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First Order Phase Transition in Intermediate-Energy Heavy Ion Collisions
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We model the disassembly of an excited nuclear system formed as a result of a heavy ion collis
We find that, as the beam energy in central collisions in varied, the dissociating system crosses a liq
gas coexistence curve, resulting in a first-order phase transition. Accessible experimental signature
identified: a peak in the specific heat, a power-law yield for composites, and a maximum in the sec
moment of the yield distribution. [S0031-9007(97)05236-8]

PACS numbers: 25.70.Pq, 21.65.+ f, 24.10.Pa, 64.60.My
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Nuclear matter is a fictitious arbitrarily largeN ­ Z
system in which the Coulomb interaction is switched of
Mean-field theory for nuclear matter has been applie
many times, and it is well known that such a system show
a van-der-Waals-type liquid-gas phase transition. It w
suggested in the early 1980s [1,2] that in heavy ion col
sions at intermediate energies one might be able to pro
this liquid-gas phase transition region. In heavy ion coll
sions, matter would be heated as well as compressed. T
compressed blob would then expand passing through
liquid-gas coexistence phase. One might be able to extr
information about this region from selected experiment
data. Earlier, the Purdue group had conjectured that t
breakup of large nuclei by energetic protons would sho
signatures of critical phenomena [2].

There are several complications which make the stu
of phase transitions in nuclei difficult. The systems a
small, thus singularities get replaced by broad peak
The collision is over quickly. The existence of therma
equilibrium has sometimes been questioned and replac
by quite complicated transport equation approaches. Of
one has been content to do calculations where the object
is to fit the experimental data. Once this is achieve
the question of a possible liquid-gas phase transition
not addressed. There are models where such questi
are irrelevant, or at least very indirect, such as vario
models based on sequential decays. The literature
calculations for fragment yields in intermediate energ
heavy ion collisions is huge. We will not attempt to
mention all approaches.

In this paper we will focus on the liquid-gas phas
transition using a lattice gas model [3]. Previously w
have used the model to fit data on central collisions [3
on peripheral collisions [4], and for central Au on Au
collisions [5]. The model gives a fair description of dat
in those instances—does it say anything definite about t
experimental signature of liquid-gas phase transitions?

In the lattice gas model we placen nucleons inN
cubes, wheren is the number of nucleons in the dis-
assembling system, andNyn ­ r0yrf , wherer0 is the
normal nuclear density, and the disassembly is to be c
culated atrf , the “freeze-out” density beyond which nu-
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cleons are too far apart to interact. An attractive neares
neighbor interaction is assumed. We place then nucleons
in N cubes by Monte Carlo sampling using the Metropo
lis algorithm. Once the nucleons have been placed w
also ascribe to each of them a momentum. The momen
are generated by a Monte Carlo sampling of a Maxwel
Boltzmann distribution. Various observables can be ca
culated in a straightforward fashion. Experiments usual
measure the distributions of cluster sizes, i.e., the yie
Y sZd, which is a function of the number of protons in the
compositeZ. In our model, two neighboring nucleons are
considered to be part of the same cluster if their relativ
kinetic energy is insufficient to overcome the attractiv
bond:p2

r y2m 1 e , 0. This can be immediately turned
into a temperature ande dependent bonding probability
[3,5] much like Coniglio-Klein’s method [6]. The pre-
scription allows us to calculate the distribution of clusters

The equation of state in the lattice gas model has be
well studied in condensed matter physics. The gran
canonical ensemble for the lattice gas corresponds
a three-dimensional Ising model in the presence of
magnetic field. It is thereby possible to translate man
well known results to the present situation. Figure
depicts the phase diagram of the lattice-gas model
the thermodynamic limit, which is adapted from Ref. [7]
In drawing the coexistence curve,D-C-E, the series
expansion given in Ref. [8] was used. The point “C” is
the thermal critical point which occurs atT ø 1.1275jej

and densityrfyr0 ; 1y2. The coexistence curve isD-
C-E, andC-B is the line along which percolation sets in.
The lineC-B is only slightly different in our and Coniglio-
Klein’s prescription.

In an experimental situation involving the collision of
heavy ions, one gates on central collisions and varie
the beam energy. At low beam energy, the temperatu
at freeze-out will be below the coexistence curve. A
the beam energy increases, this point will cross th
coexistence curve (indicated by an arrow in Fig. 1). Not
that there is no reason for the system, under heating,
“tune itself” to the second-order point at densityr ­ 1y2,
since there is no symmetry between the clustered a
unclustered phases involved in the heavy-ion collision
© 1998 The American Physical Society
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FIG. 1. Phase diagram of three-dimensional lattice gas mod
The lineD-C-E is the coexistence curve.C-B is the percolation
line. The arrow demonstrates the crossing of the coexisten
line as the beam energy for central collisions increases. In t
Ising modelD-C-E is the line of spontaneous magnetization
With the usual convention the point 0 on the abscissa cor
sponds to magnetization2M and the point 1 toM.

Indeed, in statistical models of disassembly of which w
know [9,10], the freeze-out density is less than0.5r0. In
our model, we find that the data are best fitted by arf

between0.3r0 and 0.4r0. There is good support from
experiment that the value ofrf is significantly below
0.5r0 [11]. Therefore the phase transition isfirst order.

As one crosses the coexistence curve, experime
would see various signatures of the first-order transitio
In the thermodynamic limit these are well defined. Fo
example, since first derivatives of the free energy are d
continuous in the thermodynamic limit, there are delta
function peaks in second derivatives [12,13], e.g., in th
heat capacity at constant pressureCp, and in the isother-
mal compressibilitykT . There is also a clear signature
of the transition in the density-density fluctuation correla
tion functionGsrd [whose integral gives the compressibil
ity by a thermodynamic sum rule [14]

R
d $r Gsrd ~ kT ].

This correlation function decays exponentially above an
below the transition point. At the transition point itself
however,Gsrd is flat [14,15], as is evident from, for ex-
ample, the sum rule.

This singular behavior is smeared out in finite-size sy
tems [15]. Instead of delta-function singularities,kT and
Cp have broad Gaussian peaks at the first-order tran
tion, whose height is proportional to the system’s vo
ume,L3. Indeed, these features are somewhat analogo
to those at a continuous second-order transition: In t
thermodynamic limit at a continuous transition,Cp and
kT have power-law singularities, but in a finite-size sys
tem, these singularities are replaced by bumps of heig
,Lgyn, whereg andn are critical exponents. This simi-
larity implies why it is often difficult to distinguish the
two types of transitions in a finite-size system [14,15].

While Cp andkT are both infinite at a first-order liquid-
gas transition, the heat capacity at constant volumeCy
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has only a step discontinuity in the thermodynamic limit
giving a bump in a finite-size system. The extent of th
discontinuity is given in terms of thermodynamic relations
in Ref. [16]. This is in contrast to the more pronounced
behavior at a second-order transition whereCy , Layn,
anda is a critical exponent.

In Fig. 2 we show results of our numerical calculation
We fix N at 73 and varyn to obtain a variable freeze-
out density. Half of the nucleons are labeled as proton
Although this system is small, there is a well-defined
bump in Cy signifying the transition. An arrow marks
the nearby point at which the transition occurs in the
thermodynamic limit.

In nuclear experiments locating the peak inCy as the
beam energy increases is difficult, although in recent yea
pioneering progress has been made in the measurem
of temperature [17,18]. However, other characteristics o
the transition appear which are more readily measurab
In particular, the yieldYsZd is readily measurable, which
gives the distribution of clusters of chargeZ, nsZd.
The probability of clusters of a given size is related
(through its second moment), to the density correlatio
function [7,19,20]: Roughly, if the clusters are not
fractals,Z2nsZd , Gsrd, in the disordered phase, where
r is the diameter of a cluster of chargeZ. At the
transition, a droplet of thermodynamic size spans th
system. Hence the yield includes an infinite cluster, o

FIG. 2. Curves fort, Cy , and S2 at rfyr0 ­ 0.2, 0.3, and
0.4. At each point 1000 events were taken.Cy is in units of
kB; the kinetic energy contributes 1.5 to it at all temperatures
Tc ø 1.1275jej.
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in percolation language, a cluster which spans the syste
The remainder of the distribution describes fluctuations
that phase, giving the density correlation function, whos
integral is the compressibility. The delta-function peak i
the compressibility implies that the correlation function
and hence the yield, is broad. Following standard practi
[21], the yield is fit to a power law formYsZd ~ 1yZt ,
giving an effective exponentt, even when the distribution
has deviated from a power law. In fact, at acontinuous
phase transition,t ­ 2 1 bysb 1 gd, where b is a
critical exponent. Here, however, where the transition
first order, the correlation function decays exponential
in either bulk phase (i.e., the effectivet ! ` above or
below the transition), while, since the correlation functio
is flat at the transition itself, and is related to the secon
moment of the cluster distribution,t ­ 2 there, for an
infinite system. Of course, in a finite-size system, the
will be an effectivet, which is neither two nor infinity,
so that the transition will look somewhat analogous to
continuous transition.

It is also useful to consider the second moment of th
cluster distribution functionS2 ­

P0
A A2nsAdyn, where

nsAd is the number of nucleons with mass numberA,
and n is the total number of nucleons. The primed sum
excludes the largest cluster, and so we expect it [20] to
proportional to the compressibilitykT . The usefulness of
the second moment was emphasized by Campi [22].

For experimental determination oft in one case, see
[23]. Campi has, for example, used experimental data f
the extraction of the second moment [24,25].

Figure 2 shows that these quantities do indeed provi
clear experimental signatures of the first-order transitio
in a finite-size system. The crossing of the coexisten
line is evident in the minimum value of the effectivet,
which is close to 2, and the prominent maximum inS2

and Cy . All of these occur at approximately the sam
point, close to the transition in the thermodynamic limi
indicated by an arrow.

For our analysis, it is important that the freeze-out de
sity is on the low density side of the coexistence curv
Beyond the critical point, “C”, the bump inCy continues
on the lineC-Ewhereas the minimum oft will follow line
C-B, which corresponds to a change in short-range ord
We should also note that very large Coulomb forces w
alter this picture. We now describe briefly those effect
following Ref. [5]. In our lattice gas model one gener
ates an event in which the nucleons have been plac
with appropriate momenta. Using our prescription w
can immediately obtain the cluster distribution. Startin
from this configuration we can propagate the system
molecular dynamics with a suitably chosen short rang
nucleon-nucleon interaction (to correspond to the neare
neighbor interaction) with or without the Coulomb in-
teraction. By propagating molecular dynamics for
considerable time, one can unambiguously obtain the clu
ter distribution and determine the effect of the Coulom
1184
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interaction. Reference [5] concluded that without th
Coulomb interaction there is little difference between lat
tice gas results and molecular dynamics results, but th
Coulomb interactions can be important for large mas
numbers. For mass numberA ­ 85, the Coulomb in-
teraction is a small perturbation, while atA ­ 394 it
is so strong as to totally alter the picture. In the lat
ter case there is no minimum int; at a temperature
of 1 MeV, the value of t is slightly higher than 1
and it continues to rise monotonically with tempera
ture. We have now studied this in much greater deta
and find that a minimum in the value oft continues to be
obtained for mass number as large asA ­ 200. Details of
this as well as further applications of the lattice gas mod
will be published in a longer paper.

To conclude, we have modeled the disassembly
nuclear matter following a heavy-ion collision. We
find that the transition is first order, with the standard
signatures of such a phase transition.
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