
                             Elsevier Editorial System(tm) for Materials and Design 
                                  Manuscript Draft 
 
 
Manuscript Number: JMAD-D-10-01668R2 
 
Title: Integrated Shape and Material Selection for Single and Multi-Performance Criteria  
 
Article Type: Original Article 
 
Keywords: material selection charts; performance indices; selection for material properties 
 
Corresponding Author: Prof Damiano Pasini, PhD 
 
Corresponding Author's Institution: McGill University 
 
First Author: Jasveer  Singh, Master Student 
 
Order of Authors: Jasveer  Singh, Master Student; Vahid  Mirjalili , PhD Student; Damiano Pasini, PhD 
 
Abstract: A shape and material selection method, based on the concept of shape transformers, has been 
recently introduced to characterize the mass efficiency of lightweight beams under bending and shear. 
This paper extends this method to deal with the case of torsional stiffness design, and generalize it to 
single and multicrieria selection of lightweight shafts subjected to a combination of bending, shear, and 
torsional load. The novel feature of the paper is the useful integration of shape and material to model 
and visualize multiobjective selection problems. The scheme is centered on concept selection in 
structural design, and hinges on measures that govern the shape properties of a cross-section 
regardless of its size. These measures, referred as shape transformers, can classify shapes in a way 
similar to material classification. The procedure is exemplified by considering torsional stiffness as a 
constraint. The performance charts are developed for single and multi-criteria to visualize in a glance 
the whole range of cross-sectional shapes for each material. Each design chart is explained with a brief 
example. 
 
 
 
 



Research Highlights 

 

1) The method of shape transformers introduced for single-objective selection of lightweight beam has 

been generalized to systematically deal with multicriteria selection of cross-section shape and material.  

2) The method previously introduced for bending and shear stiffness design has been extended to 

torsional stiffness design and combined load design. 

3) Efficiency maps and performance charts have been presented for the first time for single and multi-

objective selection of integrated shape and materials.  

4) A four quadrant performance map has been proposed to establish a visual relation between the 

objective function space and the design variable space of a multi-objective selection problem, where 

material and cross-sectional geometry are considered simultaneously as design variables.  
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ABSTRACT 

A shape and material selection method, based on the concept of shape transformers, has been recently 

introduced to characterize the mass efficiency of lightweight beams under bending and shear. This paper 

extends this method to deal with the case of torsional stiffness design, and generalize it to single and 

multicrieria selection of lightweight shafts subjected to a combination of bending, shear, and torsional 

load. The novel feature of the paper is the useful integration of shape and material to model and visualize 

multiobjective selection problems. The scheme is centered on concept selection in structural design, and 

hinges on measures that govern the shape properties of a cross-section regardless of its size. These 

measures, referred as shape transformers, can classify shapes in a way similar to material classification. 

The procedure is exemplified by considering torsional stiffness as a constraint. The performance charts 

are developed for single and multi-criteria to visualize in a glance the whole range of cross-sectional 

shapes for each material. Each design chart is explained with a brief example.  
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1. Introduction 

In structural design, the most common objectives pertain to mass, axial stiffness, flexural stiffness, and 

torsional stiffness. Several strategies, developed in the past, are currently used to design and optimize the 

geometry of a structural concept with respect to these objectives. Such methods generally involve a large 

amount of computation time, because they often resort to techniques that require repetitive use of numeric 

analyses and simulations. Most of them are effective especially when they are applied at the detailed 

design stage, where a structural concept is already selected and the optimization search is restricted only 

to certain variables [1-4]. To overcome these limitations, the selection at the preliminary stage of design is 

often based on performance indices and design charts. A number of models for lightweight design were 

proposed for given loading requirements. For example, Shanley [5] examined columns under compression 



and introduced a minimum weight criterion based on a shape parameter governing the efficiency of 

alternative shapes. Cox [6] expressed performance of beams under compression and bending by the ratio 

of yield stress to the density of a material. In 1980s, Parkhouse [7] defined the material dilution factor, or 

sparsity, to compare different structural concepts to an equivalent reference cross-section. Based on these 

premises, Ashby, the world-renowned authority in material selection, introduced a pioneering 

methodology to search the best material for a given application [8-10]. Huang [11] identifies the optimum 

cross-sectional shape for various materials by analyzing the maximum shape factor limited either by local 

buckling or by yielding. Along the lines of Ashby’s material indices, Rakshit [12] derived new design 

indices for the trusses. These indices help in choosing the suitable material for any design of a truss. 

Warner [13] introduces constraint indices that aids in co-selecting shape and material for spatially limited 

components. Thomas in his work [14] introduces material architecture indices for composite 

multifunctional materials. These indices provide a useful metric for ranking composite design 

configurations. All the above mentioned works including that of Ashby did not consider integrating shape 

and material for multi objective structural optimization, the focus of this paper. 

More recently, another method has been introduced to study the effects of material and shape of 

structures subjected to geometric constraints [15, 16, 17]. This paper extends such a method to limited 

torsion stiffness design for single and multi-objective selection. The main objective of the paper is to 

generalize the shape transformer approach for a multi-criteria selection involving bending, shear and 

torsion. The paper starts by reviewing the fundamentals of the method which is used in Section 3 to 

formulate the performance indices for a number of general cases including single and multi-objective 

design problems. To demonstrate the method in these scenarios of selection, section 4 and 5 examine 

problems with prescribed torsional stiffness. 

2. Methodology 



The shape transformer approach introduced for material and structural selection hinges on the 

premise of systematically decoupling the effect of shape from that of size. Demonstrated for single 

objective optimization [15,16], this decoupling also eases the way a change in geometry of the cross-

section can be handled to visualize the optimum solutions (Pareto front) for multi-objective selection. For 

a cross-section, the shape, referred as S, is the figure that fits within the rectangular envelope whose size 

is specified by the height and width of the cross-section (Fig. 1). The scheme used in this paper resorts to 

envelope multipliers and shape transformers, to quantitatively measure changes in shape and size 

properties of a cross-section. These are briefly introduced in the following sub-sections. 

Fig. 1 The Envelope (D) and the embedded Shape (S) 

2.1. Envelope Multipliers 

Size changes between different cross-sections, e.g. Figs. 1(a) and (b) are measured by the 

envelope multipliers. The relative scaling of an arbitrary cross-section with envelope sizes B and H, 

relative to a reference rectangular envelope with sizes B0 and H0, is described by the envelope multipliers, 

u and v, 
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2.2. Shape Transformers 

For a given cross-section, a shape transformer (ΨG) of a geometric quantity G is defined by 

normalizing the geometric quantity G by the same geometric quantity of its envelope GD, such that ΨG= 

G/GD. The shape transformers of area (ΨA), bending (ΨI) and shear (ΨS) are already defined [15,16]. The 

shape transformer introduced in this paper is that of torsion which is defined as,  
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where JT and JTD are the torsional constants respectively of the cross-section and of the envelope. 

We recall here that this approach classifies shape concepts into families and classes to ease the 

comparison of alternative cross-sectional shapes. A shape family is identified by the name of the solid 

shape from which a cross-section is derived. A shape class can be regarded as a subset of a family. 

Discrimination among shape classes is defined by the ratio between the size of the internal opening and 

the external shape.  

In this paper, the expressions of the shape transformers are formulated for shapes subjected to a 

given torsional stiffness. For this, we resort to approximated formulas [18,19] that describe the torsional 

constants with less than 3% error relative to experimental results. We consider common classes of two 

families: the rectangle and the ellipse (Table 1). In addition to these, we also consider a number of classes 

of shapes commonly used in structural design, e.g. circular sector, pinned shafts, cross shafts and circular 

segmental section. 

Table 1 Shape transformers for common shapes 

(For each shape, B and H are the width and height of the envelope, t is the thickness) 

 

3. Performance indices for multicriteria selection charts 

The basic procedure for co-selection of shape and material is outlined in this section through the 

formulation of design objectives and constraints in terms of shape transformers, envelope multipliers and 

material properties. Each objective is described by a performance index which measures the efficiency of 

a cross-section with respect to that objective. In general, we can express a performance index, P, in terms 

of design requirement, F, material properties, M, and geometry, G, such that 



( , , )P f F M G                                                                                                                                          (3) 

The shape transformers allows expressing the geometry parameter, G, in terms of shape properties, S, and 

size properties, D, of a cross-section; hence, 

( , , , )P f F M S D
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                                                                                                                                  (4) 

For multi-objective selection, we first consider two performance indices, P1 and P2 

1 1( , , , )P f F M S D
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                                                                                                                                 (6)                                                  

For a given shape and material, and functional requirement, the above objectives and the stiffness 

constraint (as demonstrated in section 3.1 and 3.2) are only a function of size such that: 

 

1 3 ( , ) P f u v

                                                                                                                                            (7)         

2 4 ( , ) P f u v

                                                                                                                                            (8)    

5 ( )v f u
                                                                                                                                                   (9)     

These equations can be used to express a performance metric as a function of the other, 

 

1 6 2( )P f P
                                                                                                                                             (10)   

To use these equations for the development of design charts, we can follow two approaches.  



The first one consists of plotting one objective versus the other using Eq. (10). This procedure allows 

exploring the Pareto front of optimal (non-dominated) solutions as discussed in section 5.1; although 

simple, this strategy has some limitations. First, it does not visualize the relation between the objective 

function space and the decision space (variable space). Second, the change of performance with respect to 

any change of constraint can be difficult to estimate. Third, if more than one constraint is present, 

numerical optimization methods should be applied to obtain the Pareto front, a condition that vanishes our 

aim to gain insight through the visualization of the results of the optimization problem.  

The second approach overcomes the above drawbacks, as it involves the development of a four-quadrant-

performance-chart, as shown in section 5.2 through an example of multi-objective design problem for a 

prescribed torsional stiffness along with a geometrical constraint. The strategy is to plot envelope 

multipliers (u, v) and objectives (P1, P2) through Eqs (7), (8), (9) and (10) onto its four axes, to visualize 

one curve for each combination of shape and materials in each quadrant. The four quadrants share 

common axis and consist of the planes: u versus v, u versus P1, v versus P2, and P1 versus P2. The first 

quadrant represents the decision space and the second quadrant represents the first objective function. 

Likewise, the fourth quadrant represents the second objective function and the third quadrant shows the 

feasible objective space for the given set of constraints represented in the first quadrant.  

It is noteworthy that for a single-objective function, e.g. P1, the four-quadrant-performance-chart reduces 

to a two quadrant-performance-chart, as discussed in section 4 for torsional stiffness design. In section 4, 

we also generate efficiency maps similar to those proposed for bending stiffness design [16], as they can 

conveniently visualize performance limits for each shape family and its classes. However, they can handle 

problems with only one selection criterion. The performance indices are formulated in the following sub-

sections for prescribed torsional stiffness. The indices for some other common cases are given in Table 2. 

Table 2 Performances indices for given design scenarios 

 

3.1 Minimizing mass for torsional stiffness constrained design 



For limited torsional stiffness design, we consider a shaft of length l in equilibrium under a torque T, with 

a twist angle, . The general form of the torque, T, can be written as [20], 

33
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                                                                                                        (11)     

 

where GJT is the torsional stiffness of a bar with shear modulus G, d  /d z is the rate of rotation with 

respect to the z-axis, E is the Young’s modulus, w is the warping constant, and In is a section property 

referred to as non-linear Wagner constant. 

The third term in Eq. (11) is used for plastic analysis of shafts, whereas the second describes the warping 

effects of cross-sections. The former involves nonlinear elastic torsion which rarely occurs in practice and 

whose effects are negligible in a small deformation regime. The latter arises in a cross-section with 

warping-restrained supports. The warping effect decreases with an increase of the shaft length, provided 

the torque is applied far from the warping-restrained end [18]. Either in the case of free warping boundary 

conditions on both ends, or in the case of relatively long beams with length to depth ratio of more than six 

[18], the last two terms in Eq. (11) are negligible. Therefore, under such conditions, the torsional stiffness 

of a shaft of length l can be simplified to: 

T

Tl
GJk
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In torsion stiffness design, the torsional stiffness, Kreq, is prescribed, and should be met by the candidate 

cross-sections. Other design requirements are usually the length and the boundary conditions of the shaft, 

whereas, material and geometry of the cross-section are often the variables. The torsional constraint can 

be expressed in terms of envelope multipliers, shape transformers, and material properties (see Appendix 

1), as 
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                                                                                                                          (13)       

Equation (13) allows us to plot constant stiffness line for different combination of shape and material on a 

uv plane, which is the first quadrant of the performance chart previously described and representing the 

decision space. Fig. 2 is an example of this chart, where three different values of GΨJT are plotted to 

estimate the direction in which the reference cross-section can be scaled to meet the torsional stiffness 

requirement. For a given combination of shape and material, arbitrary scaling of a reference cross-section 

is obtained by moving the upper right corner of the envelope along the relevant stiffness requirement 

curve. It is worthy to mention here a benefit of defining shape transformers with respect to size. The 

stiffness requirement curve does not change as long as the product of material and shape properties 

remains the same. For example, the constant stiffness curve will remain the same if G is halved and ΨJT is 

doubled.  

 

Fig. 2  Constant stiffness (torsional) curves on uv plane 

 

For given torsional stiffness, the performance index (pertaining to mass) of a cross-section can be 

expressed in terms of material, shape, and envelope multipliers as (see Appendix 1), 
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where q is the scaling parameter and can be expressed in terms of envelope multipliers, for u ≥ v, as 

1.55 2.45
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(15) 



When a geometrical constraint is applied a priori to the cross-section size, u and v are known and the 

scaling parameter, q, is constant. The performance index is then governed by material and shape 

properties alone. To show the effect of the scaling parameter on material selection for a prescribed shape, 

three choices of material: Ti, Cu, and Mg are considered. Table 3 shows that Ti is the best choice of 

material for proportional scaling. However, when the design scenario imposes a height constraint, then, 

Mg is the best option. 

 

Table 3 An example to demonstrate the effect of constraint 

 

3.2 Minimizing mass and maximizing flexural stiffness for torsional constrained design 

For the multi-objective case, we need two performance indices. The first index minimizing mass, as 

explained in section 3.1, can be written as, 
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To derive the second performance index consisting maximizing the flexural stiffness, consider a 

cantilever beam under a point load F which can be modelled as two springs mounted in series. The 

combined bending and shear stiffness can be written [15] as, 

3

 + 
G

FlK Fl

A I 
                                                                                                                                           (17)                                                                 

where α and β are constants dependent on the boundary and loading conditions, l is the length, A is the 

cross-section area, and K is the shear correction factor dependent on the shear stress distribution. 

Equation (17) represents the second objective, which in terms of shape transformers and envelope 

multipliers reduces to 
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As explained in section 3.1, the torsional constraint can be written as 
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                                                                                                                         (19)      

Hence, Eqs. (16), (18) and (19) can be plotted into a four-quadrant-performance-chart, as illustrated in 

section 5.2. A similar procedure can be followed for the other general multi-objective cases tabulated in 

Table 2. 

 For specific cases, the same approach can be used to formulate performance indices and constraints. For 

example, consider the design of a helical spring for minimum mass; the constraint is the deflection per 

unit load. The performance index for mass is 

1 1
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                                                                                                                                      (20)     

The constraint of deflection per unit length can be written as 
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where F is the load, D is the outer diameter and A is the area of the cross-section.
 

Candidate cross-sections will be those which satisfy the constraint Eq. (21) which expressed in terms of 

shape transformers and envelope multipliers reduces to, 



 

 

1.55 2.45

0

2

0

1
1

/ 0.56

1
1

/

JT

A

G G u v

D

G G uv







                                                                                                            (22)    

The performance chart for selecting the optimum combination of shape and material for the spring can be 

plotted using Eqs. (20) and (22). Any additional constraints can be considered by plotting them in the first 

quadrant of the four-quadrant-performance chart. 

 

4. Selection charts for single objective case - mass minimization for torsional stiffness 

design 

By resorting to the model presented so far, we present in this section efficiency maps and performance 

charts for single objective selection in torsional constrained design. Shape efficiency maps are first 

introduced for selecting shape for a prescribed envelope and then for a scaled envelope. The cases of 

shape and material co-selection follow. 

4.1 Shape selection for a prescribed envelope 

Similar to bending, we introduce here the efficiency parameter for torsion stiffness design as the 

ratio of the shape transformer of the torsional constant ΨJT to the shape transformer of the area ΨA for a 

cross-section with prescribed size and material. 

JT JT A                                   (23) 

The ranges of the efficiency parameter are listed in Table 1 for different cross-sections. The 

higher the value of the efficiency parameter, the lighter and stiffer in torsion is the cross-section. In 

bending stiffness design, the efficiency limits are independent on the envelope scaling [16, 21]. In 

contrast for torsion, the efficiency limits are dependent on the scaling of the envelope, which is governed 

by the angle α (Fig.1(d)). The culprit for this is that ΨJT is a function of α as opposed to ΨI. In most cases, 



such as in hollow rectangles, the performance increases when the envelope tends to be a square, i.e.  α ≈ 

45°, but for practical values of  α the increase is less than 5 %. Hence, at the conceptual stage of design, 

JT (and, thus, efficiency parameter) could be assumed constant. 

Figure 3 shows the efficiency map for commonly used shape and families, each characterized by specific 

efficiency limits. For closed-wall cross-section, all classes of ellipse and rectangle families fall within the 

limiting curves of the hollow rectangular envelope (solid black lines). On the other hand, open-walled 

cross-section falls outside this domain due to a lower efficiency. As an example, consider a design 

requirement of 0.4, the intersections of the horizontal dotted line and the curves show that the hollow 

rectangular shape is the lightest among the candidate cross-sections shown in Fig. 3. Furthermore, the 

map also shows that as the eccentricity of hollow ellipse increases, its efficiency decreases as shown by 

the rightward shift of the curves. The lower solid red and black curves are theoretical limiting cases that 

describe a cross-section with a stiff core material coated by a material with lower, almost negligible shear 

modulus, G, e.g. foam. As expected, the efficiency curves show that stiff core materials with low shear-

modulus coating are not efficient in torsion stiffness design. 

 

Fig. 3  Efficiency map for a prescribed envelope (closed-walled cross-sections) (numerical results 

from FEA are also shown) 

 

Points A and B specify the bounds of the validity range of the thin-walled theory which pertain to cross-

section with thickness ten times smaller than the minimum dimensions of a cross-section. Thin-walled 

theory predictions estimate values of the torsional constant from the origin to point A and B with an error 

of less than 2% with respect to thick-walled theory estimations. 

Figure 4 illustrates the efficiency curves for open cross-sections in limited torsion stiffness design. The 

range of the shape transformers for the torsional constant is around 10
-3

. Unlike in bending where an I-

beam is one of the most efficient shapes, the map shows that for a given torsional stiffness, the I-beam is 



quite inefficient. It could also be seen that the Z-beam concept is the best choice, because it provides the 

highest value of efficiency parameter, λJT. 

 

Fig. 4  Efficiency map for a prescribed envelope (open-walled cross-sections) (numerical results 

from FEA are also shown) 

 

 

4.2 Shape Selection for Scaled Cross-sections 

 

Similar to Fig. 3, Fig. 5 is a logarithmic-scale chart for the selection of scaled cross-sections. Due 

to the decoupling of shape and size, this method allows plotting guidelines for shape selection in any 

scaling condition. These guidelines can be obtained by taking the logarithm of the performance index; 

1 1
log log logJT A P

q q
                                     (24)                                          

Equation (24) plotted in Fig. 5 describes an iso-performance line with slope 1/q and y-intercept 1/qlogP. 

When the scaling direction is imposed by geometric constraints applied to the cross-section size, such as 

in tightly constrained structures, q is known and can be used as the slope of a selection guideline. Given 

the slope, the y-intercept will directly give the performance of the shape in question. Thus, for a given 

scaling, the higher the y-intercept; the lighter the cross-section. 

 

Fig. 5  Efficiency map for scaled cross-sections (closed-walled), logarithmic scale 

 

In Fig. 5, iso-performance lines, which describe cross-sections with the same efficiency, are plotted for q 

= 0.41, q = 0.5, and q = 0.64 respectively for horizontal, proportional, and vertical scaling. To compare 

two scaled cross-sections subjected to a specific geometrical constraint q, a line with slope 1/q should be 

plotted passing through the cross-section co-ordinates, (A, JT). The one with higher y-intercept, 

1/qlogP, performs better than the others. As depicted in Fig. 5, for horizontal scaling, elliptical cross-

section performs better than the rectangular one. However, for a prescribed envelope, the opposite is true. 



Hence, illustrating the performance index on a logarithmic chart simplifies the selection of a scaled cross-

section. It should be noted that these efficiency maps can only be used if q is constant for all the candidate 

shapes. To deal with cases where q can vary, performance charts explained in section 4.4 should be used. 

 

4.3 Co-selection of shape and material for a prescribed envelope 

The efficiency maps introduced for shape selection can be extended to assist the co-selection of 

shape and material. This co-selection, for non-scaled cross-sections, is governed by the index; 
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Figure 6 illustrates a typical example of co-selection of shape and material using efficiency maps. (ρA, 

GJT) specify the co-ordinates of a cross-section on the chart. As an example, the materials considered in 

the figure are Ti, Cu, Al and Mg. For each of these, the stiffness curves for the Rectangle and the Ellipse 

families are plotted. The chart shows that a copper beam can meet higher stiffness requirement compared 

to a magnesium beam. However, when magnesium can also satisfy the stiffness requirement, it will 

perform better due to its higher efficiency parameter. 

 

Fig. 6  Material and shape co-selection for four typical materials (Ti, Cu, Mg, and Al) 

(Prescribed envelope) 

 

As another example, a stiffness requirement of 22 (GPa) is considered in Fig. 6. Aluminum, copper and 

titanium beams can satisfy the stiffness requirements. However, since the efficiency parameter, λG/ρ, is 

the highest for the point on the solid black line curve closest to the y axis; a hollow rectangular cross-

section made up of titanium is the best choice. 

 

4.4 Co-selection of shape and material for scaled envelope 



Co-selection of material and shape for scaled cross-sections is considered in Fig. 7. For this 

scenario, we can rearrange the performance index in logarithmic scale to obtain the following iso-

performance lines for a given scaling condition; 

1 1
log log logJT AG P

q q
                                                                                                                   (26) 

For a given q, the higher the y-intercept, the lighter the cross-section. For instance, q=0.41, q=0.5, and 

q=0.64 are plotted in Fig. 7 for horizontal, proportional, and vertical scaling, respectively. The plot shows 

that for proportional scaling, an elliptical cross-section made up of Magnesium is the lightest among the 

candidate solid cross-sections. All combinations of shape and material that lie above the selection 

guideline perform better than the solid magnesium ellipse.  

 

Fig. 7  Material and shape Co-selection for four typical materials (Ti, Cu, Mg, and Al) 

(Horizontally, vertically, and proportionally scaled cross-sections) 

 

The efficiency charts discussed above are relevant when the scaling direction (q) is constant. A 

complementary graphical selection method is developed here to deal with cases where scaling can be 

done in all directions.  This is a two-quadrant-performance-chart (Fig. 8) obtained by following the 

description given in section 3. The right part of the chart consists of constant stiffness curves drawn on uv 

plane. In the left part, the performance is plotted against the vertical envelope multiplier (or height of 

envelope). 

 

Fig. 8  Performance chart for prescribed torsional stiffness considering a geometrical constraint 

 

Consider an example of a geometrical constraint shown in the right part of Fig. 8. The aim is to co-select 

shape and material. The candidate materials are steel and aluminum, and the candidate shapes are 



rectangle and ellipse. It can be seen from the figure that Aluminum-Rectangle scaled to point A (Fig. 8) is 

the most efficient followed by the Aluminum rectangular cross-section scaled to a different point B. The 

third best combination is the steel-ellipse which is about 15 % heavier than the best possible cross-

section.  

The results of the mathematical model presented in this paper for torsion were compared with the 

numerical results obtained through finite element analysis (FEA) using ANSYS, a commercial finite 

element software. The validation was completed for all shape classes listed in Table 1. To avoid crowding 

the maps, however, the validation points of two shape classes are included (Figs 3 and 4). Since the 

torsional constant is derived from the mesh, the accuracy of the torsion constant is directly proportional to 

the mesh size of the cross-section. The default mesh used by ANSYS yields acceptable accuracy for 

elastic analysis. The mesh size was set to the finest level. Concerning the boundary conditions, the cross-

section is assumed to be free to warp to retrieve from ANSYS the numerical values of the warping 

constant given by Eq. 11. The maximum difference between the numeric and analytic results is found to 

be 5% which is due to the approximations made in deriving the torsional constant.  Nevertheless, this 

accuracy is deemed acceptable, especially for the conceptual stage of design. It is worth mentioning that 

shape transformers of bending and shear were previously validated [15, 16, 17] . 

5. Selection charts for multi-objective case – mass minimization and flexural stiffness 

maximization for torsional stiffness design 

The fundamental difference between single and multi-objective optimization is the number of 

optimal solutions. In single objective optimization, there is only one optimum solution, whereas 

in multi-objective optimization, several trade-off solutions between conflicting objectives exist. 

Among these optimal solutions, none can be considered to be better than others and thus are 

known as non-dominated solutions, namely Pareto optimal solutions [22].  



Methods to handle MOO problems can be loosely classified in two categories. Within the first 

one, there are classical approaches which involve specifying a priori a preference vector that 

scalarizes an objective vector into a single composite objective function. These are referred as 

preference-based methods, which are highly subjective to the user definition of a reliable 

preference vector that converts multi-objective optimization into a single objective optimization 

yielding only one optimal solution. The second category of methods to handle MOO involves 

finding firstly all non-dominated solutions and then using higher level information to choose one 

of the obtained solutions. These methods are referred as a posteriori approaches; they are 

appropriate to give a broad view of the available alternatives, without the need to define a 

preference vector in advance.  

In this paper, a posteriori approach is adopted to visualize non-dominated solutions of a MOO 

problem where the design variables are the geometric properties, i.e. shape and size, and the material 

attributes. In contrast to the penalty function method adopted by Ashby [19] for material selection, the 

artificial/pseudo weight method [22] is used here as it can also capture concave Pareto front. The 

procedure is explained through the following example. 

Consider a rod, an element that forms the basic unit of most of the complex structures. One end is 

assumed to be fixed to simplify the study (though it could be easily extended to a simply supported 

beam). The objectives are to minimize its mass and maximize its flexural stiffness while complying with 

given torsional stiffness and a manufacturing constraint (for example height/breadth < 3). The candidate 

materials are Steel and Aluminum. The shapes considered, here, are from the rectangle family, ellipse 

family, and triangle, since these are commonly used shapes. We formulate the MOO problem as, 
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The values of α and β [18] are 1 and 3 respectively for this case. For the values of shape transformers for 

bending and shear, the reader is referred to [15, 16], whereas the values of the shape transformers for 

torsion are listed in table 1. The length of the rod is given as .032 meter. The analysis is divided into two 

cases: first, when the envelope is allowed to scale in any direction; second, when the envelope is 

constrained. 

5.1 Co-selection of shape and material for a freely scalable envelope 

For a given combination of shape and material, the objectives and constraints are only function of the 

envelope multipliers (u, v). This allows plotting both objectives against each other, as explained in section 

3. Figure 9 shows the plot for the selected candidate shapes (solid) and materials whereas the 

visualization of boundaries for shape families is illustrated separately in Fig. 10. Each point on a curve, 

1/P1 = f (1/P2) represents a candidate cross-section differing in shape, size and material. The plot in Fig. 9 

is divided into four sectors with respect to the baseline steel-squared cross-section at the center. The 

solutions in the sector C are both lighter and stiffer, thus the best. Those in the sectors A and D are better 

by one objective. Those in sector B are heavier and less stiff, thus the worst. To further narrow down the 



optimal solutions, we draw a Pareto front as a dashed line. The solutions nearest to this front are optimal 

trade-off cross-sections. Although case-specific, a designer will be inclined towards the cross-sections in 

sector C (as demonstrated in Fig. 10) which illustrates that vertically scaled Aluminum-Triangle is the 

best choice. 

 

Fig. 9  Both objectives (flexural stiffness and mass) plotted against each other for solid cross-

sections (Red- Steel; Green - Aluminum) 

 

A rational approach to select the final optimum solution from the Pareto set is to impart artificial/pseudo 

weight vector to each solution. Consider, for example, the Pareto-optimal set of the vertically scaled steel 

rectangle (sector A), which corresponds to a 0 % preference of the first objective and a 100 % preference 

of the second objective. This preference values can be associated to pseudo-weights by assigning a weight 

vector (w1, w2) = (0, 1). Likewise, this strategy can be used to assign  pseudo-weight vector to each 

solution by estimating their location on the Pareto front. The weight factor can be written as, 

 

maxmax

max min max min
1

M
j ji

i

ji i j ji

f ff f
w

f f f f

  
         


                                                                                          (28)  

      

where fi
min

 and  fi
max

 denote the minimum and maximum values of the i-th objective function among 

the Pareto-optimal solutions. 

When the trade-off among objectives is known, this knowledge can be used to choose one of the non-

dominated solutions, which will closely match the information conveyed by the artificial weight vector. 

For instance, if a similar trade-off between two objectives is required, the solution closer to a weight 

vector (0.5, 0.5) should be chosen.  In Fig. 9, this choice is illustrated by the vertically scaled Aluminum 

triangle. Other weight factors pertaining to the Pareto solutions are shown in brackets for the Aluminum 

triangle.  



To handle shape families, we follow the same approach, as shown by the pseudo weight vectors added in 

Fig. 10 for the candidate families. If mass is preferred over flexural stiffness, the optimal choice is hollow 

Aluminum-ellipse. However, if flexural stiffness is more important, hollow Steel-rectangle is the best 

choice. Rather than assigning weight vectors after finding non-dominated solutions, we can still use the 

classical approach of associating weight factors to each objective before finding Pareto set. However, in 

that case, even a uniformly spaced set of weight vectors may not result in a uniformly spaced set of 

Pareto-optimal solutions, as demonstrated by Deb [22]. Also, by using this classical approach, one can 

miss the solutions that lie on the concave part of Pareto front.  

 

Fig. 10  Both objectives (flexural stiffness and mass) plotted against each other for shape families (c 

is the ratio of the inner dimension and the outer dimension of a cross-section) 

 

5.2 Co-selection of shape and material for a constrained envelope 

Consider a problem in which different constraints are applied to the envelope, which is not free to be 

scaled. For example, these geometrical constraints might be: 
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To handle such a geometric constrained design, we resort to the four quadrant-performance chart (section 

3) which involves plotting the constraints on the uv plane. Regardless of the number of constraints, this 

approach visualizes the relation between the decision space of the design variables and the objective 

space of the objective functions. As explained in section 3, the first quadrant represents the decision space 

in which each constraint, e.g. geometrical, manufacturing, flexural stiffness, torsional stiffness, mass, 



strength, or/and cost, can be plotted. To plot these constraints, they need to be expressed in terms of shape 

transformers and envelope multipliers. This is explained with the example of a cost (of material) 

constraint. Total cost of a material used in a mechanical component can be written as; 

 Total cost ∝mass x cost/mass                                                                                                                (30)    

Let ci be the cost per unit mass for material Mi. and C be the maximum allowable material cost.  

Assuming length as fixed, Eq. (30) can be expressed as 

area Ci ic   
                                                                                                                                    (31)    

 

And in terms of shape transformers and envelope multipliers, the above constraint reduces to, 

i iuvc C 
                                                                                                                                        (32)       

 

Equation (32) represents a design constraint that can be plotted in the first quadrant of the four-quadrant 

performance chart. Likewise by following the procedure explained in section 3, different constraints can 

be plotted in the other three quadrants. For instance, consider the example of the rod design (section 5.1) 

where the geometrical constraint was expressed by Eq. (29). Two constraints, i.e. torsional constraint and 

geometrical constraint, can be plotted in the first quadrant of Fig. 11. The projections of the relevant 

points from the decision space to the third quadrant provide solutions in the objective space. Each point of 

the green bubbles represents a candidate solution satisfying the prescribed set of constraints. Visualized in 

red, the Pareto frontier is the envelope of all non-dominated solutions. The solutions lying either on or 

near the Pareto front offer the best compromise as opposed to the others. Fig. 11 shows that only three 

combinations of shapes and materials can meet the prescribed design constraints. Among them, steel-

ellipse is the optimal choice if the designer decides a posteriori to assign an approximate equal weight to 

both the objective functions. Obviously, other preference would lead to different optimal trade-off. 

Finally, to determine the final cross-section details, e.g. size, the projections of the optimum trade off 

points in the third quadrant can be traced back to the first quadrant. Similarly, a designer can impose any 



additional constraints in the design variable space and assess their impact on the Pareto front of the 

objective function space.  

Fig. 11  Four-quadrant-performance-chart demonstrating the Pareto front (red curve) 

 

6.  Conclusion 

In this paper, the method of shape transformers has been used to formulate performance indices and 

develop design maps for the co-selection of shape, size and material in single and multi-objective design. 

The proposed scheme has been exemplified by considering the case of torsional stiffness design. 

Formulated for torsional stiffness requirement, the shape transformers have been used to generate 

multiple performance charts that help visualize the performances of different shapes. It has been shown 

that shape transformers allow capture the efficiency limits that different combinations of shape and 

material can achieve. From a comparison of open- and close-walled cross-sections, it appears that the 

latter are in average 1000 times stiffer than the former. The maps also show that for a fixed envelope, a 

hollow rectangular shape is more efficient than a hollow circular cross-section in torsional stiffness 

design. However, the results are different for other geometric constraints.  

The method of shape transformers has been extended to deal with multi criteria selection of material, 

shape, and size. In general, the main challenge of multi criteria selection methods is the ability to 

visualize simultaneously both the decision space and objective space. We have achieved this by proposing 

a four-quadrant-performance-chart that systematically establishes a visual relation between design 

variables and objective function spaces. This method is particularly suitable at the concept stage of design 

where numerical methods may prevent the user from visualizing and gaining insight into optimal trade-off 

among design alternatives. Finally, the mathematical model used to formulate the performance indices 

gives results that are 5% below those obtained with finite element analysis and are, thus, acceptable for 

the preliminary stage of design.



 

Appendix 1 

Formulation of the performance index for mass in the torsion stiffness design 

Let P0 be the performance index (mass) for the reference cross-section (solid square). Then, the 

performance index, P1 for any arbitrary cross-section with respect to a reference cross-section can be 

written as 
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In terms of shape transformers and envelope multipliers, it can be expressed as 
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Also, the ratio of the torsional stiffness of two cross-sections can be expressed in terms of Shape 

transformers; 
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                                      (35) 

where JTD1 is the torsional constant of the rectangular envelope which encloses the shape of cross-section, 

JTD0 is the torsional constant of the reference  cross-section. Since the shape and the envelope of a solid 

square are the same, JT0 is equal to JTD0. The ratio of JT1 / JTD1 is the shape transformer for the torsional 

constant, and JTD1 / JTD0 represents the effect of scaling. 

According to Roark’s stress and strain formulas [18], the torsional stiffness of a rectangular cross-

section is given by 
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where B and H are the width and the height of the rectangle, respectively. The ratio of torsional constants 

of two envelopes expressed by Eq. (36) is not a handy formula. Thus to simplify the formulation, we 

resort on the method of shape transformers in bending, where the second moment of area is expressed as a 

product of B and H, i.e. I = f (BH
3
); here, we would aim at finding an analogous expression, which will 

ease the derivation of the performance index. Similar to the bending case, such a function is searched to 

be of the type 

1 2( , )TD

b b
J f B H aB H                                    (37)                              

where a, b1, and b2 are the variables to be calculated. The maximum error between the original and 

approximate function should be less than 5 percent. Optimum values of a, b1, and b2 to minimize the error 

between Eqs. (36) and (37) has been found by formulating a minimization error problem which will yield 

the following expression 

1.55 2.45
(0.15)TDJ B H                                    (38)  

Using Eq. (38) and the definition of the envelope multipliers u and v, the relative torsional constant of two 

envelopes, JTD1/ JTD0, is given by 
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Thus, Eq. (35) can be expressed as, 
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Combining the stiffness requirement, i.e. JT0G0  = JT1G1, and Eq. (40) gives 
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Rearranging the terms, the torsional stiffness constraint can be written as 
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Based on Eq. (42), the envelope multipliers, u and v, can be found, 
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where 

1.55 2.45 1                                      (44) 

Finally, the ratio of performance indices can be stated as, 
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where α and β are obtained by taking natural logarithm from both sides of Eq. (43), and are given by, 
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u v                                      (46) 



The “α + β” term in Eq. (45) is referred to as the scaling parameter, q. Using Eq. (43), the scaling 

parameter, q, can be expressed in terms of envelope multipliers, u and v, as 
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Hence, a unique performance index can be assigned to each cross-section, and can be expressed in terms 

of material, shape, and size properties as, 
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Table 1: Shape transformers for common shapes 

(For all shapes, B and H is the breadth and height of the envelope, and t is the thickness) 
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Table 2: Performances indices for some general cases 

 



 

 

 

 

 

                                 Table 3: An example to demonstrate the effect of constraint 

Material E  (GPa) G  (GPa) ρ (Mg/m
3
) G/ ρ G

0.41
/ ρ G

0.64
/ ρ 

Ti 107 45 4.49 10.03 1.1 2.55 

Cu 101 37.5 7.5 
5 0.6 1.36 

Mg 45 17 1.8 
9.44 1.8 3.41 

Table3
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