ρ 0

|U|2

2
ρu1 ρu2 ρu3

1

γ − 1


, (A.3)
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and its inverse

M−1 =
∂WP

∂W
=



1 0 0 0 0

−u1
ρ

1

ρ
0 0 0

−u2
ρ

0
1

ρ
0 0

−u3
ρ

0 0
1

ρ
0

Υ

2
|U|2 −Υu1 −Υu2 −Υu3 Υ


, (A.4)

where Υ = γ − 1.

A.2 Convective flux Jacobian matrices for conser-

vative variables

The convective flux Jacobian matrices for conservative variables are obtained from

linearizing the convective fluxes with respect to the conserved variables, i.e.

Am =
δFm

δW
. (A.5)

A.2.1 Cartesian Coordinate Formulation

Formulated in a Cartesian coordinate system, the convective flux Jacobian matrices

are defined as

Am =



Urot n1 n2

n1
Υ

2
|U|2 − u1Un Un + Urot − (Υ− 1)n1u1 n2u1 −Υn1u2

n2
Υ

2
|U|2 − u2Un n1u2 −Υn2u1 Un + Urot − (Υ− 1)n2u2

n3
Υ

2
|U|2 − u3Un n1u3 −Υn3u1 n2u3 −Υn3u2

−γUnE + ΥUn|U|2 n1γE −Υu1Un n2γE −Υu2Un
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n3 0

n3u1 −Υn1u3 Υn1

n3u2 −Υn2u3 Υ1n2

Un + Urot − (Υ− 1)n3u3 Υn3

n3γE −Υu3Un γUn + Urot


, (A.6)

with the abbreviations

Un = u1n1 + u2n2 + u3n3 , Urot = Ω1(n2x3 − n3x2) , (A.7)

|U|2 = u2
1 + u2

2 + u2
3 , Υ = γ − 1 . (A.8)

The individual Jacobian matrices for each Cartesian direction are obtained from

Eqn. (A.6) by setting

x1-direction → m = 1 → n1 = 1, n2 = 0, n3 = 0 , (A.9)

x2-direction → m = 2 → n1 = 0, n2 = 1, n3 = 0 , (A.10)

x3-direction → m = 3 → n1 = 0, n2 = 0, n3 = 1 . (A.11)

In computational space, the convective flux Jacobians are calculated from the mapped

fluxes, i.e.

AAAn =
∂(SnmFm)

∂W
, (A.12)

for n,m = 1, 2, 3.

A.2.2 Cylindrical Coordinate Formulation

The cylindrical coordinate formulation of the convective flux Jacobian matrices is

nearly identical to the Cartesian coordinate expression. Substituting the velocity
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components yields

Am =



Urot nx1
nϕ

nx1

Υ

2
|U|2 − ux1

Un Un + Urot − (Υ− 1)nx1
ux1

nϕux1
−Υnx1

uϕ

nϕ
Υ

2
|U|2 − uϕUn nx1

uϕ −Υnϕux1
Un + Urot − (Υ− 1)nϕuϕ

nr
Υ

2
|U|2 − urUn nx1

ur −Υnrux1
nϕur −Υnruϕ

−γUnE + ΥUn|U|2 nx1
γE −Υux1

Un nϕγE −ΥuϕUn

nr 0

nrux1
−Υnx1

ur Υnx1

nruϕ −Υnϕur Υx1nϕ

Un + Urot − (Υ− 1)nrur Υnr

nrγE −ΥurUn γUn + Urot


, (A.13)

with abbreviations slightly different to those used in the formulation for the Cartesian

coordinate system,

Un = ux1nx1 + uϕnϕ + urnr , Urot = Ω1nϕr , (A.14)

|U|2 = u2
x1

+ u2
ϕ + u2

r , Υ = γ − 1 . (A.15)

The Jacobian matrices for each direction of the cylindrical coordinate system are

obtained from Eqn. (A.13) by setting

xx1-direction → m = 1 → nx1 = 1, nϕ = 0, nr = 0 , (A.16)

xϕ-direction → m = 2 → nx1 = 0, nϕ = 1, nr = 0 , (A.17)

xr-direction → m = 3 → nx1 = 0, nϕ = 0, nr = 1 . (A.18)
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A.3 Diagonalization of the Convective flux Jaco-

bian matrices

The convective flux Jacobian matrices can be diagonalized by applying the transfor-

mation

ΛΛΛm = P−1
m AmPm , (A.19)

where ΛΛΛm is the diagonal matrix of the eigenvalues of the Jacobian matrix Am.

Furthermore, P−1
m denotes the matrix of left eigenvectors, while Pm contains the right

eigenvectors of the convective flux Jacobian matrix. The left and right eigenvector

matrices also act as a transformation operator between the conservative W and

characteristic δC variables; in particular

δC = P−1W , (A.20)

and

W = PδC . (A.21)

The diagonlization of the convective flux Jacobian represents a decomposition into

the different characteristic waves of the system, where the right eigenvectors can be

viewed as the waves, the characteristic variables as the wave amplitudes, and the

eigenvalues as the associated wave speeds.

The characteristic theory is applied in both the flow and adjoint mixing-plane

formulation, cf. subsections 3.3.3 and 4.3.5. At a rotor-stator interface the equations

are formulated in cylindrical coordinates and the boundary plane is always normal

to the x1-direction, thus, only the flux into the x1-direction has to be considered. In
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this case m = 1 and the left eigenvector matrix takes the form

P−1 =



1−Υ
|U|2

2c2
Υ
ux1

c2
Υ
uϕ
c2

Υ
ur
c2

−Υ
1

c2

−ux1
c+ Υ

|U|2

2
c−Υux1

−Υuϕ −Υur Υ

−uϕ
ρ

0
1

ρ
0 0

−ur
ρ

0 0
1

ρ
0

ux1
c+ Υ

|U|2

2
−c−Υux1

−Υuϕ −Υur Υ


, (A.22)

where Υ = γ − 1. The right eigenvector matrix of the convective flux Jacobian is

given by

P =



1
1

2c2
0 0

1

2c2

ux1

ux1
+ c

2c2
0 0

ux1
− c

2c2

uϕ
ur
2c2

ρ 0
uϕ
2c2

ur
uϕ
2c2

0 ρ
ur
2c2

|U|2

2

1

2c2
(H + ux1

c) ρuϕ ρur
1

2c2
(H − ux1

c)


, (A.23)

with the enthalpy H = E + p/ρ and the eigenvalues of the system are structured as

follows

ΛΛΛ1 =



ux1
+ Urot 0 0 0 0

0 ux1 + Urot + c 0 0 0

0 0 ux1
+ Urot 0 0

0 0 0 ux1
+ Urot 0

0 0 0 0 ux1 + Urot − c


. (A.24)
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