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ABSTRACT 

This thesis analyzès and tests some néw solution techniques for the 

optimal power flow problem. This new methodology exploits a parametric 

technique, callp-d the continuation method, which is applied to different tasks 

in the solution procedure. In a first application, th'e continuation method 
l 

solves the- quadratic subp:t;oblems generàted sequentially by the optimal power • 
flow's nonlinear program. 'lt first creates a simple subproblem, which' is easy 

to solve, and then links it to the subproblem we wish to solve. Starting a~ 

the solution of the simpte problem, it generates optimal solution trajectories 

for the intermediate problems, leading to the desired optimal solution. 

Solution times are often advantageous, because this technique avoids the 

lengthy combinatorial search required in conventional methods to locate the 

set of active constraints. 

very useful in themselves. 

Furthermore, the solution trajectories are often 

In a second application, the algorithm tracks 

optimal solutions trajectories of the nonlinear problem when the load i5 

slowly. varied. This constitutes an ex~mple of "incremental loadin& '. a 

technique already used for real power dispatch, but in this case a complete 

network model is used. The flexibility of the algorithm at various levels 

aHows for s~lI!e excellent computation times in this load-tracking mode: we 

have observed reductions in computation times for new solutions of the order 

of 70%, compared to the computation time of the initial load. 

This thesis first presents an analysis of the various structures used in 

optimal power flow algorithms. Then, having chosen and presented the 

structure of our algorithm, we analyze the quadratic subproblems generated by 

this algorithm for sorne of its more important tasks: minimum cost, minimum 

losses and load shedding. New rules are proposed to link the solutions of 

successive subproblems to erwure the convergence of the nonlinear problem. 

Then, as a final contribution to the theory, some extensions are suggested for 

the subproblems: among them are ramp constraints, bus incremental costs, and 

~ provisioml for redf'spatching. 

Numerical simulations of the proposed optimal power flow algorithm using 

the minimum fuel cast task were performed 'on four test systems. with sizes 
• 
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ranging from 6 to 118 \ buses. The resu1ts are documented in detai1, and ~ 

resu4:.s for the 30 bus test are compared to those reported by other authors. 

-All in a11, our resu1ts demonstrate quite well the potential of this 

tec.hnique. 
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RESUME 

Cette thèse fait l'analyse et l'essai de nouvelles techniques de solution 

pour le problème de l'écoulement optimal de puissance. Cette nouvelle 

J", mlrthodologie, exploite une tech?ique paramétrique. appelée la méthode de 

~----continuation. pour résoudre plusieurs des tâches du problème. Dans un premier 

temps, cette technique résoud les programmes quadratiques générés 

sequentie11ement par le programme non1inéaire qU·'est l'ecoulement optimal de 

puissance. Elle crée dabord un problème simple, plus facile à résouqre, et 

ensuite elle le relie au problème à résoudre. A partir de la soluJ;:ion du 

problème simple, 

intermédiaires, se 

elle crée des trajectoires de 

terminant à la solution désirée. 

solutions 

Les temps 

optimales 

de calcul 

utilisant cette methode sont souvent avantageux, car elle évite les longues 

recherches combinatoires; ces dernièr-es sont requises dans les -méthodes 

conventionnelles, pour trouver les contraintes actives. 
l 

De plus. les 

traj ectoires sont souvent très utiles en soi. Dans un deuxième temps, 

l'algorithme suit la trajectoire des solutions optimales du problème 

nonlinéaire lorsque la charge est variée lentement. Cela constitue 

effectivement une application du "chargement incrémental". dont le principe 

est déjà utilisé dans l'exploitation du réseau, mais ici on profite d'un 

modèle complet du réseau. La flexibil i té de l' algori thme à tous les niveaux 

,permet d'obtenir d'excellents temps- de calcul à cette étape: nous observons 
" 

des reductions des temps de calcul des nouvelles solutions de l'ordre des deux 

tiers, par rapport au temps de calcul pour la première charge. 

Cette thèse présente dabord une analyse des structures des algorithmes de 

sOlutionr'pour l'écoulement optimal de puissance. Ayant choisi et présenté la 

structure de notre algorithme,· nous analysons ensuite les programmes 

,quadratiques générés par cette methode pour quelques tâches importantes: le 

coût minimum, les pertes minimum, et le délestage de charge. Nous proposons 

aussi de nouvelles règles pour relier les programmes quadratiques de façon à 

assurer la convergence du problème nonlinéaire. Enfin. nous formulons 

plusieurs extensions au programmes quadratiques: entre autres. on traite les 

contraintes dynamiques sur les variations de génération. les coûts 

incrémentaux des charges individuelles. et le dispatching rapide suite à un 

changement dans le réseau. 
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De nombreux essais numériques ont étés ef~ectués,. avec notre algorithme 

d'écoulement optimal de puissancé ayant, comme\c tâche le _ co4t minimum des 

'generations. Les données ont étaes tirées de quatre réseaux tests, allant de 
J 

6 à 118- barres. Les résultatS- sont documentés en détail, et ceux du système à 

30 barres sont comparés at'lX resultats publiés par d'autrés auteurs. Dans 

l' ensembl.e, nos resultats pémontrent assez bien le potentiel de cette 

techniqu,e. i 
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CHAPTER l 

\ INTRODUCTION' 

Ever, sinee their ineeption, the electric power utilities have strived to 

keep pace with theenergy needs of the population they serve. The demand for 

increasing amounts of energy has spurred the construction of large, eomplex 

power systems, comprising of many generating plants and intricate, widespread , 

networks for transmission and distribution. 

Over the~ sorne notable changes have occurred 

system structure. "<te~eration pl~nt~ have been moved 

in the genéral powér 

away from the load 

centers, for various reasons. In the province of Quebec, where hydroelectric 

power is aoundant, the large energy sources being tapped are becorning more and 

more remote from the major load centers. Elsewhere in North America, 

conventional thermal and nuclear plants predominate. Their energy resources 

can often be transported more easily to the load cent ers , but in the last 

couple of decades plants have been built away from urban areas as a result of 

concerns for pollution or radiation hazards. Intrieate transmission networks 

have been built to link these generation plants amo~g themselves and to the 

load cen~ers, as weIL as to neighboring utilities. The overall combination is 

advantageous, in that the construction and the operation of large generation 
" 

plants provides an economy of scale, and their interconnection to the entire 

network of loads ensures a higher level of reliability of supply for each 

load. As a result though, the complexity of power systems and of the controis 

,needed to operate them have increased. 

Up until the oil crisis of the mid-1970's, power utilities were expanding 

mostly to meet the increases in their own internaI demands, which in North 

America was doubling roughly every ten years. Since then and untii the mid~ 

80'S, the dramatic rise in fuel costs forced consumers to, make a more 

efficient use of energy and to adopt conservation measures. The effects of 

these measures on the power industry have been mix~d. On one hand, importers 
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of energy came to view it as a 1imited and expensive resouree, and many have 

sinee imp1emented load management practices to reduce its use wherever 
, /" 

possible, rather than increase their production capaeity [Seelke 1982_, Chan 

1986]. On the other hand, the completion of projects planned before the oil 

crisis left many utilities w1th excess generating capacity. That was the case 

for Hydro-Quebec, even though 99% of tts production is hydro. Efficient 

anergy practices considered essential elsewhere a1so proved attractive in 

Quebec, 50 that the demand for electricity lagged behind expectations. This 

general situation in the power system industry prevailp.d untH recently. 

Since the mid-80's, fuel costs have plummeted, and in the United States the 

electric power industry has become deregulated [Fischetti 1986]. Already 

there have emerged some large-scale importers of electric energy (for example, 

the Northeastern U.S and southern California) and some large-scale e~orters 

(for example, the central Canadian provinces, British Columbia and the 

American Nortbwest). To enhance the trade of electricity, much of the Hydro

Quebec' s (and other utilities') recent- planning efforts have gone tow~rds 

strengthening the interties with their neighbors. Already in some american 

power utilities, free market practices are taking over in the every day 

operation of the system, with numerous energy transactions being proposed and 

accept~ as opportunities occur. These practices are no dbubt: making a more 

efficient use of overall energy resources, but ,they increase once again the 

complexity of the controls needed to operate the system. 

Slnce the early 1970' s, many ufilities have built compu~erized control 
-

centres to aid in the operation of their systems [Dy Liacco 1974, Dy Liacco 

1977, Scheidt 1979]. Supervisory control and data acquisition functions 

(SCADA) were the first to be implemented in these centers. Measurements from 

the power system are continuously channeled "to a central location \in real-time 

and compared to estimat~d values from astate estimator program. The verified 

quantities are then checked for system security. for the reliability of the 

network configuration to supply the load, and in some cases for stability 

margins. Other on-line functions presently available on most systems are 

economie dispatch and load-frequency control. The former computes the most 

economical distribution of generations, given the list of avairable 

generators. The latter supervises energy interchanges an~ controls the system 

frequency in response te imbalances between the system' s genera'tion and its 



c 

f 

3 

load. Due to their complexity, some other useful functions for power systems 

operation have yet to be implemented on-li~e, but are used off-line as tools 

for analysis. Three such functions are security evaluation and security 

control [Debs & Benson 1975], and the'" subject of this thesis, optimal power 

flow. 

·' 
The genera1 problem of energy management which faces the power utilities 

- to satisfy customer demand in a safe, reliab1e and cost effective manner

is a very comp1ex one. It requires much insight into the workings of the 

power system, for sure, but a1so a good working knowledge of mathematic.al 

optimization theory. Many problems of power system management and control 

have been formulated, covering the who1e spectrum of mathematical programming 

disciplines, ranging from very long term (ten to fifteen years for generation 

and transmission planning) to very short term (a few minutes for dispatching) . . 
Due to their complexities, each problem is usually treated separately. They 

are usually performed in a hierarchy, from long term to short term, with the 

output of the long term tasks serving as targets for the short term tasks. 

The short term functions are grouped under the category of power system 
J). 

operation. Some of the more important tasks in this group are economic 

dispatch, minimum loss dispatching, minimum load shedding and minimum 

deviation from an operating point. These problems' and others, which are 

subject to the load flow equations as constraints. share a common nonlinear 

programming formulation called optimal load flow or optimal power flow, 

denoted OPF. 

The full OPF serves two purposes. In operations, it periodically sets 

opti'm~l target values for the electrical variables of the power network, in 

following the system's varying load. Based on the OPF's optimal values, the 

variables can then be dispatched every few m~nutes to follow small variations 

in loads, using simpler algorithms. The OPF would be an ideal dispatching 

tool if it could be made to compute much faster. A second applica~ion for OPF 

is in system planning, where it 1s used to study the effects of parameter 

variations (changes in equipment) on the system's optimal operation. 



• The OPF is a complex tool, but its subsets are often simple enough to be 

used as dispatching tools. These subsets use approximations of the- basic 

problem. with a linearization replacing the nonlinear load flow equations, or 

else they neglect some va~iàbles in the formulation, or neglect limits on sorne 

variables. This thesis·will be concerned'for the most part with the study of 

the OFF and its subsets. 

1.2 The Spectrum of Power System Control Functions 

At this point it is worthwhile to look at the various control functions 

required in power system control and the place occupied by the optimal power 

flow. Table 1.1 displays some of the major functions, starting with the long 

term functions at the top and moving downward towards the shorter term 

functions. 

The long term functions deal with planning. Their main purposes are (1) 

to predict future electrical energy needs. (2) to assure adequate supplies~f 

energy in bulk over a fairly long time period, and (3) to provide an adequate 

infrastructure to deliver that energy reliably and economically to the load 

centèrs. They are generally formulated as optimization problems, ta ensure 

the most efficient use of the new resources. 

Planning functions dealing with the power system [Fischl 1975, Sullivan 

1977] are generally split into two groups, generation planning ~ and 

transmission planning Generation planning [Rutz et. al. 1983, Caramanis 

et.al~( 1984, Desrochers et.al. 1986] studies the various alternatives for the 

addition of new generating capacity: the timing of the addition, the type, 

size. location and cost of the new plants, their integration into the existing 

network, and in recent years, their environmental impact. Transmission 

'planning [Kaltenbach et. al. 1970, Lee et. al. 197'.] studies the alternatives 

for the addition of equipment to the transmission network, using the same 

criteria, to meet the. requirements of added generation, or of a changing load 

profile, or to improve the system's reliability in supplying the load. 

time horizon for these functions ls ,typically from 10 to 15 yenrs. 
r 

The 



• TABLE 1.1 A LIST OF POWER SYSTEM OPERATIONS AND PLANNING FONCTIONS 

MAR.KET AND INVESTHENT ANALYSIS 
- Long term demand forecasting 
- Load management polieies 
- Financing 

POWER SYSTEM PLANNING 
- Generation planning 
- Transmission planning 

MANAGEMENT OF RESOURCES 
- Reservoir management (hydro systems) 
- Fuel purchasing and allocation policies 

MEDIUM TERM ENERGY MANAGEMENT 
- Maintenance scheduling 
- Fuel scheduling 
- Hydro & hydro-thermal scheduling 

SHORT TERM ENERGY MANAGEMENT 
- Load forecasting 
- Unit Commitment 
- Hydro- & hydro-thèrmal coordination 

OPERATIONS, OFF-LINE STUDIES 
- Static coordination problems 
- Contingency analysis 
- OPF 

SHORT TERM OPERATIONS 
- Dispatching (optimal) 
- Emergency redispatching (non-optimal) 

AUTOMATIC GENERATION CONTROL 
. Automatic load-frequency control 
'. Automatic generation control 

MONITORING 
- SCADA 
- Security monitoring 
- State estimation 

PROTECTION 
- Various protection schemes 
- Coordination between protection devices 

RESTORATION 

] 

LONG 
TERM 

MEDIUM 
TERH 

SHORT 
TERH 

VERY 
SHORT 
TERM 

INSTANT 
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Planning functions deating with the energy supply study~ the efficient 

procurement and management of the limited energy resources. In hydro 

systems, reservoir management is concerped with the storage of water energy 

for use at the most opportune times [El-Hawary & - Christensen 1979, Ihura & 

Gross 1984J. For example, in Quebec Most reservoirs are filled during the 

spring and the summer to prbvide for the peak demand in the winter. The water 

management is complicated by the presence of varlçus reservoir types, with 

storage cycles from zero (run of river plants) to one year (large storage 

plants) . Typical planning horizons for reservoir management can be of the 

order of five years. In thermal systems, the scheduling of thermal generating 

plants is influenced by the availab il !t y of certain fllel types, and by the 

commitments of long term fuel-purchasing contracts [Kondragunta & Walker 1984, 

Levin & Zahavi 1984]. In recont years, planning strategies for resource 

management have incorporated stochastic models, to take into account the 

random nature of such things as yearly precipitation levels and f1uctuating 

fuel priees [Dodu & Merlin 1979]. 

The functions classified here as medium term form a transition between 

planning and operations functions. Given the typical load distribution and ......... 

energy production targets over a period of one year, these functions schedule . 

the prolonged use/non-use of the various components "of the power system 

J [Turgeon 1981, Vemuri 1984]. For example, in prolonged periods of weak 

demand, the more expensive generation plants can be turn~d off. Also in these 

periods. system components are scheduled to be shut off for maintenance 

[Yamayee 1982]. Then, in periods of strong demand, most of the system 

components would be made available. 

The short cerro and very short term functions are opera'tions functions. 

They can be characterized by the presence of power requirements, as opposed to 

energy requirements in the previous functions. The short term functions 

provide the decisions typically needed to meet daily power requirements. Unit 

commitment [Gruhl et. al. 1975, Pang et. al. 1981, Lauer & Bertsekas 1982], 

hydro and hydro-thermal coordination [Calderon & Galiana 1987] determine the 

on/off ,timi~g sequence and the general production levels of generating units 

to satisfy most economically the varying power load, plus reserve and ramping 

constraints. Present a1gorithms used for these functions only incorporate 
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forecasted daily loads at intervals of one hœr or so, am usually littie or 

no power network infonnation is used. Hence as outp..It fram these functions 

the commitment schedules are finn, but the prcx:luction levels only serve as 

guidelines . 

Using these comrni bœnt schedules, optimal values of real pcMJ\ 
generations arrl other electrical variables can he computed, incorporating the 

difficult network constraints am equipnent limitations, using the optimal 

power flCM. Besides dispatching ~ , this prcgram supplies targets for 

reactive powers, voltages and passive controls on the system, which can be 

updated at various times in the day. sorne OPF implementations, especially 

the 1OC>re recent ones, the so-call securi ty constraints have alse been 

included te the fonm.ùation [carpen . er 1975, ~tott et.al. 1987]. 'Ihese 

further restrict the operation of the system, such that following the rerroval 

of any one of the system's camp:>nents, all the system variables rernain 

feasible. 'Ille securi ty constraints are fed te the OPF by the contingency 

analysis function. 'This studies plausible contingencies in the present 

operating con:::li tions, am fram them formulates a set of constraints in the 

likely post-contingency states. Presently, because of their long computation 

times, impleIreJ1tations of the OPF arrl of continJency analysis are camputed 

off-line. 'Ihey would be of great use in dispatching if they could be upjated 

much faster. 

'Ihe very short tenn operations functions, are split inte optimal 

dispatching and non-optimal redispa1:c.hi.nJ. 'Ihe dispatching :Éûnctions are 

neant te quickly satisfy the p:Mer demarrl as it varies. As pointed out 

earl ier , dispatching algorithms optimize the values of the electrical 

variables using a simplified network m::xlel. SUch algorithms are presently 

available for real-tilre control, with solutions being updated in the order of 

minutes. 'Ihe other operations function, also available in real-tilre, is 

errergency redispat.ching [~ et.al 1983]. It is used when the system finds 

itself operating with sorne quantities, outside their limits, usually following 

a contingency. 'The redispat.ching forsakes optimality te quickly firrl a 

feasÏble operating point towards which the system can easily he IOClVed. 

Ideally, implementations of redispatching should be faster than tilose for 

dispatching . 
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The next group of functions, designated as instantaneous in Table 1.1, 

are on a much smaller time scale than previous functions, and occupy a large 

field on their own in power system studies. Hence they are not classified as 

operations functions. 

Automatic generat!on control [W'ood & W'ollenberg 1984] operates in the 

order of seconds. It is a closed-loop control which monitors and maintains 

(1) the prescribed tie-line power flows, and (2) the system' s nominal 

frequency, ta satisfy the internal system load. The control action is 
"performed by constantly modifying the real power generations to minimize a 

norm of the discrepancies between the scheduled frequency and tie-line flows 

and the!r measured values. The changes in the individual generations are 

given by their participation factors, which are computed from a perturbation 
1 

analysis of the last dispatching solution [W'ood & W'ol1enberg 1984]. 

Two more very fast functions are presently implemented in real-time. 

They are (1) the SCADA monitoring functions, which measure and verify aIL the 

system variables every few seconds [Miller 1983], and (2) protection, which 

detects and isolates fau1ted network e1ements within hundredths of a s.econd 

after the occurrence of the fault [Yarrington 1968 & 1974]. 

The remaining function, restoration, has not ~et found its way into its 

ideal time slot. This function deals with restoring full use of the power 

system following a partial or a total shutdown [Peach 1984]. Ideally this 

would be an operations function, with appropriate strategies being computed 

for various partial system shutdown situations. Unfortunately, most 

restoration plans presently available stem from simulation studi.es, which 

require comp1ex analysis and numerous runs 

computation tin!s. As a result, only a 

strategies are ever available to a utility. 

of programs with very long 

few pre-computed restoration 

1. 3 A First Look at the Optimal Power Flow Problem 

A comprehensive description of the optimal power flow problem its 

formulation, its uistory and its solution Methodologies - will be provided in 

1 
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the following chapters. In this section. we take a quick first look at the 

OPF. 

The OPF is an operations function whose role is to find the optimal 

setting~ of all the electrical variables in the network, for a given load. 

The optimization involves all the electrical variables which are available, as 

decided by the scheduling llnd commitment functions placed higher up in the 

control hierarchy. Optimality ls established accordlng to some particular 

criterion, expressed as an algebraic objective function. In most OFF studies 

the obj ectlve is to minimize fuel costs, al though other objectives are 
, 

available for various tasks. Engineering and system limitations are expressed 

as algebraic equality and inequality constraints. These constralnts include 

the nonlinear equations which model the network, ca11ed the load flow 

equations, and upper and lower bounds on most of the variables. This is the 

basic description of the OPF problem. 

Additional constraints have been considered for the OPF problem. The 

security constraints described earlier have been incorporated in simplified 

form into some OPF packages. but according to Carpentier [Carpentier 1987], 

few algorithms are presently efficient for security-constrained problems. 

Spinning reserve and ramp constraints on rea1 power generation have a1so been 

mentioned as potential constraints for the OPF, but these are probably best 

handled in the scheduling and unit commitment functions. Present 

Implementations which incorporate these constraints are dispatching 

algorithms, with simplified network models in place of the load flow 

equations. Tie-line power flows to the neighboring utillties have often been 

considered as separate constraints, but their modelling can be incorporated 

into the load flow equations. Hence, the constraints des,eribed in this 

paragraph will not be considered in the OPF formulation and in the subsequent 

solution method010gy presented in this thesis. 

Using the nomenclature developed for the variables in Chapter 3 and its 

appendices, the optimal power flow problem is expressed mathematically as the 

foll-owin8-ROnlinear program (see next page): 



min 
b, 
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s.t. g(b"d.,bo'p) - 0 

where 

f, g and h 

p 

are the objective funct1on, the equal1ty and the 

inequal1ty constraints. respectively. 

is the vector of independent variables. 

18 the vector of dependent variables. 

ls the vector of loads. In, most tasks, it is a fixed 
, 

parameter for wh1ch a new ~o1ution 1s requ1red. 

is the set of fixed system parameters. 

This formulation of the OPF problem dates back to the late 1950's- early 

1960' 8. At that ~ime, mathematical optimization theory had iU8t formulated 

the tools needed to solve the problem. S1nce then OPF research has looked for 

better ways to solve this difficult problem. Power systems researchers have 

been quick to apply the latest emerging numerical optimization techniques, and 

in some cases have instigated the development of succcssful techniques [Abadie 

& Carpentier 1969]. 

In this thesis, dispatching is referred to as a subset of the optimal 

power flow. Historically. dispatching algorithms. preceded the OPF; the 

arrival of the OPF marked the end of the "c1assica1" period of economic 

dispatch. which had developed over almost 30 years [Kirchmayer 1958]. The OPF 

was a radical departure from the earlier dispatching, although now those 
1 

dispatch algorithms can be seen as crude simplifications of the OFF. 
-- -. ~' .. 

B 1cally the two solve for the same minimum cost obj ective, but in the 

la~sical dispatching algorithms, only real power generàtions were considered. 

and :he load flow equations were represented by a single equatity constraint, 

called the power balance equation [Wood and Wollenberg 1984]. By the late 

~- 196'0' s • more sophis t icated dispatching algori thms were deve loped as an 

outgrowth of the OPF. Here the nonlinear load flow equations are replaced by 

a lineari'zed model, but all the variables and the ir bounds were !tept, as in 
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the OPF. Sinee the early 70' s, some implementations have gone one step 

further, in separating the eompon~nts of the weakly coupled real and reaeti-.re 

power problems in the linearized model. The use of the real and the reaetivé 

dispatch in tandem provides fairly good results, especially for real power, 

dispatch, and ls much faster than the full OPF. Aiso since the early 70' s, 

these recent dispatching algorithms have served as _subproblems in the OPF 

solution methodology. The subprobleI!l is used as a block within an Iterative 

scheme in which the nonlinear information is updated. The nonlinear optimal 

solution is reached when the subproblem solution coincides ~ith the load flow 

feasible expansion point from which it was generatêd. That i5 the approach 

used in the popular sequential quadratic programming strategy, and lt will be 

used ln the work described in this thesis. 

1.4 The Use of the OPF and its Subsets in Higher Order Functions 
J 

Pie ces of the optimal power flow and of its dispatching subsets have been 

used as tools in system expansion planning and in the time-related operations 

functions. . Transmission planning has become more complex in recent years, 

with the load flow constraints appearing in the formulation, along with the 

more usual power capacity constraints. The usua1 objectives of planning 

functions are also related to the objectives in OPF. Many of these are formed 

at least in part by the Integral ove~ time of the typical OPF objectives. The 

most_ common of th~se ls the minimum costs objective. Particularly in reactive 

power planning, the standard formulations have integrated the load flow 

constraints, in imp1ementations ranging in complexity from linear programming 

[Kishore & Hill 1971, El Shibini & Dayeh 1975] to nonlinear programming 

[Hughes et.al. 1981, Lee et.al. 1986] and integer programming [Kohli & Kohli 

1975]. Robust commercial OPF programs have been made available over the 1ast 

dec~de, and they are now being used as building blocks for the larger planning 

problems. For example. researchers at General Electric have used their OPF 

package to solve reactive power planning problems [Fernandes et.al. 1983]. 

Typically, the OPF can be used for. long term planning functions. where 

computation times are not a limiting factor. 
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Few efforts have been made to incorporate any model of the load flow 

constralnts into the time-related operations functions. Recently, EI-Hawary 

and Tsang (1986] formulated and so1ved a hydro-thermal coordination problem 

with the nonlinear load flow constraints. Predictably, they reported very 

long computation times for realistic sized problems. That being the general 

case, usually much simpler and faster dispatching algorithms are used in 

scheduling and unit commitment. An example in generation schedu1ing ls the 

work by Waight and colleagues [Waight et. al. 1981a]. There the simplest of 

economic dispatch algorithms, using the power balance equation to represent 

the network, is integrated to the larger scheduling algorithm, Along with ramp 

and reserve constraints on the generations. In unit commitment also. the 

simple dispatching model is integrated into the larger algorithm. Examples 

for three solution techniques of unit commitment are mentioned: in branch and 

bound [Ohuchi Sc Kaji 1975] and in dynamic programming [Snyder et.al. 1987] 

techniques. the values of the nodes being compared are the solutions 'of an 

economic dispatch algorithm for the various combinations of generators; in the 

recent Lagrangian relaxation methods [Zhuang & Galiana 1987]. the economic 

dispatch constitutes the primal subproblem. 

1.5 The Continuation Method 

This section describes a 1ittle-known mathematical technique which serves 

as the basis for the work: presented in this thesis. The continuation method 

serves in solving (nonlinear) sets of equations, but Is used in conjunction 

with standard numerical techniques. It is also well-suited for optimization. 

The literature in numerical mathematics actually presents the continuation 

method from two viewpoints. In earlier publications, it was seen as a method 

for improving the convergence of the standard methods, by generating sequences 

of more easily solved intermediate problems, leading to the desired problem. 

In mor3 recent implementations. the intermediate problems have taken on some 

physical slgnificance, and as a result the solutions form some useful 

trajectories. 

The basic ide a behind the continuation method Is quite simple. Figure 

1.1 111ustrates this idea for the solution of nonlinear equattons. A problem 

, 1 

1 
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Fl (x)-O has a solution xl' which can be computed using a standard iterative 

technique as long as the initial guess is in the region Rl' -t1nfortunately 

this region is usually unknown a priori, and in some cases can be very small, 

In this example, with an initial guess of Xo the standard technique would fait 

to converge to the desired solution. In a first step of the continuation 

approach. some simply resolved problem Fo(x)aO is built, for which the 

solution is xo' Fa and Fl are linked through a parame tric relationship Fe(x) 

- F(x,6) = O. where e is a scalar contained in the unit interval, called the 

continuation parameter. Given Fi' the most general conditions for the choice 

of the relationship F(x,e) and for a suitable initial problem Fa are covered 

in the difficult homotopy theory [Hu 1959]. However, for most applications so 

far and particularly for polynomial functions, simple methods exist to 

validate chese choices [Garcia & Zang~i11 1981, Morgan 1987]. 

The second step of the continuation method consists ln Increasing the 

value of e from zero to one. This can be done incrementally for systems which 

a110w analytical - solutions, or discrete1y for systems which only allow 

numerica1 solutions. The solution of the desired problem -F1 in the former 

case wou1d be obtained by integrating F(x, de) over the interval 9 e [0,1]. 

This has been the basis for the theoretical explanations of th~~s method 

[Davidenko 1953], and has been used in sorne applications. Most applications 

however app1y numerical solution techniques, either in conjunction with 

standard numerical nonlinear solution techniques, or in numerical integration 

schemes. 'In these cases, the problem F is perturbed by small amounts starting 

from Fo<xo)"'O. If the perturbation is small enough, the solution to the new 

problem F(x, 9)=0 is easily found using the previous solution x 1- 1 as an 

initial guess. This is illustrated in figure 1.1, with the X i - 1 situated in 

the regions 'of convergence Ri' and usually X 1 - 1 is close to the xi' The 

solution. to the desired problem ls achieved when the continuation parameter 

reaches one. 

Some of the promlnent references for the numerical solution of nonlinear 

equations by the continuation method are now mentioned. Historically, the 

first papers on continuation methods are attributed to Schauder [Schauder 

19'34 J and to Lahaye [Lahaye 1934, Lahaye 1948]. although their work was very 

limited in scope. The theoretical basis of the method was established in more 
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genera1 terms in tlle early 1950' s, particularly by Friedrich~ [Friedrichs 

1950] and by Ficken [Ficken 19511. In 1953, Davidenko [Davidenko -1953] 

developed the first systematic numerical continuation algorithm for solving 

nonlinear equations, based on the Integration of the differential equation, as 

mentioned above. Over the next fifteen years, advances in this approach were 

r.eported most notably by [Freudenstein & Roth 1963, Deist fic Sefor 1967, and 

Meyer 1968]. More recently, computer Implementations basad on Davidenko's 

method were written by Kubicek [Kubicek 1976] and by Rheinboldt and Burkardt 

[Rheinboldt & Burkardt 1983b], and made publicly available in the ACM software 

library. In aIl of these applications of the Davidenko approach, the~~ 

remained a major unresolved problem: in some instances. the Jacobian matrix 

built at one stage of the process can become singular-for sorne value of the 

parameter, and the process bogs down;', Scarf [Scarf 1967] avoided the 

Davidenko approach altogether in his solution technique, which is based on the 

more difficult simplicial techniques (see [Gar~ia'& Zangwill 1981]). His work 

was continued, amongst others in [Eaves 1972, Eaves 1976, Saigal 1977, Saigal 
• 

& Todd 1978, Saigal 1983]. This 1ine was summarized in [Allgower & Georg 

19801. The singularity problem in Davidenko's, approach was resolv:ed by Chow 

and colleagues [Chow et.al. 1978] and by Keller [Keller 1978), in algorithms 

which were specifically designed to eli:nihate the possibil1ty of singular 
1 

points. Their improvements have made the continuation method a robust 
1 

numerical tool for "genera1 use. Some recent computer implementations based on 
1 

these improvements 'are reported by [Garcia & Zangwill 1979, Garcia & Zangwill 

1981. Watson & Fenner 1980, and Morgan 1987]. The last three references are 

of particular interest: two are excellent textbooks [Garcia & Zangwill 1981 

and Morgan 1987], and Watson' s program 1s available in the ACM software 

library. 

The continuation method has also been used.successfully for the solution 

of optimization problems. Parametric linear anà quadratic programming using 

singLe parameter variations are in fact examples of the continuation method in 

optimization [Boot 1964, Van de Panne 1975]. One application of parametric 

quad~atic programming to be g1ven a name of Its own ls Houthakker' s Cap~city 

Method [HQuthakker 1960). Its separate treatment is justified in that this 

method's solution techniques are different from the simplex-type methods used 

at the time. Implementations of parametric linear and quadratic programming 



• 15 

have been re1ative1y fast and reliable, because their solutions procedures 

avoid non1inear equations and they easily iden~ify changes in the active set 

as the continuation parame ter increases. In this thesis, the application of 

the continuation method in optimization is a form of parametric quadratic 

programming. It is used as a subproblem for the more general nonllnear 

program. 

Figure 1.2 l1lustrates the use- of the continuation method for a small 

quadratic program. The axes of the graph represent the two variables Xl and 

x2 and the continuation parameter a. The feasible reglon of the prob1em we 

wish to ~olve is thetP01~sPn on the front face 9-1 of the polytope in (x,9) 

space. Because of ./' complexity, the resul ting solution process might be 

lengthy. Hence the ntinuation method Is tried in the hope of slmpllfying 

the process. The simple problem, at 9 ... ~, ls chosen so that Its feasible 

region is the rectangular box at the back surface of the polytope in (x,9) 

spacJ., The solution procedure easily finds the optimal solution xo· to the 
'\./ 

simple problem. Then as e is increased, the feasible region is de~ormed back 

towards its original shape. In the process, the optimal s,.)lution trajectory 

leads from xo· to the desired solution Xl·' when 9-1'. Little computational 

effort was required, because the optimal solution trajectory changed direction 

only once. This is an example of the "varying limits strategy", used in power 

systems dispatching [Galiana et. al. 1983]. 

The solution ta the more general and more difficult parametric nonlinear 

programming problem has been tackled only in the last few years. In addition 

ta the usual problems in dealing with the convergence of nonlinear programs, 

the maj or difficul ties in these progr\ams arise in trying to accurately track 

the nonlinear solution traj ectories, and in locating the "breakpoints", or 

values of 9 for which the active set changes. The main contributions 50 far 

in this fledgling field are possib1y those of Guddat, Bank and colleagues at 

Humboldt University in East Germany, and Gfrerer and Wacker at Johannes Kepler 

University in Austria [Bank et. al. 1982, Gfrerer et.al. 1983, Guddat et.al. 
\ 

1984]. Other important contributions have been presented in compilations and 

proceedings of sr acialized conferences, for examp1e [Fiacco 1982 and Fiacco 

1984] . 

'.i 
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Figure 1.1. An illustration for the solution of nonlinear equations 
using the continuation method. 
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Figure 1.2. An illustration for the solution of a quadratic program 
using the continuation method. 
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In power systems, Ponrajah recently tackled the nonlinear OPF problem for 

a single input load using continuation methods in a manner similar in scope to 

Guddat's [Ponrajah 1987]; this application will be'discussed a 1itt1e further. 

From a1l these applications, there emerge four major advantages in using 

the continuation method: 

For sorne problems, the construction of solution trajectories leads to the 

solution of the desired solution faster or more reliably (or both) than 

the standard techniques. 

The solution trajectories are useful in their own right, in cases where 

the continuation parameter ls actually some physical parame ter which 

varies in the system. One example in various engineering fields is the 

so-called incremental loading technique. 

This method is not restricted ln its choice of an initial guess. 

This 'method can be made very robust. 

occurrence of numerical instabilities. 

That al10ws to reduce the 

Presently with Many numerica1 

techniques, when a computer prÇ>gram ends abnormal1y it is dif~icul t to 

establish whether the cause is numerica1 instability or the infeasibility 

of the problem to be solved. In a recent power system application, the 

continuation method has shown the ability to detect feasibility limits 

[Famideh-Vojdani & Galiana 1983]. 

1.6 The Continuation Method in Power Systems 

Parametric programming and continuation methods have been suggested for 

power system dispatching by a few research groups over the last decade. The 

most common application 50 far has been the tracking the optimal sol~tion in 

dispatching problems. as a function of the varying system load. This 15 

called the "load tracking strategy" in this thesis. Other applications have 

also been suggested for dispatching, and rec~ntly sorne researchers have turned 
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their attention to the optimal power flow. There are still many ~tried areas 

in operations and in operations planning for using continuation techniques. 

To illustrate the general idea of the continuation approach, we present 

Figure 1.3, which portrays in its simplest form the input-output structure of 

a power system operation problem. In conventional optimization techniques, 

the input is a single load; in the continuation approach using the varying 

load strategy, the input is a load tr.ajectory. The resulting output ls an 

optimal generation trajectory. Implementations of an optimization box for 

real power dispatch have proven very attractive - the computations of solution 

trajectories by the continuation method a~ as fast as the solution for one 

load,by most conventional methods. Note that the varying parame ter need-not 

be l~ited to the load. One example i8 the varying limits strategy des~" bed 
)~ , 

earlier. !bat strategy solves for a given load, by varying the elect cal 

parameters "inside the big box" from some relaxed positions to their- intended 

positions. Other (as yet untried) parameter variations affecting the system 

performance could be useful for planners. Two of these are suggested inside 

the big box in fig. 1.3: (1) for expansion planning, the electrical para~eters 

(device capacities, admittances, etc.) are varied and their effects on the 

optimal operating costs are readily obtained; and (2) for 'economic planning, 

the affect of an external parameter (such as varying fuel costs) on the 

optimal operating costs can be studied. 

EXTERNAL PARAMETERS - , 

INPUT: f OUTPUT: 

LOAD TRA JECTORY DISPATCH TRAJECTORY 

~ 
OPTIMIZAtlON -

~ 
ELECTRICAL PARAMETERS 

Figure 1.3. A schematic diagram of the diffarent positions of parameter 
variations for power system optimization. 
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The first mention of parame tric programming for power system dispatching 

was made by Dillon [1981]. His paper suggests with some detail the general 

idea of parameter variations in the right-hand-side of the optimality 

equations. (These are the only applications to have been tried so far.) 

However, he did not pursue the issue any further. 

Prof. Galiana and graduate students in the Power Systems Group at McGill 

University have been studying continuation methods for the solution of power 

systems operation prob~ems since the beginning of the 1980's. For his Ph.D. 

thesis, Vojdani produced a computer program implementing economic dispatch 

with the varying load strategy, using a DC load flow network model [Fahmideh

Vojdani & Galiana 1983]. He shrewdly noted that his work is an application of 

the incremental loading concept, developed using a better network model than 

in the standard formulation. About a year la ter , Juman' s Master' s thesis 

reported on a potentially rapid solution technique for quadratic programming, 

based on the varying limits strategy illustrated earliar [Galiana et. al. 

1983]. A summary of results from those two projects and of some new ideas for 

parameter variations in economic dispatch were published by this author and 

his colleagues in 1985 {Huneault et. al. 1985]. By th en , a second wave of 

applications suggested the use of the continuation method for other power 

system problems. In his Master's thesis, Ponrajah [ponrajah & Galiana 1985] 

used Vojdani's pro gram to compute optimal incremental bus costs. Calderon, in 

his Ph.D. thesis, produced a program for the time-dependent hydro-thermal 

coordination problem [Calderon & Galiana 1987]. In that wOFk, he suggesteâ 

time~dependent parameter variations which succeeded in identifying and 

handling the difficult active dynamic constraints. More recently, ponrajah's 

Ph. D-. thesis applied continuation methods to solve the OPF problem for a 

single load [PC\nrajah & Galiana 1988]. In a first step, he solves a 

simplified nonlinear OPF problem, with dependent variables neglected, using 

parametric techniques. In a second step, he reintegrates the neglected 

nonlinear constraints Into the problem. Violated constraints are handled by 

the varying limits strategy, but here, as in Guddat's work mentloned earlier, 
, 

the variables are tracked along nonlinear trajectorles. This author ls also" 

proposing an OPF solution methodology in th1s thes1s, but w1th a much 

different solution strategy. 
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Starting a1so in the ear1y 1980's, The French national power ut1l1ty 

E1ectricité de France (EDF) has been deve10ping its own rea1 and reactive 

power dispatch a1gorithms, based on parametric quadratic programming and the 

varying load strategy. Carpentier first reported on their real power dispatch 

in 1983 [Carpentier et.al. 1983J , and Blanchon fol1owed shortly after for the 

reactive [B1anchon et.al. 1983]. More recent papers report that the utility's 

results with these programs are very promising for use in real-time 

dispatching [Carpentier 1985, Carpentier 1986, Carpentier 1987}. 

A third group, from the Italian power utilities research institute ENEL, 

has been exp10ring the use of parametric methods for real power dispatching 

with a look-ahead capability. Franchi and col1eagues [Franchi et. al 1980} 

proposed an automatic generation control using parametric linear programming, 

and th en updated it to handle network constraints and ramp constraints 

[Innorta & Marannino 1985]. They have recently reported on work in this 

direction with parametric quadratic programmlng [Innorta et.al. 1987]. 

1.7 The Present Tbesis 

1.7.1 General Comments 

The work in this thesis i8 in part an extension of the McGill group' s 

previous dispatching studies using continuation methods. It propos~s a 

\ solution methodology for the optimal power flow problem~ incorporating 

continuation methods at different leve1s. 

A first application of the continuation method is buil~ into the 

optimization sol ver. We propose to solve the OFF using the well-known 

sequential quadratic programming strategy. Here however, the quadratic 

subproblem at the heart of the process exploits the varying limits strategy. 

The solution process for the OPF subproblem, containing a11 the electrica1 

variables, is more complex th an that for rea1 generation dispatching. New 

concepts have been introduced, such as transparent variables and fold Lines in 

the load flow manifold, in order to adapt the methodology to this problem. 
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In a second application of the continuation princip1e. a sequence of 

closely spaced loads Is fed to the nonlinear OPF optimlzation, as portrayed 

previously in fig. 1.3. ThIs produces as output a discrete OPF solution 

trajectory. Once this load-tracking procedure Is initiated, the solution 

times for the individual OPF solutions are greatly reduced. This is because 

the proposed algoz:ithm is designed to execute its tasks quickly at every level 

when presented with a good initial guess from the previous optimal solution. 

The merits of the OPF algorithm proposed above have been investigated in 

a computer Implementation for the economic dispatch task. The OFF algorithm 

ls modular, with the simpler components feeding the more complex ones. Sorne 

of these modules can be used on their own for the sirr:?,ler dispatching 

functions. Two of these modules are the real power dispatch module and the 

continuation method quadratic subproblem itself, which is basically a 

voltage - reactive power dispatch. Results from the program were closely 

monitored throughout the computation, and provide much insight into the 

internal workings of the algorithm. 

1.7.2 Outline of the Thesis 

The chapters of this thesis are organized as follows: 

CRAPTER II SURVEY AND ANALYSIS OF THE OPF LITERATURE 

This chapter presents a c~mprehensive survey and analysis of the optimal 

power flow literature. \~ a 'irst part, a compilation of some three hundred 

publications on OPF and d~ching is organized chronologically and according 

to the optimization techniques used to solve the problem. The more important 

contributions are signaled out in the discussion, but all the publications are 

listed in an appennix. The general trends in solution techniques for the OPF 

over the last 15 years or so are also examined. In a second part, the basic 

OFF solution methodology Is broken down into Its basic components, and options 

for each component are enumerated. Example' from the literature of the uses 
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of the various components and solution structures are enumerated in what could 

be used as a classification scheme for OPF. 

CHAPTER III DESCRIPTION OF A NEW OPTIMAL POWER FLOW ALGORITHM 
~ 

This chapter presents our OPF algorithm, featuring applications of the 

continuation method. It also presents many numerical techniques used to aid 

in the solution. The algorithm is first presented in general, in a 

descripti".,re manner, to sive the reader a better feel for what is to follow. 

The OPF and its quadratic subproblem are th en formulated mathematically, and 

aIL the system variables and parameters are introduced. Then the OPF 
, 

alBorithm is presented in detail, covering each component of the program, and 
, ~ 

in sorne cases. the alternatives which were discarded. Among the important 

details are the subproblem solution procedure, the various homotopy strategies 

for solving the subproblem, the Newton-Raphson solution procedure 

incorporating a step size control, the explanat:Lon of the inherent numerical 

difficulties which require an "anti-zigzagging" device, and the load-tracking 

step. 

CHAPTER IV SOLUTION OF THE OPF SUBPROBLEM USING THE CONTINUATION HETHOD 

In this chapter, the mathematical details o~ the subproblem solutions are 

presented. The quadratic subproblems for three tasks are analyzed: economic 
, 

dispatch. minimum loss and minimum load shedding. The first two tasks are 

solved in two ways, using either the 'varying limits strategy or, the varying 

load strategy. Details are available for the solution of economic dispatch by 

the varying limits strategy, so they are presented here. The minimum load 

shedding subproblem ls th en formulated for the first time in this thesis, and 

a solution procedure is sugsested using the varying demand strategy. For each 

task, we provide the subproblem formulation, the resulting optimality 

conditions and the solution trajectories, and a suggested initial, simple 

problem to start the continuation process. 
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CHAPTER V OTHER APPLICATIONS OF THE COliTlNUATION METHOD IN OPF 

A fev more applications of continuation methods in power system 

operations are proposed in this chapter. They are: (1) a formulation and a 

solution technique based on: the continuation method. for the i.ncorporation of 

the time-dependent ramp constraints into the quadratic. subproblem of economic 

dispatch; (2) a strategy ta vary transmission and generat~on parameters by the 

continuation approach, in solving for post-contingency redispatch; (3) a look 

at possible additions to the resl power dispatch using the De load flov model; 

and (4) the computation of optimal bus incremental costs, based on the 

solution of economic dispatch by the varying 10ad strategy. 

, 
CHAPTER VI DETAILS OF THE NUMERICAL IMPLEMENTATION OF AN ECONOMIC DISPATCH 

- OPF ALGORITHM 

This chapter doc~ents the main procedures of a computer program which 

implements our OPF algorithm for the economic dispatch task using the varying 

limits strategy. First sorne general comments are made concerning the basic 

building blocks of the program: data structures. linear equation solvers, and 

matrix-vector products. Then the details of the subproblem solution are 

presented ~ Special attention is given tà the real power dispatch solver. 

which ~OUld be used on its own. Other important sections of the subproblem 
\ 

computation are also described: the quick updating schem~s for the optimality 

conditions following changés in the active set, the computation of solution 

trajectories, and determining the next breakpoint. Tests for resolving 

certain cases of degeneracy were a1so implemented in the program. 

CHAPTER VII DESCRIPTION AND ANALYSIS OF THE NUMERICAL SIMULATIONS 

This chapter documents and analyzes the numerical results obtained from 

our OPF program. Tests were carried out on four test systems, ranging in size 

from 6 to 11S- buses. In a first section, the results for the 6 bùs system are 

presented. Here the series of graphs and tables are commented in detail. 

Then for the remaining tests, the sarne set of resul ts are presented in the 



• 
f '--

24 
t 
\ 

graphs and tables, but only - -the hi'ghl1ghts are displayed in the discussion. 

The resu1ts, vhich cov:.~r the whole range of computations, are -presented from 

the most genera1 to the most detailed. They include an an~lysis of the global 

_ performance of the solution pro~edure, and the values of the variables at 
\ 

varlous stages of the computation. Following this presentation, a discussion 

reviews a~d analyzes the main results. Our results for the 30-bus test are 

th en compa:ted to those of other programs. The chapter closes with a 

discussion on numerical difficu1ties encountered in the program and possible 

remedies. 

This being a fairly large thesis, the author suggests a limited list of 

important sections for a quick first reading. They shou1e! give the reader a 

good overview of the work before de1ving into the details. 

Chapter II, sections 2.1, 2.2, 2.3 and 2.5.1 

Chapter III, sections 3.1, 3.2, and 3.4.4.,5 

Chapter IV, section 4.1 and the opening descriptive paragraphs of the 

formulation sections 4.2.1, 4.3.1 and 4.4.1 

Chapter VII, sections 7.1 and 7.6 to 7.9 
~~ .... 

j -- -

1.8 Claim of Ori~~nality 

To the best of the author' s judgement. the following are original 

contrib~tions to the study of the optimal power flow problem: 

(1) A comprehensive classification scheme for the description of optimization 

algorithms used in OPF and dispatching. [Huneau1t & Galiana 1988] 

(2) An a1gorithm for solving the OPF problem based on the sequential 

quadratic programming strategy and involving continuation methods at 
~ 

different stages. This inc1udes: 
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(a) A new, more general fo~lation of the OPF quadratic subproblem: 

i. It ls formulated in a space of real power >injections and other 

variables, so that it, 1$ useful on its own as ~ dispatching 

tool. 

ii. The set of independent variables can be varied' dynamically, 

iH. 

using simple rules, to simplify the solution process. 

The notion 

exploit,ation 

algorithm. 

of 

are 

transparent 

introduced 

variables 

for the 

and their 

first time 

efficient 

in an OPF 

iv. Restrictions usually placed on the slack injection in the 

formulation are eliminated. 

\ 

v. The resulting optimality equations forro a very simple and 

attractive structure from a numerical point of view: a bordered 

block with" a diagonal main submatrix and a small border. 

<-b) A solution methodology for the ,quadrat'ic subproblem based on the 

continuation method. 

i. The varying limits strategy, used successfully in real power 

dispatching, has been adapted for use in the OFF subproblem. 

ii. A more difficult "initial simple problem", based on that in 

real power dispatching, ls completely analyzed and implemented. 

Certain theoretical points concerning the dispatching of 

compensation devices have emerged from the analysis. 

l 

ili. An efficient algorithm has been implemented to track the 

optimal solution of the subproblem using the varying limits· 

strategy. 
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Quick numerical updatlng schemes are developed for the 

optimality conditions followlng a change in the active set. 

(c) A set of rules for ensurlng convergence of the nonlinear OPF 

optlmlzation. This includes: 

(d) 

i. The use of a step size as a me ans to control nonlinear 

convergence of the OPF algorithm. This has been used in the 

quasi-Newton Han-Powell method for OPF, but not in a Newton 

method. 

ii. The development of simple heuristics for this step size 

control. 

ili. The use of a non-standard load flow solver to ensure descent of 

the objective function (used, albeit, as a backup for a more 

commonly used technique). 

Lv. The development of simple heuristlcs for step size control in 

the Newton-Raphson solver. 

v. In the context, of the OPF problem, a theoretical explanation of 

a problem Inherent to the linearization of nonlinear ,equations, 

which causes a numerical problem called zigzagging. 

vi. The development of simple heuristics used to reduce zigzagging. 

1 
\ 

The addition of a load-tracking loop to the OPF algorithm, as a 

means to produce quick OPF solutions for subsequent loads. 

(3) A theoretical analysis for applications of the continuation method to the 

subprqblems of other operations tasks. 

Ca) ~~ analysis of the OPF subproblem for economic dispatch based on the 

varying load strategy. 1 
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(b) An analysis of the minimum 10ss subproblem. 

i. The linear formulation of real power los~es PL - eT(ps - Pd) is 

proposed for use as the obj ective function in minimum loss' 

optimization problems. 

ii. The optimality conditions resulting from the use of the linear 

objective are formulated for the minimum 10ss problem. 

11i. - Theory is provided for the solution of this minimum loss 

problem by the varying limits strategy. 

Iv. Theory is provided for the solution of this minimum loss 

problem by the varying load strategy. r 

(c) An analysis of the load shedding problem. 

1. A formulation of the load shedding problem in which the 

objective is clearly a norm of the unsatisfied load . 

. 
il. Inclusion of the active dispatching constraints in the' 

formulation of the load shedding constraints. 

Hi., An ana1ysis and a proposed a1gorithm which links the optimal 

loads suggested by the load shedding to its corresponding 

~ uniqu~ optimal dispatch of generations. 

Iv. The optimality conditions are formu1ated for this minimum 10ss 

problem. 

v. Theory ls provided for the solution of the load Fhedding 

problem uaing the "varylng demand" strategy. This strategy is 

a1so new to this thesis. 

(d) Theory for the inclusion of ramp constraints to the OPF subproblem 

developed in this thes;J.s and a suggested method of solution using 

continuation methods. 
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(e) Strategies are suggested for parameter variations of the 

continuation method associated "ith contingencies in the r0wer 

system. 

(f) A solution methodology bas~d on the continuation approach is 

proposed for real power dispatch based on the DC load flow model 

augmented with phase shifter variables. 

(g) Theory is provided to compute bus incremental costs for real and 

reactive power loads, based on the solution of economic dispatch 

using- the varying load strategy. 

(4) A fast, hybrid, resl power dispatch algorithm,-, implemented in the OPF 
t -; ~~ 

a1gorithm, but which can be used on its own. 

(5) A computer pro gram implementing the OPF algorithm for the economic 

dispa~ch task, using the varying limits strategy in the subproblem and a 

load-tracking loop. 

(a) A large set of numerical results from the progr~m, illustrating the 

behaviour of the algorithm on four test systems 1 ranging in size 

from 6 ta 118 buses. 

(b) A· discussion -which provides a fair amount of insight into the 

mechanisms of the computation. 

(c) The confirmation of predicted advantages. of the method: (1) in 

tracking the subproblem solutions with relatively few breakpoints, 

(-2) in obtaining descent of the obj ective function at each 

Iteration, and (3) in computing quick solutions in the load-tracking 

mode. 

(d) A ~escription and an analysis of future improvements to the present 

program. 
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CHAPTER II 

SURYEY AND ANALYSIS OF THE OPTIMAL POWER FLOW LITEMTllRE 

2.1 Introduction 

The history of optimal power f10w research can be characterized as the 

application of more and more powerful optimization tools to a prob1em which 

basica11y has been well-dp!fined since the 1950' s. Modern optimization theory 

dates back to about that time, and advances in numerical' optimization has 

followed the theory close1y. Both have made great strides sinee their 

infancy. Optimal power flow (OPF) has been quick to profit from these 

advances and from speccacular advances in computer techno1ogy. Steady 

progress has manifested itself in the solutions of larger &nd more eomplex 

prob1ems in a suitable time frame. 

The first part of this chapter proposes an exhaustive survey of the OPF 

1iterature, organized with a view on optimization techniques. Preparatory 

materia1 on ba:;ic optimization theory and on 1 numerical methods has been 

relegated to Appendices 2.1 and 2.2, respectively. The chapter bagins with a 

general overview of tasks performed by QPF, and the evolution of solution 

techniques. T'here follows a discussion on recent trends. A detailed survey 

of the literature then lists the major contributions in each branch of 

activity; these and other references have been compiled in an exhaustive li~t, 

presented in Appendix 2.3. 

The second part of this chapter proposes an analysis of numerical 

optimization methods used in OPF and its subsets. This covers formulations 

and solution procedures. Basic elements are described, aiong with the many 

available options, and stru~tures of numerical computation are identlfied. A 

summary of the analysis, suitable for classification of OPF algorithms. ls 

presented in Appendix 2.4. 
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2.2 A General Overview 

Figure 2.1 traces the evolution of the OFF literatüre, from the' early 

stages to the present. It shows many things: the arrival and the 

disappearance of methods, the relationship between methods, and the interest 
\ 

shown in each method. The structure of the figure 15 based on the 

presentation of numerical optimization methods of Appendix 2.2. Its actüal 

filling-in is based 'on the compilation of some three hundred publications on 

OPF and its subset~. The chronology of each method is clearly depicted, and 

the interest shown in each method, as measured by the number of yearly 

publications, is represented by the height of the blocks. The literature 

survey will consist more or less in filling in the details of fig. 2.1. 

The main groupings are according to the performed tasks. By far the most 

studied is minimum fuel costs, or economie dispatch. The first systematic' 

efforts, dating back to the early 1930' s, produced the "incremental loading" 

methods (branch A in fig. 2.1). The addition of losses to the network model, 

starting in 1943, resulted in the "classical" economic dispatch (branch B). 

Optimality conditions for these methods constitute the equal incremental cast 

criterion ,and thus lends its name to this first group of methods. Other 

branches in this group consider additional problems J such as valve point 

loading (branch E), dynamic constraints (branches T) and interties (branches C 

and D). 

Equal incremental cost methods eonstitute the most popular economie 

dispatch tool. Loss models have been improved over the years, and in recent 

proposaIs, classical economie dispatch has served as a building bloek for more , 
complete algorithms. These methods are simple and fast, because they limit 

the network modelling to its simples,~ expression. 

A second group, dating from che early 1960' s, oecupies the other end of 

the spectrum. The true OPF techniques consider aIL variables, non1inearities, 

and bounds. Their development w~~ made possible by the appearance of powerful 

optimality conditions in the 1950' s. The various applications have followed 

the evolütion in numerical optimhation, from ineffieient successive 

approximation (early 60's), to gradient and penalty methods (60's and early 
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Figure 2.1. A chart of OPF publications 
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70's), to sequential l1near and quadratic programming (mid"'70's - present), 

and parametric programming (80's - present). In figure 2.1; OPF methods have 

been split into three groups. Gradient (branch I) and successive linear 

programmlng (branch J) are placed in the group of linear methods. Newton 

strategy (oranch K) and Projected Lagrangian (branch L) are in the group of 

quadratic methods. 

their formulation; 

technique. 

Penalty methods (branch N) are classlfied on their own for 

their solution, in fact, usually follows a quadratic 

A third group bridges the gap between the equal incremental cost methods 

and the full OPF techniques. First appearing in the late 1960's - early 70's, 

methods based on linear (branch 0) or quadratic (branch Q) programming offer 

some of the advantages of both previous groups. While retainlng a simpler 

linearized model of the network, aIL variables and bounds can be represented. 

Chronologically, in fig .. 2.1, these methods are portrayed as spin-offs from 

the more general nonlinear methods. More recent sub-branches explore the use 

of network techniques for linear programming (branch P), parame tric 

programming (branches R), and ~ynamic constralnts (branches T). 

A remaining group for economic_dispatch 18 based on the decomposition of 

the OPF problem lnto two subproblems, for real and reactive powers (branch N). 

Each subproblem holds constant variables of the other subproolem. The 

subproblems are solved alternatively, with one feeding new values to the 

other. Each subproblem can then fall into one of the previous categories. 

Tasks other than economic dlspatch have received relatively little 

attention. In fig. 2.1, only the reactive power-voltage control task has 

enough entries to warrant sorne kind of classification. lt is based on 

objective functions though, and not on optimization methods. These other 

tasks will be discussed later. 
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2.3 Recent Trends in OPF 

Recent trends in OPF can be traceld in its more important review papers. 

Going back to 1974, Sasson and Merril. [Sasson an Herrill -1974] discuss the 

dtfferent uses of OPF, linking it to planning, medium-term operation problems 

(unit commitment, reserves and scheduling), and special static problems 

(reactive dispatch. environmenta1 dispatch). Optimization methods considered 

promising at the time were unconstrained Newton and quasi-Newton techniques 
• 

associated with penalty methods, and gradient methods aimed at solving the 

Kuhn-Tucker conditions. 

A few years later, Happ's review [Happ 1977] put the emphasis on equal 

incremental cost methods for economic dispatch, with various improvements 

(val.ve point loading, mu1ti ·area dispatch, considerations for automatic 

generation control (AGe), and envirorunental dispatch). He a1so presents the 

more general nonlinear problem and cites linear prograIl1Illing and gradient 

solu~ion techniques. 
y-' " 

~ \ 
In the two previous reviews, the autho~s basically rePFrted on their 

areas of expertise. 1 Stott and his colleagues [Stott et. al. 1980] give a more 

comprehensive picture of the state of the art at the beginning of the 1980' s. 

They look at the different elements (objectives, constraints, modelling) of 

the problem. and qualities of a good numerical solver. Solution techniques 

considered promising are primal and dual-based gra.dient methods. penalty 

methods, and successive linear programming. The benefits of decoupling real. 

and reactive subprob1ems are a1so discus sed. Finally, they describe the idea 

of using the OPF as a simulation tool for contingency-ccwstrained OPF. 

Talukdar and Wu [Talukdar & Wu 1981 J cover many areas of power system 

operation in their review. Methods reviewed for OPF are classica1 economic 

dispatch, gradient methods, and for the first time in a review, a (non

penalty) quadratic method, the Han-Powell quasi-Newton method. 

Dillon [Dillon 1982] presented a study of penalty methods at about the 

same time, and concluded that they present seriaus weaknesses for thermal 

power dispatch. Interest has waned of late in these methods. 
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Much progress was achieved in quadratic methods by the time the review by 

Carpentier was pl1blished [Carpentier 1985]. He first suggest$ an interesting 

classification of methods, based on properties of the algorithmic structure. 

Solution techniques using gradient methods and the new projected Lagrangian 

methods are described and compared for reliability and computation time on, 

typical problems. He singles out one of the quadratic methods as being very 

promising [Sun et. al. 1984]. He also notes that despite recent advances in 

software and hardware, none of these methods is suitable for on-line use. He 

then discusses recent parametric quadratic methods applied to decoupled real 

and reactive subproblems. These methods were developed amongst others by 
, 

Carpentier and his colleagues. In this and in a follow-up paper' 'ZCarpentier 

1987], he considers the possibility of using these algorithms on-1irl, and in 

contingency-constrained OPF. 

The latest important review on OPF is that of Stott and colleagues [Stott 

et.al. 1987]. As in their 1980 revfew, these authors present the state of the 

art in the field, B:S well as their own insights into the different a~pects of 

the OFF prob1em. and the directions for future research. They classify the 

latest OPF implementations in much the same way as in Carpentier' s 1985 

review, and comment on the different structures. The emphasis i5 p1aced 

however on the development of new security-constrained OPF algorithms, with 

different 1evels of comp1exity for the security control strategies. 

Present trends for OPF are geared towards dispatching in real-time. Most 

recent Implementations seem to he going towards the decoupling. idea [Stott & 

A1sac 1983, Sun et . al. 1984, Carpentier 1985, Innorta & Marannino 1985, 

Contaxis et. al. 1986]. The real power prob1em having been extensive1y 

studied, interest has shifted of late towards voltage reactive power 

dispatch. The non1inearity of the latter prohlem makes it difficult to resolve 

quickly [Stott & Alsac 1983], but reasonable computation times have been 

reported for large systems [El-Kady et. al. 1986]. The real and reactive 

subprohlems are being solved most1y usinS quadratic methods. 

\ 
\ 
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2.4 Detai1ed Review of the Literature 

Full lists of publications for each branch of figure 2.1 can be found in 

Appendix 2.3, giving autpor and year of publication. The complete information 

can then be found in a bibliography, separate from the references. This 

section points out only the main contributions in each branch of the OPF 

literature. 

The early work on Incremental loading (branch A) is summarized in the 

book by Steinberg and Smith [SteInberg & Smith 1943], Fuel cost curves are 

accurately represented. inc1uding "bumps" due to valve points. The network is 

represented by a loss1ess power ba1afice equation. l?ing this model, equations 

are derived to characterize optimal operating conditions; they are called 

coordination equations. The ensuing natural solution strategy is cal1ed the 

equal incremental cost criterion. The Implementation at the time was hy graph 

or by a dedicated slide-rule. 

~e addition of a model for real power transmission losses to the 

incremental 10ading problem lead to classical economic dispatch. A first loss 

model was proposed by George [George 1943]. Improvements from the late 1940's 

- early 50's produced the B coefficient model EKirchmayer & Stagg 1951, Glimn 

et. al. 1952, Hale 19521. It is based on certain assumptions [Tudor & Lewis 

1963] which allow real power losses to be expressed as a quadratic function of 

real power generations. Despite being a rough apprd.x:.l.mation, it has remained 
-. 

popular (for example, Aoki & Satoh 1984, Mansour et.a1. 1984, Wenyuan 1985]. 

Coordination equations were developed [George et,al. 1949, Kirchmayer & Stagg 

1952, Glimn et. al. 1954] to incorporate the los ses . Since then. a quadratic 

approximation of the objective function has usually been chosen for 

implerltentations, on analogue computers [George et.al. 1949] and on digital 

computers ['most publications from the early 50' s] . Kirchmayer' s book 

[Kirchmayer 1958] summarizes the work on classical economic dis?atch. 

1 
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At about the same time, were proposed [Brownlee 

1954, Cahn 1955] based on network equatio s. Linear models were built from 

first order differential information [Tudor & Lewis 1963, Van Ness 1963], and 

later quadratic models using second order i formation [Hill & Stevenson 1968] . 

In these, all independent variables ar~ The linear oodels have 

remained more popular, since they are more easily -lpdated in Iterative 

algorithms. These iterative algorithms appeared in the 1970' s [Happ 1974, 

wollenberg & Stadlin 1974, Shoults 1977]. Bas ically, they use the EICC method 

as a subprobleLl, updating nonlinear information and handling dependent 

constraints at each iteration. 

Branches C and D look at interconnected systems. The coordination 

equation approach (branch G) was first proposed with two or three interties 

[Glimn et. al. 1958, Kirchmayer 1959, Kerr & Kirchmayer 1959]. Methods for 

systems with any number of interties appeared some ten years later [Aldritch 

et. al. 1971, Happ 1975). In aIl th~se proposaIs, equality constraints are 

added to the basic ror::rulation to enforce int~rt:'e power flows. Some other 

approaches (branch D) cons:'de:::- nonlinear progra:r::rring [Peschon 1972] and linear 

programming [Deo 1973]. 

Computer imple::lentat:ions or economic 'dispatch ülcorporating the effects 

of valve points on the co st function are rare. That is because the modelling 

of nonlinearities and, the ensuing optimization proble::l are 'di::ficult, and the 
" 

benefits rather small. Reported benefits range from 0.1% [Ringlee & Williams 

1963] to 1. 8% [Decker & Brooks 1958] over dispatches which neglect valve 

points. Network models in these Implementations are linited to their simp1est 

expression to avoid complicated nonlinear programming. Anot:her difficulty, 

discussed by most authors and analyzed by Vojdani [Famideh-Vojdani 1982], i3 

the discont:inuity of optimal solution traj ectories. 

Concerns with the effect of emissions from fuel- burning pO"1er plants on 

the environment (branch F) attracted attention over a period of some 7 years, 

starting in 1970. Early proposaIs for minimum emission dispatch [Gent & 

Lamont 1971] or reduced area-wide emissions [Delson 1974] were usually rather 

simple, adding a single equality constraint to the problem. The paper by 

Cadogan and Eisenberg [Cadogan and Eisenberg 1977] collects many of the ideas 
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in the field,' proposing different formulations, with single-area or multiple

location emission,constraints. Note that the proposed constraints have always 

been static, with no build-up or displacements of emissions being considered. 

/ 

Solution of the classical economic dispatch by dynamic programming 

(branch S) wa~ proposed to avoid modelling valve point nonlinearities 

explicitly .[Ringlee & Qïl1iams 1963]. 

terminated. 

--
This branch has long s ince been 

In the remaining branch T. dynamic dispatching proposes the addition of 

dynamic ramp constraints to the usual s~atic economic dispatch. This is 

different from the case with static ramp constraints [Isoda 1982], in that it 

offers a loék ahead capability , to avoid infeasible operat,ion following large 

jumps in system load. A disadvantage is that many coupled static problems 
\..J,' 

must be solved in tandem, but proposaIs based on classical economic dispatch 

[Bechert & Kwatny 1972, Ross~ Kim 1980] are re1ative1y easy to solve. 

This regroups the various dispatching and true OPF methods based on 

linear approximations forming the search direction, plus two precursors. 

Squires [Squires 1961] used classical Lagrangian techniques to formulate the 

optimality conditions for OPF (branch G). These incorporate the load flow 

equations, but nèglect bounds on variables. A year 
" 

[Carpentier 1962] presented the optimality conditions 

later, 

for OPF, 

Carpentier 

including 

bounds, based on the Kuhn-Tur.ker conditions. This is generally considered the 

first publication on OPF. The proposed solution technique of successive 

approximation was inefficient though, and it was never implemented in a 

production code. 

The first efficient solution of OPF was accomplished using gradient 

methods. Basically two variapts dominate the literature. The Carpentier 

approach [Carpentier 1968 & 1972] solves the OPF by the primal method. The 

Dommel and Tinney approach [Dommel & Tinney 1968] salves the Kuhn-Tucker 

equations using a combination of the gradient method for a fixed set of 
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independent variables and penalty functions for violated dependent 

constra:!.nts. The latter has the advantage of a fixed formulation, but is 

hampered by the problems associated with penalty factors. It has been the 

more popular oi the two gradient methods, and indeed one of the more popular 

in the entire literature. Important improvements were proposed to exploit 

sparsity [Peschon 1971], or the fast decoupled load flow model [Al sac & Stott 

1975]. ~ny features were included to the basic algorithm in an 

implementation by researchers from General Electric [Burchett et. al. 1980]. 

Two other applications of gradient methods can be mentioned. Yu and 

his colleagues [Yu et.al. 1979] solve the OPF in two stages, both by the 

gradient method. The first stage ignores depèndEnt constraints; after 

adjustments to the solution, the second stage adds possib,ly violated voltages 

to the objective via penalty functions. This program has the capability of 

handling very large problems , but often infeas ible values remain upon 

completion. In the other application, Burchett and col1eagues [Burchett 

et.al. 1981] applied the general purpose non1inear programming package MINOS 

(Murtangh & Saunders 1980 & 1983] to solve the OPF problem. It builds 

internally a sequence of projected Lagrangian subproblems, which it solves by , 
any one of a family of gradient methods. 

Successive linear programming (branch J) has been used in a few OPF 

applications to date. Khan [Khan & Kuppusamy 1979] suggests the use of a 

U.near programming subproblem in a nonlinear iterative loop, with special 

considerations to avoid oscillation of the iterates. Stott and Aisac [Stott & 

Alsac 1983] present the results of their experience with SLP, following 

extensive work with linear programming. Researchers from Control Data 

Corporation [Van Meeteren et. al. 1986] reported recently on their work with 

uccessive linear programming, but details are lacking. 

Linear 

ispatching. 

programming applications (branch 0) abound in 

Early papers [Wells 1968, Shen & Laughton 1970] 

real power 

were already 

quite complete, with piecewise-,linear objectives and constraints on ail 

variables. A first maj or production code based on LP was developed by EDF 

[Merlin 1972] to handle most operating tasks. Many publications hava bean 

presented since th en in the 1970'~ - 80's, the best known being those of Stott 
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and colleagues [Stott & Marinho 1979]. Many features, including piecewise--

linear objectives and the latest sparse methods are inc1uded in their program 

, for real power dispatch. Very fast network techniques (branch P) have been 

proposed during the 1980' s [Lee et. al 1980 &1981, Hobson 1984] to solve 

network-structured linear programs. 

Parametric linear programming (branch R) is the newest variant of the 

group [Innorta & Marannino 1985 J • It efficiently computes solution 

trajectories for real power dispatch, given a load forecast. Look-ahead times 

of as much as one half hour have been considered. This branch might -be short

lived, since the authors have recently converted to paratnetric quadratic 

programming. 

Many of the tailor-made OPF algorithms proposed in the Late 1960' s

early 70' scan be classified as Newton strategy tnethods (branch K) [l'eschon 

et. al. 1968, El-Abiad & Jaimes 1969, Shen & Laughton 1969]. Typically these 

methods solve the Kuhn-Tucker equations using the Newton-Raphson solver for 
) 

nonlinear e~uations, with added controls for active constraints. The standard 

successive quadratic programming, which developed in the early 70's, offers a' 

more flexible solution' a1gorithm, made up of reliable parts. The first 

applications in power systems came' béfore the popularization of the added 

exact p~nalty functions. In 1973, two papers [Nabona & Freris 1973, Nicholson 

& Sterling 1973] proposed quadr:atic subproblems to drive the optimization, 

followed by a Newton-Raphson solver to maintain feasibility. In both cases 

the subproblems were solved u~ing Beale's methoa, a simplex-type technique. 

Since the mid 70' s, quadratic programming methods based on the Kuhn

Tucker equations have taken over. Methods using this formulation and applying 

the Newton search direction in the solution process are called Lagrange-Newton 

methods. Dillon [1975 & 1981] has investigated these methods, and propose~ 

pararnetric programming extensions. This bran ch has evolved, with the advent 

of exact penalty functions, into projected Lagrangian methods. 

Pi 
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The first projected Lagrangian programs for OPF (branch L) were proposed 

in the late 70's - early BO's [Biggs & Laughton 1977, Lipowski &: Charalambous 

1981] . They have been overshadowed by sorne well-publtcized commercial OFF 

packages. The General Electric package has evo1ved along w1th MINOS from a 

gradient solver [Burchett et.al. 1981] to a quasi-Newton solver [Burchett 

et.al. 1982] to a Newton solver [Bur'chett et.al. 1984, Maria &: Findlay 1986]. 

The ESCA package [Sun et.al 1984] implement.s the Lagrange-Newton solver to 

sparse decoupled subproblems, with penalty terms added to handle violated 

dependent constraints: The PCA package [PCA 1985) also uses the Lagrange-

Newton solver and decoupling, but little else 1s known about it. Researchers 

from Control Data Corporation [Van Meeteren et.al 1986] have reported recently 

on their package, 

prog!:'amming. 

including both successive linear and successive quadratic 
\ 

-, 
Quadratic programming applications for dispatching first appeared in a 

flurry, in 1973 - 74 [Nabona & Freris 1973, Nicholson & Sterling 1973, Reid &: 

Hasdorff 1973, Podmore 1974, Vollenberg &: Stadlin 1974]. Some of these were 

proposed as subproblems and some on their own, for real power dispatch and 

reactive power dispatch. Podmore formulated a quadratic program, but 

inappropriately solved it by the gradient method. Another good paper on the 

subject is that of Dayal [Dayal et.al 1976], which also includes discussions 

on sparsity a~d degeneracy. All those ~ers used primal simplex-type solution 

techniques. ')ince then few implementations have been reported. Applications 

based on the Kuhn-Tucker conditions appea~ed - in 1982 [Bottera ~t. al. 1982, 

Quintana' &: Lipowski 1982]. 

The two remaining 

quadratic programming 

did not pur sue 

ranches in this group are related. 

anch R) was proposed by Dillon [Dillon 1981], but he 

Since the early 1980's three research groups have 

been active in 

is a member, has 

ie1d. The McGill University group, of which this author 

ported good resu1ts for real power dispatch \\sing the 

in two different applications [Famideh-Vojdani & Ga1iana 

1983, Galiana et.al 1983]. A recent paper reported on various new parame~er 

variations for redispatching [Huneault et.al. 1985]. The EDF group in France 

has solved decoupled real power [Carpentier &: Cotto 1983] and reactive power 

[B1anchon et. al. 1984] problems. They report that the very fast computation 
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times make these methods promising for rea1-time dispatching. A third group, 

from the Ita1ian power uti1ity ENEL, have applied parametric linear 

programming [Innorta & Marannino 1985] and parametric quadratic programming 

[Innorta et.al. 1987] to rea1 power dispatch. In the second publication, they . 
a1so include dynamic costs and ramp constraints (thus constituting branch T); 

the combination of parametric and dynamic techniques seems well-suited. 

D-

This group is based main1y on the work of Sasson and colleagues during 

the late 1960's - early 70's. They app1ied the newly developed SUMT method to 

OPF. Their first implementations u~ed quasi-Newton techniques [Sasson 1969a]. 

These were soon considered Inadequate for large power system problems, and 

were replaced by Newton methods [Sasson et.al 1971b & 1973]. They propos,ed 

applicatio~s for economic dispatch, minimum loss [Sasson 1969b] and even load 

flow (Sasson et.al. 1971a]. Since then, similar applications have appeared ,. 

sporadically. 

The splitting of OPF into subproblems has been quite common. Today many 

publications propose rea1 or reactive dispatch algorithms which could be 

inserted as subproblems into a decoupled OPF. Publications placed in this 

gr,oup (branch M), however, consider the entire nonlinear optimiz~tion. Dopazo 

was the first to solve a P-Q decomposition [nopazo et.al. 1967]. The proposed 

solution process used classical economic dispatch for real power and a minimum 

loss objective for reactive power. The latter was solved using a gradient 

solver.. Other objectives for reactive power subproblems are discus~ed a 

little further. Later publications, grouped mostly in the early 1970' 5 and 

early 1980' s, use tHe same solvers for both subproblems. Solvers include ~ 

linear programming [Chamorel & Germond 1982], quadratic programming [Nicholson 

& Stirling 1973, Contaxis et.al. 1983], gradient [Talukdar et.al. 1983, Lee 

et.al. 1984]. and SUMT - 'Newton [Housos & Irisarri 1983]. Recall that several 
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of the projected Lagrangian methods reviewed earlier a1so use decoup1ed 

formulations. 

Reactive powe~ and voltage are often dispatched alone, after real power, 

using the remaining degrees of freedom offered by the network. The benefits 

are "reduced p'roduction costs, unloading of equipment, and-an improved voltage 

profile" [Fernandes et.al. 1978]" Typical1y sorne norm of reactive power 

deviations (Kishore & Hill 1971, Stott & Alsac 1983], or a closely re1ated 

function such as real power losses [Peschon et.al. 1968, Bi1linton & Sachdeva 

1972, Franchi et.al. 1983] or dependent "slack" generation [Adielson 1972, 

Fernandes et. al. 197,8, Contaxis et. al. 1983) is minimized, i'ubj ect to voltage, 

reactive power, shunt, and tap constraints. Three branches of fig. 2.1, U,V, 

and W respectively, corresP9nd to the three objective functions. In some of 

the earlier cases only voltages were comtrol1ed [Kumai & Ode 196[, Hano et.al. 
l' 

1969, Narita & Hamman 197~, Savulescu 1976]. In a recent paper [E1-Kady 

et.al. 1986], the objective is a combination of ml.uimum 10ss ,';~nd milllmum 

deviations. 

Solution methods for ~his prob1em include U.near programming [Kishore & 

Hill 1971, El-Shibini & Dayeh 1975, Zhang 1986a & b], paramenic 1inear 
, d 

programming [B1anchon et.a1. 1984], and successive linear programming 

[E1angovan 1983, Stott & Alsac 1983, Mota-Palomino & Quintana 1986]. Stott 

and Alsac note that due to the high ~onlinearity of the problem, a single pass 

of LP is inadequate; in fact, usually many iterations are required. Other 

solution methods are quadratic programming [Nicholson & Sterling 19731, 

gradient [Fernandes et.al. 1978], and nonlinear quadratic methods [Horton & 

Grigsby 1984, Padiyar 1986]. A sequence of papers on the subject by 

researchers at General Electric (Fernandes et.al 1978,Happ & Wirgau 1978, 

Wirgau 1979, Aldrich et .a1 1980] and in collaboration with researchers at 

Ontari~-Hydro [E1-Kady et.al 1986] closely parallel their work reported 

ear1ier on economic dispatch. 
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Minimum J.oss (branch X) solved as a function of aIl dispatchable 

varia17les has received Little attention. 
0 

lt is of sorne use only where 

dispatchable power comes mostly from hydro- generation. Two early papers 

[Galvert & Sze 1958, Sze et.al 1959] apply c~assical Lagrangian techniques to 

obtain the optimality conùitions of the problem. A later application [Sasson 

1969b] solves the problem using SUMT. 

Post-contingency dispatching problems make up the next two branches. The 

minimum deviations task (branch Y) is invoked following a contingency, to find 

a feasible operating point as clos'e as possible to the pr,e-contingency 

operating point. The deviations can be considered for some variables [Hobson ,.., 
1980, Zhang & Brameller 19841 or aU of théin [Kaltenbach & Hajdu 1971]. Linear 

programming is the most common solution method. 
) 

The minimum violations task (branch Z) is also invoked following a 

contingency, and seeks only a feasible operating point. Two proposed solution 

methods are least squares (quadratic' objective) [Shoults & Chen 1976] and 

SUHT, using a gradient solver [Sachdev & Ibrahim 1975]. Some algorithms 

described in the previous pages include something s imilar, a "phase one" of 
. '. 

- linear programming [Murty 1983], to find a feasible operating point when 

neèded [for example, Horton & Grigsby 1984]. 

Load shedding (branch A') is performed only in the emergency state, when 

the demand cannot be met without vio1ating constraints. In ,~his thesis, only 

steady-state load shedding, also called load curtailment, will be considered. 

Up ta now, there has been no clear-cut methodology for load shedding. On the 

one hand, researchers are still striving to formulate "the least 

obj ectionable" solution [Zaborsky et. al 1985]. On the other hand, it is felt: 

that certain numerical difficulties have impeded the developm~nt; they are 

reported a litt1e further. 

The literature can be split into two groups: those algorithms which 

minimize a norm of shed load, and those which control 10ads in trying to 

achieve sorne other objective. The algorithms in the first group will express 
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load as a function of generation and line flows [Palaniswamy et.al. 1981],' or 

include other independent ""ariables in the objective [Subramanian 1971]. 

Those in the second group usually minimize a combination of load shedding and 

S01l\e other function, s, .. ch as minimum deviation [Ej ebe et. al. 1977, Ghoneim 

~t.al. 1977, Chan & ~chweppe 1979] or minimum violation [Krogh 1983]. Others 

have suggested ~imply minimum deviations, with some control on loads 

[Medicherla et.al. 1979]. In mos~ cases, priorities can be attributed to the 

loads by using weighting coefficients. 

The complications in the formulation of the objective were probab1y meant 

to avoid the forementioned numerical problems. Chan and Yip [Chan & Yip 1979] 
v 

tackled this problem when they proposed a decoupled algorithm, with loads 

forming the objective for one subproblem and generations for the other. They 

note that _ in the first subproblem, the reallocation of generation is non-

unique. What 1 S more, dependent load flow constraints cannot be modelled in 

this case. In the Chan and Yip paper, the first. subproblam is solved 

completely, and then dependent constraints are handled in the reallocation of 

generati'on. The Ürst important paper on load shedding ,- by Hajdu and 

colleagues_IHajdu et.al. 1968] also proposes a load-only objective, subject to 

a full set of constraints, but the y did not seem to notice the problem of non

uniquene s s . 

Solution methods for load shedding algorithms range from Newton strategy 

[Hajdu et.al. 1968], to quasi-Newton [Palaniswamy 1981], and quadratic 

prOgrammin~ [Subramanlal 1971]; but mostly linear programming [Subramanial 

1971, Ejebe et.al 1977, Ghoneim 1977, Krogh et.al. 1983]. Piecewise-linear 

objective functions are used for linear progranuning in the two papers co

authored by Chan [Chan ~ Schweppe 1979, Chan & Yip 1979]. 

The last branch is maximum loadability (branch B'). It finds the largest 
<5 

sum of real power generations which can safely satisfy the demand, given a 

load distribution fGarver et.al. 1979]. It i8 useful as a planning task, in 

determining the influence of varying parameters in expansion planning. The 

analytical approach has also been proposed [Dersin & Levis 1982], in trying to 

establish a description of the 10adabi1ity region. 
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2.5 Analysis of Numerical Optimization Algorithms Used in OPF 

This section undertakes the analysis of numerical optimization methods in 

general. Some basic building blacks and their various - mod'es of 

interconnection are proposed. The role of each block 

different available options in OFF. Then the 

identified in the OPF literature are presented. 

is explained, along with 
~ 

algOrithmiC~ctures 

A purpose of this section 1s to show that numerical optimization 

algorithms are basically an assembly of ~arts. The parts are often 

interchangeable, and can be chosen to suit the problem. The assembly need not 
Î 

fit exactly into any recognizable catego;y; parts can! be added or deleted if 

necessary. That, in fact, is the case of many proposed applications. 

Despite the diversity of numerical optimization algorithms, lt ls felt 

that they share r~latively few, fairly simple, common elements. Conceptually, 

the solution process of an iterative optimization algorithm can be broken down 

into seven parts: f<!>r1Ilulation, initialization, projection, choice of 

subproblem, solution of subproblem, test for convergence, and rules for 

starting a new iteration. The formulation and the choice of subproblem are 
1 

fixed at the outset; the other parts fornn, the numerical procedure per se. 

Each part is now described, vith references made to its use in OPF or lts 

subsets. 

Formulation: This is the choice of the problem to solve. The constraints can 

he modelled vith different degrees of accuracy, depending on the available 

computation :time. Ye consider three main levels of complexity, to which we 

give the following names: 

- The OPF level, which retains aIl the nonlinearities. 

- The dispatch level, in which the network model is replaced by a linear 

approximation, but not reduced in dimension. There are different linear 
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models. varying in complexity. Three commonly used are the load flow 

Jacobian model [Carpentier 1962]. the fast decoupled load flow model 

{Alsac & Stott 1975]. and for real power dispatch. the De, ioad flow model 

(Wood & Yollenberg 19841. 

- The lumped network level, in whic~all network considerations are reduced 

to a single real power balance equation. This model is used in equal 

incremental cost methods. 

and complexity. 

Different models exist, varying in accuracy 

Ye will say that problems formulated at the latter two levels are dispatching 

problems. Until now, only problems wi.:h these simplified form,ulations can be 
, 

solved on large systems within the time limitations' of dispatching (order of 

minutes) . 

Completing the description of the load flow constraints, upper and lower 

bounds are placed on most variables. Bounds are not placed on voltage phase 

__ angles per se. but occas ionally real power line flows are expre:;sed as phase 

angle differences, to which bounds are assigned [Merlin 1972]. Another load 

flow constraint proposed in some lumped network formulations is a second 

equality constraint for reactive power balance [Moskalev 1963, El-Hawary & 

Feehan 1978], but that is rarely used. 

" Constraints other than the static 10ad flow constraints have appeared in 

various formulations, mostly in dispatching problems. The most important are 

environmental constraints [Cadogan & Eisenberg 1977]. frequency constraint.s 
" 

(Somuah & Schweppe 1981, Palaniswamy et.al. 1985] and reserve [Waight et.al. 

1981b, Farghal et. al. 1~84] and ramp constraints on real power generations. 

The latter have been proposed as static [Isoda 1982] or dynamic [Ross & Kim 

,1980] constraints. 

Simplifications which can occur at any level are the omission of certain 

variables or of certain constraints on some variables . 

Initialization: An initial estimate of the solution is propbsed, which serves 

as an expansion point for numerical approximations. Usually a feasib1e value 
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is required. although in some recent techniques, as mentioned in Appendix 2.1, 

the problem is bypassed. The description of the initial estimate also 

includes the corresponding active set and a choiee of independent variables. 

Projection: This step consists in choosing a subset of the system variables as 

independent variables. The choice can be fixed at the outset, as in many 

applications, or can be allowed to vary with each Iteration, as in reduced 

gradient. Advantages of a proper choice are as follows: 

- The formulation can be simplified or maintained in some naturally simple 

form, when expressed as a function of certain variables. 

- Functional constraints can be avoided by making active variables 

independent. 

Actions which exploit these two advantages often conflict. Hence, certain 

rules are needed to manage the choice of independent variables. In the OPF 

algorithm proposed in this thesis, some simple rules will be provided to 

strike a compromise between both objectives above. 

Choice of subproblem: Nonlinear programs are solved, whether explicitly or 

implicitly, by generating a sequence of simpler problems. These subproblems 

are usually very reliable, and usually chosen to terminate. The subproblems 

are constituted of the following: 

- A linear or quadratic approximation of the objective function. 

- Usually, a linear approximation of the constraints. 

- Usually, constraints on independent variables. These can be handled with 

exact bounds or penalty terms. Dependent constraints are sometimes 

omitted from the subproblem and treated elsewhere. 

The operations needed to solve the optimization problem described above, for a 

given approximation (a given expansion point), delimit the subproblem. 

o 1 
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In problems with a single equality constraint, a quadratic approximation 

is sometimes used for the power bàlance equation, in lumped-network-level 

methods [Aoki & Satoh 1982]. Using the above definition, each linearization 

of the approximation constitutes a subproblem, even though the entire process 

is quite fast. 

Solution of the subproblem: Many solution techniques are available to solve 

any given subproblem. They differ in their choice of search direction and step 

size, and in the way chey handle constraints. 

used in OPF are as follows: 

Dif'ferene methods prese-ntly 

- For search direction: 

-,Quadratic objective functions: Newton step, quasi-Newton step, 

conjugate gradient step, simplex-type step, solution 

trajectories from the continuation method. 

- Linear objective functions: gradient step, simplex step, and 

solution trajectories from the con~inuation method. 

- For active constraint ma~agement: 

,\ - Exact constraint verification: primal approach (as in gradient 

and simplex methods), Lagrange multiplier apprbach, active set 

methods. 

- Penalty function methods: exact penalty terms, interior and 

exterior penalty methods; on independent and/or dependent 

constraints. 

The subproblem can be single-staged or multi-staged. In the single 

staged subproblem, a single search direction is c,omputed for each 

approximation. That is the case in gradient and penalty methods. In the 

multi-staged subproblem, the optimization is carried out with a given 

approximation until it terminates; examPles are linear and quadratic 

programming. 

Test for convergence: If the difference between two quantities is smaller than 

a certain tolerance, the latest iterat~ is retained as the optimal solution. 

The monitored quantities can be: 

\ 

~ 
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- Values of the objective function 

- Values ef a norm of the vector of variables 

\ 
The comparison 

'/ 
because optimal of active sets should not be cons idered , 

solutions are sometimes situated at a degenerate vertex (see Appendix 4.2). 

The quantities can be evaluated in one of these combinations: 

- At successive expansion points (usually, in primaI methods). 

- At an expansion point and the ensuing subproblem' s 

(usually, in dual methoàs) 

optimal solution .. 

Rules for st.arting a new Iteration: If convergence has not been achieved, the 

expansion point and possibly the set of independent variabl~Z are updated, to 

feed the next subproblem. 

referred ta as the "Rules". 

In' future in this thes is, this step will be 

This is probably the most complex and the most 

obscure step of the process, since it deals with the nonlinearities. In 

designing this step the following items must be considered: 

ITEM 1. The solution from the subprobi.em is always infeas ible. Solution 

values are retB:ined for a 

variables are recomputed 

possibilities: 

subset of subproblem variables, and the remainil'lg 

using the load flow equations. There are two 

- The state variables are retained. In that case a simple evaluation ot: 

the load fl6w equations suffices. 

- Injections,. or a combination of injections and states are retained.. An 

iterative solver is needed. .. 

The first choice is always made in projected Lagrangian methods. It is fast, 

but s ince C'onditions are usually placed on, injections. not states. these 

methoâs satisfy functional constraints only at the final. optimal solution. 

The second choice requires much more computation, but allows sorne c6ntrol 

over the choi,ce of injection values. A possible disadvantage is that the 

proposed injections could be infeasible [Jarjis 19BO]. In that case, for this 

\, 
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S'tep te be suœessful, the process nrust be able to suggest an alternative. 

Projected gradient techniques (Rosen 1961J arrl Newton-Raphson solvers with 

step size control [Gross & Luini 1975, FCA 1985] offer such capabilities. 

ITEM 2. 'Ihe lœ.dflCM feasible point of ITEM 1 could be out of l:x:::>unfu:,. For 

rrethods which require a feasible expansion point, the follCMi..n1 actions can be 

taken: 

- violated valuP-S can be set te their l::xJl.m::ls arrl the loadflow equations 

recomputed. 'Ihis ~thod is unreliable when more than a f€!ll violations 

occur, and the resul t way net be useful (see ITEM 3). 
@. 

- A new value is fourd alon;1 the search segment, establishe.d between the 

previous expansion point and the load flow feasible candidate of l'J.'Elo'I 1. 

For Iœthods with penalty t.enns, excursions fram the feasible region are 

restrained, but only in the next. iteration, by UIX1at~ penalty coeffitients. 

. " 
ITEM 3. 'Ihe new candidate fran ITEM 2 might not be an irnprovement, in that its 

objective value might be higher than that of the previous expansion point. In 

fact, in many rrethods no precaution is taJœn ta aid descent. one way to 

ensure descent is ta design the seard1 segmant between the previous expansion 

point and the ITEM 1 point ta be a descent direction. 'Ihen by applying the 

appropriate step size fram the previous expansion point, a better ITEM 3 point 

can be found [Han 1977]. Another way, for m:!thods usirq trust regioqs or 

exact quadratlc penalty tenns, is ta adjust coefficients ta reduce excursions 

in the next subproblem. 1
'\ 

ITEM 4. '!he deperrlentj indeperrlent partition can he updated in the Rules . for 

the next subproblem, irrlependently of the choice of indeperrlent variables made 

in ITEMS 1, 2, am 3 of this iteration. 

, !fu.e degree to which these i terrs are satisfied am the precise :i.nplementatj on 

v~ greatly fran one methcx.l to another. 'Ihat is because (1) there are many 

choices available in the solution strategies, am (2) there are different 

levels of sinq;>lification, relinquishirq accuracy or carnpleteness for shorter 

computation tilres. 

1 
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2.5.2 The Interconnection of Elements 

The mode of interconnection of the previously described elements 
(f 

determines the structure of the solution algorit~. or solution strategy. The 

possible structures diIrer in two respects: the position held by the 

processing of dependent . , functional constraints and the position of the 

nonlinear Iteration loop. 

The processing of functional constraints includes their formulation, 

optimization, verification of feasibility, aud remedial actions if necessary. 

They have been handlt:..d in three ways: 

They are proces\ed rnp.inly 

feasibility by t~les. 

. 
within the subproblem, and then verified for 

They are processed at the end of a subproblem, within the nonlinear 

iteration loop. 

- They are processed outside the nonlinear iteration loop. 

The first position is common in the OPF literature. It is possibly the most 

reliable, since ex.cursions of dependent variables are closely monitored in 

different steps. The second position has been used as an extension to the 

simpler subproblem with functional constraints neglected. It could be quite 

fast in dealing with problems with few changes in the active set. The third 

position 1s an extension for the case of a nonlinear programming packag~ wnich 
( 

cannot handle functional constraints. This position might be awkward for OFF 

level problems, because an entire nonlinear pro gram must be repeated each time 

a vio~ted functional constraint occurs. 

The nonlinear iteration loop, or major iteration loop, regroups all the 

operations between the 'computation of two expansion points. As described 

ear1ier, a new expansion point can be computed in one of two circumstances: 

- Afte~ computing a single search direction' and s1;ep size, in a single

staged subproblem. 

- After termination of a mult~-staged subproblem. 
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The fi~st positign is used in gradient and ,penalty methods. lt requires many 

time-consuming updates of the function, and for gradient methods the Jacobian, 

although in practice the latter need only be computed every, few iterations. 

The second position processes more information for a given approximation, so 

it' is usually faster overall. The validity of the approximation can be 

doubtful as the computation leads away from the- expansion poiut, but with, the 

proper precautions that is rarely the case. The second approach has received 

more attention in recent methods. 

The relative Pbsitions of the constraint processing and the nonlinear 
, 

Iteration loop a_re ';Lllustrated in a tree structure, in Figure 2.2. Five . , 
1 

combinations can ~e \found in the OPF literature, and two of ~hese can be 

simplified for disf,atch level. Three of the ensuing algorithmic structures 

ara displayedlin Figures 2.3 - 2.5. 
1 

\ 
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Here are sorne examples of OPF program structures w,tth ::-efe:::en<..es from the 

literature. 

Structure no. 1 handles functional constraints insiée ~~e ~ulti-staged 

subproblem. This structure is the ::tost COn::lon. It is ".J.sed in suc.:::essive 

linear [Stott & A1sac 1983] and quadratic progra~ing [E~=~~ett et.al. 1984], 
, 

.inc1uding Newton strategy methods [Nicholson & St:'::-l:'::g 1973], and in 

gradient-based projected Lagrangian oethods [Burchett et. al. 1982a, b] . The 

structure of the OPF algorithm developed in this thesis :"s a based on this 

structure. 

Structure no. 2 hand1es dependent constraints outside the ::lu1t:l.-staged 

subprob1em. Two examples are A1gorithm l by Sun et.al. [Sun et. al 1984], 

which handles dependent constrain~ by penalty functions, and the algorithm by 

Contaxis et. al. [Contaxis ŒY 1986] which adds violated dependent 

constraints in the formulation of the next. subproblem. 

1 

Structure no 3 handles the dependent constraints outside a standard nonlinear 

programming package. It is used mostly in conjunction with lumped-network-

level methods. A proposed optinal solution is scrutinized for possible 

violations on previously neglected variables. Violated variables would chen 

be processed in the next pass of the nonlinear program:::ling package'. A very 

recent application by Ponrajah [Ponrajah 1987] uses the siople nonlinear 

programming package once, and then processes violated dependent variables by 

the continuation oethod. 

Structure no. 4 is similar co structure ~;. 1, except for its single-staged 

subproblem (remove the loop in the subproblem or structure 1). An example is 

Carpentier's "Differentipl Injection Hethod" solved by the generalized reduced 

gradient method [Carpentier 1972]. 

Structure no. 5 1s similar to structure no. 2, except for its single-staged 

subproblem. An example 1s Dommel and Tinney' s method [Dmumel & Tilmey 1968], 

solved by a combination of gradient method for independent variables and 

penalty met:hod for dependent variables. Penalty methods such as SUMT [Sasson 

1969a,b] would also fall into this category. 
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Two possible 

Structure no. 6 i5 extracted from structure no. 1. Upon exiting the 

subproblem, the solution is reached. This is the ~OSL: co:nmon struc:m:e for 

dispatch level problems. Examples of linear [Stott 5: ~arinho 1979] and 

quadratic [Bottero 1982] progranming abound. 

-
Structure no. 7 is extracted from structure no. 2. Eere t.~e step of Rules 

preparing the next iteration are removed. Upon exiti.ï.g the conditions on 

dependent constraim:s with a "no" reply, the solution is reached. This 

structure is I:lore common in security dispatch or redispatch [Nicholson & 

Sterling 1973, Hobson 1980]. 

2.5.3 Formulations of the Tasks Performed by OPF 
-~-----------------------------------------------

The objective function i5 the only part or the opt~ization process left 

tO describe. It defines the task to be perÎo~ed. we have already identified 

seven main t.asks in section' 2.3, and their purposes have already been 

discu3sed. In this section their mathematical for:nulations are briefly 

described. , 

Economie dispatch is usually expressed as a quadratic function of the real 

power generations (for example, Huneault et. al. 1985], or as a piecewlse

linear function, for LP [Stott & Marinho 19791 or SLP [Romano et.al 1981]. 

More complicated expressions in ter:ns of reai power gel.t:::'::î..ion [Dillon et. al. 

1975], or in terms of state variables [Dhar & Mukherjee 1973] have been 

proposed, but have attracted little interest. More accurate modeiS'" of the 

cost functions, including the effects of valve points (Docker & Brooks 1958 J , 

are never expressed analytically; they are formed graphically or, in computer 

Implementations, stored as dis crete points. 

Reactive power - voltage control ls performed in different ways. The choice 

of obj ectives has already boen discussed. They are usua1ly expressed as a 

quadratic approxirn~ tion of reactive poweI1 and voltage [Contaxis et. al. 1983 J , 
1 

, , 
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~ or as a piecewise-linear [Hobson 1980] function of -those variables, or in the 

earlier studies, as a function of voltage alone [Hano et.al. 1969]. Taps and 

shunts are also included in many Implementations. 

~ini~ 10ss 1s usually expressed as a quadratic function of states [Ca17e=t & 

Sze 1958], or as a quadratic approximation of.a combin~tion of injections and 

states [Sasson 1969b, Horton & Grigsby 1984]~ or as a linear approx~ticn of 

injections and states [Stott & Alsac 1983]. lt has been expressed in ana~ysis 

as an exact linear function of real power injections [Alvarado 1978, E1angovan 

19~31, but so far that fo~ has not been used as an objective function. 

The minimum deviations task is usually solved by linear programming. 

The minimu!ll violations task has been proposed using least squares and SIDIT 

(quadratic objectives). 

~ini::ro."':l load shedding is performed using linear or piecewise-linear [Chan & 

Schweppe 1979, Krogh et.al 1983] and quadratic [Hajdu et.al. 1968, Palaniswaoy 

et.al. 1981] functions, of the loads a10ne [Chan & Yip 1979], or the loads and 

the controllable variables (Palaniswamy et.al. 1981]~ 

Maxi~ loadability has been solved by linear programming. 

4t 
The tem redispatch i5 often mentioned in conjunction with the normal 

operating tasks. lt refers to the organization of the algorithm, and not to 

the task as such. Redispatch algorithms are usually proposed fol1owing a 

contingency, and profit 'from pre-contingency information. References made 

directly to redispatching have been compiled and added to the List in Appendix 

2.3 . 
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2.5.4 Enumeration of Problems and Solution Techniques used in OPF and -------iti-Sùbiëts----------------------------------------------------

A final, de~ailed summary of the analysis is presented. It is a 
, 

compilation containing ail formulations, subproblems, and solut~on tecru~iques 

encountered in the OFF literature. ' This list is presented without co-:::r:tent in 

Appendix 2. 4. Some added information, not yet eovered, are the choice of 

coordinates, qvailable variables ana specifie subsets of allowable independenc 

variables, and exact details of the subproblem structure. The orderi~g system 

forms a classification which can be used to accurately desèrl\e any OPF 

- algorithm. 
/ 

" 
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CHAPTER III 

DESCRIPTION OF A NEW OPTIMAL POWER FLOW ALGORI~ 

3.1 Introduction 

This chapter presents, the description of a new OPF algo=i~~. rts main 

features are the use of continuation methods at different leveis of the 

opti::lization, and the implementation of strong rules to enhance robustness. 

These rules assure that from one iteration to another, the objective function 

always decreases and the proposed solution is always feasible. 

The structure of the OPF algorithm is presented in general, in a first 

section, and then in detail, following the for:mlation of the OPF problem. 

The detailed description will be carried out follo'Wing the fra!:lework of the 
1 

analysis of Chapter 2. For the ::lost part, disc"".lssion in this chapter ois 

limited to the choice of elements and to the logic of the algorithm. 

The description is intended to be as generai as possibl'e, to be applied 
1 

to any/OPF task. However reference is made occasionally to numerical tests. 

They w,re carried out on an OPF package developed for the economic dispatch 

task; !details of its implementation will be presented later. In a final 

sectior' the di:::tinction is made bet'Ween modules in the algorithm 'Which are 

commo# to all OPF tasks and modules specialized for particular tasks. 

3.2 

1 
1 

1 

i 
i 

General Overview of the Ne'W OP orithm 

The ~ighlights of the OPF algorithm developed in this thesis are 

pres nted in this section. Its general structure is illustrated in figure 

3.1. It is made up of two main elements: Il nonlinear pro gram , in the 

conv ntional sense, and an outer load-tracking loop. This loop, ne'W to OPV, 
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supplies a sequence of loads to the nonlinear program, which responds with a 

sequence of optimal dispatches. With loads in the sequence chosen close 

together, the OPF convergence 1s facilitated and aecelerated for each 

individuaL Load. This idea, which has been used successf'".llly in dispatch-

level prablems ([Fahmideh-Voj dani & Galiana 1983, Carpe:::'C:'er 1983] ror real 

power dispatch, [Blanchon 1983 & 1984] for reactive power dispatch) will be 

presented first. 

The outer load-tracking loop exploits the continua tian principle, by 

varying the laad from some initial load to the desired value. At the initial 

load, whieh can be arbitrary, the solution to the OFF problem is ~own. wClen 

small dis crete steps in load are input to the nonlinear program, the algarit~ 

generates the sequence of corresponding OPF solutions. This is done w1th 

relatively little computational effort, because the solution to one proble"1 

serves as the initial guess for the next problem. The sequence or input loads 

1eads to the desired load, at which point the nonlinear program generates the 

desired optimal solution. 

This diifers from the usual app;coach, in whieh the nonlinear prograI!l is 

used alone, in searching for the solution to a single load. The major 

difficu1ties in the usual approach are to find the active set, and to solve 

the corresponding nonlinear optimality equations from arbitrary starting 

points. Thanks to the proximity of adjacent solutions in the continuation 

process, these difficulties are avoided. The continuation approaeh will be 

advantageous if the computation of several relatively simple optimizations is 

easier than the one difficult optimization it replaces. 

In this continuation approach. by making the stap size in load small 

enough, the following two advantages are observed: 

- Few changes, if any. are needed in the active set, fro~' the solution of 

one input load to the next. Changes in the active se are then quickly 

implemented. 
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The linear model of the network used :"''"1 the first subproblem of the\ 

nonlinear pro gram is accurate enough to produce a very good estimate of 

the nonlinear solution. 

nonlinear program. 

Then very few iterations are required in each 

If the initial load is "close" to the des:'red load, the entire solution 

process is quite fast. Alternatively, if t~e desired :oad 1s far from the 

initial load, the interval separating the t'oiO can be split up into a sequence 

of ~ore closely spaced loads. A step size control can be ~ple~ented, beiore 

each change of load, to ~prove overall speed. !t would weigh the advantages 

of smaller step s izes, described above, against the necessity to compute 

solutions for a greater number of intermediate loads. 

The OPF based on the load-tracking outer loop is robust and systemati7. 
The solution of each nonlinear program is si::tplified by the continuation 

approach. The chain of solutions from the nonlinear program constitutes an 

opti::lal solution trajectory (albeit discrete). If this solution strategy does 
~ 

not lead to the desired solution, th en the solution trajectory will clearly be 

seen te ~ove to a feasibility boundarJ. 

This approach is of great interest in power systeos operation, because 

fairly good tra~tories of forecasted loads are usually available. An 

optiDal solution can be found for a first load in the forecasted trajectory, 

using the process outlined above. or by solving a nonlinear program directly 

for that load. Then the optil:lal solution trajectory is initiated. If such a 

scheme can produce solutions fast enough to handle the incoming loads, then 

the solution tracking process can continue indefinitely on-line. Dispatching

level algorithms being proposed for real-ti::le use by researchers at EDF 
~ 

[Carpentier 1987} and ENEL [Innorta et.al. 1987] are based on this idea. 

The idea just described is typical of incremental loading. In power 

systems, implementations of incremental loading have been limited ta cases 

with the simplest of network models. In other fields such as structural 

mechanics. [Yatson et.al. 1983. Rheinboldt & Burkardt 1983a]. incremental 

loading of much more sophisticated proble~ has been solved by continuation 
~ , 
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methods. The Implementation prGposed here can be seen as an incremental 

loading process based on a complete network ~odel. 

\ 

The sequential quadrat:'c progra':l::li:lg st:rategy has been chosen =or the 

" " nonlinear progran in this t:'esis. This :::;.etz.od is w!::ll-suited to ~ost: OFF 

tasks, with their quadratic obj ec~ive :ur..ctions; also, see Appendix 2.2 :or 

~ore general advantages 0= the ~ethod. The standard I:lodules have been 

replaced however, by sorne new proposals. These stand well on their own, to 

form a nonlinear programming solver, but also take advantage of the presence 

of the outer load-tracking loop for convergence control. 

The structure of the nonlinear progran proposed here is basically si:::tilar 

to structure no.l of Chapter 2. The ~ost i=lportant innova~ions are situa.ted 

in two areas, the subproblem and the Rules. These will be described briefly 

in this section. 

-~~ 

The subproblem handles aIL constraints, as in struèture no. l, but in a 

manner different from previous implelllentations. As shown in fig. 3.1, here 

the subproblem ls solved in two stages, using the continuation approach. In a 

first stage, an initia~ si:nple subproblelll, related to the diired subproblem, 

is quickly solved using standard opti::1izàtion techniques. SJJllple tests verify 

whether th~s solution satisfies the optimality conditions of the desired 

subproblem. If so, the subproblelll i5 solved; if not the continuation process 

is invoked. 

In the continuation process, system parameters are initially relaxed so 

that the solution to the simple problem is also the solutiQn to the re~axed 

pt'oblem. As shown later, the required values 'of the relaxed parameters are 

quite easy to find. Then, the relaxed parameters are moved together along a 
\ 

one-dimensional eontinuous trajectory back to their original values. To each 

intermediate ~alue of the parameters t~re corresponds an intermediate optimal 

solution. Only Icertai.n kinds. of pararne~ perturbations are considered, that 

is the so-called "right-hand-side" perturbations. Hence, sinee the subproblem 

" ,,_ tt 
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is a quadratic pro gram , the o}?timal solution trajectory can be tracked 

analytically as a piecewise-linear funct;on of the parameter perturbation. 

The optimal solution of th~ subproblem is obtained ~hen the relaxed parame~ers-

• have reintegrated thei= original values [Huneau1t et.â1. 1985). 

This subproblelll solution ::lethod is an extension of the lfeal power 

dispatch problems solved in earYier work by the McGi11 group [Fahmideh-Vojdani 

1982, Juman 1983]. lt can be used on its own as a dispatching-level 

algoritho, with a11 network variables considered. The solution trajectories -. 
are computed very ef::i"Ciently, and of::er insight into the workings of the 

system. Nonlinear info~tion can be updated when deemed necessary. 

There are many advantages to this subproblem solution strategy: 

- It ls very fast when the solutions to the initial simple problem and to 

the desired subproblem co.incide; indeed, the simple problems have been 

designed to exploit this property. 

- wl1en it has been invoked, the continuation process has usually shown 

itseli to be very fast,anyway. 
J 

- The method is also very robust in quadratic programs, since the tracking 

process supplies analytic trajectories which lead either tO' the,_desired 

solution or to a recognizab1e feasibility lünit. 

Referring again to fig. 3.1, the subproblem solution 15 checked for 

convergence a.nd then sent to thé block "Rules". They provide at their output _ 

a 10ad flow and bounds feasible point which satisfies all the loads. If 

convargence of the nonlinear program has not yet bean achieved (the right-side 

branch following the convergence che~k in Figure 3.1), they also provide a 

point with a lower value of the objective, compared to the present expansion 

point. That point serves as the expansion point for the next subproblem. 

He~ce, these rules satisfy al1 the criteria put forward in section 2.5.1. 

\ 
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The actual- rules which achieve this are described briefly, The 

independent variables'of the subproblem solu\ion form a c~didaté for the ~ex~ 
expansion point. They are fed to a Ne~on-Raphson solver, ~nich computes the 

,values .of the remaining variables, thereby completing the load flow feasible 
• point. This point !.S then checked for bound feasibility and: if convergence 

has not bean achieved, for lower cast. If the point is unsatisfactory for 

either criterion', a new candidate is sou-ght on the ,line segoent between t:he 

• ~e ~e subproblem solution and the present expansion point. ~n step size along ~~ 

segment is deteroined by a set of heuristics, ta be described lat:er. If the 

new candidate remai~s unacceptable, the step size is reduced further. 

Eventually the candidate will either be acceptable or !t will move towards the 

present expansion psint. The latter case is an indication that the present 

expansion point is the optimum. 

, 
Theoretically, the present set of rules does not assure descent, although 

in alI:lost every iteration we have observed it did provide descent in the 
• 

~bjective function. The load flo~ solver converge~ weIL to a feasible poL~t: 

because it allows the slack real powerogeneration to ~ake on a value which is 

~ot controlled by the algorithIl. In some cases that computation dot!s net 

reduce the cost no ~tter how much the step size is ~ed~ced. ~alterna~ive 

procedure which does ansure descent has been included in the algorithm ta He 

used in such cases. This is based on a slackless load flow. .Centrary ta the 

standard procedure, it provides J)O,i"4,ts of lower cost but takes tne in finding 

~ feasible point. Convergence- for the non~standard load flow is generally. 

more difficult than for the standard load flow, but safe~~ds are provided by '" . J=he use of a step size control in the Newton-Raphson solver. The entire 

procedure will be pro~ided in detail in section 3.4.4,. 

These Rules are designed for robustness; they ensure ,desç:ent at each 

iteration. The computation can''''be lengthy in difficult cases, where several 

iterations of the Rules are applied, .but tt is felt that the extra effort in 
, 

this step is worthwhile. In algorithms where Rules do not a~sure descent, 
. 

convergence 1s doubtful in difficùlt cases, and even when, convergence is 

achieved, a larger number of subproblems is required. 

tracking of the outer load-tracking loop, this new 

eonvergence difficulties within the Rules step. 

Again, due ta the close 
\ -, 

approach seldom s1es 
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3.3 FOrmulations of the OPF Problem and its Subproblem, 

Formulations for the new OPF algorithm are presented in this section. 
~ 

The formulatiqns of the p,roblem and of the subproblem are su:nmarized, with 
~ . 

details relegated to the ap-pendices. 'We th en present a note we feel is 
• p 

relevant, .concerning some discrepancies between terminology used in tlÎi8 

thesis and that in cur=ent use in the OPF literature. 

3.3.1 S~arv of t~e OPF For;ulat~on 

, 
~ The OPF formulation adopted in this thesis is basically simila+ to others 

used in many recent implementations. An OPF task is opti:nized, subject to 
~ 

operating constraints in the forro of load flow--equations, and bOUnds on most 

load flow variables. 

The load flow equations are a set of nonlinear equations linking the 

power-related variables, o't' injections, to the voltage-re1ated variables and . " 

passive network controls, called states. They are-written as: 

y - - F(x) 

(3.1) 

where y is the vector of injections. lts components are: 

P, the real power generations 

Qg the reactive power generations 

P . the real power loads .... 

Ql the reactiye power loads 

. Jt the trlJnsm.is sion Hne current magnitudes squared 

and ~ is the vector of states. Its components are: 

v the voltage magnitudes 

5 the voltage phase angles 

be the reactive admittances of shunt compensation devices 

t voltage ratios of vari~ble tap transformers 

if, phase shifter angles 

" 

" 
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Th,e exact:. formulation of eq. 3.1 is relllgated to Appendix 3.1. Howèver it can 

be no'ted that they are quadratic in V p.nd t, tr,igonometric in 5 and tP, and . 
Linear in he' They cannat be attr!.buted "~tce" prqper-.ies, such as 

convexity, ~ut ther do have some useful ?roperties for opt~ization: dhese are 
~ " 

also presented in Appendix 3.1. 

,lIn practice the passive net.ork controls' (be , t, tP) can only take on 

certa..in' discrete values, but as -in ::1ost: other fOr::lUlations, they vi11 be 

considered as cont~nuous variables. 

The treat:lent of the loads and depends on the task ta be 

·performed. In economie dispatch and min~ loss tasks, theyare treated as 

parameters, ~hich are fixed in a given prablem. In min~ load shedding, for 

vhich only the subproble::l vill be analyzed in this thesis, the loads are the 
, 

variables of interest. 
" 

, , The line current :lagnitudes squared been~ f 
in this 

formulation, instead of the more usual real power line flow~. The latter ara 

or limited use here, oecause generally both real and reactive compone~s of 

line flows must be considered. we shall calI J~, the line CUITent injecti~ns. 

,Note tha~ polar coordinates are used to describe the complex voltage. An 
. 

equivalent set ai equations ~ould be vritten vith rectangular coordinates. but 

that formulation vill not be considered in this thesis. 

Upper and lower bounds are placed on a11 load flov variables e~cept 
-

vol tagé phase angles. Jhese wil.,). be vritten as 

/ '- P.S: '>. P CI Pg 
g~ 'Q Qg Qg 

'[~J\ ~[~J 0 J~ Jfi c. -, -vm- s v"- s ijA- -
b m b . .b H 

c e 
t14. ~ 

tin t. 
~ 4Jm 4J _4JH -

(3.2) 

, , 

where superscripts-M and M désignate lower and.uppe~ ~ounds,respectiv~ly, and 

~ designates all b~unded state~. / ... 

: r 
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In one application to be studied later, the 'minimum load shedding task, 

bounds will also be added to the Loaas. 

In the OFF applications s tudied in th;Ls thesis, the objectives are 
J 

functions of real power generations or of real power loads. Th~y are modelled 

as either quadratic~r linear functions. From now on, in order to s~plify the . 
presentation, the linear funet:'on will be eonsidered as a partieular ease of 

1 

the quadratic function, with quadrat::'c tecs identically niL Yithout: yet 

specifying generatians or Laads, a &ene!:aL abjettive funct:~on is written as , 

where 

C'J 

a 

e (3.3) 

is a scalar of fixed costs, 
1 

is a vector ~f the linear ter:s, 

is a square, positive diagonal ma~rix of the quadratie 

ter:ls. \ 

Specifie obj ectives for economic 

shedding wili-be discussed later. 

dispatch, miniIlum. loss and. minimum load 

Having defined a11 these quantities, the Optimal Power- Flow' problem can 

now be for:mlated mathematically a,s an optimization problem: 

mm CCP) 
• y',x 
S.t. 

The optimization is 

eaFlier, the loads 

'" 

_.y-F(x) 

carried out 

Pl and Ql 

over 

are 

dispâtching tasks, but t1?-ey do-be~ome 

(OFF) 

aJ.l the variables of (y ,x). As stated 
\ 

fixed to specified values in normal 

varia.bles in 10ad shedding. , , 

'. . . 

-, 

,~ 
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3.3.2 'The-Subproblem For=ulation 
\ 
'1 

io 

l,'i ' 
\\ 

The subpro1;>lem retains the original! objective function from the OFF , 
formulation. The load flow eqUa~ions 3.1 a~e replaced by a linearization, the 

load flow Jacobian ::lodel, consideri."lg a11 i!1jections and aU sta::es. " Its 
" 

derivation can be round in Appendix 3.2. 39unds fro~ the OPF fo~lation are 

aIL retained in the subproble~. 

( 

Starting frQ.m the loadflow :=.odel desc.ribed aoove, the subproblëo 1s 

reorganized into what Car?entier refers to as the "compact ::lodel" [Carpentier· 
, . 

1987}. This takes advantage of: (i) the natural sparsity of the objective 

function, and (ii) variables,known to be at a bound. The set of independent 

variables, or algebraic b~sis, is modified from the states, x, in the natural 

for:nulation, ta a combinat::ion of injec-cions and states. AIL but one real 

power injection are ~~ 

~,: 'a dependent variable, 

the basis. The one reoaining 1s expressed as 
, . 

equation which links it ta· the independent 
" > 

variables is called a gener lized power balance equation. In this, scheme, the 
~ , 

objective function can be expressed in the - optimizat1on using its natural 
" . . 

sparse fo~. as in re~l power dispatch. Voltage phase angles are re::loved from 
, " 

the basis, because they a$ unbounded. The remaining basis variables are 
, 

c1;-osen amongst those suspected of going ta their bounds, to keep in their 
.r 

siI::tplest form as many of t1o.e activ:e constraints as . pos$ible. The 

transfoktion of the loaâ flow Jacobian model imPlelP-~e.~ hen 1s .,~described 
in Appendix 3.3. 

Nomenclature for the" reorganized subprqblem, ,including various pa;rtitions 

for{ coefficients and variabUs, have been relegate/ to Append1x 3.4. Two 
o 

items in the notation are ne~~e,d before the' subprob+em formulation can be 

'presented. The Vêctor of dependent variables is denoted. d. and a vector made 

up of thè independent yariables and the· remâining dependent real pow~r 

injection is denoted b. Wit~out)sUbscr:Pts,' the not~tion . de sigÏui,tï/ 
texcursions of the variables from thlexpanSiOtî point of the linearizati~ 

0' "U __ ftJ. 
The subscript g perta~ns to "-.0~chablé vari:,-bles, on which bounds e 

imposed. "-------

1 

' . .) 
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The formulation of the sUbprdhlem., denoted S, can now npressld 

mathematic:ally: 
t 

( , 

~, .-
min CCP) 

b 

" s. t. 
'go': b 0 -d::l :S dJ + -G, b :S dM (S) 

. g::l g 

0& :S .• ' • b
g :S b~ 

& ,. 

The three constraints are the generalized pow~r balance equation, ~onstraints 

on dependent variables expressed 'ver~us independent vari~bles, and bounds on 

dispatchable independe~t variab~es. 

This fo~ulation has the following advantages: 

The Hessian of thé objective function is a diagonal, positive, matrix. 

This assures that the search process for an opt~ leads to a ~inimua. 

- The partition of independent/dependent va.riables can be chosen to t~duce 
" 

as much· ,as possible, the 'nu:nber of active functional constraints. 

However, the assign::lent of prior:;ies to' real power generations, as 

described above, assures that the previous point is always respected. 

- Many independent variables are absent from the objective function. These 

variables, called transparent variables, are particularly easy to handle 
4, • 

in ehe SOluei~~S eo be developed. 

~ 

. 

\- The numerical structure of the ensuing optimality co~ditions is a single 
t , 

bordered block [George &'Liu 1981], which is easy to handle. 

A diiad}antage,is that functional constraints are no longer sparse, as is the 

case whera the independent variables are the states. The computa~ion of the 
c 

sensitivity coefficients which lllake up the cônstraints 15 quite- efficient 

~ 

~r .' . 
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however ' .. especial1y with the advent of sparse~vector techniques [Tinney et. al 

1985J. ( 

It is felt that tRe advantages of t.1lis ~r::ttllation far outweigh the 

disadvantage. If the i~âe?endent/dependent partition is well chosen, then-rew 

dependent constramts wilk;,e at thei:::; bounds. Then the predominant elemeI\t 

in the optimi~tion ls the very sparse Hessian of the objective function. 

" ' 

,3~ A Note on "::e=i:>ologv 

:.l 
lt is felt that some of the ter::iino1ogy in use in the OPF literature is 

in~orrect or mis1eading. In this section these teros are pointed out, and a 

"crean" set of tens is proposed. 

Th\s author feels that the te~s equality and inequality constraints, as 

used in\ ::to~t ~apers in the OPF literat".lre (fot eXa!O.ple, in such important 

papers as IPeschon et.a1. 1971, Alsac & Stott 1974, Burchett et.al 1982b]), 

can be conrus ing . In all these presentations of the OFF formulation, 

injections rrom. the standard load flow have come to he known as equality 

c?nstraints, and the oth~r i-njections as inequality 
1 

constraints-. .J' This 
1 

partition actually refers to the independent/dependent variables, and not to 

the equa!ityjinequality constraints. ,The present practice has come about 
/ 

pecause the stancfard load flow injections are usually fixed as independent 

variables (equality) , while the other injections are 6nly monitored to remain 

b..etw~en bounds (inequjility). Even though this association is understood, it 

should be pointed out that this usual termino1ogy is strict1y incorrect. In 
() 

the more general case the usual ter::1inology is misleading, because other 

,implementations do not necessarily partition variables the same way. The true 

equality constra"ints are all the load flow equations, y-F(x) of eq. 3.1, and 

the inequality constraints are the upper and lower'bounds on the variables. 

The terms control and. state have taken on two meanings in OPF. From a 

power systems point of view, the sta,tes have been defined . in the" formulation 

in section 3. 3 ~ l, while controllable variables are,' those on which actual 

controls have been placed.' The second meaning cornes from numerical 

1 

" 
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optimization, where control and state correspond to independent and dependent 

variables, respect!.-;;ely. The "staté - control for.nulation" of tl:e optimality 

conditions considers derivatives of the Lagrang:Lan with respect to all 

variables, but th en uses equality relat:"ons to el~nate dependent vari~bl~s. 

In this thesis the ?ower system definitions prevai , although the term state

control for::ru.lat:!.on will also be retained. Th ter:llS independent and 

dependent variables will be used in the study of numerical opt~ization . 

.. The te=::l "slack" real power inj~ct.ion 1s used the sa::le way in OFF as in 

load flow computations. In the latter, a single real power "injection, the 

slack, .is neglected in nonlinea+ solyers. It is computed aftel' the solver has 

arrive& at a solution, as a dependent variable. That is 

difficult convergence or even infeasibility in the solver. 

done to avoid 
\ 

\ This author feels that the role of a dependent real power injection is 

somewhat different in OPF. In our algorithm, a real power injection is made 

dependent, but because lt is cost-related, lts ~alue is directly controlled in 

the computation. Schemes to provide this control are p:resented in various 
. 

parts of this chapter. Beca1,1Se of the differences, it is felt that a new term ' 

is desirable for this variable in OPF. In this thesis, the ter::l "manifold" 
"f!b 

variable ,will be used, becau~e the expression of the load flow manifold is 
1 

provided (i.I:lplicitly) by the equation linking the dependeIit real power 

injection to the independent variables. 

Based on these rectifications and on discussions in AppeI]<iix 3.4 and in 

the previous section, Table 3.1 fOr:lls a summary of the recommended 

te~inology. It proposes partitions of the set of variables and of the set of 

constraints based on some physical or mathematical aspects. The three columns 

of the table contain the following information: 

r' , 

1) The proposed terminology, regrouped some pàrtioéular 

classification. 
, 

For example, • a11 the variables can be classif"ied blto 

two basic groups, injections or states. Independently of this 

classification. . the variables can also be placed lnto the other , 
classifications. 

,'\ 
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Ter::linology 

injec~~cn - s~a~e 

COS1: variable 0::

transparent var. 

., 

independent var. or 
manifold var. or 

dependent var. 

unbounded var. or 
bounded var. 

controllable 
variable 

TABLE 3.1 - PROPOSED OPF TERMINOLOGY 

Context 

basic l.oad f~ow defi.n~t:!.ons of 
the variables. given in this 
chapter after eq. 3.1. 

new ?ar~ition ::or independent 
variable'S in opti.l:lization. 
depending on whether they are 
cost-related. This is defined 
in Appendix 3. 4. 

part of the mathematical 
!:U1nipulations in opti::lization, 
as defined in this chapter and 
in Appendices 3.3 and 3. ~. 

pertains to t~e absence or the 
presence of constraints on a 
given variable. 

from a power systems point 
of view. actual controls act 
upon these quantities. 

Ter::li.~ology for Constraints 

equality constr. or 
ine;Iual i ty tons tr . 

active constr. or 
,inactive constr. 

,basic definitions from 
'optimization. 

çhe status of inequality 
constraints. determined during 
computation, in the 
optimization. 

1 

1 
1 

1-

1 

74 

Status /,../ 

fixed clas-
sifi'Cation 
o.f' the set: of 
aIl variables. 

fixed clas-
sification of 
the set $Jf 
independent 
variables, 
within a 
subproblem. 

in this study, 
this classifica-
tion of aJ-l var· 
iables can be 
modified before 
each su15p'roblem. 

in our 
formulation, 
only voltage 
phase angles 
are unbounded. 

fixed set of 
variables, not 
related to OPF. 

fixed classifi
cation of the 
set of 
constraints. 

classification 
can be modified 
in the subprob
lem or in the 
Rules. 

n .. 

1 

. 

; 

" 
<' ,..' .... 
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2) The context from which the chosen definitions are taken. For example, 

the de::in:!.tions chosen for injections and states are those of section 

3.3.l, following equation 3.1. 

3) The 

the 

stat~s pertaL~s te whether the classification of thé variables or of 

constrai.."1ts is fixed at: the ,9Utset or if it can be varied as tHe 

computation progresses. / 

The :lai:l 

notions, 

advan"age, of thi' ter.>L~Ogy are that it cover, al1 the important 

and ~hat ail the te~ are uniquely defined. 

3.4 A Detailed Description of the New OPF Algorithm 

In this section, the new OPF algorithm ,is presented in detail, u~ing the 

analysis of Chapter 2 as a framework. In particular, we desoribe our 
--il:lplementations of the elements which constitute the structure of fig. 3.1 

This will not include the initialization step, which has nothing. new. The 

subproble~ solution will be introduced here, but due ta its complex~ty, its 

~the~tics will be presented on its own in the next chapter. 

3.4.1 Proiection 

Motivations for the projection step (i. e., the choice of the set of 

independent variables) were described brieily, while pre~enting the subproblem 

in the previous section. III our algorithm, if the number of functional 

constraints in a subproblem surpasses a small integer tolerance, the set of 

independent variables is updated in arder to reduce the number of functional 

constraints in the next subproblem. 

The partition of independent/dependent variabl~s tor the k+lth subproblem 

is prepared following the solution of the kth subproblem. 1'0 simplify the 

presentation in fig. 3.1, the projection step was placed before the 

\subproblem. However, in our algorithm, portions of this step are actually 

-

'. ' t 
.' 

.. 

\ 

" 
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situated on either side of the Rules block. The sequence of ~structions is 

basically as follows. 

?~=s~, a lis~ ai ac~~ve dependen~ variables :rom the subproblem solution 

:"s dra"-:l '..lp for swappi:1g. ::1 this lis~, scates are placed before injections . ... 
:":lis is a he~ist:ic :::eant tO kee? as :::any useful states as possible in the 

~asis, ~o reduce the d~ension of the set: of nonlinear equations in the ~ules. 

Ot~ar sc~e=es could oe tried, but it is doubt:ful chat: any smart choice could 

~e ::o\!..~é. w:'thout so;ne k:.nd of lengthy combinatorial analysis. That would 

de::eat t~e PUI?ose of the change ~ pan:ition, which is :::eant to speed up 

cooput:a~ions . 

A second List is that of the inactive transparent variables. Some of 

t!1ese varia:,les can be suspected of being. inactive in the next subproble!:l, 

when their coefficients in the generalized power balance equatian are very 

close to zero. This result will be explained shortly. Hence, these variables 

are given priority in this List. 

':'he i:1dependent/dependent status of variables in each lil:t are swapped 

one ::or one. The process is stopped when one of the lists 1s depleted. Once 

chese operations have been per=o~ed, the algorithm proceeds with the Rules. 

'ihen the slackless 10adflow muSt be used in the Rules. this process has 

an extra step. Before the load f10w is solved, the preassig~ed dependent real 

powe= generation (the manifold variable) is made independent by swapping its 

status with a transparent variable. Then when leaving the RuIes, its status 

is chan~ed back ta the dependent manifold var~able, and a dependent variable 

is :lacie inde pendent . If the first list described afJove (active dependent 

variables) was 

independent. 

active state) 

subproblem. 

not empty, the first entry has its status changed to 

If the list was empty, any dependant variable (preferably an 

can be us~d. The algorithm then proceeds with the next 

A possible disadvantage of this adaptive partitianing scheme is that it ~ , 
can unknowin~ly propose a basis where the black of the la ad flow Jacobian 

formed by the rows of the independent injections and tne columns of the 
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dependent states is very ill-conditioned or even singular. Then computations 

bog down. One change of basis known to exhibit this problem is that where aIl 

t~e :::-eal power injections replace all t~ voltage phase angles, so it is 

avoided. ~ere exist other comb inat ions which leave the Jacobian block 

s:'::g'..::.laf', such as those with a ze:::-o ::-ow or colu:m. Combinations which leave 

the ';acobian block ill-conditioned are very d1fficult to detlct: a priori. 

:he p:::-oble~ of se:::-ious i:l-conditioning has been observed in the testing 

of ~~e algorith::J.. '!he remedy i:lple:=.ented in the prograrl 1s to perfor.::l one 

::1o::-e independent/ dependent swap. ,This could look ta break up possible 

CO::lbinations in the basis, where the variables f:::-om one bus are either aIL 

present or all absent. Anothe:::- remedy would be to recall the previous 

parti.t:i.on . 

.. 
3.4.2 The Suburoble::l Solution 

In the subproblem, the ~uadratic progr~ is solved using the continuation 
t 

::J.ethod. The solution technique has been desc=i.bed in a general manner in 

section 3.2; here. a more rigourous discussion on the method will be 

presented. Details on the subproblem solutions for specifie tasks are 

devetoped in Chapter 4. 

The continuation =tethod is used to create a cont inuous family of 

quadratic prog~ams. One member, an easily-solved quadratic program, is linked 

ta the original, desired program S, defined in section 3.3.2. Ye derine a 
~ 

hO::!lotopy strategy as being a choice of a simple problem coupled with a rule 

for linking it with the desired proble:n. This rule allows some physical (or 

system) parameters to vary Qver a one-dimensional ,trajectory. The rule 1s 

called a perturbation function, and the mathematical parameter which defines 

the positio~ along the trajectory is the continuation parameter, denoted e. 

To each value of e there corresponds a quadratic pro gram and its optimal 

solution. The family of quadratic programs leading to S will be called the 
+ 

perturbed model of S, and denoted (S,9). In its most general fortIl. aIL the 

parameters vary. The perturbed model is written as follows. 
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min C(P,8) 
0 

S.t. gO(8)Tb 0 -
dg(9)m :S d o(9) + G1 (8) b :S dg (9)M (S,8) 
bg(8)m :S hg :S b g (8)M 

The opti:::lality conditions ~or. problem S fOr::l a set of linear equations. 

The correspondL"g per~rbed optimality conditions =or CS,9) are s~ill linear 

"'L, the variables an~ the Lagrange t:lultipliers, bu~ i-::s coefficients are 

functions of 8. These optimality conditions will be developed in datail in the 

next chapter. For now, the optimality conditions are simply stated in a 

general for.m for the OPF subproblem: 

where 

[
E' (8) 

Gce) -

B'(9) and a'CS) are arrays of varying cost-=elat~d parameters, 

G(9) and k(9) are arrays related to varying nerwork parameters 

and varying bounds, 

and A are the unknown independent variables and 

Lagrange :nult;J.pliers. 

(3.4) 

Solutions of eq. 3.4 render all variables functions of 9. The optimal 

solution as a function of 9 is called the optimal solution homotopy, or 

optimal solution trajectory. Problem (S,9) is fo~lated such that (S,e-O) is 

the simple problem and (S,9-1) is the desired problem. By following the 

solution traj ectory to 9-1, the optimal solution of problem S is obtained. 

When following this trajectory from 9-0 to 9-1, we say tfiat we are tracking 
1 

the optimal solution trajectory. 

Details of the various homotopy strategies and of the 

algorithm for tracking the solution trajector~~s are no~ presented. 
--" 
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Tv: different homotopy strategies have already been investigated. They 

have been tested successfully in real power dispatch problems (Far~!deh

Vojdan1 & Galiana 1983, Gal1ana et.al. 1981], and are now expanded for use ~n 

the larger load flow model. 

load shedding applications. 

A third homotopy strategy will be introduced for 
- --

They affect only parameters of the rtght-~and-

side vector' in eq. 3.4. That is important, since singularity of the left-. 
hand-~i~ ::lac::'ix as a funct!on of 9 need not be envisaged.. Also, COl'lt::"'''lUOUS 

variatioJs 0:: t~e right-hand-side vector result in continuous opt~l solution 

trajectories for the load flow variables. 

a) The varying load strategy 

The varyL"lg load strategy starts with a problem where the load is set ta 

a min~. That value is dete~ined by setti~g the real power generations to 

their lower bounds, a~ by sending transparent variables to the bo~ds which 
.... 

~in~ize their effects. To that min~ (opt~l) dispatch there corresponds 

the ::lini::n:u:J. load which, c:an be computed rrom the generalized power balance 

equation. Simple rules are available to resolve an initial degeneracy, and 

decide which red power inj ection comes off its bound first, to satisfy the 

next increment or load. From its min~ value, the load is increased along 

some trajectory and the corresponding opti::lal dispatch is tracked. The load 

could be sent to some desired value, but better still it could follow a load 

prediction curve. For the la~ter, the perturbation would be unrestricted in 
... 

range. The perturbation function is written as 

The t:erturbation trajectory bl(S) need not be limited to a straight line 

segment. A set of blO and ~bl vectors as in eq. 3.5 could be furnished, each 

lllember being-- used over an interval. of S, to create a piecewise-linear 
~ 

perturbation function. It ls stressed that this strategy efficiently' 
~ 
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generates trajectories of optimal dispatches ,_ given trajecto::ies of ~nput 

load. 

In this strategy variables for which there are loads are best handled as 

independent variables or the manifold variable. From p::evio~s a=~ents, the 

real power generations are sure ta be included i:l. this group; the reactiv.e 

power loads should also be includec). Otherwis,e the dependent èe::1anœ of the 

perturbation function wi~l be expressed as functions of t~e independent 

variables. The choice of the remaining independent variables, for the 

re=aL~±ng degrees of freedom, i3 unrestr:"cted. 

b) The varying limits strategy 

The varying limits strategy starts with a si:!lple proble!:l which ignores 

constraints on dependent variables. This is similar to the 'subproblem of 

structure no.2 in Chapter 2. The proble::l can easily -be"solved, for a given 

load, by sending -transparent variables ta the appropriate bounds, and 

conducting an optimization over rea1 power generation using standard 

techniques. The generalized power balance equation stands as the on1y 

funct:ional constraint in the problem. Dependent variables are then computed 

as a function of the newly-dete~ined independent variables. Bound violations 

for dependent variables ~re checked. If no violation occurs, the solution of . ~ 

the simple pr9blem is also the desired solution. Bence a "good" choice of the 

independent/dependent partition could greatly simpliiy the solution procedure, 

by avoiding suspected violations of dependent variabrés. If such violations 

are discovered, their bounds are 4iCelaxed by the anount of the targest 

violation. As a result, aIL violations are removed, except for one previously 

violated constraint which 1s "just" active. The relaxed problem has the same 

solution as the simple p::oblem, with an added Lagrange multiplier, identically 

zero. for the newly activated constraint. The pertu::bation function moves the 

values of the violated limits froIn their relaxed value~ to their original .. 
values, and the corresponding optimal dispatch 1s tracked. The perturbation 

function for v10lated constraint i 1s writ~en as follows: 

( d l_,tm + ~d) - ~d 9 giO i (3.6) 
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where 

d Hill (8) is the perturbation function, appHed ta Hmit 
!Il. 

dg;. lim , 

j" -daio li :n is the original li!:lit on, da::.' 
r 

.:..d i5 the amount of the largest violation, among a11 

violated dependent cons't:::ain'ts. 
" 

# i spans all violated constraints. 

The original problem is solved wh en 8-1. This strategy is deemed useful~ 

for dispatching a single, given load. In tests on· real power dispatch 

problems ,it reached a solu'tion quite efficiently, because the simple problem 
1 

1s often close to the given problem. rts efficiency has also been observed in 

this research, in solving the subproblem . 

. 
The physical significance of the perturbation function is that 

inter::lt!diate. solutions on the solution homotopy, vith 0 < 8 < l, are' the. 

optimal dispatches for problems with the inte~ediate bounds. That approach 

can be useful, in operations p~anning. when deciding on inc::easing t::ansmission 

capacity. 

\J 
c) The varying demand'stFategy (for load shedding) 

aI~, t-

A third, homotopy strategy_ ~s introduced for load sl1edding, somewbat 

smilar to the v-arying load strategy. _ 'iihen a dispatch algorithm based on a 

nOr.:lal -operating task reaches a loadability lilllit,\ load shedding is inyoked. 

The latter task minimizes a norm of the mismatch between the customer demand 

and a load offere.J1 by the utility which maintains system fea~ibility. Its. 

eonstraints are the same as those used for dispatching, plus eonstraints on 

the loads. 

-
At the_ loadability limit both the load shedding and the dispatch are 

feasible, so"that the initial optimum for load shedding is furnished by the 

final optimum for the dispatch. At that point, the diserepaney between 

eus tomer 1 demand and the supplied load 15 nil. From there, as the eus tomer 
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demand la modified, the" load ahedding objective value increaaes; indicating 

that load shedding must take 'Place. Load ahedd,1ng ra enforced as long a8 the . -

value of lts objective function ia positive. The perturbation function of 

customer demand considered here contains both real and reactive power loads. 

It 1s written as 

1 

where 

bD 18 the demand. (This.- is not to be confused with 

dependent variables.) 

bo(9) is the perturbation function applied to bD, 

boo is the lastr demand for which a feasible dispatch 

(3.7) 

exists, or fo~ which a,load shedding optimum is known, 

~bD is the predicted demand variation. 

" 

There are two impôrtant similarities between this and the va;ying load 

strategy for dispa~ching. The demand can be made to follow a piecewise linear 

t~ajectory of forecasted demand.. Also, the variables for which there are 

demands are best handled as independent variables. 

With the strategies described above, the solution homotopies for the load 
" 

._flow variables are continuous piecewise-linear functions of 9. Specifie 

solu~ion homotopies will be worked out in the analysis of Chapte~ 4, but 'a 

<~eneral form for these solutions is written as 

-
A(9). - Ao + !::.A.9 

. 
" '+ while mO~itoring jalUeS of th~ inactive dependent variables 

• 

(3.8.a) 

(3.8.b) 

(3.8.c) 
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Por 9-0. the pr~.. has • knom optiltal solution. Thon.. 9 i. 

incre_sed, the optimal solution is continuoualy monitored so as to verify the 

Kuhn-Tucker optimality ~ond1tions'. '", occasfo~iy, at dis crete values of e 
_called breakpoints, these conditions ~ the v~ge of being violatad, i.~. 
one of the two following situations occurs: .;f!, 

1 
~ J' 1 

- A Lagrange multiplier reduces, to zero. As soon as' that happens, the 
J" 

corresponding constraint must be reteased from the active set. 
\ 

" 
The optimal solution trajectory meets a new active constraint. It must 

be added. to the active set and its Lagrang~ multi,plier is activated. 

, In .both cases the active set is updated. and the new active set !s maintained 

over an interval of e untll opt~rfty conditions are once again on the .verge 

of being violated. Tc) each interval of 9 there corresponds a segment of the 

optimal solution traj ectory, obtained analytically. The~e expressions need 

only be modlfied,at eac~ breaKPoint. The solution ,segments placed end to end 

form a global continuous optimal_solution trajec:orj.· 

An important observation concerns the search for ~ the active set. The . 
~.termination of the active se~ i8 performed in the continuation process by 

linking thec"1mown active set of the simple problem to that' of the desired , 
problem. Henee no eomb~~ .e~rCh proe:dure need be imple.ented. 

~.: ~.: ~:. ~, __ '!'~~~~!~&_ ~,1;~_ ~F~~J.I.l!! _ ~~!~~!~~ _ ~:!J ~~:~:;~~ 
, ( 

All that 15 left to determine is a, procedure to update the active set. 

The details of these updates will be presented in a later chapter. In this 

section, we take a ~uick look at the updates, but more importantly, we present 

a general algorithm f~F updating and keeping the continuation process moving. -

The 'effS'Ct of an upda.te is to, repartition the variables ànd the 

corresponding sets of coefficients f:kn eq. 3.4 {'- This causes a particular 

addition, re.moval, or displacement of rows and columns in the opt:l.mali ty 

conditions. There a1'e sb different updates. Some of the updates are 

1 
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referred - to in the upcoming algorlthm, so for 'aasier refere~ee they are 
1 

numbered. aa follova: 

1. An inactive dependent variable hits, a bound. 
~ , 

2: An actlv~ dependent variable !s freed when its Lagrange 

multiplier reduces ta zero. 

3. An inactive transparent variable goes to a bound. 

4. An active transparent variable is freed. 

5. An fn ctive real ppwer goes tO,a boun~. 

6 •• An- e ve real power is freed. 

\~ 
Here th en is the genera~ ~lgorithm 

, , 

for traeking ; the optimality 

conditions, i.e. computing the opt1m.alitY conditions over a range of the 

éontinuation parameter. 

S'lEP l, 

S'lEP 2. 

S'lEP 3 l 

à) 

b) 

, STEP 4. 

'.., 

~STEP S. 

S'lEP 6. 

) 

Set breakpoint counter, i-O. 

Solve the ,initial, simple problem. 

For the varying 1.imits strategy, apply the perturbation to the 

violated limita. Designate the MOSt violated constraint as the next 
, , 

ta enter the active set. Invoke update 1. 

For the varying load strategy or load oshedding, resolve thè 

initial degeneracy. Designate the ~reëd real power as the 

next to leave the ~etive set. Invoke update 6. 

Check for degeneraey. If none, 
• 

or if resolved, go to STEP 5.' If 

~resolved, notify the user or some cont;ol outside the 

subproblem. STOP. -" -~-

Imp~ement t~e/ ~pro~riate upd~-t_e. " 

Compute new optimal solution trajectory coefficients, eq. 
" -
3.8.~eff~ative in interval [apaH1 ] • 

- . 

! 
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Set i-i+l. 

fol101!'s: 

Compute the value of the nest breakpoint, 9i , as 

. .' 
Compute values of e fOF which ~ll,~ariables hit a bound and 

for which all Lagranga multlPlie~s reduce to zero. Pick the 

sma11est of.these values as·next breakpoint. Recall which 

condition èauses the new breakpoint and invoke it~particu1ar 

update scheme. 

STEP 8. If 81 is gte~r than one, go to STEP 10. If not, compute val~e8 of 

the variables and Lagrange multipli~rs at 91 , Store them • they are 

the endpoints of the 1inear segments of" the solution trajectory., 
1 

STEP 9. Go to STEP 4. 

"STEP 10. Compute values of the solution trajactories tt e-1." The so~ution is 

found. STOP . 

.. 

The a'lgorithm - teminates normally in STEP 10 or abnormally in STEP 4. The 

intricate STEPS 2, 5 and 6 form the heart of the process;. they will be 

eXplained in detail in the next chapters. ~ause8 and remedies for deg~neracy' 

(STRP , 4) are also discussed in Appe~~1x 4.2. The remaining staps are quite 

straightforward.. .... ... ---;--

No provisions have yet been implemented following an abnormal end to the 

subproblem, due to infeasib il ity . One suggestion is, to go to the loa~ 

shedding mode upon detection of infeasibility. A load shedding solution would 

be sought for the set of desired parameters. Using the theory expounded in 

Chapter 4, this idea can be implemented in a dispatching.level algorithm. 
~ , 

However, it Is not clear in a non~inear programming algorithm ~he~ to switch 

from one task to ~h~. other, because the subproblem can be infeasible even 
:.-. 

though the nonlihear problem ia feasible. This is an 1nteresti~g subject for 

future research. 

~4.3 The Convergence Test 
,)' 

; The description of the conve~gence test in Chapter 2 15 suff1ciene. In 

our program / we monitor three quantities: the ~eduction in the objective 

( 
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function fran one iteratioo to the next, am the differenqe in the objective 
) 

function àrrl in t.hè in:lepe:rrlent variables between the expansion point am the 

subprablem solution. An Ïltp)rtant cbseI:vation in numerical ~tim is that a 

very tight tolerance is preferable for the load tracking process to he 

successful. It seems that if the optimal solution to the initial prablem is 

known with great precision, the subsequent prablems TOClVe quickly to their 

~iIœù solutions. 'nle increased effort in selvin] the initial problem is 

then worthwhile; this point is verified in the rnnnerical resul ts described in 

Chapter 7. 

, 
3.4.4 '!he Mes 

3.4.4.1 Iptroductory re.mark§ 

'!he p.u:J?OSe of the Rules, as stated in section 3.2, is ta fin::l a feasible 

load flow point fran the subprobleIl\, solution. When 'this point is ta serve as 

the expansion point for a new iteration, it is chosen also to he of lower cost 
than the previcœ expansion> J.X)lnt. In the OPF problem, this guarantees global . . 
convergence to a lcx;al optinum. 

'!he Rules will rrM he descr:ibed in depth. First in an illustrative 

section we present the rules i:n'plernented in· our algoritlnn as weIl as 
alternatives whidl were tried am discarded. 'lhen ,a flow chart of the Rules 

is drawn am each e1ement is descr:ibed. Finally, two of the nore inportant 

e1~ of the Rules\....- the Newton RaPlson sol ver am the anti -zigzaçgirv;J 

deviœ - are ciescribed in-aêtail on their 0WI1. 

" 
r 

3.4.4.2 Ill~tion of the Rules stra~ies with different alternatives 

A non1inear .. qptbnization pJ:"OOlem is ,illustrated in fig. 3.2. '!he 

feasible region is the intersection of the -heXagon an:i the region ta the right 
r 

of -the nonlinear ~ B. 'lbe J.X)int E is the present (feasible) expansion 

point am point So is the new subprablem solution. 'lhey are seen in a spaœ, 

of states (x) am thè set of irx:leperrlent injections (Yb)' '1he cost of 50' 
\ 
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denoted cost(So)' il always 's~ller.- than or equal to cost(E), ,because the two ' 
~ 

points lie w1thin the same fea8ible region used in the subproblem 

opt1m.1zation, for wh1ch So 18 the optimal solution. If the t..,o points 

coincide (to w~thin a tolerance), then E-So is the optimum of the non1inear 
, , 

prob1em. If they do not coincide, then point So ia not load f10w feasible, 
~ 

but a load flow feasible candidate for the expansion point can be generated 

from Sa. Graphica11y, the process assoeiates to point Sa a point to the right 

of the non1inear boundary B. 

The independent variables of Sa are fixed and the others are computed 

using a standard Newton-RB:phson 8olver. The result:ing load flow "'feaBible 

~. point ia denoted Co' In the process all the Yb maintain the fea8ib1e values 

found in Sa. Th~ slack generation and the other dependent variables take on 

the required values to be load flow feasible. In fig. 3.2, the p01nt Co 1s 

drawn o~t of bounds and its cost is higher than cost(E), 50 it is rejected as 

a candidate for the next expansion point. 

_. The candida.te emanating from Sa being rejected, a new candidate for the 

expansion point is sought. A new point S1 ia chosen on the atraight line 
, 

segment linking E to Sa' from whieh a fea8ible point ql is generated. The 

step 8ize whieh determines the choiée of S1 will be described later. For now 

-~-- -ehe important point 1s that the cost of Any Sl Along ~he interval [E-Sol 1s 

lower than cost(E), because thé value of the objective Along segment E-So is 

monotonically decreasing from E to Sa. Hence that line segment 18 

particularly useful in the search for a cheaper expansiQn point. Also, with 

S1 closer to the feasib1e ~~gion than Sa.' the discrepancies'between Sl and Cl 

are smaller, so that cost(C1 ) 1s more likely to be acceptable. In this 

illustration. point Cl is both bounds fea8ib1e and of lower cost than cost(E), 

so that it is accepted as the next expansion point. 

We now describe three other approaches which were tested in our 
-
âlgorithm. One approach we studied befor~ adopting the more standard approach 

; 

describ~d auove was that of a slack1ess load flow. In this st~ategy a11 the 
- " rea1 power ge'1erations at a point Si on the line segment [E-Sol ar~ made ,to be 

scheduled injections 1n the solver, to ta~e advantage of the kno~ lower cost 

at that point. Hence if the result1ng Ci is fea8ible, it i8 acceptable 

Il 
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Figure 3.2. I11usfration for the Rules step. 
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bec.use it has the same cost as S1' In the illustration, the value Sl would 

be found to be infeadble by the Newton-Raphson solver. Our solver would 
" , 

detect the infeasibility, and give thé least-squares solution ta the problem. 

To obtain a feasible point whose generati~~s lie on the E-So line segment, the 
\ 

atep size would have to be reduced until ithe candidate point l1es betveen E 

and S •. 

In practice, there are two problems with this approach. The first is 

that the step dze leading from E to a feadble point dsnoted C. in' fig. 3.2 

ia usually rather small. To reach C. the number of Rules iterations can be 

high. The s.econd problem is that the points generated by this approach -are 

very close to the feasibility boundary. That usually allows 'fIery little 

movement in the sequence of feasible points, and little reduction in the 
1 .}Ii 

objective. Hence this alternative is robust but very slov. 

The slackless approach has been kept as an alternative, to be used only 

vhen the the main algorithm described previously cannot obtain a cheapar 

feasible point. 

Tvo o,ther approaches vere tried and discarded completely. In a first 

case, vhen the scheduled injections from the slackless load flow were 

infeasible, the solver's least-squares solution was touted as the next 

expansion point. Point C1sO in figure 3.2 is such a solution emanating from 

So' 

In the second discarded alternative the states of the subproblem solution 

were fixed, and the injections vere evaluated using the load-flow·equations. , .'~ 

This i8 by far the fastest way to compute a load flov feasible point. In fig. 

3.2 this corresponds to moving from So ~o Cox in the feasible region. This 

approach is used in most projected-Lagrangian OPF programs, with the important 

exact penalty xerms added'to aid convergence. 
# 

In both alternatives the load flow feasible points Cox and Clat do not; 

satisfy the loads; in these approaches the loads can only pe satisfied at the 

optimum. In our tests, even though step size epntrols vere uaed ,to aid 

convergence, these alternatives prov~d unreliable, because convergénce usually 
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occurred for a load slightly different fran the prescribed load. In saœ 

cases the diff~ between the load at the cx:mp.rt:ed optimum am the desired 

load was of the order of a few percent. 

nus completes the discussion on the illustration of the Rules step. • 

3 .4. 4 • 3 Flow chart of the Rules 

A flow chart of the Rules is drawn in figure 3.3. It shCMS a sÎlT{>le top 
, 0 

part whid'l carp.rtes a load flow feasible point, am a rore c:x:atpliœ.ted lowar 

part ~dl checks for convergeno:!, c:x:st reduction ~ feasibility. Tennina.tion 

of the Rulés is shCMI1 on the left side of the figt{re, with either convergence 

of the oonl:i.near program or a better expansion point for the next iteration. 

'!he retum path for a new iteration of the Rules is shC1oYl1 on the right, after 

the a{:propriate step size a:>ntrols are invoJœd. '!he latter", path is used when 

the convergence criteria have not been satisfie:i. Each ele.Iœnt of the flCM 

chart is descr.i.be:l briefly below, with the 1œy worùs \.lI'rlerlined. 

Upon entry a flag is set in::licating that the stan:1ard load flow is to be 

sol ved by the Newton-Ray;hson sol ver . 

'!he initialization step receives infornation fran the previous stages: 

the subprcblem solution, the indeperrlentjdeperrlent partition of variables, the 

present expansion point arrl its objective value, am an initial step lenJth. 

'Ihe subpr?:>lem solution Sa is used to COll'plte the E-So lrne segment of 

fig. 3.2. I?'has been'observed that So is not a good initial candidate. 

is because it is usually infeaslble to the extent that the cost or feasibility 

tests of the Co it generates fail. Often the requirej step length in one 

nonlinear programmi.n:J iteration, denoted a, is about the same as the one in 
" 

the previous iteration. Henee the step length frem the previous major , 
iteration serves as an initial step lerqth when enterihg the Rules. '!he first 

~ime through the Rules, however, the initial step length is set ta one. 'Ibis 

practice bas been observed ta give gcxxl results • 
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The n.v candidate (Si) la c:omput.d and stored. It ia a veighted sua. of 

th. present expansion point (E) and the rejected point Qn the E-So segment 
(' 

, 
(3.9) 

Upon entering the Rules, 8 1- 1 15 the subproblem ~olution So' 

A Newton-Raphson solver generates a feasible 10ad flow point Ci' For the 

sta.ll..dard load flow this almost always converges,' but for the slackless load 

flow the solver often detects infeasibillty. When that is the case, the 

"first" step size i8 computed to move Si+1 closer to the expansion point, and 

a new Rules iteration is started . 

.r 
If the point Ci 15 feasible, it is checked for cost reductlon. If the 

point's cast i8 not reduced, the "second" step size computation ia ~voked. 

The point ia then checked for bounds feasibility. If 1t 18 infeasible, 

the "third" step size 15 1nvoked. A final step Bize 1s chosen ,as the minimum 

of the second and the third step slzes. 

If the point Ci was either of increa8ed cost or bounds infe_asible, a new 

lteration of the Rules is required. Firat though the new stepsize is compared 

to a small tolerance. ~ually the step slze ia larger than the tolerance, so 
;. .. 

that the standard Rules are repeated with a new 51+1 , If the step size 18 too . 
smalt usua!!y the Ru1es have not generated any improvement. sa the initial 

subprob1em solution 18 f:eloaded in the. inltlalizatlon step and the slackless 

10ad flow strategy i8 used. In the Rules subroutine of the program. calling . , 

the slackless 10ad flow requires on1y a change in a special flag's status. 

, 
If. Ci -- i8 both cost-reduced and bounds feasible; it ls checked for 

convergeuce. If lt satisfies the convergence requlrements, it 18 declared the 
- . 
optimum solution of the nonlinear programming prob1em. If not, at least 1t is 

retained â~ the next: eXPansIon point. In either case the algorithm exits the 

Rul~s . 
, 
1 
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W~, now describe the ~hre~ step size controla. The fi~t st,ep size 

correction is applied when'the Newton-a&phson solver deteets tha Infeasibility 

of the point S1' It 1s computed ·as follovs: 

S'tEP 1. 

STEP 2. 

STEP 3. 

Compute a o • 1 Iisi CId 112 

II~ - E 112 
(3.l0) 

where C
Ü1 

la the Newton-Raphson aolver's least squares solution, 

and 51 and E have already been defined. All these quantit~es are 

computed by the sol ver. 

The quotient is the relative size of the mismatch of the nonlinear 

solver, compared to .the distance to the expansion point. It is 

always smaller than or equal to one, sinee Si is always at least as 

close to Clat as t'''o E. 

Compute step Bize a ,- the submul tiple of 2 1" 1. e, 2- n, n being a 

natural number) nearest to ao• but smaller than ao' An arbitrary 

mtnimum of o· 0.2 1s imposed to avoid very small step sizes. 

A cumulative step size a' !s--also computed, to serve as an initial 

st~p length for entry lnto the Rules, -ât the next iteration of the 

nonlinear program. It ls computed as: 

O'n,." - o'old x a (3.11) 

'rhe idea to reduce .the step length by a factrr of about ao- is roughly 

equ~valent to moving along segment E-S from th~present Si by an amoUnt 

IIsi - c1ai 11 2 • By reducing that value of the step length a 1itt18. in 

~pleuenting a, the next value will be a little ~loser to the feasible règion. 

A uecond step size correction is applied when cost(C i )_ ia.. higher tha,., 



94 

oost "'E) • In this case the step size Q an:l the CUlTO.llative step size Cl 1 are 
• 

sinply reduced by half. 

A third step ~~ canp.rt:ati~ is imp1emented when SCIIœ canponents in the 

point Ci are art: of bo.Jrrls. !.et ~ be a point on __ the search segment E-So and 

on the lx::Iurmry of an deperrlent oonstraint. S is the present caOOi.date poirfi 

on that segment. '!hen for each violated cœponent j, cx:::at1pJ.te 

IISbj - Ejllz 

IISj - Ejllz 
(3.12) 

'!he sma11est of these values is taJœn as the step lergt:h. As was the case for 

the other step size carp.Itations, this \YOlÙd go into a ClD'I1LÙ.ative step size, 

'!he idea behirx:l this cx::mpitation is that the step size is reduced 

proportionally to the largest excursion outside the feasible region. '!he 

rnnnerator of eq. 3.12 is the distance fran the expansion point to the bourrl 

am the denc:aninator is the distance fram the expansion point to the value of 

the. variable. 

Upon entering the Rules, the step lenJth can also be increased, if it bas 

remaine.d stable for a few major iterations.. '!he larger steps would a110w for 

faster decreases in the objective values. Presently when it 1:; increased, it 

is dalblerl, .J1ith a maxiJnum of one. 

n-.rare remains one 1ast operation in the Rules, although .it is separated 

fran the Rules' main 1:xxly. It is callerl after -fi.n.ishiJ'q the projection step 

an! after havinj catpIted the generalized power balarr.e equation, in the 

sul::problem. It consists in adjustirg tight, auxi1iaIY bc::lllOOs on saœ 

variables to avoid a certain Jdn:l of instability in optimization, often called 

. , zigzaggirg. 

'Ibis oœtp1etes the discussion on the elements of the flow chart. 
-~ -fo. - , 

We proceed n::M to describe in detaU the two particu1ar elements signaled -rut 

in the above, the Newton-RaIi1sOn solver aM the anti-zigzaggin;l step. 
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3.4.4.4 '!he Newton-Ra~ solver 
i 

~. 

A flow d1art of ~ solver is presented in figure 3.4. A step size 

control bas been insêrted into an otherwise staOOard Newton-Ra);ilson algoritlnn. 

'Ibis idea bas becaœ CXIlU'OC>ll in the nmnerical mathematics literature, [DenniS & 

Sdmabel. 1983],' where the solution processes for rx>nlinear equations an:i 
1 

unconstrained ~imization have been \lnified. HCMeVer, this idea seen\S rarely 
& ' 

used in the power literature. Gross [Gross & IJ..ùni 1975] bas suggested 

various step size controls for the Newton-Raphson load flow sol ver. Aoki an:i 

Nishikori [Aoki & Nishikori 1984] use optimization techniques, inchrlirg step 

siZe control to avoid bourrl violations, ta solve the constrained load flow 
, i. 

problem. stott am Alsac hint in a ~ial prospectus [R::A 1985] that they 

have 'in'plenw:mtoo such a scheme in their 
1 
load flow package, but details are 

lacking. 

Basically the Newton-FaPlson solver' cx:mprt:es a descent direction, te 

redu~ the nom of a mismatch between ~ ,specified vaJ.ues OfVâriables am 
their present values. In the usual prcx::edure, the correction vector is 

abtainE:d at eâch .,iteration 'by IOCNir:g' alon:J"the descent direction with a step 

size of one. '!he tmit step size is usually accepted withoo:t hesitation, even 

- though it might lead to values with greater mismatches. By applyiI:q àn 

appropriate step size, smaller than one, a reduct~ mismatch will he 
abtained. j ~ 

When scheduled injections are feasJ.ble am COIlVetqence is good, the step 

size control is' never used. '!ben tbe mismatch converges to .zero. '!he step 

size control is usually p.rt: to use .... when the scheclulèd injections ~ 
~, , 

infeasible. '1hen this solver converges to ~ positive mismatch, in effect the 

least-squares solution of the load flow equations. 

'!he step size control llrPlemented in this 'WOrk is a heuristic, bIt it is 

sure te reach' a favorable step size. It is also quite fast. First, at each 

iteration, zero mismatch convetqen::e of the load flow equations is verified;' 
J 1. - ... ~ 

If the nom of the mismatch reduces to below a small tolerance" then a 

solution qas been fOl..II'd: If net, the present mismatch nonn is 0CIIpélrE!d ta the 

previoos one. '1here are two possible responses: 
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- If the p~esent mismatch il .-maller than the previoul mismatch, their 

difference is compared for convergence to some non-zero value. ~f 

convergence ia achieved, the positive mismatch solution has been found; 

if not, the algorithm proceeds to the state-corréction stage, and no 

reduction in step aize ia needed for this iteration. 

- If the previous mismatch i8 smaller than the present mismatch. a step 

size à--is computed. If it 1s smaller than a certain tolerance, then 

again the positive mismatch solution has been found; if not, the step 

size is implemented, a J'lew state vector Xk-X:k +aÂXk is computed, and the 

whole Ndwton-Raphson iteration is restarted. 

In th~ second case, the proceas might loop in the upper half of the algorithm 

more than once befora ~n acceptable ste13 size 1s found. 

The ide a behind the step size computatton in the second option is Simple. 

Assuming that the mismatch 18 roughly a Jlinea~ function of - step aize, a step 

size is computed to obta'in about the same mismatch as rn the prev:tous 

iteration. lt is co,puted'as follows: 

STEP 1. Compute a.-
norm of previous mismaJ;çh 

norm of present mismatch 

STEP 2. . Compute the step Bize Q - the submultiple of 2 closest to ao but 

less than aD. 

_By reducing the step size a little. in implementing Q instead of ao' th~ new 

'mismatch about to, be computed ls more 11.kely to be smaller than the previous 

mismatch. 

The step size can become very small when the load flow Jacobian, used in 

the computation of the descent direction, approaches singularity. It 

indicates that the closest feasible point to a solution, for the~' given 
, , 

scheduled variables, is on the feasibility boundary. When the step size falls 
) , 

below a tolerance, the last l'terate 18 take~ 'as a positive mismatch solution. 

In fact, this is the usuel cause for positive mismatch solutions. 

'1 

\j 
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Xf a positive mismatch sol.ution bas n~t beèn found in the stép size 

contr~l.ock. the usual. Nevt~-a.ph8on procEJdûre resumes. The algorithm . 
terminates normally at a zero-m1.smatch solution or at a positive m1smatèh 

1 
solut1.on. or abno~lly duè to a high Iteration count. 

, . 

~The difficulty described in t~is section is tnberent to l.~nearizations of 

non~1near equations. It i~ illustrated for an OPF type problem in figure 3.5. 

In this example; three variables are considered, two real power generations 

and one transparent variable. The quadratic objec-tive being a function of the 

real powers only~ the cost contour$ are cylinders, parallel to the transparent 

variable axis. Vith this objective, the problem can easily be handled on the 

real power projection (the bottom face,lof the region). The projection of the 
. ! 

feasible region is shown as the non11hear shaded region. The segments of the 

boundary of t~le projected feasible" region cor-respond, on the nonlinear 

man1jfol.d.. either- to inequality constrâint boundaries or to folds [Fink & 

Rheinboldt 1986). The latter occur Along a fold line. where hyperplanes 

, tangent to the manifold are parall.el: to the transparent' s axis. The notions 

of fold and fold line are illustrated in three diMensions, but can be extended 

to hlgher dimensions. A subset of the transparen~ variables can be situaeed 

on a- fold line. They are importânt becau,se often in prac!ice, if folds are 

present on a manifold. components of the optimal solution occur along a fold 

line. 

-Solutions can be compared for the nonlinear progr~m and a qua"dratic 

subproblem. 

solution. 

The _expansion point E of the .subproblem is c_hosen close to 'the . , 

The proj ection of 'the linear manifold ls redrawn in fig. 3.5- at a 

lower level, to avoid confusion. Even in a quadratic subproblem, the solution 

P /- can have a tendency to move to an inequality boundary. as shown in the 

figure, even though the true solution 'W is nowhere near that boundary. This 

will only happen to transparent variables, though. 

This difficulty should occur in other quadratic subproblem formulation~, 
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even if the notion of transparents bn't used. Often up to now, it hasn't 

béen reeognized, and solutdon algor1thms send variables to their bounds. For 

example, in an earLy paper on OPF [Peschon et.al. 1968] the authors state: 

"All nodes~apab~e o~ reactive production would be at maximum voltage v-vH 
e~cept for those nodes where [ ... ] Q:SQM would be violated." This belief i,.$ 

still ~ide~ea4 in the OPF fiel~. A~ore recent èxample comes from the 1987 , 
PICA conference, 3uring the discussion at the panel session on OPF. A 

complaint ~rom an ~perations engineer at Florida Power and Light Co. ls that 

their OPF package dispatches all the voltages on the system ta their limits. 

The behaviour of the transparent variable in a sequence. of quadratic 

subproblems can be erratic, jumping f~om upper to lower b~und as the expansion 

point moves across the fold line. It causes numerical difficulties, but there 
-

is also a theoretical problem. When the subproblem finds the right expansion 

;po~nt on the ~old line, the linear manifold 1s parallel to the cost cylinders. 

I~ the subproblem all values within bounds of the transparent variable are 

valid solutions, although 1n the nonlinear problem only the expansion point is 

a solution. 

The presence of solutions along the fold line has occurred r~Sularly_ in 

our numerical te~ting of the OPF algor1thm. Most often, reactive powers are 

the vari~bles involved. A possible remedy to this problem, in theory, is to 

reform t'he independent/dependent partition of the variables. The effect of 

this change i8 illustrated in fig.3.5. The projection of the feasiblè region 

-in the present space pf independent variables (the bottom surface of the three 

dimensional region) is relative1y "narrow". It~ is compared to the projection 
"-of the feasible region in another subspace (on the 1eft face), which filts .,-

more of the inequality-feasible region and w~ose bounda,ies are most1y due t~ 

\neqUality' co~straints. ,unfortun~te1y: it ia virtually impossible to know a 

(riori which variables should be involved in the swap. 

around 

update 

: 

remedies for this difficulty in successive linear programming 

of OPF are the imposition of' small step sizes or of a trust region 

th~int [Rama1yer et.al. 

the parameters of these rest~ ... tionS--, 

1983]. Various rules exist ~o 

but to this author' s knowledge 

• 
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none exploits the concept of folds. The problem has not been addressed in 

sucCessive quadratic programming tmp1ementatio~s. 

A 

txansparents 

18 implemented in .our alg.orithm wh!ch takes the implicated 

their bounds. The presence of the fold 18 detected and 

exploited. e proximity of a fold is monitored· by the valués of the 
1\ 

coefficients 0 the generaliz,d-power balance equation. Their values are of 

the order of one for real powers, and usually smaller for transparents. If a 

coefficient goes to zero, the corresponding variable is on a fold line. When 

that happens, steps are taken to peg the variable at the. value of the 

expansion point. Tight auxil1ary bounds are placed .on that variable, to 
• 

restrict excursic~~. In the <10lllPutation,. the coefficient i8 sufficiently 

small but not exactly zero. If it is positive the auxiliary upper bound 1s 

set to the value of the e~ansion point; if tt is negat,ive, the auxiliary 

lower bound 1s placed there. Subsequently the simple problem of ~ 
subproblem will maintain the variable at the expansion point. The auxiliary ) 

bounds are not too tight, letting the variable move a bit in the continuation 

process, if necessary. Usually in our tests, a'variable going to a fold line 
1 

stays on the fold line in subsequent subproblems, but if its coefficient 

depaJ;ts from zero, the auxiliary bounds are releasecL. 

3.4.5 Tbe Load Step Size Control 

So far the load step size has been kept very simple in our algorithm. A 
~- ( 

constant percent age change applied to all loads has been tried. A change of 

step size woule! be advantageous if convergence of the nonlinear programs is 
1 

too slow (decrease step size) or very fast (increase step size). No 

particular rule has yat been davaloped to imple~ent the changes in step size. 

Steps in the range of 1% - 5% have been quite successful in our numerical 

tests. 
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3.5 CopmKnl.and Specialized HOdules for Di'ferent OPF Tafks 

All 'but two of the modules of this OPF Algorithm are common °to a11 the -, 
OPF tasks. The 'two special1zed modules are the computation of the objective 

funcdon and the computation of optimal solution trajectories, STEP 6 of the 

subproblem traeking algorithm in section 3.4.2.3. In practice, both are 
/ 

implemented in relative1y short subroutines. A library, of these subroutine 

pairs coul;d be written to constitute a com~iete OPF package. This Is one of 

.. the recommendations for future research. 'f 

The objective functions have already been preseneed in Chapter 2; they 

are trivial to compute. The optimal solution trajectories have yet to be 

presented. ~ In the next chapter, these traj ectories are worked out for three 

OfF tasks: econom~c d1spatch, minimum loss, and load shedd1ng. 
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CHAPTER IV 
/ 

SOLUTION OF THE_ OfF SUBPllOBLEH USING THE CONTINUAlloN MiTROp 

4.1 Introduction 

In this chapter, the solution o~ the OPF subproblem is presented in 

detail, based on the continuation method. Specifical!y, subproblems for three 

tasks are analyzed: economic dispatch~ minimum loss, and minimum load 

shedding. They are chosen because they are basic power sys~em tasks, but also ~ 

because the y demonstrate the applicabil~ty of the continuation method to a 

wide range of mathematical programming formulations. 

Economie dispatch and minimum 10ss dispatch are used "in the normal 

operating state, for dispatching 'of predominantly thermal or hydro systems. 

Within the subproblem, economic dispatch is a quadratic program while mintMum 

10ss is a linear program. Minimum 10ad shedding ls usua.lly called in the 

emex-gency state, but we only consider the "steady-state" case where the , 
forecasted demand cannot be met by a feasible dispatch. The solution obtained 

" 

from this load shedding strategy, which is formulated as â quadratic program, 

supplie; a load which minimizes a norm of the load - demand mismatch and the -. , 

optimal normal-state dis patch for that load. Barring contingencies, the 
il • • 
combination of a normal operating state task and this minimum load shedding 

makes it possible co form an optimal dispatch policy for any demand, feasible 

,or infeasible. 

Two solution techniques are proposed for the normal-state tasks, based on 

the two differen~ homotopy strategies. These are the varying limits ,strategy 

and the varying load strategy, already described in Chapter 3. ' ~ 

For each task, the formulation and the solution of ,the subproblem iS.made 

up of four steps: 

i) For economic dispatch and u minimum 10ss, t:he formulation begun in the 

previous chapter (subproblem S of section 3.3.2) is completed by 
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apeclfying the objective functlon. For minimum load shedding, the entire 

formulation ia worked out from the beginning. 

i~) The Kuhn-Tucker first order opttm&lity conditions are derived. 

I~ 

iii) The perturbation function 1s inserted into the solutions of the 
, 

optimality conditions, resulting in optimal solution trajectories. 

iv) Finally, somé initial, simple problems are proposed to start the 

continuation process. 

This presentation begins with the economic dispatch task. Many details, 
, 

such ~s tpe active set strategy, the ;ormulation of ,the Lagrangian function, 
é 

and the solution procedure for the optimality conditions are included in this 

first section. These techniques also went into the analysis of the other two 

tasks, but they are not repeated in as much detai1. 

;.2 Solution of the Economie Dispatch Subproblem 

4.2.1 peve10pment of the Optimality Conditions 

The first order optimality conditions for the quadratic subproblem of "" 

economic dispatch will be developed in this section. The mathematica1 process 

resulting from the Kuhn'Tucker optimality ~onditions requires the solution of 

sets of linear equations and the determination of the correct partition of 

inactive/active constraints. The group of active variables is referred to as 

the active set, and the active set at the optimum is called the optimal active 

set. The optimal active set is easily determined for the simple problem. 

Then using the continuation process, the ~ptimal active set is always known in 

the subsequent intermediate problems and in the final problem. Hence the 

determination of first order optimality conditions consists only in forming a 

set of linear algebraic equations. A s ignificant advantage of this. appro'ach 

is that the combinatorial search for the optimal active set normally requir~d 

in most techniques is unnecessary. 
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a) The subproblem formulation , ) 

Subproblem. S of section 3.3,-2 is the optimization_.problem to be Solv:~~, 

vith one important addition. • ~e objective function 1s specifically .a 
quadratic function of real pover generations, C(p.). 

denoted (ED). 

The nev subproblem is 

b) The active set strategy 

The organization of the calculation of. the optimality conditions ia based 

on the active set method [Fletcher 1981]. Since Lagrange multipliers of 

inactive variables are known to be zero, they and the corresponding constraint 
, 

functions can be removed from the Lagrangian function. For the mathematical 

presentation, a set of indices is created to distinguish between upper bound, 

lover bound, and inactive .variables. For the variable i, the index is defined 

as~ follovs: 

if variable i is at a lover bound, 

if it 1s inactive, 
e 0 

if it is at an upper bound; 

(4.1) 

The +1 or -1 for different types of bounda a~sures. that Lagrange multipl~rs 

are non-negative. Then form the foiloving 1 diagonal matrices: 

(4.2.a) 

for i covering the set of d~pendent variables,and 

\ 

(~.2.b) 

for jocov~ring the set of independent variables. 
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These indices premultiply the inequality constraints. leaving a Lagrangian 

function,without constraint functions for inactive variables. 

This notation is advantageous for two reasons: (i) the usual notation for 

the index sets of constraints (of the type "for all indices j belonging to the. 

group with property J") is replaced by' more compact notation. and (11) it 

clearly situates the active independent variables in the, structure of the 

optimality conditions. 

-

In the active set formulation. the inactive inde pendent variables~ the 
, tr 

active dependent variables and the non-zero Lagrange multipliers are, present 

in the optimality conditions. but not inactive dependent variables. The latter 

are computed from values of the independent variables. once these are found 

from the solution of the optimality conditions. _ We say that they are 

"monitored" rather than "computed". 

Since the inactive and active dependent variables appear alternatively in 

different computations. their notation will be simplified. From here on. the 

matrix notation for dependent constraints will not be supplemented by 

, superscripts l (inactive) and A (active) unless it is deemed necessary. The 

distinction between the two _ ~roups will usually be clear from the context. 

The superscript A will always be drop~ed for active dependent variables. and 

whenever possible. the su~erscript l is dropped from the inaètive independent 

-variables and their coefficients. 

c) The Lagrangian function 

With the simplification in notation given above. the Lagrangian forl 

optimization problem (!D) is 

-~ . ", ... ~ 

;t - CcP,) .. >'0 [goTb] - À1TRd [G1b + do - -d lim] • 
g , 

- JJT Rb 
r. 

b lilll] [b '- - (4.3) 
& & 

-"':: ... ~, 

,-. 
, 

:\ 
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Partitions are created for ~ariables. c.oefficient matrices and vectors 

depending on their inactiv:.e/activ~ and Paltranspat'ent status. Notation and 
l 1 dimensions ~or the above variables~ and their partitions. and the deftnition of 

a new array--H needed below are presented in Appen~ix 4.1. 

d) The optimality conditions 

The first order opttma1ity conditions are given, starting with their most 

detai1ed form, and then. with simplifications in notation. The different 

formulations will be used at vartous stage~ of the presentation. 4Referrtng to 

Appendix 4.1 for notation, the optimality conditions are: 

9 

BA _g A 
Op 

_ ~AT -~ 

B -goP ~T 

(} 'g A U AT -!tt - Ot t 

-gOt H T 
t 

1 .. -. ----------... --- ... -.11- -----_.----+ ........ -----.---------.. --.-- _._._---
1 

:' goP AT goP T gOt AT gOt T ! 
----: 

with 

H -:.: 
t ' l 

1 

• o 
1 
1 
o 
o 
o 
1 
1 

pA 
a 

Pa 

t À 
& 

t s -
Ào 

À 1 

Pp 

Pt 

~ 

--â,A 

-a 

0 

0 

kath 

k 11111 
1 

l\,p & l.illl 

R t 11111 
t & 

(4.4) 

) 

Cii'G (4.5) 

(4.6) 

Together kolim and k/iIII form an (nelA + 1) dimensional vector, denoted klim , 

where nelA is the number of active dependent constraints. 

-"' ..... 

, , 
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The solution of eq. 4.4 can be simplified by setting active independent 

variables to ~heir values and sending them to the right-hand-side. The 

equations can be split into two parts for convenience. 

~PgA - ~p/im (4.7.a) 

~tt - ~tslim -, (4.7.b) 

lYp 1BAp A + aA) s - go/ >'0 - ~Ar >'1 (4.7.c) 
-

- gatA >'0 - H Ar.x --
R,Pt - t 1 (4.7.d) 

and 

B -goP 
_ H r 

P ,Pg -a 

-gOt H T t t~ 0 - (4.8) 
goP 

r gOt r .xa k lim g ATb A o • - o g 

1 
Hp Ut ~l k Hm _ HAb A l_ l g 

== 

~4~-

, 
The first group (eq.4.7) handles active independent variables and their 

1 -
Lagrarige mul tipl1ers . The second (eq.4 . ..8) handles inactive inde pendent 

variables 1 active dependent variables and their Lagrange multipliers ... The two 

groups are not decoupled, and the Lagrange multiplier.s >. must be resolved 
r 

before computing ~. 

--;~ 

Before looking for a solution to-eq. 4.7-'and 4.8, their notation will be 

further simplified. Regrouping terms in the go vector and the H matrix, the k 

vector, and the Lagrange multipliers re~ults in thB follo.wing: 

R.lS
A 

- ~p lim , a (4.9.a) 

",Rtt/ - ~t/im (4.9.b)-

~p - (BAp A '+ aA) _ GAT). (4.9.0) g p 

~t - _ GAT). (4.9.d) t 

, 
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B -0 r P, -a p -el 

--0 r t. t, - 0 (4.10) 

Gp 0t. A k 

In its sim~~est èxpr~ssion, eq. 4.4 will be reduced to this form: 

(4.11) 

This nota~i~n will be useful later on. 

in eq. 4.10 and 4.11 are understood. 

The definitions of the new parameters 

--
4.2.2 Apa1ytica1 Solution of the Optima1ity Conditions 

~' + 
Analytical expressions for the optimal __ solutions of eq. 4.10 are obtained .. 

by applying Gaussian elimination to -the blocks of its left-hand-side matrix. 

This is possible as long as the inverse matrices cal1ed for in the Gaussian 

elimination process exist. Causes for singularity of the matrices and 

~ P6SS~ble remedies will be cavered further in Appendix 4.2, on degeneracy. , 

) Some structural requirements in our solution technique are that the G 

matrix of eq. 4.10 be full rank and that inactive generations outnumber the 

active dependent constraints. If th~ latter condition is violated, the 

dependen~/i~dependent,partition can be reordered. 

Taki.ng eq. 4.10 as a three -by three block matrix. the second and - third 

block rows and columns'are permuted leading to a suitable form/for Oaussian 

elimination. Then the following row operations are performèd, in this arder: 

New row no.2 - old row no.2 

New row no.3 - old row nO.3 

G B- 1 x row no.l p 

+ Gt
T [ G B-l G T r l x row no. 2 p p 

(4.12) 

(4.13) 
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The resulting équation, mathematically equivalent to eq. 4.10" 1s in block 

upper' triangular form: 
- '0"'- --

-,. 

" 
1''- B -G 1'. P, -a p 

K -Gt À - n (4.14) 

L t s G 'l'K- 1 
t. n 

Analytical expressions for the o~t1mal values of the variab1es are easily 

found from eq. 4.14 to be 

\ 

where 

À -" K- ~ [ l - HIc- 1 ] n 

K -

L - Gtl'K-1Gt 

M - GtL-1GtT 

n - GpB-la + k 

n - al 
\ 

(4.15) 

(4.16) 

(4.17!:_ 

(4.18) 

(4.19) 

(4.20) 

(4,21) 

'9- ~ 

The solution for eq. 4.9 can now be rewritten, incorporating the solution for 

À: 

l),P ,.A - ~p lim 
,j' & ' 

R.tt/ - R. t lim 
t & 

},'p - l), (BAp 6- + aA ) 
& 

-:f'" 

- G Url 
p 

- G Al't<-l 
t 

" 

r l - MK-l. ] n) 

l - HK- 1 ] nl 

-,," 1 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

"To complete the solution, the optimal values of the inactive dependent 

variables are monitored (next page): 

! 
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(4.26) 

"' othe optimal ba vector used to compute eq. - li,{.26 13 made up- o.f the optimal 

values of l', and t s ' co~puted in the preced1ng equations. 

Equations 4.15 to 4.26 constitute the optimal solutions of the quadr~tic 

program (ED) for a known active set. The optimal value of the objective 

function 13 the value of the objective function evaluated with the optimal 

real power generations .. 

Note that in these equations, if a11 the transparent variables are at 

their bounds, the terms Land M disappear. The~ transparent variables are aIL 

sent to the r1ght-hand-side and the structure of the optimality conditions is . -
~dentical to that of real power ~ispatch. 

Efficient computationa~ techniques _ are used in th~ numer1cal 

implementat,ion of eq. 4,15 - 4.26 and of the subsequent optimal solution 

-~---trajectories based on these equations. These techniques reduce the 
~ 

computational effort by taking_advantage of quantities,.,already computed, and 

by avoiding inefficient computing practices, suth as computing inverses of 

matrices. The details of the implementation for the economic dispatch using 

the- vatying limits- strat,egy are presented in Chapter 6. The analytic 

expressions for the "segments of the optimal solution trajectories for this 

problem are nol presen~ed. 

4.2.3 Solution of the Economie Dispatch Using the Varying Limits Strategy 

The perturbation function of eq. 3.7 1s implemented in_ the right-ban~-
",- ... -

side vector k of eq. 4.10. The k vector becomes a funct!on of tbe 

continuation parameter, 9: 

(4.27) 



.' 

c 

... 

112 

whera 
1)0 

[~. l b l + b. ] - 8 ATb A 

do + AdJ o , 
ka - -

li"b,A :t- RA -
[ b l + b., ] - ci [daO -

(4.28) 

and 

[:dl 
4" 

Ak - (4.29) 

1 . 
As a result of this, the r1ght-hand~side term n of eq. 4.21 is split into, 

two parts: 

n(e) - no + âk.e (4.30.a) 

with 

(4.30.b) 

With this choice of perturbation function, optimal sol~tion traj'ectories 

can,be built, by splitti~ the terms in eq. 4.15 - ~.26 tO,form relations of 

'the type of eq'. 3. 9 . 

For inactive baCe): 

p,(e) - PgO + ôp,e (4.31.a) 

(4.31.b) PaO' - B-l {G TK-l [ ,1 _ MK-l ] no - al p 
, " " .. 

(4.31.c) ôPa - 'B- 1 G TK- 1 ( l - MIÇl ] Ak p 

, _. \ 

t,(e) - tao + ôtae (4.32.,a) 

(4.32.b) tgO L- 1 G TIÇl .;-- no_ t-

ôta - L-!oG TK-l 
, t ôk (4.32..c) 



• For active b,:-

~P/ _ ~p,lilD 
~t,A _ ~t,liDi 

For Làgrange multipliers: 

- ri [ l - HlC i ], no 

J.'p ( 9 ) - Ppo + 1J.J.'p9 

_ .. 

l'pO - R { (BA P A + aA ) - GAT K- 1 ( l _ n- 1 ] n) 
-11 & - P 0 

1J.p.p - -l\,G/TlC i [ l - HK-i ] Ak 

J.'t.(9) - f..'tO + 1J.f..'t.9 

PtO . - -~ Gt.ATK-
i 

[ l - !nC- i 
_ r no 

Af..'t - -l\. Gt.ATK- i [ l - MK-l l Ak 

while monitoring inacti~e dependent variables: 
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(4.33) 

.. (4.34) 

• (4.35.a) 

(4.35.b) 

(4.35.c) 

(4.36.a) 

(4.36.b) 

(4.36.c) 

~ (4.37.a) 

(4.37.b) 

(4.37.c) 

(4.38.a) 

(4.38.b) 

(4.38.c) .. " 

In this homotopy strategy, the initial simple problem ignores thê 

functional inequality constraints of program ED. The ensuing problem, 

although not trivial, i5 solved q~ickly. Since this approach has been 

implemented, many of the fine points can be discussed. 

The solutions of the simple problem fall-into two' categories: 

\ 
1 

.( 
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For very 1011' loads: For l~~dS ~ -minimum generation: the real power 

generations are set to the'ir minima. and transparent variables are not 

uniquely defined. In the normal operation of a power system, this case 

is rare. 

~ For other loads: For loads greater than a certain "threshold", real power 

generations are dispatched using stan~d optimization techniques. The 

transparent variables with non-zero coefficients in the generalized power 

balance equation go ta their bounds, while those with zero coefficients 

are dispatched using rules extraneous to the quadratic program. 

The solution algorithms for, these two categories are introduced in this 

section, but first a graphieal Interpretation of the problem should be 

helpful. This problem 18 in a form suitable for solution using the equal 

incremental cast criterion, popular in real power dispatch [Wood &_Wollenberg 

1984] . The method is baséd on the result that a11 inactive dispatchable 

variables ~ave the same incremental cast at the optimum. This Incremental 

cost ls equal to Ào' the Lagrange multiplier associated with the generali~ed 

power balance equation. A varlable 15 sent to its _ upper bound if its 

~ncremental cost cannot be raised to Ào' or pegged to its lower bound if its 

incremental cost cannot be lowered to Ào' In the generali~ed procedure 

'presented here, the graphs of Ào versus a11 the independent variables are 

drawn, for all values of the variables between bounds. (Refer ta figure 4.1.) 

For rea1 power generations, these are 1ine segments with positive s10pes and 

"'0 intercepts'. For transparent variables the slopes and Ào intercepts are 

identically zero, because they' never cost anything" At the bounds, the 

incremental cost curves are sent to ± infinity, acting as barriers to avoid 

infeasible operation, For variables with positive coefficients in the 

generalized power balance equation, the lower bounds are connected to -Dlinus 

infinity and the upper bc;>unds ta plus infinity; the opposite applies to 

variables-with negative coefficients. 

\ 
The term goTb1 ls called the aggregate load, An aggregate lqad eUrVe Is 

-drawn over al1 permissible values of Ào, by isolating the load terms' of the 

power balance equation. (See eq_._ A3, 4,3, from Appendlx 3,4 for the 

relationship between the terms making up the power balance equation,) The 

aggregate load is obtained by adding terms gOibgi for the corresponding va+ues 
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of b" (for: a SIv .... ,.""" road off the ~:re ... ntal 'co .. ~ ••• and subtracting 

a con8t~nt term due to the expansion point_t _ Sorb.. Once ~h1s graph is built, 

the optimal dispatch for a siven aggregate load can easUy be found, by 
i 

reading values of the variables '!horizo~tally" off the graph;" Vith 

transparent variables added to the formulation, this procedure is called the 

generalized equal incremental cost procedure. 

In the example of fig. 4.1, the problem considera only four variables, 

two real power generation~ and two transparents. 

given in the figure~or can be read off the graph. 

Coefficients and bounds are 

For _an aggregate load of 
\ 

l5 t the~ptimal_values of the.independen~variables are those whicp intersect 

the dQtted horizontal line. These values are 

--
3.5 

5.5 

2 

3 

The two categories of solutions ~noted at the beginning of this section 

(lov loada and other loada) can be identified in fig. 4.1. Solutions in the 

fist category occur on that portion of the aggregate lo~d curve where Ào 18 

equal to zero. In this examp1e, this occurs for loads between 9.1 and 11.3. 

Generations Are then set to thei~ minima and transparent variables are 

adjusted to satisfy the load. The transparent variables lie within their 

bounds an~ are n~~-unique. In the example, the only added restriction on the 

transparents ia that 

-0.2 t Sl + O. 9 t~~ - Aggregate load - 9 (4.39) 

Solutions falling into the second category occupy a11 the rest of the 

aggregate load curve. 
\ 

This completes the· graphical interpretation. 

7 ~ 
The optimality conditions for the simple problem are now ana1yzed, and 

solution procedures are introduced. The hew opt:imality conditions are 

obtained by dropping the -H row and the Àl column from eq. 4.4. The two 

categories of solutions are obtained in the analysis as a result of satisfying 

fo" • 
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the new cptimality oonditions with either a zero or a nonze.ro value of the 

Iagran;Je multiplier .\0. The two cases are treated separately. 

~) For low loads 

With >'0 = 0, there exist solutions to the sinple problem with all real 

power generations at their lawer bourrls. '!he mathematical ~t is as 

follows. '!he opt:iJna.lity corrlitions for the sinple prablem with . .\o =0 tend to 

sem the inactive real power generations 'ta their unconstrained minima, gi ven 

by the expression " , . ' 

(4.40) 

since coefficients ~ arrl Bu are positive, these values of Pst are all 

infeasible. However, optimization algori thIrs based on search direction 

methods ~ these ,values as en:i points of a search segœnt. 'nlese are the 

only search directions generated by the algorithms at any iteration. Hence, 

all PSi are pushed to their lower bounds. 
, 

Meanwh.ile, no values are prescribed for the in::lividual transparent 

variables. '!he only restriction on the transparents basides the intividual 

l:xJurXIs is that 

k lim _ ('f~ Tp m 
o JOp S (4.41) 

'lbe low loads web can he satisfied in this case are situated between 

the minillum aggregate load ard t:be- threshold load, defined belOW. 'lhe m.ini:mum 

aggt:egate load Which can he sat:isfied by a feasible dispatch, denoted MAL, is 

__ -g Tb + g Tp ID + [ rr Tt JID o 8 Op & ":lOt & (4.42) 

'!he maximum loacl whiC'h can be satisfiErl at nrl.nim.lm generation will he 'Called 

the threshold load, am denoted TL. It is given by the expression 

\ 
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(4.43) 

For aggregate loada between MAL and TL the opt~l dia patch ia obtained. by 

adjuating [gOtTt,] within bounda. For this, many strategies are possible. 

The strategy implemented in our algorithm keeps only one transparent variable 

inactive, since optimal solution equations 4.31 4.38 used in the 

continuation process do not a110w for more. The details of the implementation 

are given in Chapter 6. 

11) For the other loads 

For the optimality conditions to be consistent when Ào .;. 0, a11 th~ 

transparent variables must go to their bounds, except fo~) those whos~ 
/ 

coefficients got. are zero. The bounds to which the transparents move. are 
L such that they reduce as much as possible the right-hand-side term k off the 

optimality equation of the type eq. 4.10. Alternately, those variable~ with 

zero coefficients have no effect on the problem. Either way, eliminating the 

transparent variables from the optimality equations reduces the structure of 
l. 

the problem to that of a standard real power dispatch. Vith the active 

transparents incorporated :Lnto the right-hand-side, and again for a given 

active set, the optimality conditions for this problem are 

with solutions 

Ào -

p -& 

" 

][::] [~] 

" r 1 [gopTB-1a + k] 

B- 1 [gopÀo - a] 

and where k - ko li PI - [ got. T t & ] H • 

(4.44)· 

(4.45) 

(4.46) 

(4.47) 
., 
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The solution algorithm for the simple problem must de termine not only' the 

optimal values given abo:ve. but ~lso the optimal aètive set. In the hybdd 

method developêd in. this thesis, a binary seax:ch technique la uaed in the 
, 

optimizatlon until the optimal active set is identified, after whicb the 

~soLutions for ~o and tbe inactive real pow~r generations are computed exactly . 

. The details of the implementation are found in Chapter 6. 

FinallY. the choice of bound for each transparent variable is determined 

from the Lagrange multipliers Pt' which are ~on-negative: '-. 

(4.48) 

From the non-negativity of B, a, the scalar K- 1 , g~P' and Pa' the Lagrange_ 

multiplier Ào of eq. 4.45 is a1so positive. Hence for the right-hand-side of 

eq.4.48 to be positive, here are the only possible choices: 

i) for gOt.i < O. RtU -l , i.e. t si goes to a lower bound, 
(4.49) 

11) for gOti > 0, ~ii - -l, i.e. t Si goes to an upper bound. , 
(4.50) 

Recall that for gO!:.i - 0, the corresponding variable is dispatched uaing rules

extraneous to the subproblem. 

This completeos the analysis of the optimality conditions of the simple 

problelif. 
~ 

'\ 

A final observation is that the quantity [ go.,t,~ t s ] can be thought Qf as 

a quantitative measure of ~ompensation. lt is the amount by which real power . 
generations can be reduced when compensatioà devices (in a general sense) are 

-
activated. That doesn't mean that real power is generated by transparent 

variables, to satisfy the loads. In effect, real power losses are reduced by·~ 

the process, unti1 they can n9~lungeT be reduced without v~olating the bounds. 

Figure 4.2 illustrates the idea in the region of minimum generation. The 
o 

range of compensation is the amount by which a load is increased by adjusting 

compensation without modifying real powe~ generation. Note that the 

. ," 
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il1ustrati01! 18 bul1t around minilllum load so that the the previously defined 

threshold load can be .illustraed. but wa cou1d alide it into any,load ragian. 

4,'2! 4 Solution of the Economie Dispatch Usina the Vanina Load Strategy 

Note that the presentation in this and subsequent sections parallels that 
.,-

of section 4.2.3, and the saJIle notation 1s used. That should not cause any 

confusion. since each. section is self-contained. 

U~ing the perturbation function of eq.3.5, the right-hand-side vector k 

of eq. 4.10 can be written as a linear function of the load: Renee the load, 

conf1ned to a trajectory, becomes thë' continuation parameter. The vector k 

becomes: 

k(b;) - ko + AK.b l (4.51) 

where 

'--'ka [80rb• 
_ g ATb A dol] - llb. _ ~bi + RA [d l'lm 

a d a 
(4.52) 

and 
,.. 

_~r" 

AK - [g~J 
i:> 

(4.53) 

and lt 1s understood that b l - b l (9). 

As in the previous study, the term n of eq. 4.21 is split into two 

parts: 

(4.54.a) 

with 

(.4.54. b) 
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Us1ùg the perturbation function o_f eq. 4.51, the optimal solution . 
trajectories are espressed as fttnçtions of the loadi: Thes. a~e quit. similar 

,~ 

in fortll to eq1'"-4.31 - 4.38 of the previous section: 

For :i.nactive ba(9): 

U 
Pa(b l ) Pao + ~Pabl (4.55.a) 

(4.55.b) 

\ 

-
Pao - Bl_l (G 'Xr 1 

p 

AP -, ' 
B-l G TK- 1 

p -

t,(b1 ) - tao + ~t,bl 

tao - L-1G TIC- 1 
t. no 

At, - L-1G TIC-l t âK 

For active b,:- -' 

~p,A - 1\P, lim 

~t,A - ~t lim -
1. 

[ l - HIC-l ] no - al 

l - lflt- l ] llK 

For Lagrange multipliers: 

À(b1) - ÀO + b.À. bl 

,x0 - r 1 l _ HK-l ] no 

b.À - K-l l _ MIt-l ] b.lC 
~ 
~ 

}jp (bl ) --- ISpo + b.J.'pb1 

JJpo - l\, ( (BA P sA + aA ) - G/ T r 1 [ l - MK- l ] no ) 

IllSp - _l\,GpATIC- l [ l - MIC 1 ] t.K 

-' , 
}jt (b l ) + b.1St.bl - lSt.o 

JJtO 1111! -R G ATK-l t. t [ l - MK- 1 1 no 

-R. GATr 1 
. 

HIC-l b.JJt - [ l - ] ~ t. t 

(4.55.c) 

(4.56.a) 

(4.56.b) 

(4.56.c) 

--
(4.5t 

(4.58) 

(4.59.a) 
-------\ 

._ ~ 1 

~.S9.b) 

(4.S9.c) 

(4.60.a) 

(4.60.b) 

,(4.60.c) 

(4.61. a) 

(4.61.b) 

(4.61.c) , 
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while monitoring inactive dependent variables: 

- dao + Adsbl 

- do + G [bao - b.l , (4.62.b) 

(4.62.c) 

The solution homotopy must st~~t ~ problem with a _ ~own -optimal 

solution.- That eould be obtained by applying the varying limiçs-- strategy to a' 

given load, blO say. From a practieal- point of vi~w, a QP programing eôàe 
"\ 

could easily aecommodate both homotopy strategies. One subroutine could be 

used ~o find an optimal solution for an initial load in a load trajectory, 

using the sol~tion trajeetories, of eq. 4.31 - 4.38 of the varying limits 

strategy. ThIs first subroutine would then be replaced by one which traeks 

the optimal dispateh for varying loada, using eq. 4.55 - 4.62 of the varying 

load strategy. The remaining steps ,of the QP economie dispateh are basiea1ly 

the same for both strategies. This is the preferred approach, sinee the 

initial 10ad ean take on Any value, and its optimal dispatch using the varying 

limits strategy is quite fast. 

Another approach which w~uld stick only to the varying 10ad strategy is 
-

to find 'an initial load for whieh the solution is easy to fi~d. In real power 
\ 

d1spateh, the optimal dispatch for the minimum load is very easy to find, that 

be ing the minimum genera tion . With the full linearized -mode 1 , either the 

minimum aggregate load or the threshold 10ad wo~ld seem to be good choices. 

However there is a complic~tion due
r 

to the extra degrees of freedom, which is 

discussed next. 

In res1 power dispatch, the real power line flows are the dependent 

variables. ~ey are practieally never at a bound ~or minimum 10ad. In the 

. genera1 load flow model eonsidered here, line flows, voltages, and/or reaetive 

powers are the dependent variables. For an arbitrarily chosert 

independent/dependent partition, with all transparent variables sent to the 
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appropriate bounds, it cannot be guaranteed that the dependent variables are 

al1 within bounds. The much sought partition with no violated constraint can 

be found using a phase-one of 1inear programming. The procedure is usually 

quite fast. Basically, it. finds a feasible point for a set of linear 

equalities and inequalities. The constraints would be those of program ED , 

and also all real power generations set to their lower bounds. However, since 

the full G matrix has not been computed explicitly, it is preferable to work 

vith the mathematically equivalent constraints of the Jacobian model, y - Jx. 

The latter also has the advantage of being sparse. The solution provides a 

set of non-basic (independent) variables at their bounds and feasible basic 

=(dependent) variables. This vould form the optimal solution for some economic 

disp,tch problem, for a load between minimum aggregate load and threshold 
~ 

load~ That vould be th~ initial problem. 

/ 
There remains a degeneracy to be resolved when the 10JCi reaches the 

threshold load. As was the case for real power dispatch, a rute is needed to 

free a generation from its lower bound. In so doing its Lagrange multiplier 

jumps to zero. The rule is the same as before, 1. e. the incrementally 
-

cheape8t generator comes off its bound first. 

l 

4.3 Solution of the Minimum Loss Subproblem 

4.3.1 Formulation and Optima1ity Conditions 

- The objective function in minimum loss 1s the real. power 108s in 

t:t:ansmission. It can be expressed most simply as the- .. ~~fference between 

generated and consumed real power, 

(4.63) 

With a linear, objective, the subproblem "reduces" to linear programming. 'rre 

constrain~s for minimum 108s are iaentical to those in economic dispatch. The 

minimum lo~a problem will be denoted (HL). ~ 
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'Ibis section provides the theory for the solution of the minbnum loss 

problem by the continuation methoo. AlthaIgh the upc:anirxJ ideas have not yet 

been ~lerrented, it is felt that the varyin;J load s-ttategy can be quite f~t, 
once an initial optimum is provided. As for the varyirq lilnits strategy, 

which solves for a single load, it might net he any faster than the s.inplex 

method, particu1ary sinee its initial( s.inple problem is mre cornplicated t1laÎ1 

for economic dispatch. '!he merits of the varying limits strategy are' best 

detennined by nlllœrical testing. 

'lbe paraIOOtric techniques developed for quadratic progrannning in econcmic 

clispatch are still valid for linear prograItl!llin;J, but there are SOJ:œ notiœable 

differences between parametric QP ~ LP. For one, there is no objective term 

associated with the in:leperrleï1t-~ :variables in the left-harrl-side natrix of tlle" 

optimality, corrlitions. Hence in an :initial siIrple problem similar te that for' 

econornic dispatch, all but one of these variables are sent ta their bourrls. 

~s is clearly an erroneous dispat:clù.n;J strategy, because a1.Ioost all real 

power generations would surely he sent ta their bourxls. '!he CC'ntinuation 

process would theI} __ require many breakpoints to solve the desired problem. 

Solution tedmiques for the siIrple problem will take Ws difficulty into 

account. '!he real pcMer generations are ,net transparent though, because they 

are cost-related; the linear objective tenu is present in the right-harrl

side. 

Optinality corrlitions for min.im..nn loss incorporating transparent 

variables are presented in eq. 4.64 bel~ Inspection of its structure 

irrlicates that to be consistent, the rn.nnber of active constraints nrust be 

. equal to the number of irrlepel'rlent variables; this agrees with the :ÈurrlaIœntal 

theorefu of LP. Henœ the toughest part in ootaining optimality he.re is the 
1 

• • 1 
_search for the optilnal. act1ve set. 

/ 

/ 
1 

/ 

/ 
/ 
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'.rhe ICuhn-Tûcker optimality conditions, in a fom similar to eq. 4.4, 

, 

yield the following: 

-' 
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(4.64) 

Manipulations of eq. 4.64 are best hindled using the simplified notation: 

1 

(4.65) 

Now the dispatchable variables and the Lagrange mult:1pliers are decoupled. 

leading to the fami11ar LP equations: 

A b - k' ~, (4.66.a) 

and 

A~ A - e' (4.66.b) 

Equation 4.66.a 18 the primat problem and eq. 4.66.b 18 the dual problem. The 
matrlx A ia square. 

., 

• 
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4.3.2 Solution of Minimum Lou Usins the Varyins Limits Strategy' 

, 
• 

a) ~~~!_~~!~~!~~_~:~j~~~~:!~~ ~ 

The perturbation function of eq. '~.7 is ,implemented in the vector k' of 

eq. 4.66.8, yielding: , 
(4.61) 

The part of k' corresponding to the constrainta on dependant variables ;s 

identical to eq. 4 <p, the perturbat~on function for economic dispatch using 

the varying limits strategy. 0 The- part -oCf k' corresponding to constra'ints on 

independent variables remains unaltered, and independent of 9. 

The optimal solution trajectories obtained by inserting k' (9) into eq. 

4.65 are as follows: 

, For inactive b g (9) : 

b g (9) - b.go + Abg9 

bao - A-1k ' ~~ . 
0 

, àba - A-1Ak' t 

The partition Pg/tg can b~ sorted out after computation. 

For active ba : 

" t A _:" t lim 
L\.t:. a l ""1:. a 

1 

For Lagrange multipliers: 

_ A - i.- T e' 

= . 

The partition À/p cau pe sorted out after computation . 

. = . 

(4.68.a) 

(4.68.b) 

_(4.68".c) 

(4.69) 

(4.70) 

(4.71) 
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watle monitoring inactive depen~ent variables: 

d. l (e) - dao + !J.d,e 

dao - do + G(b,~ - (bl + b.» 
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(bis 4.38.a) 

(bis 4.38.b) 

(bis 4.38. c) 

An important observation 18 that Lagrange multipliers are pi~.!=ewise 

constant in e. When.an inactive variable moves to its bound, it is added to 

the active set and the optimal1ty conditions are degenerate, but the primal 

problem remains consistent at th~ breakpoint. The dual inherits a degree of 

freedom, with which the degeneracy is resolved. The process will be explained 

later in the Appendix on degeneracy. 

Using this homotopy strategy for ecooLc dispatch, the limita on sorne 

functional dependent constraints are initially relaxed, and then rett'rned to 

their desired positions. ,However, in this initial, simple problem the 

functional constraints c~nnot be neglected. These constraints are needed to 

"fill out" the formulation of the initial simple problem. as will be explained 

belov . 

. Aa pointed out earlier, if t~le initial, simple problem neglects the 

functional constraints, the LP structure of the problem pushes all the 

independent variables (vith non-zero go coefficients) except one to their 

bounds. This can be seen in a graphical interpretation of the solution of 

this simplified minimum 10ss, similar to that of figure 4.1 for the initial, 

simple problem of economic dispatch. Following a simple transformation of 

variables! bi ' .. bi/gOi 1 this problem becomes "minimize go/ P g' subj ect to 

eTbg ' - k' and bounds on the bg'" This transformation gives each new 

variable its own individual incremental cost (dPloss/dbgi '), whereas -the 

initial va~iables all had the same incremental costs. The new variables ca~ 

now be used in a generalized equal\ Incremental cost procedure. 

,1 
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-
'_ In figure 4.3, the piecewise constant incremental cost curves are drawn 

for each independent variable and an aggregate load curve ls built. This 

fiSure shows immediately tha.t the optimal solution of this sl~pe problem 
1 

rètains ,only one inactive variable at a time. 

, 
If a "bad" choice of i~dependent varia.bles is made in the initial, simple 

problem proposed imme?,;ately above, then the continUation process requires 

many breakpoints to pass from the optimal active set of the initial, simple 

problem ta that of the desired problem.· Ideally. the two optimal active sets 

should be close. 

If a good initial guess of the' optimal active set, or even better, of the 

optimal solution, is avàUable, then it can be incorporated into a better 

~nitial; simple problem. This 'suggests the followin.g improved procedure for 

the initial simple problem. 
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Note that in the- following discussion. two sets of nomenclature are used 

in parallel. These are (1) the nomenclature ve have been uslng so far. and 
1-

(11) the notions of basic and nonbasie variables from the~ltmplex'method of 

linear programming [Chvatal 1983]. 

The variables for which there are good initial gues ses are set to ehose 
-

values. The active variables in this group are made non-basic, and the 

inactive ones are basic. Note that the number of fixed values is' at most 

equal to the dimension of the problem, denoted nd1m, The remaining dependent 

variables are computed as a function of the fixed variables. The dependent 

variables can also be partitioned as basic or non-basic,. as long, as there is 

space avaUable in those partitions. For this vector of variables to be an 

optimum, ndim constraints must, be active. To create that many constraints. 

the limits on some of the non~basic dependent variables eould be displaced,to 

coincide with the present values of the variables. The best candidates for .... ' 

this operation would be the depandent variables computed out of bounds and 

those vhich are suspected of being at a bound at the optimum. Once the choice 

of variables for 'this operation has been made. there only remalns to choose if 

the upper ,or the lover bound is appropriate. That choiee can'easily b~ made 

upon inspection of the simplex tableau built for this problem. Ye denote by 

dg' the. variables 'affeéted by the relaxing of tlieir bound~ and by dato its 

present value. Then the perturbation function ,vhich moves the bounds of 

dependent constraint dg!,' is written as 

,dsi ' (9) - dgiO ' + Adi • 9 

vith 

Here the Ad! are distinct. 

--

(4.72.a) 

(4.72.b) 

This being an optimum for the primaI problem, 'non-negative Lagrange 

multipliers can be computed to satisfy the dual problem. Then a solution for 

this initial, simple problem is complete. 

,f 
A disadvantâge of this 'approach 1s that possibly many rovs of the G 

~ 
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matrix 1IIUSt: . be computed. Hovever. if a good initial optimal active set 1s 

,cLoaen. fev breakpolnts ~hou1d appear. 

4.'.3 Solution of Minimum Loss Usina the Vaaina Load Strategy 

a) 

Once again the 10ad trajectory bl(S) i8 considered the continuation 

parameter. lt ia :lnserted !nto the vector k' of eq. 4.66.a, and written as 

follows: 

k' (9) - ko' + AK'. b l \ 
(4.73) 

The part.~ of k' corresponding to the dependent constraints :ls ldent1c:,-l- to eq. 

4.51, the perturbation function for econom1c dispatch using the varying 10ad 

strategy. The part of k' corresponding to independent conà-tralnts remains 
j 

unaltered, and independent of 9. 

The optimal solut1o~ trajectoriea are obtained by inserting the k' (9) 

vector into eq. 4.66. They are: 

For inactive ba(9): 

For 

-
bs;o - A- 1ko' 

llb - A-1AK' s; ---

The partition P g/ts can be sorted out after êomputation. 

à'ctive bg: 

~P8A - ~P8lim 

Ilt.t,A - Il t lim t. , 

(4.74.a) 

(4.74.b) 

(4.74.c) 

(4.75) 

(4.76) 
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For Lagrange multipliera: 

A 

The partition ~/p can be 80rted out after computation. 

while monitoring inactive dependent variables: 

-
da l (9) - d.o + llD. b l 

dao - do + G [ b aO - b ] 
1 • 

6D - G [ 6b, - l i 

;' 
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(4.77) 

(b~s 4.62.a) 

(bis 4.62.b) 

(bis 4.62. c) .. 
....... \ 

Bere again the Lagrange multipliers are piecewise constant in e. The 

comments presented for the solution homotopies in the -varying limits strat~gy 

a180 apply here. 

The remarks made for eeonomic. dispateh using the varying load strategy-
1 

also apply for mintmum 10s8.-

4.4 Solution of the Minimum Laid Shedding Subproblem 

4.4.1 Development of the Problem FOrmulation 

A fairly gener~l objective funçtion is proposed. It ~onsists of a 

quadratic function of the difference between the customer demand bD and the 

feaS'ible load bL supplied by the utility. 
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It 1s written 

S(bl ) - [ bQ - b l ] T So [ bD - bl ] (4.78.a) 

- b Tb -o 0 2( boTSa lb1 + b1TSob1 (4.78.b) 

- sa slTbl T ~ b1
TS2b1 (4.78.e) 

with So symmetrlc. 

The unknown variables are the supplied feaslble loads bl' for a known demand 

bD' The value of the objective funetion is zero in the normal state, when bl 

and bD are identiea1. lt takes on positive values in the load shedding state. 

There really Is no deflnlte choice of obj ective function for the loaè 
• 

shedding problem. so some discussion Is warranted. The above funetion is a 

weighted norm of the demand-load mismatch. The weights eou1d be attrihuted 

according to priority lists, or revenues, etc .. Off-diagonal weights might 

also be considered, placed symmetrically to retain the usual advantageous 

o,uadratic form. If SA 1$ the identity 'matrix, the objective is simp1y che 

Euclidean norm of the mismatch. This thesis does not propose ta stuny the 

merits of the different objectives, but rather to furnish a mathet::.a.tical 

framework in which they can be incorporated. 

As in many load shedding subproblem formulations, the 10ad shedding 

proposed in this section uses the full linearlzed load flow monel. Renee 

voltages, reactive power sources and passive network controls can participate 

in the control action. 

Two formulations are regrouped, for load shedding based on: (i) economic 

dfspatch, or (ii) minimum 10ss. The dispatehable variables can be computed, 

Along with the optimal feasible load, to satisfy either one of the normal· 

state dispatehes. 

The formulations conta in the objeeti~e functio~ above: plus the 

constraints deseribed in this paragraph. The loads are bounded between Sorne 
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predetermined 10wer bound aitd the varying demand. 1 In addition, the 

optima1ity equations. eq. 4.4 for eeonolllie dispateh or eq. 4.64 for lIlinimum 
, 

loss, are added as equality eonstrainta, to impose the optimal dispateh for 

the given (as yet unknown) load. These eonstraints conta in the usua1 

linearized load flow and the \ bounds on the dispatc:hable variables. The two 

formulations are denoted (LS,ED) for 10ad shedding based on economie dispatch 

and (LS,ML) for load shedding based on minimum 10ss. 

An important ro1e of the added equality constraints in this load shedding 

formulation 1$ to define a unique set of dispatchab1e variables for a given 

load. As pointed out by [Chan & Yip 1979], in a load shedding problem wi~h 

the usual laad flaw canstraints and where the laads alone malte up the 

objective function, the optimal laads can be computed, but the eorresPQnding 

dispatchable variables are non-unique. The added equa1ity constraints given 

by the opt ima lit y equations define unique and optimal values of the 

dispatchable variables for a given load. This addition 'is also neeessary to 

uniquely define t,he dependent 'variables in our formulation, sinee they are 

expressed as functions of the loads and the dispatchable lndependent 

variables. 

The formulation of the 10ad shedding problem is now written. The compact 

nqtation of eq. 4.11 is used to eltpres~ the eqUality constraints for either , 
one of the two variants, with the. dependence of the k' term on the 10ad b l 

written explicitly.. Due' to its exeesSiv~ length, the ,formulation, denoted 

(LS), is presented on the next page. 

l Ye note, that .the choiee of very high lower boun4s on the loa~s (to 
satisfy priority loads, for example) eould lead to infeasibility in the load 
shedding problem. 

- - , 
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(LS) 

for A containing all the active constraints on 

the dispatchable variables,' while monitoring 
Il 

the inactive dispatchabl,e variables: 
1 

< < 

d lM 
& 

4.4.2 pevelopment of the Opt1mality Conditions 

" The Lagrans.ian function for the m\nimum load shedding problem (LS) Is' . " 
a funct!on of the loads and of the unknowns for the normal-state dippatch. It 

""'" ls written as 

(4.79) 
\ 

where the new notation Is defi'hed as f,ollows: 

u, z, and v 

--; 

are simpllfying notation, used temporarily to expr~ss th~ 

1eft-hand-side matrix, the vector of unknown dispatchab1e 

variables and normal-stlate Lagrange multipllers, and the 
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right-hand aide vector of the equality constraints of 

problem (LS). 

la the vector of Lagrange multipliera ass~ciated with the 

equality'-constraints of load shedding, 

is the vector of ~~range multipliers associated vith the 

inequa1ity constraints on the loads, 
1 

is the matrfx of constraint status indices for loads. 

The >'l vector is 

corresponding tp 

prob1em (LS). 

its two, main components. >'l-5 and Àl - A.( 

main partitions in the equality constraints of 

Having introduced this nota ion, the first order optimality conditions 

for problem (LS) can now be are: 

o 

SA 
2 

S2 

: , 
1 A AT 1 

1 l 
1 

1 
A T 1 

1 L , , 
1 
1 

1 
1 
i -R AT 
i l ,... ..... __ ..... 
1 
1 . , 

- ! 
1 _AT 1 -B' 

1 i 
i i 
: A : 

1 1 • -.. -.. -- -. -. -.... _ .. -... -···t-·-·--------·--' 
1 

B' _AT! 
1 , . 

A A A : 
1 Al' ! 

...••••• ,. •••• _ ...... _ .•.••• __ •• J 

R/ i 

These optimali;ty conditions can be split lnto two groups, as for the 

previous tasks, separating active loads arrd active dispatchable Independent 

variables from the remaining variables. These two groups of equations are 

given below. In the second group. the partitions of the variables b , the"'" 
• 5 

Lagrange multipliers >'1' and of the corresponding coefficient arrays are given 

l. in gre~ter detail tha~ -in eq. 4.81 abave. These equations are: 
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(4.81.a). 

(4.81.b) 

.~4.81.c) 

(4.S1.d) 

(4.81.e) 

(4.81.f) 

/ 

(4.82) 
• of ~1-5 corresponding to the 

inactive real power generations and transparent variables respectively. The 

terms of the Àl yector corresponding to ac~ive dispatchable variables need not 

be computed, because no restriction has been imposed on their values and 

~ because the y are not needed in the computation of other unknowns. 

4.4.3 Solution of Minimum Load Shedding by the,Varying Demand Strategy 

The perturbation function of eq. 3.8 1$ implemented. It affects two 

terms of the right-hand-side vector of eq. 4.81. The linear objective term 
J 

Qecomes 

(4.83.a). . . - (4.83.b) 

J 
f 
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In the limita vector, the upper bounds in the load tem become 

(4.84) 

The remaining terms ko' r;Arbs
A and a 

. independent of 9. 

of the right-hand-side vector are 

Equations of the optima~ solution trajectories for load shedding cannot 

be broken down into groups for th,e individual variables. as was done -for the 
--, 

previous tasks. This 13 because the block in the optimality conditions 
, "=-~ 

corresponding to the normal-task dispatch 18 rank def1c1ent. Hence terms l1ke 

K, Land M of eq. 4.18 - 4.20_ which result from the partitioning of the 1eft-
\ 

hand-side matrix of the optimality conditions cannot be formed here. The 

addition of the Al row and column for load shedding resttores full row rank to 

the constraint block of the optimality conditions. In order to retain full 

rank of the left- hand-side matrix of the optimality conditions, ~he number of 

inactive loads (where load shedding takes place) is at least equal to the rank 

deficiency of the nomal-task dispatch block. 

The solution trajectories are computed from the optimality equations in a 

more general form. The two comppnents of the solution trajectories [s(9)] -

[s]o + [As].a, iQr eq.4.83, aré obtained from the solutions of those sets of 

linear equations with the right-hand side [rhs] - [rhs]o + [Arhsl.a. Then 

the solutiop trajectories for the remaining unknowns in eq. 4.82 are easi1y 

computed. 
• 

An important observation is that the optimality equations of eq. 4.81 

form a general set or optimality conditions, also valid for the normal-state 

tàsks. For the normal-state tasks, the Lagrange multipliers Àl are 

identical1y zero, because the normal-state' block which multiplies >'1 is full 

rank, and the corresponding right-hand-side term is zero. With Àl identically 

zero~ no load can be inactive because the values of the unconstrained minima 

bl - Sz-lSl' are identically equal to the demand bD, Then all the'loads are 

placed in the right-hand-side of the optimality conditions, and eq. 4.81 

reduces to either eq.4.11 for economic dispatch or ea. 4.65 for minimum loss. 
, . '~ 

Two important conclusions are that 
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1) Equatiœ 4.81 is a' general optiJnality equation for all three tasks 

studied in this chapter, with the oormal state tasks beirq particular 

casêS: 

2) I.oad sherlding is used only as a last resort in Ws dispat:d'lirxJ strategy, 
when the de.man:l trajectory leaves the loadability region, am nonnal- -

state dispatch l:lecatœs infeasible. 

b) ~~_initial, simple .l?roblem 

road sheddi.rq is invoked when the- dispatch task US§d in the nonnal state 

reaches a feasibility limite '!!le optimum on the bc::JuOOary 15 -a "final" optimal 
, solution_ for the nonnal state task, but an "initial" optimal solution for load 

shecldirxj. 'lhe load sheddi.n;J objective starts at a value of zero am increases 

wi th a c.hargirq demarrl. '!he optimal active ~ am values of the variables 

are transferred frem th'è nonnal. -state task ta the load- shedd.i.rg. 

A diffia.ùty occurs when c.l1anJirg tLsks, because of the d~enœ::aCY in the 

optimality corxlitions of the n6nnal-state task. '!he choice 0t load which will 

leave its bourrl to résolve the degeneracy is decidÈrl by ted'Ùû.ques discussed 
- ' . 

in ~ 4.2 an degeneracy. It is_~elt that usually loads will be released, 

one at a time, because the feasibility limit in the nonnal-state task is 

usually reached when a sin:]le, final CC>l'lS'tiaint is added ta the optimality 

c.orrlitions. If that is the case, the load ta he freed is foorrl quickly. 

Once the 'degeneracy is resolved, this algoritlnn for tra~ the qlt.llnal 

loads am dispatch as a :function of the varying demam is straightforward. 

'!he retum to the nonnal-state c::lisPatch, when corrlitions for load ~ 
have subsided am the value of the objective tunction retums to zero, $ould 

(L 
oocur in the reVerse order of the descrip!-~on above. 
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OTHER Al'PLlÇATIONS OP' THE CONTlNUATIo,N HETHo,p IN OPP' 

5.1 ~'Introduction 

l 

This short chapter presents four other applications of the continuation 

method in OPP' , Three new applications investigate certain changes or 

additions to the set of eonstraints. They are: the addition of dynamic ramp 

constraints to the economic dispatch formulation, the perturbation of 
\ 

const~int functions by continuation methods to redispatch following 

contingencies, and the substitution"of the load flow Jacobian model by the DC 

load flow model. For those cases, the OPF subproblems are described and 

solution procedures are only sketehed. In a fourth application, following an 

economië dispatch solved by the varying load_ strategy, expressions are derived 

for bus and system incremental costs. 
, 
J ! 

( 
5.2 The Ramp Constrained Economie Dispatch Problem ~ 

• So far, only static OPF problems have been studi:ed. In this -section, 

,optimality conditions are given for the dynamic ramp-constrained problem, 

based on the subproblem model of OPF. Some ideas for their solution are 

sketched, using the continuation method, but a full solution -procedure will 

not be developed. The added time dimension makes the problem much larger, 

although well-structured. 
1 

. 
In keeping with previous solution methodologies, nonlinear programming is 

~sed to solve the dynamic problem. A sequence of optimal dispatches is sought 

over a period of time, for a sequence of different loads obtained by load 

! forecasting. In the absence of dynamic constraints, the varying load strategy 
/ 
1 can be used in the solution of the static problem. When dynamic constraints 

become active, some new technique must be used to allow optimality conditions 

ta look ahead over !l certain time span. Thi.s time span would caver only the 

period when dynamic constraints are active. It would be suggested a priofi, 
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based on rapid variations in the load foreeast, although its exact knovledge 

, _is not necessary befor~~d. 
t»"" <f' 1 __ 

In this approaeh, time is diseretized into NT segments over ~pan T. Ail 

load flov variables and their Lagrange muldp'~~ers are sought at instants 

t-nât, n-l •... ,NT. An exampl~ of notation for variable v is 

v (n) 
i 

where subseript i identifies the variable itself, 

superscrip~ n identifies the time instant. 

. 
The number of variables inëreases to NT times the number of variables in- the-' 

static problem. The usual statiè load f10w constra~ts hold at each instant. 

Dynamlc ramp constraints ~re added to the ~ormul!ltlon; they place limita on 

the variations of real pover generations over a single time interval At. They 

are written 

I--~-~ 

P (n) • p (n-l) 
ai ai (5.1) 

i - 1 •...• ng 

Regrouped in vector form and split along the active/inactive partition, the 
, 

set of ramp constraints at period n is written 

- f ,lt(nl[ pen) _ p(n-l) 
Co r g g r ] - 0 (5.2) 

where Rr ls the active/inactive index matri~ for the ramp constraints. 

These are the ~implest dynamic constraints for OPF, sinee no new variable 

is introdueed, and eacn constrai~t introduees only tvo.non-zero terms .±1, in 

the constraint matrix. However. the upcoming methodology can ea8ily be 

~xpanded to more complex dynamie constraints. 
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To aimplify the presentation, only the case of dynamic economic dispatch 

la given. The network and cost parameters are considered to be time-

invariant, and bus loads are varied over time. Formulations for other OPF 

tasks or vith time-varying parameters can be built in stœilar fas~ion. 

The objective of the dynamic problem 18 the fuel cost over the entire 

time span. 

is written 

c -

That is the summation of the fuel costs at each time period. 

C( D) (P ) 
& -

(5.3) 

It 

A1J:- the elements of the dynamic optimlzation having been stated. the 

formulation of the ramp constrained economic dispatch, denoted }~D,a), can be 

written: 

min C 
b (n) 

s 
S.t. 

- C(pCn» 
S 

dt ~ do 

b m ~ 
& 

goTb( n) - _ 

+ G
l 

b( n) ~ 

b (n) 
& 

1 p,(D) - p,(n-l) 1 

. ~ for a11 n - 1, ... , NT 

(ED,a) 

r 

Lagrange multipliers associated vith ramp constraints are denoted p. The 

active s~~ 18 asswned known, 

~ (-n), and \ Rr ( n ) are known . 

as in previous analyses, so matrices ad ( D) , 

The Lagrangian for (ED,R) 1s given by the 
\ 

following equation: 

r. - Nt _( C (P (D» _' À T R (n) [Gb (n) - kl.l. m ] - JoIT R" ( n,ll [bg (n ) blim J , d g 
n-l 

pT(!!n) [.p (n) _ P Cn-l) - r] } (5.4) , & S 

-'< 
\ . 

1 

'\ 
The static constra1nts \an be regrouped, as before, using the notation A and 

~ k' . 
1 

That regroups the sécond and th1rd terms of the Lagrangian. The 



c 

""i 

, 

142 

constraints are split along 0 the real power/transparent partition. The 

derivatives of the Lagrangian vith respect to all the independe~t variables

and a11 the Lagrange multipliers for eâch tue period form the optimality 

conditions. They are given by eq. 5.5. The basic blocks in these equations 

aI:e the static optimality conditions, placed side by side along the block 

d~~gonal. The ramp constraints can be thought to link the individual static 

problems. Constraint submatrices Rr (or their transposes) usually appear four 

times at each period, as-sho~ in eq. 5.5, linking two adjacent problems. For 

the first- and last periods though, they appêar only twice. 

'4,11 1% .R.' lit a ult • P III • ·a 

.",' lit c III • 0 
, 

4,111 ~'l) Alli le' Cl 1 

1. 111 
• ,Ill 

"."'
r ._.- .. _ .. 

" • • .,cau -ar
ialt 

-
p (JI -a • 

•• ,Cllf t 11) • 0 

• III 
p 4,111 A"i Ittlll 

.... IU .. (II • ,111 a.' al r 

"-

-

-- --
0 

~ 

" -a.1 
-

'* 
'* 

'* 
• 

"Inlf 

_.,IUIf _,,'UI1' 
_A,uflr 

. .............. 
'* '* 
'* *' 
'* *' .. _-- ...... 

,lUI • . . 
tUI! - 0 • ",nI k"·u 

p'UI a.'lfl r 

(5.5) 

A chain' of static problems is 1 formed when soma ramp constraints~ are 

act:1.ve over a group of consecutive periods., The effect of each ramp 

constraint is felt by all the variables in the chain. That is wh~ each ramp 

constraint must be considered over a long time span. 

Ideally, the first block of the equation is not part of a previous chain. 

,~~ that is the case, the term Rr<ll can be dropped from eq. 5.5. Also, the 

last block should end a chain; if not, the time window over which 'the 

optimization i8 carried out can be shifted or expanded-. 
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The major difficulty in .olving the optimality conditions is in 

identifying the ac-t-ive '\t'aD1p constraints. given a load traj ectory. A 

successful technique for identifying them was developed for hydrothermal 

scheduling, and is based on the continuation method [Calderon 1985]. In tbis 

metbod, all tbe kr(n) subvectors in tbe rigbt-band-side of eq. 5.5, which 

contain the ~oad terms, are made idendcal initia,lly. Then a perturbation 

function resets them to their original values. The perturbation function is 

k ' .(9) [
kl(l)] 
k' (1) 

. , . 
k' (1) 

[ 

0 
kr( 2) _ 

kt< 1fT; . ~ • - .+ 

At 9-0, the NT blocks yield identical solutions, so that discrepanciea in the 

generations st different instants are n11. The solution of a single block 
" suffices to start the problem. That would be 'handled using techniques 

described in Chapter 4. Then as e is increased, differences between the 

blocks appear and ramp constraints might be activated. As long as the blocks 

are decoupled, the change in k' can be carried out using the static vary1ng 

load method. Maybe some s1nÏilar technique could be applied to chains of 

problems. When 9 reaches l, the optimal solution is found. 

Numerically, such'a solution technique is quite taxing. mostly because of 

the large amount of memory required to carry the NT blacks. In terms of size .. 
of computation, this should 'not be much', larger than the computation of NT 

" 
static problems', but the time of computation could be much longer on small 

computers due to the paging of information in and out of memory. 

lt is suggested that numerical ,techniques be sought which take advantage 

of the decoupling and the weak coupling of ramp constraints. The matter will 

not be investigated any further in this s~udy. A final suggestion is that if 

one block of the opdmality conditions is seen to be inf~asible, it could be 

replaced br a load shedding block. The deteètion of infeasibility at a 

particular period and the changeover to load shedding are not developed in 

this study. 

. ' 
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~' 5.3 "dispatching Following a Contingençy 

A cont1ngency 1s a sudden, unexpected loss of some element of the system, 

i.e. generat~ont lo.d, or transmission. Immediately following a cont1ngency, , 
emergency procedures are implemented. F1rst, controls serve to protect any 

vulnerable part of the system, and fend off instability. These are very fast 

controls, usually - within less than a second after the inception of the 

contingency, and are usually ~erformed automatically. Then if some load flow 

quantities have moved beyond their bounds, a human operator tries to restore 

quickly~the secure operation. After some trials, the system 1s brought back to 

a secure state, and then a new optimal dispatch is sought. 

One 8tep can be cut from the procedure if the operator 1s furnished an 

optimal post-contingency dispatch right away. In this section, numerical 

techniques based on the continuation method are suggested and briefly sketched 

for computing ,the post-contingency optimal dispatch. It is thought that with-_ 
--

the proper adjustments, thes,e methods are likely to be quite fast. 

The aispatch results are target values towards which the operator should 

move the system. The operator st111 has to guide the system, since the 

9Ptimal solut~on trajectories produced br these calculations bear no meaning 

in the post-contingency dynamics. 

The "ide a behind the use of the continuation method in post-contingency 

redispatch 1s the following. The contingency removes some element from the 
l,-

power system. Instantly the <:orresponding parameter jumps to a nev value. 

Computing the post-conting_eney optimum from scratch, or even using' pre

contingency information as an initial guess, seems to be lengthy in most' 

cases, especially if the active set is significantly modified. Instead, in 

this nev approach a perturbation function is introduced to vary continuously' 

the value of the affected parameter, from the pre-contingency value to the nev 

value: 

(5.7) 

8 in the interval [O,lJ 

where Pi and Pt are initial and final values of parameter p. 
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The pre-contingency optimal dispatch i. known.' so 

simple problem: As the parame ter is varied~ optimal 

produced, endi!lg at the post-contingency optimum. 
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it serves al the initial 
11> 

soluti?U trajectories are 

The intermediate values 

along the trajectory might he .useful: in operations planning, since they 

express the optimal ~ispatch versus system parameters. They are of no use in 

, redispatching. 

1 Optimal solution trajectories can be furtlished explici~ly when the 

1 varying parameter affects only the right-hand-side. Then, aa for .11 the 

previous cases, the- optimal solution trajactories are piecewise linear. Tva 

con~ingency cases involve only right-hand-side perturbations of the optimality 
" 

conditions: any loss of bus load or the compl~te loss of a generation. Their 

i treatment is bas~~ally similar to that in real pover dispatch. For the-loss 

i i of pI:ant i, both upper and lower bounds of generation i are sent tOr zero, 

\ using a perturbation function 

P lim(9) _ P lim(1_9) 
Sl SiO 

1 

where P lim 18 the true value of the limit. &iO 

(5.8) 

That has the effeêt of shutting off 'plant 1. When addlng ~a generator, the 

procedure ls implemented in reverse. The extra generation limits PaN+lID 
.. 

.fgN+1M - 0 and the associaUd Lagrange multipliers are 'added to the 

formulation of the optimality conditions. Vith that particular choice of 

limits. the addition' does not cause a jump in the opt~al dispaech: The new 

Lagrange multipliers are computed as a functlon of existing ones and,the cos~ 
, , 

data. Then allow the g~neration limits to take on their true values: 

P li ID (S) _ Sp li m 
ai giO (5.9) 

A' loss of bus load, whether partial Or complete. could be handled as a 
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special case of the varying load strategy, in vhich a single load vould be 

varied. 

j 

In the rea1 pover redispatch prob1em using a PC load flow model, some 

piecevlse nonlln~ar solution trajectories vere reported [Huneault et.al.1985] 

for perturbations affect~ng the left-hand side of the optimality conditions. 

For partial loss of generation at a bus, the solution trajector1es are of the 

form 

where 
, . 

>'0' PgO 

N.\(S),D.\(S) 

are pre-contingency values. 

are secon~ degree vector and scalar 

polYnpmials in S,respectively. 

are third degree vector and scalar 

polynomials in S, respectively. \, 

(5.l0.a) 

(5.l0.b) 

For the loss'of a trans~YJsion line, lt was reported that the polynomials are 

ofo much high.r degre/l/ In fact, the y are of degrees 19 and 20 in S. Because, 

th~ terms of the ~paech are mu'~h more complicated with the full linearized 

load flov mode!, f ·/the evaluat~op of nonlinear solution trB;jectories would lead 

to~some un~sonably difficult expressions. Renee no attempt has been made ta 
./ 

work them out . 
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For the contingency problems involving left-band-side p4-turbations, a 

numerica1 technique is proposed. Instead of varying p(9) continuously, it can 

bè varied discretely,i.e. 

(5.11) 

n - l, ... ,N and NA9 -1 

If vâriations in p(9) from problem (n) to problem (n+l) are sma11, then so 

will the variations in their optimal solutions. To solve one problem, for a 

given n, the varying limits strategy could be applied. Th~ optimal active set 

from the previous problem could be retained to, form the basis of the new 

initial simple problem. Often, the previous active set would be carried over 

intact: to the new problem, or Little change would occur. That would avoid 

lengthy searches of the active set, or lengthy applications of the 

continuati~n procedure. The disc'rete solution trajectory could advance 

quickly if it consists mostly in solving a sequence of simple problems. 

The number of steps N in which to divide the perturbation interval would 

be a practical matter, t~ ,be determined experimentally. Also, a s1jepsize 

control could be explored, to a110w larger steps when adjacent problems have 

very close solutions. 

One possible difficulty with left-hand-side perturbations i5 that their 
'0 

solution trajectories,- whether analytical or discrete, can be volatile. 

Without a constraint box to limit its excursions, an optimal solution can 

break down when for some 9-8' the left-hand-side matrix becomes singular. One 

case of degeneracy of this type was il1ustrated in Appendix 4.2. The presence 

of the constraint box avoids ':he associated problem of sending dispatch 

variables to infinity, because when' the problem, occurs the dependent 

constraints which are forcing the problem get replaced by simple bounds ort the 

independent variables. These are usually isolated(numerical vroblems; al1 in 

a11, a single perturbation of a large system should not be expected to result 

~ such drastic redispatching. 

f 
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5,4 Extensions tg the DC Loadflow Model 

\ 
Many examples of real power economic dispatch using a DC load flow model 

served as starting points for studies vith the full linearized load flow 

mQdel, Now some applications to the DC load flov, inspired by the larger 

model, can be suggested to replace the load flow Jacobian. 

The DC load flow model expresses rea!. power generations and real pover 

line f10vs as a function of voltage phase angles: 

"-,..., -. 

(5,12) 
(5.13) 

y is the system suseeptance matrix, and rows oftlÎe 'T matrix contain terms YiJ 

and -YiJ in positions i and j respeetively, for liUe flow PiJ , The model comes 

as a result of fixing all voltage magnitudes to one per unit, replacing 

trigonometric functions sin6 9Y S and cosS by l, and by neglecting resistance 

and shunt admittance in the load flow equations. ~ 

All generators except one can be retained as independent variables. The 

remaining slack generation (the manifold variable) is expressed as a function 

of the independent generations through the usual power balance equation. One 

voltage Rhase angle is set to zero, as'a reference, and in tne opti~izat;on 
the others can be monitored outside the optimization. The line flows are 

J • 

dependent injections, expressed, conceptually at 1east» in terms of 

'independe~t generations. 

A natural extension to the DC load flow model would see the addition of 

phase ~hifters. 
. , 

transmission linas. 

These devices help control the real power flows on 

The system aquattons become 
\ 

(5.14) 
(5.15) 



1fhere 
--

is the nf dimensiona1 vector of phase shifter 

angles. 

Yl 1a an (ng x nf) matrix. Its co1umns contain 

elements YiJ and -Yij in positions i and j 

respect!vely,for phase shifter ~ij' Position 1 18 

the near bus. . 
Tl is an (nj x nf) matrix. Let ~ij be the mth phase 

shifter in the 1ist. For Une flow P ij ,the row of 

Tl contains e1ement Yij in position m if the 

phase shifter is connected at bus i,or -Yij if it 

ia connected to bus j. The row is~zero if no 
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,<::::::\ phase shifter 18 connected 'to line ij. 

Th. pha •• l~t.rs yould b. independont states, and ~;so tran.pare~t 
variables. The methods expounded in Chapter 4 could then be applied to the 

if 

prob13m, with eq. 5.14 and 5.15 replacing the full linearized load f10w model. 

1 
Based on analys:Ls dêveloped in section 4.2.3, for the varying limits 

\ 

strategy, optimality conditions. will l1kely push pohase shifters to theif 

appropriate-bounds, starting at low loada. Some would come off their bounds 

as a control measure on1y when some 11ne flow reaches a limit. 

The addition of varying voltages or taps to-the DC load flow model could 

create transparent states. whlch could he handled like the phase shlfters. 

However thé additions result in a nonllnear model. Rather than linearizing 

the new equations, it would he preferable to work vith the full lineàrized 
'1. • 

load flow model. Henc~ these two additions will not be considered useful. 

• l , 

Minimum loss dispatch and load shedding with the De load flow model are 

straightforward. Methods developed earlier c~n be applied, replacing the full 

linearized load flow model by the usual DG load flowof eq. 5.12 - 5.13. or by 
, 

the extended model of eq. 5.14 - 5.15. The former would he slightly different 

from previous models, in that no transparent variable is, present. That would 

be, in fact, a simpler case. 'These two applications will not be pursued any 

further here. 
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5,5 1 Bus and System Incremental Costs for ERgnomic pispatch 

Expressions are derived for bus and system incremental costs in ec090mic 

dispatch, based on sOlitions of the subproblem. They provide exact numerical 

values in a nonlinear OPF algorithm, because differential information provided 
r 

by the sUbProb~nd the nonlinear problem are identical at the opt~a 

J-

From the optimal dispatch trajectories for economic dispatch, lt ls a 

s~ple matter to develop expressions for bus lncremental costs. They are the 

derivatives c.;f the- optimal cost vith respect to the bus loads. Uslng the 
J _ 

chain rule in differentlation, they are seen to be formed as the product of 

two easily obtainable quantities. They are denoted, taken together, as the 

BIC vector: 

BIC - a' âb,T 
1 

From eq. 3.3, the first term of the, above product_ ,ls 

'. 

.dL.. -
8P T 

g " 

• Iïsertlng the value of PgT from eq. 4.17 for free generations, and 

simplifying, this becomés 

1 
with all notation referring to free generations on1y. 

(5,16) 

_ (5.17) 

1 

(S.18.a) 

1 

eS.18.b) 

Ta simplif~ the presentation, the dependence of À on the 10ad will on1y be 

shown at the end. 
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1 

f~om eq. 4.59, the second term ~f the product of eq.5.l6 i. 

~ -
l 

(5.19 0-&) 

for inactive generations, 

and (5.19.b) 

for active generations. 

lecall that ~ is the coefficient matrix in the right-hand-side vector of the 

-- optimality conditions associated vith the load, as in eq. 4.55. The product 
! 

! 

of the two terms of eq. 5.16 yields this expression for the BIC: 

BIC - (5.20) 

Terms due to bounded generations in the first term of !the product are 
1 

~ltiplied by zero in the second term of the product, soi they disappear. 
1 

lecalling the definition of the term K in eq. 4.18, tvo middle terms in eq. 

S.20 c~cel out. This simple formulation of bus 1ncremental costs results: 

(5.21) 

Note that this expression is valid only when the load 18 greater than the 

thresho1d load. For smaller loada, K and Mare undefined. From previous 
1 

arguments, It 15 kno~lthat for loads between minimum load and threshold load, 

no free generation i8 being used. 

The lncrementsl bus cast for sny psrtlculsr losd 1 1a essi1y obtsined: 

) 

BIC·Qhl_ 
8bli 

The second term of the product of eq. 5.22 ls slmply e1 - [0, ... ,1,0, ... ,0) 

with the l in position i. Then the individusl bus incremental costs are 

(5.23) 

/ 

'. 
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The term âK1 is the i th c;olumn of matrix lüC. This,is the simplest expression 

for bus incrementa1 costs. 

Finally, the dependence of À on the loads is highlighted. 

incremental costs are Written 

The bus 

- BICo + ABIC.bl 

(5.24.a) 

(S.24.b) 

1 In lossless real power diapatch, t~e slst~m incremental cost ~SIC) ia the 

: 'Jef1vative of the optimal cost with respect to dle total system real. Load. 
~ , 

lUth a lossy load flow model, the concept remains valid only if a load 

trajectory is specified. 

Defore undertak1ng the analysis, real power loads are separated from 

reactive power loads. If the ,.ctwo a:çe naturally partitioned in t;he ,b~ vector, 
4'1 

Efiépressions fC?r the system real power load PD and the reactive power load Qo 
\ \ 

are given by 

Po - epTb l 

Qo - eqTb l 

vith 

e T _ 
p [ edim(Pl) °dlm(Ql») 

e T _ 
q [Odim(Pl) edimeQl),l 

and e is the unit vector. 

/ 

-, ... 
'" --, 

(5.25.a) 

(S.25.b) 

(5.25.c) 

(5.25\ d) 

System loads could be expressed for other partitions _of I:8al and reactive 

loads by apply1ng the appropriat8 8p and eq' 

"\ , 
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A load traject0rY of the type eq. ,3.6 ls ~ropoled. 'Then ~h. syst •• loads . 
become sealar ftinct10ns of the Icalar e, a~ shown below: 

PD - ep
T [b~o + tob1e l 1 (5.~6.a) 

CI 

.~ - Poo + llPo8 (S.26.b) 

" 
and 

Qo - eq
T (b10 ,+ llb18] (5.27.a) 

- QDO + llQDe (S.27.b) 

1 

-The real' power SIC, denoted SIC(P), is the der1vative of the- optimal cost with 

respect t(L the system real power lçad: 

(5.28) 

The second term. on the right-hand-.side is a vector of participat;ion factors 

for the next increment of load. This is where the specified load trajectory 

is required. The values of the elements of Pl are expressed as a function of 

the system 10ad; the participations for re.1 power loads in eq. 5.28 are 

positive and for reactive power loads are nil. The product of the two vectors 

in eq. 5.28 only affect real power term~.... The formulation simplifies to the 

. following: 

SIC(P) - ~ - ~ . ~l 
8Po 8P l

T aPD 

(5.29.à) 
1 

(5.29.b) 

<, 
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The subscript p pertains to terms in real power load, and 'rF ls a vector of 

participation factors, the second term of the product of eq. 5.28. For loads 

below the threshold load. the real power system incremental cost, as seen 

earlier. is ldentiéally zero. 

A similar expression can be formed for the reactive powér system 

incremental cost. from reactive load deriyatives and participation factors: 

(5.30) 

We stress the importance of knowing tbe load trajectory to compute- tbe 

SIC. If no load trajectory is speclfied, PD and Qo are scalar functions of 

tbe vector bl' and derivatives 

are undefined. That makes sense physicalli. since for a load flow model with 

lossy transmission, the addition of an increment of load solicits different 

responses, depending on the added load's location. 

If tbe power factor of a load can be modeled as being constant, the 
, 

reactive power ~oad can be remov?d from the formulation, as a parameter. If 

tbat is the case for a11 loads, then the formulation reduces to one in real 

power loads only. That would reduce the dimension of the problem, but it 

would make It less sparse. 

\ 

A prime use of incremental bus costs i8 in determining, the economic 

bene~its in supplying load to a partlcular bus. They can be compared to the 

bus incremental revenues. Whereas the increme1J.tal costs are linked to the 

system load, the Incremental revenues are linked by contract to the bus 

loading. Trajectories of incremental bus costs and IncrementaI ~venues can 
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be compa;ed, for a given load forecast, as in figure 5.1. Fro~ a utility's 

point of view, .it is ~dvantageous to supply load as long as the incremental 

cost of supplying is smaller or equai to the incremental revenue gained 

through the sale. The region to the left of point Il- on the graph is 

advantageous to the utility. The amount of profit per Increment of load is 

the difference between the two curves. Regulations force the utility to supply 

load to a bus beyond point A if re'luired. In that region, the utility is 

losing money on each Increment of load supplied to that bus. That 

constitutes, willingly or not, a subsidy to the consumer. The amount of the 

subsidy per increment of load is again the difference between the two curves. 

Recentiy much interest has beeu shown ip adjusting the customer rates to 

the bus Incremental cost, possibly ln real time [Ponra~ah & Galiana 1985, 

Allan & Feddle 1986, Ghoudjehbaklou 1986, Lescoeur & Galland 1986, Luo 

et. a1.l986, Oyama 1986]. A major difficulty with such a scheme is that bus 

incrementai costs depend as much on system loading as on bus loading. The 

customers at a bus are not entirely responsible for their bus incremental 

cost, so it could be unfair to change their rates based on bus incremental 

costs alone. The assessment of whether a bus rate should be ch&nged would 

have to be made over a larger set of information. 

The recognition of significant disparities ~etween bus incrementai costs 

and revenues over a wide range of loads would lead to a more equitable 

collection of revenues by the utilities. lt ls a complex economic issue. 

influenced by Many condiMons. including the one presented in the prevlous 

paragraph. the costs of alternate 'energy, decisions of regulatory agencies 

representlng consumers, the need for sorne subsidies, and the consumer's 

willingness to pay more. if need be. Su ch a study 15 not undertaken in this 

thesis; it simply suggests the use of optimalf bus incremental cost 

trajectories as a new tool. It could be useful in justifying a review of 

rates, or to find alternate revenues to compensate for subsidies. In 

operations planning, lt could suggest load manage~ent strategies, or in 

transmission planning, the hast locations for additiona~ equipment. 



·C 

À 

.;'" 

/ 
/ 

-...J 

'," 

p 
-., 
l' 

1 , 

F1gure 5.1. Bus ,incremental costs and revenues. 
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6.1 Introduction 

CHAPTER VI 

DETAILS Ql THE NUMU.ICAL IKPl.EMENTATION QI 

AN ECONOMIC DISPATÇH - OPF ALGORITBH 
~ 

\, 0 

il.. 

"' ( If' (0 d " 

An optimal' power flol" algorit~D s'olving the economic dispatch task has 

been imp1emented on ~~e computer, using the algorithm described in Chapter 3 

and one of the subproblem solutions of Chapter 4. This chapter provides the , 
de~ails for many of the numerical solution procedures used in the program . 

• Information of a general nature, presented in a first ~ection, describes 

'~fdati structures and so1vers used throughout the program. Then a detailed 

aècount of the .computation for the economic dispatch subproblem is given. It 
r{} ..." ~ '} 

,>~{ is based dn the continuation method using the varying limits strategy. 

The real power dispatch algorithm presented in this chapter is of 

particular interest. It is a hybrid of the two most used techniques. one 

Iterative. the other direct. Advantages from both techniques are incorporated 

into our algorithm. Along with some new ideas for identifying active 
1 

variables. Although it, plays a pivotal role in the nonlinear O~ algorithm. 

this real power dispatch could be used on its own. in simpler dispatching 

schemes using a lossy linea~ network model. 

Other solution procedures presented here. such as the computation, of 

solution trajectories or the updates of optimality conditions. are specifie to 

our OPF algorithm. Although important. the remainil').g sections are highly 

technica~. and the reader might wish to skip them. These details are meant to 

document the program for future researeh . 

The computations involving nonlinear equations will not be covered in 

th!s chapter. I~is felt that previous descriptions of the Rules step and of 
" 

the nonlinear solver in Chapter 3 are sufficient. 
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6.2 Sorne General Considerations in the Program ImPlementation 

A few considerations. important in the general organization of the 

pro gram , are presented in this section. Specifically, three topics are 

covered. The data structure for the program is described first. There 

fol1ows a discussion on the linear equation solvers considered for various 

uses in the program. A short note on matrix :- vec::tor computations compIetes 

this section. 

6.2.1 Synopsis of the Data Structures Used in the Pro gram 

In large problems. a well-planned scheme for storing data !s essential 

for quick and easy retrieval. The data structure. as it is called, s~plifies 
û 

the retrieval of data by adding arrays of auxiliary information to the arrays 

of variables and parameters. 

Basically two types of structures are used in the program: ordered Hsts 

-and linked lists. The ordered list is a collection of values placed ~ a 

sequence; it is the most common form in general. In linked lists [Abo et. ar. -

1983]. additional information vectors called pointers indicate where to loeate 

in the list the next element having sorne given property. Some advantages of 
1 

linked lists are that they avoid the reordering of lists with dynamic 

partitions or new entries, they allow easy access to elements sharing a common 
" property. they avoid reprating eommon information, and they reduce the storage 

requirements of aparsé arrays. For these reasons, much of the program' s 

inform~tion is stored in linked lists. 

A disadvantage of linked lists i8 the added memory requirements for the 

pointers, but that is considered a reasonable priee to pay for the ease of 

handling variables. Usually pointers can be stored in the [smallest available , 

memory cells by assigning the proper variable type (for exa4ple, ~NTEGER*~ in 

FORTRAN). That makes the linking of data much more eeonomic,al than repeating 

data, even zeros. 
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Three types of data are present "in the program: system param~ters, 

variables, and coefficients created by the comp~tation. 
" 

The system parameters are stored in both ordered and linked lists. Bus 

data and data for passive network controls are placed in ordered lists. The 

line data 18 r kept in linked lists, mostly to keep track of the adjac~ncy 

structur~ of the network. ·'·It also al10ws to access Line data from either end 

bus, without having to repeat the data. 

The variables are stored in various linked ~ists. for different 

applications. A master linked List hol.ds values of the variables, the 

Lagrange multipll~rs, the solution trajectories, and sorne statua information 

in the subproble~. It communicates with two secondary lin1ted lists with 

expansion point information, one on the states, the other on the injections 

and the load' flow Jacobian. The nonzeros of the" Jacobian are stored in 

compact fo~ in a vector along vith added information for 9asy retrieval. The 

two secondary lists are structured for easy use in the Newton-Raphson solver. 

and in particular in the linear equation solver. Ordered lists for each state 

variable are formed wh en needed'ofrom the expansion point information, for use 

in computing the load flow equations and the Jacobian. 

Th. third group of data consists of ~~~~icients which go into the ma~e

up of 'the Optimalitya equations of the subp"fd'blem. eq. 4.9 - 4.10. Rows of 

sensitivity coefficients Gi are stored as co}umns for easy access in FORTRAN, 

in a dense matrix. Pointers in the master list 1ink the independent variables , . 
to their column p~sitions and the active dependent vari~b1e~ ta their row 

positions . O~ly_, the pointers are rearrange~, _the~eby avoiding the shuffling 

of rows or columns .of val:ues following the removal of constraints f,;,om the 

active set. This a1so allows to keep the sensitivity coefficients for the 
, 

deact;ivated dependent variables. They are set aside si~ply by changing th6 

status of their poin~ers, and can Just as 8a8ily be reactivated. Right-hand

side coefficients are stored in another ordered l~st. All the moving limits 

created'by the continuation process are placed in an ordered list and accessed 

from the master list wh en needed. 
/ ' 

,,' , 

. . 

1 



1 
160 

, 
6.2.2 Linear Equation Solvers Considered and Used in the Program 

The linear equation solvers are the basic building blocks of the program. 

Bot~ sparse and dense matrix solvers have been implemented for use in 

dif~t computations: 

- Computations involving the load flow Jacobian require the sparse 

matrix solver. It is found in the Newton-Raphson solver, and in the 

computation of sensitivity coefficients and dependent variables, 

before and during the continuation process. 

- The optimality equations of the subproblem are sparse, but because 

of their structure) their solution ls organized to use the dense 

matrix solver. 

Options available for sparse matrix computations fall into two 

categories. The indiroct (or iterative) methods such as conjugate gradient 

[Evans 1985] or Lanczos (Golub & van Loan 1983] methods are most useful for 

very large, very sparse systems of equations. Theoretically, they require N 

Iterations to solve an N~dimensional system of equations, but ill-conditioned 

systems can take many more iterations. Direct methods [Duff 1984] reorder the 

equations and variables to reduee the extra computational burden due to fill

in, followed by the LU decomposition of the reordered matrix, and tqe solution 

by forward and backward substitution. Direct methods are more useful in 

app'lications with a single matrix and many right-hand-side vectors, because 

the reordering and the factorization remain unchanged from one problem to 

another. The remaining operations in the solution proc~s represent a small 

portion of the computation. 

Ordering schemes for direct methods also fall into two broad categories. 

Sparse -mlltrix methods) popular since the 1950' s, aet only on the matrix c 

structure, neglecting the structure of the right-hand-side vector in the 

ordering strategy. Sorne of the more important ordering schemes in this group 

can be found in the following references [Marlcowitz 1957, Tinney & Walker 

1967, Hellerman & Rarick 1971, D'tff 1977, George & Liu 1981, Pissanetsky 

1984]. Recently developed sparse-vector methods [Tinney et.al. 1985, Gomez & 
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Franque10 1988] show that great advantage can be taken of very sparse right-... 
hand-side vectors. 

Five sparse matrix so1vers were available ta us. Because of the genera1 

nature of ol1r matrices however, three of thern had to be rej ected. These vere 

the solvers SPARSPAK [Georg~ and Liu 19811 and the Yale University package, 

which use direct methods, and the conjugate gradient package PCGSOL. The 

first two, dcs~gned to exploit symmetry, cannot handle zero-valued diagonal 

,elements. Th..; third only handles symmetric positive-definite matrices. The 

other two solvers were tried in our program. The Lanczos-type iterative 

solver LSQR [Paige & Saunders 1982] was tried first. It vas very reliable and 

user-friendly, but for tbe problems ye tested it turned out to be very slow. 

Our choice for the sparse matrix solver sctt1ed on the well-lmown Harwe11 

library subroutine package MA28 [Hopper 1977]. It was much fnster than LSQR, 

even as much as an order of magnitude faster in the larger tests. 

Furthermore, its use of a direct method made the OPF algorithm faster overall, 

because of the repeated use of the fixed Jacobian Matra in the linear 

equation solutions of the subproblem. 

Sparse-vector solvers are not readlly availab1e, but if one could be 

found or written, it ls the best suited for computing sensitivlty 

coefficients. In those computations, a $parse row of the Jacobian ls used as 

the right-hand-side of the required linear equations. In particular, this 

technique simplifies the computation of the coefficients of the generalized 

power balance equation. To achieve the greatest simplification in this case, 

the man-ifold variable should be chosen as the real power generation at the 

most isolated bus. It has the least number of elements in its row of the 

Jacobian. 

Dense matrix solvers are used in computing optimal solutions in the 

subproblem, eq. 4.27-4.37 for economic d1spatch. The optimality equation from 

which they were derived however, eq. 4.6. is large and sparse. lt has a 

single bordered block structure, with a diagonal main submatrix B; tha t 
J 

already maltes it optimally ordered. Its reduction to a set of small dense 

matrix equations, as in our solution, 1s a standard procedure in this case 

• 



-

,c. 

, . 

<1 162 

[ch.6 of George & Liu 1981]. As seen in eq. 4.~2 - 4.14, this procedure iS( 

equivalent to sparse Gaussian e1imination without partial pivoting. ~ 
t" 

is 
é? 

(\.,. 

"../, r 
Options ava11à~lè for dense matrix computations ara nume~ous. The reader 

:-... 
referred to [Stewart 1973, Golub & Van Loan 1984] for descriptions,Qf ~he. 

upcoming matrix properties and solution techniques. A Gau;,;sian elimination 

alg?rithm is used in one instance for the solution of a general matrix 

equation. However, most applications in the program involve symmetric 

positiye definite (SPD) matrices. In particular, th~ reduced Hessian terms K 

and L of eq. 1+.'10-1 .. 19 arc SPD and are often invo1ved. Algorithms solving 

for this type of matrix need only store the diagonal elements and half of the 

nondiagonal clements, avoiding thoir ropetition. The Cholesky factorization, 

used on SPD matricos, producos symmctric factors, so that again, about half 

the computation' and half the storage space are savep. Following changes in 

the active set, techniques are availablc to update some factorizations, rat~er 

than to restart them. The updatos are preferred because they are much faster. 

The Cholesky factorization and tts updates are used for most of the dense 

linear equation solutions. 

The reduced Hessian terms K and Lare inherently prone to ill

conditioning, occasionally renderlng the Cholesky factorization useless. A 

back-up factorization, more robust than the Cholesky factorization but 

requiring more computation, is available for those cases. It is based on the 

QR decomposition, and is described later in this chRpter. 

An added precaution against ill-conditioning was added in the form of an 

Iterative refinement algorithm. It is called after a solution of an i1l

conditioned system, when the residual of the system of equations is larger 

than a certain to1erance. In practice it shou1d rarely be callod. 

The Gaussian elimination, the Cholesky factorization, and the QR 

decomposition are taken from LINPACK, a generai package of linear equation 

solvel:s [Dongara et.. al. 1979]. Sorne of the updates are basad on LINPACK 

subroutines, while others are built from scratch. Details of the updates of 

the optirnality conditions and sorne of the other computations described in this 

section are presented in section 6.3. 
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6.2.3 Hatrix-Vector Products 

Chains of matrices and vectors are mult1plied in various parts of the 

compu~ation. ~ operations implicating products of ~ matrix by a v~ctor are 

always computed first. The result being a vector, that greatly reduces the 

dimensions and the computational burden of subsequent products. 

6.3 Implementation of the Solution Algorithm for the Economie Dispatch 

Subproblem using the Varying Limits Strategy 

The remaindel" of the chapter presents the specifie solution procedures 

used in the progrsm. The algorithm of section 3.4.2.3 can serve as a general 

guide to the proc~dure. First the initial, simple problem is solved here in 

three stops: an inltialization step, a reai power dispatch, and the 

computation of dependent variabLes. Then the continuation process, steps 3.a 

to 10 of the forementioned algorithm, 1s explained in detail. 

§~3.1. Starting the subproblem: computing sensitivity coefficients. 

checking for feasibility, and setting transparent variables 

Data ~equired for the initial simple problem are the cost data and the 

coefficients of the generalized power balance equation. The latter are 

computed using equations eq. A3. 4. 3 and A3. 4. 4 b. and e., given in Appendix 

3.3. Referring to that Appendix for nomenclature, the computational procedure 

is as follows: 

Solve for a: Jb/a J md 
T (6.1) 

Compute ,8: f3 ... J mb 
T - aTJbb (6.2) 

Combine: goT ::a [aT f3T] (6.3) 

Here, and in subsequent computations, a and f3 are auxi1iary vectors, used as 

workspace arrays. 

'-) The injections are placed before· the states in the vector of independent 
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variables, so that go need not be reardered. AIL, sensitivity coefficients 

arè computed in this manner, with the appropriate row of J d replacing J m• 

The first step of the optimization is ta check for the feasibillty of the 

initial simple problem over the set of independent variables bg' 

compute [goTb]M and [goTb]M as follows: 

1",S'"-

To do this, 

If 

gOibim results from setting bgi to its lower bOun« if gOi > 0, or 

results from setting bg1 to its upper bound if gOi < O. 

gOib/1 results from setting bgi to its upper bound if gOi > 0,, or 

res~lts from setting bg! to lts lower"bound if gOi < O. 

Then [goTb ]m - L gOibtm 

i 

and [goTb]M - L gOibiM 

i 

" the former 18 non-positive and the latter is non-negative, 

(6.4) 

(6.5) 

th en the 

generalized power balance equation is sure ta contain at least one faasible 

point inside the constraint box. 

If the feasibility check fails, a new subproblem must be submitted. This 

procedure 1s necessary if the subproblem is to be used on its own, or for a 

first pass in the nonlinear OPF problem. With Rules assuring that subsequent 

expansion points are feasible in the nonlinear problem, this procedure need 

not be repeated- in subsequent iterations. 

Raving passed the feasibility check, the next step is to send transparent 

variables to the appropriate values. Assume for now that the aggregate load 

is greater than the threshold load. Then the t~ansparent variables are sent 

to the appropriate bounds, according to conditions 4.53 and 4.54 of 

Chapter 4. At the same time, the right-hand-side coefficient k is 

computed from eq. 4.48 (and 4.5). Transparent variables having zero 

sensitivity coefficients are left at the values of the expansion point and 

auxiliary bounds are set (see section 3.4.4.5) to ensure convergence of the 

nonlinear problem. 
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The next step is to compare the aggregate load to the thresho1d Idad. If 

the aggrgate load is 1arger than the thresho1d load, the a1gorithm can proceed 

to the computation of the real power dispatch. If the aggregate load is 

smaller th an the threshold load," aIl real power generations are set to their 

minima and the following simple procedure is applied to find one optimal 

solution (amongst many): 

Frae one transparent variable at a time. If an adjustment of that 

variable can sat<isfy the generalized power balance equation, then an 

optimal solution is found. Stop . 

If not the variable goes to the opposite bound. Vith this change in the 
A 

active set the right-hand term k and the active/inactive partition 

ara adjusted. 

Repeat with the next transparent variable. Continua until the 

generalized power balance equation is satisfied or unt!l aIl transparent 

vari&bles have switched bounds. 

If the power balance equation can be satisfied, the algorithm proceeds to the 
1 

continuation process. If not, the aggregate load is too small to be sat~sfied 

by a faasible operating point. Then a control or an error message would be 

called from outside the simple problem. 

The next step, the reai power dispatch, is more complex and will be 

treated on its own in the upcoming section. 

6.3.2. Aigorithm for the renl power dispatch 

,~ f ' \ 

An algorithm is presented for the solution of the real power economic 

dispatch problem (ed,P), first described in Chapter 4. It comes about after 

the imposition of values on the transparent variables in the initial, simple 

problem. lt is in the form of a standard real power dispatch. 
~. , 
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The solutions of the optimality conditions for this problem are given by 

eq. 4.50 for the Lagrange multiplier Ào' and eq. 4.51 for roal power 

generations, but they are only optimal once the proper active set is found. 

Finding the optimal active set 13 the most time-consuming part of the 

optimization. !wo solutiol. procedures are commonly used: 

- In the direct approach, it is assumed at the outset that all 

generations are free. Both eq. 4.50 - 4.51 are solved. If in the 

solution some generations violate their bounds, usually the first to 

be violated is set to its bound and its Lagrange multiplier i3 

activated. The process is repeated with the new active set. This 

continues until solutions tor froc generations from eq. 4.51 are 

completely fensible. That i8 the optimal solution. 

- In the Iterative approach, often called lambda dispatch [Wood & 

Wollenberg 1984], upper and lower bounds are computed for the 

Lagrange multiplier Ào' A foasible value of Ào is proposod, instead 

of being computed in eq. 4.50, and inserted into eq. 4.51. If some 

of the resulting generations violate their bounds, they are set 

temporarily to their bounds. Then the desired system load is 

compared to the computed system generqtion: 

i) If the. load is larger than the generation, th en Ào must be 

incceased. 

ii) If the load i8 smaller than the generation, then Ào must 

be decreased. 

Hi) If the two are equnl (within a tolerance), then the 

compnted generations are optimal. 

Changes in ,xo are made by binary search within its 'feasible region. 

The process ls repeated until it converges in option iii). 

The algorithm proposed here uses tlie Iterative appr~ach only until the 

proper active set i8 identified. Since each Iteration is relatively simple, 

it is felt that the iterative approach arrives' at the active set more quickly 

than the direct approach. Then with the tproper active set, a single 
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application of the direct method yields an optimal· solution. Tha t avoids \ 

having to home in on the solution. 

The proper active set is easily ide~tified in applications vith 

monotonically increasing cost functions. If in tvo consecutive Iterations A 

and B, the search direction for the Lagrange multiplier '\0 changes but the 

proposed active set remains the same, then the active set remains çonstant 

everywhere within the Interval POAI "OB]' In.partlcular, It ls the acttve 

set for the optimal .x o' which must be situa ted in that interval. 

The notions of system load and system generation are respectively 

replaced in this application by aggregate load, goTbp and, aggregate 

generation, goT(bg + be)' The only variables left to determine, then, are the 

real power generations. 

Another refinement implemented in the iterative part of the algorithm, 

and not found, in standard lambda dispat~h ';i,gOrithmS, i8 the iJentifica~iq~ of 

active generations as the algorithm progresses. , This information reduces the 

dimension of the search. Generations on their lover bounds vhen "0 decreases 

are sure to remain there, as is the case for upper bound generations when Ào 

increases. 

Assuming that the transparent variables have been de'termined, and that 

the aggregate load is greater than the threshold load. here then is the 

algorithm for the solution of the reai power economic dispatch problem (ed,P): 

STEP 1. Place al1 generations in the free partition. ;,: 

STEP 2. Compute the right-hand-side term k of eq. 4.48. 
, , 

(bis 4.48) 

STEP 3. Determine lower and upper bounds on ),0' from cost data. 

\ 

1 
i) For aIL generations, compute 

,\ m = 
ai (6.6) 

and 

(6.7) 
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STEP 4. 

'\ STEP 5. 

STEP 6. 

STEP 7. 

STEP 8. 

STEP 9. 

-
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Il) Then plck out the extreme values as bounds on lo' 

lm. 
0 mIn O'Ot

m
} (6.8) 

1 

and 
>.. M _ 

0 max °Ol
M

} ~ (6.9) 
1 

Set the ini da1 >"0 to the median value in the Interval [>"0 m, Ào M] • 

~ 

If the active set has not changed over two consecutive iterations 

and the search direction for Ào has changed, then the optimal active 

set has been :ffound. Go to STEP 11. '-,: . 

Compute generations for the given Ào' 

From eq. 4.51. 

PSl - (gOl>"O - at)/Bu for free generatlons only. 

(6.10) 

If PSi violatès a bound, set it to that bound an~ place the 

index i in a corresponding 1ist of temporary upper or lower 

bound generations. 

Compute the weighted sum of generations. 

(6.11)---

A 

Compare S to k. 
A 

i) If S is less than k, th en go to STEP 9. 
A 

ii) If S is greater than k, thén go to STEP 10. 
A 

Iii) If S equals k (within a tolerance), then go to STEP 12. 

A 

Update .\0' k and active/inactive partitions on generati6ns. 

i)' Update lower bound on .\0: Àom = .\0; 

update .\0 "" nom + >..0"")/2. 

"-ii) Update the active/inactive partition on generations by 
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including indices from the temporary upper bound list in 

the permanent 'upper bound list. 
A A A 

iil) Update k: k - k - gOiPgi for aIl newly activated Psi' 

iv) If control comes from STEP 12, go to STEP 10 ii). If not, 

go to STEP 5. 

U:pdate Ào' 

i) 

i1) 

A 

k and active/inactive partitions on generations. 

Update upper bound on Ào: À M 

° 
.. Ào; 

update Ào .... O'om + ÀoM)/2. 
~ 

Update the active/inactive partition on generations by 

including indices from the temporary lower bound list in 

the permanent lower bound list. 

lii) Update k: k... k - 8,OiPgi for a11 newly activated P gi' 

iv) 'If control comes from STEP 12, STOP. If not, go to STEP 

5. 

STEP 11. The optimal active set being known, compute solutions from eq. 4.50 

-4.51. STOP. 

STEP 12. The optimum has been reacned iteratively. Update the active set and 

the right-hand-term one last time. Go to STEP 9 ii). 

The algorithm terminates in STEP 11 or converges after STEP 12. 

A possible improvement wou1d be the imp1ementation of a secant search 

technique [Dahlquist & Bjôrck 1974] instead of a binary search, in updating 

Ào' as dascribed in (Wood & Wollenberg 1984]. This is suggested for future 
o ~ 

implementation. 

6.3.3 Computing the dépendent variables 

The" free dependent variables are computed from the newly determined .. ., 
values of the Independent variables. That is done using eq. A3.4.3 and A3.4.4 

c. and f" from Appendix 3.4. The dependent variables are computed at various 



1 
170 

stages: before the continuation procedure with all' dependent variables 

considered inactive, and in the continuation procedure in computing 

coefficients of the solution trajectories. Depe~ding on the particular 

classification of each variable, there are different computation procedures. 
~, 

This can be seen in the computational procedure presented a litt1e further. 

The computation for' the components of the solution trajectories, of the 

form s(9)'" sa + lls.9 (eq. 4.38), ls performed in two parts. The procedure 

to compute sa serves al~o to compute the values of the dependent variables 

preceding the continuation process. The two parts iof the computation are 

given be1ow, side by side. Those steps which are common to both components are 

written on1y once. 

Operation As component 

Form CI: 

If ~ is inactive Il - ~5 

If ~ is on a fixed 

bound, ~gb CI - 0 

If ~ is on a moving 

bound do + Ad CI - lld 

Compute fJ: fJ - J db?" 

} . 

.!o component 

a: - ~gO - ~. , (6.12) 

a: -
b 

~II -~. (6.13) 

(6.14) 

Form CI: CI - Ybg - (Ybl + Y1?) - fJ 

(6.15) 

(6.1~) 

(6.17) Solve for llxd : 

For inactive states 

on1y, compute: 

(For 'active states 

For each inactive 

Jbdt:.Jçd_ - CI 

Fepende~t inj ection y di: 

Compute Cl: 1: 

Compute Ydi: 

(6.18) 

Xdi - X.di b ) 

(6.19) 

(6.20) 
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This format for presenting the computation is adopted for a11 the 11pcoming 

computations invo1vin~ two components. 

6.3.4. The continuation prooedure 

The details of the computation of the continuation procedure are 

presented in this section. The procèss is made up of five steps: shifting 

vio1ated constraints, updating the optimality conditions, computing solution 

trajectories; determining the next breakpoint, and computing the solution at 

the breakpoint. The updates to the optimality conditions are considered an 

important featuré of the algorithm, so they will be presented in detail. 

Another feature in this implementation is, a test for resolving certain forms 

of degeneracy; it is a1so presented, in a final subsection. 

The val\les of dependent variables computed from the optimal solution 

of the initial, simple problem are compared to their hounds. 

are found, the continuation process is invoked. 

If violations 

A violation counter i~ initialized ta zero. 

variable di: 

Then, for each dependent 

If di > di M, then place index i in the set of upper violated constraints. 

Compute the violation (di - d i
M). 

If di < di m. then place index i in the set of lower vio1ated constraints. 

Compute the viol a tian (di m - d). 

For either violation, increment the violation counter. If the violation 

is the largest seen sa far, record the index i and the value of the 

violation. 

Once all the dependent variables are processed, if the violation counter 

indicates zero, then the solution to the initial, simple problem ls also the 
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optimal solution to the economic dispatch subproblem. Then the ~ continuation 

process and the subproblem are complete. If the violation counter Indicates a • 
" positive value, th en create perturbation functions for all yiolated 

constraints, by shifting aIL the violated constraint bounds by the amount of. 

the largest violation ~d: 

For upper bound violations, .. d i
M(9) (d/ f + ~d) - ~d.9 

For lover bound violations, dt(9) "" (d i
Jl 

- ~d) + ~d.9 

(6.21) 

(6.22) 

AU the dependent variables are then inactive, except one which is "just 

active". Its Lagrange multiplier is activated, and its value 15 zero. 

Before proceeding with the updat~ng stop, the Cholesky factorization of 

the K matrix of eq. 4.18 is computed. That ls very oasy because at this point 

K Is a scalar, whose factorizatlon is simply its s~uare reot. The notation Uk-

is used to denote the upper triangular factor of matrix K: 

(6.23) 

The index of the newly activated constralnt is retàined and update no.l 

18 invoked. 

These '.lpdates reform the components~, of the calculation Cholesky 

factorlzations, right-hand side vectors, partitions of· vectors and their 
" 

dimensions following the updating of the optirnality conditions at a 

breakpoint. 

An advantage of the computational scheme, in geneltal, and the updating 

s'cheme in particular, i8 that at the beginning 'of the continuation process 

left-hand-side matrices K and Lare actually scalars. Then nt each update of 

the optimality conditions, the dimensions of K or L either remain unçhanged or 

are modified by one. Quick uQdates of the Cholesky lllctorizations of K are 
c 

available for all updato conditions. Quick updatcs [or the Choleslcy 
.; 

factorization of Lare available only in cases involving transparent 



• 173 

variables. Norma11y the dimensions of these matrices shou1d remain staall, 

making the computation relative1y fast. 

Bere then are the detailed c:;,omputational procedures for the six update 

conditions and their factorizations. 

/ 'l'his updates the optima1ity conditions when a functional const'raint 

di becom~s active. An extra row and column of sensitivity coefficients are 
} 

added to the optima1ity equation. eq. 4.4. The computationai procedure is as 

fOllis : 

Update the active/inactive partition on dependent variables. 

Update dimensions of these partirof.ons. 

Check for structural degeneracy (active dependant constraints outnumber 

inactive real power generations). This will be exp1ained further. 

Compute (or retrieve, if available) the sensitivity coefficient vector gi 

for the active constraint as described in section 6.3.1. 

Compute the corresponding right-hand-side term: 

'k 
i "" (6.24) 

The second term of the right-hand-side is computed using the present 

active/inactive partition of independent variables: 

Check for numerica1 degeneracy. 

Update Cho1esky factorizations UK and UL of matrices K and L respectively 

Ceq. 4.18 and 4.19). 

For UK' a new column u and then a new row are concatenated along the 

rightfbottom edges of the existing UK • The new bottom row has a single 

nonzero element v in the last column, so that the new UK remains upper 

triangular. The procedure for computing u'and v is as follows: 

/ 
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'c. 
/ - For aIl inactive generat10ns 

j, compute QJ' : 

- Compute fJ: {J -
- Solve for u: 

\. 

GpQ 

U TU x: - {J 

- Compute v: v- SpiTQ - uTu 

If v > 0, then 

< 0, th en 

v- Jv 

resort to the 

decompodtion. 

- Update the G matrix to inclu~ the gi vector. 

back-up 
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(6.25) 

(6.26) 

(6.27) 

, (6.27) 

(6.28) 

The matrix UL 1$' recomputed from scratch . 

• 

This updates the opt~lity conditions when a functional constraint 

di becomes inactive. An '!xisting row and column of the optimality equation 15 

deleted. The computational'procedure id as follows: 

Update the active/inactive partition for dependent variables. 

Find the position of the sensitivity coefficient vector gi to be removed. 
~ 

Remove its position index from the Qrdered list of sensitivity vector 

positions (but keep &i ~nd information to access lt). 

Remove the corresponding right-hand-side element. 

Updat-e- the Cholesky factorizations of UK and Ut: 

For UK , use LINPACK subroutine DCHEX. It updates the Cholesky 

factorization of matrix K w:!.th the row and column corresponding to the 

deactivated constraint permuted to the bottom/right edge of the matrix. 

Theu update the dimensions of the active/inactive partition on depe~dent 

varill.bles. The last row and column of UK are th en discarded. 

The matrix UL is recomputed from scratch. 
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This updates the optimality conditions when a transparent variable t j 

bécomes active. A row and a column of the optimality equation are transferred 

from the left-hand-side to the right-hand-side. The computational procedure 

is as follows: 

Update the active/inactive partition for transparent variables. 

Extract the column vector gj from Gt corresponding to transparent 

variable tj' 

Update the right-hand-side term: 

k - k - g t lim 
j gj 

Update the Cholesky factorizations of UK and UL~ 

1 

UK remains unchanged ~ 

(6.29) 

For UL , if there remain free transparent variables, the LINPACK 

subroutine DCREX is used as above. to remove the row/column corresponding 

to t j from matrix L. The dimensions of the active/inactive partitions 

for transparent variables are th en updated, and again the last row/column 

of UL are discarded. 

This updates the optimality conditions when a transparent variable t j 

becomes inactive. A row and a column of the optimality equation are 

transferred from the right-hand-side to the 1eft-hand-side. The computational 

procedure ls as follows: 

Update the active/inactive partition of the transparent variables. 

Update the dimensions of the partitions. 

Extract the column vector gJ from Gt corresponding to transparent 

variable t j • 
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Update the right-hand-side term: 

(6.30) 

Update the Cholesky factorizations of Ux and UL: 

UK remains unchanged. 

For UL , the update procedure is similar to that in Update no.l, in that a 

new row and a new column are added to the existing UL' 

- Compute v: 

Solve for a: 

Compute v: 

- If the number of free trans-

parents is greater than l, 

Compute f3: 
Solve for u: 

Compute v: 

- Check v: 

If v > O. then 

< O. then 

v - Jv 
resort to the back-up 

decompositlon. 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

This updates the optimality conditions when a real power generation P gj 

becomes active. A row and a column of the optimality equation are transferred 

from the right-hand-side to the left-hand-side. The computationai procedure is 

as follows: 

Update active/inactive partitions for real power generations. 

Update the dimensions of the partition7~ 

Check for structural degeneracy. 
->~ 
{ t'rI, 
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Extract the column vector gj from Gp correspond~g to real power 

generation P sj • 

Update the right-hand-side term: 

k- k-gP lim 
j gj 

Update the Cholesky factorizations of UK and UL : 

For UK • first the down-dated row/column a - B -1/2 Sj is computedl!. 

{F~r all elements of column gj' 

Compute ai: 

4 

(6.37) 

(6.38) 

Then LINPACK subroutine DCHDD down-dates the existing factorization to 

obtain the new one: 

(6.39) 

The matrix UL is recomputed from scratch. 

;( 
This updates the optimal1ty conditions wh en a real power generation Pgj 

becomes inactive. A row and a column of the optimality equation are . ~ 

transferred from the left-hand-side to the right-hand-side. The procedure is 

as follows: 

Update active/inactive partitions for real power generations. 

Update the dimensions of the partitions. 

Extract the column vector gj from Gp corresponding to real power 

generation Pgj' 

Update the right-hand-side term: 

k - k+gP lim 
j gj 

Update the Cholesky factorizations ot UK and UL: 

(6.40) 
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For UK• first create the updated row/co1umn a as in Update no.5. Than 

LINPACK subroutine nCHUD updates the ezisting factorization to obtain the 

nev-one: 

(6.41) 

- ~ The matrix UL is' recomputed from scratch. 

vii) Factorization of L from scratch 

Updates of UL are only possible when, the change in the optitnality 

conditions leaves K unchanged. since L requires the inverse of matrix K. Most 

often lt is necessary to recompute the factorization Ur.. of the matrix L from 

scratch. Once the matrix L has been recomputed. tts factorization is 

performed using the LINPACK subroutine DCHDC. 

The usual Cholesky factorization can break down due to ill-conditioning. 

It manifests itsalf in a negative value of the square of the new diagonal 

element v. when a row and a column are added ta matrix K or L. Either K or L 

can be written in the form of the normal equations i.e., in the form ATA: 

- (6.42) 

L [G U -1] [UX-1Gt!] 
- t K (6.43) 

The QR decomposition applied to matrix A expresses A as a product of matrices: 

A- - QR. lt can be shawn [peorge & Ng 1986] that the upper triangular portio~ 

of the R matrix Ij the Cliolesky factarization of ATA. Hence in our problem 
) , 

the Cholesky factQ izatians of K and Lean be built from the matrices ~ and 

Al' without forming the normal equations. 

used to produce this R matrix. 

The LINPACK subroutine DQRDC is 
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The QR technique 18 more robust than the usual Cho1esky faetorization 

algorithm. It 1s best 1eft as a backup, though, sinee it requires twice as 

much computation as the usual cho'lesky technique and ainee the Cholesky 

technique shou1d rare1y bog down. 

The computation of solution trajectories for economie dispatch is 

presented. The computation differs from the analytical expressions, eq. 4.31 

- 4.38, in that values a1ready computed for some variables serve to compute 

values for the next variables. That saves much computational effort. The two 

components of the solution trajectories are given, in the format tirst used in 

presenting the computation of dependent constraints. 

procedure ls as follows. 

The computationa1 

1 

Eq. 4.32. If dim(t I ) - ntf > 0, th en compute free transparent variables. 

Operation 

Solve for f3: 

Solve for a: 

Solve for 'fJ: 

Solve for tg: 

U.lf3 - ~n 

Utl - f3 

UL
Tf3 - a 

ULtg - f3 

§.o component 

(6.44) 

(6.45) 

(6.46) 

(6.47) 

Eq. 4.35. Compute Lagrange multipliers of active functiona1 constraints. 

Operation As component §.o component 

Set a: a - An a - no (6.48) 

If ntf > 0, compute a: a - a + Gttg (6.49) 

Solve for fJ: U~TfJ - a (6.50) 

Solve for À: UKÀ - fJ (6.51) 
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Eq. 4.31. Compute real power generati~ns. 

Operation 

Compute a: 

For all inactive real power 

generations, compute PSi: 

As cOT!ij)onent 

a -

.lo component 

a - G TÀ '- a p 

Eq. 4.36 - 4.37. Compute Lagrange multipliers for active real power 

generations and active transparent variables. 

Operation 4s component §.o component 

JJ - -G bTÀ p p 

Compute JJt: " - -G bTÀ rot t 
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(6.52) 

(6.53) 

(6.54) 

(6.55) 

Eq. 4.38 for dependent variables has already been treated in section 6.3.3. 

The remaining eq. 4.33 - 4.34 describe variables fixed at their bçunds, which 

need not be computed. 

, The, So compo~ents for the upcoming segment of the solution trajectory are 

computed explicitly. using the procedure l1bove. only when starting the 

continuation process (9 a 0) or in restarting it after resolving a degeneracy. 

In most cases, it can be computed very simply from the newly computed ns 

vector and the vector of known values of the variables, sr' at the latest 

breakpoint Sr' 

Since - (6.56) 
1 

at the:\ initial breakpoint of the next 

segment of the solution trajectory, 

then - (6.57) 

Rence a simple vector subtraction suffices to obtain so' 
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The precision of this quick computation of sa was compared to that of the. 

drawn-out computation. lt vas feared that the quick computation might drift, 

due to the accumulation of numerical errors, as in some simpleJschemes for the 

computation of numerical Integration [Dah1quist & Bjôrk 1974]. However, tests 

irtd1cate that the precision of the quick computation is very good. 

The optima1ity conditions remain va1id until the next breakpoint, where 

either an inactive variable becomes activ~ or Lagrange multiplier reduces to 

zero. The values of 8 at which these things occur for each variable are 

computed as fo11ows: 

For an inactive variable si going to a fixed bound: 

If ~s > 0, compute 8 i needed to reach the upper bound s~M, 

9 i .. (siM - siO)/~s, 

If ~s < 0, compute e i needed to reach the lower bound sim, 

8 i .. (Sim - SiO)/~S. 

If ~S - 0, set 8 i greater than" 1. 

(6.58) 

(6.59) 

For' an inactive variable Si going to a moving bound d1im(8) - do + ~d8 

(possible for dependent and sometimes transparent variables): 

If t>s > 0, compute 8 i ne'eded, to reach the moving upper bound. 

8 i = (do - siO)/(lls - ~d). (6.60) 

If t>s < 0, compute 8
i 

needed to reach the moving lower bound~ 

8 i ... (do - SiO)/(t>S - ~d). (6.61) 

If 6s = 0, set 8 i greater than 1. 

For Lagrange multipliers h(8) ~ ho + ÂA.~: 

If ~ < 0, compute the 8 i needed to reach zero, 

8 i ... -ho/ML 

If ~ 1: 0, set 8 i greater th an 1. 

(6.62) 
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Compare all 91 , and pick thè--- !lIn8.11est as the next breakpoint 9r . ,U that 
\ , 

value is larger than one, then set it to one. If it is less than one, record 

the condition which cause~ 91 and invoke !ts update condition. Then go on to 

compute the values of the variables s(8I ). 

, 

J 

The values of the inactive variables and Lagrange multipliers for active 

variables at the newly determined breakpoint 8 1 are computed using eq. 6.56. 

If in the previous step, the breakpoint was set to one. th en the values just 

computed are the solutions of the subproblem. If .not, the continuation 

process returns to the updates. 

/ 

Provisions have been implemented in the program to avoid certain cases of 

degeneracy. A first case is that of structural degenéracy, when in the 

continuation process, the active functional constraints come to outnumber the 

inactive generations. When that happens, the reduced Hessian term K of eq. 

4.18 is a singular matrix, and subsequent ca1culntions bog down. The problem 

is numerical, in that the forming of K imposes a certain block ordering of the 

left-hand-side matrix of the optimality equation, as shown in eq. 4.14. That 

matrix is nonsingular, but the imposed ordering makes the proposed solution 

equations, eq. 4.15 - 4.26, impossible to compute. This problem has bean 

observed in numerical tescing, but it rare1y occurs once the appropriate basis 

is chosen. 

A remedy to this prob1em is to reform the basis. lt requires the 

application of the projection step of section 3.4.1, to reduce the number of 

active dep "mdent variables, ,and the reordering of the Jacobian. Coefficients 
, 

for a new g~neralized power balance equation and for the few remaining active 

dependent va.:iables must be computed. This is just a restructuring of the 

computation, and does not inva1idate the portions of th~ solution trajectories 
'f 
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already found. The computation with the new basis picks up where the previous 

one left off. 

The other two cases implemented in the program were described in Appendix 

4:2. When the conseraints outnumber che inactive variables. the reordering 

described above is insufficienc. Constrained variables must be found to come 

off their bounds. while satisfying the optimality conditions. If nÔ such 

variable can be found, a feasibility boundary has been reached. The simplest 

test is to check if,there remain real power generations at cheir lower bounds. 

If so. the incrementally cheap~st generation is taken off its bound and ics 

Lagrange mul tiplier 18 set to zero. 'l'hen this solution is verified for 

opt lmali ty . 

The other case resolves the degeneracy due to one constraint too Many. 

It was described at length "in Appendix 4.2. so it will not be repeated here. 

- ". 



• CHAPT!' VII 

DESCRIPTION AND ANALYSIS OF THE NrnœŒRICAL SIMULATIONS 

7.1 Introduction 

An optimal power flow program has been written implementing the ideas of 

the pre~ious chapters for the economic dispatch ta&k, and has been tested on 

systems of 6, 10, 30 and 118 buses. This chapter documents and analyzes the 

results, taken not only from the output, but also from the various important 

stages of the calculation. 

The results are pre.:ented for each test system separately. The formats 

and the contents of the various tablas and graphs will be discussed ln data il 

on1y for the first test, on the 6 bus system. By then the reader should be 

well-acqualnted with the format. Renee the results for the three subsequent 

tests are presented using the same format, but only the points \deemed 

important are highlighted in the discussion. 

The format for presenting the results in this chapter is as fol1ows. 

First the global performance of the algorithm in solving for the initial load 

is given in detail. Then, in the first three simulations, the OPF i3 solved 

for a sequence of loads in a load-tracking scheme, and solution results for 

t:he subsequent loads are provided. Although less detailed than - for the 

initial solution, the latter results provide for a good comparison of the 

computational effort and the computation time of the algorit.hm for the 

sequence of loads. Following this global description, the details of the 

system variables and costs through the varioûs stages of the computation are 

presented graphically. 

For the six bus system only, two other topics are added to this study. 

These ver;.fy a couple of fine points in the the ory of the previous chapt ers . 

First we a1.1alyze the numerical stàbility of the subproblem solutions for the 

transparent variables, and their relation to the sensitivity coefficients in 

the power balance equation. Secondly, we look at the case where the 

,1 
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computation of the f1rst load continues until no breakpoint occurs in a long 

sequence of subproblems,' and where the system Is solved to extremely tight 

tolerances. The computational effort for the solution of the subsequent loads 

1s then monitored to see if the initial effort was worthwhl1e. 

Following the descriptive sections mentioned above, sorne general results 

and observations are regrouped. Rere we summarlze our numerical experience 

with our OPF program, and discuss its general behaviour. Those readers who 

wlsh to skip the details can move ahead to this section 7.6. 

Resu+ts for the 30 bus system are then compared to those document$d in a 

recent publication [ponrajah 1987] and to those in a well-known paper in the 

OPF literature [Alsac & Stott 1974]. This comparison confirms sorne of the 

conclusions from our results> especially those concerning the roles of the 

different' types of variables in the optimization and the relative difficulty 

in computing them. 

The chapter closes with a d1s.~ussion on the numerical difficulties 

observed in the computation, partfcu1arly as the test systems increase in 

size. 

7.2 Simulations on a 6 Bus System 

"' The six bus system is taken from the book by Dhar [Dhar 1982]. No cast 

data was given in that reference. sa sorne values were created more or 1ess 

arbi trarily. Also. ta increase the s ize 'and complexi ty of the problem. 

generations were placed at every bus. The data and the schematic diagram for 

this system can be found in Appendix 7.1 . 
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The number of variables in this system ia aa follov8: 

Humber of buses~ 6 

Number of generations: 6 

Number of loada: 4 

Number of transmission lines: 7 

Number of variable transformer taps: 2 ~ . 
32\ 

~ 

Total number of lcad flow variables: 

The program solved this system for an initial load, and then in three 

different runs for sets of 10 subsequent loada, inereased in intervala of l, 2 

and 4 percent respectively. 

7.2.1 Global Characteristics of the Solutions 1 
• 1 .. 

The solution process for the six bus system is summarized in four tables: 

Table 7.l ofor the solution ta the initial load, and tables 7.2 to 7.4 for the 

three cases of the load-tracking solutions. 

Table 7.1 gives a detailed account of the com~utational effort requir~d 

for the solution of the initial load, for all the major steps of the 

algorithm. Horizontally, the columns tabulate the values for each major 

iteration until convergence i8 achi.eved. Vertically, the information i8 

broken up into two main categories: information from the subproblem and from 

the load flow feasib11ity search. ~ 

For the subproblem, the table indicates first how mnny of t~e neglected 

dependent constraints are violated in the' simple problem solution. It th en 

shows how many breakpoints are required to obtain a completely feasible 

subproblem optimum using the continuation method. 
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In the search for the load flo. feasible point. the table provides three , . 
important groups of information: the number of Newton-Raphson iterations 

needed in the load flo~ solver. the variables used to gauge convergence. and 

the step size described in section 3.4.4 ta curta!l unduly large movements 

f~om an expansion point. 

The three convergence criteria considered here are (1) the relative 

reduction in the lond flow feasible point' s fuel costs from one iteration to 

the ne~t, (2) the relative gap between the load flow feasible point's cost and 

that of the subproblem's optimal cost, and (3) the relative distance between 

the load flow feasible point and the subproblem solution. The term relative 

ls used because the thdee difference terms which. make up these convergence 

criteria were divided by the corresponding variables, to give a better idea of 

their relative size. Fairly tight tolerances have been placed on these 

convergence criteria in the program, allowing to stuoY the rate of convergence 

over a larger number of iterations. 

The table onds .1ith the cost of the initial guess. the cost of the 

optimal solution, and the computation tlme. The latter ls taken from an AT 

compatible personal computer equlpped with a coprocessor. These timings are 

about two to three orders of magnitude slower than those which could be 

expected using fast mainframe computers [Dongarra 1987], but they are useful 

in comparing our rcsults amongst themselves. 

Our description of the results of Table 7.1 will st,art with a detailed 

look at· the first column. followed by ithe general progression across the table 

for each entry. In al1, 9 major Iterations were required to solve the first 

load of this system to the chosen toleranées. 

At the top of the first column, we have the results of the first 

subproblem of the optimization. The solution ta the simple problem of the 

subproblem violated 4 of the 19 dependent constra;ints, the largest violation 

being 1. 695 p. u. on the reactive power generation Q6. In the continuation 

process, 12 brollkpoints were encountered before reaching the 0'Ptimum of the 

subproblem. This process 1s documen.ted in Table 7.6 and in figures 7.2, and 
1 

will be described later. 
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TABLE 7. 1 - TEST ON THE 6 BUS SYSTEM 

SUMWlY OF THE ALGOlUTHM'S PERFORMANCE ( 

~ 

1;- SOLUTION FOR THE FIRST LOAD . 
~or it.ration qo. 1 2 3 4 S 6 7 8 9 

SUBPRDBLEH , 
, 

Violations in the subproblem 4 3 5 5 4 3 1 4 4 

at the simple OptiDlUDl - , 

Breakpointa in the 12 6 20 14 10 4 2 6 8 

continuation process 

SEARCB FOR LOAD FLOW FEASIBLE POINT 

~ 

Newton-Raphson iterations in 3 4 2 2 4 2 4 3 l 

findins load !low !ellsible pt. 

Relative reduction in cost of - .0138 782e-2 .13ge-2 .1448-2 6280-3 . 373e-3 .528.-3 .173e-4 

load flOtl' feasible pt. 

Relative sap between cosh of .0652 .0323 .118.-1 .1048-2 .462e-2 . 677e-2 .606e-2 235e-2 .191e-2 

load tlow feasible pt. and 

subproblem solution 

Relative norm of the difference .1159 .1084 .0758 .0592 .0362 .0228 .0186 .0161 .0155 

bat.een tha variables at the 

load flolf !easible point 

and the subproblem solution 

Step size in seerching 9 .45 .45 45 .45 .45 .22.5 .1125 .1 

feal!lible load flow pt 

, 
Initial cost. 1. &431 Optimal cost 1. 6009 Computation time: 19.72 sec. > . 

....- . 
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Upon completion of the first subproblem, the three convergence criteria 

are computed. Convergence cannot be declared after just one Iteration, but 

this information is still useful in showing how much progress is achieved 

towards reaching the optimum. It can be noted, in comparison with the 

su.bsequent <!olumns of the table, that the first Iteration results in the 

largest changes in the candidate solution. 

The computation of the load flow feasible point in the first major 

Iteration required 3 Newton-Raphson iterations. The first load flow feasible 

point computed, by this part of the program was also bounds-feasible and of 

lower cost than the previous expansion point, so it was kept as the expansion 

point for the next major iteration and the step size remained unchanged from 

its previou~ value. 

The sequence of subproblem solutions over the 9 major iterations J as will 

be seen with the other simulations, Is somewhat typical. The first few 
, 

subproblems required a relative1y large numbers of breakpoints J in reso1ving 

cases with re1atively large violations. For example, the first three 

subproblems required 12, 6 and 20 breakpoints, while the 1ast three required . 
on1y 2, 6 and 8 respectively. The largest violations in the first three 

subproblems were 1.70, 0.48 and 1.58 p. U., whi1e in the la8t three they were 

0.01, 0.55 and ... ~.19 p.u. It is worth noting however that even for the longest 

subproblem, in major Iteration no.3i .the number of breakpoints compares 

favorably with the typical number lof linear or quadratic programming 

iterations. Recent works place an empirical upper limit on the usual number 

of LP iterations around 1. 5 times the number of constraints [Chvatal 1983]. 

For this system, that number would be about 80. 

The sequence of Newton-Raphson load fl,ow solvers required relatively 

little computation, averaging less than 3 iterations in each major it~ration. 

For the 6 bus system, as weIl as for the other 3 systems used for these tests, 

load flow convergence was rarely a problem. In three cases, major Iterations 

nos. 2, 7 and 8, the Newton-Raphson sol ver was used twice, since the first 

computed candidate was unacceptable. That explains the reduction in step 

size. However the most iterations in any major iteration was only four, in 

Iterations 2 and 7. 
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The two cost-rel ~ted convergence criteria started off with re1ative1y 

small values. thanks to the good initial guess, and then reduced apparent1y 

with a 1inear rate of convergence. This rate cou1d be . expected. because of 

the use of the step size in the procedure [Dennis & Schnabe1 1983]. The " 

change in co st , from its initial value to its optimal value, is only 2.5%. 

from 1. 6431 to 1. 6009 units. 

correspondingly small. 

The change in the real power generations is 

Figure 7.1 shows the progression of the costs of the load f10w feasib1e 

points and of the subproblem solutions versus the number of major iterations. 
, 

It illustra tes that the subproblem solution can effectively serve as a lower 

bound on the optimal solution. lt also shows that the upper curve. that of 

\ the feas ible load flow points. reaches its bottom rather quickly. Renee, the 
~ 

idea of us ing the gap between the two curves as a measure of convergence is 

sound, but lt might unduly prolong the computation. In our case, the tolerance 

on the gap betwee~, the two curves was chosen 5.times larger than the tolerance 

on the cost reduction to avoid pro1onged computation, but even th en the cost 

reduction bottomed out before gap value reached tts tolerance. 

"\ 

1,64 

1.62 

~ 1.60 
o 
u 

1.58 

1.56 

LOAO FLOW FEASIBLE POINTS 

SU8PROBLEM SOLUTIONS 

1.54 4---,---r-.,---r---r-,.....-r---r-,.....--, 
4 10 

NO. OF ITERATIONS 

\ 

F:lgure 7.1. Costs of the load flow fell!.lble points anri the 
subproblem solutions ~t each major Iteration, solution 
to the 6 bus system. 
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The third convergence criterion, involving the load flow variables. 

decreased from a fairly. large initial value of 11.6% to a much smaller 1.5%. 

Most of this change is in the reactive power generations, and to a lesser 

extent in the voltages and the variable transformer tap positions. This 

improvement is possibly the mast significant in the optimization process, in 

that it assigns optimal values to the many variables which have no direct 

cast. 

The step size used in the search for the load flow feasible point reduced 

automatically as the optimization proceeded. This, as we shall see, is the 

typical behaviour. Recalling the argument of section 3.4.4.5 for the solution 
1 

of systems of nonlinear equations with fold lines, this behaviour seems 

reasonable. As the expansion point approaches the optimum, the correction 

step suggested by the subproblem will not reduce to zero: hence the step size 

must do so. The final value of the step size in this case Is 0.1. rn a case 

where this test vas allowed to run for 30 major iterations, the step size 

reduced-to 0.025; that 8eems ta confirm the theory given above. 

The computation time to solve for the first load of this system was 19.72 

sec with computations in double precision. This will be compared ta the 

solution times of the subsequent loads. 

The next three tables provide an account of the solutions for the 

subsequent loads in the load-tracking mode. The loads are increased by 1 

percent aiter each solution in the first case, and by 2 and 4 percent in the 

second and third cases. These cases are documented in Tables 7.2. 7.3 and 7.4 

respectively. 

In each case the load-tracking is tested on sequences of 10 loads. The 

tight convergence tolerances for the initial load solution are maintained on 

every fifth load, but are re-laxed a bit for the other loads. In comparing 

costs from the different load tracking tests, the aecuracy obtained with the 

relaxed tolerances seems quite good. 
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The information contained in these tables '18 as basica11y the same as 

that in Table 7.1, except that it is not broken down into major iterations. 

For each load, the corresponding column provides the number of major 
p 

Iterations required in the solution, the total number of breakpoints In- the 

subproblems, the total number of Newton-Raphson Iterations, the optimal cost, 

and the computation time. 

In Table 7.2, results for 1 ~~rcent changes in load are seen ta be very 

encouraging. Six of the ten loads required on1y one major iteration to reach , . 
the optimal solution; the other four required only a second major Iteration. 

For most loads the number of subproblem breakpoints is very small. In fact, 

for four of the loads, the continuation process of the subproblem was not 

required, resultlng in quick subproblem solutions. Only 20r loads nos. 2 and 

3, the total number of subproblem breakpoints seemed large ,., (22 and 18), 

although these are relatively few compared tp the 82 breakpoints in the 

solution for the initial load. The solutions for the fifth and the tenth 

loads, with their tightel;: convergence tolerances, were just as fast as the 

other solutions with the looser tolerances. 

. 
TABLE 7 2 - TEST ON THE 6 BUS SYSTEM 

, . 
• SUM1ARY OF TllE ALGORITBM' S ~ERFORMANCE 

, 

SOLUTIONS FOR THE SUBSEQUENT LOADS - 1% VARIATIONS IN LOAD 

1-

LOllâ no. l 2 3 4 5 6 7 8 9 10 

No. of major iterations l 2 2 l l 1 2 1 1 2 

Total aumber of breakpoints in 2 22 18 2 0 8 12 0 0 0 

the S Ibproblems f 

Total nODù'er of Newton-Raphson 3 4 6 3 4 3 5 3 6' 3 

iterat.ions . . 
Optimal cost 1.6223 1.6440 1 6661 1.6686 1. 7114 1.7347 1 7583 1.7823 1.8068 1. 8316 

Computation time (sec. ) 1. 64 4 67 4.89 1 59 1.93 1 81 3.13 1.15 2.15 3.46 
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The total number of Newton-Raphson iterations for the 10 loads vas 40. 

This includes the iterations of a load flow solution tmmediately following the 

load increase, before the optimization. The average is th en 4 iterations for 

each load. with two usually coming in the initial step mentioned above. 

Costs are seen to increase by a little more than one percent from one 

load to ~nother. These values will be compared to the costs of Tables 7.3 and 

7.4 a little furthe~. 

Solution times for the loads in Table 7.2 range from,1.15 sec. to 4.89 

sec. with an average' of 2.64 sec .. This i8 only 13% of the 19.72 sec. required 

for the initial solution. 

Solutions in Table 7.3, with the varying loads incremented by 2 percent, 

are a1so very encouraging. Vith larger changes in the 10ad, the initial 

guess, taken from the previous optimal solut~on, is farther from the optimum 

of the new problem. That increases the difficulty in solving the new problem 

only slightly however, because the load variations are still quite small. 

ALI but two of the load-tracking solutions in this case required a single 

major Iteration; the remain~ng solutions required two major Iterations. The 

total number of subproblem breakpoints increased from 64 in the previous case 

to 96 in this ca~e, and the number of Newton-Raphson Iterations remained the 

same as in the previous case. lt is interesting to note that Iterations 2 and 

3 in this case require more breakpoints than average, as for the previous 

case. This is because the sets of indepertdent variables upon entering these 

subproblems are s imilar for the two cases. That demonstrates that the 

compl~~ity of the subproblem solution ls related to the chosen set of 

independent variables. The solution times for this case are somewhat slmilar 

to those of the previous ca'se. Hence, despite the added computation, the 2 

percent change in loads performs very well in load-tracking. 

-'-
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TABLE 7. 3 - TEST ON THE 6 BUS SYSTEM 

S~Y OF THE ALGORITHM' S l'ERFOIlMAIICE 

\ SOLUTIONS FOR THE SUBSEQUENT LOADS - 2% VARIATIONS IN LOAD , 
, 

Load no. 1 2 3 4 !5 6 7 8 9 10 

No. o! major 1terlltlonll 1 2 2 1 1 1 1 l 1 1 

, 
Total mllnber a! broakpolnts ln 0 14 18 12 4 10 8 2 12 16 

t.he l5ubprobleml5 

Total nuInber o! Netlton-Raphson 3 4 5 3 3 S 3 10 2 2 

lterations ~-

-
Opt.1mal COIlt. 1.6439 1.6882 1.7341 1.7814 1.8305 1.8781 1.9336 1 9878 2.0438 2.1019 

Computation t1me (sec. ) 1.64 4.67 4.89 1.59 1.87 1.87 3.13 1.10 2.14 3.41 

The results of Table 7.4, vith the varying loads incremented by 4 

" percent, show that slightly more computation 15 requlred for each solution 

than in the previous cases. The total counts for subproblem breakpoints and 

Newton-Raphson iterations over the 10 loads in this case are 1~2 and 44, 

respectively. Ail the loads e:x-cept two require a single major Iteration for 

their solutton; one requires two major Iterations and one requires five. The 

average computation time per solution was 3.26 sec. (17% of the time for the 

initial solution), with individual timings ranging from 1.48 sec. to 8.13 

sec.. Load tracking in this case vith 4% load changes is c1early faster than 

computing with 1% 10ad changes 4 times or with 2% load changes twice. Hence 

the 4% load changes performed very well in load tracking. 

1 
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\ TABLE 7. 4 - TEST ON THE 6 BUS SYSTEM 

\StmARy OF THE ALGORITBM' S PERFORMANCE . . 
1 

SOLUTIONS \FOR 'llIE SUBSEQUENT LOADS - 4% VARIATIONS IN LOAD 

Load 00. 1 2 3 4 5 6 7 8 1 9 10 

No. of major i. ter ations 1 2 1 1 1 1 l l 1 5 

ïgtal. oumber of breakpoi.nts in 4 20 18 10 8 10 10 6 2 26 

the subproblerM . 
, 

Total oumbor of Newton-Raphson 4 !5 IL 3 5 3 4 6 3 7 

iteratioos \ 

Optimal cost 1. 6874 1.7797 1. 8783 1.9837 2.0964 2.2169 2.3460 2.4842 2.6322 2.7894 

Computation t:lme (sec. ) 2.20 4.61 3.13 2.20 2.86 2.19 2.75 3.02 1.48 8.13 

It is interesting to compare optima~ costs computed in the different load 

tracking tests. These are re~rouped to form Table 7 r.: 
• .,J below. The load 

increase,s are compounded differently (i.e. Load(k+l) .. (l+e) .Load(k)' with 

different values of e), but their differences are very small; the largest 

discrepancy in loads is by a factor of 0.0019, on the final load of' the table. 

Hence an accurate comparison can be made. These costs compare very weIL, wit~ 

discrepancies never occurring before the third significant digit and usually 

not before the fourth. The largest discrepancy, very smal1, occurs for the 

final load, with a difference in costs of 0.26 percent of their average cost. 

The average discrepancy in optimal costs over al1 the loads 1s a very small 

O. 089 percen~, which is about the same as the average discrepancy in loacls. 

The remarkable concordance in the costs indicates that the computed optimal 

cost trajectories stray very Little from the exact optimal cost trajectories. 
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TABLE 7 • .5 - TEST ON THE 6 BUS SYSTEM 

• SIM1ARY OF THE ALGORITBM' S PERFORMANCE 

CaŒARISON OF OPTIMAL COSTS OBTAINED FR.CM THE LOAD TRACKING folJDES (IAKElf FRa! TABLES 7.7. - 7. 4 ) 1 
X cbans. in load 2 4 6 8 10 17. 16 7.0 

Optimal Costs for load tracking --
Ifitb 

1% load changes 1.6440 1.6886 1. 7347 1.7823 1.8316 / 
2% load changes 1.6439 1.6882 1.7341 1.7814 1. 8305 1. 8781 1.9878 2.1019 , 

U load changes 1. 6874 1.7797 1. 8783 1.9837 2.0964 

.. 

This completes our description of the overall solution of the 6 bus system. 

7 .2.2 A study of the subproblem solutions 

This section describ~s in detai! the solution of the first subproblem 111 
\ 

the solution of tpe initial load of the 6 bus system, and includes some 

results from two other subproblems which can serve for comparison. 

The solution to the simple problem of the first subproblem violate8 four 

constraints. These are: 

. 
- Q6 violated its lower bound by 1. 695 p.u. 

Q4 violated its upper bound by 1. 032 p.u. 
1'" 

- V2 violated its upper bound by 0.296 p.u. 

- V4 violilted its upper bound by 0.113 p.u. 
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It will be interesting to follow the solution trajectories of these 

constraints in ;he continuation process . 
.if'" 

The continuation process starts by adding the most violated constraint Q6 

to the active set, after having shifted the bounds of the violated constraints 

by 1. 695 p.u .. From there the continuation process encounters 11 more 

breakpoints as the shifted bounds rèintegrate-their original positions. These 

breakpoints are chronicled in Table 7.6. 

'TABLE 7.6 - TEST ON THE 6 BUS SYSTEM 
. r 

A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEH- -- -

. 
e Variable Cause of breakpoint 

naPle and typo 

0.0000 Q6 " dependent most violated dependent constraint set to 
its moving lower bound. 

. 1390 e-5 Q5 transparent released from its upper bound . 
0.2097 Q5 transparent set ta its lover bound. 
0.2097 Q1 transparent released from its lover bound. . 
0.5007 Ql transparent set ta lts upper bound. 
0.5013 V6 transparent released from lts lover bound. 
0.8270 V2 dependant set to its moving upper bound. 
0.8270 VS transparent released from its upper bound. 
0.9139 VS transparent set ta its lower bound. 
0.9139 V3 transparent released from its upper bound. 
0.9619 V3 transparent set ta its lover boun,d. 
0.9619 Q2 transparent released from lts upper bound. 

When the process s~arts, the transparent variables are for the most part 

. on their bounds, and the dependent Q6 is active on its moving lower bound. 

Then the continuation parameter 6 is increaseô. The typical scenario for the 

continuation process, which can be seen in Table 7.6 and in subsequent tests, 

is as follovs. At sorne point a variable reaches a bound. Almost immediately, 

a transparent variable ls forced ~ff its bound as a form of compensation, when 

the trajectory of its Lagrange multiplier plummets to zero. The ~ontinuatlon 

process moves ahead until again another variable reaches a bound and the 

process Is repeated. Henee, breakpoints occur in pairs. For examp le , in 

Table 7.6, we see that the response to the addition of the dependent QG to the 
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active set at 9-0 18 the removal of the transparent Q5 from the active set at 
..,' 

0.1390 e-5. The next pairs of breakpoints are falr1y well spaced, around 9 = 
0.21, 0.50, 0.83, 0.91 and 0.96. The largest difference '~n 9 between the two 

members of the pair ls 69 a 0.0006 for e around 0.50, andÎ in the,other cases 

the differences are smaller than 0.0001. 

Inspection of Table 7.6 shows that the words "set toIt and "released from" 

a bound always alternate. This will always be the case in our tests. The 

.. variable which goes to a bound can be dependent, as seen here twice, to a 

fixed or to a moving bound. It can also be transparent. as seen here four 

times. when this variable is released from one bound but moves to the other. 

The optimal solution trajectories for all the variables of the subproblem 

are furnished in fig. 7.2. a. to f.. The va.lues on the left edge of the 

graphs are the simple problem solutions. The solution trajectories provide 

the optimal solutions to the intermediate problems where the relaxed 

constraints are reintegrating their bounds, and lead to the subproblem 
-

solutions on the right edge of the graphs. 

The graphs indicate, in brief, that the simple solution allows for large 

imbalances in reactive power generation and unreasonably high bus voltages. 

The continuation process redistributes reactive power through the system sa as 

ta avoid a very high Q4 and a very 10w Q6, and reduces bus voltage magnitudes 
~ -

V2 and V~:within their bounds. The,intermediate steps resemble something of a 
balancing act, with variabJes reacting to each other, sometimes in tandem and 

other times offsetting each other. It can be noted a1so that for such a smal1 

system, aIL the variables interact fairly closely to each other. , , 

Figure 7.2.a shows the trajectories of the rea1 power generations. We 

see that the reallocation of real powers, to accommodate the tighter bounds on 

Q and V in the continuation process, is very small. From common dispatching 

practices, that result was expected. 

Figure 7.2.b. illustrates the trajectories of the reactive power 

generations . The outer trajectories Q4 and Q6 are typical of the depandent 

variables with relaxed bounds. The envelope which they form on the graph 
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narrows from 1eft to right. as the constraints are tightened. In this 

examp1e. Q6 fo11ows its moving lower bound from the outset to its final, 

original position_a. Q4, originally 'leas violated. is reduced to acceptable 

values in the continuation process but remains inactive throughout. The other 

reactive powers are transparent variables in this case. QS ls released from 
, 

its upper bound in response to Q6 being set to its lower bound, and Q1 ls 

released from its lover bound after QS reaches its lower bound. Both QS and 

Ql are forced to change bounds in the process. Q2 ls released from Its upper 

bound towards the end of the process, after V3 ls set to its lower bound. The 

remaining Q3 remains at its lower bound throughout. 

Figure 1.2. c shoys the trajector'ies of the bus voltage magnitudes. V2 

and V4 are depandant variables having viola ted the ir upper bound of 1.10 p. u .. 

The former meets up uith its moving upper bound at 9 ... 0.827, and from there 

follows it to 1.1 p.u .. The latter. remains inactive but succeeds in 

reintegrating its faa~ible region. The other voltages are transpar'ent 

variables. V3 and VS switch bounds rather quickly; we observe in this and 

other tests that the slopes of transparent voltages can be quite steep. V6 

• leaves its lower bound, and Vl remains on its upper bound of 1.05 p.u. 

Figure 7.2. d shows the traj ectories of the bus voltage phase angles. 

These are unbounded,' so they are of less interest. Ye see however the 

progression of the values towards the subproblem optimum. In this exhmple, 

the only outstanding feature ia 

moving upper bound. 

d2 increasing sharply after V2 hits its 

\, 

Figure 7.2. e shows the trajectories Qf the variable transformer tap 

positions. Both are dependent variables in this case. They remain wi thin 

bounds but move over a wide range. T2 reacts strongly when the voltage VS at 

an adjacent bus 1s released from its upper bound. It th en strongly reacts in 

the opposite direction when VS reaches Its lower bound. Tl a1so reacts to V5 

reach!ng its bound, although in the opposite direction. This reactlon 1s 

"reasonable". since Tl 1s acting to maintain reactive powers in another part 

of the systenr. 
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Finally, figure 7.2.f shows the Une flows. (or more precisely, the linear 

approximations of the line eurrents squared). Negative values are possible in 
c' , 

the subproblem. sinee the linear equations for these variables do not' impose 

non-negativity. Their values are a11 relatively small compared to their 

bQunds. We note near the end of the proeess, as VS is released from lts 

bound. that the line flow L'4 (between buses 5 & 2) increases sharply, ànd as 
.. 

V3 ls releasad the lino flovs L5 (bUj'S 4 & 3) and L7 (buses 3 & 2) inerease 

sharply. 

7.2.2.2 Sorne Results from Two Other Subproblems 
----------------~----------~--------------------

'<r 
The more interesting graphs of sorne variables from two other subproblems 

are presented, to give a better idea of the possible behaviour of the 

continuation algorithm and to compare wlth the first subproblem. The ehosen 

subproblems are the third. with 20 breakpoints, and the seventh, with only 2 

breakpoints. 

For the third subproolem, fig. 7.3 a. to d. present the reaetive power -

generations, the bus voltage magnitudes, the variable transformer tap 

positions and the line flows. 'The set of independent variables has been 

changed slightly from the first subproblem. We notice in fig. 7.3.a ~he same 

reactive power violations as in the first subproblem, and in fig. 7.3. b, an 

additional voltage violation on Vl. Most noticeable in the trajectories are 

the increased number of breakpoints (marked by asterisks on the curves) and in 

sorne instances the sharper variations and the reversals in the values of sorne 

variables. For example in fig. 7.3.a, reactive powers Q6 and Q3 vary sharply 

and in altern~ting directions towards the end of the process. In fig. 7.3. b 

the b'us voltage magnitudes all dip rapidly in that sarne final interval of e 
between 0.86 and 1. O. The two taps, illustrated in fig. 7.3. c, reacted 

differently: Tl left lts lower bound briefly but then returned to it, while T2 

\iecreased until reaching 9 ... 0.86 and then rapldly increased. The effect of 

these rapid changes on lina flow L5 was to quickly send it to its lower bound 

and then just as quickly return it to values in its initial range. These 

quirks in the lntermediate solutions rnight be due to the high sensitivities of .. 
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the dependent variables in the subproblem. These variables would not be so 

sensitive over such a wide range in the full nonlinear problem. 

The seventh subproblem is the most easily solved, so in a sense it is the 

most successful. Upon entering this subproblem, the set of independent 

variables contains all the active constraints except one. The single violated 

constraint in the simple problem is V4. After having added it to the active 

set and having released Vl, no other breakpoint is encountered. Fig. 7.4 a. 

and b. illustrate the a1most stationary reactive power generations and bus 

vol tage magnitudes. Only the initially violated voltage V4 shows any 

noticeable change during the continuation process. 

7.2.3 Description of the System Variables in the Nonlinear Optimization 

Process 

This section describes the progression of the more important load flow 

variables through the major Iterations of the nonlinear optimization process. 

More specifically, the sequences of solutions at two points in the algorithm 

are studied: the subproblem solutions and the load flow feas ible points. 

Basically the results show how the quantities vary with the change in the 

expansion point, as lt moves towards the optimum. 

Figures 7.5. a. to d. show the selected load flow variables at the end of 

the subproblems versus the major iteration number. They illustrate the varied 

behaviours of the different types of variables in the optimization. 

Figure 7.5. a shows the slight variation in the allocation of real power 

generations. Referring back to Fig. 7.1, we saw that the subproblems produced 

optimistic costs which eventually merged with the nonlinear load flow costs. 

The rise in subproblem costs vs. the major Iterations is reflected here also, 

as the real power generations increase slightly from laft to right on the 
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graph. These increases are in the range of 2 to 4 percent, and take different 

values for each P. 

The next three figures in this group show that the cost Is hlghly 

insensitive to the other variables, which are not directly cost-related. They 

can oscillate over a wide range, in some cases jumping from one bound to 

another, from one major iteration to the next. Figure 7.S.b. shows 3 reactive 

powers and fig.7.S.c. shows 3 bus voltage magnitudes, exhibiting oscillations 

of verious magnitudes. The remaining Q' s and V' s follow the same patterns, 

but were removed from the graphs to avoid clutter. The same erratlc behaviour 

is apparent in fig. 7.S.d. for the variable transformer taps . 

The reasoning behind the large swings in these variables was sketched 

briefly in Ghapter III, and had to do with the sensitivities of the variables 

in the subproblem. 

little further. 

Th'is aspect ls verifled on its own in section 7.2. S a 

7.2.3.2 The sequence of load flow feasible points 
----------------------------~---------------------

The subproblem solution serves as an end point of the search segment in 

finding the next load flow feasible point. Despite sorne large oscillations in 

the subproblem solutions, the sequenc.e of the load flow feasible points 

settles down after a few major iterations. The oscillations are effectively 

damped out in this part of the computation by applying smaller step sizes in 

the search. This i,s illustrated in fig. 7.6. a. to d. 

Figure 7.6.a. shows the progression of the real power generations in the 

optimization. The initial guess was quite good for aIL the P'S except Pl. As 

the optimization proceeded Pl reduced noticeably, from 0.334 to 0.264. As for 

the others, P2 was a fixed quantity and the remaining P's increased slightly. 

Figures 7.6. b. to d., 

voltage magnitudes and the 

for the reactive power generations,_ the bus 

taps, show that these variables eventually 

converge, after a few Iterations of oscillatory behaviour. 
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7.2.4 Description of the System Variables in the Load Tracking Mode 

Figures 7.7 a. to e. :ollaw the changes in the computed optimal values of 

the system variables in the load tracking mode, with 4% percent changes in the 

loads. It is important in load tracking that the computed traject~ries be 

relatively smooth, to avoid abrupt swings in the dispatch. 

these figures are quite satisfactory in that respect. 

The results in 

The real power generations in fig 7.7.a form a very smooth dispatch 

schedule. The correspcnding optimal cost trajectory 1s drawn in fig. 7.7.:0. IJ 

The variations in the computed optima of the remaining variables are shown in 

fig. 7.7 c. to e. They are not as smooth as for the raal power generations, 

but for the Most part they are smooth enough. No general trend emerges for 

groups of variables as the load increases, since they remain more or less 

constant. Although the changes are slight, the direct:f.on of change usually 

appears quite clearly for each variable, without mndom swings. For example, 

in fig. 7. 7. c. the trends for Q3, Q4 and for Q6 are clearly increasing. In 

fig. 7,7 .d, three of the bus voltage magnitudes, V3, V4 and VS exhibit a 

slightly oscillatory behaviour but their gener~l trends are apparent. Figure 

7. 7 . G shows that the tap positions move little throughout the load:'tracking 

process. The taps are probably of little use until some quantity at an 

a~jacent bus hits a bound. 

The oscillations in these curves are small, but if need be, the curves 

of the independent variables could be smoothed bafore being used for 

dispatching. 
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7.2.5. Analysis of the Sensitivity Coefficients 

lt was stated in section 3.4.4.5 that when an optimum is situated on a 

fold line, some optimal transparent variable se'ttings. although unique, are 

very difficult ta locate. One indication of the presence of the fold line is 

the very small values of some of the sensitivity coefficients in the power 

balance equation. We surmised that numerical problems would occur if from one 

major iteration ta the n~~very small coefficient changes its sign; then i~ 
the simple problem solutions of the subproblem, the corresponding transparent 

variabl., can oscillate bet'Ween its upper and lower bounds. To avoid .this 

problem ln our program, the transparent variables were set to their expansion 

point values when the magnitude of its sen~itivity coefftcient'was below 10- 3 • 



• 

c 

\ 

217 

Even though other factors enter into play in the computation of the 

subprob1em optimum, we will try to detect the influence of these sensitivity 

coefficients on the sequence of subprob1em solutions. 

Table 7.7 pro~ides the sensitivity 

portrayed in fig. 7.5. b. to d. ~en they 

coefficIents of the variables 

were transparent variables. By 

construction the real power generation Pl has a. sensitivity of one, and the 

sensitivities for the other inactive generations range from 1.015 and 1.035. 

The sensitivities ,of the transparent variables listed helow can be seen to he 

much smaller, ranging from 0.88ge-4 to 0.192, with manyof them in the 10- 3 to 

10- 2 range. 

TABLE 7 7 - TEST ON THE 6 BUS SYSTEM 

SENSITIVITI COEFFICIEN'IS OF THE VARIABLES IN FIG. 7.5 
~ 

Major iteration no. 

1 2. 3 4 5 6 7 8 9 

Variable Sens1tivity coefficients 

Q1 - 154e-2 -.202e-1 - .137e-2 1629-1 - - - 672e-2. . 39ge-2. -
Q5 342.9-4 722e-2 88ge-4 .180e-1 - .336e-2. - 263e-2. 695e-2. - 581e-2. 

Q6 - 641e-2. - .158e-1 - .560e-3 - 25ge-2. .6370-2 -.5600-2 

V1 .113e 0 13ge-1 - - .536e-1 \650e-1 608e-2 - -
V2 - -.150e 0 - .103e 0 .185e-1 107e 0 . 711e-1 746e-1 62.8e-1 

V3 .192e 0 107e 0 .1079 0 .4459-1 - - 3340-1 316e-1 441e-2 - 468e-2. 
-

Tl - - - 795e-1 - .134e-:3 .111e-1 - - -
" 

-
T2 - - - - -.51ge-3 - -- - -

From the information in this table, the behaviour of most of the 

variables confirms the ideas of the previous paragraphs. The coefficients for 

Q5 are sr small in the first few major iterations that Q5 is maintained close 

to its expansion point; in the last few Iterations the coefficients are a bit 
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larger and their signs oscillate. In fig. 7.S.b, QS exhibits the prescribed 

behaviour. The sarne can be said for the oscilla tory behaviour in the la st 

four Iterations of Q6 and of V3. Little information is given in the table on 

the variable tap settings, but the very small coefficient for Tl in _the fourth 

major iteration can explaln the large jump from a bound ta a va.lue in the 

middle of its range. The stable solutions to Vl and V2 in fig. 7.S.b are also 

reflected in a sequence of large positive coefficients in Table 7.7. Only Ql 

does not fill the prescribed behaviour. 

"-
This illustrates, at least qualitatively, the desired relationship, 

between the behaviour of the sensitivity coefficients and the numerical 

stability of the subproblem solutions. As for improvements to our OPF 

algorithm to reduce the occurrence of numerical instability, more numerical 

s1:udies are needed, but it might now be worthwhile and justifiable to try 

increasing the threshold level for which variables are set ta the expansion' 

points. 

7.2.6 Solving the Initial Load to Very Tight Tolerances 

Ta illustrate the importance of an accurate first solution for load 

tracking, the optima.l solution to the initial load for the 6 bus system was 

solved with ,rery tight tolerances. More importantly, this allowed the program 

to solve for a long sequence of subproblems without any violation in the 

simple problem. 

Upon solution for the first load, the pro gram had run for 80 major 

iterations, the last 48 of which had not seen a violation in the subproblem. 

In the final iteration the reduction in cast was O.27ge-7, the gap between the 
) 

costs of the load f10w feasible point and the subproblem was O.242e-6, and the 

distance between the load flow feasible solution and the subproblem solution 

was 0.254e-4. The optimal cost reduced only marginally from the value of 

1.6009 given in Table 7.1 ta 1.60065. 

It is interesting to note that the computation of the solution to the 

first load was finally terminated when the linear equation solver declared the 
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load f10w Jacobian singular, in the New~on-Raphson solver. This strengthens 

the arguments made in this thesis about the OPF optimum lying on fold 1ines of 

the load flow manifold. 

The improvement in the load-tracking solutions for a sequence of ten 

loads following this lengthened first solution is spectacular. AlI the 

solutions except one required a single major iteration, with the remaining one 

requiring t~o. The improvement came in the fact that for the first nine 

loads, no breakpoint was encountered in the subproblems. Only in the tenth 

load, three violations requiring 14 breakpoints were required to solve the 

subproblem. 

This il1ustrates the value of an accurate initial solution 'for load 

tracking. In this case the expense in solving the first load was exaggerated; 

about 30 major iterations would have sufficed to settle on an active set, the 

last 15 requiring almost no breakpoints. Hence we can state that solving an 

initial solution to fairly tight bounds is recommendable for load tracking. 

7.3 Simulations on a 10 Bus System 

The ten bus system is taken from [Adielson 1972]. In that paper several 
\ 

ge.l1erations could be accounted for at a si?-gle\ bus. This feature i~ not 

available in our program however; instead, at ea~ll g~neration bus a single 

incremental cost segment was built to cover the same power and incremental 

cost ranges as the combined generation. The data and the schematic diagram 

for this system can be found in Appendix 7.2. 

The number of variables in this system 1s as follows: 

Number of buses: 10 

Number of generations: 7 

Number of loads: 7 

Number of transmission lines: 13 

Number of variable transformer taps: 5 
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Total number of load flow quantities: 57 

Total number of land flow variables: 51 
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The pragram solved this system for an iritial load, and then in two 

di:ffereut runs, for 8 loads increased by 1 perdent and 5 laads increased by 2 

percent. 

7.3.1 Highlights of the Solution to the 10 Bus System 

In this section we present the main observations concerning the solutions 

of the 10 bus system. The complete set of results is presented in condensed 

forro in section 7.3.2. 

ALI in aIL, the 10 bus system shawed slower convergence than the 6 bus 

'system, although no major numerical difficulty was encountered. The results 

from the solution ta the first load are presented in Table 7.8. In brief, 

here are the major points: 

8 major Iterations were required to converge ta the prescribed 

talerances. 

Many breakpoints were required ta solve for the first four subproblems. 

After that, the subproblem's active set -settled down, and the next three 

subproblems produced no breakpoint. The final subproblem produces only a 

few breakpoints. This is a "nice" behaviour. 

!he values of the convergence criteria started quite small, and their 

reduction was slow. That is because of the application of a very small 

s~,ep~lcize, as of the third major Iteration. 

The"large step size reduction warrants some explanation. Even though the 

ste? size was repeatedly reduced in the third major Iteration, the costs 

of the feasible points produced by the Newton~Raphson solver wer~ always 
, 

higher. than t\1at of tl).r~" previous expansion point. Then the alternate, 
"J 

slackless load flow was used te find a sequence of cheaper but usually 

Infeas~ble points. The slackless load flow finally found a cheaper 
l' 
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feasible point with a step size of 0.176e-2. ALI this indicates that the 

optimum was not far away from the suggested expansion points. 

Many Newton-Raphson iterations (32) were computed in :the search for the 

appropriate step size in the third major iteration. Other than that, 

very few iterations were required. 

The cost of the initial guess was very close to the optimal cost. This 

can be seen in fig. 7. a, along with the curve of the subproblem costs. 

In this case the gap between the two curves hardly decreased. 

The computation time of 55.59 sec. is almost 2.5 times the time required 

by the 6 bus system. The four long subproblems and especially the many 

Newton-Raphson iterations in the third major iteration contribute the 

most to this computation time. 

The load-tracking solutions for the la bus system also required 

considerably more computational effort than for the 6 bus system. This i5 

illustrated in Table 7.9 for 1% load variations and in Table 7.10 for 2% 10ad 

variations. 

, 
Most loads were solved in 2 or 3 major iterations (on average one more 

iteration than for the 6 bus case). but in both load tracking runs the 

second load required many iteratlons (8 and 9). 

The number of breakpoints ls quite large for most loads. 

Many Newton-Raphson iteratlons were computed for some ioads. usually when 

step sizes had to be reduced. 

Despite the relatively large computational effort for the load-tracking 

solutions. the computation times were all bett,er than for the- initial 
u 

load. The timings range from 3.57 sec. to 43.45 sec., with an ave~age of 

16.70 sec. This average is 30% of the t ime required to solve for the 

first load. The average solution times per load for the two lÇ>ad

tracking runs are almost similar, at l6.1~ and 17.61 sec. 

The optimal solutions from the 2 load~tracking runs compare very weIL. 

O,! the four cast values' wpich can be compared, the large st discrepancy 

was 0.1% and the average discrepancy was 0.04%. 
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J The 22 breakpoints required to solve the first subproblem are glven in 

Table 7.11. The pattern of breakpolnts occuring in pairs 18 evident here. 

Also noticeable is the clustering of most of the breakpoints towards the end 

of the continuation process. This 1s also the case for other tests with many 

breakpoints . 

Optimal solution traj ectories for che variables are presented in 
\ 

fig. 7.9 a. to f.. The behaviour of the different types of variables is as 

described in the results of the 6 bus system. Most noticeable, as was the 

case for the third subproblem of the 6 bus system, are the many breakpoints 

towards the end of the continuation process and the sharp changes in certain 

transparent voltages and taps, as seen in fig. 7.8. c. and e.. The sharp 

changes m~ght be due to the magnitude of t"~e largest violation in this 

continuation process, which was 24.7 p.u .. The variable with the largest 

violation, Q4, can be seen in fig. 7.8. b. to be fo11owing its moving lower 

bound. Some line flows in t:his test., particu1arly L11 and LLO, varied 

substantially. 
L 

Large changes occur in the set of independent variables over the first 

four subproblems. As a result, other than for real power generations, there 

are many changes in the s1..1bproblem solutions from one Iteration to the next. 

This is illustrated in fig. 7.10 a. to d. The clutter on the left sides of 

the graphs of fig. 7.10 b. to d., for the Q's, V's and T's, was 1eft 

intention~lly, to show the large swings in aIL the variables.~ The next three 

subproblems, where no breakpoint was encountered, resulted in very sma11 

changes.. Finally, the last subproblem vith a few breakpoints resulted in some 

fairly large changes. This indicates that even though the problem is 

considered solved for this load, the subproblems have not settled on an active 

set. That is verified in Tables 7.9 and 7.10, with the subsequent loads 

picking up many breakpoints. 
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The sequence of load flow feasib,1e points mimicked the - subprob1em 

solutions tU the step size dropped to 0 .176e·2. After that, as expected 

the 10ad fl.o fea~ible values moved very little. This is illustt.ated in fig. 

7.11'. 

Figures 7.12 a. to e. follow the changes in the computed optimal val.ues 

of the system variab1~1 in the 10ad tracking mode, with 1% percent changes in 

the loads. Despite the small 10ad variations, tren?s in the dispatching are 

clear. For example, in fig. 7.12. a. the real power generation PS picks up a 
, 

larger proport!.on of the load as it increases J whi1e most of the other P' s 

vary litt1e. Once again, the real power dispatch curves vs. load are very 

smooth. The resulting optimal cost vs. load curve is shown in fig. 7.12. b. 

The other variables seern to follow a ~eneral trend more c10sely in this test. 

In fig. 7.12.c., except for the singl~ jump in Q4 after the second load, the 

reactive power generations are just about constant or show a slight lowering 

trend. In fig. 7.12.d, the bus voltages show a general increasing trend. 

Again, in fig. 7.12.e., the variable transformer taps vary little. 

'7.3.2 Tables and Graphs of the Results of the 10 Bus System 

Tables 7.8 to 7.11 and Figures 7.8 to 7.12 on the fo11owing pages contain 

the results of the 10 bus system. 
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TABLE 7.8 - TEST ON THE 10 BUS SYSTEM 

StMIARy CF THE ALGORITHM'S PERFORMANCE 

SOLUTION FOR THE FIRST LOAD , 
Major iteration no. l 2 3 4 5 6 7 8 

~ -

SUBPROBLEM 

VioLations in the subproblem 7 9 11 9 0 0 0 2 

at the onsy optimum 

Breafpoints in the 22 28 26 22 0 0 0 4 

continuation process 

SEARCH FOR LOAD FLOW FUSIBLE POINT 

Newton-Raphson iterations in 4 2 32 0 1 1 1 1 
finding load flow feasible pt. 

Relative roduction in cost of - .5418-3 .1940-3 .3670-7 .1020-4 .1020-4 .2010-3 .1940-3 
1 

Load flow foasiblo pt. 

Rolative gap betweon costs of .764e-1 .7330-1 .2130-2 5780-2 .5770-2 .5700-2 5620-2 .5530-2 

Load fla." foasible pt and 

subproblem solution 

Relative norm of the difforonco .494 .267 .197 .199 .193 193 .192 .194 
botweon tho variables at tho 

load flow feasiblo point 

and tho subproblem solution 

Stop sizo in sonrching .45 .45 .1760-2 .1760-2 176e-2 176a-2 1760-2 .176e-2 

fensiblo lond flow pt 

, 

_ Initinl cost· 13 085 Optimal cost 13 074 Computation tima: 55.59 soc. 

l l 
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TABLE 7:9 - TEST ON l'BE 10 BUS SYSTEM 

SlJtoflARY OF l'BE ALGORITHM' S PERFORMANCE 

, SOLUTIONS FOR THE SUBSEQUENT LOADS - 1% VARIATIONS IN LOAD 

Load no. 1 Z 3 4 5 6 7 8 

No. of major iterations 2 8 2 2 2 2 2 2 

Total numbElr of breakpoints in 4 50 42 36 40 58 49 12 

the subproblems 

, 
Total numbElr of Newton-Raphson 4 10 " " " 4 63 4 

iterationlS 

Optimal cast 13.215 13.346 13.491 13.640 13.790 13.943 14.100 14.259 . 
, 

Computation time (sac, ) 3.84 22.47 13.07 10.99 11.20 17.85 4~.45 6.26 

TABLE 7.10 - TEST ON THE 10 BUS SYSTEM 

Suz.tlARY OF THE ALGORITIIM' S PERFORMANCE 

SOLUTIONS FOR THE SUBSEQUENT LOADS - 2% VARIATIONS IN LOAD 

Load no. 1 2 3 4 , 5 

No. of maJor iterations 2 9 3 3 2 

Total number of breakpointll in " 90 52 38 50 

the subproblemsl , 

Total numbar of Newton-Raphson , 4 12 5 38 4 
iterations --

Optimal cast 13.360 13.639 13.940 14.253 14.581 

Computation time (sec. ) 3.57 30.49 15 76 26.91 11.32 
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TABLE 7.11 - TEST ON THE 10 BUS SYSTEM 

A SUHMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM 

9 Variable Cause of breakpoint 
name and type 

0.0000 'Q4 dependent most vio1ated dependent constraint set to 
its moving lower bound . 

. 8810 e-4 T4 transparent re1eased from its 1awer baund. 
0.0999 T4 transparent set to its upper bound, 
0.1000 V4 transparent released from its lawer bound. 
0.3697 V3 dependent set to its upper bound. 
0.3697 T3 transparent re1eased from its lower baund. 
0.5324 V2 dependent set ta its upper bound. 
0.5324 T2 transparent released from its lawer baund. 
0.8562 Q5 dependent set ta its lower bound. 
0.8563 T4 transparent released from its upper baund. 
0.9313 Q9 dependant set ta its moving lower baund. 
0.9313 V6 transparent releasad from its upper bound. 
0.9458 T4 transparent set to its upper bound. 
0.9458 Q5 dependent relaased fram its lower bound. 
0.9584 Q6 dependant set ta its lower bound. 
0.9585 V3 dependant re1eased from its upper bound. 
0.9619 Q5 dependant set to its lower bound. 
0.9619 Tl transparent released fram its upper baund. 
0.9720 V3 dependent set ta its upper bound. 
0.9720 V2 dependant released fram its upper bound. 
0.9850 T2 transparent se~ ta its upper bound. 
0.9851 T4 transparent released from its upper baund. 
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7.4 Simulation on a 30 Bus System 

The 30 bus system is an adaptation of the IEEE 30 bus standard load flow 

test system taken from [Alsac & Stott 1974]. In addition to tr.e data found in 

that paper. 9 controllable shunt admittances were added to the network. The 

data and the schematic diagram for this system can be found in Appendix 7.3. 

The number of variables in this system is as follows: 

Number of buses: 30 

Number of generations: 6 

Number of loads: 27 

Number of transmission lines: 41 

Number of controllable shunt elements: 9 

Number of variable transformer taps: 4 
'\ 

Total number of load flow quantities: 173 

Total number of load flow variables: 125 

The program solved this system for an initial load. and then in three 

different runs. for 10 loads increased by l,percent. 6 loads increased by 2 

percent, and 3 loads incre~sed by 4 percent. 

7.4.1 \Highlights of the Solution to the 30 Bus System 
\ 

Again we present our observations, followed by the complete set of 

results fo~ the 30 bus system. 

Of the four systems tested in this thesis, this one presented the best, 

~ünlinear convergence characteristics. The rate of convergence of the 

solution still 8eems to be linear, but with quicker reductions in the 

convergence criteria. This can be seen in Table 7.12, which illustrates the 

detailed solution for the first load. The convergence criteria and the step 

l 
1 
1 
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size in the search for the load flow feasible point all reduced noticeably 

from one Iteration to the next. 

Some other important observations follow. 

Only 6 major Iterations were requlred to converge to the prescribed 

tolerances. 

Many breakpoints were requirei to solve for all but the last subproblem. 

We note however that'even though this test system ls substantially larger 

than the previous two. the typical number of breakpoints remains the 

same. This indicates once again that the number of breakpoints depends 

more on the c10seness to the final active set in a combinatorial sense. 

The values of the convergence criteria and the step size started qu~te 

large. and their reduction vas fast. 

Re1atively few Newton-Raphson iterations were required. 

The optimization produced a sizeable improvement in the cost. This can 

be s~en in fig. 7.13. along with the curve of the subproblem costs. 

The computation time of 96.50 sec. is about 5 times the aoount required 
li 

by the 6 bus system and less than twice ~he time required by the la bus 

system. 

Concerning the steady number of breakpoints in the subproblem solutions, 

there vere probably too few major iterations in this solution to feed the. 

right active set to the subproblem. More iterations probab1y wou1d vould have 

allowed the subproblems to settle on the right- active set and avo'id 

breakpoints. 

The load-tracking solutions for the 30 bus system a1so presented sorne 

very attractive characteristics. This is i1lustrated in Table 7.13 for 1% 

load variations, in Table 7.14 for 2% load variations. and Table 7.15 fol. 4% 

load variations. 

Most loads vere solved in l or 2 major iteratiorts in the first tvo runs, 

vith a maximum of 6 major iterations. 

iterations per load. 

The third run averaged 3 major 
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TQe number of breakpoints is quite small for all loads except one in the 

first run. The average number of breakpoints increased in the second 

run. In the third run, one very long solution found its way between two 

quick solutions. 

Few Newton-Raphson Iterations were computed. 

The computation times for the load-tracking solutions were very good, 

ranging from 12.03 sec. to 53.82 sec.. with an average of 21.54 sec. 

,This average i5 22% of the time required to solve for the first load. 

The average solution times per load for the three load-tracking runs ara 

18.70, 24.45 and 25.11 sec. 

The optimal solutions from the 3 load-trac~ing mns compare very well. 
-

Six costs ca~ be compared between the first two runs, 2 costs between the 

three runk, and one cost between the last two runs. The largest 

discrepancy between the 

discrepancy was 0.03%. 

first two mns was 0.05% and the average 

The third run with 4% load variations provided 

solutions 1 with slightly lower costs, but with a maximum discrepancy of 

only O.15t compared to the optima of the other two runs. 

\ 

The first: subproblem in this test required 18 breakpoints. These are 

givén in Table? .16. Aga in , thera is a clustering of most of the breakpoints 

towards the end of the continuation process. In this test, most of the 

variables except those on their moving bounds showed Little variation . 

. , 
This system being larger and sparser than tho previous test systems, the 

pairs of breakpoints now feature more closely related variables. For example, 

when Q27 hit its bound V27 was released nt 8=0.8484, and whon Q28 met its 

bound V28 was released at 8=0.9650. 

Optimal solution traj ectorios for the variables are presenteq in fig. 

7.14 a. to h.. To facilitate the presentation, the bus voltage magnitudes 

were separated into two groups, the transparent V' s and a selection of 

dependent V' s . The behaviour of the different types' of variables 1s once 

again as described in the results of the 6 bus system. For the most part, the 
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voltage magnitudes and the tap positions in this test do not exhibit the sharp 

variations seen in the 10 bus test, possiH1y because the 1argest violation in 

the continuation process was only 2.45 p.u. In fig. 7.14.b. we see the 

variable with the large st violation, Q25, follow its moving lower bound back 

tQ the feasible region. One of the faster moving variables, VI in fig. 

7.14. d. , is following its moving upper bound at the very end of the 

continuation process. Among the transparent variables, only two of the shunt 

controilers move sharply from one bound to another. 

Despite the good nonlinear convergence characteristics of this test 

system, many of the variables which are not directIy cost-related oscillate 

between their bounds at the output of the subproblem. This ls illustrated in 

fig.7.IS a. to e. As before, the reduction in step size limited the 

excursions of the load flow feasible variables, so that convergence of most 

variables is quite good over the last few major iterations. This is 

illustrated in fig. 7.16 a. to e. 

The results of the load tracking with 1% load variations are portrayed in 

fig. 7.17 a. to f. These are similar to previous results, with clear trends 

in the directions of movement of the variables. Most noticeable are the 

voltages and especially the shunt admittances, which increase very smoothly~ 

7.4.2 Tables and Graphs of the Results of the 30 Bus System 

Tables 7.12 to 7.16 and Figures 7.13 to 7.17 on the following pages 

contain the resu1ts of the 30 bus system. 
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TABLE 7.12 - TEST ON THE 30 BUS SYSTEM 

~ SUM-IARY OF THE ALGORITIIM'S PERFORMANCE 

SOLUTION FOR THE FIRST LOAD 

Major iteration no. 1 2 3 4 5 6 

SUBPROBLEM 

Violations in the subproblem 7 4 27 14 21 6 

at the easy optirnùJl1 

Breakpointll in the 18 24 20 12 26 4 

continuation process 

SEAR.CB FOR LOAD FLOW FUSIELE POINT 

~ 

Newton-Raphson iterationa in 2 .5 2 4 1 1 

find1ng load flow feasible pt. 

Re16t~ve reduction in cost of .1132 .0970 411e-2 . 41ge-3 . 271e-3 .470.-4 

loed flow feasible pt 

, 
Relative gap between costs of .1108 .0201 .30ge-2 . 348e-2 .108.-2 .483.-3 

load flow feasible pt. and 

subproblem solution 

, 
Relative norm of the difference .6559 .0355 .0198 .0105 .797e-2 .749.-2 
between the variables at the 

load flow feasible point 
( 

end the Bubproblem solution 
, 

, 
Step size in searching .9 .45 .45 225 .225 .1 

feas1bl~ load flow pt. 

Initial cost BB4 440 Optimal cost: aq2.310 Computation time: 96 50 sec. 
~ 

, , 

~ -

f 
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,. 
". TABLt 7.13 - TEST ON THE 30 BUS SYSTEM 

S~Y OF THE ALGORITHM' S PERFORMANCE 

SOLUT!ON~:f FOR THE SUBSEQUENT LOADS - 1% VARIATIONS 

Load no. 1 2 3 4 '\ 6 

No. of major it.erations 1 1 l 1 1 l 

Total number of breakpoint.s in 8 4 12 4. 6 , 8 

the subprob1ems 

Total number of Newton-Raphson 3 3 3 3 3 3 

!teratians 

Optimal cast 812.67 823.19 833.86 844.69 6!i!i.66 866.79 

Computation Ume <sec ) 13.57 12.08 14 .34 12 03 13.63 13.13 

TABLE 7 14 - TEST ON THE 30 BUS SYSTEM 
, . 

SUMMARY OF THE ALGORITHM'S PERFORMANCE 

SOLUTIONS FOR THE SUBSEQUEUT LOADS - 2% VARIATIONS IN LOAD 

Load no. 

No of major iteratlons 

Total number of brenkpoints ln 

the sùbproblems 

Total namber of Newton-Raphson 

l.terations 

1 2 

1 2 

10 4 

3 4 

3 4 5 

2 2 2 

34 24 18 

4 4 4 

IN LOAD 

... 
7 8 

1 2 

6 12 

3 4 

878.06 689 46 

12.63 20 75 

6 

3 

'36 

5 

823.11 844 497 866.495 889.079 912 300 936.141 

Computation time (sec,) 14.06 21 04 28.67 27 08 21 58 34.44 

" 

24! 

9 10 

2 6 

12 42 

4 6 

901.06 912.69 

20 99 53 82 
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TABLE 7.15 - TEST ON THE 30 BUS SYSTEM 

SlM1ARY OF THE ALGORITHM' S PERFORMANCE 

SOLUTIONS FOR THE SUBSEQUENT LOADS - 4% VARIATIONS IN LOAD 

Load no. 

No. of major iterations 

Total number of breakpoints in 

the subproblerus 

Total number of Newton-Raphson 

iterations 

Optimal cost 

Computation time (sec ) 

l 2 3 

2 3 4 

4 42 8 

4 s 6 

844.090 888.232 934.784 

18.08 35.84 21.42 

TABLE 7.16 - TEST ON THE 30 BUS SYSTEM 

A SUMMARY OF BREAKPOINTS ENCOUN'tERED IN THE FIRST SUBPROBLEM 

e Variable Cause of breakpoint 
name and type 

0.0000 Q25 dependent most vlolated dependent constraint 
its moving lower bound. 

. 9479 e-4 V25 transparent released from lts lower bound . 
0.5883 V4 dependent set to its upper bound. 1 

0.5883 B9 transparent released from its upper bound 
0.8482 Q27 dependent set to its moving lower bound. 
0.8484 V27 transparent released from its lower hound. 
0.8801 V25 transparent set to its upper bound. 
0.8804 V26 transparent released from lts upper bound. 
0.9694 Q28 depandent set to its moving upper bound. 
0.9650 V28 transparent roleased from its upper bound. 
0.9825 B9 transparent set to lts upper bound. 
0.9826 V4 dependent released from lts upper bound. 
0.9850 Vl dependent set to lts movlng upper bound. 
o .9850 H9 transparent released from lts upper bound. 
0.9562 B9 transparent set to its lower baund. 
0.9862 B6 transparent released from lts upper bound. 
0.9874 H6 transparent set to lts lawer bound. 
0.987'. Tl transparent released from lts upper bound. 

244 
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7.5 Silll" .... lation on a 118 Bus Syste, 

The 118 bus system 18 an adaptati4n of the IEEE 118 bus standard load 

flow test system. taken from a report of the Engineering Foundation Conference 

[Podmore et. al. 1977]. anè with additional ,material taken from [ponrajah 

1987] . The data and the schematic diagram for this system can be found in 

Appèndix 7. 3 . 

The number of variables in this system is as follows: 

Number of buses: 118 

Number of generations: 49 

Number of loads: , 98 

Number of transmission lines: 173 

Number of controllable shunè elements: 9 

Number of variable transformer taps: 8 

Number of phase shifting transformers: 2 

Total number of load flow quantities: 669 

Total nun;er of load flow variables: 531 

,0 

tJ Due to the large siz~' of this systeni. a constraint-feasible and lbad 

flow-feasible initial guess could not be arrived at by trial and error. as was 

the case for the previous tests. Hence an initial guess was manufactu~ed from 

the optimal solution in [Ponrajah 19871. 

The program could solve this system for an initial load only. due to 
\ 

problems with the program' s present load changing algorithm. This and other 

problems are diSCUS~ in the upcoming section 7.8. 

Another difficulty encountered vith this large test system was due to 

numerical problems in modelling the subproblem's dependent reactive power' 

senerations; this also will be discussed later. Hence, in a first test, the 

limits on these variables vere removed. The results of the OPF were quite 

good. with performances 
• > 

similar to those in the previous tests'" Then in a 

" 
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second test as many reactive povera as possible were returned to the 

formulation, and a subproblem was solved. This test required much more 

computation, and the results exhibited a more erratic behaviour. Results in 

this section are taken mostly from the slmpler first test. but the graphs and 

the discussion for the solution trajectories of the subproblem solution are 

taken from the more interesting second test. 

7.5! 1 Highl1ghts of the Solution to the 118 Bus System 

Again we present our observations, followed by the complete set of 

results for the 118 bus system. 

The overall solution results for the tests on the 10 bus. and 118 bus 

systems offer somewhat similar performances. As was the case for the test on 

the 10 bus system, the initial guess for the 118 bus test vas taken very close 

to the actual optimal splution. It Is felt that because. of this, the 

algorithm performs sluggishly, with, improvements being slow from one major 

" iteration to the next. The overall solution 15 presented in Table 7.17. 

Some important observations on these results follow. 
/" 

- Eight major iterations were requi.cel:l, although very little progress was 

achieved in the process. 

Three of the first four subproblems 

breakpoints. Again, the maximum number 

be related to system size per se. 

required of the order of 20 

o~~nts does not seem t~ 

The next four subproblems required few breakpoints. 

Very few Newton-Raphson Iterations were needed, becaus1 most of the 

subproblem solutions were almost load flow-feasibl~ (to within 

t6lerances) . n 
The cost and the \ other convergence .,;rit&ria improved vety l'ittle!' The 

costs vs. mAjor iteration curves are drawn in fig. 7.18 a. and b. 
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The computation time of 253. si sec. b very good - this is only 2.65 

times more th an for the computation of the 30 bus system. Aside from the 

few N~wton-Rahson iterations, one reason is tha~ part of the computation 

for thls, 'test was converted to single precision, to avoid memory size 

problems. Even without this simplification, the increase in the timing 

would probably still be proportiona1 to the increase in system size. 

Table 7.18 gives the list of 22 breakpoints encountered in the first 

subproblem of the solution reported above. This pattern of breakpoints is 

similar to the those observed in the previous tests, with aIl breakpoints 

occuring in pairs and most occuring neàr the end of the continuation process. 

The pairs of breakpoints usually dÇ>ntain variables which are close to each 
! 

other in the network topology, although not necessarilly at the same bus. 

Table 7.19 gives the list of 129 breakpoints encountered in the 

subvroblem solution where many of the limita on the reactive power generations 

were maintained. Even though this ls a much larger number of breakpoints than 

what was encountered in previous tests, it still remains comparable to the 

number of Iterations which could be expected in/LP or QP. 

More than a dozen variables, among them reactive powers Q46, Q49, Q54, 

Q55, Q56 and voltage magnitudes V40, V4l, V55, V56 and V64, have an erratic 

behaviour, moving onto and off of their given limits regularly. Their actual 

movements are very small, but the algorithm forces them in and out of the 
"-

active set ati]great compt:ttatic;mai expense. The problem, ta be discussed 

later, is due ta ill-conditioning in the optimality conditions. 

We note in Table 7.19 that most control actions are performed by a 

variable very close the newly activated constraint. Furthermore, long 

sequences of breakpoints often involve neighboring variables, aIl interacting 
. 

to each other but having little affect on other parts of the network. This 

behaviour 5eems to be characteri5tic of large systems, but mainly because of 

their sparseness. 
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Optimal solution trajectorl1!s for the more important variables of the 

subproblem described in Table 7.19 are presented in fig. 7.18 a. ta d. 'The .. 
different types of variables behave as in the previous tests, but vith sharp 

, , 
variations occur1ng on more of the transparent variables. Figure 7.18.b shows 

a ·large set of trajectories for the dependent Q' s. There are basically three 

types of variables portrayed here: (1) some dependent Q's with large 

violations follow t~eir moving bounds much of the way,; (2) other Q's start on 

their bounds but th en move freely, on irregular trajectories; and (3) Q's 

which remain on their bounds throughout the process. Many transparent V's in 

fig. 7.1B.c. move very shàrply off their boundsr Some wander irregularly as 

seen mostly between 9-0,.5 and 9-0.95 white others jump from one bound to the 

other near 9-1. The same behaviour is seen in fig. 7.l8.d with the variable 

transformer tap positions. 

, 
Figure 7.20 a. to c. give the real power generations, the bus voltage 

magnitudes and the variable transformer tap positions at the end of each 

subproble~~ As usual, the real power genèrations show little change from one 

subproblem to 'the next. The other variables oscillate for the first 4 major 

iterations, but move 1ittle after that as the active set has settled down. 

Figure 7.21. a. to c. shows the same variables at the en~ of each search 

for a feasible, load flow point. The step size reduced substantially in the 

first major iteration. 

variables. 

Consequently, Little change occured in most of the 

7.4.2 Tables and Graphs of the Results of the 118 Bus System 

Table:;:; 7.17 ta 7.19 and Figures 7.1S to.7. 21 on the following pages 

contain the results of the 118 bus system. 
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TABLE 7.17 - TEST ON THE 118 BUS SYSTEM 

-
SlM1ARY OF THE ALGORITHM' S PERFORMANCE 

Major it..ration no. 1 2 3 4 5 6 7 8 

, 
SUBPROBLEM 

Violations in the aubproblem 15 12 4 18 4 l 1 l 

at. the eaay optimum 

Breakpotnts in the 22 22 4 20 6 2 2 2 

continuation process 

SEARCH FOR LOAD FLOW FEASIBLE POINT i-

Newton-Raphson iterations in 1 0 l 0 0 0 0 l 

finding load !low !eas ible pt 

Relative reduction in coat. of . 185e-3 627e-4 _ 672.-4 .57511-4 .121.-3 .11911-3 236e-3 231e-3 

load flow !easible pt. 

Relative gap between costs of .0317 .0294 .0301 0304 .0302 .0301 .0298 .0296 

load flow !easible pt. and 

subproblem solution 

Relative norm of the difference 0.2644 o 2624 0.2624 a 2633 0.2625 0.2619 0.2606 o 2592 

between the variables at the 

load flow feasible point 

and the subproblem solut.ion 

Stap size in searching .00125 .00125 . .o(H25 .00125 .00125 .00125 .00125 01 

!aasihle load flow pt 
'r' 

Initial coat 5409,10 Optimal cost 5402 02 Computation time 253 81 sec , 

, ' 
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TABLE 7. 18 - TEST ON THE 118 BUS SYSTEM 

A S~Y OF BREAXPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM 

CASE WITH NO REACTIVE GENERATION 

e Variable Cause of breakpolnt 
name and type 

0.0000 J59 dependent most violated dependent constr,aint set to 

. 9516 e-3 T2 
0.2995 J6l 
0.3042 V77 

" 0.4934 V7S 
\0.4935 V34 
0.9429 V63 
0.9429 V59 
0.9685 V64 
0.9685 V63 
0.9708 V30 
0.9109 VS 
0.9877 V1l2 
0.9877 VlOS 
0.9932 V86 
0.9932 Tl 
0.9969 Jl72 
0.9969 Vl8 
0.9979 V63 
0.9919 T4 
0.9980 V23 
0.9980 V32 

transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
dependent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
transparent 
transparent 

its moving lower bound .. 
released from Its lower bound . 
set to Its moving lower bound. 
released from Its upper bound. 
set to its moving upper bound. 
released from Its lower bound. 
set to its moving upper bound. 
released from its upper bound. 
set to Its moving upper bound. 
released from Its moving upper bound. 
set to its movlng upper bound. 
released from It~ upper bound. 
set to its moving lower bound. 
released from its lower bound. 
set to its movlng lower bound. 
released from its upper bound. 
set to its upper bo~nd. 
released from its upper bound. 
set to its lower bound. 
released from its lower bound. 
set to its moving upper bound. 
released from its upper bound. 
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TABLE 7. 19 - TEST ON THE 118 BUS StSTEH " , , 

1\ 
\\ 

l, 

A SUMMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST 1 SUBPROBLEM 

CASE WITH REACTIVE GENERATIONS CONSIDERED 

9 Variable Cause of breakpoint 
name and type 

264 

0.0000 Q56 dependent most violated dependent constraint set to 

.6424 e-6 
9·4236 
0.4236 
0.5064 
0.5064 

. 0.5103 
0.5103 
0.5400 
0.5400 
0.6266 
0.6266 
0.6719 
0.6719 
0.6882 
0.6883 
0.7625 
0.7628 
0.8203 
0.8204 
0.8614 
0.8614 
0.8855 
0.8855 
0.8863 
0.8863 
0.8871 
0.8871 
0.8963 
0.8963 
0.9024 
0.9024 
0.9030 
0.9030 
0.9109 
0.9109 
0.9214 
0.9214 
0.9496 
0.9496 

V56 
Q65 
T3 
Q8 
Ta 
T3 
V65 
Q34 
V34 
Q77 
V76 
Q76 
V77 
V38 
T2 
V81 
V40 
V41 
V36 
Q61 
V62 
Q26 
T7 
V60 
V61 
Q59 
V55 
V67 
V66 
Q55 
V54 
Q62 
V60 
V66 
V81 
Q74 
V74 
Q89 
V92 

transparent 
dependent 
transparent 
dependent 
transparent 
transparent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
transparent 
dependent 
dependent 
transparent 
dependent 
transparent 

its moving upper bound., 
released from its upper bound. 
set to its moving lower bound. 
released from its 10wer bound. 
set to its moving 10wer bound. 
released from its lower bound. 
set to its lower bound. 
released from its lower bound. 
set to its moving lower bou~d. 
released from its, lower bound. 
set to its ruoving upper bound. 
released from i ts lower bound. 
set to its upper bound. 
released from its lower bound. 
set to its upper bound. 
released from i ts lower bound. 
set to its 10wer bound. 
released from its upper bound. 
set to its lower bound. 
released from its upper bound. 
set to its moving upper bound. 
released from its upper bound. 
set to its moving lower bound. 
released from its lower bound. 
set to its upper bound. 
released from its upper bound. 
set to its moving upper bound. 
re1eased from its lower bound. 
set to its upper bound. 
released from its upper bound. 
set to its upper bound. 
released from its lower bound. 
set to its upper bound. 
re1eased from its upper bound. 
set to its upper bound. 
re1eased from its lower bound. 
set to its moving upper bound. 
released from its upper bound. 
set to its moving lower bound. 
released from its upper bound. 

/ 
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TABLE 7.19 (cont. ) - TEST ON THE 118 BUS SYSTEM 

-j A S~Y OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROB~ 

. CASE WITH REACTIVE GÉNE~IONS CONSIDERED 

" e Variable - Cause of breakpoint , 

name and type , 

0.9520 J59 dependent set to its upper bound. 
Q.9520 V67 dependent released from its upper bound. 
0.9565 V79 dependent set to its lower bound. -
0.9565 V80 trar;,lsparent released from its lower bound. 
0.9567 Q85 dependent set to its moving upper bound. 
0.9567 Tl trans,parent released from its upper bound. 
0.9698 Q105 dependent set to its moving lower bound. 
0.9698 Vl05 transparent released from its lower bound. 

, 0.9745 Q12 dependent ·set to its moving upper bound. 
[- 0.9745 V12 transparent released from its lower bound. 
ï 0.9749 V55 transparent set to its upper bound. r 

0.9749 Q55 dependent re1eased from its upper bou...,d. 
0.9784 V56 , transparent set to tts upper bound. 
0.9784 V59 transparent released from its upper bound. 
0.9800 V62 transparent set to its upper bound. 
0.9800 T3 transparent re1eased from its lower bound. 
0.9851 V36 transparent set to its lower bound. 
0.9852 Q56 dependent re1eased from tts moving upper bound. 
0.9854 V54 transparent set to its upper bound. 
0.9854 T4 transparent re1eased from its lower bound. 
0.9880 Q72 dependent set to its moving 10wer bound. 
0.9880 V72 transparent released from its 10wer bound. 
0.9890 QS4 dependent set to its upper bound. 
0.9890 V54 transparent released from its upper bound. 
0.99l5 V63 transparent set to its moving upper bound. 
0.99lS QS4 dependent released from its upper bot&.nd. 
0.9915 Q56 dependent set to its moving upper bound. 
O.991'S V36 transparent released from its lower bound. " 

" 

tran)~a.rent 0.9920 T3 set to its lower bound. 
0.9920 T5 transparent released from its ~ower bound. -

0.9933 V59 transparent set to its upper bound. 
0.9933 VS6 transparent released !rom its upper bound. 

~ 

0.9939 QS5 dependent set to its upper bound. 
0.9939 J59 dependent released from Lts upper, bound. 
0.9951 Q107 dependent set to its~lower bound. ' , 

0.9951 V107 transparent re1eased from its lower bound. 
0.9958 V30 dependent set to its moving upper bound. 
0.9958 V18 transparent released from its upper bound. 

~ 0.9958 Q18 transparent set to its lower bound. 
0.9958 v26 transparent xeleased from its upper bound. 
0.9962 Q99 dependent set to its moving upper bound. 

< 0.9962 V99 transpar-ënt re1eased from its upper bound. '. 
i . 

~ 
j 
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TABLE 7.19 (cont.) - TEST ON THE 118 BUS SYSTEM 

A SUHMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM 

CASE VITH REACTIVE GENERATIONS CONSIDERED 

e 

0.9970 
0.9970 
0.9971 
0.9971 
0.9973 
0.9973 
0.9974 
0.9974 
0.9974 
0.9974 
0.9974 
0.9974 
0.9974 
0.9974 
0.9979 
0.9979 
0.9982 
0.9982 
0.9983 
0.9983 
0.9983 
0.9983 
0:9987 
0.9987 
0.9988 
0.9988 
0.9990 
0.9990 
0.9994 
0.9994 
0.9995 
0.9995 
0.9996 
0.9996 
0.9998 
0.9998 
0.9998 
0.9998 
0.9998 
0.9998 
0.9999 
0.9999 

Variable 
name and type 

V26 
V19 
Q19 
VS 
V43 
V55 
J143 

, V32 
Q31 
Vl5 
V32 
V31 
Q49 
V49 
Ql5 
T6 
V64 
Q49 
Q46 
V46 
V36 
V41 
Vl12 
QI05 
Q49 
Q46 
V40 
V38 
QI05 
QI07 
V8 
V40 
Q/+6 
V43 
V41 
V64 
V81 
V36 
V23 
V32 
V64 
V59 

dependent
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
trasnsparant 
transparent 
depe~dent 
transparent 
dependant 
transparent 
dependent 
dependent 
dependent 
transparent 
dependent 
transparent 
dependent 
transparent 
dependent 
dependent 
dependent 
transparent 
transparent 
~ransparent 

transparent 
dependent 
depandent 
dependant 
transparent 
dependent 
dependent 
dependent 
dependent 
transparent 
dependent 
transparent 

Cause of breakpoint 

set to its lower bound. 
released from its upper bound. 
set to its lower bound. 
released from its upper bound. 
set to its upper bound. 
r.eleased from its upper bound. 
set to its lower bound 
released from its upper bound. 
set to its upper bound. 
released from its upper bound. 
set to its ~pper bound. 
released from its upper ~ound. 
set to its moving upper bound. 
released from its upper bound. 
set to its lower bound. 
released from its lawer bound. 
set ta its moving upper bound. 
released from its moving upper 
set to ~ts upper bound. 
released from its upper bound. 

-set ta its upper bound. 
released from its lawer bound. 
set to its lower bound. 

bounq. 

rel~ased from its moving lawer bound. 
set ta its lower bound. 
released from its upper bound. 
set ta its upper bound. / 
released from its upper ~und. 
set to its upper bound. -
released from its lower baund. 
set to its lawer bound. 

,released from its upper bound. 
set to its upper bound. 
released from its upper bound. 
set to its. lower baund. 
released from its moving upper bbund. 
set to its lower bound. 
released from its upper bound. 
set ta its moving upper bound. 
released from its upper bound. 
set to its moving upper bound. 
released from its upper bound. 
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TABLE 7.19 (cont.) - TEST ON THE 118 BUS SYSTEM 

A SUHMARY OF BREAKPOINTS ENCOUNTERED IN THE FIRST SUBPROBLEM 

. CASE VITH REACTIVE GENERATIONS CONSIDERED 

e Variable " Cause of br eakpoint 
name and 

. 
type 

. 

0.9999 J159 dependent set to its upper bound. 
0.9999 V24 transparent released from its upper bound .. 
0.9999 V107 dependent set to 1ts upper bound. 
0.9999 V104 released from 1ts lover bound. 

1 

transparent; . 

, 1 
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7.6 A Summary of the General'Behaviour of the OPF Algorithm 

This section regroups the general results and comments made in the 

previous descriptive sections 7.2 to 7.5. It discusses the general behaviour 

of our OPF algorithm as observed in the results, in some cases confirming 

ideas presented in the previous chapters, and in others describlng~unforeseen 

difficulties. 

In our tests the real power generations and the costs of the initial 

guesses were often close to those of the optimal solution. The resu1ting 

small improvements in the convergence criteria made it difficult to assess the 

rate of convergence, but it was most probably linear in aIL cases. However, 

Sorne tests systems showed better convergence th an others. Most of the 

progress in solving the optimizatlon was made in the first major Iteration or 

two; that ls best illustrated in the 30 bus test, where the initial guess is 

farthest·from the optimal solution. With the chosen tolerances though, 6 to 9 

major Iterations were required to reach solutions deemed accurate enough. 

In studying the results, it is Îelt that the' closeness of the initial 

gue~s to the optimal solution causes the algorithm to act sluggishly, and- did 

not help the optimization process. That is explained by the small step sizes 

which are imposed on the optimization right from the start, and possibly by 

the ill-conditioning which, as we have often conjectured, accompanies the 

optimum. 

Typically, the first four to six subproblems in the initial nonlinear 

program started with different sets of independent variables, and produced 

dlfferent violations which càused relatively many breakpoints (i.e.,usually 20 

to 30 breakpoints). After that the active set settled down, although a few 

breakpoints were often required in subsequent subproblems. Even if the 

initial active set is chosen close to the optimal active set, it seems that 

the algorithm needs a few major iterations to settle down. Looking at the 

other end of the solution process, our tests indicate that' had more major 

Iterations been allowed in the solutions to the initial loads, the 

subproblem',s active sets would have settled to some definitive active set; 
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this was seen when the 6 bus test was 'extended. In sorne of our tests. the 

active set finally settled in the load-tracking mode. 

Judging from our results and from empirical results in linear and 

quadr~tic programming. the number of breakpoints in a typical subproblem 

compared favorably to the number of Iterations of a linear or quadratic 

program. The results indicate that the number of breakpoints is independent 

of'the system size, but is linked to the closeness of the subproblem's acfive 

set and its final active set. 

The subproblem solutions encountered'few problems on the smaller systems, 

but ran into serious ill-conditioning problems in the lIB system. The problem 

is linked to the effect of the system sparsity on the computation of 

sensitivity coefficients. 

Appendix 7. 5 . 

That idea is developed in section 7.8. (i) and in 

The subproblem solutions exhibit sorne noticeable characteristics. First, 

the breakpoints always occur in pairs. The first is caused by a variable 

reaching its limit and the second occurs. almost immediately after, when 

another variable cornes off lts bound as a form of compensation. Second, the 

màjority of the breakpoints occur near the end of the continuation process, as 
/ 

the variables are being "squeezed" back into the feasible region. The typical 

solution trajectories for the variables are described in the following. The 

trajectori,es of the real power generations were mostly fIat, as could be 

expected for ~he Q- V redispa tching problem which this turns out to be. The 
\' 

most violated dependent variables followed their moving bounds, and some of 

the others, less violated, retui~ed to the feasible regipn on their own. The 

first transparent variables to be released from their imposed bounds moved 

slowly, but those leaving towards tha end of the continuation process often 

moved sharply. 

bound. 

Many of' those released from one bound ended up on the other 

Although the 118 bus test was plagued with ill-conditioning, the solution 
J _ 

trajectories of its subproblem. described in fig. 7.18, were similar to those 

in the previous tests. 

number -of breakpoints. 

The difficulties manif,ested themselves in the larger 

A breakpoint involving a variable often caused large 
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in the previous tests. The difficulties manifested tnemselves' in the larger 

number of breakpoints. A breakpoint involving a variable often caused large 

sud den changes in the neighboring variables or their Lagrange multipliers; as 

a result many more variables than usual were involved in the active set. 

Another observed problem was that some variables were forced on and off their 

bounds a few times, even though the movements of the variables from,the bounds 

were small. Despite these difficulties the continuation algorithm found its 

optinlal solution within a reasonable number of breakpoints for a problem of 

this size. 

The computation of feasible load flow points using a Newton-Raphson 

algorithm with the, standard "slack bus" formulation was very efficient and 

reliable throughout the tests. The subproblem solutions were usually close to 

the _load flo~ manifold, so that the Newton-Raphson solver rarely required more 

than 4 Iterations to converge. The slackless load flow was called upon a few 

times when the standard load flow could not provide a cheaper feasible point. 

It also performed weIl. 

The reduction of the convergence criteria and of the step size were 

described as baing linear, but with some tests showing faster convergence than 

others. Two types of behaviour are observed. The 10 bus and 118 bus tests 

started very close to the optimum. As a result, the step size decreased 

abruptly and subsequent improvements were very slow. The 6 and 30 bus tests 

started far enough from the optimum for the step size to decrease 

progresslvely. Consequently the improvements, in the convergence criteria were 

less restrtcted. The number of required major Iterations was somewhat similar 

in the 4 tests, despite- the convergence characteristics, but the latter 

behaviour would be preferable to achieve convergence to tighter tolerances. 

The progression of the variables and the obj ective function from one 

major Iteration to the next is summarized in the fol1owi~g. We noted that the 

real power generations reached their optimal values quickly, The 

corresponc' ing costs of the load flow feasible points always, decreased (by 

design), and the subproblem sO,lution costs were usually seen to form 

progressively improving lower bounds on the optimal cost. The other 

variilb:J.es, which have little effect on the cost, are more difficult to' 
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evaluate. Their values from the subproblems can osclllàte from one major 

iteration to the next. TlJe step size aets to damp out those large swings in 

the sequence of load flow feasible points, allowing the algorithm to 

eventually declare conver'gence. 

The coordination between the subproblem solutions and the load flow 

feasible points, and th~ir eventual convergencè to a single optimum are not 

necessarily guaranteed. Two aspects of the problem are (1) the convergence of 

the numerical values and (2) the convergence of the active sets. These 

aspects are d~scussed below. 

The convergence of the load flow feasible variables to an optimal 

solution is achieved by moving in the directions designated by the subproblem 

solutions, but only as far as allowed by a step size. When the step size is 

reduced quickly, very 1ittle improvement is achieved from one major Iteration 

to the next. Then the computed values cannot be declared optimum without 

leaving _ a relatively large gap between the subproblem solution and the 

corresponding load flow feasible point. This can be seen in the results of 

the 10 and 118 bus systems. To avoid such small step sizes, our algorithm 

a1lows for increases in the step size during the process) but few increases 

were ever implemented. A new study of the step size computation procedure 

could be worthwhile to improve upon the present situation. 

The problem of the coordination between the active sets of the 

subproblem and of the load flow feasible point is more complex. As was 

discussed previously, sorne variables of the subproblem solutions are likely to 

go to a bound even though their optimal values in the nonlinear problem are 

nowhere near the bound. The provisions for transparent variables with small 
" 

sensitivity coefficients in the subproblem did not alleviate the problem, 

probably because the heuristics designed to handle the problem are incomplete 

or ineffieient. In our 

active sets between the 

solution. 

results we often observed large differences in the 

computed load f10w optimum and the last subproblem 

If the optimization converges well (as in the 6 bus and 30 bus cases) and 

the subproblems cease to produee breakpoints. the sequence of subproblem 



283 

solutions' should eventually çoincide with t~e" sequence of load flow feasible 

points. However in most cases the optimization would not iterate that long, 

so that in practice their active sets rarely coincide. 

To confirm the convergence properties claimed in the previous paragraph, 

an extended 6 bus test was allowed to run for 80 major Iterations. In that 

test a long series of subproblems was generated without breakpoints. The . 
movement of the load flow feasible points towards the stable sequence of 

subproblem solutions was slow due to the small step size. At the end of the 

series, the two groups of variables and their active sets coincided. Then 

later, in the load-tracking mode, the subproblem modified its active set, with 

two variables switching bounds. The active set. of the load flow feasible 

solutions did not follow suit, and the active sets of the two groups never had 

a chance to coincide again. 

Finally. the load-tracking scheme produced some very fast solutio1l!\ to 

sequences of increasing loads. Average solution times for the 4 tests in the 

load-tracking mode were from 15% to 30% of the timings for the initial 

solutions, a substantial gain in speed. The real power generation schedules 

.produced by the load tracking were very smoo th. s'chedul~s for the other 

variables, although less smooth, were quite good. This shows that the 

continuation principle can be very useful in quickly and accurately solving a 

sequence of nonlinear optimization problems. The present implementation~ has 

been unreliable in certain tests. but its problems are not linked to the 
o 

continuation principle. This will be discussed in section 7.8. 
t 
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7.7 Comparison of Results from Varioùs programs for the 30 Bus System 

Our results for the 30 bus system are compared to those pub1ished by 

ponrajah in his Ph.D. thesis [ponrajah 1987] and to thQse of [Alsac and Stott 

1974] . Ponrajah' s work a1so includes the optimal solution for this system 

obtained using the general optimization program MINOS [Murtagh & Saund,ers 

1983]; part of this solution is also repeated here. 

No one solution is considered as a refp.rence in our comparison. Its main 

purpose is of course' to validate our reluIts, but we are also looking for 

genera1 difficulties of the optimization process, which we feel might have r-_ 

occurred in the other programs a1so. 

. The optimal values of the more important variables fI:om the four 

different sources are given in Table 7.20. 

points: 

In brj.ef. here are the major 

The optimal costs are very close to each other, with a max~ 

discrepancy of 0.047%. Hence the four results can be cons idered eq';1ally 

accurate. The best results might have be'en obtained with more 

iterations. 

Despite the similar optimal costs, there are some non-negligeable 

differences in the values of the real power generations. Our results 

stand slightly apart from the others. For example, the maximum 

discrepancies between our results and the others for units 3 and 4 are 

almost 2%. 

For the other variables, there are sorne large differences on sorne 

quantities and very little on others. Based on the discussions of the 
J 

"'Previous section and considering that different strategies were used to 
'" 

compute the quantities, these differences had to be expected. 

Differences in voltages are rather small, and no one solution stands 

apart from the rest. Voltages V29 and V30 in the last column are marked 

with asterisks; their values are much higher than the values to which 

they are compared, but only because their upper limits were set higher. 
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TA13LE 7.20 - COMPARISON OF RESULTS FOR 'tHE 30 BUS SYSTEM 
, 

Variable Status This program Ponrajah MINOS A1sac & 

Real Power Generations (MW) 

Unit(1) Free 175.96 176.05 176.11 176.26 
Unit(2) Free 49.10 48.84 48.84 48.84 
Unit(3) Free 21.91 21.52 21.52 21.51 
Unit(4) Free 21. 76 22.16 22.20 22.15 
Unit(5) Free 12.10 12.25 12.26 12.14 
Unit(6) Lwr bnd 12.00 12.00 12.00 12.00 

Optimal Fuel Costs ($/hr) 

802.31 802.22 802.60 802.40 

Reactive Power Generations (HVar) 

Unit(l) Free -15.20 -13.94 -14.68 n.a. 
Unit(~) Free 19..37 30.32 29.92 n.a. 
Unit(3) Free 29<.56 29.89 30.15 n.a. 
Unit(4) Free 32.75 36.48 36.66 n.a. 
Unit(5) Free 9.78 14.43 14.74 n.a. 
Unit(6) Free 15.76 8.44 8.97 n.a. 

Bus Voltages at Generation Buses (P.U. ) 

V(25) Upp bnd 1.050 1.050 1.050 1.050 
V(26) Free 1.036 1.038 1.038 1.038 
V(27) Free 1.011 1.010 1.011 \ 1. 011 
V(28) Free 1.017 1.019 1.019 1.019 
V(29) Free 1.037 1.050 1.050 1.091* 
V(30) Free 1.044 1.050 1. 050 1.091* 

Tap positions (P.U.) 

T(l) Free 1. 019 1.005 1.002 ~003 
T(2) Free 0.978 0.956 0.954 0.960 
T(3) Free 1.028 L100 1.100 1.047 
T(4) Free 0.987 1.037 1. 035 0.942 

Shunt Controller Admittances (S) 

B(l) Free 0.028 0.050 0.050 . -
B(2) Free 0.049 0.050 0.050 -
8(3) Free 0.034 0.050 -- 0.050 -
B(4) Upp bnd Q-.050 0.050 0.050 -
B(5.) Free Jj 0.042 ~ 0.050 0.050 -
B(6) Free 0.042 0.050 0.050 -
B(7) Upp bnd 0.050 0.037 0.037 -
8(8) Upp bnd 0.050 0.050 0.050 -
B(9) Free 0.032 0.029 0.029 -

285 
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The values of the reaetive powers, shunt admittanees and tap$ "IÙso-ànow '" ,!~ 

some large diserepancies on about ha1f of the variables. Only"-,the tap 
'--..... 

positions are given by a1l four sourees and again, no one resu1t stands 

apart' from the rest. 

The four programs are basically driven by the same criterion, ta find 

the minimum cost. Hence it is only normal that they found the same optimal 

costs. A bit ~urprisingly, the optimal real power generations show,some sma11 

but non-negl~geable discrepancies. That indicates that the objective function 

is rather flat near the optimum, even as a function of the real power 

generations. 

The remainder of the comparison tends to confirm the idea that the 

optimal val~es of variables which are not directly cost-related are difficult 

to compute. lt also shows that their values are not critical in minimizing 

fuel costs. lrl view of the difficulties in their computation, the comparison 

tends to justify the recent prevai1ing strategy in OPF. wh:i.ch is simp1y to 

locate feasible Q's, V's and passive control settings. 

7.8 Numerical and Algorithmic Difficulties Encountered in the Program 

This section presents some of the unforeseen difficulties encountered in 

the program's operation. Basically, two important problems are the Most often 

responsib1e for program fai1ure: (1) for large sparse systems, i11-

conditioning of the subprob1em; and (2) inappropriate modifications to the set 

of independent variables, which can occur in various stages of the program. 

In the_fo11owing, both problems are analyzed and remedies for the problems are 
f 

sketêhed. 

The ill-conditioning of ~he optima1ity equati9ns Ax-b in the subproblem 

stems numerically from two problems. For one, the sensitivity coefficients 

used to model the dependent constraints are too often 4 to 6 orders of 
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magnitude smaller th.:..û the coefficients of the power balance equation. 

Appendix 7.5 traces the root causes of this problem. Another prob1em is that 

neighboring dependent 'variables are often expressed as almost similar 

functions. Physically, this corresponds to the fa ct that the effects of 

reactive powers and voltages are very localized in the network. Hence their 

sensitivities with respect to independent variables situated far away in the 

network are naturally very small. This ill-conditioning seems'to be a normal 

occurrence, and is an Inherent problem of sparse systems when ,,"sing the 

"compact" load ,flow model. 

An illustration from the 118 bus system is given in Table 7.21, with 8 

functional constraints present. The co1umns in the table are the rows of the 

G matrix of eq. 4.10. The values in each column of the table are mostly of 

the same or der of magnitude, but the orders of magnitude of each co1umn range 

- from 10-1 to 10-9 for dependen~ constraints, compared to values of about one 

for real power generations in the power balance equation. The rignt-hand 

sides of the constraints are al1 of the same order of magnitude however. 50 

that scaling is inappropriate. As a resu1t, the computed slopes of the 

solution traj ectories have very large values. The variables then move very 

qu!ckly onto or off of their bounds. The problem is that the ill~conditioning 

often causes moves in the wrong direction. As witnessed earlier, some 

dependent variables follow their moving bounds c10sely in the continuation 

process, but the a1gorithm often moves them in and out of the active set at 

great computationa1 expensè. Also, the changes in the transparent variables 

are exaggerated. Another problem is that the continuation process virtua11y 

sta11s at a value of the continuation parameter. F~r example~ in the 118 bus 

test documented in Table 7.19, 54 breakpoints were required to increase the 

continuation parameter from 0.995 to 1. 000. 

A post-mortem ana1ysis was carried out on two run3 of the 118 bus test to 

monitor the ill-conditioning in the optimizatioIL process, by computing the 

condition number of the A matrix at each breakpoint. !t was computed as the 

quoti.e~t of the largest to the smallest singu1ar values of the A matrix; these 

values ..,'ere computed using the LINPACK subroutine DSVDC [Dongarra et.a1. 

1979]. 'The resu1ts are shown in fig. 7.22 a. and b. Thè first is the easily 

solved case described in Table 7.18, and the second is a run that failed. We 
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note that in both cases the condition number jumped at least an order of 

magnitude when a constraint was added to the active set, and similarly it 

dropped when a constraint was released. However a~ somé-point the release of 

a constraint hardly lowered the condition number. This could serve as a sign 

to give sp~cial treatment to the last activated constraint. Our program did 

no such thing, and from there the continttation process encountered many 

breakpoints and s1owed_considerably. 

In the case which was easily solved, illustrated in fig. 7.22. a. the 

process eventually found an active set with a low condition number, and soon 

after it reached its solution. Still,' 11 breakpoints were required to move 

the continuation parameter from 9-0.9708 to 9-1.00. 

In the ca.se that eventually failed, illustrated in fig. 7.22.b., the 

condition n~bers remained high. After 54 iterations, the release of a 

constraint brought no relief to an incredibly hiSh condition number of more 

t~n 1020 . At that point the program cou1d not proceed normally so it 

rearranged the partit,ion _of independent/ dependent variables. It then 
", 

proceeded with another 29 iterations, of which only the first few are shown in 

the figure. The condition numbers after the change were similar to those 

observed before the change. The program then failed. 

Remedies to the ill-conditioning problem in the subproblem are more 

algorithmic than mathematical in nature. The suggestions made'in Appendix 4,2 

on degeneracy would have to be implemented, to monitor the near-singularity of 

the optimality equations and to manage the "offending" dependent constraints 

separately from the others. Gomputing condit;ion uumbers on-line ta detect 

offending constraints would be prohibitively time-consuming. Instead, simpler 

techniques are available, for example based on the study of the diagonal 

element entering the Ch01esky factorization. If this value ls too small, the 

new constraint could be set aside. and would not enter the constraint 

subma tr.ix . Presently a11 the need.§d elements for this study are in place in 

our program, so it would not be difficult to implement. Sorne study would be 
'-

required though to determine the appropriate heuristics. A seemingly similar 

scheme ls imple~ted in the nonlinear programming subroutine VE05 of the 
',' 

Harwell Librarles [Hopper 1977]. 
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TABLE 7.21 - COEFFICIENTS OF l'HE FUNCl'IONAL CONSTRAINl'S IN l'HE 118 BUS l'EST 

~ , 
INDEP. FUNCTIONAL CONSTRAINTS . . 
VAR. Power JS9 V64 V30 V1l2 va6 , JI72 V63 

Balance Eq 

P 107 o 8987E+OO -.3699E+00 0.425BE-04 0.3500E-04 - 3311E-04 - 8775E-03 0.4338E-09 - 5999E-07 

P 103 0.B75IE+OO -.3602E+00 0 4l46E-04 O.3408E-04 -.3224E-04 ' O.3458E-03 o 4224E-09 -.5842E-07 

P 100 O.9062E+OO - . 3730E+OQ o 4293E-04 O.3529E-04 -.333SE-04 - 2796E-OS 0,4374E-09 -.6049B-07 

P 90 o 8975E+JO - 35B2E+OO o 4120E-OIt 0.3387E-04 -.2893E-04 -.2133E-OB 0 B618E-09 -.5873E-07 

P 89 O.9002E+OO - 3585E+OO O,4124E-04 0:3390E-04 -,287SE-04 -.2115E-08 o 6848E-09 -.5884E-07 

P 87 o 8979E+OO -.3496E+00 0.4019E-04 O.3304E-04 - 2573E-04 - .lS46E-OS a 1251E-Ol - 5765E-07 

P 65 O,9I20E+OO -.3SS1E+OO O.4082E-04 O.3356E-04 - 2613E-04 - l875E-08 o 9264E-09 - S87SE-07 

P 80 a 98S3E+OO -,4292E+OO o 4947E-04 O.4066E-Q4 -.4503E-04 - . 1106E-OS O.2470E-09 -,6826E-07 

P 76 O.1019E+Ol - 2079E+OO o 2272E-04 o 1868E-04 o 1163E-03 - 6305E-09 O.1566E-09 - 6l45E-07 

P 74 0 10l0E+Ol - l069E+OO o 988SE-05 0.8126E-05 0-t602E-03 -.3618E-09 O.8938E-I0 -.7279E-07 

P 69 0 1000E+Ol 0 OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 0 OOOOE+OO o OOOOE+OO o OOOOE+OO 

P 66 0 9943E+OO o 1050E+OO - 2452E-03 -.2653E-03 - 2032E-03 - 3377E-09 0,7570E-lO -.1470E-oa 
p 65 a 9949E+OO OA181E+OO O.1l93E-D3 D.9S08E-04 - 2l59E-03 - 3753E-OC: O.8407E-lO - 1411E-Oa 
p 62 O.1015E+Ol o .1117E+OO -.7515E-03 - 1028E-02 - .211SE-03 - .3577E-09 o 80l6E-lO - . 14S0E-06 

P 61 O.lOl4E+Ol 0 1127E+OO -.S406E-03 -.1192E-02 - 2I27E-03 - 3605E-09 0.8079E-lO -.1474E-06 

P 59 O.103JE+Ol 0 111~E+00 1 - 1809E-02 - 1289E-02 - 2139E-03 -.3581E-09 o 8027E-I0 - 1524E-oe 
p 58 O.1063E+Ol 0 lO53E+OO -.1254E-02 - 9180E-03 - 2105E-03 - 3411E-09 0.7648E-IO - l604E-oe 
p 55 o 10 62E+0 1 a lQ56E+00 ~ 12B2E-02 - 9369E-03 -.2106E-03 - 3419E-09 o 7666E-lD -.l600E-06 

P 54 o 1063E+01 a lO49E+OO - 1232E-02 - 902BE-03 - 2102E-03 -,3402E-09 a 7628E-la - 1606E-oe 
p 49 O.IOl6E+Ol 0.8962E-Ol - 4781E-03 - 3930E-03 - 1905E-03 - 2945E-09 O.6609E-IO - 1583E-06 

P 46 O.1019E+Ol O.8279E-01 - 4130E-03 - 3395E-03 -.l804E-03 - 2760E-09 O.6l98E-IO -.l664E-06 

P 42 O.1031E+Ol a 8976E-OI -.2936E-03 - 24l4E-03 - 2769E-03 - 3194E-09 O.7196E-lO - 28591'_-06 

P 36 o 9477E+OO 0 S093E-OI - 7161E-04 -.5886E-04 -.2589E-03 - 3l44E-09 o 7110E-IO -.3946E-oe 
p 26 0.8829E+OO 0 5447E-Ol -,253~E-04 - 2084E-04 a.3043E-02 -,2846E-09 a,65a8E-lO - 4784E-06 

P 25 o 8775E+OO 0 4849E-Ol -' 2439Ë-04 - 2005E-04 0.26l8E-Ol - 2793E-09 0.6406E-IO - 4536E-06 

P 12 a 8965E+OO a 6623E-Ol -.306IE-04 - 2532E-04 0.2882E-a2 - 2954E-09 O.6717E-l0 - 6479E-OG 

P la o 8592E+OO a 6399E-Ol - 278lE-04 - 2286E-04 a 3431E-02 -.2836E-09 a 6449E-lO - 4296E+OI 

P 8 O.8816E+OO a 6567E-01 - 2853E-04 - 2346Er04 D 3521E-02 -.2910E-09 0 66l7E-lO - 7097E-06 

P 8 O.8850E+OO O,6552E-Ol - 2994E-04 - 2461E-04 a 3031E-02 - 2917E-09 a 6634E-10 - 6593E-06 

P 4 0 8735E+OO o 6480E-01 - 29l8E-04 - 2399E-04 o 3143E-02 - 2881E-09 a 6550E-lO - 6668E-06 

P l 0 8839E+OO 0.6S40E-Ol - 3004E-04 - 2469E-04 0 2976E-02 - 29l3E-09 a 662SE-IO -.6S3lE-06 
~. 

V 32 0, l471E-01 0 6909E-03 - 16S6E-OS - 1361E-OS - 2441E-Ol - 44S3E-ll o 1024E-ll 0.3253E-07 

T 4 - 1098E+OO - 1021E-Ql 0.2972E+OO a 4587E+00 a 2l09E-04 O,3332E-IO -.7475E-ll a 16B7E-07 

V 18 a 1508E-Ol a 2342E-02 - 4245E-05 - 3490E-05 -. 1102E; 00 - 5306E-ll o 1163E-ll a l723E-06 

T 1 a 2S27E-02 - 9839E-03 a 113lE-Ob a 9298E-07 - 7240E-07 - S196E-ll -.3856E+OO -.1628E-09 

V 105 - lSil8E-02 a 6532E-03 - 7521E-07 - 6l79E-07 a 5846E-07 0 S930E+00 - 7664E-12 o 1059E-09 
V 8 0 4124E-Ol a 3068E-Ol a 2694E-04 0.2215E-04 - 3436E+00 - 3488E-IO 0.7070E-ll a 728SE+02 

v 59 a 3208I:-OI - 3965E-Ol - 4628E+OO - 1663E+OO 0 3505E-04 o 112lE-09 - 2496E-IO -.2457E-07 
-

V 34 - 5177E-OI 0 l648E-OI - 5552E-03 - 4564E-03 - I074EtOO 0 7375E-IO - 1802E-IO o 7280E-06 
V 77 a 4382E+OO 0 1196E+OO -,1447E-04 - 1189E-04 o 8839E-04 () 5848E-09 - .1782E-09 a 3433E-08 

T 2 - 1240E-Ol a 1433E+02 - 8767E-04 - n06E-04 0.1833E-03 - 2519E-09 a 5595E-IO o ge22E-Ol 
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There are four circumstances in our OPF algorithm which call~for a change 

to the set of independent variables. Presently, two of these are not 

foolproof, and can lead to cycling in the program. In a first case, the 

change 18 summoned in the subproblem when the con .. inuation method stalls. A 

change in the set of independent varIables often results in better-conditioned 
. 

functional constraints, and the continuation process continues. In a second 

case, the change is sometimes needed in the load flow computation when varying 
~ . 

the load. As in most load flow solvers, when a dependent variables violates 

its bound it is made independent and set to that bound, in order to maintain 

bound feasibility. In the process a previously independent variab'le 1s made 

dependent, and the load flow computation is repeated. Both cases have been 

~ observed to work well most of the time. Unfortunately in its present form, 

the program allows variables to cycle endl~Y in and out of the set of 

independent varEi~s when no adequate set can be formed. 

-1 

This is an combinatorial problem. lt could best be solved by developing 

a better '~;~;t of rules for the swapping variables, which would possibly keep a 

better record of past transactions. These are mostly heuristics, and a 

" careful study would be needed to develop them. 

7.9 Conclusion: A General Assessment 

In many aspects, 
)" , 

our OPF algorithm has shown much promise. Its 

performance was quite fast and accurate in the tests presented in this 

chapter. Also, taking into account the discussion concerning differences 

between the subproblem and th~ OPF solutions, it is feit that the subproblem 

ocould be put to good use as a fast dispatching tool. The most impressive 

results were those of the load-tracking step, which solved the OPF for a 

sequence of loads in quick succession. 

sorne 

More work is needed to make the program more reliable. We have advanced 

ideas to explain the difficulties observed in the tests. Changes ln the 

pro gram we can now suggest are those discussed in the previous section. One 
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more change is suggested: that the program solve the optimality squations in 
1 _ 

their Most general form (eq. 4.4) instead of the partltioned form presently 

being used (eq. 4.15-4.17). That would avoid the occasional repartitioning of 

the independent/dependent \variables, allow for pivoting to improve n~erica1 
pr.operties, and allow to simplify present data structure problems. The 

present quick updating sChJmes used in the subproblem could easily be adapted 

for use here. The behavioJr of this Version 2.0 should'then be much improv~d. 
1 

." 

-r~ , 
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CHAPTER VIII 

CONCLUSIONS AND RECOHMENDATIONS FOR FUTURE RESEARCH 

8.1 Conclusions 

This thesis has presented a new. solution methodology for the optimal 

power flow problept based on continuation methods. It has produced a large 

collection of analytical results for various tasks of the optimal power flow 

problem, and a detailed numerical study for the minimum fuel costs task. 

A large part of the analysis has been devoted to studying the use of the 

éontinuation method as a tool for solving the OFF subproblem. The subprob1em, 

in turn, is inserted into the larger successive quadratic programming strategy 

for the nonlinear problem. The subproblems for three tasks. minimum fuel 

cost, minimum 10ss and load shedding, were analyzed in detail. New 

formulations were proposed for the latter two tasks, and various continuation 

strategies vere explored for the solutions of a11 t~ree tasks. Additions to 

the subprobtem ana1ysis, such as the inclusion of r"':-:!l constraints, post

contingency redispatching, and bus incremental costs, were also proposed, but 

in less detai!. Some concepts new to power systems optimization were 

introduced and exploited; most notable are the transparent variables and the 

search for fold Hnes in the load flow manifold. This subproblem structure 

was originally "conceived as an extension to the real power dispatching 

problem, and it could be used on its own as a real-reactive dispatching tool. 

The ana1ys is a1so proposed a new set of ru1es to aid convergence of the 

nonlinear OFF problem. The algorithm presented i~ the thesis ensures descent 

of the objective~unction from one iteration to the next. This particular set 

of, numerical tactics in~ludes step size calculations in various positions, 
\ 

including in a Newton-Raphson solver. 

A second application of the continuation principle in the algorithm 

suggested that close1y spaced loads be fed to the nonlinear program, to 

produce ",solution trajectories of the dispatchable variables. This was 

motivated by the idea that the computation of a solution traject.ory, either 
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leading to a desired load or following a forecasted load trajectory, could be 

very fast. 

One variant of the general OFF proposed in the analysis was put to the 

test in a series of numerical simulations. A computer program was written for 

the economic dispatch task, based on the varying limits strategy to solve the 

subproblem. This program ,implements sparsity and efficient data structure 

techniques to incrèase speed and to reduce memory requirements. Also, various 

n~erical tactics were introduced to enhance)the robustness of the algorithm. 

Detailed results from four test systems, ranging in size from 6 to 118 buses 

(32 to 531 e1ectrica1 variables), give a clear picture of the behaviour of the , ' 

algorithm. Among the important observatlons, we note the following: 

(1) the number of breakpoints in a subproblem solution is relatively ;;mall 

and independent of its size. 

(2) the ru1es for convergence ansure descent, ar~ robust, and usually require 

little computation. 

(3) the algorithm becomes very fast after a few iterations, because .ft can 

avoid the continuation procedure in the subproblem, and because Iterative 

(4) 

processes are fed excellent initial guesses. 

execution speeds in solving for a single 

systems, increased linearly with size. 

-
load, for these, four test 

(5) the load-tracking scheme produces optimal solutions very quickly, because 

it profits from the information of the previous solution. Results show 

that the increases in load hardly effect the optimal settings of the 

reactive powers, voltages and passive controls. 

~These and other observations indicate that the algorithm shows much promise 

for the quick solution of OFF problems. 

The prog:am encountered a serious numerical problem in so~e runs of the 

118 bus test, due to ill-conditioning and degeneracy in the optimality 

conditions. This stems from an Inherent problem with the compact load flow 

model adopted for this study, and- not the continuation process per se. The 



• 

( 

295 

program was not equipped to handle this problem; it i8 felt, however, that the 

problem can be remedied, 8.S it has been in other well-known optimizatlon 

pacltages. 

\ 

8.2 Recommendations for Future Research 

The following recommendations cover four large areas of research. These 

are: (1) ways of improving the present OPF program, (2) the deyelQpment of 

software packages for other OPF tasks. (3) the use of the latest ideas in 

continuation method theory, and (4) a fundamental study of the properties of 

the load flow equations. 

8.2.1 Improvements to the P;esent prog;am 

Many of these improvements were suggested in the main body of the thesis. 

To improve the robustness oi the subproblem, three points were made at the end 

of Chapter 7: 

To add a mechanism isolating the functional constraints whij:J1 cause 

degeneracy from the other active functional-~onstraints. 

To _ study a mechariislJ1 which avoids the creation of ill-suited sets of 

independent variables. 

To solve the optimality equations of the subproblem in the form of eq. 

1 4.4 instead of eq. 4.14-4.17. to allow for pivoting of the variables, 
1 

thereby avoiding the occasional reorgan~zations of the partitions of the 

variables. 

To improve the execution speed of the real power dispatch algorithm, found in 

the initial, simple problem of the subproblem, it was suggested to convert 
-

from a binary search ta a secant search algorithm. The improvement in overall 

, 
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speed of the OPF algorithuf would be small, but probably little effort ls 

requlred to make thls change. 

To improve the speed of the computation of sensitivlty coefficients, a sparse 

vector solver should be added to the program. 
1 

With the experience gained in observing the program, some adjustments could be 

made, with the hope of avoiding lengthy computations. For example: 

Rules for the imposition of auxiliary bounds tried for the anti

zigzagging scheme could be improved. If variables near fold lines can be 

identified and their behavioür better undé'i:stood, the y could be removed 

from the standard optimization procedure. It is the oscillation of these 

variables in standard procedures which slows down the optimization the 

most. ~ 
1 

Convergence criteria and convergence tolerances should be studied in 

greater detail* to determine wh en It is worthwhile to stop iterating. In 

some of our tests the values of the objective function converged much 

faster than the other convergence criteria. Because of the slow 

convergence of those other criteria, the optimization proceeded with more 

iterations. 

The convergence characteristlcs of the algoritlun. as a function of the 

initial guess should be studied in greater detail. The impression gained 

from our present numerical experience is that it is disadvantageous to 

start the algorithm very close to the solution. 

Wi.:h the knowledge that the variables other than the P' s vary Little in 

the load- tracking loop, it might be advantageous to process dependent 

constraints outside the subproblem. in the nonlinear loop. That could 

save time, because the monitored dependent constraints would likely 

remain feasible from one load-tracking Iteration to the next. If so, no 

additional processing would be required. 

\ 
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8.2.2 T'he Development of Software Packages for Otbet OPF Taski 

Chapters 4 and 5 provUe the analysis for many nev applications .of the 

continuation method in solving OPP subproblems. These include: 

The solution of the economic dispatch subproblem by the varying load 

strategy. This is potentially a faster solution technique than the one 

tested in this thesis, once it is initialized with an optimal solution 

for some load. The best coordination betveen the subproblell\.. solution 

tra1ectories and the nonlinear solution trajectories remains to be 

determined. One reasonable strategy would be ta use the solution~ of the 

subproblem as the optimal dispatches as long as'their mismatches with the 

corresponding load flov points a~e small, When this mismatch becomes too 

large, the nonli~ear information would be updated and the subproblem 

vould be restarted. Numerical problems remain to be seen, but ill-

conditioning observed in the 'varying limits 
o 

strategy, due to the 

insensitivity of reactive powers and voltages, should again be present in 

this problem. 

Bus IncrementaI costs, which can easlly be formed from the solutions of 

the economlc dIs patch subproblem when using the varying load strategy. 

, 
The sOl\.ttion of the minimum loss problem, formu1:ated as a parametric 

linear program. For this subproblem strategy to be effective in 

nonlinear 0ptimization, it is important to detect transparent variables 

on their. fold lines; otherwise, the linear program will send too many 

variables ta their bounds. The preferred ~olution strategy ls the 

varying load st't'ategy. 

The solution of the load shedding problem, uslng the new varying load 

strategy, This formulation minimizes a norm of the diftjrence between 

the varying unsatisfied (forecasted) demand and the feasible satisfiable 

(unknown) load. The solution process proposes to compute the best load 

and at the same time the optimal generation dispatch for that load. 
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The coordination of normal dispatching tasks and the 10ad shedding task, 

to create an optimal operating schedule for' any demand. feasible or 

infeasible. 

The inclusion of dynamic ramp constraints in the economic dispatcn/ 

subproblem. This would provide a look-ahead capability for the algorithm 

in cases where the loads increase rapidly. 

Suggestions for the study of variations in the system parameters, for 

post-contingency redhpatching. Often, the computation of a post

contingency optimal dispatch ls not helped by the knowledge of the pre-

contingency situation. The continuation method could take advantage of 

this information. Changes handled via the bounds on the variables are 

easily processed. Others which invo1ve "left-hand-side" v"ariations are 

more difficult. Discrete variations of these parameters are suggested, 

to see if tracking the optimal solution from the pre-contingency to the 

post-contingency state is worthwhile. 

The parame ter variations of the previous point would also be useful in 

pexpans ion planning. 

8.2.3 A Better Use of Continuation Techniques in the Nonlinear Problem 

f 

First, we suggest that state of the art techniques in continuation 

methods be incorporated into implementation of the OPF. These techniques, 

which were developed in the last decade and referred to in the introduction, 

can bypass sorne problems of singularity in the sy"stem equations. In 

particular, these techniques could be useful in handling the left-hand-side 

perturbations. 

Secondly, we suggest a systematic study of homotopy strategies in the 

nonlinear loop of the solution procedure. The outer 1oad-tracking 10op, as 

initially presented, in Chapter 3, is an example where the known solution to 

one nonlinear problem Is linked to that of 'the desired nonlinear problem. 

However, the solution ta the initial, simple problem might be difficul t to 



• 299 

obtain in most cases. To simplify the solution of the initial problem. many -

parameters could be relaxed. For example. a load flow feasible point c~uld be 

, made the exact optimum for some artificial OPF problem, with bounds and loads 

relaxed. Then the parameters would be varied, continuously or discretely. 

until they reintegrate their original values, and the desired OPF problem 

would be solved. As in other applications of t:he varying limits strategy. 

this technique could be very advantageous if a good initial guess is 

furnished. A possible advantage over the solution strategy developed in this 

thesis is that the nonlinear solution trajectories would probably be smooth, 

without any of the oscillations which hamper the present strategy. 

4-

8.2! 4 A Study of the Load Flow Equations 

The analysis of some more fundamental properties of the load flow 

manifold is a difficult task, but it could provide valuable information for 

use in optimization. We can suggest the following topics: 

. ' 

The determination of connected regions of local convexity in the load 

flow manifold. This could explain convergence properties, or aid in 

identifying good initial guesses. 

The determination of convexity properties of the load flow feasible 

regions, as seen from different projection spaces. In particular • 

properties of the fold Hnes. whose projections form the load flow, 

boundaries. would be useful in setting the heuristic rules referred to 

earlier for setting transparent variables. 

A comparison of the numerical properties of the OPF solutions in the two 

main formulations. the compact formulation used in this thesis and the 

srarse formulation with independent state variables. These could be 

compared for the simplicity of their numerical structures. the 

conditioning pf the load flow Jacobians used in the subproblems, the 

behaviour of transparent variables, the convergence of the nonlinear 

algorithm, and the effectiveness of the tactics used to aid convergence 
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of the Jlonlinear algorithm. Of course, to make such a comparison, 

experience vith both types of programs would be necessary. 

Finding all SOlutions( to the load flow equations or to an OPF problem, 

for a small system. This could snow the disposition and the closeness of 

the ~ltiple solutions. The solution trajectories could be computed, 

given a load trajectory. A perturbation analysis of the eigenfunctions 
1 

could be useful in determining convexity properties of the load flow 

manifold. 

The analysis of various models of second order information for the load 

flow equations. Convergence problems in the Newton-Raphson solver are 

due to the inadequacy of the linear model, which cannot represent 

curvature. Some second or der information, albeit simplified, could 

approximate the curvature of the load flow equations. This procedure 

would improve the robustness of the algorithm for solutions near a 

feasibility boundary, or in determining the least-squares solutions of 

infeasible scheduled injections. 
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APPENDIX ,2.1 
... ',-

SOME BASIC RESULTS FROM NONLIN~ PROGMMMING 

Nonlinear programming theory investigates general proceGures for 

optimising a nonlinellr algebraic obj ective function, subj ect to restrictions 

on the value~ of the variables, expressed as non1inear algebraic functions. 

Most work in this field fa11s into one of two categories: the study of 

optimality conditions and that of convergence properties. The former has to 

do with the characterization of solutions of non1inear progranuning problems, 

in the form of necessary and sufficient conditions for Il solution. These 

cannot provide solutions as such, but they do serve two purposes: to make 

recognizable an optimal solution, and to provide a goal for numerica1 

technique,s. Various sets of optima1ity conditions have been proposed [Ben' 

Israel et.al. 1981], with Sorne superceding others, and ranging in their 

generality. The best kno~m, the Kuhn-Tucker conditions [Kuhn & Tucker 1951, 

Mangasarian 1969 J, will be stated here, with. a quick view towards numerical 

techniques. 

Convergence theory studies the ability of a solution process, or 

algorit1lDl, to a ttain an optimal solution. The a1gorithms are usually 

Iterative processes, due to the presence of nonlinearities in the functions of 

interest, and due to the necessity to search for the active constraints. 

Proper convergence rules ensure that as the process advances, the iterates 

tend towar-ds an optimal solution. They produce new iterates which are better 

than their predecessors trom which they are generated, in ~he sense defined by 

the objective funct:ion. 

Usually in the optimization literature, convergence -analysis is provided 

wlth new algorithms. There are however sorne general ru1es. The construction 

of the OPF algorithm presented in this thesis is basad on such rules. 

This appendix is divided into three pa:r;ts. A first part quickly presents 

the nonlinear programming problem, using a compact notation, and gives two 

important remarIes on limitations in the theory. In a second part, the 

optimal~ty conditions are stated in two forms, the primal and the dual. A 

\ 
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third part reviews briefly the notion of iterative algorithm and conditions 

for convergence. 

A2.1.l A nonlinear programming problem 
,..,. 

A scalar objective function fex) 1s minim1zed, subject to restrictio~s on , 

the choice of values of x. A general form for a non11near m1nimizat1on 

problem, denoted NLP, is written symbo1ically as 

min f(x) ~ 

x (NLP) 
s. t. g(x)::::; 0 

where x ls the vector of variables 

f(x) ls a scalar objective function 

g(x) is a vector of equalitY,and inequality constraints 

A restriction usua1ly placed on functions f a~d g in practice is that 

the y be smo'oth [Avriel 1976]. That is due to differentiability requirements 

in many methods. In sorne methods, this requirement has been relaxed, al10wing 

for continuous functions [Lemarecha1 & Mifflin 1979]. In those methods 

subgradients [Rockafellar 1970] replace gradients at points of 

nondifferentiability. 

A restriction on the claim to optimality, for techniques based on the 

up~oming optimality conditions, is that solutions are only local optima. That 

is because these conditions are based on local information. Then global 

convergence eluded to in a later section Is only towards a local optimum. 

A2.l.2 Optimality Conditions in Nonlinear Programming 

The necessary and sufficient conditions are presented, for minimization 

only, in nonlinear programming. The two well-known formulations of the 

optimality conditions, the primal and the dual, are cons idered. These are 

non-constructive conditions as such, but they suggest d fferent solution 

strategies, which are introduced in Appendix 2.2. 

\ 
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This is a general statement about the regions defined by functions f and 

g. Its formulation is as follows. 

Let 

t/I'f. 

x* be a faasible point, 1. e. g(x*) :s O. 

F be a region of descent, constructed from x*: 

F - (x* + ad 1 fex'" + ad) :S f(x*) , for ~ 
sufficiently small ) 

d is called a direction of descent 

Q is a step size 

G be the feasiblo region, constructed from x*: 

G (x* + ad 1 g(x· + ad) :s 0, for a 

sufficiently small ) 

d is called a feasible direction 

Then the primal optimality condition states that 8. feasible point x· is 

an optimal solution of problem NLP if and only if the intersection of sets F 

and G is empty [Ben Israel et. al. 1981]. This is· a necessary and sufficient 

condition. 

Stated in words, x* is an optimal solution if and only if there exists no 

diI:ection d emanating from x· which is both a dir:ction of descent and a 

feasible direction. , 

The dual form~lation can be generated from the primal, through the use of 

any one of the theorems of the alternative [Zlobec 1984, Bazaraa & Shetty 

1979] and differential information They impose conditions which are 

mathematicaIIy equivàIent to the primaI conditions, but in terms of an 

augmented set of variables (x, À) . The vector of '\, called Lagrange 



~. 

( 

rJ 

m 

161 

371 

multipliers, is of the same dimension as g(x). The dual formulation is as 

follows [Hangasarian 1969]: 

A necessary condition for the point x* to be an optimal solution of 

pz:oblem NLP Is that there exist Lagrange multipliers '" * satisfying these 

conditions: 

1. The optimality condition. 

Define the Lagrangian function ;t "" Then the 

gradient of ;t with respect to x, evaluated at x·, va:lishes: 

Vxt(x*) =- 0 

2. The feasibility conditions. 

g(x*) ;s 0 (primal feasibility) 

).,* ~ 0 (dual feasibility) 

3. The complementary slackness condition. 

À\gi<X*) .. 0 

Stated in words, a necessary condition for x· to be an optimal solution 

of problem NLP is that, at that point, the negative of the gradient of the 

obj ective function lies within the cone formed hy the convex combination of 

active constraint gradients. 

These are generally referred to as the first arder Kuhn-Tucker optimality 

conditions. They are necessary but not sufficient conditions for a minimum. A 

sufficient condition for mlnimization is provided by second or der information. 

It states that for ,the point x* obtained from the first order conditions to be 
.-

a minimum, the Hessian of the Lagrangian with respect to x evaluated at 

(x* ,À*) must be positive definite: 

For aIl nonzero vectors u, of dimens ion dim(x), belonging to 

the null space of the active constraint Jacobian, vxg(x*), we 

have 

This ls the second order Kuhn-Tucker sufficümcy condition. 
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LLmitations on problem NLP which exclude the use of the dual formulation 

of the Kuhn-Tucker conditions are ca1ted constraint qualifications. Several 

have been formulated, but possib1y the most general. and the simplest to verify 
\ 

1s S1ater's condition [Slator 1950, Z10bec 19841. To va11date the use of the 

K~hn-Tucker conditions it requires that there exist a feas1ble point where a11 

inequality constraints are strict1y satisfied. 

r-These are more '---restrictive optimality conditions th an the primaI 

conditions, since they require differentiability of the functions f and g. 

The advantage of these conditions ls that the Lagrange multipllers provlde a 

better assurance of optima1ity. compared to the converg1ng sequence of the 

objective function in the primaI formulation. 

A2 .1. 3 Convergence of Nonlinear Programming Aigorithms 

Methods for solving nonlinear programming problems basically search out a 

solution described by the optimality conditions. They start with an estimate 

of the solution. or initial guess. Then. ideally as the process advances, new 

estimates get closer to the solution. A solution 15 reached when a sequence 

of estimates converges. In pr'imal- based methods. values of the objective 

fun~tion usually form the sequence; in dual-based methods, it can be the 

~è\'ê'iVe or the solution estimates of the opti!l1lllity equa,tions. 

t The process described ab ove is an iterative descent algorithm [Bazaraa & 

~etty 1979, Luenberger 1984]. It is iterative, in that it generates a 

sjauence of points. each new point being computed from its predecessor. 

Figure A2.l.1 illustrates the general structure of the iterative algorithm. 

The drlving process A which links ~ to X k +1 can be __ quite general: Il simple 

relationship, an equation, a set of, equations, or even an algorithm in itself. 

It is Il descent method in that values of the obj ective function associated 

with the points of the sequence are diminishing as the process advances. 

If thp. algorithm can converge to the soluti?n regardless of the initial 

guess, then it is said to be globally convergent. This i5 an essential 

property of any successful solution algorithm. An important feature of a 
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globally convergent algorithm. is that at sach Iteration, lt narrows down the 

search for future iterat~s. That ls illustrated in figure A2.1.2. The 

shrinking reglon retains the desirable proporty which drives the process; in 

this case, lt delimits the region of lower values of the objective. Note that 

the shrinking region in the illustration need not only represent the system 

variables; it could represent also, for example, a choiee of possible 

combinations of active sets, or other important 'considerations. Convergence 

of a process corresponds to nllrrowing down the se arch ~til only the solution 

remains. That might occur in a finite number of iterations, in which case the 

algorithm is said to terminate, or lt might approach a solution at the limit. 

General rules for global convergence have been proposed to guide in the 

construction of algorithms [Zoutendijk 1960, Wolfe 1969, Zangwill 1969, Polak 

1971, Huard 1975, Meyer 1976] Maybe the hest known in optimization are 

those of Zangwill. His Convergence Theorem A serves as a basis for the 

convergence of the OPF algorithm deve10ped in this thesis. 
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APPENDIX 2.2 

A-SURVEY OF STANDARD NONLINEAR PROGRAMMING METROnS USED IN OPF 

The development of numerical algorithms for nonlinear programming has 

seen a steady flow of proposals. since its inception in the 1940' s. There 

have emerged, however, li few well-delimitad categories, based on the overall 

strategies of the methods. These are briefly presented in this section. 

Although the basic ideas which define these categories differ, often the 

details in the implementation over1ap. Rence, no classification structure can 

be suggested to separate 

~lassification is based 

a11 the methods. The on1y major partition for 

on the choice of formulation of the optimality 

conditions. As seen in Appendix 2.1. two formulations of the optimality 

conditions are prevalent, called ~he primal and the dual [Luenberger 1973, Ben 

Israel et. al 19811. Nu~erical methods basad on' the primal approach act 

directly on the optimization; those of the dual act 'indirectly, by introducing 

the Lagrange multipliers. 

Aside from general considerations, precise technique3 which make up the 

algorithms can often be partitioned into two groups. For example: 

- Search directions can be established using first order or second order 

approximations. 

- Subproblems can be single-staged cr multi,-staged. 

Constraints are handled using exact or penalty techniques. 

- The partition of independent variables can be fixed ut the outset or 

updated to fit the problem. 

These techniques a~e independent of each other, so that different combinations 

are possible. Numerical optimization methods can be characterized by the 

combination of these and other criteria. 

r' 
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A2.2.1 Primal-Based metho~ 1 

~rithmS ,based directly on the primal formulation were d~ve1oped, for 

the genèral nonlinear problem, mostly in the 1950's-60's. They are called 

feasible direction methods [Zoutendijk 1960, Zangwill 1969]. 

A basic algorithm for these methods is as follows. A direction d 

emanating from a feasible point Xo is computed from approximations of the 

objective function f(x) and the active constraints g(x). Then a step size a* 

is computed to minimize an approximation of f (x) a10ng direc'Cion d. If in 

the process of increasing a from 0 to a* a constraint becomes active, at a=a' 

say, then Xo + a'd replaces Xo as an estimate of the solution; if not, a full 

step with a=a* is taken. That completes one ite~ation. The process is 

repeated unti1 the sequence of points thus generated converges. 

The best known feasible dire<;.tion methods for nonlinear programming are 

gradient methods [Rosen 1961, Wolfe 1967], and in particular, the reduced 

gradient method (GRG) [Abadie & Carpentier 1969, Lasdon & Warren 1978]. In 

all gradient methods, 1inear approximations of the objective and the 

constraints are used. In GRG, the constraints are handled exact1y, by 

updating the independent/dependent parp,ition of variables after each 

Iteration. Variables at a limit are always made independent, so that they are 

expressed as s·imple bounds. 

Special cases of feasible direction methods, devefoped in the l~te 1940'5 

- 1950' s, are linear programming (LP), for problems with functions f and g 

linear [Dantzig 1963], and early simplex-type techniques for quadratic 

programming (QP), with functions f quadratic and g linear [Boot 1964]. Both of 

these special cases avoid ri6nlinear equations in their solution process, so 

that tè.ey ter.ninate when the right active set is found. This property makes 

them ide al as subproblems, used repeatedly to approximate nonlinear problems, 

in methods to be described 1ater. 
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In linear programming, the edges of the feasible region serve as descent 

directions, leading from one vertex to,another, always with a lower value of 

the objective function. This procedure, called the simplex method, reaches an 

optimum because for linear programs, the optimum is known to be at a vertex. 

This method is very fast; because, of the linearities in aIl the functions and 

the very simple search direction, each iteration of the process requires 

Ilittle computation. 

Primal and dual formulations of linear programming have been developed 

[Murty 1983]. The primal, as in other feasible direction mefhods, acts only 

on the actual problem variables. Because of the lincaritiEos, the dual ls 

formulated exclusively in terms of the Lagrange multipliers. Numerical 

algorithms to solve either formnlat:l,.on are basically similar. In practice, 

the number of Iterations to solve the problem ls linked to the number of 

constraints. HF!nce t the dual is advantageous when the constraints in the 

primal outnumber the variables. In the dual, the rolés are reversed. 

The first methods of quadratic programming follow the same simplex-type 

approach [Beale 1959, Wolfe 1959]. 

works, by dual-based methods. 

These have been superceded, in recent 

) 

Successive linear programming (SLP) 

generating a sequence of linear programs. 

solves nonlinear programs by 

Initial conditions for a given 

linear program are ~rovided by the solution of the previous linear program, 

according to sorne rules. The sequence of solutions to the linear programs 

should converge to the solution of the nonlinear prob1em. 

This method was firs'C prvposed in the early 1960's [Griffith &; Stuart 

1961], but then attracted limited interest unti1 the late seventies [Palacios-

Gomez et. al. 19082]. Results fram production codes during this period often 

suffered from unreliable performances. Developed by pcactitioners, the 

methods lacked the necessary theory for ~nforcing convergence. A major 

disadvantage i8 that solutions of the subprob1ems are situated at vertices of 
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the feasible region, even though the optimum of the nonlinear problem need not 

be. More recent Implementations suggest mIes to enhance convergence by 

manipulating bounds of the subproblems [Lasdon 1985]. 

~~_~~~~!~l_~~~~~~~_~~~~~~~ 
../ 

In these methods, no explicit search for active constraints is carried 
, 

out. Instead, search directions nre computed with penalty terms. added to the 

objective function, talcing into account the violated constraints. That 

reduces excursions outside the fensible region. Solution technique::; for 

'unconstrnined optimizntion [Dennis St Schnabel 1983] can th en be applied. 

After each solution of an unconstrained problem, coefficients of the penalty 

terms are updated, to better restrict the "11lega1~' excurs ions. That 

constitutes one Iteration. An optimal solution 13 found' when a sequence of 

values ot the nugmented objective function converges, and the constraint 

violations are deemed small enough. These are the easiest techniques ta 

implement, but also the least reliable, because of constraint violations and 

because of unavoidable ill-conditioning [Gill et.a1 1981]. 

The best known -.rork on penalty ~thods i8 the Sequential Unconstrained 

Minimization Technique (SUMT) [Fiacco &--McCormick 1968]. It proposes ,sorne 

interior (barrier) and e'Xtcrior penalty functions. In OPF implementations, 

the most common ls the quadratic cxterior penalty function [Sasson 1969a, 

Housos & Irisarri 1982]. Solution of the ensuing unconstrained quadratic 

problem can be carried out in one of three ways: 

- In Newton methods, the required gradient and Hessian are computed exactly 

[Avriel 1976]. 

- In quasi-Newton methods (variable m8trlc methods), the Hessian is first 

appro~imated, and then updated using incoming information [A~1el 1976]. 

This 1s useful for sma1l problems with a dense Hessian. 

- In conjugate gradient methods, the optimality equations are solved by 

) 
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this iterative solver. This is advantageous for very large problems, 

because the equations are handled one by one. 

OPF. 

Pure penalty methods, such as SUMT, have been proposed sporadically for 

Howevcr, many proposed methods apply penalty functions to sorne 

constraints. In many cases, the independent variables are handled with exact 
~ 

bounds, while depandent constraint violations are added to the objective 

function via penalty functions. 

" \ 

A2.2.2 Dual-Basad Methods 

The development of numerical optimization techniques over the past twenty 

years or so has concentrated, for the most part, on solving the dual 

formulation. The optimal solution is characterized by a set of nonlinear 

equations in (x,)..). 

groups: 

Solution techniques can be placed roughly into two 

- Those which apply primaI. methods directly to solve the Kuhn-Tucker 

optimality conditions. 

- Those which exploit the propertie~ of the optimality conditions, and 

especially the Lagrange multipliers. i. 
In OPF implementations, gradient or mixed gradient-penalty methods make up 

most of the first group. In thA second group, dual-based quadratic 

programming and successive quadratic programming will be considered. 

Recent methods efficiently solve the Kuhn-Tucker conditions for a 

quadratic program. Using the active set defined by the estimate of the 

optimum, the first order optimality conditions are generated. They form a set 
" 

of linear equations in the variables and the Lagrange multipliers. Different 
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strategies exist [Van de Panne 1975, Gill et.al 1981] to compute the solution. 

If the solution is completely feasible, it is the optimal solution; if not the 

active set is updated and the process is repeated. 

with the truc active set and the optimum. 

The procass terminates 

Quadratic programming offers sorne of the sirnplicity of linenr programming 

in manipulating linear constraints, and a groater precision in pinpointing the 

optimum. For this reason, successive quadratic programming has become more 

popular than successive linear programming as a method for solving nonlinear 
- 1 

programs. 

These are a1so known as recursive quadratic programming or Lagrange

Newton methods. Nonlinear programs ca~ be solved by generating a ~equence of 

quadratic programming approximations, the solutions of which converge to that 

of the nonlinear problem. Much theoretical wode was produced from the 1ate 

1960's to the Mid 10's [Biggs 1912 & 1915, Fletcher 1973 & 1975, Han 1911, 

Powell 1978]. They seek the hest choice of subproblem and rules for enforcing 

convergence. 

At the optimum, the subproblem and the original problem share the same 

op tima lit y conditions. In all the proposed subproblems. linearized 

constraints replace the nonlinear constraints and all the bounds are retained. 

Different quadratic objective functions are suggested: 

- A quadratic approximation of tho objective function. This case is called 

the "Newton strategy" by Murtaugh and Saunders [Murtaugh & Saunders 

1980]. It is seldom mentioned in the theory, duc to problems with limited 

convergence. This classification i5 convenient though, <;ince many OPF 

Implementations prior ta the popularization of SQP arc of.this type. 

- A quadratic approximation of the Lagrangian or of a modified Lagrangian 

[Murtaugh & Saunders 1980]. The e;lCLra terms, linenr in the Lagrange 

multipliers and in tho active constraints. are called oxact ponalty 
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functions because their effect disappears at the optimum. They "monitor 

the curvature of the constraints to ensure descent (for minimization). 

This is the usual formulation in these methods. 

An augmented quadratic approximation of the Lagrangian or modified 

Lagrangian [Murtaugh & Saunders 1982]. An added exact penalty term with 

adjustable coefficients, quadratic in the active constraints, discourages 

excursions from the nonlinear feasible region. 

'Jhe methods corresponding to the last two objectives are called projected 
1 

Lagrangian methods. These methods are not restricted to SQP, although that 

now se~ms to be the trend. Earlier proj ected Lagrangian methods [Murtaugh & 

Saunders 1978] solved subproblems uith general objectives and linearized 

constraints using reduced gradient methods. 

Convergence properties have been verified, as in Newton methods, when the 
/ 

initial guess is close "enough" to the solution. Techniques (0 enhance 

convergence are: 

,/ 
The use of Il step size along a search vector linking the subpro~rem' s 

expansion point and its solution [Han 1977 J. This approach is used in 

the algorithm proposed in this thesis. 

- The adjustn1ent of penalty coefficients, in the augmented Lagrangian 

objective [Murtaugh & Saunders 1982]. 

Note that reference t'o augmented Lagl:angian objectives here should not be 

confused with the augmented Lagrangiat'\. method [Pierre & Lowe 1975]. The 

latter is much like the penalty methods, but in which o1',ly exact penalty 

functions are deployed. The method was developed more or less in parallel 

with projected Lagrangian methods. 

\ 

So far lt has not been used in OPF. , 
, 
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A2 .2.3 Parame tric Programming 

Parametric linear programming [Hurty 1983. Gal 1984] and parametric 

quadrat~c programming [Houtthaker 1960. Van de Panne 1975] have been available 

a:1most as long as LP and QP, although they have on1y recently been applied in 

power systems. Applications of the continuation method in optimization falls 

~nto thAse categories. Given an optimal solution, these methods efficiently 

track the optimal solution trajectories, following changes in sorne system 

parameters. Early works [Gass & Saaty 1955] 1imited themselves to a single 

"region of stability", whare the active set remains constant. Hethods were 

soon developed. for LP and QP, to update the active set and pursue solutions 

over a wide range of active sets. 

Algorithms have been proposed for general nonlinear programs [Hackl 1978, 

Gfrerer et. al. 1983, Guddat 1984]. This is an active area for research, 
~ 

since many different algorithmic structures have yet to be tried. The major 

difficulties are the efficient hnnd1ing of nonlinearity and the detection of 

changes in the active set. In this thesis, the solution of a nonlinear 

program is proposed by SQP, using, amongst other things, the continuation 

method to solve the subprob1ems. 

\ 

A2. 2.4 Present Trends in Optimization 

Here we present the opinions stated in some recent review papers and 

textbooks on nonUnear programming methods [Fletcher 1982, Bartholomew-Biggs 

1982, Lasdon 1982, Gal 1984, Lasdon 1985, Scales 1985J. 

Successive quadratic programming - projected Lagrangian methods now seem 

to be the most popular. Their advantages are that they are numerically 

efficient, converge quick1y near the optimum, require fewer function and 

gradient evaluations, and they need not satisfy equality constraints at each 

iteration. A major disadvantage is that global convergence 1s uncertain when 

weak restrictions are placed on constraint violations. 
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Successive linear programming is advantageous for problems with linear or , 
near linear constraints. and with solutions at a vertex. However. convergence 

can be slow due to inherently inefficient convergence control mechanisms. 

This method i5 very popular in the petrochemica1 industry, but has not caught 

on so much in power systems. 

Reduced gradient methods are efficient for linear or near linear 

constraints, are generally very reliable for any problem. and are generally 

slow. Two reasons for the slowness are that at each iteration the nonlinear 

information is updated and feasibility of the operating point is maintained. 

That requires much computation. 

Penalty methods are simple to imp1ement. but are plagued with numerical 

difficulties, and do not assure a feasible solution. 

methods have attracted litt1e interest of late. 

For these reasons, these 

Parametric programming ls still relatively unknown to practitioners, 

r1J although it has recelved in recent years much attention in the applied 

optimization literature [Fiaeeo 1982, Eaves 1983. Fiaeco 19811. Recent 

developments in OPF us ing parametric programming look promising; they are 

discribed in Chapter 2. 

New numerical techniques have been suggested to enhanee reliability or to 

increase speed. They could be added to most of the previous a1~orithms. Some 

of these are: 

- Scaling the variables to reduce ill-conditioning of linear computations 

[Gill eLal. 1981]. 

- The use of trust "regions [Sorenson 1982. Dennis & Schnabel 1983]. These 

are simple constraints (a box or hypersphere) added to discourage large 

excursions from the nonlinear feasible region. 

can be adjusted at each iteration. 

The size of the region 

- The r~èlaxing of constraints to solve subproblems which would otherwise be 

infeasible. 
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- The use of truncat.ed computations, to speed up computation [Dembo & 

Tulowitzki 1984, Nash 1984] . 

The first three techniques have made their way into soma OPF algorithms. 
" 

." , 
• ( 

.'-
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APPENDIX 2.3 

LISTING OF PUBLICATIONS IN THE OPF LITERATVRE 

Publications are l1sted for each branch o~ the OPF literature, as 

depicted in fig. 2.1. Superscripts indicate cross-referencing to other 

branches; this practice has been kept to a minimum. An added listing, not 

given its own branch in Chapter 2, is redispatching. 

A - ECONOMIe DISPATCH BY INCREMENTAL LOADING 

Estrada(1930) 

Steinberg(1934) 

B - ECONOMIC DISPATCH -

George(1943) 

Kirchmayer(1951) 

Klrchmayer(1952) 

Glimn(1954) 

Cahn(1955) 

Kirchmaler(1958) 

Watson(1959) 

Blodgett(1962) 

Van Ness(1963) 

Hé'.pp( 1964b) 

Roth(1967) 

Ariatti(1969) 

Mikami(1970) 

Meyer(1971) 

Happ(1974) 

Adler(1977) 

EI-Hawary(1978) 

Mamandur(1978) 

Nanda(1979) 

Vojdani(1981) 

Krogh(1983a) 

Hahn(1931) 

Steinberg(1943) 

CLASSICAL EICC/LOSS FORMUIAE 

George(1949) 

Glimn(1952) "'A 

Ward(1953) 

Harder(1954) 

Early(1955) 

Lubis ich( 19 58) 

Fisch~r(1960) 

Moskalev(1963) 

Wallter(1963) 

Happ(1967) 

Hill(1968a,b) 

Happ(1969a,b) 

Olesnicky(1970) 

Dension(1973) 

Jain(1975) 

Shoul t s (1977 ) "'K 

Galiana(1978) 

Selmyen(1978) 

Shoults(1979) 

Isoda(19B2) 

Aoki(1984) 

Steitiberg(1933) 

Ward(1950 a,b) 

Hale(l952) 

Brownlee(1954) 

Travers(1954) 
c Shipley(1956) 

George(1959) 

Schmidt(1960) 

Tudor(1963) 

Anstine(1964) 

Long(1967) 

Akhtar(1969) 

Meyer(1969) 

Gungor(1971) 

Podmore(1973) 

Wahda(1976) 

Alvarado(1978) 

Malik(1978) 

Galiana(1979) 

Vojdani(1979) 

Glavitsch(1983) 

Lin(1984) 



1 iiansour (1984) 

Boming(1986) 

llenyuan(1985)*Q 

C - CLASSICAL EICC/INTERCONNECTED SYSTEMS 

Glimn(1952) *B 

KichmayerCl959) 

Gladys(1971a,b) 

Happ(1975b) 

Glimn(1958) 

Miller(1959) 

.Happ(1971) 

Jamshidian(1983) 

D - OTHER TECHNIQUES/INTERCONNECTED SYSTEMS 

Peschon(1972a) 

Spare(1975) 

E - VALVE POINT LOADING 

Decker(1958) 

Happ(1963) 

Vojdani(1982) 

F - ENVIRONMENTAL DISPATCH 

Friedlander(1970) 

Friedman(1973) 

Ferrer(1974) 

Dejâx(1975) 

Ruane(1915) 

Zahavi(1975) 

Deo(1973) 

Romano(1981) 

Hayward(1961) ~ 

Ringlee (1963) *T 

Gent(1971) 

Lamont(1973) 
, 

Finnegan(1974) 

Eisenberg(1975) 

Schweitzer(1975) 

Kbthari(1976) 

G - ECONOMIe DISPATCH BY LAGRANGIAN TECHNIQUES 

Squires(1961) 

H - KT CONDITIONS - SUCCESSIVE APPROXIMATION SOLVER 

Carpentier(1962) 

l - GRADIENT METHODS 

Fukada(1964) 

Carpentier(1968) 

Peschon(1971) 

Carpentier(1963) 

Krumm(1965) 

Dommel(1968) 

Carpentier(1972) 
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Xu(1985) 

D 

Kerr(1959) 

Aldrich(1971a, b) 

Cameron(1974) 

Kwatny(1973) 

Light(1962) 

Fink(1969) 

Sullivan(1972a) 

Delson(1974) 

Cadogan(197~) 

Lamont(1975) 

Sullivan(1975) 

Cadogan (1977) 

Gamn(1967) 

Dhar(1971) 

Velghe (1972) "M 
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Carpentier(1973a) Dhar(1973) 

Alsac(1974) Daya1(1974) 

Podmore(1974)*Q Rashed(1974) 

Sachdev(1975)*Y Barcelo(1977) 

Ilic(1979) Prada(1979) 

Burchett(1980) Burchett(1981) 

Landquist(1984) Backlund(1986) 

J - SUCCESSIVE LINEAR PROGRAMMING 

Farrara(1969) 

Megahed(1977) 

Stott(1983) 

Van Meeteren(1986)*L 

Abou Taleb(1974) 

Khan(1979b) 

Pera1ta(1984) 
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Ramamoorty( 19 7,3) 

Hukherjee(1974) 

Alsac(1975) 

Bala(1978) 

Wu(1979) 

Roy(1983) 

Cernic(1986) 

Pa1(1975) 

Mamandur (1982) 

PCA(1985) *L 

K - SUCCESSIVE QUADRATIC PROGRAMMING - NEWTON STRATEGY 

Peschon(1968a)*T EI-Abiad(1969) Shen(1969) 

Jaimes(1970) Nabona(1973) *Q Nicholson(1973) *Q,T 

Suhakar(1974) Dillon(1975) Wadhwa(1975a, b) 

Shoul ts (1977) *B Dillon(1981)*R Talukdar(1981) 

Talukdar(1982) Contaxis(1986) *O,Q Maria(1986)*o,Q 

L - SUCCESSIVE QUADRATIC PROGRAMMING - PROJECTED LAGRANGIAN 

Biggs(1977) Lipowski(1981) Aoki(1982) 

Burchett(1982a,b) Burchett(1984) Sun(1984) 

PCA(1985) *J Van Meeteren(1986)*J 

H - _PQ DECOMPOSITION 

Dopazo(1967) Norimatsu(1967) Adie1son (1972)"u 

Bi11inton(1972) "T Jo1issaint (1972) Velghe(1972)"I 

Bi11inton(1973) Sj e1vgren( 1975) Shoults(1981) 
; 

Chamc:: é 1 ( 19 8 2) Shou1ts (1982) Contaxis (1983) "Q, U 

Housos (1983) "N Ta1ukdar(1983) K,Lee(1984) 

Lee(1985) Carpentier(1986) 

N - SUMT 

Sasson(1969a,b,c) Dillon(1970) Ramamoorty(1970) 

r 
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Sasson(1971) 

Kohl1(1975) 

Housos (1982) 

Dil1on(1972) 

Fischl(1978) 

Housos (1983) "M 

o - ECONOMIC DISPATCH BY LINEAR PROGRAMMING 

Benthall(1968) Wells (1968) 

Dodu(1970) ShenQ970) 

Brewer(1972) Her!l.in(1972) 

Nanda(1973) Nanda(1974) 

Dodu(197S) Khan(1975) 

Hobson(1977) Pai(1977)*u. 

Grigsby(1979) Stott(1979a) 

Fox(1982)*A' Irving(1983) 

Mota-Palomino(1984) Zhang(1984)*Y 

Broussole(1986 ) Contaxis (1986) *K,Q 

P - ECONOMIe DISPATCH BY NETI10hl~ TECHNIQUES 

Lee(1980) Lee(1981) 

Luo(1984) Hon(1986) 

Q - ECONOMIC DISPATCH BY QUADRATIC PROGRAMMING 

Nabona(1973) "'K Nicholson(1973) "K, V 

Podmore (1974) "r _ WOllenberg(1974) *0 

Lugtu(1979) Bottero(1982) 

Contaxis (1983) *K,U W'enyuan (1985) *B 

Maria(1986)*K,O 

R - ECONOMIC DISPATCH USING PARAMETRIC PROGRAMMING 

Dillon(1981)"'K ~lanchon(1983)"U 

Galiana (1983) 

Huneau1t(1984) 

Innorta (1987) *T 

Blanchon(1984)"'U 

Huneault(1985 ) 

S - ECONOMIC DISPATCH BY DYNAMIC PROGRAMMING 

Fukao(1959) Ring1ee(l963) "'E 
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Sasson(1973) 

Divi(1982) 

Taylor(1969) 

Thanikachalam(1971) 

Duran(1973) 

Wollenberg(1974) *Q 

Saeed(1976) 

Stott(1978) 

Elaqua(1982) 

Farghal(1984) 

'Van den Bosch(1985a) 

Maria(1986) *K,Q 

Hobson(1984) 

Reid(1973) 

Daya1(1976 ) 

QUintana(1982) 

Contaxis(1986) "K,O 

Voj dani(1983) 

Carpentier (1984) 

Innorta(1985) 



T - DYNAMIC DISPATCH 

Cuenod(1966) 

~ Ross(1980) 
1 

Innorta(1987)*R 

Bechert(1972) 

Lim(1985a, b) 

U - REACTIVE~VOL~AGE DISPATCHING,OTHER THAN V,W 

Su11ivan(1969) Kishore(1971) 

Graf(1974) El-Shibini(1975) 

Wirgau(1979b) B1anchon(1983) *R 

Elfstrom(1983) Blanchon(1984) *R . 
Brig1it(1986 ) Granville (1986) 

Padiyar(1986) Zhang(1986a, b) 

v - ~CTIVE-VOLTAGE DISPATCHING THROUGH MIN. LOSS 

Smith(1963) Hano(1968) 

Peschon(1968)*K 

Nar:ita(19 11) 

Savu1escu(1976) 

Fr,anchi (1983) *u 

Ef -Kady(198 6) "'z 

Hano(1969) 

Bil.linton( 1972) "'M 

Mamandur (1981) 

Doi (1984) 
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Patton(1973) 

Van den Bosch(1985b) 

Sullivan(1972b) 

Pai(1977)*0 

Franchi(1983) 

Chamorel(1984) 

Hota-Palomino(1986) 

Kumai(1968) 

- Bokay(1970) 

Nichol.son(1973) "J,Q 

Elangovan (1983 ) 

Horton(1984) 

W' - REACTIVE-VOLTAGE DISPATCHING THROUGH MIN. SLACK GENERATION 

Adielson( 1972) "'M 

A1drich(1980) 

Rama1yer(1983) 

x - MINIMUM LOSS 

Calvert(1958 ) 

y - MINIMUM DEVIATIONS 

Ka1tenba~h(1971t 

Khan(1979a) 

Zhang (1984) *0 

Z - MINIMUM OVERLOADS 

Sekine (1972) 

,Fernandes (1978a, b', c) 

Happ(1981) 

Sze (1959) 

Danie1s(1972) 

Hobson(1980) 

Sachdev(1975 )"'I,N 

W'irgau(1979a) 

Contaxis (1983) *M,Q 

Sasson(1969b ~ c) "N 

Shoults (1977) 

Krogh(1983b) "'A' 

Shoults (1976) 
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• A' - MINIMUM LOAD SHEDDING 

Hajdu(1968) 

Ejebe(1977) 

Chan(1979a,b) 

Hedicherla(1981) 

Krogh(1983b) "'y 

Fox(1986) 

Subramania1(1971) 

Ghoneim(1977) 

Hedicherla(1979) 

Palaniswamy(1981) 

Finlay(1985 ) 

B' - MAXIMUM LOAD, LOADABILITY REGION 

Garver(1979) 

/ RESCHEDULING 

Peschon(1968b) 

Cory(1972) 

Shou1ts(19,76) "'z 

Hedicherla(1979)"'A' 

Hedicherla(1981) *A' 

Bui(1982) 

Heliopoulos(1983) 

Hon (1986) *p 

Dersin(1982) 

Kaltenbach(1971) *y 

, G1avitsch(1973) 

Pai(1977)*o,u, 

Stott(1979b) 

Palaniswamy(1981) *A' 

Elfstrom(1983) *u 

Chandrashekar(1985) 

Honticelli(1986) 

390 

Song(197S) 

Khan(1978) 

Rashed(1979) 

Fox(1982)*O 

Palaniswamy(1985) 

Than1kachalam(1971) 

Sachdev(1975) *r ,N, Z 

Mamandur (1978) *B 

Dillon(1981)*K,R 

Somuah(1981)

:Crogh(1983b) *Y,A' 

Zabo.L~ky(1985) 

" 

4 
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APPENDIX 2! 4 

ENUMERATION OF PROBLEMS AND SOLUTION TECHNIQUES FO~ OPF 

This 1s an exhaustive list of the elements which make up the problems of 

OPF and its subsets, as weIl the elements of the solution techniques. 

A - TASK 

l. Economie Dispatch 

2. Minimum Loss 

3. Minimum Reactive Power 

4. Minimum Violations 

5. Minimum Deviation 

6. Minimum Load Shedding 

7. Maximum Load 

B PROBLEM FORMULATION STRUCTURE 

1. Full OPF + Tracking of Input Parameters 

2. Full OPF + Dynamic Constraints 

3. Full OPF 

4. Nonlinear OPF, No Dependent Injection 

" 
5. Security Dispatch + Tracking of Input Parameters 

6. Security Dispatch + Dynamic Constraints 

7. Full Objective, Linear Constraints 

8. Full Objective, Linear Constraints, No Dependent Injection 

9. Linear Objective, Linear Gonstraints 

10. Linear O~jective, Linear Constraints, No Dep~ndent Injection 

11. Full Objective, DG Load Flow + Tracking of Input Parameters 

12. Full Objective, DG Load Flow + Dynamic Gonstraints 

13. Full Objective, DG Loadflow 

14. Full Objective, DG Loadflow, No Dependent Injection' 

-------------------------------------------------
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15. Equal Incremental Cost Criterion + Tracking Input Par~meters 

16. EICe + Dynamic Constraints 

17 .. EICe With Static Loss Model 

a. Quadratic in Independent 

b. Quadratic in P and Q 

c. Quadratic in P 

Variables 

d. Linear in Independent Variables 

e. Linear in P and Q 

f. Linear in P 

18. EICC With Dynamic Loss Model 

a. Linear in Independent Variables 

b. Linear in P and Q 

c. Linear in P 

19. Lossless Power Balance (Incremental Loading) 

C - COORDINATES 

1. Polar Coordinates 

2. Rectangular Coordinates 

D - CHOICE OF VARIABLES 

1. Complete set 

2. Injections 

a. Real and Reactive Power Generations, Line Flows 

b. Real and Reactive Power Generations 

c. Real Power Generations, Line Flows 

d. Real Power Generations 
é 

e. Reactive Power Generations, Line Flows 

f. Reactive Power Generations 

3. States 

392 

a. Voltage Magnitude and Phase Angles (or rectangular coord.) + 

1. - vi. 

b. Voltage Magnitudes + i. - vi. 

c. Voltage Phase Angles + i. - vi. 

'The items i. to vi. refer to the types of equipment listed on the next 

page. 
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1. Taps, Shifters. Shunts 

11 Taps, Shunts 

11i. Shifters 

Iv. Taps 

v. Shunts 

vi. Other Combination 

E - SET OF INDE;PENDENT VARIABLES 

1. F1xed Partition 

a. "'States 

b. Injections 

c. Bus Voltages, Line Currents 
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d. P-Vat generation busses, P-Q at load buses, V at slack bus 

e. Other 

2. Dynamic Partition 

F - OUTPUT OF SUBPROBLEM 

1. Solution to an LP or QP, All Variables of Interest Included 

2. Solution to an LP or QP, Not All Variables of Interest Included 

3. Search Direction and Step Size 

4. Search Direction 

G - CHOlCE OF SUBPROBLEM STRUCTURE 

1. Linear 

a. Gradient: Methods 

b. Linear Programming 

c. Projected Lagrangian using gradient method 

2. Quadratic 

a. Quadratic Programming 

b. Successive Quadratic Programming 

i. Newton strategy 

ii. Projected Lagrangian 

3. SUMT, followed by particular techniques for solution 

Q 

4. Real - Reactive Decomposition, followed by particular structures for 

the subproblems 



1 

...n:
I Il , 

) 

1 

H - DETAILS OF SUBPROBLEH STRUCTURE 

1. Objective ,-

a. Nonlinear in Injections 

b. Full Quadratic in Injections 

c. Full Linear in Injections 

d. Quadratic Approximation in States 

e. Augmented Quadratic Approximation in States 

i. SUMT 

ii. Augnented or Projected Lagrangian 

f. Linear Approximation in States 

2. Load Flow Constraint Linearization 

a. All Injections vs. States, Jacobian Matrix, 

b. AlI Injections vs. States, Approximate Jacobian 

c. Independent Injections vs. States, Jacobian Matrix 

d. Independent Injections vs. States, Approximate Jacobian 
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e. Real Power Generations and Line Flows vs. Phase Angles (and 

Shifters), Jacobian Matrix 

f. Real Power Generations and Line FlO'TS vs. Phase Angles (and 

Shifters), DC Load Flow 

g. Reactive Power Generations vs. VoltagQ Magnitudes (,Taps,and 

Shunts), Jacobian 

h. Real Power Generations vs. Phase Angles, Jacobian 

i. Real Power Generations vs. Phase Angles, DC Load Flow 

j. Lossy Power Balance 

1. Lossless Power Balance 

3. Bounds on States 

a~ Contain Phase Angles 

b. Do Not Conta ln Phase Angles 

c. No Bound on States 

4. Reserve Constraints 

a. Present 

i. Static 

H. Dynamic 

b. Absent 

,1 

, 
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5. Ramp Constraints 

a. Present 

i. Static 

ii. Dynamlc 

b. Absent 

6. Frequency Constraints 

a. Present 

i. Expressed as a function of real power 

ii. Expressed as snch in a 

b,. Absent 

7. Environmental constraints 

a. Present 

b. Absent __ 

l - SOLUTION TECHNIQUES FOR SUBPROBLEM 

l. Newton Method 

2. Quasi - Newton 

a. SFGS Update 

b. Fletcher-Powell 

c.v Davidon-Fletcher-Powell 

d. Hà'n-Powell 

3. Gradient, Reduced Gradient 

4. Conjugate Gradient 

5. Linear Programming 

i. Simplex 

ii. Dual - Simplex 

iii. Dantzig - Wolfe 

control loop 

iv. Parametric LP, Continuation Method (see 8) 

6. Quadratic Programming 

i. Beale 

"li. Wolfe 

iii. Dantzig - Wolfe 

~v. Thiel Van-de-Panne 

v. Gill-Murray-Wright 

vi. Parametric QP,Continuation Method (see 8) 

7. Network Techniques 
t 
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1 8. Continuation Method 

a. Varying Load 

b. Varying Limit 

9. Integer Programming 

10. Dynamic Programming 

J - EQUALITY CONSTRAINT STRUCTURE 

1. Equality Constraints Present, Inc1uding Load Flow Equations 

2. Active Set Method With (Generalized) Power Balance Equation 

K - HANDLING OF CONSTRAINTS 

1. Independent Constraints 

a. Lagrange Multipliers 

b. Penalty Functions 

2. Dependent Variables 

a. Lagrange Multipiiers . \ 
b. Penalty Functions 

3. Primai Tableau-Type Method 

, 
L - POSITION OF DEPENDENT CONSTRAINTS 

1 .. Inside Subprobiem 

2. Outside Subprobiem 

M - CONVERGENCE CRITERION 

1. For Subproblems 

a. Termination 

b. Convergence gf Sequence 

2. For Nonl inear ProbleJll 

a. Cioseness to Solution of Opt1mality Conditions 

b. Convergence of Sequence 

c. Ail Constraints Satisfied 

N - lTERATION RULES FOR NONLINEAR PROBLEM 

1. Choice' of Variables to Keep 

a. States ,i. or ii. 

b. Independent Variables ,i. or ii. 

, 
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1. Steplength used 

*. Adequate decrease 
f 

**. Optimal Decrease 

1i. Steplength Not Used 

. ~ 2., Feasibility maintained at each iteration? 

a. yes 

b. no 

3. Position of Nonlinear Iteration 

~-===~_a4 After a Single-Stage Subproblem 

b. After a Multistaged Subproblem 

(' 
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APPENDIX 3.1 

THE LOAD FLOW EQUATIONS: FORMULATION AND USEFUL PRQPERTIES 

A3.1.1 Formulation of the Load Flow Equations 

Consider a bus i of a power system connected to adjacent buses j through 

transmission Unes. Each Une is modelled in steady-state as 'a pi cit:cuit. 

Shunt branches have identica1 imaginary admittances of YiJ ... jQij and the 

series branch has an admittance of YiJ' A shunt compènsation device with 

• imaginary admittance Yei '... jbci can be connected to bus 1. Tap and phase 

shifting transformers can be seen in analysis as particular cases of a 

transformer with a complex tap ratio.,r denoted a ij . The tap changing 

transformer exhibits a variable modulus t and fixed zero ph,?-se angle, while 

the phase shifting transformer maintains a fixed unit modulus and has a 

variable phase angle ~. 

The load flow equations needed in this work express real and reactive 

power and line current injections (P,Q,J t ) versus the complex bus voltage 

components (V,S) and passive network controis (bc,t,t,b). Expressions for the 

first two types of injections can be found in most textbooks on power systems, 

but they are rarely given for the line current injection. Expressions for the 

three typt>d of inj ections are given below. 

The real and reactive power injections are components of the complex 

apparent power S. This injection is the SUIn of the apparent powers sent to 

the transmission lines, plus the reactive compensation. 

written 

For bus i, it is 

(A3.1.l) 



allX_ ; z::: li W 

• 
where Vi . is the complex bus voltage 

Ii comp is the shunt compensation current 

I ij line and shunt are th.e line series and shunt branch 

currents 

* indicates the com~lex conjugate. 
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The set Ai contains the indices of buses adjacent to i. Replacing Line 

voltages by bus voltages, the appropriate expression for Si~is deveLoped: 

(.j\3.1.2.a) 

-
(A3.1. 2. b) 

In I-q. A3.1.2.a, the term between brackets in the summation is the Line 

I!urrent Iij' The Line current injection is taken to be Jt.i j - Iij(Iij )*. 

The three required injections can th en be written: 

(A3.1. 3) 

..... 
Qi - Im(Si) - -V/bel - r ( laijViI2(IYijlsin(Oij) + Qij) + Kijsin(~ij)} 

J(Ai 

J -t.iJ 

(A3.1. 4) 

laijVi I2Iy\)2 + laJivJ !2IYJ.JI2 - 2KiJIY\jlcos(<liij + O\j) ) 

(A3.1. 5) 

where Kij'" laiJI lajil IYijl Vi VJ 

~ij - (5 1. -~ 0 j) + (oPij - oPJi) 

(A3 .1. 6 .a) 

(A3.1. 6~ b) 
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and 

°ij 

b~+1 and n+ 
is the phase angle of the series admittance Yij' 

are the modulus and phase angle of the sum of 

the line series and shunt admittances. 

0i and Oj 

rPij and rPji 

are voltage phase angles ~t buses i and j. 

are phase shifter angles on line ij placed at 

buses i and j respectively. 

If passive network con~ls are absent from a bus or from a line, then default 

values are inserted in the load flow equations. The taps take on values of 
t:-

one in the, scaled per unit system, and shifters and shunt compensation 

admittance take on values of zero. 

A3.l.2 Useful Properties of the Load Flow Equations 

Topologieal properties of the load flow equations useful for optimization 

will be stàted in this section. These are basic,qualities of the equations, 

and are invariant under coordinate transformations. Definitions of terms used 

here can be found in [Chillingsworth 1976] or [Bazaraa & Shetty 1979] . 

Properties of the funetion 

The load flow equations define a continuous manifold. 

The feasible region of the optimization is the intersection of the load 

flow manifold and the inequality-feasible hyperbox. It forms a closed 

and bounded (hence compact) set. 

theorems. 

That Is important ln convergence 

The feasible region is assumed connected. Then the optimal solution need 

'''not be eomputed on many àifferent (as yet undeteeted) segments of the 

mani~old. 

The feasible region is not convex in general. Locally convex regions 

would be of great interest though. Each one of these regions ls a 

connected set where the Hes5ian of the load flow equations i5 positive 

definite. It Is known that the flat volta,ge profile i5 situated in a 

locally eonvex region [Galiana & Banakar 1982]. 

) 
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Properties of the derivative 

The derivative of the load flow equations 18 continuous. The load flow 

Jacobian is the derivative of the injections expressed in tarms of the 

states. 

The load flow equations are differentiable "almost everywhere". in the 

sense of Sard' s theorem [Milnor 1965 J. That means that regions wher9 the 

Jacobian loses full rank are of lower dimension than the load flow 

manifold. That makes those regions very "small". 

Differentiability is in doubt when the JacC'oian loses full 1 rank. 

However, singul,q.r points of the Jacobian, ~re non-degenerate, in the sense 

of the Morse theorem [Chillingswog:h 1976 J. Tha~ means that the singular 

points are differentiable, in a topological sense, and derivatives can be 

computed in a different coordinate system. Along with the continuity 

property, that makes the load flow manifold smooth everywhere. 

Derivatives are computed in coordinate systems other than the states 

using the implicit functlon theorem and the chain rule [Spivak 1965]. 

The di1llension of the load fJ ow manifold 

The dimension of the load flow manifold, denoted dim(m), is one less 

than the number of states. The load flow equatlons admit a null space of 

dimension one. That is easily seen in polar coordinates, where a1l the 

injections are functlons of voltage phase angle differences, but not of any 

angle alone. To avoid carrying the null space solutions, one phase angle ls 

designated reference angle and set to zero. 

The dimension of the manifold Is of practical importance because it 

is a1so the dimension of the basis in the subproblem. Most but not al1 

combinations of dim(m) independent variables form a basis. More On infeasible 

bases is given in section 3.4.1. 
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APPENDIX 3.2 

FORMULATION OF THE LOAD FLOW JACOBIAN 
1 

~ ~ 

The load flow Jacobian, denoted J, is the derivative of the vector of 

injections with respect to the vector of states. It is a matrix with as many 

rows as there are injections and as many columns as there are states. Element 

J ij is the derivative of the i th injection versus the jth state. Here are the 

expressions of the components of the Jacobian: 

~ w.r.t. the near bus (i) and far bus (j) voltage magnitudes: 

aPi ". ~ + Vil a ij 1
2 1 y ij 1 cos Û ij (a) ; aPi = Kij cos (~ij) (b) 

t aVi Vi aVj V
j 

aQi ". Qi , 
Vil a ij 1

2 1 y ij 1 sin 0ij (c) ; -
aVi . Vi .. 

aQi _ KiJ sin(~lJ) (d) 
aV.1 Vj 

aJij 2 
[Jij - (e) 

aVi Vi '" 

t 
8J

ij 
_ 2 

aVj Vj 

[JiJ 1 a ij 12V i 21 Y ij 1 ] (f) 

" (A3.2.1) 

- w.r.t. t~e near bus (i) and far bus (j) voltage phase angles: 

. 
aPi KiJ sin(~ij) (a); aPi - -KiJ sin(~ij) (b) -- --aS i j a6 j 

aQi -Kij 
\ 

(c); aQi ... .. cos (~ij) Kij COS(~i) (d) 
aS i a6 j 

aJ iJ Kij y"tsin(<I>ij + O+ij) (e); aJ lj "" aJ iJ .. (f) 
aO i 85 j aO i 

(A3.2.2) 
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- w.r.t. the near (ij) and far (ji) variab~ taps: 

8Pi - Kijcos(~ij) (b) --P __ i + 

8aji a ji 

aQi _ Kijsin(~i) (d) 
8aji a ji 

-- 8J1j - 2 
(e) 

8aij , a ij 

~. [Jij - a i / vi
2

lYij Il (f) 
a Ji 

(A3.2.3) 

- w. r. t. the near (ij) and far (j i) phase shift phase angles: 

aPi _ aPi --- -- (a) aPi --
8tPij aO j a<pji 

8Q! - _ aQi 
-- aQ! (c) 

8tPij aS j a<pj! 

aJij - 8Jij (e) 
aJij 

a~ij aO i 8tP j i 

- w.r.t. the near shunt compensation admittance: 

V 2 
i 

- 8P i - (b) 
86 j 

_ ..,. aQ! 
(d) 

86 j 

.8JiJ (f) 
80j 

(A3.2.4) 

(A3. 2.5) 
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APPENDIX 3.3 

TRANSFORMATION OF THE LOAD FLOW JACOBIAN FOR USE IN THE OPF SUBPROBLEH 

The 'modifications implemented in the subproblem formulation will now be 

described mathematically. They amount to making (1) the p ... :oper choice of 

partition of variables and (2) a transformation of the load flow Jacobian. 

The rows and columns of the load flow Jacobian are partitioned along the 

lines of the independent/dependent injections and states. The number of 

i?dependent inj ections is made equal to the number of dependent states. 

Besides that, one dependent injection is labelled the manifold injection. The 

reader is referred to Appendix 3.4 for the d~tails of the nomenclature for 

these partitions. 

form 

The load flow Jac'obian then takes on the more detailed 

- (A3.4.l) 

Hence the Jacobian 1s partitioned into six parts depending on the status of 

the ,(y,x) pairs. The first subscript pertains to the injection, the second to 

the state. 

The change of algebraic basis is performed by hav;l..ng the Yb and the xd 

subvectors swap places. Then the right hand side vector of variables would be 

made up of the desired basis. Simple algebraic manipulations lead to the new 

formulation 

d' "" G'b' 

or more explicitly, 

[ 

Gxy 
GIDY 
Gyy 

(A3 .4.2) 

(A3.4.3) 
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The components of the G' matrix are expressed in terms of the components of J. 

Gxy - J bd 
-1 (a) G - Jbd-1Jbb (d) 

:0: 

Gmy - JmdJbd 
-1 (b) G - J mb - JmdJbd -1J'bb (e) 

IIIX 

Gyy - JddJbd 
-1 (c) G - J db - Jd-iJbd - 1Jbb (f) yx 

(A3.4.4) 

The elements of G' are the sensitivity coefficients. used in many linear 

models. It should be noted that eq. A3.4.l and A3.4.3 are mathematically 

equivalent. 

The equation linking Ym to the independent variables is retained as the 

linear model of the load flow manifold. It is the gener~lized power balance 

equation. This equation will be presented from here on as 

(A3.4.5) 

with 

1 (A3.4.6) 

The remaining rows of G' form the functional representation of the 

dependent variables, and together form a matrix denoted Gl '. Hence d - G1 'b'. 

A final modification brings the formulation to its definite form. Ait zero 

column vector is concatenated to Gl '. at least conceptually, in order to 

express d as a function of b. The augmented matrix is the Gl matrix referred 

to in the subproblem formulation. Since bounds are placed on dispatchable 

quantities dg' the f:I.nal expression ls written in terms of that vector. It is 

written 

(A3.4.7) 

with 

(A3.4.8) 

o (A3.4.9) 
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APPENDIX 3.4 

~NOMENCLATURE FOR THE OPF AND ITS SUBPROBLEM 

Some basic nomenclature has already been defined, when presenting the 

OPF. Some new nomenclature and notation are needed in formulating and solving 

the subproblems, to keep track of the various partitions placed on the 

variables and on the corresponding sets of coefficients. Special attention 

should be paid to this Appendix, since It will be assumed in the subsequent 

text that the new nomenclature and notation are understood. 

Recall that the load flow variables are naturally partitioned into 

injections (y) and states (x); their components were enumerated in section 

3.3.1. Independently, variables are partltioned mathematically as independent 

(denoted b, for basis) or dependent (d). One injection is labelled the 

manifold variable, and one state is the reference state. The crossing of the 

two partitions results in the following sets of variables: 

- seen as in injections/states 

y -[~:J (a), x - [~J (b) (A3.4.1) 

r. 

with subscripts b,d denoting independent, dependent variables, 

m denoting the manifold injection, 

r denoting the reference state. 

The reference state being set identically to zero, it will be 

ignored from here on. It will be chosen a voltage phase angle. 

- seen as independent/dependent 

(a), 
d / [;:] 

(b) 

1 
'\ 

(A3.4.2) 
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The inclusion of manifold injection Ym in vector b is retained because it 

will simplify notation, even though it isn't independent. Independent 

variables are denoted with subscript b, and together form vector b'. 

The three types of load flow variables listed below are regrouped under a 

common notation, but distinguished by subscripts g, l, and e. Subscript g is 

used in a general sense to designate generation, for a11 variables. This is 

proposed to unify notation; al1 dispatchab1e variables have t~en affixed that 

sabscript. Subscript 1 denotes the bus lQad variables. 3ubscript e is 

needed in the subproblem to denote the expansion point for a11 load flow 

quantities. The notation without subscript is reserved for excursions from 

the expansion point, used in the formulation of the linearized load flow 

equations. The relations between the var~ables are given by the expressions 

y ... Yg - (Y1 + Yo) 

x ... x
g - Xo 

or 

b - b - (bl + be) g 

d .. d -g (dl + do) 

Simi1ar notation can be applied to subsets of y/x or b/d. 

(A3.4.3.a) 

(A3.4.3.b) 

(A3.4.4.a) 

(A3. 4. 4.b) 

A partition ,separates inactive variables from those at a bound. 

Superscripts l and A are assigned for this purpose. 

A partition separates those Independant variables which appear in the 

objective function from those which do not. The latter are called transparent 

and are denoted t For example, in economic dispatch, independent variables 

other than real power generations are transparent. 

designated by subscripts p and t. 

The partitions would be 

Lagrange multipliers in the subproblem solution are considered in two 

groups. Those associated with independent variables are denoted ~ , and those 

with functional constraints À. In particular, the generalized power balance 

equation ls an equality constraint. and is always active. rts Lagrange 

multiplier is denoted The remaining Lagrange multipliers of À are 



1 
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denoted by the Àl vector. 

OPF are denotad A. 
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Together, all Lagrange multipliars for the static 

All the coefficients of the functional constraints, obtaincd through 

~nipulations on the full load flow Jacobian matrix, are denotcd g 

Elements gij form row veetors g/ which in turn make up the G matrix. The row 

vector of coefficients for the generalized power balance equation i8 denoted 

go T and the remaining part of G is denoted G1 • The partition of rows of G 

according to the active/inactive status of the dependent variables will not 

require additional notation, sinee the eontext will always distinguish between 

the two. 

Aside from superscript H and m for upper and lower boünds, superscript 

lim will be used to designate the group of variables at thair known limits, 

without specifying whieh limit. 

Other notation will be defined as it appears. As a final note, we will 

try to keep notation as simple as possible, aven though many partitions have 

been defined, by avoiding multiple superseripts and subscripts whenever 

possible. This will be done by dropping superseripts or subseripts where the 

context allows. Prior notice will be given before the simplification is 

imp!emented. 

, 
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APPENDIX 4.1 

PARTITIONS AND DIMENSIONS OF VARIABLES 1 COEFFICIENT MATRICES AND 

VECTORS IN THE OPTIMALITY CONDITIONS 

Here are the partitions of the variables. coefficient matrices and 

vectors needed for the optimality conditions of economic dispatch, minimum 

108S and minimum load shedding. They are split along the active/inactive and 

the Pg/transparent partitions. The notation has already been defined in 

Appendix 3.4, except the'term H which Is defined in this Appendix. 

- Partitions for the independent variables;: 

.. " (A4.1.1) 

The subscripts b assigned to the loads and expansion points in eq. A4.1.1 are 

tiOt meèlnt to indicate that they are at a bound; rathe~ the y show that the 

associated dispatchable variables are at a bound. 

and 

- Partition of the arrays of the objective function parameters; 

a ... 

B = 

- Partition of the dependent constraints:' 

S 
AT 

Ot 

G1t" 

SOt
T 
.] 

G t 
1 

. (A4.1.2.a) 

(A4.1. 2. b) 

(A4.1. 3) 
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/ 

and 

Partition of th~ indexing matrices ~, Rd and Rl : 

[

1), 
Op 

[RI 0.1 
[~lA 0.] 
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(A4.1.4) 

(A~.1.5) 

(A4.1.6) 

The subma trices 1)" Rt. Rl and RlA contain diagonal elements ±l, and 

submatrices Op' 

dimens ions. 

0t 0d and 01. are zero matrices. a11 of the appropriate 

The term H is defined here, in order to simplify notation in the 

optimality conditions of Chapter 4: 

This H matrix is made up ~rom the rows of coefficients of the active dependent 

constraints, premultiplied by the appropriate ±l index., The partitions of H 

are identical to those for G1 • 

Nomenclature is introduced for the dimensions of al1 these vectors and 
, 

matrices, and others about to be defined. The dimensions are then given in 

Table A4. 1. 1. 

- Nomenclature: 

ng,ngI,ngA number of generations, inactive generations and 

active generations,respective1y; 

nt,ntI,ntA number of transparent variables, inactive 

transparents, and active transparents. 

respectively; 



( 

and active transparents.respectively; 

n1,nlI.nlA number of -loads, inactive loads and active loads 

respective1y. 

- Dimens ions: 

TABLE A4 .. 1.1 

DIMENSIONS OF PRINCIPAL VECTORS AND MATRICES 

Variables 

t t lim 
g' g 

PApApApA A A 
, g , l ' e ' goP , iJp 1 a 

PI P l P l plI • g • l' e • gop' a 

lIt l l 
t , tg , l' te ' gOt. 

k hm 
1 

RA 
d 

Dimension 

ng X 1 

nt x 1 

ngA x 1 

ngI x 1 

ntA x 1 

nt! x 1 

ndA x 1 

ngA x ngA 

ngI Je ngI 

ntA x ntA 

ntI x ntI 

ndA x ngA 

ndA x ngI 

ndA x ntA 

ndA x ntI 

nqA x ndA 

ndI x ndI 

nlA x nIA 

nlI x nU 

411 
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APPENDIX 4. 2 

DEGENERACY 

Degeneracy occurs ~hen the active constraints outnumber the inactive 

independent variables. It can mean one of two things: that the optimal 

solution trajectory has met with a feasibility limit, or it has moved to a 

vertex of the feasible region. For the latter, the number of faces joined at 

that vertex is greater than the number of independent variables. 

important to have techniques to distinguisn between the two, and for the 

latter, to reorganize the active set and push forward the optimal solution 

traj ectory . This section proposes . some techniques to deal with the 

degeneracies, for the different situations encountered in the study. 

First. a simple illustration of degeneracy i5 presented. Consider the 

quadratic program 

min 9.25 - [1 6] G;,'] + ~ [Xl Xz] ~ 2 J~: ] xl'xZ 

S.t. a 1 + 109 ~ Xl + Xz ~ 

0 ~ Xl ~ 2 (EX1) 
0 ~ Xz ~ 2 

The cost contours and the feasible region are drawn at a ... o in figure A4.2.1.a. 

The optimal solution can be seen to be xl""O, xz""l and the functional 

constraiat is at its upper bound. As 9 increases, an optimal solution 

trajectory climbs the x 1=0 constraint. The optimal solution trajectory is 

Xl - 0 
Xz ... 1 + 109 
Xl + Xz - 1 + 108 

1-'1 ... 3 - 20a 
I-'z .. 0 
,\ ... 4 - 209 

.. 

l 

) 
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The situation at 8-0.1 i5 drawn in figure A4.2.l.b. The optimal solution 

trajectory has reached the corner of the box, and now three constraints are 

active in two-dimensional space. This is an example of degeneracy. , The 

values of the variables at a .. O.l are x1-0, x2 ... x 1+x2 "" 2, ~l ... l, 1-'2""0, ).la2 . 

~ 

A successful elimination of degeneracy would take xl off its lower bound. 

In the process, variables x move continuously, but the Lagrange multipliers 

jump. The nev optimal solution trajectory is 

Xl = 108 - 1 
x2 == 2 
xl + Xz .... 1 + 108 

~J/= 0 
~2 CI 208 - 1 

>'1 os 3 - 209 

" and the values of the variables at 9=0.1 are xl=O, Xz - Xl + Xz - 2, 1-'1=0, 

.u2-1 , ).1=1. 

For 8 between 0.1 and 0.15 the optimal solution trajectory follows thtl 

xz=-2 bound, to x1=0. 5. For 8 between 0.15 and 0.25, illustrated in figure 

Ait. 2 .1. c, the optimal solution is fixed at x1""O. 5, x z-2, and the functional 

constraint is inactive. At 8-0.25, the functional constraint hits its lower 

bound. For 8 between 0.25 and 0.4, the optimal solution traj ectory follows 
" the xz=2 bound to x 1=2. At 8a O.4, the active set Is a single point, the top 

right-hand corner of the box. This is illustrated in figure A4.2.l.d. 

Degeneracy cannot be r.esolved here, because a further increase in 8 results in 

an empty feasible regian. The value 8=0.4 represents the feasibillty limit 

for problem EX1. This completes the example. 

C-
Four cases of degeneracy and their remedies are eonsidered. A first 

group of cases, deemed "pathologieal", eould oecur when the G constraint 

matrix for active constraints loses full rank. A second case, used in real 

power dispatch, frees expansive real power generatlons from their lower bound~ 

when the solution trajectory would otherwise be blocked. In the third case, a 

technique for resolving degeneracy is presented for when there is one 

constraint too many. This problem always accompanies a breakpoint in 

parametric linear programming (minimum loss). It is also likely to be the most 
c 

c01'llIl\0n degeneracy in ail the optimization procedures being studied here. 
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Fina1ly a method is suggested for, diffusing degeneracies with too many 

constraints being added simu1taneously to the active set. 

AlI but one of the applications in this section are based on perturbation 

techniques. They modify the problem slightly, to create artificial facets in 

the feasible region, in place of the degenerate vertex. The optimal solution 

trajectory passes over the edges or possibly the vertices of these facets. 

which are not degenerate. The remaining application, the third, ls based on 

pivoting techniques. This method. prevalent in 1inear programming.· is a 

combinatorial technique which tries to find an alternative active set. Ru1es 

exist to avoid repetition of candidates, or cycling. The case prese~ed here 

is a simple application of pivoting techniques. 

Case 1. Pathological degeneraci~s 

We calI pathological the followin~ degeneracy: the particular arrangement 

of system parameters and system topology are such that for a newly activated 

constraint, say dg!' the vector of sensitivity coefficients gi is numerically 

linearly dependent on the rows already forming the G matrix for active 

constraints. In the fo1lowing, a rank deficiency of one will be considered. 

The case where two or more simultaneo~slY activated constraints are linearly 

dependent on the previous eonstraints is virtually impossible, but 
',' 

perturbation techniques suggested further ,'wouln allow to treat them one at a 

time. 

Figure A4. 2 . 2 . a illustrates a pathologieal degeneracy which oeeurs when 

the perturbation function affects only the right-hand-side of the optimality 

conditions. Some eonstraints, say Cl and C2 • are active. In the three 

dimensional space, up to three active constraints are permitted. As 8 is 

increaseci Cl i:(ZiSed and C3 is lowered. The aC,tive segment [ab], and th,e 

inactive ,~e~t [cd] are parallel. At some 8=8', aIL three constraints are 

active and meet alortg segments [ab] =- [cd]. Once that value of 8 has passed, 
cr 

constraint C2 is freed. The difficulty is in choosing which constraint must 

be dropped. 
," 

Il 

'. 
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" 
a. At a-o. b. At a-o.1. 

c. For 0.15 ~ 9 ~ 0.25. d. At e-O.4. 

J 
Figure A4.2.1. Four stages of problem EXl . 

. ' 
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The easiest way to resolve this type of degeneracy is to perturb gi by a 

small amount. to destroy the parallelism of the intersections of the 

constraints. The perturbation should be negligeable compared to system 

quantities but large compafed to machine precision. A single element of gi' 

say gij' could be perturbed by ±E. The sign of e is chosen so that at tbe 

degenerate breakpoint. the new constraint remains inactive. At a slightly 

higher value of a. a new breakpoint is encountered when the perturbed 

eonstraint is aetivated. AIl the constraints would likely be active over some 

small interval of a. Then a Lagrange multiplier will reduce to zero and t~e 

corresponding constraint is dropped. The degenerate breakpoint is replaced by 

two breakpoints; that is a typical consequence of the perturbation technique. 

Thi~ case also resolves any problem of parallel constraints. Only one 

can be active, except for sorne 8=a'. 

Figure A4. 2.2. b illustrates a pathologieal degeneracy which occurs when 

the perturbation affects the left-hand-side of the optimality conditions. 

This could occur in contingency analysis, when t~ansmission line parameters or 

the quadratic cost parameters are varied. Constraints Cl and Cz are active, 

and share segment [ab]. As e is increased, constraint C3 is rotated. At some 

8 ... 9'. the three constraint planes meet along [ab]. Once this value of 8 has 

passed, constraint C2 is freed. Again the difficulty is to determine which 

constraint is dropped. 

Again the case of a single rank deficiency will be resolved. The easiest 

solution technique would be to perturb the right-hand-side limit of the new 

constraint by ±é. The sign of é wou1d be chosen so that at the degenerate 

breakpoint the new cônstraint remains inactive. When the constraint is 

activated, at a > Slightly higher value of a, the intersections of the 

constraints taken al1 together no longer coincide. Again the leaving 

constraint is decided by the regular process. The case of sudden1y para11el 

and coinciding constraints can be handled by this technique. 

A most pathological case is portrayed in figure 

constraints share as intersection the Une segments [ab]. 

A4.2.2.c. The 

As e increases 

constraints Cz and C3 move together in such a 'fay that their intersection 
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always l.ies on Cl' The active constraint matrix G is rank deficient 

independently of 9. This has occured occasionally in our numerical tests. In 

this case the dependent constraints which cause rank deficiency need llot be 

placed in the cptimality conditions, since the feasible reglon 1s accurately 

represented by the other active constraints. 

monitored separately until one of the constraints 

This special constraint is 

in the optimality conditions 

is it resubmitted to the is released from the active set. 

optimality conditions. 

Perturbation Itechniques, such 

solving slightly perturbed problems. 

Only th en 

as those presented ab ove , proceèd by 
. ~ 

Tracking of the optimal solutions of the 
1 

true problem can be resumed once the solution traj ectory 1s pushed far enough 

beyond the degenerate breakpoint. With the assurance that the proper optimal 

active set is known, the optimality conditions are recomputed without the 

perturbations. Since the perturbations are small, the solutions to the 

unperturbed problem should be very close to those of the perturbed problem. 

Case 2. Degeneracy occuring with real power generations at their 

lower bounds 

The second case is an idea suggested fo'"C real power dispatch [Fahmideh

Vojdani 1982]. When degeneracy occurs and sorne real power generations are at 

a lower bound, as many as needed are released from their bounds. If there is a 

choice, those with the incrementally cheapest lower bounds are taken ~t. 

This is a simple rule, easy to implement, 50 it can be proposed tentatively 

when applicable. lt can be proven valid on the simple problem (ed) of 

economic dj.spatch, with functional dependant constraints omitted. In general 

though, it can only by considered a heuristic. A simple counterexample 

illustrates the point. If constraint Xl + 3/4xz :s 2-309 i5 added to problem 

EX1, at 8=1/30 three constraints are active; xl=O, xl + Xz =0 4/3, and Xl + 

3/4xz = 1. Variable xz=4/3 is inactive. As e is increased, constraint xl + 

Xz == 1+9 is dropped from the active set, and ~1 remains at a lower bound. 

That shows that functional constraints can be dropped from the active set 

before lower bound generations. 
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Figure A4.2.2 Three views of degeneracy, 
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Case 3. Degeneracy due to one constraint too many 

Yhen the constrairtts outnumber the . independent variables by one, a 

pivoting technique can be implemented quite easily. To resolve degeneracy, 

th.e load flow variables are held constant, but a new set of Lagrange 

multipliers is sought which can solve the optimality conditions. 

When the new constraint is added to the active set, the constraint matrix 

A. asl in eq.4.ll. becomes "long", with one more row than column. Its transpose 

is "wide". Holding load flow variables constant, it is clear that the set of 

equations for the Lagrange multipliers allows a manifold of solutions, with 
, 

one degree of freedom. At ai' 

(A4.2.1) 

In the following, subscripts 0 and n pe,rtain to old and new constraints, 

respectively. Let the Lagrange multiplier of the newly activated constraint 

serve as the parameter, with which other r..agrange multipliers are expressed. 

The expression is 

where 

AO-l [Bb(ei ) + a - ~t\] 

Aoo + M. "'n 
(A4.2. 2.a) 

(A4. 2.2. b) 

are the square constraint matrix and the Lagrange 

multipliers before the addition of the new active 

constraint. 

are the new vector of constraint coefficients and 

the new Lagrange multiplier. 

The new combinat ion of Lagrange ,multipliers which satisfies eq. A4. 2.2 

contains a11 non-negative values. but ,at least one value is nil. The newly 

adcled constraint remains in the active set and the variable whose oLagrange 

multiplier vanishes is dropped from the active set. 

See figures A4. 2.3. a and . b for an illustration of thEl search for a new 

set of Lagrange mult~pliers. A unique trajectory of Lagrange multipliers 
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leads to a bounded hyperplane of values, at a-si' In fig. a, one Lagrange 

multiplier is chosen along some opposite edge of the hyperplane, where another 

Lagrange mu1 tiplier is chosen as zero. From thera the regular procass 

continues. In fig. b, no other Lagrange multiplier for an 1ne qua lit y 

constraint can be reached, so the feasib1lity limit has been reached. 

The procedure to find the new Lagrange multiplier is as foilows. Ailow An 

in eq. A4. 2 .2 to increase, and compute values of "'n for which values of 

elements of Ao can drop to zero. The steps are 

STEP 1. 

STEP 2. 

STEP 3. 

S'tEP 4. 

STEP 5. 

STEP 6. 

STEP 7. 

Set 1-1 and i*mO. This procedure is not appI1ed to the 

generalized po~r balance equation, an equality constraint. 

Set 1-i+l. If 1>n, the dimension of Ao' go to STEP 6. 

If fiA <!: 0, th~n AOi cannot drop to zero. Return to STEP 2. 

If not, go to STEP 4. 

Compute the value of ~ for which Aoi-O' 

"'ni "" ~ 
Mi 

Keep track of the smallest value of Ani' 

A * - min ( Ani ) 
i 

Recall for which i the A* has been obtained, call it i*. 

Notify the 

(A4.2.3) 

(A4.2.4) 

If i* ... O, then no member of Ao can go ta zero. 

user or a control outside the subproblem. 

to STEP 7. 

STOP. If not, go 

Compute values of the Lagrange multipliers. 

Ao "" A~o + ~~.A* 
"'n '" A 

and in particular 

A(i*) "" 0 
The new Lagrange multipliers have been found. STOP. 

(A4. 2.5 .a) 
(A4.2.5.b) 

(A4.2.5.c) , 
Values of Ao versus An are drawn in figure A4.2.4. In this example, A

2 

i the first to reach zero. New values of aIl Lagrange multipliers are found 

on the dotted line. 
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If no member of Ao drops to zero, a feasibility limit has been reached. 

Degeneracy can be resolved l.f at least one member of Ao qrops to zero. 

~o 

(a) 

EVERYWHERE 
ON THE PLANE 

(b) 

Figure 4.2.3 The trajectory of Lagrange multipliers. 

(a) feasible case; (b) infeasible case. 

A 

Figure A4.2. 4 

1 

\NEW VALUES OF A Ao 

The new values of the Lagrange 
multipliers. 
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Case 4. Degeneracy with more than one constraint too many 

The 1ast technique proposed here is used when the constraints outnumber 

the independent variables by more than one. Such a situation occurs at the 

beginning of the load shedding problem. The method 'consists of adding small 

perturbations to sorne of the newly added activated constraints. to avoid 

having thema11 becoming active together. Let the dimension of the basis be 

denoted nb. For sorne 8r=9i , many constraints are activated, so that the number 

of constraints is greater than nb, say nb+m. Then rn-lof the newly activated 

constraints are perturbed on their right-hand-sides by different small amounts 
" e: 

g1Tb - dg1 ± Ei 
for dependent variable constraints 

(A4.2.6.a) 

and 

bg! - b lim ± E gi 1 
for independent variable constraints. 

(A4.2.6.b) 

Again, tlÛ~ sign of the perturbation! is chosen to keep the constraints inactive 

at the degenerate breakpoint. Not a1l constraints are perturbed, as in the 

classical technique, because then the optimal solution trajectory would no 

longer be optimal. It wou1d have to jump to a new traj ectory. 

The remaining problem has one constraint too many. Its degeneracy can be 

tested using the previous pivoting technique. If degeneracy is resolved, then 

the solution trajectory will proceed, but it Is like1y to meet one of the 

perturbed constraints very soon. Sorne, but not necessarily aIl of the 

perturbed constralnts will be processed this way. Hence a point with an m 

dimensional degeneracy is replaced by nt most m points with single dimensional 

degeneracies. If aIl the degeneracies are resolved, the solution trajectory 

proceeds. If any one degeneracy is unresolvable, the problem has hit a 

feas ibility limit. If aIl degeneracies are resolved the perturbations can be 

dropped and 

illustration 

the optimal 

is presented 

solution trajectory proceeds. A 

in figures A4. 2.5. a and b. Fig. a 

simplified 

shows the 

initial feasible region with a degenerate vertex. In fig. b the vertex has 

been "lopped off". than1cs to the perturbations, resulting in non-degenerate 
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vertices. The method proposed ab ove is slightly different, in that one-

dimensional degeneracies are kept. The solution trajectory moves through the 

area of degeneracy, and if resolved, moves beyond. 

(a) (b) 

Figure A4. 2.5 Break-up of a degenerate vertex. 

" (a) before (b) after. 

\ 



a APPENDIX 7.1 

DATA FOR THE 6 BUS SYSTEM 

Line Data 

Line from to G B .. Rah .]DIU: 

no. 

1 6 5 O.OOOOeO -0.3333el .0000e-1 0.200Jel 
2 6 4 0.5540eO -0.2325el .1500e-1 O.3000e1 
3 6 1 0.4340eO -0.1827el .2100e-1 0.2000e1 
4 5 2 0.5770eO -0.1308el .0000e-1 0.3000e1 
5 4 3 O.OOOOeO -0.7518el .0000e-1 0.2000e1 
6 4 1 O. 5880eO' -O. 2582el .1500e-1 0.3000e1 
7 3 2 0.4550eO -0.6460eO .0000e-1 0.2000e1 

Tap Data 

Tap on near rrmin 'Fax 

no. Une bus 

1 5 4 0.800 1.200 
2 1 6 0.800 1.200 
., 

Bus Data 

Bus vmin vmax Ini t ia1 Load 
no. p - • Q 

1 0.950 1.050 .0000 .0000 
~2 ~O. 900 1.100 .0000 .0000 

3 0.900 1.100 .5000 .1300 
4 0.900 1.100 .6000 .0000 
5 0.900 1.100 .7500 .1800 

"'~\ 0 .. ,900 1.100 .5000 .0500 
, '-! \ 

Generation Data .. 
Bus pmin pmax Qmin Qm8lt Cost coefficients 
no. c a ,b 

1 0.100 0.920 -0.250 0.250 0.050 0.250 2.500 
2 0.500 0.500 -0.300 0.350 0.020 0.500 0.500 

1\ 3 0.220 1.105 -0.340 0.340 0.010 0.500 1. 000. 
4 0.150 0.990 -0.500 0.600 0.020 0.150 2.000 

"",. S, 0 .. 330 1.200 -0.100 0.200 0.010 0.300 1. 750 
6 0.190 1.190 0.000 0.750 0.020 0.300 1.200 

/ 
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Figure A''i.l. 

3 
-t-""-r-

One-line diagram of the 6 bus system. 
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• APPENDIX 7.2 

DATA FOR THE 10 BUS SYSTEB 

Line Data 

Une from to G, Bu Bah JDlIIX 
no. 

\ 
1 10 4 .9737e1 -.4868e2 .2025eO .1000e2 
2 9 1 .1902e1 - .1252e2 .3037eO .5530e1 

1 3 8 5 .2600e1 -.7140el .2025eO .6550e1 
4 8 2 .375ge1 - . 1471e2 .3037eO .8000e1 
5 7 5 .4048e1 - .1983e2 .2025eO .5082e2 
6 7 4 .4048e1 - .1983e2 .1012eO .1000e2 
7 6 4 .3030e1 - .199ge2 .1012eO .8500e1 
8 6 1 .4367el - . 1461e2 .2025eO .8145e1 
9 5 4 .1902e1 - .1252e2 .3037eO .8500e1 

10 5 3 '.3563e1 - . 1734e2 .2025eO . 7570e1 
11 4 3 .1248el -.4901e1 .2025eO .7000e1. 
12 4 2 .360ge1 - .1443e2 .3037eO .8500e1 
13 3 1 .1248e1 -.4901e1 .2025eO .5000e1 

Tap Data 

Tap on near Tmin !"'lu 
no. line bus 

1 2 9 0.900 1.10p 
2 4 8 0.300 1.100 -,.-

3 10 5 0.900 1.100 
4 9 5 0.900 1.100 
5 6 7 0.900 1.100 

Bus Data -

Bus vmin vmax Initial Load 
no. p Q 

1 0.950 1.050 .0000 .0000 
1 0.900 1.100 1.500 0.450 
2 0.900 1.100 1.000 0.330 
3 0.900 1.100 2.500 0.500 
4 0.900 1.100 10.000 2.300 
5 0.900 1.100 0.000 0.000 

~ 6 0.900 1.100 1.000 0.350 
7 0.900 1.100 0.000 0.000 
8 0.900 1.100 2.500 0.700 

, -

9 0.900 1.100 1.000 0.300 
la 0.900 1.100 0.000 0.000 
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I~ 
Generation Data 

Bus pmin pmu Qmin Qmu CC/st coefficients 
no. c a b 

4 2.400 6.550 -O. 780 3.900 0.025 0.502 0.0346 
5 0.800 2.170 -0.660 1.200 0.050 0.648 0.0591 
6 0.800 2.160 -0.500 1.500 0.100 0.617 0.0903 
7 1.600 4.340 -1\ 200 2.400 0.020 0.563 0.0334 
8 1.200 3.250 -0.790 1.950 0.075 0.589 0.0395 
9 0.700 1.800 -0.680 1. 550 0.060 0.591 0.1220 

10 0.800 3.250 -0.750 2.200 0.090 0.627 0.0406 

J " ) 

3 

t2 

2 4 

Figure A7.2. One-1ine diagram of the 10 bus system. 



APPENDIX 7.3 

DATA FOR THE 30 BUS SYSTEM 

Line Data 

Line from to G Bu Bah JDIIlX 
no. 

1 6 5 O.OOOOeO -0.3333e1 .0000e-1 0.2000e1 
1 30 12 O.OOOOeO -0.7143e1 O.OOOOeO o .6500eO 
2 29 19 O.OOOOeO -0.4808e1 O.OOOOeO -0.6500eO 
3 28 24 0.1444e1 -0.4541e1 0.0214eO 0.3200eO 
4 28 21 0.628ge1 -0.2201e2 0.0045eO 0.3200eO 
5 27 26 0.1136e1 -0.4772e1 0.020geO 1.3000eO 
6 2" , , 22 0.2954e1 -0.744ge1 o .0102eO 0.7000eO 
7 '20 25 0.5225e1 -0.1565e2 0.0264eO 1.6500eO 
8 26 21 0.1686e1 -0.5116e1 0.0187eO 0.6500eO 
9 26 20 0.1706e1 -0.5197e1 o . 0184.0 O. 6~0 

10 25 23 0.1244e1 -0.5096el o .0204eO . 1.300 eO 
11 24 21 0.4363e1 -0.1546e2 0.0065eO 0.320 ,0 
12 2 /+ 1 O.OOOOeO -0.2525e1 O.OOOOeO 0.6500eO 
13 23 20 0.8195e1 -0.2353e2 0·.0042eO 1.3000eO 
14 22 21 0.3590e1 -0.1103e2 0.0085eO 1.3000eO 
15 21 20 0.6413e1 -0.2231e2 0.0045eO 0.9000eO 
16 21 19 O.OOOOeO -0.4808e1 O.OOOOeO 0.6500eO 
17 21 18 O.OOOOeO -0.179ge1 O.OOOOeO 0.3200eO 
18 20 12 O.OCOOeO -0.3906e1 O.OOOOeO 0.6500eO 
19 19 18 O.OOOOeO -0.9091e1 O.OOOOeO Q.6500eO 
20 18 17 0.4116e1 -0.1017e2 O.OOOOeO 0.3200eO 
21 18 15 0.5102e1 -0.1098e2 O. UOOOeO 0.3200eO 
22 18 14 0.261ge1 -0.5401e1 O.OOOOeO 0.3200eO 
23 18 13 o .1785e1 -0.3985e1 O.OOOOeO 0.3200eO 
24 17 16 . 0.1868e1 -0.437ge1 o .0000eO 0.1600eO 

"25 16 12 0.1952e1 -0.4104c1 O.OOOOeO 0.3200eO 
26 15 14 o . 1677e2 -0.3413e2 O.OOOOeO 0.3200eO 
27 14 6 0.2540e1 -0.3954e1 O.OOOOeO 0.1600eO 
28 13 11 0.5880e1 -0.1176e2 O.OOOOeO 0.3200eO 
29 12 9 o .1520ej -0.3173e1 O.OOOOaO 0.3200eO 
30 12 8 0.3095e1 -0.6097e1 O.OOOOeO 0.3200eO 
31 11 10 G.3076e1 -0.621ge1 O.OOOOeO 0.1600eO 
32 10 8 o .1808e1 -0.3691e1 O.OOOOeO 0.1600eO 
33 9 8 0.2491e1 -0.2251e1 O.OOOOeO 0.1600eO 
34 8 7 o .1968e1 -0.3976e1 O.OOOOeO 0.1600eO 
35 7 6 o .1461e1 -0.298ge1 O.OOOOeO 0.1600eO 
36 6 4 o . 1310e1 -0.2288e1 O.OOOOeO 0.1600eO 
37 5 4 o .1216e1 -0.1817e1 O.OOOOeO o .1600eO 

·r 38 4 1 o .196ge1 -0.3760e1 O.OOOOeO 0.1600eO 
39 3 2 0.9120eO -0.1723e1 O.OOOOeO o .1600eO 
40 3 1 0.9955eO -0.1881e1 O.OOOOeO 0.1600eO 
41 2 1 0.6875eO -0.1294e1 O.OOOOeO 0.1600eO 
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(' 
Shunt Data 

Shunt bus Broin Brou: 

lio. 
1 3 0.000 0.050 
2 6 0.000 0.050 
3 7 0.000 0.050 C 4 8 0.000 0.050 
5 12 0.000 0.050 
6 13 J 0.000 0.050 
7 15 0.000 0.050 
8 17 0.000 0.050 
9 18 0.000 0.050 

Tap Data 
, 
\, 

Tap on near 'f'Din max 
no. line bus 

1 12 24 0.900 1.100 
2 18 20 0.900, 1.100 
3 17 21 0.900 1.100 
4 16 21 0.900 1.100 

Bus Data 

Bus vmw '(1'max Initial Load 
no. p Q 

1 0.950 1.050 .0000 .0000 
1 0.950 1.050 .0000 .0000 
2 0.900 1. 050 .1060 .0190 
3 0.900 1.050 .0240 .0090 
4 0.950 1.050 .0000 .0000 
5 0.950 1.050 .0350 .0230 
6 0.950 1.050 .0870 .0670 
7 0.950 1.050 . 0320.. .0160 
8 0.950 1.050 .OB20 .0250 
9 0.950 1.050 .0620 .0160 

10 0.950 1.050 .0320 .0090 
11 0.950 1. 050 .0950 .0340 
12 0.950 1. 050 .1120 .0750 
13 0.950 1.050 .0220 .0070 
14 0.950 1. 050 .0000 .0000 
15 0.950 1.050 .1750 .1120 
16 0.950 1. 050 .0350 .0180 
17 0.950 1. 050 .0900 .0580 

(, 
18 0.950 1.050 .0580 .0200 
19 0.950 1. 050 .0000 .0000 
20 0.950 1. 050 .0760 .0160 c..' 

21 0.950 1.050 .0000 .oùoo 
22 0.950 1. 050 .2280 .1090 

j 



430 1 Bus Data (cont.) 

Bus vmin vmIU Initial Load 
no. F Q 

23 0.950 1. OSt) .0120 
24 0.950 1.050 .0000 
es 0.950 1.050 . 000 
26, 0.950 1.050 70 
27 0.950 1.050 .1900 
28 0.950 1.050 .3000 
29 0.950 1.050 .0000 
30 0.950 1.050 .0000 

( 
Generation Data 

, 
Bus pmin pmax Qmin 

, 
QI'n!lX Cost coefficients 

no. c a b 

25 0.500 2.000 -0.200 1.500 0.000 200.0 75 
26 0.200 0.800 -O.~OO 0.600 0.000 175.0 350 
27 0.150 0.500 -0 .150 0.625 0,000 100.0 1250 
28 0.100 0.350 -0.150 0.487 0.000 325.0 167 
29 0.100 0.300 -0.100 0.400 0.000 300.0 500 
30 0.120 0.400 -0.150 0.847 0.000 300.0 500 
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Figure A.7. 3. 

One-lin. diagra .. of th. 30 bus system. 



c APPENDIK 7. ft 

DATA FOR THE 118 BUS SYSTEM 

Line Oata 

Lina from to R Ku Bah 
,max 

no. 

1 118 076 0.0164000 o .05440DO 0.0135600 1. 370DO 
2 118 075 0.0145000 0.04810DO 0.01198DO 1. 370DO 
3 117 012 0.03290DO o . 14000DO 0.03580DO 1. 370DO 
4 116 068 0.00034DO 0.00405DO 0.16400DO 4.055DO 
5 115 114 0.00230DO 0.01040DO 0.00276DO 1.370DO 
6 115 027 0.01640DO o .07410DO 0.01972DO 1. 370DO 
7 114 032 0.01350DO 0.06120DO 0.01628DO 1.37000 
8 113 032 0.06150DO 0.20300DO 0.0518000 1. 370DO 
9 113 017 0.00913DO o .03010DO 0.OO768DO 1. 370DO 

10 112 110 0.02470DO 0.06400DO 0.06200DO 1. 370DO 
11 111 110 0.0220000 0.07550DO 0.0200000 1. 370DO 
12 110 109 0.02780DO 0.07620DO 0.02020DO 1.37000 
13 110 103 0.03906DO 0.18130DO 0.046l0DO 1.370DO 
14 109 108 0.01050DO o .02880DO 0.00760DO 1. 370DO 
15 108 105 0.02610DO O.07030DO O.01844DO 1. 37000 
16 107 106 0.05300DO 0.18300DO O.04720DO 1. 370DO , 
17 107 105 0.05300DO 0.18300DO O.04720DO 1. 370DO 
18 106 105 0.01400DO 0.05470DO 0.01434DO 1.370DO 
19 106 100 0.06050DO 0.22900DO 0.06200DO 1. 37000 
20 105 104 0.00994DO 0.03780DO 0.00986DO 1.370DO 
21 105 103 o .05350DO 0.16250DO 0.04080DO 1.370DO 
22 104 103 0.04660DO 0.15840DO 0.04070DO 1. 370DO 
23, 104 100 0.045l0DO 0.20400DO 0.05410DO 1.370DO 
24 103 100 0.01600DO 0.05250DO 0.05360DO 2.055DO 
25 102 101 0.02460DO 0.11200DO 0.02940DO 1. 370DO 
26 102 092 0.01230DO 0.0559000 0.01464DO 1. 370DO 
27 101 100 0.02770DO o . 12620DO o .03280DO 1. 370DO 

\ 
2a 100 099 0.01aOODO 0.08130DO 0.02160DO 1.370DO 
29 100 098 0.03970DO 0.1790000 0.0476000 l .37000 
30 100 094 0.01780DO 0.05800DO 0.0604000 2.05500 
31 100 092 0.0648000 0.29500DO 0.07720DO 1. 370DO 
32 099 080 0.04540DO 0.20600DO 0.0546000 1. 370DO 
33 098 080 0.0238000 0.10800DO 0.0286000 1. 37000 
34 097 096 0.01730DO 0.08850DO o .02400DO 1 :'370DO 
35 097 080 0.01830DO 0.09340DO 0.0254000 1. 370DO 
36 096 095 0.017l0DO 0.0547000 0.0147400 1. 370DO 
37 096 094 0.0269000 0.08690DO 0.0230000 4.055DO 
38 096 082 0.01620DO 0.05300DO 0.05440DO 1. 370DO 

tr 39 096 OBO 0.03560DO 0.18200DO 0.04940DO 1. 370DO 
40 095 094 0.01320DO 0.04340DO 0.01l10DO 1. 370DO 

..... ,.. 41 094 093 0.02230DO 0.07320DO 0.01876DO 1. 370DO 
42 09'. 092 0.04810DO 0.lS800DO 0.0406000 1.370nO 
43 093 092 0.02580DO 0.084BOnO o .02180DO 1. 370nO 
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• Line Oata (cont:) 

Line from to R Xse Bsh 
JID&X \ 

\ 
no. 

44 092 091 0.0387000 0.1272000 0.0326800 1. 37000 
45 092 089 0.0079900 0.0382900 0.0962000 1. 37000 
46 091 090 0.0254000 0.0836000 0.0214000 1.37000 
47 090 089 0.01638DO 0.0651700 0.1588000 1. 37000 
48 089 088 0.01390DO 0.0712000 0.0193400 1. 37000 
49 089 085 0.0239000 0.1730000 0.04700DO 1.37000 
50 088 085 0.02000DO 0.1020000 0.0276000 1.37000 
51 087 086 O.OOOOODO 0.2074000 O.OOOOODO 2.15000 
52 086 085 0.03500DO 0.1230000 0.0276000 1. 37000 
53 085 084 0.0302QDO 0.0641000 0.0123400 1. 37000 
54 085 083 0.0430àDo 0.1480000 0.0348000 1. 37000 
55 084 083 0.0625000 0.1320000 0.0258000 1. 37000 
56 083 082 0.0112000 0.0366500 0.0379600 1. 37000 
57 082 077 0.02980DO 0.0853000 0.0817400 1. 370DO 
58 081 080 O.OOOOODO 0.0370000 0.0000000 4.22500 
59 081 068 0.0017500 0.0202000 0.80800DO 2.01500 
60 080 079 0.01560DO 0.0704000 0.0187000 1.37000 
61 080 077 0.0108800 0.0332100 0.0700000 2.05500 
&2 079 078 0.0054600 0.0244000 0.0064800 1. 37000 
63 078 077 0.0037600 0.0124000 0.0126400 1. 37000 
64 077 076 0.0444000 0.1480000 0.0368000 1. 37000 
65 077 075 0.0601000 0.1999000 0.0497800 1.37000 
66 077 069 0.0309000 0.1010000 0.1038000 1.37000 
67 075 074 0.0123000 0.0406000 0.0103400 1. 37000 
68 075 070 0.0428000 0.1410000 0.0360000 1. 37000 
G9 075 069 0.04050DO 0.1220000 0.1~40000 1. 370DO 
70 074 070 0.0401000 0.1323000 0.0336800 1. 37000 
71 073 071 0.0086600 0.0454000 0.0117800 1.37000 
72 072 071 0.04460DO 0.1800000 0.0444400 1.37000 
73 072 024 0.048800p 0.1960000 0.0488000 1. 37000 
74 071 070 0.0088200 0.0355000 0.0087800 1.37000 
75 070 069 0.0300000 0.1270000 0.1220000 1. 37000 
76 070 024 0.1022100 0.4115000 0.1019800 1. 37000 
77 069 068 0.0000000 0.0370000 0.0000000 6.22500 
78 069 049 0.0985000 0.32400DO 0.0828000 1.37000 
79 069 047 0.0844000 0.2778000 0.0709200 1. 37000 
80 068 065 0.0013800 0.0160000 0.6380000 4.15000 
81 067 066 0.0224000 0.1015000 0.0268200 1. 37000 
82 067 062 0.0258000 0.1170000 0.0310000 1.37000 
83 066 065 0.0000000 0.0370000 0.0000000 6.22500 
84 066 062 0.04820DO 0.2180000 0.0578000 1,37000 • 

Y 85 066 049 0.0090"000 0.a459500 0.0496000 2.05500 
B6 065 064 0.0026900 0.0302000 0.3800000 6.22500 
B7 065 038 0.0090100 0.0986000 1.0460000 2.05500 

(, 
BB 064 063 0.0017200 0.0200000 0.2160000 4.15000 
B9 064 061 0.0000000 0.0268000 0.0000000 6.22500 
90 063 059 0.0000000 0.0386000 0.0000000 2.05500 
91 062 061 0.0082400 0.0376000 0.0098000 2.05500 
92 062 060 0.01230DO 0.0561000 0.0146800 1.3iooo 



434 • Lina Data (cont.) 

Lina from to R Xu Bah .FU: 
no. 

93 061 060 O.00264DO O.01350DO 0.01456DO 1.370DO 
94 061 059 0.03280DO O.lS000DO 0.03880DO 1. 370DO 

,95 06'0 059 0.03170DO O.14500DO 0.03760DO 1. 370DO 
96 059 056 0.04070DO 0.12243DO 0.1105000 1.370DO 
97 059 055 0.04739DO 0.21580DO 0.0564600 1.370DO 
98 059 054 0.05030DO 0.22930DO 0.0598000 1.370DO 
99 058 056 0.03430DO 0.09660DO 0.0242000 1. 370DO 

100 058 051 0.02550DO 0.07190DO 0.0178800 1.370DO 
101 057 056 0.03430DO 0.09660DO 0.0242000 1. 370DO 
102 057 050 0.04740DO 0.13400DO 0.03320DO 1.370DO 
103 056 055 0.00488DO 0.01510DO 0.00374DO 1. 370DO 
104 056 054 0-.00275DO 0.00955DO 0.00732DO 2.055DO 
105 055 054 0.01690DO 0.07070DO 0.02020DO 1. 370DO 
106 054 053 o .02630DO 0.12200DO 0.03100DO 1. 370DQ 
107 054 049 0.03993DO 0.14507DO 0.14680DO 2.055DO 
108 053 052 0.04050DO 0.16350DO 0.04058DO 1.370DO 
[09 052 051 0.02030DO 0.05880DO 0.01396DO 1. 370DO 
110 051 049 O.04860DO 0.13700DO O.03420DO 1. 370DO 
111 050 049 O.02670DO 0.07520DO 0.01874DO 1. 370DO 
112 049 048 0.01790DO 0.05050DO 0.01258DO 1. 370DO 
113 049 047 O.01910DO 0.06250DO O.01604DO 1. 370DO 
114 049 045 0.06840DO O.lB600DO 0.04440DO 1. 370DO 
115 049 0/.2 0.03575DO 0.16150DO 0.17200DO 1. 370DO 
116 048 046 0.06010DO 0.lB900DO 0.04720DO 1. 370DO 
117 047 046 0.03800DO 0.12700DO 0.0316000 1. 370DO 
118 046 045 0.04000DO 0.13560DO 0.03320DO 1. 370DO 
119 045 044 0.02240DO 0.09010DO 0.02240DO 1. 370DO 
120 044 043 0.06080DO 0.24540DO 0.06068DO 1. 37000 
121' 043 034 0.04130DO 0.1681000 0.04226DO '2.055DO 
122 042 041 0.04100DO 0.13500DO 0.0344000 1. 370DO 
123 042 040 0.05550DO 0.18300DO 0.04660DO 1.37000 
124 041 040 0.01450DO 0.04870DO 0.01222DO 2.055DO 
125 040 039 0.01840DO 0.06050DO 0.01552DO 2.05500 
126 040 037 0.05930DO 0.16800DO 0.0420000 1. 370DO 
127 039 037 0.03210DO 0.10600DO 0.02700DO 1. 370DO 
128 038 037 O.OOOOODO 0.03750DO O.OOOOODO 4.150DO 
129 038 030 0.00464DO 0.05400DO 0.42200DO 6.225DO 
130 037 035 D.OHOODO 0.0/+970DO 0.01318DO 1. 370DO 
131 037 034 0.00256DO 0.00940DO. 0.00984DO 2.05500 
132 037 033 0.04150DO 0.14200DO 0.03660DO 1. 37000 
133 036 035 0.00224DO 0.01020DO 0.00268DO 1. 370DO 
134 036 034 0.00871DO 0.026BODO 0.00568DO 1. 370DO 
135 034 019 0.07520DO 0.2470000 o .06320DO 1.370DO 
136 033 015 0.03800DO 0.12440DO 0.03194DO 1. 370DO 

I~ 137 032 031 O.02980DO 0.09850DO 0.02510DO 1. 370DO 
q< 138 032 027' 0.02290DO 0.07550DO 0.01926DO 1. 370DO 

---- 139 032 023 0.03170DO 0.11530DO o . 11730DO 1. 370DO / 

140 031 029 0.OlO80DO O.O? '1000 0.00830DO 1. 370DO 
141 031 017 0.04740DO 0.15630DO 0.03990DO 1. 37000 
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• Line Oata (cont.) 

Line from ta R Xsa Bah .max 
no. 

142 030 026 0.00799DO 0.0860000 0.90800DO 6.22500 
143 030 017 O.OOOOODO 0.0388000 0.96000DO 4.22500 
144 030 OOB 0.00431DO 0.0504000 o . 51400DO 6.22500 
145 029 028 0.02370DO 0.09'43000 0.02380DO 1. 37000 
146 028 027 0.01913DO 0.0855000 0.02160DO 1. 37000 
147 027 025 0.0318000 0.1630000 o .17640DO 1.37000 
148 026 025 O.OOOOODO 0.0382000 O.OOOOODO 8.00000 
149 025 023 0.0156000 0.0800000 0.0864000 2.05500 
150 024 023 0.0135000 0.04920DO 0.04980DO 1. :370DO 
151 023 022 0.0342000 0.15900DO 0.04040DO 1.37000 
152 022 021 0.0209000 0.09700DO 0.02460DO 1.37000 
153 021 020 0.0183000 0.08490DO 0.02160DO 1. 37000 
154 020 019 0.0252000 0.1170000 0.02980DO 1.37000 
155 019 018 0.0111900 0.0493000 0.0114200 1. 370DO 
156 019 015 0.01200DO 0.0394000 0.0101000 1.37000 
157 018 017 0.0123000 0.05050DO 0.01298DO 2.055DO 
158 017 016 0.0454000 0.1801000 0.0466000 1. 37000 
159 017 015 0.0132000 0.0437000 0.0444000 1. 370DO 
160 016 012 0.0212000 0.08340DO 0.0214000 1. 370DO 
161 015 014 0.05950DO 0.1950000 0.0502000 1. 37000 
162 015 013 0.07440DO 0.2444000 0.0626800 1.37000 
163 014 012 0.0215000 0.0707000 0.0181600 1. 37000 
164 013 OU 0.02225DO 0.07310DO 0.01876DO 1.370DO 
165 012 011 0.0059500 0.01960DO 0.0050200 1. 370DO 
166 012 007 0.0086200 0.0340000 0.00874DO 1.37000 
167 012 003 0.0484000 0.1600000 0.0406000 1. 37000 
168 012 002 0.0187000 0.0616000 0.0157200 1. 37000 
169 011 005 0.0203000 0.0682000 0.0173800 1. 37000 
170 011 004 0.0209000 0.06880DO 0.01748DO 1. 370DO 
171 010 009 0.00258DO 0.03220DO 1.23000DO 6.225DO 
172 009 008 0.00244DO 0.03050DO 1.16200DO 6.225DO 
173 008 005 0.0000000 0.0267000 O.OOOOODO 6.22500 
174 007 006 0.0045900 0.0208000 0.0055000 1. 370DO 
175 006 005 0.0119000 0.0540000 0.0142600 1. 370DO 
176 005 004 0.0017600 0.OO798DO O.00210DO 2.055DO 
177 005 003 0.02410nO 0.10800nO 0.0284000 1. 37000 
178 003 001 ~ O. 01290DO 0.0424000 0.01082DO 1. 370DO 
179 002 001 0.03030DO 0.0999000 0.0254000 1. 37000 

( 



436 a Shunt Da~f - --,' "-.-' ' 
Shunt bus smin smu 
no. 

l 005 0.000 , . 0.050 --r' 

2 037 0.000 0.050 
3 044 0.000 0.050 
4 045 0.000 0.050 fi 

5 048 0.000 0.050 
6 079 0.000 0.050 
7 082 0.000 0.050 
8 083 0.000 0.050 
9 110 0.000 0.050 

Tap Data 

Tap on near rrmin rrmax 

no. Une bus 

1 51 86 0.600 1.200 
2 58 81 0.800 1.200 ~ 

3 83 65 0.800 1.200 
, 1 4 89 64 0.800 1.200 " 5 90 63 0.800 1.200 , 

6 143 30 0.800 1.200 
7 148 26 0.800 1.200 
8 173 8 0.800 1.200 

Phase Shifter Data ' ' 

Sh. on near Smin Smax 
no. line bus 

: 
1 77 68 -0.524 0.524 
2 128 38 -0.524 '0.524 

è1 0 

" 
-

t 
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(, Bus Data 

Bus vmin vmax Init!.a1 Load 
no. F Q 

'" 
1 0.950 1. 050 0.5100 0.2700 
2 0.950 1. 050 0.2000 0.0900 
3 0.950 1.050 0.3900 0.1000 
4- 0.950 1. 050 0.3900 0.1200 
5 0.950 1.100 0.0000 0.0000 ., 

6 0.950 1.050 0.5200 0.2200 
7 0.950 1.050 0.1900 0.0200 
8 0.950 1. 050 0.2800 0.0000 
9 0.950 ' 1.100 0.0000 0.0000 

10 0.950 1. 050 0.0000 0.0000 
11 0.950 1.050 0.7000 0.2300 
12 0.950 L050 0.4700 0.1000 
13 0.950 1. 050 0.3400 0.1600 
14 0.950 1.050 0.1400 0.0100 
15 0.950 1.050 0.9000 0.3000 
16 0.950 1. 050 0.2500 0.1000 
17 0.950 1.100 0.1100 0.0300 
18 0.950 1.050 0.6000 0.3400 
19 0.950 1.050 o .t.500 0.2500 
20 0.950 1.050 0.1800 0.0300 
21 0.950 1.050 0.1400 0.0800 
22 0.950 1. 050 0.1000 0.0500 
23 0.950 1.050 0.0700 0.0300 
24 0.950 1.050 0.l300 0.0000 

" 25 0.950" 1.050 0 .. 0000 0.0000 
26 0.950 1.050 0.0000 0.0000 

, ·27 0.950 1.050 0.7100 0.1300 
28 0.950 1.050 0.1700 0.0700 
29 0.950 1.050 0.2'.00 0.0400 
30 0.950 1.100 O. 0000 0.0000 
31 0.950 1.050 0.3600 0.2700 
32 0.950 1.050 0.5900 .0.2300 ) 
33 0.950 1.050 0.2300 0.0900 
34 0.950 1.050 0.5900 0.2600 
35 0.950 1.050 0.3300 0.0900 
36 0.950 1.050 0.3100 0.1700 
·37 0.950 1.100 0.0000 0.0000 
38 0.950 1.100 0.0000 0.0000 
19 0.950 l 050 0.2700 0.1100 
40 0.950 1.050 0.6600 0.2300 
41 0.950 1 050 O. ~700 0.1000 
42 0.950 J . 050 0.9600 0.2300 
43 0.950 1.050 0.1000 0.0700 

,44 0.950 1. 050 0.1600 0.0800 

(~. 
45 0.950 1.050 0.5300 0.2200 
46 0.950 1.050 0.0900 0.1000 
47 O.9~O 1. 050 0.3'100 0.0000 
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1 Bus Data (cont. ) 

Bus vmtn VOu Initial Load 
no. p Q 

48 0.950 1.050 0.2000 0.1100 
49 0.950 1.050 0.8700 0.3000 
50 0.950 1.050 0.1700 0.0400 
51 0.950 1.050 0.1700 O. 0800 
52 0.950 1.050 0.1800 O. 0500 
53 0.950 1.050 0.2300 0.1100 

l 54 0.950 1.050 1.1300 0.3200 
55 0.950 1.050 0.6300 0.2200 ,') 56 0.950 1.050 0.8400 0.1800 
57 0.950 1.050 0.1200 0.0300 
58 0.950 1.050 0.1200 0.0300 
59 0.950 1.050 2.7700 1.1300 
60 0.950 1.050 0.7800 0.0300 .". 

61 0.950 1.050 0.0000 0.0000 
62 0.950 1.050 0.7700 0.1400 

/ 63 0.950 1.050 0.0000 0.0000 
64 0.950 1.050 0.0000 0.0000 
65 0.950 1 .. 100 0.0000 0.0000 ) 
66 0.950 1.050 0.3900 0.1800 ~, -r 
67 0.950 1.050 0.2 '00 0.0700 
68 0.950 1.100 0.0000 0.0000 
69 0.950 1.050 O. 0000 0.0000 , 
70 0.950 1.050 0.6600 0.2000 
71 0.950 1.050 0.0000 0.0000 -" 
72 0.950 1.050 0.1200 • 0.0000 
73 0.950 1.050 0.0600 0.0000 
74 0.950 1.050 0.6800 0.2700 
75 0.950 1.0:;0 0.4700 0.1100 ~ 

76 0.950 1.050 0.6800 0.3600 
77 0.950 1.050 0.6100 0.2800 

1 78 0.950 1.050 0.7100 0.2600 
79 0.950 1.050 0.3900 0.3200 
80 0.950 1.050 1. 3000 oc. 2600 
&1 0.950 1.100 0.0000 0.0000 
82 0.950 l.050 0.')400 0.2700 
83 0.950 1. 050 0.2000 0.1000 
84 0.950 1.050 0.1100 0.0700 .. 
85 0.950 1.050 0.2400 0.1500 
86 0.950 1.100 0.2100 0.1000 
87 0.950 1.050 0.0000 0.0000 
88 0.950 l.050 0.4800 0.1000, 
89 0.950 1. 050 0.0000 0.0000 
90 0.950 1.100 1.6300 0.lt200 
91 0.900 1.050 0.1000 0.0000 - 92 0.950 1.050 0.6500 0.1000 
93 0.950 1. 050 0.1200 0.0700 
94 0.950 1. 050 0.3000 0.1600 



439 .' Bus Data (cont.) 

Bus vmin vmax Initial Load 
no. p Q 

95 0.950 1.050 0.4200 0.3100 
96 0.9':'0 1.050 0.3800 0.1500 
97 0.950 1.050 0.1500 0.0900 
98 0.950 1.050 0.3400 0.0800 
99 0.950 1.050 0.4200 0.0000 

100 0.950 1.0S0 0.3700 0.1800 
101 0.950 1.050 0.2200 0.1500 
102 0.950 1.050 0.0500 0.0300 
103 0.950 1.050 0.2300 0.1600 
104 0.950 1.050 0.3800 0.2500 
105 0.950 1.050 0.3100 0.2600 
106 0.950 1. OSO 0.4300 0.1600 / 

107 0.950 1.050 0.5000 0.1200 
lOB 0.950 1.050 0.0200 0.0100 
109 0.950 1 050 0.0800 0.0300 
110 0.950 1. 050 0.3900 0.3000 '\. 

111 0.950 1.050 0.0000 0.0000 
112 0.950 1.050 0.6800 0.1300 
113 0.950 1.100 0.0600 0.0000 
114 0.950 1.050 0.0800 0.0300-
115 0.950 1.050 0.2200 0.0700 
116 0.950 1.100 1.8400 0.0000 
117 0.950 1.050 0.2000 0.0800 
118 0.950 1.050 0.3300 0.1000 , 

Generation Data 

Bus pmin pmax Qmin Qmax Gost coefficients 
no. c a b 

1 0.700 1. 800 -0.230 1.150 0.000 60.73 127.7 
4 0.800 2.170 -0.400 1.200 0.000 '+8.90 78.60 
6 o 400 1. 080 -99l-9 0.750 0.000 69.60 195.6 
8 O.~OO 2.170 - 3.500 2.200 0.000 77.30 68.00 

10 1.600 4.340 /9.999 9.999 0.000 50.19 45.97' 
12 0./+00 1. 080 -0 .150 0.750 0.,000 80.30 193.2 
15 0.300 0.720 - 0.800 O. /~OO 0.000 151. 3 120.4 
18 0.300 0.720 -0.600 1. 'tOO 0.000 151. 3 120.4 
19 O. 't00 1.080 -0 .150 0.750 0.000 136.7 124.6 
24 0.300 0.720 -0. 1.00 ? . '+00 0.000 151. 3 120.ft 
25 0.800 2.170 -2.2'.0 7.000 0.000 39.1.0 78.40 
26 1.200 3.240 -6.000 2.250 0.000 63.85 69.99 
2i 0.300 0.1').0 -0.080 O. '.00 0.000 151. 3 120.4 
31 0.300 0.720 -0.150 o . 'taO 0.000 151. 3 120.4 

( 32 0.300 0.720 -0.200 0.400 0.000 151. 3 120.4 
34 0.400 1. 080 -0.400 0.750 0.000 136.7 124.6 
36 O. 'tOO 1. 080 -999.9 999.9 0.000 67.50 206.6 
40 0.300 0.720 -999.9 999.9 0.000 151. 3 120.1. 

\ 
l' 
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(cont. ) 

Bus pmin pmu Qmin Qmax Co st coefficients 
no. c a b 

4: 0.4pO 1.080 -999.9 999.9 0.000 136.7 124.>6 
46 0.300 0.720 -0.080 0.400 0.000 151. 3 120.4 
49 0.800 2.170 -0.240 1.200 0.000 77 .30 68.00 ! 

() 54 0.300 0.720 -08.00 0.400 0.000 151. 3 120.4 
55 0.400 1.080 -0.150 0.750 0.000 80.30 193.2 
56 0.300 0.720 -0.080 0.400 0.000 151. 3 120.4 
59 0.400 1.080 -0.850 2.000 0.000 67.80 154.6 
61 0.400 1.080 -1. 650 0.750 0.000 67.80 154.6 
62 0.400 1.080 -0.150 0.750 0.000 63.60 201. 6 
65 0.800 2.160 -8.000 1.500 0.000 46.33 104.1 
66 1.200 3.240 -0.450 6.000 0.000 42.13 72.93 
69 1.600 4.340 -9.999 9.999 0.000 59.97 39.85 
70 0.300 0.720 -999.9 999.9 0.000 151. 3 120.4 , 
72 0.300 0.720 -0.080 0.400 0.000 151. 3 120.4 
73 0.300 0.720 -9'.999 9.999 0.000 151. 3 120.4 
74 0.400 1.080 -0.150 

1 

0.,750 0.000 80.30 193.2 
76 0.400 1.080 -0.150 0.750 0.000 80.30 193.2 
77 0.300 0.720 -0.400 0.400 0.000 151.3 120.4 
80 1.200 3.250 -999.9 999.9 0.000 31. 4'9 76.87 
85 0.'.00 1.080 -0.150 0.750 o.noo 67.80 154.6 
87 0.400 1.080 -999.9 999.9 0.000 80.30 193.2 
89 1.200 2.250 -0.450 2.200 0.000 58.13 71.76 
90 0.800 2.170 -99.99 99.99 0.000 48.90 78.60 
91 0.300 0.720 -999.9 999.9 0.000 151. 3 120.4 
92 0.400 1.080 -9.999 9.999 0.000 136.7 124.6 
99 0.300 0.720 ,-0.080 0.400 0.000 151. 3 120.4 

100 1.600 4.340 -0.480 2.'.00 0.000 28.20 46.20 
103 1.600 4.340 -0.480 2.400 0.000 36.82 45.98 
104 0.400 1.080 -999.9 999.9 0.000 136.7 124.6 
105 0.400 1.080 -0.150 0.750 0.000 136.7 124.6 
107 0.400 1.080 -0.150 0.750 0.000 67.80 154.6 

o , 
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( 
Figure A7.4. One-line diagram of the 118 bps system. 
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APPENDIX 7.5 

THE LINK BETWEEN SYSTEM SPARSITY AND THE SUBPROBLEM ILL-CONDITIONING 

We studied the mechanism of computation of" the sensitivity coefficients, 

to show that sparsity and the decouplod nature of the load flow equations 

result in the very small sensitivity coefficients, and not system size per se. 

Their computation from elements of the load flow Jacobian, given in Appendix 

3.2, requires ~he solution of a sparse matrix - sparse vector system of linear 

equations Ax=b. Fig. A7.5. a. to c. show an example of the nonzero pattern of 

_~~ sparse 186 dimensional matrix in the 118 bus test, and the nonzero 

~patterns of its upper and lower triangu1ar factors computed using subroutine 

2i-~j/ :::ab::S t::iC:a:::l so~~r::g~:~ of ::e:::::::e:nt: ::y :maf:lcetror:ri::::::: 

/' ",,,- factors. A b h Il b 1 i 1 d 1 d \ scan e seen, t ere are many sma ut re at ve y ecoup e groups 

of variables. Various right-hand-sides are solved for, corresponding to the 

different constraints. These hold anywhere from 2 to 12 nonzero values. 

In the fOrY'ard substitution step Ly=b, the few nonzeros in b, denoted 

bk , are sure to crea te nonzero Yk in y. Then they propagate to subsequent 

variables (i.e. Yk+i ls nonzero'if the nonzero Yk is part of its computation). 

However, due to the fine segmentation of L, few new nonzeros are actually 

created. 

Beacause of the sparslty patterns of Land U, the x vector fills up with 

nonzeros in the backward ~ubstitution Ux~y. In the forward substitution, the 

larger number of nonzeros at the bottom of L attracts nonzeros in the last 

y's. They in turn create nonzeros in the bottom x's. The larger number of 

nonzeros along the right border of U allow those nonzeros of the bottom x' s to 

propagate almost everywhere. 

Our key observation is the following: it seems that by construction, most 

often the Yk (corro:Jponding to the nonzero bk ) are very small. The derived 

nonzero Yk+i are also very amall, because they are computed as the sum of a 

small number of proviously computed small values. Only, 'a few large Yk are , 
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computed, cort'esponding to independent variables in the' neighborhood of the 

dependent variable being modelled. 1 Their influence is usually limited however 

because they do not propagate far. Then the small nonzero values are 

transfered to the computation of x in much the same way as described for the 

y. above. 

In summary, when the few Yk in the intermediate solution vector y 

corresponding to the nonzeros in the right-hand-side b vector are very small, 

these small values propagate to the solution vector x. 

sparse structures of the A matrix and of the b vector . 
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This is due to the 
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Figure A7.S.a. Nonzero structure of the A matrix. 
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Figure A7. 5 b. Nonzero structure of the lower triangular fac tor L 
of the A ma trix. 
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Figure A7.5.cv Nonzero structure of the upper triangular factor U 
of the A matrix. 


