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Flux lattice imaging of a patterned niobium thin film
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Using our cryogenic magnetic force microscope, we have investigated a superconducting Nb thin
film, 100 nm in thickness withT,~6.5K. The film is patterned with a square array g

X 1 um) of antidots, which serve as artificial pinning centers for magnetic flux. We have observed
flux lattice matching as a function of applied magnetic field and temperature, for field strengths up
to the third matching field, with evidence of flux dragging by the tip around the antidots. Force
gradient distance curves acquired at temperatures aboufearly demonstrate an observable
Meissner force between tip and sample, and allow for an estimation of the magnetic screening
penetration depth. €001 American Institute of Physic§DOI: 10.1063/1.1355327

I. INTRODUCTION systems, as only one end of the fiber need be subjected to

. . e cryogenic temperatures, while other electronic components
Interest in the interplay between artificial pinning centers .
remain at room temperature.

on patterned superconducting films, and the flux-line lattice, In situ movement of both the optical fiber and sample

particularly at “matching fields,” has produced numerous_ . : . . . ) .
studies with the aim of understanding and controlling quxWlth rgspect o the f|?<ed cant|lev§r Is achieved using a piezo-
electric based positionérStep sizes of 10-20 nm for the

pinning and flow!™ Many of these employ bulk measure- ~ .~ ~_ ” o :
D . D ._optical fiber positioner, measured using interferometric tech-
ments, such as magnetization and electrical resistivity, which: . .
niques, are routinely achieved at 4.2 K.

do not address the question of the particular spatial arrange- . o .
Cantilevers used for magnetic imaging are made mag-

ment of fluxoids, an issue still not well understood. By con- . o : . .
netically sensitive by evaporating a magnetic coating on the

trast, the magnetic force microscope is ideally suited for this[ip During imaging, the cantilever is excited at its resonance
task, producing three dimensional magnetic images whicl? ' '

. . o . . o requency by a small piezoelectric actuator. As the cantilever
allow for the direct visualization of flux-line lattice positidn. . . .
. ; . . is scanned with respect to the sample, changes in the reso-
In this article, we present an overview of the design of

; . ; . is qrance frequencgindicative of the local force gradient sensed
our cryogenic magnetic force microscope, a noise analysis qf

. ) 8

the system, as well as some results obtained on a patternq.%the cantlleve)ran_e tracked b)_/ a phase Iogked loGHL.L). .
. T e PLL then provides a dc signal proportional to the canti-

superconducting Nb thin film.

lever resonance frequency, which serves as a feedback signal
upon which constant force-gradient images are acquired.
Il. MICROSCOPE DESIGN Scan ranges of 40, 14, andun are achieved at room tem-
ature, 77 K, and 4.2 K, respectively.

Temperature measurement and control using a GaAlAs
de and Lake Shore Cryotronics 320 proportional integral

differential temperature controller system allows for the

vacum can allow for elociical sonnections, an apical fher TIPS (eMPETaLUre (o be Varied from 4.2 10 15 K when
’ P operating in a liquid helium environment. Small applied

_and_pumpl_ng Imes_for aturbomolecular vacuum pump. .Coo.l'magnetic field strengths, up to 100 Gauss, are measured us-
ing is achieved with the aid of He exchange gas, which is T
: . . Lo - . ing anin situ flux gate magnetometer.

pumped out prior to imaging. Vibration isolation is achieved

through suspending the microscope below a soft, nested-type

stainless steel bellows, which attenuates accelerations tw NOISE CHARACTERISTICS

more than an order of magnitude over a 200 Hz bandwidth.  Of equal importance to its capabilities is an appreciation
The optical fiber forms part of the fiber-optic based in-of the microscopes’ limitations. Such information aids not

ter_ferometer .systeﬁ'j,used to detec? cantilever deflections. only in the optimization of the apparatus, but also serves as a

This sensor is particularly well suited for low temperture guide for selecting suitable experiments. To this end, we

have undertaken an analysis of our system, with particular

aAuthor to whom correspondence should be addressed; electronic mai€Mphasis plgceq on .th_e noise contributions, both electronic

roseman@physics.mcgill.ca and mechanical in origin.

. . . per

The microscope, constructed almost exclusively usmgD
stainless steel, is approximately 10 cm long and 5 cm indio
diameter, allowing for its insertion into the 3 in. diam bore of
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FIG. 2. Panelda)—(d) are constant height images, acquired at successively
Frequency (kHz) smaller tip—sample distances. The height interval between panels is 75 nm,
with (a) the farthest andd) the closest to the surface. Parel is an AFM
image and(f) a drawing of the region, which reveals the position of the
antidots. All are 2umx2 um in area. Measurements were made at a tem-
perature of 5.5 K in a field of 62.1 Ghe third matching field Tip induced
movement of the flux around the antiddtadicated by arrowsis evident

for smaller tip—sample separations. The asymmetry of the structures is at-
tributed to the left-to-right motion of the cantilever during image acquisi-
ion.

FIG. 1. Measuredsolid line) and calculateddotted ling power spectral
density of the deflection signal from a thermally driven silicon nitride can-
tilever at 5 K.

This study involves, in part, modeling various noise con-
tributions, including laser shot, intensity, phase and optica
feedback noise, thermal cantilever motion, as well as
Johnson noise, gain-peaking effects, and other terms associ-
ated with the deflection sensécurrent—voltage converter Imaging was performed under various conditions of tem-
electronics. Results of this analysis are shown in Fig. 1perature and applied field. As shown in Fig. 2, strong evi-
which illustrates both calculated and measured power speelence of flux matching is observed, with each flux line situ-
tral density plots of the deflection signal from a thermally ated adjacent to an antidot. Interactions between the stray
driven silicon nitride cantilever at 5 K. field of the tip and the flux lines, particularly at smaller tip—

Often, the sensitivity of a force microscope is correlatedsample separations, produce significant flux motion, apparent
to the observability of the thermally driven cantilever reso-as crescent shaped structures surrounding the antidot.
nance(peak in Fig. 1. The uniform background noise level
is however, highly relevant in determining the achievable
frequency resolution while operating in ac mode. This can
easily be seen by transforming the spectrum of Fig. 1 into the 8-
time domain. The background noise results in a jitter of the
zero crossings of the sinusoidal oscillations at the cantilever

resonant frequency, thereby limiting the frequency 41

resolution® %1t is thus the signal to noise ratithe signal at g, 8o
the peak, and the noise of the backgroutitht determines 3 81K
the ultimate sensitivity. 2- s2K

A more complete analysis of noise contributidrssig-
gests that shot noise of the interferometer dominates the
background noise in our system. Recently we have achieved 0
a frequency resolution of 0.34 Hz in a 72 Hz bandwidth,
corresponding to a force gradient resolution of approxi- ]
mately 2.2< 10" 6 N/m.
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IV. RESULTS 4]
ﬁ 80K
The sample is a superconducting Nb film, 100 nm in %3‘ o1k
thickness, patterned with a square lattice of antidots, of pe- 2 o2k
riod 1 um and diameter 0.3:m, which serve as artificial 63K
pinning centers for magnetic flux. It was produced using la- ] 64K
ser interferometric lithography, and exhibitsTa~6.5K. R WWM““ .
One of u$ has investigated the magnetoresistivity, magneti- fooo £000 4000 2000 °

. . . . Tip-Sample Distance (Angstroms)
zation, and critical current behavior of this sample as a func- p-oamp

tion of “matching field,” so named because at these valuesIG. 3. Experimental and simulated approach curves. The upper graph
the flux lattice spacing becomes commensurate with the laghows the original data sets, while in the lower graph the vertical position of

tice of antidots. This results in a majority of the magneticthe the_oretlcal curves has been adjusted to emph.a5|ze ove_rlap between the
theoretical and experimental data. Temperature discrepancies between cor-

f!eld becoming trapped as quantized fluxoids within the N3esponding curves of the two data sets are within the experimental uncer-
tidots. tainty of our temperature sensor.
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As the magnetic tip is approached toward the superconye estimate the magnetic screening lengtg=150 nm,

ducting sample, the repulsive Meissner force produces ahich agrees fairly well with previously reported valués.
increase in the resonance frequency of the cantilever. Theo-

retically, this response can be modeled as follows. The verY.- CONCLUSION
tical magnetic force between the superconductor and an ex- We have designed and built a cryogenic magnetic force
tended tip a distanca above, may be written &s microscope, capable of operation within a temperature range
" of 4.2 K to room temperature, in magnetic fields of upto 8 T.
F(a)= ﬂj ko d3rJ d3r’{ k3C, (k)e~2akg=k(z+z) A thorough analysis of the noise sources present in our sys-
dmJo Jv v Y tem shows that the current frequency resolution of 0.34 Hz in
72 Hz bandwidth is limited by the shot noise of the interfer-
X ] (1) ometer. We have used this system to study a superconduct-
ing Nb thin film, patterned with an array of antidots. Mag-
whereM (r) is used for the tip magnetization function aid netic images and approach curves were acquired, as a
for the volume of the tipg;; is a certain metric tensor which function of applied magnetic field and temperature. An
arises by writing the field equation solutions in cylindrical analysis of our results yields an estimate of the magnetic
coordinates, and:zxy is a coupling coefficient involving the screening length) o=150 nm.
penetration depth, f|!m thllckness, and a wave number. FO,&CKNOWLEDGMENTS
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