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This paper mainly addresses two issues that concern the longwave climate feedbacks. First, it is recognized

that the radiative forcing of greenhouse gases, as measured by their impact on the outgoing longwave radi-

ation (OLR), may vary across different climate models even when the concentrations of these gases are

identically prescribed. This forcing variation contributes to the discrepancy in these models’ projections of

surfacewarming.Amethod is proposed to account for this effect in diagnosing the sensitivity and feedbacks in

the models. Second, it is shown that the stratosphere is an important factor that affects the OLR in transient

climate change. Stratospheric water vapor and temperature changes may both act as a positive feedback

mechanism during global warming and cannot be fully accounted as a ‘‘stratospheric adjustment’’ of radiative

forcing. Neglecting these two issues may cause a bias in the longwave cloud feedback diagnosed as a residual

term in the decomposition of OLR variations. There is no consensus among the climate models on the sign of

the longwave cloud feedback after accounting for both issues.
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1. Introduction

The climate sensitivity parameter S predicts the first-

order change in global mean surface temperature Ts

in response to a radiative forcing F [see the review by

Ramaswamy et al. (2001)]. In general, this relationship

can be expressed as

DR5F1 S21DTs . (1)

Here R denotes the radiation flux at the top of the at-

mosphere (TOA). From a diagnostic point of view,

the value of S can be thought to be determined by the

overall effect of a variety of ‘‘feedbacks’’ (see appen-

dix A). Here, a feedback refers to a physical quantityX

other than forcing that influences R, and the strength

of the feedback DRX can be assessed by the partial con-

tribution of this factor to the change in R. The kernel

method (Soden et al. 2008; Shell et al. 2008) is a widely

used method for analyzing feedback strength. In this

method, a noncloud feedback is approximated by multi-

plying a precalculated first-order sensitivity kernel ›R/›X

and a climate response DX:
rbrooke Street
DRX 5
›R

›X
DX . (2)

The cloud feedback can then be assessed as the re-

sidual change in R. Alternatively, Zelinka et al. (2012)

provide a method that uses cloud property histograms

to independently assess cloud feedback, although this

method requires additional computation of cloud opti-

cal properties.

This paper mainly addresses two issues concerning

the longwave feedbacks in transient climate change,

particularly those analyzed with the kernel method.

The first concerns the forcing F. In the ‘‘scenario ex-

periments’’ [e.g., A1B, A2, etc. in the fourth Inter-

governmental Panel on Climate Change (IPCC) report;

Solomon et al. 2007] in which well-mixed greenhouse

gas concentrations are specified, F is considered to be

equally set across different models, so that model dis-

crepancies in Ts projections are primarily attributed to

their differences in climate sensitivity S. Reflecting this

view, in kernel method–based feedback analyses, F is

usually assumed to be a constant value [e.g., Soden et al.

(2008) use an estimate of 4.3Wm22 over the twenty-first

century in the A1B experiment, adopting the value from

the third IPCC report]. Ignored in such a view, however,

is the fact that the absorptions of greenhouse gases over-

lap with each other and with clouds and thus F, as

measured by TOA radiation fluxes (in Wm22), is also
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dependent on nonforcing species (e.g., atmospheric

water vapor and cloud). As water vapor and cloud cli-

matology and projection differ noticeably in different

models, F may differ as well. There is evidence that

greenhouse gas forcing may substantially differ in dif-

ferent models (Soden et al. 2008). Ignoring this effect

may exaggerate the intermodel differences in climate

sensitivity S when attributing Ts projection differences.

This error may also propagate to cloud feedback if it

is not independently assessed. To recognize and account

for this effect, a modification to the kernel method is

proposed in this paper.

The second issue concerns the stratospheric effect on

the outgoing longwave radiation (OLR). It has been

recognized for a long time that the stratosphere cools

when anthropogenic CO2 warms the surface-troposphere

climate. In numerical experiments, when CO2 concen-

tration is instantly and drastically increased it is ob-

served that the stratosphere cools and steadies much

faster than the surface-troposphere system equilibrates

and the stratospheric changes induce a small (relative to

the direct radiative effect of doubling CO2) change in

the TOA radiation energy budget. This justifies treating

stratospheric effect on the radiation energy budget as

an adjustment in radiative forcing (Hansen et al. 1997).

However, when transient (nonequilibrium) climate change

(such as in reality and in many scenario experiments) is

of interest, multiple issues may invalidate this treat-

ment. First, in a scenario in which greenhouse gases

change gradually but continuously, the system does not

equilibrate and both the direct (instantaneous reduction

of OLR) and indirect (via cooling the stratosphere) ra-

diative effects of the gases may vary with time. In fact,

the diagnosis of Huang (2013) shows that stratosphere

has a strong time-variant effect on the OLR. Second,

certain stratospheric radiative species, such as water vapor,

may change in response to the change in troposphere–

stratosphere transport that can be linked to surface

temperature and thus act as a feedback mechanism. To

examine the stratosphere’s role in transient climate

change, the radiative effects of stratospheric tempera-

ture and water vapor variations on OLR are explicitly

evaluated using radiative kernels in this paper.

In the following sections, a global warming experi-

ment that was used in previous feedback analyses is

revisited, in order to examine the two issues raised

above; and then the paper is concluded with a discussion

section.
2. Feedbacks

For the interest in this paper, the change in OLR is

partitioned into the following terms:
DR5F1DRP 1DRL 1DRW
tr
1DRT

st
1DRW

st

1DRC 1Z . (3)

The terms on the RHS are the OLR changes caused

by greenhouse gas forcing F, by vertically uniform

temperature change at the surface and throughout the

troposphere (the Planck effect) DRp, by vertically non-

uniform tropospheric temperature change (the lapse

rate feedback) DRL, by tropospheric water vapor change

DRWtr
, by stratospheric temperature change DRTst

, by

stratospheric water vapor change DRWst
, and by cloud

change DRC. The residual term Z accounts for the un-

certainty in the forcing, as well as the nonlinear terms

that are left out when the feedbacks are estimated using

linear kernels according to Eq. (2).

Here, the linear trend in the global mean OLR in

the first 50 years of the Special Report on Emissions

Scenarios (SRES) A1B experiment from the Coupled

Model Intercomparison Project, phase 3 (CMIP3) ar-

chive is analyzed to understand how the OLR trend

results from the forcing and longwave feedbacks as

decomposed in Eq. (3). There are 18 models that

submitted necessary data for analyzing the longwave

feedbacks. The noncloud feedbacks are computed by

multiplying the kernels of Shell et al. (2008) with the

linear trends in monthly mean temperature and water

vapor as simulated by each GCM. The tropopause is set

to linearly increase from 100 hPa at the equator to

300 hPa at the poles following the previous analyses

(e.g., Soden and Held 2006; Soden et al. 2008; Shell et al.

2008). The cloud feedback is then obtained by using the

cloud forcing adjustment (CFA) method (Soden et al.

2008; Shell et al. 2008), which combines with Eq. (3) the

clear-sky OLR decomposition:

DRclr 5Fclr 1DRclr
P 1DRclr

L 1DRclr
W

tr
1DRclr

T
st

1DRclr
W

st
1Zclr . (4)

If neglecting the residual terms 2(Z 2 Zclr), one

obtains

DRC 5 (DR2DRclr)2 (F2Fclr)2�(DRX 2DRclr
X ) .

(5)

Table 1 shows the ensemble mean and standard de-

viation of the noncloud feedback components analyzed

with the kernel method [Eq. (2)]. The values of the

tropospheric feedbacks (Planck, lapse-rate, and tropo-

spheric water vapor) closely reproduce those reported

by Held and Shell [2012, their Eq. (16)] based on the

same experiment despite the fact that different periods



TABLE 1. Breakdown of the noncloud feedbacks. Unit: Wm22K21.

The WV stands for water vapor.

Planck Lapse rate WV-tropo T-strat WV-strat

Mean 23.07 20.72 1.95 0.22 0.07

Std 0.05 0.24 0.21 0.11 0.02

FIG. 1. Decomposition of DOLR. The overall change in OLR

(Total) is simulated by the GCMs; the forcing is assumed to be

a constant value; the feedback is the sum of noncloud and cloud

feedbacks calculated using Eqs. (2) and (5), respectively; the re-

sidual term (Res) is then obtained using Eq. (3). Each dot repre-

sents a model and the bar denotes the multimodel mean.

FIG. 2. Decomposed longwave climate sensitivity. Black dots

denote the climate sensitivity parameter (Total) and feedbacks

analyzed when forcing F is estimated for each model. Gray di-

amonds denote the results obtained when F is assumed constant.
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are analyzed (the whole twenty-first century in Held

and Shell; the first 50 years of the century here).

3. Forcing variation

If one assumes that the forcing F in all the models in

the A1B experiment is a constant of 4.3Wm22 by the

end of the twenty-first century as Soden et al. (2008) do,

and that half of it is realized in the first 50 years, and if

one further uses an empirical relationship between the

all-sky and clear-sky forcing strengths (Soden et al.

2008),

Fclr

F
5 1:16, (6)

then the cloud feedback can be obtained using Eq. (5).

However, when the noncloud and cloud feedback

values are substituted back to Eq. (3), considerable re-

siduals are discovered (see Fig. 1). The magnitudes of

these residuals (an ensemble mean of 1.23Wm22) are

apparently nonnegligible, compared to the overall OLR

changes (0.70Wm22). The magnitude of the residuals

is so big that they cannot be simply attributed to the

nonlinear effect, which should be very small as shown by

many previous studies (e.g., Soden and Held 2006;

Huang et al. 2007; Shell et al. 2008; Soden et al. 2008;

Huang et al. 2010). Moreover, there is a substantial

spread (a standard deviation of 0.47Wm22) of the re-

siduals across these models; also, a significant correla-

tion (a correlation coefficient of 0.55) exists between

these residuals and global mean surface temperature

changes. The evidence here indicates that a substantial

portion of forcing that varies from model to model is

unaccounted for and left as residual in the above feed-

back analysis.

An alternative way to supplement forcing informa-

tion in feedback analysis is to estimate the value of F in

eachmodel. A fact that one can take advantage of is that

the residual term in the decomposition of the clear-sky

OLR change is rather small (no more than a few percent

even when highly spectrally resolved OLR is consid-

ered) (Huang et al. 2010; see appendix B for an expla-

nation) when forcing is accurately known. Using Eq. (4),

one can first estimate the clear-sky forcing F clr as the

overall change in the clear-sky OLR minus the sum of
noncloud feedbacks obtained using kernels, and then

the all-sky forcing F using Eq. (6).

Using the alternative way introduced above does not

change the noncloud feedbacks that are assessed by the

kernels but changes the overall longwave sensitivity

parameter S21 evaluated as [DTs/(DR2F)]21 based on

Eq. (1) and the cloud feedback evaluated using Eq. (5).

As Fig. 2 shows, ignoring the F difference in different

models may cause 1) an overestimate (an increase of

about 25%) of intermodel spread of the sensitivity, which

results from the considerable residuals that are not ex-

plained in the previous analysis; and 2) a bias in the cloud

feedback, which is seen from Table 2 (case C1) and

demonstrated by Fig. 3. It is interesting to note that a

similar bias (overestimate in the positiveness of long-

wave cloud feedback) resulted from using the CFA



TABLE 2. Total, tropospheric, stratospheric, and cloud feedbacks. For the four cloud feedback estimates, C0 is assessed using the CFA

method while considering the forcing variation across the models (using the method proposed in this paper) and the stratospheric effects;

C1 is assessed using the CFAmethod while considering the stratospheric effects but assuming a constant forcing across the models; C2 is

assessed using the CFA method while considering the forcing variation but ignoring the stratospheric effects; and C3 is calculated as

a residual using Eq. (3) while considering the forcing variation but ignoring the stratospheric effect. Unit: Wm22K21.

Total Tropo Strat Cloud (C0) Cloud (C1) Cloud (C2) Cloud (C3)

Mean 21.35 21.84 0.30 0.19 0.32 0.17 0.49

Std 0.32 0.14 0.12 0.27 0.27 0.27 0.26
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method while assuming a constant F is also evident

when comparing to the cloud feedback assessed using

an independent histogram method (e.g., see Fig. 4a of

Zelinka et al. 2012; Zhou et al. 2013).

4. Stratospheric effect

Stratospheric temperature and water vapor variations

both result in TOA radiation flux change. Many of the

CMIP3 models project a substantial stratospheric moist-

ening despite a simultaneous cooling in global warming

experiments. However, the stratospheric contribution to

DR is generally not included in the previous feedback

analyses. This omission would be valid if 1) this contri-

bution were negligible or 2) this contribution could

be estimated a priori (i.e., considered to be a fast-stabilizing

‘‘stratospheric adjustment’’ of radiative forcing F).

However, as shown below, neither condition is met in

transient climate change.

Using the radiative kernels, the stratospheric tem-

perature and water vapor effects on the OLR are ex-

plicitly estimated according to Eq. (2). Figure 2 shows

that both effects generally reduce the OLR during

global warming and thus act as positive feedbacks. On
FIG. 3. Longwave cloud feedback calculated using the CFA

method. The feedback strength calculated when forcing F assumed

to be constant across different models is compared to that calcu-

lated when F is estimated for each model.
average, the temperature effect is 3 times larger than the

water vapor effect (see Table 1). When combined they

render a multimodel mean overall stratospheric effect

of 0.3Wm22K21, with an intermodel standard devia-

tion of 0.12Wm22K21. Although each stratospheric

effect is less than their tropospheric counterpart, the

overall stratospheric effect has an intermodel spread

comparable to the overall tropospheric feedback and

a multimodel mean magnitude greater than the cloud

feedback (see Fig. 4 and Table 2). This is because, as

pointed out in previous studies (e.g., Ingram 2013; Held

and Shell 2012), tropospheric temperature and water

vapor feedbacks are strongly anticorrelated (a correlation

coefficient of 20.87 is obtained here) due to the largely

invariant relative humidity, while the stratospheric effects

are not (a correlation coefficient of 0.07 here).

As the overall stratospheric effect is dominated by the

temperature effect, it is important to determine what

gives rise to the temperature change. If it is mainly due

to CO2 or other prescribed greenhouse gases, then it

may be considered part of forcing; however, if it is due

to water vapor or other model-predicted greenhouse

gases, it is a feedback that may vary in different models

and thus cannot be assumed to be a constant forcing ad-

justment. Correlations between the partial OLR changes

are examined: the stratospheric temperature effect on

OLR, DRTst
, is not significantly correlated with the

forcing F (a correlation coefficient of 0.31), the surface

temperature change (0.24), or the stratospheric water
FIG. 4. Longwave climate feedbacks. Overall stratospheric effect

(Strat) is compared to overall tropospheric noncloud feedback

(Tropo) and cloud feedback.
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vapor effect DRWst
(0.10). This suggests that the strato-

spheric temperature changes in thesemodels result from

multiple causes encompassing both forcing and feedback.

In fact, it has been recognized that multiple causes may

drive stratospheric cooling (e.g., Ramaswamy et al. 1992;

Forster and Shine 1999; Polvani and Solomon 2012);

possible candidates include CO2 (forcing), water vapor

(feedback), and ozone (forcing or feedback, depending

on whether ozone change is prescribed or predicted).

Particularly with regard to water vapor, Forster and

Shine estimate that it may enhance the CO2-driven

historical cooling by 40%.

Interestingly, when the CFA method is used to esti-

mate the cloud feedback, omitting stratospheric terms

(DRTst
and DRWst

) in Eq. (5) introduces little error (see

Table 2, case C2). This is because the clear-sky and

all-sky stratospheric effects largely cancel. However, if

cloud feedback is simply estimated as a residual term

in Eq. (3), neglecting the stratospheric terms would re-

sult in a noticeable overestimate in cloud feedback

strength (Table 2, case C3). This confirms that the CFA

method is better than using solely Eq. (3) for estimating

cloud feedback (Soden et al. 2008; Shell et al. 2008).

Note, however, that the latter was used in earlier studies

(e.g., Soden and Held 2006) and sometimes has to be

adopted in analyzing observational data when clear-sky

data are not available due to sampling limitations.
5. Discussion

The above analysis shows that use of correct forcing

and inclusion of stratospheric effects are crucial for

properly diagnosing the longwave climate feedbacks

in transient climate change.

It needs to be cautioned that even though greenhouse

gas concentrations are prescribed in scenario experi-

ments, the radiative forcing felt by each model may

differ due to model discrepancies in water vapor and

cloud. When diagnosing climate feedbacks, this effect

needs to be properly taken into consideration. Other-

wise, model differences in surface warming projection

would be solely attributed to, and thus overestimate,

their sensitivity differences.Amethod is proposed here to

first estimate the clear-sky forcing from a linear DOLR

decomposition and then estimate the all-sky forcing using

an empirical relationship. This takes advantage of the

fact that the nonlinearity effect is rather small in the

clear-sky DOLR decomposition when forcing is accu-

rately known, and removes, by design, the large residual

terms in the all-sky DOLR decomposition that exist

when intermodel variation in forcing is not accounted.

Some caveats are noted regarding the forcing treat-

ment. The empirical ratio between the clear- and all-sky
forcing [Eq. (6)] is subject to uncertainty. However,

the uncertainty in this ratio, in a fractional sense, is un-

likely to be as large as the uncertainty in F, which, from

the above analysis, may be on the order of 100%. So,

(Fclr2 F), and thus the cloud feedback assessed with the

CFAmethod [see Eq. (5)], should be mainly affected by

the uncertainty in F. Another caveat of attributing the

residual term in Eq. (5) completely to forcing variation

across the models is that possible kernel errors are ig-

nored. However, it has been shown that kernel errors do

not seem to induce errors of more than a few percent in

the global mean feedbacks (e.g., Soden et al. 2008). And

tests show that the clear-sky OLR in unforced climate

variations can be well reproduced using temperature

and water vapor kernels (e.g., Huang et al. 2007; see

appendix B for more discussion). The evidence suggests

that forcing uncertainty is a major cause of the residual

in Eq. (5). Apparently a more robust method to assess

the forcing uncertainty is to faithfully compute the forc-

ing for each model in each scenario experiment using the

partial radiative perturbation technique, although this

incurs much computation. Meanwhile, developing and

applying model-dependent kernels should improve

feedback analysis as well (e.g., Sanderson and Shell

2012).

The stratosphere plays an important role in deter-

mining the transient variations of the OLR.Most GCMs

project a stratospheric moistening despite the simulta-

neous stratospheric cooling in global warming experi-

ments. Both stratospheric temperature and water vapor

effects reduce the OLR and thus the overall strato-

spheric effect acts as a positive ‘‘feedback’’ in global

warming. This effect has a magnitude greater than the

longwave cloud feedback and an uncertainty comparable

to that of the overall tropospheric feedback. Hence, it is

important to recognize the stratospheric contribution to

the overall climate sensitivity and its uncertainty. While

the stratospheric water vapor change clearly acts as

a feedback mechanism that links to surface temperature

change (e.g., through convective activity; Anderson et al.

2012), it is more ambiguous whether the temperature

change is due to forcing species such as CO2 or feedback

species such as water vapor and ozone. The experiment

analyzed here indicates that it is a mixture of both.

More studies are required to attribute the stratospheric

temperature change and its radiative impact.

It is important to note that ignoring the intermodel

forcing variation and/or the stratospheric effect may

result in biases in cloud feedback if it is not inde-

pendently assessed but rather estimated as a residual

term. The multimodel mean longwave cloud feedback,

0.19Wm22K21, estimated here with both effects ac-

counted for, is much less than an often cited number,
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0.5Wm22K21 (e.g., Zelinka and Hartmann 2010; Soden

and Vecchi 2011); and 4 out of 18 models here have

a negative longwave cloud feedback. Note that the ex-

periment analyzed here and the experiments based on

which other numbers are reported in the literature (e.g.,

Zelinka and Hartmann 2010; Soden and Vecchi 2011;

Zelinka et al. 2012) are all different. It is likely the

model ensemble mean and spread of this quantity dif-

fer with respect to experiment (e.g., equilibrium versus

transient; CO2 forcing versus other types of forcing)

and ensemble (e.g., CMIP3 vs CMIP5). Nevertheless, the

results here and the recent results of others [e.g., the es-

timate of Zelinka et al. (2012) based on cloud property

histogram] indicate that there is, in fact, no consensus

in terms of the sign of the longwave cloud feedback

among the GCMs. Even though rise of cloud top as

proposed by Zelinka and Hartmann (2010) is a valid

hypothesis that would induce positive cloud feedback,

changes in cloud fraction and other properties may result

in a negative feedback. More studies are still required to

understand how cloudsmodify global warming, evenwith

regard to the longwave aspect alone.
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APPENDIX A

Climate Sensitivity and Feedbacks

Climate sensitivity, S, is conventionally expressed as

the global mean surface temperature change, DTs, in the

unit of K, in response to a certain amount of radiative

forcing, F, which often takes a value of about 4Wm22

and corresponds to the global mean OLR change due to

doubling CO2. The usefulness of this concept is rooted

in the approximately linear relationship between the

global mean DTs and global mean F that is observed in

GCM experiments (Ramaswamy et al. 2001). If one

starts from an equilibrium climate state, imposes a radia-

tive perturbation F, and lets the system re-equilibrate,

at the end state the TOA radiation energy budget re-

instates a balance so that the net radiation change is
zero. The radiation flux change that balances F results

from the adjustments of various variables of the cli-

mate system, including surface temperature (Ts), at-

mospheric temperature (T), water vapor (W), clouds

(C), surface albedo (A), etc. Making use of the linear

relationship between F and DTs, one can write an

equation anchored on Ts,

DR5F1 S21DTs 5 0, (A1)

so that the sensitivity of the system is measured by a

single parameter S which can be determined from F

and DTs in a GCM experiment. Apparently S depends

on the details of the adjustment of the system.

Independently, the radiation flux can be considered

as a function of the above variables: R 5 R(Ts, T, W,

C, A, . . .), so one can decompose the total change in net

flux DR using a Taylor expansion series:

DR2F5
›R

›Ts

DTs 1
›R

›T
DT1

›R

›W
DW1

›R

›C
DC

1
›R

›A
DA1Res

5

�
›R

›Ts

1
›R

›T

�
DTs1

›R

›T
(DT2DTs)1

›R

›W
DW

1
›R

›C
DC1

›R

›A
DA1Res.

(A2)

The first four terms on the RHS account for the

change in TOA radiation caused by the Planck effect of

vertically homogeneous temperature change (DRP),

by the Planck effect of vertically inhomogeneous tem-

perature change (lapse rate change) (DRL), by the at-

mospheric opacity effect of water vapor change (DRW),

by opacity effect of cloud change (DRC), and the by

surface albedo change (DRA), in order. Note that in a

single-column atmosphere DT, DW, and DC represent

changes in the vertical profiles of these variables and

thus are vectors. So each of these terms is indeed the

inner product of a radiative sensitivity kernel vector

(›R/›X) and a climate response vector (DX). For the

sake of simplicity, however, let us keep denoting them as

if they were scalars.

From Eqs. (A1) and (A2), it is obvious that when the

higher-order residual term Res is neglected,

S5

��
›R

›Ts

1
›R

›T

�
DTs 1

›R

›T
(DT2DTs)

1
›R

›W
DW1

›R

›C
DC1

›R

›A
DA

�21

hDTsi . (A3)
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Or this can be simplified as

S215 lP 1 lL1 lW 1 lC 1 lA . (A4)

Here, h�i denotes global average. Also,

lX 5
hDRXi
hDTsi

. (A5)

These terms are referred to as Planck feedback, lapse

rate feedback, water vapor feedback, cloud feedback,

and albedo feedback, respectively. The first term

lP 5 hDRPihDTsi215

��
›R

›Ts

1
›R

›T

�
DTs

�
hDTsi21

(A6)

is often called the Planck damping rate, the inverse of

which measures the vertically homogeneous tempera-

ture change that would be needed to damp a given ra-

diative forcing just by the Planck effect.

Now it is clear that the climate sensitivity, either in

a GCM or in nature, can be diagnosed as the Planck

damping rate being modified by feedbacks. And the

sensitivity difference (uncertainty) among GCMs can

be attributed to their feedback discrepancy, and, to a

less extent, to their Planck damping rate discrepancy

(lP depends on horizontal DTs pattern and thus may

differ among the models).

Although Eq. (A1) is established with regard to equi-

librium climate change, a linear relationship is also no-

ticed between transient changes in Ts and R (Gregory

et al. 2004). Moreover, the breakdown of DR in Eq. (A2)

is valid in general, regardless of equilibrium or transient

climate change. So one can use the same equations as

above to define a ‘‘transient climate sensitivity’’ pa-

rameter.

Furthermore, as radiation energy naturally consists of

spectral components, the feedbacks can be divided into

longwave (terrestrial) and shortwave (solar) radiation

components. The major feedback factors that influence

the longwave radiation include surface temperature, at-

mospheric temperature, atmospheric water vapor and

other greenhouse gases, and clouds.

APPENDIX B

The Kernel Technique

The kernel technique (Soden et al. 2008; Shell et al.

2008) is a widely accepted method for analyzing feed-

back strength DRX. In this method, a noncloud feedback

is approximated by multiplying an a priori calculated
first-order (linear) sensitivity kernel ›R/›X and a climate

response DX (either model-simulated or observed):

DRX 5
›R

›X
DX (B1)

and the cloud feedback can be assessed by the residual

change in R:

DRC 5DR2F2 �
X

›R

›X
DX . (B2)

If clear-sky radiation flux is available, one obtains a

second equation:

05DRclr 2Fclr 2 �
X

DRclr
X . (B3)

Combining Eqs. (B2) and (B3) yields

DRC 5 (DR2DRclr)2�
X

�
›R

›X
2

›Rclr

›X

�
DX2 (F2Fclr) .

(B4)

Soden et al. (2008) advocate using Eq. (B4) rather

than Eq. (B2) for computing the cloud feedback in

order to reduce the impact of the uncertainty in F. As

R 2 Rclr is known as ‘‘cloud forcing,’’ this method is

called cloud forcing adjustment (CFA) method. Note,

however, that the F and Fclr values still need to be known

beforehand.

One source of uncertainty in the feedbacks assessed

using the above equations is the nonlinear terms neg-

lected in the decomposition of DR using Eq. (A2). This

uncertainty, however, is largely constrained in the case

of longwave radiation, especially under the clear-sky

condition, because the nonlinear kernels involving cross-

layer climate responses (›2R/›Xi›Xj, with i and j in-

dicating different vertical levels) are usually small. This

can be verified, for instance, by calculating the second-

and higher-order kernels with a standard atmospheric

profile (e.g., Huang et al. 2007) and results from the na-

ture of the nonscattering radiative transfer of the long-

wave radiation. From a spectral perspective, it is well

known that monochromatic outgoing radiation mainly

emerges from and thus is mostly sensitive to a finite

‘‘t5 1’’ layer, where the optical depth tmeasured from

the TOA to this height is roughly 1. This means the

cross-layer nonlinear terms cannot be large even though

cross-layer climate responses themselves can be highly

correlated. This condition may break down when non-

opaque cloud (e.g., thin cirrus clouds) layers exist and

monochromatic R becomes sensitive to multiple layers,

or when the overall atmospheric absorption is weak
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(e.g., for solar radiation, in the region where water vapor

loading is very low) and a t 5 1 layer does not exist. In

the former case, as the cross-layer terms would involve

cloud, it is reasonable to attribute this nonlinear effect

as part of the cloud feedback that is assessed as a re-

sidual (as done in this paper). The latter case may ac-

count for less accurate shortwave water vapor feedback

assessment based on the kernel technique, although the

overall magnitude of this feedback is far less than the

longwave water vapor feedback.

Another source of uncertainty comes from the un-

certainty in the linear kernels themselves, which may

result from radiation code errors as well as dependence

of kernel values on atmospheric states. However, with

regard to code errors, Huang et al. (2007, see their Ta-

bles 1 and 2) show that band model–simulated kernels

differ from those simulated by benchmark line-by-line

model–simulated kernels by no more than a few per-

cent; Soden et al. (2008, their Table 3) show that the

discrepancy between multiple band models is of the

same small magnitude. With regard to dependency on

the atmosphere, Soden et al. (2008, see their Fig. 7)

show that the global mean feedbacks calculated from

different sets of kernels also agree with each other re-

markably well. Furthermore, Sanderson and Shell (2012)

explicitly account for intermodel differences in the ker-

nels, but their result (e.g., see their Fig. 5) shows that

the resulting differences in the global mean longwave

feedbacks are very small. Finally, one can estimate the

impact of the kernel errors by examining the extent to

which the clear-sky OLR anomalies can be explained by

using the temperature and water vapor kernels in an

unforced climate model integration (prescribed with

fixed well-mixed greenhouse gas concentrations). When

a single set of kernels is used for multiple arbitrarily

selected models, it is found that no less than 70% of

the global annual mean OLR anomalies are reproduced

by using the kernels. In summary, the evidence suggests

that kernel errors do not severely impact the diagnosed

feedbacks.
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