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ABSTRACT 

Applications of computational methods to predict binding affinities for protein/drug complexes 

are routinely used in structure-based drug discovery. Applications of these methods often rely on 

empirical Force Fields and their associated parameter sets and atom types. However, it is widely 

accepted that FFs cannot accurately cover the entire chemical space of drug like molecules, due to 

the restrictive cost of parametrization and the poor transferability of existing parameters. To 

address these limitations, initiatives have been carried out to develop more transferable methods, 

in order to allow for more rigorous descriptions of all possible drug-like molecules. We have 

previously reported H-TEQ, a method which does not rely on atom types. This method 

incorporates well established chemical principles to assign parameters to organic molecules. The 

previous implementation of H-TEQ only covered saturated and lone pair containing molecules; 

here we report our efforts to incorporate conjugated systems into our model. The developed model 

(H-TEQ3.0) has been validated on a wide variety of molecules from aryls containing heteroatoms, 

alkyls, and fused ring systems. Our method performs on par with one of the most commonly used 

FFs (GAFF2), without relying on atom types or any prior parametrization. In fact, our method is 

applicable to virtually any conjugated organic molecule. 

 

INTRODUCTION 

Computational Methods in Drug Discovery and Molecular Mechanics. Computational 

methods are quick and cost-effective complements to experiments to identify potential binders to 

targets of therapeutic interest and/or off-targets. Over the years, computational tools have 

contributed to many stages of the drug discovery process, from the prediction of drug-likeness1 

following, for example, Lipinski’s rule of five or ADME (absorption, distribution, metabolism and 

excretion) properties 2 using artificial intelligence (AI) or statistical analysis, to physics-based 

methods providing insights into the structure and dynamics of molecular systems.3, 4 It is 

anticipated that Structure-Based Drug Design (SBDD) will have even greater relevance in future 

Drug Discovery paradigms.5, 6 The accuracy of predicted drug binding affinities depend on several 
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factors such as the level of detail of the structural model7  (subatomic, atomic, coarse-grained), the 

accuracy of the energy potentials computed for molecular conformations,8, 9 as well as the degree 

to which all energetically accessible conformations are sampled.10 In this context, quantum 

mechanical (QM) methods would provide a very accurate depiction of the energetics of molecular 

systems, allowing rigorous estimates of ligand-macromolecule binding energies.11 These methods 

can, however, not be carried to high-throughput tasks, to scan large portions of conformational 

space, or to study large macromolecules, due to their restrictive computational costs. In light of 

this limitation, Molecular Mechanics (MM) methods have been developed to evaluate the 

energetics of molecular systems using simplified potentials with the objective to reproduce 

experimental data and QM potentials, while reducing computational costs by several orders of 

magnitude. However, the accuracy of these more empirical MM methods largely depends on the 

quality of the potentials and parameters of the underlying Force Fields (FFs).12, 13.  

Atom-type based FFs. In MM, the potential energy of a molecular system is calculated using a 

FF corresponding to a set of potential energy functions and its associated precomputed parameters 

(Eqs. 1-7). The contributions from each term in a FF can be split into two categories, “bonded” 

interactions (bonds, angles, torsions, out-of-plane angles) which are calculated for atoms within 

the same molecule, and “non-bonded” interactions (e.g., van der Waals and electrostatics) which 

are calculated for pairs of atoms separated by 3 or more bonds (intramolecular) or pairs of atoms 

in different molecules (intermolecular).  

 

𝐸𝑡𝑜𝑡𝑎𝑙 =  𝐸𝑏𝑜𝑛𝑑𝑠 + 𝐸𝑎𝑛𝑔𝑙𝑒𝑠  +  𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 + 𝐸𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒⏟                              
𝒃𝒐𝒏𝒅𝒆𝒅

 +  𝐸𝑣𝑑𝑊 + 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠  ⏟              
𝒏𝒐𝒏−𝒃𝒐𝒏𝒅𝒆𝒅

  (1) 

𝐸𝑏𝑜𝑛𝑑𝑠 = 𝑲𝒓(𝑟 − 𝒓𝒆𝒒)
2
      (2) 

𝐸𝑎𝑛𝑔𝑙𝑒𝑠 = 𝑲𝜽(𝜃 − 𝜽𝒆𝒒)
2
     (3) 

𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =∑ 𝑽𝒏(1 +  𝑐𝑜𝑠(𝑛𝜑 +  𝜹))
𝑁

𝑛 = 1
  (4) 

𝐸𝑜𝑢𝑡−𝑜𝑓−𝑝𝑙𝑎𝑛𝑒 = 𝑲𝝎(𝜔 −𝝎𝒆𝒒)
2
    (5) 

𝐸𝑣𝑑𝑊 =∑ 𝜺𝒊𝒋 [(
𝑹𝒎𝒊𝒏,𝒊,𝒋

𝑟𝑖,𝑗
)
12

 −  (
𝑹𝒎𝒊𝒏,𝒊,𝒋

𝑟𝑖,𝑗
)
6

]

𝑝𝑎𝑖𝑟𝑠 𝑖, 𝑗

 (6) 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐𝑠 =∑
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖,𝑗
𝑝𝑎𝑖𝑟𝑠 𝑖, 𝑗

   (7) 

 

Transferability. “Atom types” are central to most widely applied FFs in SBDD, such as the 

AMBER,14, 15  CHARMM,16, 17 GROMOS,18, 19 and OPLS20-23 series. In AMBER, for example, 

parameters for aromatic carbons (atom type CA) are different from aliphatic carbons (CT) or 

carbonyl carbon (C) and other carbon types. However, these definitions are limited to local 

environment and distant chemical functional groups do not impact which atom type (and set of 

parameters) is assigned and consequently these electronic effects are ignored. As an example, 

electron donating or withdrawing substituents on an aromatic ring are not considered in ring atom 

types.  

Parametrization of a FF consists in finding the ideal values for all the parameters (shown in bold) 

associated with each function (Eq.1-7). For example, the bond stretching term (Eq. 2) describes 

the ideal bond distance between two atoms and is characterized by an equilibrium bond length 

(req) and a force constant (Kr). In order to describe all possible bond stretching events, parameters 
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for the equilibrium value and force constants are required for all combinations of two atom types.12 

This parameter fitting process uses experimental (e.g., H-NMR, thermodynamic properties) and/or 

high-level QM data as reference, which are costly to obtain, ultimately imposing a limit on the size 

of the training set used to develop parameters. FFs thus rely on the transferability of parameters 

obtained from molecules in the training set to other similar molecules. The current consensus is 

that no particular FF could accurately describe the energetics of all possible small drug-like 

molecules due to the sheer size of the chemical space, and the poor transferability of empirical 

parameters generated on specific molecules.24 It is important to keep in mind that not all types of 

parameter are subject to this lack of transferability; for instance, bonds and angles are generally 

assumed to be fully covered. However, authors of OPLS3.0 estimated in 2015 that 33% of drug-

like molecules were missing at least one torsion parameter,21 (a more recent version attempts to 

solve this limitation25) and the treatment of non-bonded interactions have also recently been 

challenged by the introduction of polarizable Force Fields (e.g. AMOEBA,26, 27 CHARMM-

Drude28, 29). Current developments in FF methodologies are hence highly focused towards torsional 

and non-bonded interactions. 

To address liabilities resulting from poor parameter transferability and/or missing parameters, 

researchers have followed two main approaches. On one hand, automated toolkits such as 

GAAMP,30 ffTK,31 Paramfit32 and Parmscan33 have been developed, allowing to generate accurate 

parameters for specific molecules of interest from QM data. These user-friendly toolkits are 

particularly fit for researchers studying the interactions within a ligand/receptor pair using 

Molecular Dynamics, since only few parameters need to be generated (usually for the drug-like 

molecule). However, these tools cannot be carried to high-throughput tasks (e.g., docking libraries 

of compounds), due to the computational costs associated with the parameter fitting process. While 

these toolkits allow parameters to be generated for specific studies, they do not solve the problem 

of parameter transferability. A radically different approach consists in developing MM methods 

with greater transferabilities without relying on the concept of atom types to determine parameters. 

To our knowledge, Mobley et al.’s recent attempt with SMIRNOFF,34 a Force Field which uses 

direct chemical perception instead of traditional atom types to determine parameters, as well as H-

TEQ (developed in our lab),35, 36 are the only methods moving away from the atom type paradigm 

of FFs. Both SMIRNOFF and H-TEQ, were shown to perform comparably well to GAFF (one of 

the most widely used FFs for small organic molecules)37 to reproduce liquid properties and QM 

torsional profiles. The performance of these methods has not yet been extensively tested in the 

context of SBDD relevant interactions, due to their very recent releases, and further work is 

expected to allow these methods to cover the entire chemical space with good accuracy. These 

efforts are highly encouraging in the future ability of atom type free FFs to rival with state-of-the-

art FFs towards SBDD applications, without requiring any molecule-specific parametrization. 

While our previous versions of H-TEQ focused on saturated compounds, we report here our 

efforts to incorporate unsaturated compounds.  

 

IMPACT OF UNSATURATIONS ON TORSIONAL ENERGY 

Organic Chemistry Principles and Drug Conformational Energy. In organic chemistry, 

several models have been employed to rationalize the conformational preferences of molecules 

and stereoselectivity in chemical reactions. For example, the hyperconjugation model is often 

evoked to rationalize the preference of the staggered conformation in ethane and the anomeric 

effect in carbohydrate molecules.38-40 These principles, although qualitative in nature, are highly 

transferable since they follow general principles such as the degree of electron donating or electron 
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withdrawing character, presence of lone pairs and the degree of overlap of molecular orbitals. 

Indeed, we have demonstrated that if these principles are quantified (using simple atomic 

properties), universal models for computing the torsional energy of molecules could be 

developed.35, 36 While our previous studies were focused towards σ → σ* and n → σ* 

hyperconjugation modes, a large number of drug like molecules contain conjugated moieties and 

aromatic ring systems,41 which exhibit other hyperconjugation modes: σ → π* and π → σ*, which 

we will refer to as π-Hyperconjugation. These additional hyperconjugation interactions must play 

an important role in determining the conformational preferences of such moieties. Therefore, the 

goal of the present manuscript is to describe our progress in integrating π interaction modes into 

our H-TEQ method, to guarantee its applicability to torsions in any drug-like molecule, improving 

the accuracy of Force Field based methods for SBDD applications.  

 

Asymmetric Induction and π-Hyperconjugation. Multiple chemical models have been 

developed to predict diastereoselectivity in nucleophilic addition reactions involving carbonyl 

groups such as the Cram and Felkin-Anh models. 42, 43 The early Cram model states that the ideal 

path of attack of a nucleophile towards a carbonyl group, is essentially that minimizing steric 

hindrance. The more reliable Felkin-Anh model invokes additional electronic effects which control 

the diastereoselectivity; a strong electron withdrawing group (RL in Figure 1) at the vicinal position 

oriented antiperiplanar to the incoming nucleophile leads to a favorable σ → σ* interaction 

stabilizing the transition state. Furthermore, the angle of attack of the nucleophile is not 90° but 

~107° (Burgi-Dunitz angle) 44 which maximizes the alignment of the nucleophile σ orbital with 

the carbonyl π* orbital, ultimately leading to the bond formation.4-6 Although these different 

models disagree as to which of these interactions predominate, and do not predict the same 

stereochemical outcomes, it remains clear that both steric and electronic effects govern 

nucleophilic addition reactions on carbonyl centers.45  

While the Felkin-Anh model is in principle intended to predict the orientation of nucleophilic 

attacks to the C-α, it can also provide an understanding of the π → σ* or σ → π* hyperconjugation 

propensity. From the Felkin-Anh model, strongly electron-withdrawing (EWD) groups play a role 

similar to large substituents favoring the alignment of the σ* with π and π* orbital, and thus 

favoring the π → σ* hyperconjugation. Indeed, as can be observed in Table 1, our calculations 

showed that strong EWD groups (e.g. fluorine) favor π → σ * relative to σ → π*. The favorable 

nucleophilic attack at the carbonyl group may therefore be attributed to the interaction between 

the σ → π* resulting in a lower energy LUMO and thus more susceptible to nucleophilic attack. 

On the other hand, electron donating groups (e.g. CH3) result in weak σ* receptors and thus σ → 

π* Hyperconjugation predominates.  
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Figure 1. Electronic interactions evoked by the Felkin-Anh model to predict conformational 

preference.  

 

The qualitative models routinely employed by organic chemists are often transferable, as they 

tend to isolate the predominant factors to simplify the picture. However, in order to translate these 

qualitative theories into robust quantitative predictions, an inclusion of other weaker interactions 

might be necessary. The underlying interrogative is: for a given torsion involving σ → π* and π 

→ σ*, should the predominant hyperconjugation mode be exclusively considered or should 

contributions from both modes be incorporated in our model; this is particularly interesting for 

cases where comparable magnitudes are observed (e.g. toluene in Table 1). Furthermore, should σ 

→ σ* hyperconjugation interactions be neglected as they are smaller in magnitude than π-

hyperconjugation interactions? It is important to note that σ → σ* are maximal when the σ and σ* 

orbitals are anti (in plane with the π-system), whereas σ → π* and π → σ* are maximal when the 

σ and σ* orbitals are perpendicular to the π-system (Figure 2). Hyperconjugation and π-

hyperconjugation hence favor different conformations, thus neglecting weaker competing 

interactions could hinder the predictive ability of our model. 

 

Table 1. Energy Gap and Fock Matrix Elements for π→σ* and σ → π* Hyperconjugation 

  Ehyp(kcal/mol) ΔE [BD – BD*]/(a.u) 
F[BD, 

BD*]/(a.u) 

 

π → σ* 1.77 1.10 0.039 

σ → π* 5.96 1.03 0.070 

 

π → σ* 2.28 1.10 0.045 

σ → π* 9.32 0.91 0.082 

 

π → σ* 4.5 1.01 0.060 

σ → π* 2.3 1.40 0.051 

 

π → σ* 4.42 0.90 0.056 

σ → π* 4.7 0.98 0.061 
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π → σ* 5.22 0.90 0.061 

σ → π* 7 0.86 0.069 

 

π → σ* 11.68 0.79 0.086 

σ → π* 2.04 1.34 0.047 

 

 
Figure 2. σ → σ* (left) favored when C-H and C=O are coplanar, π → σ* (left) favored when C-

H and C=O are perpendicular. 

 

Hyperconjugation and/or Sterics as Major Torsional Energy Contributors. The 

conformational flexibility of small drug-like molecules essentially stems from rotation around 

bonds (i.e. dihedral angles). Hence, an accurate prediction of torsional energy profiles is critical 

for applications in SBDD. Non-bonded interactions (vdW, electrostatics) cannot be neglected 

however, as when a bond is rotated, the molecule can reorganize other degrees of freedom in order 

to minimize steric clash, allow favorable H-bonding or vdW interactions to occur etc.; these 

additional effects are weaker however as molecules get smaller. Typically, empirical torsional 

parameters are parametrized last, and are the only term in the FF equation which does not explicitly 

describe a specific underlying physical interaction. While this empirical nature can make up for 

errors in non-bonded parameters and improve the accuracy of molecules in the development set, it 

may be at the root of the poor transferability of torsional parameters.13 We hence hypothesize that 

replacing these poorly transferable empirical parameters, by contributions from different 

hyperconjugation modes (σ → σ*, π-hyperconjugation) will improve the transferability of 

torsional energies for drug-like molecules. It should be noted that for the purpose of our 

comparison, the remaining terms of the FF energy will be calculated with the current 

implementation of GAFF2, hence residual error from the other parts of the FF are expected to be 

present.   

The first step in our approach is to confirm our hypothesis that hyperconjugation interactions 

will play an important role in the determination of conformational preference. Rotational energy 

profiles were computed with QM at the MP2/6-311+G** level of theory which is consistent with 

previous studies.35, 36 As shown in Figure 3, different π-system reveal varying conformational 

preferences and radically different rotational profiles (amplitude and periodicity). On one hand, 

the thiophene and benzene profiles contain two minima (±90°) and two maxima (0°, 180°), 

whereas the ketone and furan show 3 minima (180°, ±60°) and 3 maxima (0°, ±120°). Inspecting 

the optimal conformations of each molecule, we notice that for both the benzene and thiophene 

derivatives, the -CH3 substituent is positioned such as to maximize the overlap between the σ(C-
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C) and π/π* orbitals in the aromatic ring, at the expense of possible interactions between the σ(C-

H) and π-orbitals (Figure 3). On the other hand, the ketone and furan derivatives in their preferred 

conformation show reduced orbital overlap between the σ(C-C) and the π-orbitals, allowing one 

of the σ(C-H) to partially overlap with the π-orbitals. In the benzene example, the preference for 

±90° can be attributed to unfavorable steric clash between hydrogens at the ortho position when 

the methyl group is in plane of the π-system. The thiophene derivative reveals a very similar 

profile, although it is not expected to be subject to a steric clash of the same magnitude, the 

hydrogen atom being further away (5-membered rings having inherently different geometries than 

6 membered rings).  

 

 
Figure 3. Variety of QM torsional profiles is linked to the underlying interactions. Rotated bonds 

are shown in red. 

 

A notable difference between the benzene and thiophene profiles is the broadness of the low 

energy region. Clearly, the nature of the π-system is closely linked to which interaction will 

predominate, and ultimately to which conformation will be preferred. Three hyperconjugation 

modes are competing in these systems (σ → σ*, σ → π* and π → σ*, Figure 2), the strength of 

these different interactions depends on two major factors, the energy level difference of the 

interacting bonding/antibonding orbital pair (where a minimal energy gap between two orbital 

leads to a stronger interaction), and the spatial orbital overlap. 46-49 The nature of the π-system is 

directly related to the energy levels of π and π* orbitals, as well as their polarization.50 While it 

remains unclear at this stage which interaction predominates in each case, we can assess that the 

same set of interactions may lead to very different profiles (Figure 3). We have thus developed a 

development set (Figure 4) covering a large variety of π-systems and saturated groups positioned 

at a vicinal position, in order to understand effects of different moieties on torsional profiles, and 

the underlying interactions giving rise to such profiles. It should be noted that our data set is not 

built to resemble drug-like molecules, but rather to cover as wide a range of chemical space as 
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possible (-R groups going from very electron withdrawing (e.g., fluorine) to electron donating 

(e.g., hydroxyl), in order to understand factors governing the hyperconjugation interactions.  

 
Figure 4. Development set of molecules used to study conformational preference of Drug-like 

molecules containing π-systems, rotated bonds are shown in red (R = H, F, Cl, CH3, OH):  

 

Understanding Interactions Using Energy Decomposition Analysis. While quantum 

chemistry can provide an accurate depiction of molecules, the information that can be extracted 

remains limited, and it is sometimes impossible to directly translate results obtained from these 

theoretical calculations into well understood chemical or physical principles. This discrepancy has 

thus led to a wide range of QM based methods that decompose the quantum energy into more 

chemically relevant parts. There are currently three main approaches allowing to dissect 

delocalization interactions (hyperconjugation in this work): natural bond orbital (NBO) analysis,51 

energy decomposition analysis (EDA)52 and the block localized wavefunction method (BLW).53 

While these methods are built around similar concepts (a full wavefunction is compared to a 

localized construct, and the energy difference between both is assumed to be related to 

delocalization interactions), they operate quite differently, specifically in the way they generate 

the localized wavefunction. While EDA methods and BLW use non-orthogonal orbitals (which 

increases the role of steric effects), NBO uses orthogonal orbitals to describe the localized 

reference.54 Such decomposition schemes were initially developed to study intermolecular 

interactions,55, 56 but have more recently been used to study intramolecular hyperconjugation type 

interactions.57 The degree to which the decomposition is performed also varies from method to 

method and to this day, NBO is the only method which can output an energy value for every 

bonding/antibonding orbital pair in a molecule. In other methods, hyperconjugation and 

conjugation energies are agglomerated into a single energy term, hence not giving a chemically 

relevant picture with the same level of resolution.  

Considering the two major interactions present in our systems are σ → π* and π → σ*, we expect 

that factors increasing the amplitude of one of them will decrease the amplitude of the other, as a 

good σ-donor is usually a poor σ-acceptor, and vice versa (see Table 1).46 Hence, a full 

decomposition of the interactions resolving both σ → π* and π → σ* seems more valuable, our 

end goal being to understand and develop rules to explain the factors controlling these interactions. 

NBO has notably been applied to understand the conformational preference of ethane, by invoking 

the predominant role of hyperconjugation,38 to discern how different elements within pnictogens 
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(N, P, As) 58 and chalcogens (O, S, Se, Te) 59 impacts n → σ* hyperconjugation and ultimately the 

magnitude of the anomeric effect. NBO has also already been used to study the rotation of bonds 

in conjugated systems.60 Overall, NBO has been employed to understand the conformational 

preference of a wide range of molecules, explaining these preferences with different 

hyperconjugation modes, as well as to explore how different elements within a group can impact 

such interactions; it is therefore particularly fit for our purposes.  

 

Extracting Hyperconjugation. In order to complement our previously developed H-TEQ 

method,35, 36 we have replaced the empirical torsional energies found in GAFF2 by 

hyperconjugation energies obtained using NBO. It is interesting to notice that NBO significantly 

overestimated energies for all kinds of interactions (see Table 2), leading to a high RMSD of 2.01 

kcal/mol (computed between H-TEQ predicted profiles and QM profiles) when no scaling factor 

was applied. Removing the σ → σ* and comparing only π-hyperconjugation to QM led to a slightly 

lower RMSD of 1.87 which could erroneously lead us to think σ → σ* could be neglected to 

achieve more faithful predictions. When relevant energies were scaled down however, it became 

apparent that both hyperconjugation and π-hyperconjugation needed to be considered to correctly 

predict torsional profiles. Overall, with scaling factors of 0.4 for hyperconjugation and 0.25 for π-

hyperconjugation, the RMSD for NBO energies substituting the torsional energy was significantly 

better (0.55 kcal/mol) than using pre-existing torsional parameters within GAFF2 (0.84 kcal/mol).  

 

Table 2. Accuracy of GAFF2 and NBO to reproduce the torsional profiles for the 98 molecules in 

the development set. 

Method compared to MP2/6-311+G**  RMSD 

(kcal/mol) 

GAFF2 0.84 

NBO a 2.01 

NBO (π-Hyperconjugation only) a 1.87 

NBO + scaling a 0.55 

NBO (π-Hyperconjugation only) + scaling a 0.75 

a The torsional term from GAFF2 was replaced by this method, all the other terms were kept. 

 

While NBO energies are better at reproducing QM profiles, these calculations cannot be run to 

generate torsional parameters every time parameters are required. Hence, following an approach 

used successfully in the development of earlier versions of H-TEQ, our first objective was to 

understand factors governing the strength of the different interactions based on NBO generated 

data, and to develop a set of rules based on atomic properties (electronegativity, bond length, 

aromaticity etc..) which would reproduce NBO interaction energies, and could be calculated on-

the-fly. Such a method would allow chemists to generate parameters for any drug-like molecule 

containing π-systems for use in molecular dynamics simulations or docking studies. 

A more detailed account of NBO’s performance can be obtained by inspecting the histogram 

shown in Figure 5. As expected from the average values shown in Table 2, RMSDs obtained by 

NBO are lower than those obtained using GAFF2. More interestingly, GAFF2 reveals the presence 
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of two populations, which we can interpreted as molecules having been explicitly parameterized 

(low RMSD), and those for which parameters were transferred from similar molecules but which 

suffer from poor transferability (larger RMSDs). The development set used herein consists of very 

small molecules only (< 20 atoms) and we expect the lack of transferability to be further 

exacerbated in larger drug-like molecules, as the probability that more parameters will be sub-

optimal is larger, and smaller errors will accumulate. In Figure 5, the torsional profiles for 3 

molecules are shown using QM, GAFF2 and NBO (replacing the torsion energy of GAFF2). 

Although for some molecules (e.g. ethylbenzene) the impact of replacing torsional energies by 

hyperconjugation was low, the QM torsional profile was reproduced much more accurately in the 

furan and ketone examples. While the energy barriers remained underestimated in the ketone 

profile, NBO correctly predicted that the 3 energy minima were not equivalent. Furthermore, the 

furan profile was modeled with far greater accuracy by NBO, which can be explained by the fact 

that 5-membered rings are poorly parametrized (some not parameterized at all) in GAFF2, hence 

calculations often relied on “generic” parameters. 

 
Figure 5. Replacing the torsional energy term in GAFF2, by hyperconjugation obtained from NBO 

(with scaling factors of 0.4 and 0.25). Histogram distribution of the RMSDs between NBO/QM 

and GAFF2/QM. 

 

 

▪ IMPLEMENTING Π-HYPERCONJUGATION 

 

Electronegativity, Aromaticity and π – Hyperconjugation. As previously mentioned, two 

major factors impact the strength of the σ → π* / π → σ* interactions. First, the energy gap 

between bonding and antibonding interacting orbitals is directly related to electronegativity. More 

electronegative elements have lower lying orbitals; for example, the π and π* orbital energy levels 

are higher in benzene, than in pyridine. Introduction of heteroatoms into an aromatic ring, or non-
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aromatic conjugated systems leads to a lowering of the energy levels. The energy levels of π and 

π* orbitals being quite disparate, we can expect that a lowering of the energy levels would favor 

interactions unidirectionally (σ → π* or π → σ*), as when the energy gap decreases for one 

interaction, it is expected to increase for the other. 

Secondly, the spatial overlap between interacting orbitals. From heterocyclic chemistry, it is 

known that the introduction of heteroatoms into aromatic systems results in differences in atomic 

charges, as well as a greater shielding effect due to heteroatom substituents.61 It is also expected 

that more electronegative heteroatoms lead to a polarization of the π orbitals, which strongly 

impacts the ability of vicinal (σ or σ*) orbitals to overlap and interact. π and π* orbitals have 

opposite polarization, further reinforcing the fact that as one interaction becomes stronger, the 

other weakens, as it is impossible for two orbitals with opposite polarizations to have simultaneous 

strong overlaps with vicinal orbitals. In non-polar π-systems such as alkenes, π and π* orbitals are 

equally distributed towards both atoms of the double bond. In contrast, introduction of more 

electronegative heteroatoms (N, O) leads to the polarization of the π orbital towards the 

heteroatom, which ultimately limits the ability of the π-system to partake in π → σ* donation 

(lower orbital overlap, increase in energy gap). On the other hand, the π* orbital is polarized 

towards the carbon atom of the double bond leading to stronger overlap for the σ → π* interaction, 

resulting in a more prominent acceptor ability. As a rule of thumb, good π acceptors will be poor 

π donors and vice versa (although in some cases both interactions occur with similar magnitudes, 

Table 1). In Figure 6, NBO profiles are shown for these specific interactions, indeed we observe 

that less electronegative elements in the π-system leads to a stronger π → σ*, but weaker σ → π* 

interaction. The concept of electronegativity is therefore central in understanding the propensity 

of a system to contribute to π-hyperconjugation.  

 

Similarly, the elements involved in the σ group with which the π-system is interacting are 

impacting the torsional energy profiles. More electronegative elements act as better donors, and 

weaker acceptors, and less electronegative elements will be better donors and weaker acceptors. 

The concept of electronegativity will hence be our major descriptor for π-hyperconjugation.  
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Figure 6. Electronegativity of elements in π-systems has an opposing effect for π → σ(C-R)* and 

σ(C-R) → π* interactions. In this example -R is a methyl group, although this trend extends to all   

-R groups studied (H, Cl, F, OH, CH3). 

 

Developing Equations for π-Hyperconjugation. Traditionally, the torsional component of the 

energy in FFs is calculated using a truncated Fourier series (Eq. 4); the number of terms (N) 

included varies depending on the FF but usually doesn’t exceed 6 with 3 being most common. 

While FFs are empirical in nature, it is essential to understand that each term (Vn) can be 

interpreted in the context of rotation around a bond and assigned a corresponding chemical 

meaning. As we discussed previously, the V1 terms relates to the syn or anti preference of two 

groups, since π-orbitals are somewhat symmetrical (similar density above and below the 

ring/double bond), the V1 term should be negligible in our equation. The V2 term describes the 

energy cost of rotating around a bond and is related to the strength of the interaction which is 

maximal at 90° (maximal orbital overlap) and minimal at 0° (no orbital overlap). Finally, the V3 

term can be understood as a correcting factor which can weakly shift the energy barrier, this V3 

term is also related to orbital overlap in the sense that it controls whether it is possible to rotate the 

bond slightly away from the ideal conformation (±90°) without losing π-hyperconjugation (Figure 

S1).  

For our purposes, V2 and V3 components of the torsion energy were sufficient to describe π-

hyperconjugation interactions; π-hyperconjugation torsion profiles obtained from NBO were fitted 

to derive the V2 and V3 parameters for each molecule in the set. Since we are treating both 

interactions independently, each interaction will be assigned its corresponding V2 and V3 values, 

which will then be summed to describe π-Hyperconjugation fully. Furthermore, as we noticed that 

σ → σ* could not be neglected, we will also add the classical hyperconjugation contribution 

(weaker), by using our previously developed set of equations.36 As expected, we found that only 

the V2 term was subject to large variations from a molecule to another, hence the V3 term was 

assigned a constant value of -0.5 for all molecules. We then concentrated our efforts into the 
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development of an equation to model the V2 term for both σ → π* and π → σ * interactions, based 

on our understanding of the effects of electronegativity (χ) on energy levels and polarization of the 

orbitals involved in these interactions. More specifically how the strengths of these interactions 

are modulated by the electronegativity of relevant parts of the molecule. 

𝑉2(𝛔 →  𝛑
∗) =  𝒂 

𝜒𝜋1 + 𝜒𝜋2

𝜒𝜎
 +  𝒃  (8) 

 

(𝛑 →  𝛔∗) =  𝒄 
𝜒𝜎  

𝜒𝜋1 + 𝜒𝜋2
 +  𝒅  (9) 

 

 
Figure 7. Parts of the molecule considered to predict the strength of multiple interactions. The 

electronegativities of circled atoms are used to calculate the interactions of σ(C-R) → π* and π → 

σ(C-R)* (benzene analog) and σ(C-R2) → π* and π → σ(C-R2)* (ketone).  

 

 𝜒𝑔𝑟𝑜𝑢𝑝 = 
1

𝜔 + 𝑁
( 𝜔 × 𝜒𝑐𝑒𝑛𝑡𝑟𝑎𝑙 + ∑ 𝜒𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  )

𝑁    (10) 

 

It is important to note that the major factors in Eqs. 8 and 9 are inverses of one another, as effects 

favoring one interaction, disfavor the other. Here V2 is shown as proportional to a function based 

on the electronegativity (χ) of various parts of the molecule (Figure 7). The values for 

electronegativities were obtained from the Pauling scale,62 and electronegativity was calculated 

using the concept of group electronegativity as discussed previously.35, 36 Indeed for -CF3 or -CH3 

substituents, we expect the electronegativity of the carbon atom to be much larger in 

trifluoromethyl than methyl, due to the neighboring chemical environment. Sanderson’s 

electronegativity equilibration principle63 states that the electronegativity of both atoms in a 

diatomic system equilibrate to give rise to a new value related to the equilibrium charge 

distribution in the molecule (this postulate can be extended to all molecules, not simply diatomics). 

Indeed, while electronegativity measures the ability of an atom to attract electrons towards itself, 

in polar molecules after the electron density has found its ideal distribution, there is no net flux of 

electrons away from this optimal distribution; in principle, electronegativity needs to be the same 

for every atom. A large amount of work has been dedicated to understanding the relationship 

between electron density and electronegativity, from which researchers have developed many 

schemes to calculate “group electronegativity” for specific parts of a molecule.64-67 Although this 

area of research received a lot of attention in the 80’s and 90’s, no recent contributions were found 

in the literature. Some of the schemes for group electronegativity rely on calculating the partial 

charge of every atom, ultimately requiring QM calculations, and are hence not consistent with our 

objective to develop a method applicable to high-throughput tasks. We have thus opted to use the 

simple equation described here by Smith et al. 67 It is interesting to note that electronegativity 

equalization methods have also been applied to derive partial charges,68-70 for example the current 

implementation of CGenFF (CHARMM force field for drug-like molecules), uses a method which 

draws from these ideas to generate partial charges.71   
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The strength of the σ → π* and π → σ* obtained from NBO correlate well (r2 = 0.71 and 0.81) 

with the developed rules (Figure 8), linear least square regression provided us with the values for 

a, b, c and d coefficients in Eqs. 8 and 9. It should be noted that changing the electronegativity 

scale (Pauling units vs. Mulliken units) or weights in the group electronegativity calculation 

impacted the correlation of our method with NBO derived values. Indeed, while modifications to 

the equation could in principle improve the accuracy (stronger correlation to NBO) of one of the 

interactions (e.g., σ → π*), it usually led to a decrease in the correlation with the other (π → σ*). 

We thus decided to keep the simplest equation (with a weight of 2 for the central atom) and Pauling 

units as used previously to limit overfitting. Overall, Eqs. 8 and 9 both use the same 

electronegativity scales and weights. It should be noted that minor scaling factors were used to 

differentiate different kinds of π-systems (6-membered, 5-membered, double bonds) such that the 

same equation could be used for all molecules (Figure S2).  

 

 
Figure 8. Comparison of rules developed (Eq. 8 and 9) to describe both  π-Hyperconjugation 

modes (σ → π* and π → σ*) with values calculated using NBO analysis. Correlations 

coefficients obtained are r2 = 0.71 (σ → π*) and r2 = 0.81 (π → σ*). 

These equations were implemented into H-TEQ3.0, a program deriving V1-3 parameters for MM 

calculations. The developed java program also includes the equations from the previous versions 

of H-TEQ. 

 

Evaluation. The performance of this newly developed method (H-TEQ 3.0) on the development 

set of molecules was compared alongside GAFF2 against QM energies (Figure 9). The 

contribution of σ → σ* was calculated using the previously published version of H-TEQ 2.0.36 

Overall, our method was found to perform better than GAFF2 when a V3
 correction factor of -0.5 

was used. While the inclusion of σ → σ* had a minimal impact on the overall RMSD, the 

marginally lowest RMSD was found when σ → σ* hyperconjugation was omitted, which 

contradicted with the results found when replacing raw NBO values (Table 2). This discrepancy 

likely results from the equation modelling σ → σ* hyperconjugation being trained only on sp3 

centers, which might not be fully transferable to conjugated (sp2) centers. In conjugated systems, 

shielding of the σ orbitals by π orbitals is expected, and different geometries of the substituents 

(109.5° vs. 120°) modifies the ability of orbitals to overlap.  
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Overall, our method was found to be more accurate than GAFF2 in reproducing QM profiles, 

doing so without requiring the use of atom type description of the molecules, or any prior 

parameterization. 

 

 
Figure 9. Performance of GAFF2 and H-TEQ3.0 methods over the development set of 98 

molecules. Contributions of σ → σ* hyperconjugation and the V3 correction factor were also 

monitored to understand their impact on our method. The black line at the center of each box 

corresponds to the median value.   

 

RESULTS AND DISCUSSION 

Performance and Validation. To validate our findings, we have applied the H-TEQ3.0 method 

to a diverse set of 50 manually chosen molecules, which were found to be active towards 

cytochrome P450 enzymes in a docking study performed in our lab.72 In order to reduce the 

computational cost associated with the obtention of the QM torsional profiles, molecules were 

fragmented, keeping only the most relevant parts. For example, bonds between two sp3 carbons 

could be broken, replacing parts of the molecule by hydrogen atoms. The validation set (see 

Supporting Information) does not contain any molecule used to train the model, and a variety of 

novel π-systems were used (extended conjugated systems, fused rings, Figure 10).  
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Figure 10. Performance of our method on 4 drug-like molecules chosen from the validation set. 

Full lines correspond to the total energy predicted by each method, dashed lines correspond to the 

torsional component only. 

 

Furthermore, we rotated bonds that were located both in the center and at extremities of the 

molecules, the former being more important as they lead to the most prominent conformational 

changes. As for the development set, our method was compared to the widely used GAFF2, and 

torsional energy was replaced by our equations for π-hyperconjugation and previous equations 

from H-TEQ 2.0 were employed for σ → σ* hyperconjugation. Again, the effects of the V3 

correcting factor and σ → σ* interactions, were monitored by switching them on/off (Figure 11).  
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Figure 11. Performance of GAFF2 and H-TEQ3.0 methods over the validation set of 50 molecules. 

Contributions of σ → σ* hyperconjugation and the V3 correction factor were also monitored to 

understand their impact on our method. One outlier with a large RMSD (~20 kcal/mol) is not 

shown. The black line at the center of each box corresponds to the median value.   

 

Regardless of the specific method used (inclusion or not of the V3, etc.), our method performs 

on par with the current implementation of GAFF2 (full results in Table S2). The V3 factor was 

found to slightly negatively impact the accuracy of our method, while the effects from σ → σ* 

hyperconjugation were found to be minimal. In Table 3, results are summarized for the version of 

H-TEQ including both V3 and σ → σ*, the slight increase in accuracy over GAFF2 in the 

development set was lost in the validation set. This should not be confused as a lack of 

transferability of H-TEQ however, and the larger RMSDs in the validation set result from the 

larger prevalence of non-bonded interactions as torsions are rotated, in these larger drug-like 

molecules. Indeed, the non-bonded parameters were calculated using GAFF2, and our method has 

no impact on the non-bonded parameters’ accuracy. The prevalence of non-bonded interactions is 

demonstrated in Figure 10, indeed GAFF2 and H-TEQ3.0 profiles are very similar, and the 

torsional component of the energy is weak compared to the overall predicted energy barriers (Fig. 

10A-D).  

 

Table 3. Accuracy of GAFF2 and H-TEQ3.0 to reproduce the torsional profiles over the 

development and validation sets of molecules. 

Method compared to MP2/6-311+G**  

and set of molecules used 

Average RMSD 

(kcal/mol) 
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GAFF // development set  0.84 

HTEQ3.0 // development set a   0.80 

GAFF // validation set  1.69 

HTEQ3.0 // validation set  a 1.71 

a Both σ → σ* and V3 are included. 

 

Figure 10C shows an example of a correct prediction of GAFF2 and H-TEQ3.0 where the 

torsional component is equal to 0 as a result of the phase cancelation of the torsion energy, and the 

weak vdW contribution to the energy alone can correctly predict the energy barriers. In Figure 

10B, a similar phase cancelation is observed, although the overall profile overestimated the height 

of the energy barrier by a factor of 2.5. In this case, the flexibility of other parts of the molecule 

were not modelled well by other energy terms of GAFF2 (vdW, electrostatics). Profiles shown in 

Figure 10A and 10D are more interesting. In Figure 10A the weak torsional component to the 

energy predicted by H-TEQ3.0 (out of phase with the overall profile), replacing the null 

contribution of GAFF2 led to a slightly more accurate profile, while in Figure 10D the opposite is 

seen, an incorrect torsional energy is predicted by GAFF2, which when replaced by a null 

contribution from H-TEQ led to a much more accurate profile. 

An understanding of the magnitude of various π-hyperconjugation modes can explain the origins 

of the phase cancelation of the torsional terms. Indeed, sp3 carbons involved in σ → π* and π → 

σ* interactions of interest have 3 substituents which are separated by dihedrals of 120°. 

Considering the interactions are essentially modeled by a V2 term, if the V2 are of similar 

magnitude they will cancel out. In the development set, the substituent that was modified could be 

more electronegative (F, Cl and OH) that the 2 other H atoms on the sp3 carbon, hence phase 

cancelation was not observed for these molecules. On the other hand, the majority sp3 carbon atoms 

bound to π-systems of drug-like molecules will have two H atoms and another larger group as 

substituent, the atom directly attached to the sp3 carbon being in most cases a carbon atom. The 

propensity of π-hyperconjugation is similar for both -H and -C(R1R2R3) unless R1-3 are very 

electronegative, as predicted by NBO calculations (Figure 8), which explains why phase 

cancelation is observed for many drug-like molecules in the validation set. 

As a result, a major contributor to the energy in bulky drug-like molecules, when a torsion at the 

center of the molecule is rotated is sterics. Consequently, a correct modeling of non-bonded 

interactions is of greater importance to correctly predict the conformational energy landscape of 

such molecules. Polarizable Force Fields are expected to predict these non-bonded interactions 

with greater accuracy. Methods such as AMOEBA FF, may provide a much more thorough 

treatment of electrostatic interactions (performed using dipole and quadrupoles moments). 

However, an automated tool to generate AMOEBA atom types and parameters is yet to be 

developed, which hindered our ability to perform and include such a comparison in the present 

study, as atom types and parameters would have to be assigned manually 

 

CONCLUSION  

We have shown that replacing the torsional energy calculated by empirical parameters in FFs 

with more chemically meaningful potentials describing hyperconjugation interactions in 

conjugated molecules led to accuracies comparable to the widely used GAFF2, without relying on 
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atom types description or parameterization, avoiding common drawbacks known to be associated 

with these methods. As opposed to previous work performed on saturated molecules, 

hyperconjugation is not the predominant factor in determining conformational preference. The 

self-consistency of FFs (empirical torsion making up for poor non-bonded parameters) thus 

explains why, for the time being, transferable methods like H-TEQ3.0 do not perform significantly 

better than empirical methods as long as the other terms (especially non-bonded terms) are not 

trained concomitantly. The non-transferability of parameters remains a central challenge in FF 

development, and chemically relevant transferable methods like H-TEQ3.0 are expected to provide 

more accurate depictions of the energetics of small drug-like molecules, providing non-bonded 

interactions are more accurately transcribed. Future research goals include the comparison of our 

method in molecular dynamics and docking studies, comparison against a wider range of FFs 

(including polarizable FFs).  

Finally, as the treatment of non-bonded interactions was shown to be problematic in this study, 

application of the atom type free methodology to describe non-bonded interactions could also be 

examined, removing entirely the need for atom typing in FFs, ultimately allowing more 

transferable methods to be applied towards many different SBDD programs. 

 

Supporting Information. Addition Figures and Tables supporting and/or illustrating the 

conformational preferences of selected molecules are provided as supporting information, 

molecule sets are available as sdf files. This material is available free of charge via the Internet at 

http://pubs.acs.org. 
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EXPERIMENTAL SECTION 

Torsional profiles (potential energy surfaces) were obtained by freezing the desired torsion (from 

-180 to 180 with 10° increments) while allowing all other degrees of freedom to optimize at the 

MP2/6-311+G** level of theory using the software GAMESS-US.73, 74 NBO calculations were 

performed with these conformations using the software NBO 6.0 51 to obtain hyperconjugation 

energies at the same level of theory and basis set (MP2/6-311+G**). MM calculations were 

performed using the AMBER16 package; GAFF2 atom types were automatically, assigned with 

antechamber, partial charges were assigned using the AM1-BCC method on the global minimum 

structures, and were carried to all other conformations of the same molecules. The GAFF2-derived 

potential energy is computed using the Sander routine. To evaluate the performance of HTEQ3.0, 

the torsional energies related to the central rotated bond were replaced by H-TEQ3.0 values, while 

all other terms were kept (GAFF2), using an in-house Java program. The 50 molecules in the 

validation set were manually chosen from a list of bioactive. 72 This list can be found as supporting 

information. To reduce the computational cost associated with the QM calculations (validation 

set), the rotation increment was increased from 10° to 15°, hereby reducing the number of 

conformations per torsional profiles from 36 (development set) to 24.  
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