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We model the disassembly of an excited nuclear system formed as a result of a heavy ion collision.
We find that, as the beam energy in central collisions in varied, the dissociating system crosses a liquid-
gas coexistence curve, resulting in a first-order phase transition. Accessible experimental signatures are
identified: a peak in the specific heat, a power-law yield for composites, and a maximum in the second
moment of the yield distribution. [S0031-9007(97)05236-8]

PACS numbers: 25.70.Pq, 21.65.+f, 24.10.Pa, 64.60.My

Nuclear matter is a fictitious arbitrarily larg€ = Z  cleons are too far apart to interact. An attractive nearest-
system in which the Coulomb interaction is switched off.neighbor interaction is assumed. We placerthmicleons
Mean-field theory for nuclear matter has been appliedn N cubes by Monte Carlo sampling using the Metropo-
many times, and it is well known that such a system showsis algorithm. Once the nucleons have been placed we
a van-der-Waals-type liquid-gas phase transition. It waslso ascribe to each of them a momentum. The momenta
suggested in the early 1980s [1,2] that in heavy ion colli-are generated by a Monte Carlo sampling of a Maxwell-
sions at intermediate energies one might be able to probBoltzmann distribution. Various observables can be cal-
this liquid-gas phase transition region. In heavy ion colli-culated in a straightforward fashion. Experiments usually
sions, matter would be heated as well as compressed. Thigeasure the distributions of cluster sizes, i.e., the yield
compressed blob would then expand passing through th&(Z), which is a function of the number of protons in the
liquid-gas coexistence phase. One might be able to extracbmpositeZ. In our model, two neighboring nucleons are
information about this region from selected experimentatonsidered to be part of the same cluster if their relative
data. Earlier, the Purdue group had conjectured that thieinetic energy is insufficient to overcome the attractive
breakup of large nuclei by energetic protons would showbond: p?/2u + € < 0. This can be immediately turned
signatures of critical phenomena [2]. into a temperature and dependent bonding probability

There are several complications which make the study3,5] much like Coniglio-Klein's method [6]. The pre-
of phase transitions in nuclei difficult. The systems arescription allows us to calculate the distribution of clusters.
small, thus singularities get replaced by broad peaks. The equation of state in the lattice gas model has been
The collision is over quickly. The existence of thermalwell studied in condensed matter physics. The grand
equilibrium has sometimes been questioned and replacernonical ensemble for the lattice gas corresponds to
by quite complicated transport equation approaches. Oftea three-dimensional Ising model in the presence of a
one has been content to do calculations where the objectiveagnetic field. It is thereby possible to translate many
is to fit the experimental data. Once this is achievedvell known results to the present situation. Figure 1
the question of a possible liquid-gas phase transition iglepicts the phase diagram of the lattice-gas model in
not addressed. There are models where such questiotiee thermodynamic limit, which is adapted from Ref. [7].
are irrelevant, or at least very indirect, such as variousn drawing the coexistence curvéd)-C-E, the series
models based on sequential decays. The literature ocexpansion given in Ref. [8] was used. The poi’‘is
calculations for fragment yields in intermediate energythe thermal critical point which occurs @t = 1.1275|¢|
heavy ion collisions is huge. We will not attempt to and densityp;/po = 1/2. The coexistence curve B-
mention all approaches. C-E, andC-B is the line along which percolation sets in.

In this paper we will focus on the liquid-gas phaseThe lineC-Bis only slightly different in our and Coniglio-
transition using a lattice gas model [3]. Previously weKlein’s prescription.
have used the model to fit data on central collisions [3], In an experimental situation involving the collision of
on peripheral collisions [4], and for central Au on Au heavy ions, one gates on central collisions and varies
collisions [5]. The model gives a fair description of datathe beam energy. At low beam energy, the temperature
in those instances—adoes it say anything definite about that freeze-out will be below the coexistence curve. As
experimental signature of liquid-gas phase transitions? the beam energy increases, this point will cross the

In the lattice gas model we place nucleons inN  coexistence curve (indicated by an arrow in Fig. 1). Note
cubes, wheren is the number of nucleons in the dis- that there is no reason for the system, under heating, to
assembling system, and/n = po/py, Wherep is the  “tune itself” to the second-order point at density= 1/2,
normal nuclear density, and the disassembly is to be cakince there is no symmetry between the clustered and
culated atp, the “freeze-out” density beyond which nu- unclustered phases involved in the heavy-ion collision.
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A A A has only a step discontinuity in the thermodynamic limit,
18 | g giving a bump in a finite-size system. The extent of the
16 | e discontinuity is given in terms of thermodynamic relations
14 | o in Ref. [16]. This is in contrast to the more pronounced

behavior at a second-order transition wheérg ~ L¢/?,
anda is a critical exponent.

In Fig. 2 we show results of our numerical calculation.
We fix N at 7° and varyn to obtain a variable freeze-
out density. Half of the nucleons are labeled as protons.
Although this system is small, there is a well-defined
I SRR bump in C, signifying the transition. An arrow marks

0 0.1 02 0.3 04 05 06 07 0.8 0.9 1 the nearby point at which the transition occurs in the
p/po thermodynamic limit.
FIG. 1. Phase diagram of three-dimensional lattice gas model. In nuclear experiments locating the peakdp as the
The lineD-C-E is the coexistence curveC-Bis the percolation beam energy increases is difficult, although in recent years
I s e e oy o) S s eioneeting progress has been made in the measureme
Ising modelD-C-E is tgh)é line of spontaneous magnetization. ftempera_lture [17.18]. I_—|owever, other chgracterlstlcs of
With the usual convention the point 0 on the abscissa correthe transition appear which are more readily measurable.
sponds to magnetizationM and the point 1 tay. In particular, the yieldr(Z) is readily measurable, which
gives the distribution of clusters of chargé, n(Z).
The probability of clusters of a given size is related
Indeed, in statistical models of disassembly of which we(through its second moment), to the density correlation
know [9,10], the freeze-out density is less thafip,. In function [7,19,20]: Roughly, if the clusters are not
our model, we find that the data are best fitted bya fractals,Z>n(Z) ~ I'(r), in the disordered phase, where
between0.3py and 0.4py. There is good support from r is the diameter of a cluster of chargé. At the
experiment that the value gb; is significantly below transition, a droplet of thermodynamic size spans the
0.5p¢ [11]. Therefore the phase transitionfisst order. system. Hence the yield includes an infinite cluster, or

As one crosses the coexistence curve, experiments

would see various signatures of the first-order transition.
In the thermodynamic limit these are well defined. For >F
example, since first derivatives of the free energy are dis- 4 F A
continuous in the thermodynamic limit, there are delta- 3
function peaks in second derivatives [12,13], e.g., in the
heat capacity at constant pressatg and in the isother- E
mal compressibilityxy. There is also a clear signature 1 E
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of the transition in the density-density fluctuation correla- I E
tion functionI'(r) [whose integral gives the compressibil- 5T 2
ity by a thermodynamic sum rule [14fd7 T'(r) = «r]. 4 f E

This correlation function decays exponentially above and
below the transition point. At the transition point itself, g
however,I'(r) is flat [14,15], as is evident from, for ex- 2
ample, the sum rule. 1 E

This singular behavior is smeared out in finite-size sys- g
tems [15]. Instead of delta-function singularities, and 50
C, have broad Gaussian peaks at the first-order transi-
tion, whose height is proportional to the system’s vol- g
ume~L3. Indeed, these features are somewhat analogous S E
to those at a continuous second-order transition: In the 2 f
thermodynamic limit at a continuous transitiofi, and F
7 have power-law singularities, but in a finite-size sys- E
tem, these singularities are replaced by bumps of height
~LY/7, wherey andv are critical exponents. This simi- T/T,

![arlt); Imp“efstWhy.tl.t IS (.)ftenf.d.fﬂcqlt to dltstlng:LLJl;sf115the FIG. 2. Curves forr, C,, and S, at p;/po = 0.2, 0.3, and
WO ypes oftransitions In a_ |n_| ?'S'Ze SYS em [ ' ],' 0.4. At each point 1000 events were taked., is in units of

While C,, and 7 are both infinite at a first-order liquid- . : the kinetic energy contributes 1.5 to it at all temperatures;
gas transition, the heat capacity at constant voluipe 7. = 1.1275|el.
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in percolation language, a cluster which spans the systermteraction. Reference [5] concluded that without the
The remainder of the distribution describes fluctuations irCoulomb interaction there is little difference between lat-
that phase, giving the density correlation function, whosdice gas results and molecular dynamics results, but that
integral is the compressibility. The delta-function peak inCoulomb interactions can be important for large mass
the compressibility implies that the correlation function,numbers. For mass numbdr= 85, the Coulomb in-
and hence the yield, is broad. Following standard practicéeraction is a small perturbation, while dt= 394 it
[21], the yield is fit to a power law fornY(Z) « 1/Z", is so strong as to totally alter the picture. In the lat-
giving an effective exponent, even when the distribution ter case there is no minimum in; at a temperature
has deviated from a power law. In fact, atantinuous of 1 MeV, the value ofr is slightly higher than 1
phase transitiony =2 + B/(B8 + ), where 8 is a and it continues to rise monotonically with tempera-
critical exponent. Here, however, where the transition idure. We have now studied this in much greater detail
first order, the correlation function decays exponentiallyand find that a minimum in the value efcontinues to be
in either bulk phase (i.e., the effective— o« above or obtained for mass number as largedas- 200. Details of
below the transition), while, since the correlation functionthis as well as further applications of the lattice gas model
is flat at the transition itself, and is related to the secondvill be published in a longer paper.
moment of the cluster distribution; = 2 there, for an To conclude, we have modeled the disassembly of
infinite system. Of course, in a finite-size system, therenuclear matter following a heavy-ion collision. We
will be an effectiver, which is neither two nor infinity, find that the transition is first order, with the standard
so that the transition will look somewhat analogous to asignatures of such a phase transition.
continuous transition. We thank Charles Gale, Martin Zuckermann, and Hong

It is also useful to consider the second moment of theGuo for useful discussions. This work is supported in
cluster distribution functionS, = >, A>1(A)/n, where part by the Natural Sciences and Engineering Research
n(A) is the number of nucleons with mass numbgr Council of Canada and kg Fonds pour la Formation de
andn is the total number of nucleons. The primed sumChercheurs et I'Aide a la Recherche du Québec.
excludes the largest cluster, and so we expect it [20] to be
proportional to the compressibilityy. The usefulness of
the second moment was emphasized by Campi [22].
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