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Abstract

The present study investigates the transmission of a CJ detonation wave across a den-

sity interface. Associated with the transmitted detonation there is a reflected shock or

expansion wave and a contact surface that separates the gases on each side of the con-

tact surface initially. The problem is first studied theoretically. It is found that if there

is a density decrease there is a transmitted strong detonation wave and a reflected ex-

pansion wave. If there is a density increase there is a transmitted CJ detonation wave

with an expansion wave behind it and a reflected shock wave. Numerical simulations are

then performed using two chemical kinetic models. They contain a transient process that

occurs subsequent to the interaction due to a finite reaction zone thickness. After the

transient relaxation process, the waves asymptotically approach their final state in the

new medium. These final states are compared to the theoretical solution and are found

to agree well qualitatively and quantitatively.
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Résumé

Ce travail étudie la transmission d'une onde de détonation CJ au travers une surface qui

délimite deux régions de densités différentes. Associé à la détonation qui est transmise, il

y a une onde de choc ou d'expansion qui est réfléchie, ainsi qu'une surface de contact qui

sépare les deux gaz. Le problème est abordé initialement de manière analytique. On con-

state que, si la détonation passe vers un milieu à densité moins élevée, une forte détonation

est transmise et une onde d'expansion est réfléchie. Si au contraire, la détonation passe

vers un milieu à densité plus élevé, une détonation CJ avec une onde d'expansion derrière

elle sont transmise, et une onde de choc est réfléchie. Le problème est ensuite abordé en

effectuant des simulations numériques qui prennent en compte de l'épaisseur de la zone

de réaction de la détonation. Elles incluent un processus transitoire qui se produit suite

à l'intéraction de la détonation avec la surface qui délimite les deux régions de densités.

Après ce processus de relaxation transitoire, les ondes s'approchent asymptotiquement

de leur état final dans le nouveau milieu. Les états finaux obtenus ont été comparés à la

solution analytique. Ils se sont avérés en accord qualitativement et quantitativement.
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Chapter 1

Introduction

1.1 Non-uniformity of detonation gases

Inhomogeneities are inevitable in practical explosive mixtures. For example, in the

accidental release of combustion fuel into the atmosphere, composition non-uniformities

are common in the gaseous fuel-air cloud. Temperature, and hence density gradients

may be formed due to temperature differences between the fuel released, ground or other

structures and the ambient atmosphere.

The response of a shock wave to inhomogeneities is almost instantaneous, since it

has negligible thickness compared to the scale of non-uniformities present. However, the

response of a detonation to perturbations due to inhomogeneities may involve length and

Figure 1.1: Detonation wave transmission across an interface
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CHAPTER 1. INTRODUCTION 11

time scales in excess of the intrinsic cellular instability of the detonation front. Thus, the

propagation will be unsteady over scales much larger than that of the cellular instability.

The propagation of detonation waves in non-uniform mixtures has not been extensively

studied. Early studies include those of Strehlow et al. [1], Bjerketvedt et al. [2] and

Thomas et al. [3] on the transmission of a detonation from a reactive to inert medium.

Other more recent studies have followed on this reactive to inert interaction problem [4, 5].

However, transmission to a different reactive mixture has also recently been gathering

interest. Kuznetsov et al. [6, 7] have looked at the phenomenon of detonation transmission

to a mixture of lower sensitivity. Li et al. [8] studied experimentally the transmission

from propane-oxygen to propane-air mixtures.

However, experimentally it is difficult to create reproducible, controlled inhomogeneities.

Recently, in an attempt to create a well defined discontinuity, the head on collision of a

detonation wave with a weak shock wave was studied [9, 10]. Thus the detonation wave

was subjected to a velocity, pressure, temperature as well as density jump. The present

study looks at the simpler case of the detonation wave subject to a change in density and

temperature numerically as shown in figure 1.1. To focus on the mechanism of the inter-

action, an abrupt interface is considered rather than a density gradient that introduces

further complexities.

In the first part of the study a standard wave interaction analysis is carried out to es-

tablish a theoretical solution. Then numerical simulations are performed using two kinetic

models. The transient relaxation resulting from the interaction is discussed. Finally, the

downstream results of the numerical simulation are compared to the theoretical solution.

11



CHAPTER 1. INTRODUCTION 12

1.2 Detonation theory

In one-dimension, a detonation wave is classically pictured to begin with a leading

shock wave that adiabatically compresses and heats the reactants, allowing ignition. This

shock wave is coupled with a reaction zone where combustion occurs. The energy released

in the combustion process and expansion of gases in the reaction zone provide the thrust

that directly supports the shock wave [11].

A control volume (CV) analysis of the detonation wave, essentially neglecting its

structure, considers only equilibrium thermodynamics. There is a range of velocities of

the wave that satisfies equilibrium. This begins at a unique, minimum velocity solution

for which the product gases are at local sonic speed. This was postulated by Chapman

and Jouguet (CJ criterion) to be the one physically realized and thus is called the CJ

detonation velocity, DCJ . For velocities higher than DCJ there exist two possible solutions

for the product state. For one the local product flow is supersonic, called the weak solution

and for the other subsonic, called the strong solution. However, for this CV analysis,

the weak detonation solution can be eliminated in general if ignition by adiabatic shock

compression is assumed [11, 12].

If the detonation structure is considered, the steady, one-dimensional flow field for the

CJ criterion was solved by Zeldovich [13], von Neumann [14], and Döring [15], known

as the ZND solution. Following the shock compression, there is a region of relatively

constant properties (slow reaction), called the induction zone, followed by rapid reaction.

12



Chapter 2

Theoretical Analysis

If the detonation is assumed to be a discontinuity, then a standard wave interaction

analysis of the transmission problem can be carried out.

2.1 Possible wave solutions

The x-t diagram of the wave process is shown in figure 2.1. The flow behind the inci-

dent detonation is assumed to be uniform. Across the interface, a transmitted detonation

wave is obtained. A reflected wave and a contact surface will also be formed. The contact

surface separates the gas initially on each side of the density discontinuity.

The problem is defined for a given incident detonation Mach number, MD,i = MCJ,i

and properties at each side of the interface, whether there is a density increase or decrease.

The transmitted detonation can be a strong, weak or CJ detonation wave. However, as

mentioned in section 1.2, the weak detonation solution can be eliminated in general.

If the transmitted detonation wave is strong, the product flow is subsonic and uniform

up to the contact surface. If the transmitted detonation wave is CJ, then the flow can

either be uniform up until the contact surface or there can be an expansion wave trailing

behind the transmitted detonation wave [9]. Thus, there can be either a transmitted

13



CHAPTER 2. THEORETICAL ANALYSIS 14

Figure 2.1: Schematic for CJ detonation transmission across an interface

strong or CJ detonation wave with uniform flow behind it or a transmitted CJ detonation

wave with an expansion wave behind it. Depending on the boundary conditions, the

reflected wave can be either a shock wave or an expansion wave.

2.2 Governing equations

The governing equations presented apply under the assumption of one-dimensional,

steady flow of an ideal gas with constant specific heats.

The boundary conditions to be satisfied across the contact surface will be constant

pressure, p and particle velocity, u (uL = uR and pL = pR). For the incident and trans-

mitted detonation waves, the relationships across the detonation wave are given by the

relations named after Rankine [16] and Hugoniot [17]:

14



CHAPTER 2. THEORETICAL ANALYSIS 15

pD+

p−
=
γ + ηD ± γs
ηD(1 + γ)

ρD+

ρ−
=

γ + 1

(γ + ηD ∓ s)
=

D

D − uD+

MD =
D

c−

with

s =
√

(1− ηD)2 −KηD with

ηD =
1

MD
2 =

(
1 +

K

2

)
−

√
K

(
1 +

K

4

)
with

K = 2(γ2 − 1)
Q

γp−v−

(2.1)

p, ρ, v and u are pressure, density, specific volume and particle velocity respectively.

c is the speed of sound. MD is the Mach number of the detonation wave, D is its velocity

and Q is the chemical heat released per unit mass in the reaction. The adiabatic index,

γ is assumed to be the same for the reactants and products. In the above equations,

the “+” and “-” indicate the properties behind and in front of the wave, respectively.

The “D” subscript indicates that these flow values are the product flow at the end of the

detonation reaction zone. In this way we differentiate between, for example, pD+ at the

exit of the wave and p+ behind the leading shock front.

The two possible solutions representing the strong and weak detonation solutions are

represented by the two signs in front of “s”. The top denotes the strong and the bottom

sign the weak solution.

For s = 0 the CJ solution is obtained and the flow is sonic behind the wave. If there is

an expansion wave behind the CJ detonation, the Riemann invariants are constant along

a C- characteristic [18] and the isentropic relationships apply, i.e.:

15



CHAPTER 2. THEORETICAL ANALYSIS 16

u+ −
2

γ − 1
c+ = u− −

2

γ − 1
c−

c+
c−

=

(
p+
p−

) γ−1
2γ

(2.2)

For the reflected shock wave, the Rankine-Hugoniot [16, 17] equations across the shock

wave are:

p+
p−

=
2γMs

2 − (γ − 1)

γ + 1

u+ − u−
c−

=
2(Ms

2 − 1)

(γ + 1)Ms

(2.3)

Here Ms is the shock wave Mach number and c is the sound speed.

If the reflected wave is an expansion wave, the characteristic equations [18] and the

isentropic relationships apply, i.e.:

u+ +
2

γ − 1
c+ = u− +

2

γ − 1
c−

c+
c−

=

(
p+
p−

) γ−1
2γ

(2.4)

For a given incident CJ detonation and properties on each side of the interface, the

flow properties between the incident detonation and the reflected wave can be found using

the Rankine-Hugoniot relationships, equation 2.1, with s = 0.

2.2.1 Example wave pattern

Consider the possibility of a transmitted strong (or CJ) detonation with uniform flow

behind it and a reflected shock wave (figure 2.2). The properties at 0, 1 and 2 are

16



CHAPTER 2. THEORETICAL ANALYSIS 17

Figure 2.2: A transmitted strong or CJ detonation with a reflected shock wave

known. The pressure, p and particle velocity, u behind the transmitted detonation can

be expressed in terms of the transmitted detonation strength, ηD,t using equation 2.1:

p4
p1

=
ηD,t + γ(1 + s)

ηD,t(1 + γ)

u4 = Dt

[
1− γ + ηD,t − s

γ + 1

]
where

Dt =
c1√
ηD,t

s =
√

(1− ηD,t)2 −KηD,t

K = 2(γ2 − 1)
Q

γp1v1

(2.5)

Since there is uniform flow behind the wave, p and u on the right of the contact surface

are given by:

17



CHAPTER 2. THEORETICAL ANALYSIS 18

pR = p4

uR = u4

(2.6)

Similarly, p and u behind the reflected shock wave at 3 can be expressed in terms of

the reflected shock strength Ms,r, using the normal shock equation 2.3 and considering

the fact that it is a left facing shock (particles entering from the left):

p3
p2

=
2γMs,r − (γ − 1)

γ + 1

u3 = u2 − (p3 − p2)

[
2

(γ+1)ρ2

p3 + γ−1
γ+1

p2

] 1
2

(2.7)

Again these are equal to those on the left of the contact surface:

pL = p3

uL = u3

(2.8)

Thus, we have pL, uL, and pR, uR in terms of the strengths of the respective waves

(Ms,r and ηD,t). By imposing pR = pL and uR = uL across the contact surface, we find an

equation with only one unknown, ηD,t:

c1√
ηD,t

[
1−

(γ + ηD,t − s
γ + 1

)]
− u2

=

(
p2 −

ηD,t + γ(1 + s)

ηD,t(γ + 1)

)(
2

(γ+1)ρ2

ηD,t+γ(1+s)

ηD,t(γ+1)
+ γ−1

γ+1
p2

) 1
2

(2.9)

18



CHAPTER 2. THEORETICAL ANALYSIS 19

(a) Density decrease solution (b) Density increase solution

Figure 2.3: Theoretical solution

Equation 2.9 can then be solved iteratively for ηD,t to determine if a solution exists.

In this way, for each combination of transmitted and reflected waves, combination we

look for a flow field solution that satisfies mechanical equilibrium (i.e. equal pressure and

particle velocity) at the contact surface. The derivation of equations for all other wave

combinations are given in appendix A.

2.3 Theoretical solution

The problem was solved for a range of incident detonation Mach numbers (∼3.0 to

∼7.3) with a range of density changes (-50% to +50%).

The solution wave pattern was found to depend on whether there is a density increase

or decrease. For a density decrease (and temperature increase), a transmitted strong

detonation and a reflected expansion wave (figure 2.3a) are obtained. For a density

increase (and temperature decrease), a transmitted CJ detonation with an expansion

wave and a reflected shock wave (figure 2.3b) are obtained.

The degree of overdrive of the transmitted detonation is defined as f =
D2
t

D2
CJ

where Dt

19



CHAPTER 2. THEORETICAL ANALYSIS 20

Figure 2.4: Degree of overdrive of transmitted detonation for various incident detontation
Mach numbers and density changes

is the speed of the transmitted detonation and DCJ the CJ detonation in that medium

(on the right of the interface). This is plotted against the percentage density change for

selected incident detonation Mach numbers, MD,i = MCJ,i in figure 2.4. For all cases,

the transmitted detonation is strong (f > 1) for a density decrease and CJ (f = 1) for

a density increase. The degree of overdrive, f , increases with increasing magnitude of

density decrease, |∆ρ| and increasing MCJ,i.

20



Chapter 3

Numerical Analysis

If we consider the detonation to have a finite reaction zone thickness, the transient,

unsteady response of the detonation must be taken into account. Thus, the problem must

be solved numerically.

3.1 Governing equations

Again the governing equations assume one-dimensional flow of an ideal gas with con-

stant specific heats. They are the set of one-dimensional, unsteady, reactive Euler equa-

tions given by:

∂U

∂t
+
∂F(U)

∂x
= S(U)

where,

U =



ρ

ρu

ρe

ρλ


,F(U) =



ρu

ρu2 + p

(ρe+ p)u

ρuλ


,S(U) =



0

0

0

ω̇


(3.1)
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CHAPTER 3. NUMERICAL ANALYSIS 22

Figure 3.1: Single step Arrhenius model ZND profile for Ea = 20, Q = 50, γ = 1.2

Here e is the total energy per unit mass:

e =
p

(γ − 1)ρ
+
u2

2
+ λQ (3.2)

The governing equations are coupled with a chemical kinetic law for the reaction rate,

ω̇. The reaction progress variable is denoted as λ, where λ = 1 for reactants and λ = 0 for

products. In this study, two different reaction rate laws were considered, i.e. the single

step Arrhenius reaction law and two step induction-reaction law.

3.1.1 Single step Arrhenius kinetic model

The simplest case is a single step law in the Arrhenius [19] form given by:

ω̇ = −kρλexp
(
−Ea
T

)
(3.3)

where Ea is the activation energy, T is the temperature and k is a pre-exponential constant

for a given mixture that is used to define spatial and temporal scales.

The ZND detonation wave structure with this kinetic law is shown in figure 3.1 for Ea

= 20, Q = 50 and γ = 1.2. The blue line shows the pressure, p normalized by the von

22



CHAPTER 3. NUMERICAL ANALYSIS 23

Neumann shock pressure, p+ and the orange line is the reaction progress variable λ. The

horizontal axis is distance, x normalized by the reaction zone length, δ. Here δ is defined

as the location at which λ = 0.1 or equivalently where 90% of heat has been released.

The axis is shifted such that x/δ = 0 corresponds to the detonation wave front and the

small circle on the pressure plot indicates the reaction zone end, δ = -1 and λ = 0.1. At

the shock front (x/δ = 0) there is an abrupt increase in pressure. Pressure decreases as

the reaction progress variable approaches 0 through the reaction zone.

3.1.2 Two step induction-reaction kinetic model

A more realistic law accounts for an induction zone before the reaction zone. The

reaction zone is modeled in the same way and the induction zone is also of an Arrhenius

type. This model has previously been used by Short and Sharpe in [20]. It is given by:

d(ρλ)

dt
= −(1−H(1− ξ))kRρλexp

(
−ER
T

)
d(ρξ)

dt
= −H(1− ξ)ρkIλexp

[
EI

(
1

T+
− 1

T

)]
where,

H(1− ξ) =


1 ξ > 0

0 ξ ≤ 0

(3.4)

There is a reaction zone progress variable, λ and an induction zone progress variable, ξ.

They decrease from 1 at the beginning of their respective zones to 0 at the end. There

are also two activation energies and pre-exponential constants, EI and kI for the induction

zone and ER and kR for the reaction zone. Parameters are adjusted to vary the relative

length of the induction and reaction zones. T+ is the temperature at the shocked state.
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Figure 3.2: Two step induction-reaction model ZND profile for kr = 0.887, εi = 8, εr =
1, Q = 50, γ = 1.2

The parameters εi and εr are defined to be Ei/µ and Er/µ, respectively, where µ is

the temperature jump across the leading shock of the detonation, i.e.:

µ =
T+
T−

=
[2γMD

2 − (γ − 1)][(γ − 1)MD
2 + 2]

(γ + 1)2MD
2 (3.5)

Figure 3.2 shows the detonation profile for this reaction law with kr = 0.887, ki =

0.779, εi = 8, εr = 1, Q = 50 and γ = 1.2. The reaction zone is the same as before,

λ (solid orange line) decreases from 1 to 0 as pressure, p
p+

decreases. After the shock

front, ξ (dashed orange line) decreases from 1 to 0 at the end of the induction zone and

beginning of the reaction zone. The small circle on the pressure plot indicates the location

of λ = 0.1 which is defined as the end of the reaction zone. The horizontal axis x/δ is

similarly scaled and shifted such that x/δ = 0 corresponds to the leading shock front.

3.2 Numerical specifications

The governing equations are numerically integrated using the method of fractional

steps and two second-order finite difference schemes. These are the slope-limited centered
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(SLIC) and the upwind weighted averaged flux (WAF) schemes. For more information

on these schemes see [21].

The upwind WAF scheme with an exact Riemann solver was used with the single step

Arrhenius kinetic model. The SLIC scheme was used with the two step induction-reaction

kinetic model. These codes have been used in gaseous detonation simulations in the past

[22, 23] and therefore have been verified.

The computational domain was defined as a one-dimensional Cartesian grid. In the

simulation, a rightward-propagating detonation was initialized as the ZND wave solution

near the end of the domain. Transmissive boundary conditions were applied on the left

and right boundaries of this domain.

The resolution was defined using a characteristic length scale for each reaction law.

For the single step Arrhenius kinetic model, the characteristic length scale corresponds to

the half reaction zone length of the initial steady ZND wave. For the two step induction-

reaction kinetic model, the induction zone length is used as the characteristic length

scale. A resolution of 100 grid points per characteristic length was used as verified for

convergence in [22, 23].

To achieve this the appropriate pre-exponential constants were scaled such that the

characteristic length scales were unity. For the single step Arrhenius kinetic model, this

was the pre-exponential constant k. For the two step induction-reaction kinetic model, ki

is set to be the particle velocity behind the shock front in the shock-fixed frame, uD,+.

All quantities were made dimensionless with respect to the initial unburnt gas state.

The detonation was allowed to propagate over a sufficient distance to reach its steady

state before the interface was encountered (at minimum a distance of 400 characteristic

reaction zone lengths of the incident ZND detonation).
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Relaxation Process

Since the detonation has a reaction zone of finite thickness, the final state will not be

achieved instantaneously downstream of the density interface. There will be an unsteady

period during which the detonation responds to the change in density. Subsequently, the

detonation will asymptotically approach its final state downstream.

4.1 Transient dynamics

The transient dynamics of the relaxation process is first studied using the simpler

kinetic model, single step Arrhenius kinetics.

4.1.1 Density decrease

A density decrease and temperature increase across the interface are first considered.

Figure 4.1 shows the variation of the leading shock pressure, p+ with distance, x
δ
. Pressure

is normalized by the initial pressure of the unburnt material, p0 and distance is normalized

with the reaction zone length, δ. The x-axis is shifted such that the interface is located

at x
δ

= 0. A density decrease of ∆ρ = −25% and the single step Arrhenius model are
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Figure 4.1: Relaxation process for ∆ρ = −25% with single step Arrhenius kinetics with
Ea = 20, Q = 50 and γ = 1.2

used with Ea = 20, Q = 50 and γ = 1.2.

Immediately downstream of the interface the shock pressure ratio, p+
p0

= p+
p−

under-

goes an abrupt decrease to about 80% its initial value. This is followed by a rapid re-

acceleration to a shock pressure ratio p+
p−
∼ 41.6, at a distance of x

δ
∼ 4.8 (or 4.8 reaction

zone lengths, δ downstream of the interface). Subsequently, the shock decays asymptoti-

cally to the final steady state, at pressure ratio p+
p−
∼ 32.5. This relaxation length is x

δ
=

20.27 (or approximately 20 reaction zone lengths), where the relaxation length is defined

as the distance taken to be within 5% of the final steady state shock pressure after the

interface.

Figures 4.2 and 4.3 show x-t or distance-time numerical schlieren graphs of this process.

The pressure profiles of the detonation throughout this relaxation process are superim-

posed on the graph in figure 4.2 and the corresponding temperature profiles in figure 4.3.

The first profile (at x/δ = −0.5) shows the detonation wave immediately before the in-

terface (at x/δ = 0). It should be noted that after the interaction, the schlieren indicates

the formation of a reflected expansion wave and a contact surface that is advected with
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Figure 4.2: Pressure profiles and schlieren plot for ∆ρ = −25% and single step Arrhenius
kinetics with Ea = 20, Q = 50, γ = 1.2
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Figure 4.3: Temperature profiles and schlieren plot for ∆ρ = −25% and single step
Arrhenius kinetics with Ea = 20, Q = 50, γ = 1.2
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the flow. This was predicted theoretically. The reflected expansion wave is evident by

the pressure and temperature decrease seen in the profiles across it. Across the contact

surface the profiles indicate constant pressure but a jump in temperature as expected.

The initial decrease in shock pressure is due to the interaction of the leading shock with

the interface. Across the interface there is a temperature increase and thus a corresponding

increase in sound speed, c. Consequently, there is a decrease in acoustic impedance, z

= ρc = pγ
c

for an ideal gas. Change in acoustic impedance is an accurate predictor

of the shock-interface transmission problem when γ0
γ1
< ρ1

ρ0
< γ0+1

γ1+1
, otherwise the shock

impedance must instead be considered [24]. In this study γ is assumed constant and so

the acoustic impedance is always an accurate indicator. A shock wave encountering this

interface with decreased acoustic impedance will generate a reflected expansion wave and

suffer an abrupt decrease in shock pressure ( p+
p−

) [25]. Here p+
p−

decreases to 35.56. An

inert shock at the same initial pressure encountering the same density decrease has a

transmitted shock pressure of p+
p−

= 35.41. Thus, this initial decrease is approximately

0.4% different to the inert shock case. Details of this calculation are given in Appendix

B.

Although the pressure at the shock front has decreased, the flow behind the shock

is still at its initial pressure, therefore creating a high pressure region behind the shock.

For the detonation wave, this corresponds to the second profile of figure 4.2 where the

region of high pressure from behind the incident detonation remains. This high pressure

behind the shock must expand via a reflected expansion wave seen in subsequent profiles

around x
δ

= 0.5. We can see that by x
δ
> 1 the high pressure region has been almost fully

expanded.

Comparing the incident (i) to the transmitted (t) detonation, the shock temperature

ratio, T+,t
T−,t

<
T+,i
T−,i

since MD,t < MD,i. However, there has been a temperature increase

across the interface, such that the temperature in front of the transmitted detonation
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Figure 4.4: Reaction rate, ω̇ and Schlieren plot for ∆ρ = −25% and single step Arrhenius
kinetics with Ea = 20, Q = 50, γ = 1.2

T−,t > T−,i. This overcomes the decreased temperature ratio and the shock temperature

is overall increased, T+,t > T+, i. This can be seen on the second temperature profile in

figure 4.3.

The reaction rate is an exponential function of temperature (equation 3.3), thus the

increased shock temperature T+ begins to cause an increase in the reaction rate behind

the shock front. Beginning around x
δ
∼ 1, this can also be seen in figure 4.4 where profiles

showing the reaction rate ω̇ = dλ
dt

are plotted on the same x− t diagram.

The contact surface separates gas that has already mostly reacted on the left of the

interface from the fresh reactants at higher temperature on the right. Initially it is seen
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Figure 4.5: Relaxation process for ∆ρ = 20% with single step Arrhenius kinetics with
Ea = 20, Q = 50 and γ = 1.2

that there is chemical energy release on both sides of the contact surface. As the dis-

tance between the contact surface and shock front increases in subsequent profiles, the

gas originally at the left of the interface is burnt out. However, simultaneously, fresh

unreacted gas at increasingly higher shocked temperature enters from the right, causing

further increase in reaction rate. Thus, increased rate of chemical energy release leads to

acceleration of the wave.

At x
δ
∼ 4.8, the reaction rate has stopped increasing (figure 4.4) and the detonation

asymptotically decays to the final state. This is also demonstrated in the pressure profiles

(figure 4.2), where during the acceleration phase the reaction zone become more curved

as pressure builds due to energy release.

4.1.2 Density increase

Now consider density increase and temperature decrease across the interface.

Figure 4.5 shows the variation of the leading shock pressure, p+ with distance, x.
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Pressure is normalized by the initial pressure of the unburnt material, p0 and distance is

normalized with reaction zone length, δ. The x−axis is shifted such that the interface is

located at x
δ

= 0. A density increase of ∆ρ = 20% and the single step Arrhenius model

are used with Ea = 20, Q = 50 and γ = 1.2.

Upon interaction there is an abrupt increase of ∼ 10% in shock pressure ratio to

p+
p0

= p+
p−
∼ 46.5. This is followed immediately by decay to a sub-CJ state of ∼ 85% of the

CJ detonation velocity, DCJ at the right of the interface. There is a quasi-steady period

(∼10 reaction zone lengths δ) at this low velocity. Subsequently, the wave re-accelerates

to a shock pressure ratio p+
p−
∼ 58.6 and then asymptotically decays to the final state the

at CJ value. This relaxation length is x
δ

= 36.93 (or ∼ 37 reaction zone lengths), where

the relaxation length is defined as the distance taken to be within 5% of the final shock

pressure downstream of the interface.

Figures 4.6 and 4.7 show x-t or distance-time numerical schlieren graphs of this process.

The pressure profiles of the detonation throughout this relaxation process are superim-

posed onto the plot in figure 4.6 and the corresponding temperature profiles in 4.7. The

first two profiles show the stable detonation wave immediately before the interface (at

x/δ = 0). It can be noted that after the interaction, the Schlieren indicates the forma-

tion of a reflected shock wave and a contact surface. This was predicted theoretically.

The reflected shock wave is evident by the pressure and temperature increase seen in the

profiles across it. Across the contact surface the profiles indicate constant pressure but a

jump in temperature as expected.

The abrupt increase in leading shock pressure, p+ is due to the interaction of the

leading shock with the interface. Across the interface there is a temperature decrease

and thus a corresponding decrease in sound speed, c. Consequently, there is an increase

in acoustic impedance, z = ρc = pγ
c

for an ideal gas. As previously discussed, for this

problem acoustic impedance is an accurate indicator of the shock-interface transmission
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Figure 4.6: Pressure profiles and Schlieren plot for ∆ρ = 20% and single step Arrhenius
kinetics with Ea = 20, Q = 50, γ = 1.2
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Figure 4.7: Temperature profiles and Schlieren plot for ∆ρ = 20% and single step Arrhe-
nius kinetics with Ea = 20, Q = 50, γ = 1.2
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problem. This increase implies the formation of a reflected shock wave and an increased

transmitted shock pressure p+
p−

[25]. Here p+
p−

increases to 46.48. An inert shock at the same

initial pressure encountering the same density change has a transmitted shock pressure

p+
p−

= 46.61. Thus, this initial increase is approximately 0.3% different to the inert shock

case. Details of this calculation are given in Appendix B.

Although detonation Mach number has increased MD,t > TD,i, there is lower tem-

perature on the right of the interface in front of the transmitted detonation T−,t < T−,i.

This leads to a decrease in shock temperature, T+,t < T+,i. The reaction rate is an expo-

nential function of temperature (equation 3.3), thus there is a decrease in reaction rate

and consequently energy release behind the leading shock causing its immediate decay.

However, there is still some energy release in the reaction zone, slowing its deceleration

and eventually leading to its quasi-stabilization.

This is illustrated in figure 4.8 where profiles showing the reaction rate ω̇ = dλ
dt

are

plotted on the same x-t diagram. Before the interface at x
δ

= 0, the point of maximum

reaction rate is near to the shock front. After the interface, this local maximum begins

to decrease and moves away from the shock front, effectively causing its deceleration.

However, by x
δ
∼10, or 10 reaction zone lengths downstream, energy release begins increase

again and re-accelerates the wave. The maximum reaction rate increases and moves

forward to again become coupled with the shock front. At this point (x
δ
∼30), the wave

stops accelerating and asymptotically decays to the final state.

This process is analogous to direct initiation for a detonation in one dimension [11].

From the pressure profiles in figure 4.6 it can also be seen that the increasing energy

release causes pressure increase in the reaction zone that re-accelerates the leading shock

due to the inverse pressure gradient.
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Figure 4.8: Reaction rate, ω̇ and Schlieren plot for ∆ρ = 20% and single step Arrhenius
kinetics with Ea = 20, Q = 50, γ = 1.2
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Figure 4.9: Pressure and Schlieren plot for single step Arrhenius kinetics with Ea = 20,
Q = 50, γ = 1.2 to an inert gas where ∆ρ = −25%

4.1.3 Inert downstream medium

It is perhaps worthwhile to compare these to a case with the same density change,

but where the downstream medium is inert (i.e. Q = 0 or λ = 0). In this case, the

transmitted detonation does not have the supporting energy release and decays into a

transmitted shock wave.

The figures 4.9 and 4.10 show the pressure profiles for these cases superimposed on

an x-t numerical schlieren graph as before. The single step Arrhenius model is used with

Ea = 20, Q = 50 and γ = 1.2 on the left of the interface. Initially, downstream of the
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Figure 4.10: Pressure and Schlieren plot for single step Arrhenius kinetics with Ea = 20,
Q = 50, γ = 1.2 to an inert gas where ∆ρ = 20%
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interface ∆ρ = −25%, 20% and λ = 0 (inert).

Once the detonation transmits across the interface at x
δ

= 0, there is still some partially

burnt gas in the reaction zone, originating from the left of the interface. However, the

remaining reactant is eventually burnt out and a transmitted shock wave is formed.

As seen for the density decrease schlieren of figure 4.9, a reflected expansion wave is

formed similarly to that in the case a reactive downstream medium. In the same way for

the density increase schlieren of figure 4.10 a reflected shock wave is seen to be formed.

A contact surface advects with the flow in both cases as before.

4.2 Effect of ∆ρ

The transient dynamics and effect of chemical energy release are further investigated

by varying the density change, ∆ρ.

4.2.1 Density decrease

The initial ZND wave is held constant with Ea = 20, Q = 50, γ = 1.2 and single-step

Arrhenius kinetics. A change in density ∆ρ of −15%, −25% and −35% is used. The

simulation results are compared in figure 4.11 by plotting the change in leading shock

pressure, where p+ for each ∆ρ. p+ is normalized with the initial unburnt pressure p0,

and the x-axis for each plot is normalized with the reaction zone length, δ. The incident

detonation is the same in each case and thus δ is the same.

The relaxation processes for different ∆ρ are seen to be qualitatively similar as the

wave goes through the same transient processes. The shock acceleration is seen to occur

for approximately 5 reaction zone lengths, δ in each case. However, it is clear that as the

magnitude of ∆ρ increases, the wave acceleration phase becomes steeper.

Recall that as |∆ρ| increases, |∆T | also increases. This implies decreased temperature
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Figure 4.11: Relaxation process for single step Arrhenius kinetics with Ea = 20, Q = 50,
γ = 1.2 and ∆ρ = −15%, −25%, −35%

after the interface in front of the transmitted detonation, T−,t. This leads to a larger

shock temperature of the transmitted detonation after the interface T+,t. Reaction rate is

an exponential function of temperature (equation 3.3), and this larger shock temperature

change causes a more rapid change in reaction rate. Thus, increased ∆ρ leads to a more

rapid increase in reaction rate and thus a more rapid acceleration.

4.2.2 Density increase

As for the density decrease case, the initial ZND wave is held constant with Ea = 20,

Q = 50, γ = 1.2 and single step Arrhenius kinetics. This time, a change in density ∆ρ of

+10%, +20% and +30% is used.

Figure 4.12 shows the change in leading shock pressure p+ for these cases. Increased

∆ρ implies increased ∆T and increased temperature in front of the transmitted detonation

T−,t. This leads to a larger decrease in shock temperature of the transmitted detonation,

T+,t. Reaction rate is an exponential function of temperature (equation 3.3), so this larger
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Figure 4.12: Relaxation process for single step Arrhenius kinetics with Ea = 20, Q = 50,
γ = 1.2 and ∆ρ = +10%, +20%, +30%

temperature change causes a more rapid change in reaction rate. Thus, the deceleration

and acceleration phases are seen to be steeper for a larger ∆ρ.

Reduced activation energy is defined as Ẽa = Ea
RT

, where T is the temperature in front

of the wave, T− in this case. As ∆ρ increases, T− decreases and thus Ẽa increases across

the interface. This increase in Ẽa implies greater inherent instability of the detonation.

This is evident in the low velocity region of figure 4.11 where for increasing ∆ρ some

oscillations occur.

4.3 Effect of kinetic model

The effect of the kinetic model on the transient process was also studied, specifically

the addition of an induction zone. To this end, the simulations were repeated using the

two step induction-reaction kinetic model.
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Figure 4.13: Relaxation process for the two step kinetic model with εi = 8, εr = 1,
ki = 0.779, kr = 0.887, Q = 50, γ = 1.2 and ∆ρ = −25%

4.3.1 Density decrease

Qualitatively similar results are obtained using the two step induction-reaction model

with the same density decrease ∆ρ = −25% as in section 4.1.1. The change in leading

shock pressure, p+ is plotted in figure 4.13, where εi = 8, εr = 1, kr = 0.887, Q = 50

and γ = 1.2. ki is the particle velocity behind the shock front in the shock-fixed frame,

here found to be 0.779. As before, p+ is normalized with respect to the initial unburnt

pressure p0 and x is normalized by the reaction zone length, δ. δ is defined as the location

of λ = 0.1. Thus, the detonation wave goes through the same transient physical processes

in response to the change.

However, for the two step induction-reaction model there is a brief delay (x
δ
∼ 0.5)

before the shock acceleration phase due to the presence of the induction zone. This is not

present for the single step Arrhenius model, see figure 4.1. The increased shock tempera-

ture for the transmitted detonation T+,t (as a result of increased initial temperature T−,t)

cannot immediately impact the reaction zone as in the single step model. It first causes
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Figure 4.14: Relaxation process for the two step kinetic model with εi = 8, εr = 1,
ki = 0.779, kr = 0.887, Q = 50, γ = 1.2 and ∆ρ = +20%

an increase in the rate of change of the induction zone progress variable dξ
dt

(equation 3.4).

This decreases the induction zone length before impacting the energy release rate in the

reaction zone and accelerating the wave.

4.3.2 Density increase

Figure 4.14 shows the change in leading shock pressure, p+ for the same ∆ρ = +20%

as in section 4.1.2 using the two step induction-reaction kinetic model. Again εi = 8,

εr = 1, ki = 0.779, kr = 0.887, Q = 50 and γ = 1.2.

The decreased shock temperature for the transmitted detonation, T+,t after the inter-

face causes a decrease in the rate of change of the induction zone progress variable dξ
dt

(equation 3.4). This lengthens the induction zone and causes the reaction zone to decou-

ple from the leading shock. Unsupported by energy release, the detonation wave fails to

re-initiate and the leading shock decays into a nonreactive shock wave. The inset in figure
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4.14 shows this pressure profile far downstream of the interface where the detonation has

decayed to a shock with pressure p+
p0
∼ 18.6.

This failure was also seen to occur for a smaller density increase of ∆ρ = +10%. A full

parametric study could be conducted in future research to determine critical conditions.

45



Chapter 5

Theoretical and Numerical

Comparison

To compare the theoretical and numerical solution we look at the asymptotically

approached final state of the numerical simulation far downstream from the interaction.

The resulting transmitted detonation is found to agree with the theoretical predictions

qualitatively and quantitatively.

In this chapter, for the density decrease case the numerical solution for both the single

step Arrhenius and two step induction-reaction kinetic models are considered. However,

for the density increase case only the numerical solution for the single step Arrhenius

model is considered as the two step induction-reaction model was seen to be prone to

failure (section 4.3.2).

5.1 Qualitative comparison

We first look at the structure of the final transmitted detonation.
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(a) Single step model with Ea = 20, Q = 50,
∆ρ = −25% and γ = 1.2

(b) Two step model with εi = 8, εr = 1, ki =
0.779, kr = 0.887, Q = 50, γ = 1.2

Figure 5.1: Transmitted detonation for density decrease ∆ρ = −25%

5.1.1 Density decrease

If there is a density decrease, the transmitted detonation is found to be a strong

detonation as predicted. Figure 5.1 shows the transmitted detonation obtained for ∆ρ =

−25% for the cases studied in detail in chapter 4.

Figure 5.1a is for the single step Arrhenius chemical kinetics with activation energy

Ea = 20, heat release Q = 50 and adiabatic index γ = 1.2. Figure 5.1b is for the two step

induction-reaction kinetics with εi = 8, εr = 1, ki = 0.779, kr = 0.887, Q = 50, γ = 1.2

The Mach number, M of the flow field in the frame of leading shock front is plotted on

the left axis and the reaction progress variable or variables, λ or ξ on the right axis. The

shock front is located at the right end of the x -axis which is normalized with respect to

the reaction zone length δ. This x
δ

is measured from the initial position of the interface.

Mach number, M increases through the reaction zone as λ decreases up to a maximum

of approximately 0.89 at λ = 0 for both models. Thus, the models are seen to agree for

the final transmitted detonation. Beyond this there is a uniform flow up to the contact

surface. This subsonic product flow indicates a transmitted strong detonation as expected.
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Figure 5.2: Transmitted detonation for a density increase with Ea = 20, Q = 50, ∆ρ =
+20% and γ = 1.2

5.1.2 Density increase

If there is a density increase, the transmitted detonation is found to be CJ with an

expansion wave behind it as in the theoretical solution. Figure 5.2 shows the transmitted

detonation obtained for ∆ρ = +20% for the case studied in detail in chapter 4. In this

case the single step Arrhenius chemical kinetics are used with activation energy Ea = 20,

heat release Q = 50 and adiabatic index γ = 1.2.

Again the Mach number, M of the flow field in the frame of leading shock front is

plotted on the left axis and the reaction progress variable, λ on the right axis. The shock

front is located at the right end of the x -axis which is normalized with respect to the

reaction zone length δ. This x
δ

is measured from the initial position of the interface. M

increases to a sonic M = 1 as λ approaches 0 at the end of the reaction zone indicated by

the dashed line. Beyond this, there is further increase in M behind the detonation due

to the trailing expansion wave.
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Figure 5.3: Degree of overdrive, f of the transmitted detonation for ∆ρ = -35% to 30%.
Comparison of the two kinetic models and the theoretical analysis

5.2 Quantitative comparison

The theoretical and downstream numerical transmitted detonation can also be com-

pared quantitatively. In figure 5.3 the degree of overdrive, f = Dt2

DCJ
2 of the transmitted

detonation is plotted against percentage density change, %∆ρ. ∆ρ is varied from -35%

to +30%. Again, for the density decrease case the two kinetic models are compared with

each other and the theoretical result. However, only the single step model is compared to

the theoretical result for the density increase case.

For an increase in density the degree of overdrive, f = 1, indicating a transmitted

CJ detonation. Conversely, for a decrease in density the degree of overdrive, f > 1,

indicating a transmitted strong detonation. Degree of overdrive, f increases with increased

magnitude of density decrease.

Numerical results for both models are seen to agree with the theoretical predictions

within 0.3%. For the single step Arrhenius kinetic model, the largest deviation of f

from the theoretical was found to be ∼ 0.3% for ∆ρ = 10%. For the two step induction-
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reaction kinetic model, the largest deviation from the theoretical was found to be ∼ 0.03%

for ∆ρ = −35%.

Slight deviations such as these from exact theoretical values are common in numerical

simulations, regardless of the presence of disturbances. See for example deviation in values

at the ∆ρ = 0 point (no ρ change). One reason could be the exponential nature of the

Arrhenius form of the reaction rate law. The reaction can never fully go to completion

and as such 100% of Q is never actually released. Another reason could be the method

of capturing the peak shock pressure used in the code.
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Chapter 6

Conclusion

The transmission of a detonation wave across an interface with a change in density

and temperature was studied analytically and numerically. For a density decrease there

was a transmitted strong detonation and for a density increase there was a transmitted CJ

detonation with an expansion wave. Thus, it was shown that the transmitted detonation

is not always CJ, but there can be a transmitted strong detonation depending on the back

boundary condition.

The downstream state of the numerical solution was found to agree with the theoretical

solution for the single step Arrhenius reaction model. This suggests that the transient

relaxation process has no effect on the final transmitted wave pattern.

Furthermore, the two step induction-reaction model was seen to agree with both the

single step Arrhenius model and the theoretical solution for a decrease in density across

the interface. However, for an increase in density the detonation was seen to be prone to

failure for the two step induction-reaction model.

This study could be extended to determine critical conditions for this aforementioned

case. It could also be of interest to compare the effect of a gradual change in density and

temperature to the abrupt interface studied here.
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The possible combinations of transmitted and reflected waves are summarized in the

table below.

Table A.1: Possible wave configurations

case reflected wave transmitted detonation

1 shock wave strong or CJ with uniform flow
2 shock wave CJ with expansion wave
3 expansion wave strong or CJ with uniform flow
4 expansion wave CJ with expansion wave

Figure A.1: Case 1: A transmitted strong or CJ detonation and a reflected shock wave
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Case 1:

Case 1 in table A.1 is a transmitted strong or CJ detonation and a reflected shock

wave. It is depicted in figure A.1. As derived in section 2.2.1, the equation to be solved

iteratively for case 1 is:

c1√
ηD,t

[
1−

(γ + ηD,t − s
γ + 1

)]
− u2

=

(
p2 −

ηD,t + γ(1 + s)

ηD,t(γ + 1)

)(
2

(γ+1)ρ2

ηD,t+γ(1+s)

ηD,t(γ+1)
+ γ−1

γ+1
p2

) 1
2

(A.1)

Figure A.2: Case 2: A transmitted CJ detonation with expansion wave and a reflected
shock wave

Case 2:

Case 2 is a transmitted CJ detonation with an expansion wave and a reflected shock

wave. It is depicted in figure A.2. The properties at 0, 1 and 2 are known.

Since the transmitted detonation is CJ, this corresponds to a unique solution and the

flow properties at 5 are known from equation 2.1. These can then be related to those

behind the expansion wave using equation 2.2:
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u4 = u5 −
2c5
γ − 1

[
1−

(
p4
p5

) γ−1
2γ

]
(A.2)

This pressure and particle velocity are equal to those on the right side of the contact

surface, i.e. pR = p4 and uR = u4.

The normal shock equation, 2.3 is used to represent p3 and u3 behind the reflected

shock:

p3
p2

=
2γMs,r − (γ − 1)

γ + 1

u3 = u2 − (p3 − p2)

[
2

(γ+1)ρ2

p3 + γ−1
γ+1

p2

] 1
2

(A.3)

On the left of the contact surface pL = p3 and uL = u3.

We must have uniform pressure and particle velocity across the contact surface. Im-

posing pL = pR and uL = uR gives two equations with two unknowns (p4 and u4):

u4 = u5 −
2c5
γ − 1

[
1−

(
p4
p5

) γ−1
2γ
]

u4 = u2 − (p4 − p2)

[
2

(γ+1)ρ2

p4 + γ−1
γ+1

p2

] 1
2

(A.4)

These can be simultaneously solved by iteration.

Case 3:

Case 3 is a transmitted strong or CJ detonation and a reflected expansion wave. It is

depicted in figure A.3. The properties at 0, 1 and 2 are known.

The Rankine-Hugoniot equations, equation 2.1, are used to relate the states in front

of and behind the transmitted detonation (1 and 4):

54



APPENDIX A 55

Figure A.3: Case 3: A transmitted strong or CJ detonation and a reflected expansion
wave

p4
p1

=
ηD,t + γ(1 + s)

ηD,t(1 + γ)

u4 = Dt

[
1− γ + ηD,t − s

γ + 1

]
where

Dt =
c1√
ηD,t

s =
√

(1− ηD,t)2 −KηD,t

K = 2(γ2 − 1)
Q

γp1v1

(A.5)

The characteristic equation 2.4, express the change across the reflected wave from 2

to 3:

u3 = u2 +
2c2
γ − 1

[
1−

(
p3
p2

) γ−1
2γ
]

(A.6)

Uniform flow behind both waves and uniform p and u across the contact surface imply

p3 = p4 and u3 = u4. Thus we find an equation with one unknown ηD,t:
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Figure A.4: Case 4: A transmitted CJ detonation with an expansion wave and a reflected
expansion wave

c1√
ηD,t

[
1−

(
γ + ηD,t − s

γ + 1

)]
= u2 +

2c2
γ − 1

[
1−

(
ηD,t + γ(s+ 1)

P2ηD,t(γ + 1)

) γ−1
2γ
] (A.7)

This can be solved iteratively.

Case 4:

Case 4 is a transmitted CJ detonation with an expansion wave and a reflected expansion

wave. It is shown in figure A.4. States 0, 1 and 2 are known. Additionally, state 5 can

be found using equation 2.1 with s = 0.

The two sets of expansion wave equations (equation 2.4 and 2.2) are used to relate

states 2 and 3 and states 4 and 5 respectively:

u3 = u2 +
2c2
γ − 1

[
1−

(
p3
p2

) γ−1
2γ
]

(A.8)
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u4 = u5 −
2c5
γ − 1

[
1−

(
p4
p5

) γ−1
2γ
]

(A.9)

Equating p and u across the contact surface, such that p3 = p4 and u3 = u4 gives an

equation for p3:

p
γ−1
2γ

3

[
c2p

(
1−γ
2γ

)
2 + c5p

(
1−γ
2γ

)
5

]
= (c2 + c5)−

γ − 1

2
(u5 − u2) (A.10)

which can be solved and then used to find other properties.
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Figure B.1: Transmission of a shock wave across an interface

The transmission of a shock wave across an interface is illustrated in figure B.1. For

given incident shock Mach number Ms,i, the states 0, 1 and 3 are known.

State 2 can be found in terms of state 1 and transmitted shock Mach number Ms,t

using the normal shock equations 2.3:

p2
p1

=
2γM2

s,t − (γ − 1)

γ + 1

u2 =
2c1
γ + 1

(
Ms,t −

1

Ms,t

) (B.1)
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Density decrease:

For a density decrease across the interface the reflected wave is an expansion wave.

Thus, using equation 2.4 for state 4:

u4 = u3 −
2c3
γ − 1

[(
p4
p3

) γ−1
2γ

− 1

]
(B.2)

There must be a constant particle velocity across the interface, so u4 = u2. This gives

an equation for Ms,t only which can be solved iteratively:

c1
2

γ + 1

(
Ms,t −

1

Ms,t

)
= u3 −

2c3
γ − 1

[(
p4
p3

) γ−1
2γ

− 1

]
(B.3)

This equation is solved numerically for the specific initial condition of section 4.1.1 to find

Ms,t = 5.877, which is then substituted into equation B.1 to find p2
p1

= 35.14.

Density increase:

For a density increase across the interface, the reflected wave is a shock wave. Thus for

state 4:

p4
p3

=
2γM2

sr − (γ − 1)

γ + 1

u4 =
2c3
γ + 1

(
Ms,r −

1

Ms,r

) (B.4)

There must be a constant pressure and particle velocity across the interface, so p4 =

p2 and u4 = u2. This gives two equations with two unknowns (Ms,t and Ms,r) which can

be simultaneously solved iteratively:
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p1(2γM
2
s,t − (γ − 1)) = p3(2γM

2
s,r − (γ − 1))

c1

(
Ms,t −

1

Ms,t

)
= c3

(
Ms,r −

1

Ms,r

) (B.5)

This equation is solved numerically for the specific initial condition of section 4.2.1 to find

Ms,t = 6.832, which is then substituted into equation B.1 to find p2
p1

= 46.61.
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[18] B. Riemann. Über die Fortpflanzung ebener Luftwellen von endlicher

Schwingungsweite. Verlag der Dieterichschen Buchhandlung, 1860.

[19] S. Arrhenius. Über die dissociationswärme und den einfluss der temperatur auf den
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