
Distortion Free Compression of Musical Scores

by
William James McCausland

A Thesis submitted !O the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the De~ of Master of Engineering

Department of ElecttitaJ Engineering
McGiII University, Mon~al, Canada

September. 1991

@ William McCausland, 1991

ft

Abstract

Music notation repn:sents what a composer creues. This research is concerned with

the problem of compression, without distortion, of complete scores of musical pieces.

The musical score source has many inleresting characteristics which set il apan from

C)f.1ler infonnation source~. for example, it is a collection of parallel 'pans'; the durations

of symbols (notes) arc variable; and the transitions belween DOleS in different pans need

not be simultaneous. These distinguishing fea~s are discussed and incorporatcd into

the procedure described in this work. The resean;h consists of ~ pans. The tirst is the

design of a representation system allowing musical scores 10 he stored on digital media.

The second is the development of a simple music editor and the compilation of IWO

pieces of music. The third is the design and implementation of a compression algorithm.

Significantly higher compression ratios are achieved using the designed algorithm vis-à

vis those achieved using a standard general data compression algorithm.

ü

Résumé

La notation musicale représente la création d'un compositeur. Cette recherche s'inté

resse au problème du compactage sans distorsion des panitions musicales. Une partition

est un source' de données ayant plusieurs caractéristiques intéressantes qui la distingue

des autres sources d'infonnation; c'est par exenple un assemblage de parties en paral

lèle; la durée des symboles (des notes) est variable; et les transitions entre les notes parmi

les différentes parties ne doivent pas être simultanées. Cette recherche se compose de

trois parties. La première est la conception d'ua. :'-~I\tème numérique de représentation de

données. La deuxième est le développement d'un éditeur de musique simple, et le ras

semblement de deux oeuvres musicales. La troisième est la cmttion d'un algorithme de

compactage. Des taux de compactage nettement p!us élevés sont obtenus en utilisant l'al

gorithme proposé, en comparaison à un algorithme standard de compactage.

ili

2

Acknowledgements

1 thank my supervisors, Dr. Harry Leib and Dr. Salvatore D. Morgera, for their guid

ance, advice, and helpful suggestions.

1 am very grateful to the Natural Sciences and Engineering ReSt'MCh Council for two

postgraduare scholarships and to the Information Networks and Sysl~!rm Laboratory

(lNSL) for the invaluable use of equipmcnt.

1 greatly appreciate the contact 1 had with other students at INSL. ,1 am especially

gratefu) for help and interest given by Salvatore Torrente and Ronny Qi1esnel.

iv

---------------------------------.. ~ ,
Table of Contents

Abstract .. " ii
Résumé ... iii
Acknowledgetnents .. iv
Table of Contents ... v
Ust of Figures .. vi
Ust of Tables .. vili
Olapter 1: Introduction " ... 1
Olapter 2: Representation ... 4

2.1 Music Re!>resentation .. 4
2.2 Music as a Collection ofParallel Sources ... 9
2.3 A Chamcler String Description for Rhythm. .. 10
2.4 Evidence forTree Structure ... 13
2.5 Rhythm Grammar Trees ... 15
2.6 A Music kepresentation System .. 23

Olapter 3: Compression ... , 28
3.1 Br.sic Compression Algorithms .. 28
3.2 Compression of RhythIDic Data ... 39
3.3 Compression of Pitch Dala ... 47
3.4 Compression of C>ther Data " ... 50

Olapter 4: Experil1lents and Results , ... 51
4.1 The Pieces COmpressed .. 51
4.2 Files Generated by Editor, and the . melody File of Contour Inforrnaùon 53
4.3 Compressed Files Generated by the String Substitution Aigorithm 56
4.4 Compressed Files Generated by the Music Compression Aigorithm 57
4.5 A Summary of the Results .. 57

(11apter 5: Conclusions ... 62
5.1 The Music Representation System ... 62
5.2 Rhythm Compression ... 63
5.3 Pitch Compression .. 64
5.4 Compression of Other Data .. 65

Appendix A: Music Notation .. 66
Appendix B: A Rhythm Grammar .. 74
Appendix C: A Music Editor .. 78
References ... 84

v

..

List of Figures

Figure 2. 1: Character String Descriptions of Various Rhythms 13
Figure 2.2: The Trec Structure of Beams .. 14
Figure 2.3: The Trec Structure of Note Duranons ... 15
Figure 2.4: An EX8IIlple .. 23
Figure 2.5: The PIECE Structure ... 24
Figure; 2.6: The PAGE sttucture ... 25
Figure 2.7: The SYSTEM structure .. 25
Figure 2.8: The TREE sttucture .. 26
Figure 2.9: The STEM sttuctu.""e .. 27
Figure 2.10: The NOTE structure .. 27
Figure 3.1: A Binary Tree for a Tree C.ode ... 31
Figur\! 3.2: Encoder ()peration .. 31
Figure 3.3: I)ecoder ()peration ... 32
Figw-e 3.4: Symbol Probabi1ities .. 33
Figure 3.5: Building a Tree for a Huffman Code .. 34
Figure 3.6: The Rhythm Compression Algorithm40
Figure 3.7: A Simple Ilerivation Tree ... 43
Figure 3.8: Three Blind Mice .. 48
Figure 3.9: The PiLCh Compression Algorithm ... 49
Figure 3.10: Contour Symbols .. 50
FiguJ'C 4.1: Unsupportt'd Rhythms .. 53
Figure 4.2: File Sizes in the Representations of Spring Rhythm Data 58
FiguJ'C 4.3: File Sizes in the Representation of HAYDN Rhythm Oata 59
Figure 4.4: File Sizes in the Representation of Spring Pitch Oata 60
Figure 4.5: File Sizes in the Representation of HAYDN Pitch Data 61
Figure A.1: Note-heads, Stems, and Fllgs .. 66
Figure A.2: Rests ... 67
Figuœ A.3: Beams .. 67
Figure A.4: The TJ'ClllOlo Bar .. 68
Figure A.5: I)ots and Ties ... 68
Figure A.6: Triplets ... 69
Figure A.7: Grace Notes ... (:1}

Figure A.8: The Staff .. (:1}

Figure A.9: Clefs ... 70
FiguJ'C A.I0: Accidentais and KeySignatures ... 70
Figure A.11: TilDe Signatures ... 71
Figure A.12: Organisation of Staves ... 72
Figure A.13: Auxiliary Symbo~s ... 73
Figure C.1: The Dialogue Window ... 78
Figure C.2: The File Window .. 79

f
Figure C.3: The Index Window .. 80
Figure C.4: The Music Window .. 81

\

vi

.
~
~
" ,

Fi~ C.S: The Note Window .. 82
Fi~ C.6: The Auxiliary Window .. 83

vü

f

List of Tables

Table 2.1' Noce Prefixes used in the Character String Description of Rhythm Il
Table 2.2: Tokens Representing Time Signatures .. 16
Table 2.3: Tokens Representing Note-stems and Rests .. 16
Table 2.4: Natures Describing Note-stems and Rests .. 17
Table 2.5: Examples ofTime Signature Rul\!s .. 18
Table 2.6: Tinx: Signature Rule Types ... 18
Table 2.7: TilDt Division Rule Types .. , 19
Table 2.8: Examplc:s of Rule Types Rule 1: 1 and Rule 1: 1 : 1 ..•••....... 19
Table 2.Y: Examples of Rule Types Rule3: 1, Rule7: 1, Rule1: 3 and Rule1: 719
Table 2.10: Examples of the Rule Type Ru l el: 2 : 1 •••••••..••••.•..... 2 0
Table 2.11: Examples of the Rule Types Rule2 : 1 and Rule 1 : 2•..• 20
Table 2.12: Examples of the Rule Types Rule2B: 1 and Rulel : 2B .•.•..•.• 20
Table 2.13: Examples of Rule Types Rule2: 3: 1 and Rule3: 1 : 2 ..•...•... 20
Table 2.14: Examples of the Rule Type RuleTerminal •••••.••••.••.•.. 21
Table 2.15: Examples of the Rule Type RuleAugment •....•.•...•••..•. 21
Table 2.16: Examples of the Rwe Type Ru l eBeamed •••••••••••••• . • • •• 21
Table 3.1: A NaIve Code .. 30
Table 3.2: A Trec Code ... 31
Table 3.3: A Summary of the Generatcd Huffman Code .. 3S
Table 3.4: Operation of String Substitution Algorithm .. 39
Table 4.1: Files Generated by the Editor, and the * • melody Contour File 56
Table 4.2: Files Generated by String Substitution Algorithm ... 56
Table 4.3: Files Generated by the Music Compression Algorithm 57

viil

Chapter 1: Introduction

This thesis concems the distonion-tTee compression of musical scores.

Distonion-free data compression is the translauOl' of one representation of a body of

data into another more compact representation, from w hic'h the original representauon

can he restored. Compression is useful because storage space in digital media and the

capacity of communication channels are limited. Examples of data which are cmnmonly

compressed are text. SOUf1'."t code, object code, and numerical data.

Musical scores represent what a composer creates. They contain instructions to

musicians describing what to play. This thesis does not involve either the optical image

of a printed ~';()re, which incorporates the creative input of an engraver, or the audio

recording of a piece of mus. ~. which incorporates the creative input of performing musi

cians. AIl il is concemed with are the symbols of music notation, and their positions, both

of which can be represented as computer data. The distortion-free compression of these

data is the subject of this thesis.

Although an attempt was made to make this thesis more accessible by including an

appendix on music notation, the subject is quite specialised, and a background in music

notation would he an asset to the J't!ader.

By investigating the compression of musical score!>, one can gain insight into the

redundancies present in music notation and in music itself.

Relevant previous work cornes from diverse sources. References [1] through [7]

describe attempts to represent musical scores as computer data. These references are

briefty discussed in Section 2.1. Reference [8] is a manual for the two utilities lex and

yacc, which were used to construct a lexical analyser and parser, re~pectively. Refer

ences [9] through [14] dea1 with data compression. These references describe :.he stand

ard data compression algorithms that were used in this research. The algorithms are

described and discussed in section 3.1. Refeœnces [15] through [17] describe the concept

1

1

(

---------------------.
of melodic contour and argue for its imponance. Melodie contour and how il is used in

this work are discu~sed in section 3.3. Reference [18] is a collection of musical scores,

from which two SC\Jres Nere selected to test the data compression algorithms developed

10 the course of this won. Reference [19] is a manual of music notation. Appendix A

briefly describes sorne of the more comlOOn elements of music notation found in this

manual. Reference [20] IS a text on parsing. A definition of context-free grammar is taken

from here, and is included in Appendix B.

The body of the thesis is divided into five chapt~rs, the first of which is this Introduc-

rion.

Chapter 2: Representation concems the representation of music by computer. The

fust section describes sorne of the difficulties in representing musical scores as computer

data, and Jists sorne objectives used to guide the design of a representation system.

Briefly, the system is not intended to he complete, but it is desired to be expandable, and

to t'acilitate compressi(\~. The remainder of the chapter describes the system developed to

represent scores and explains the motivation behind sorne of its elements.

Chapter 3: Compression deals with the compression of musical data. The fust sec

tion describes two standard data compression algorithms. The remainder of the chapter

describes the compression algorithms developed to compress musical data. These algo

rithms combine routines to preprocess the data and adapted versions of the two standard

algorithms.

Chapter 4: Experiments and Results describes the compression experiments that

were performed, and tabulates the results of these experiments. The first section describes

the two scores that were entered and compressed and lists the notation al elements that the

represenœtion system was un able to accommoda te. A later section describes how a

standard compression algorithm was directly used to compress the musical data. The

results for both the specialised musical data compression aIgorithm and the general

standard compression algorithm are then given.

2

, ,.

Chapter 5: Conclusions lists the conclusions drawn from this research and sugge~ts

improvements to both the representation system and the compression algorithm.

The three appendices direcùy relate to Chapter 2. Appendix A: Music Notation

briefly describes sorne of the elements of music notatlOn. Appendix B: A Rhythm Gram

mar contains the complete definitior, of a context free grammar described in Clapter 2.

Appendix C: A Music &iitor describes a music editor developed to facilitate the enU)' of

scores.

3

Chapter 2: Representation

This chapter describes the computer representation system used to store musical

scores. The reader may Wlsh to read Appendix A: Music Notation before proceeding.

In the tirst section, Music Representation. the general problem of representation is

discussed. The section deals with the difficulties of computer music representation,

describes the kinds of representation systems that have been used in the past, and dis

cusses reasons for developing a new representation system.

The nexl four sections serve as an introduction lO the new representation system. The

tirst of these, Music as a Collection of Parallel Sourçes. descrihes how a piece of music

consists of a set of voices, which are played in parallel. The next section, A Charactq

Strin& Description for Rhythm, discusses the concepl of rhythm and how rhythm can he

represenled using a character string description. In the section entitled Evidence for Trec

,Sgyç.llltt. il is proJX'sed thal rhythm can he described using tree structures. Sorne ideal

ised examples are given, to inttoduce the concepts involved. The next section, Rhythm

Grammar Trees. presents a tree structure that describes rhythms lasting a measure long

and dernonstrates how the tree structure cao he consU'Ucled, given the character string

description.

The closing section, A Music Representation System. describes the system devel

oped. The reader may also wish to read Appendix C: A Music Editor, describing the

music edilor implemented to irlput musical scores.

2.1 Music Representation

The symbols of printed music fonn a discrete set. Their positions on a page of music

can only indicate discrete quantities of pitch and time. Il is not surprising that many

atternpts at representing musical scores on computers have been made. However, the rep

resentation problem is difficult, for many reasons.

4

r
One problem concems the two-dimensional nature of music. A typical pieœ of

music consÎSts of several paralleJ musical volces. Each voice is • sequence of note and

rest symbols. The symbol durations are variable, and the aransitions betwcen symbols in

different voices need not he simultaneous. In many applications, it is necessary to be able

to easily access not only the sequence of symbols in a given voice, but aIso the symbols

occurring in ail voices at a given moment

Another problem is the great variety which characterises music notation. h employs

a vast number of symbols and allows a great deal of ftexibility in their use. One must con

sider, as musical notation, not only the core set of elements one finds in most pieces of

music, but aIso such incidental notation as guitar chord symbols, figured bass symbols,

lyrics in any language, and fingerings for various instruments. And in the fringe of music

notation, one finds the bizarre symbols and conventions of ethnomusicok'gy, electronic

and other modern music, and ancient music.

Different applications place different demands on a computer representation system.

A music printing application may require infonnation to specify layout in addition to that

supplied by the composer. In a computer aided composition system, the representation of

music might he integrated with a set of tools to facilitate composition. A representation

system with a small symbol set may he sufficient in a computer assisted instruction sys

tem. A music analysis system may require that high level musical structures be incorpo

rated into the rrpresentation system.

A great variety of tools have been used to represent music by computer. Music has

been represented as lists of statements in predic.ate calcul us [1], lisp data [2], sets of pro

cedures in programming languages [1], data in frames [1], character strings [3], sentences

ofvarious grammars [1], and linked data structures [4]. In many ofthese cases, music has

been represented using complex data structures that bear little direct resemblance to a

printed score. In sorne cases, however, the correspondence between the representation

and the score is more direct. In these cases, music is usually represented as a character

5

ft

r
1

string, short substrings of which map to the symbols found on 1 score.

Sorne coounonly used systems which represent music as charaC1el' smngs are

DARMS [5], MUSTRAN [6]. and ALMA [7]. Most of the advantages of these systems

derive from the fact that the ~p~sentation is 50 similar 10 the score. Scores cao he manu

ally transcribed into any of these representation systems relatively easily. The character

smngs may aIso he easily read. since they aI50 happen 10 he mnemonic.

or the three character stting notations. DARMS seems ta be the most widely cited

[3]. The staled purpose of DARMS is "10 capture accuratelyaIl the information provided

by the composer, but not those details of layout within the province of the engraver or

autographer." [5] In DARMS. a string representing a note or rest consists of two pans.

The fust part is either a numerical 'space code', spccifying the line or space tbat the note

occupies, or an 'R', indicating a Test The second pan is a letter indicating the duration of

the note or test. Symbols for accidentais (t, ft, -, --, and * ~present sharps, double

sharps, flals, double flats and naturals, respectively) follow the space code, and dOlS (•)

and tie indications (J) follow the duration code. Bearns are represented using a system of

bnckets, where the depth of brackets in which & note rests is the number of beams touch

ing the note. Bar lines are represented with a ' /'. Other shon mnemonic strings of sym

bols represent other elements of music notation.

Witb each voice in a piece encoded using DARMS there is associatcd an instrument

code (' Il', '12', etc.) which p~edes an ordered list of notes belonging to tbat voice.

Note mat the lengm of a string representing a note is variable. Among other things, it

depends on whether the note has a printed accidental associated witb il- Consider also the

faet that in a given period of rime, one voiee may have more notes in il than another

voice. These two facts make il very difficult to find a note in one voice that sounds simul

taneously with a note in another voice. To do this, without any preprocessing of the data,

requires scanning all the notes in both voices up to the point of rime of interest. calcul at

ing the elapsed duration with each note scanned.

6

ALMA and MUSTRAN shan~ many characteristics with DARMS. As with DARMS,

shon mnemonic character strings are used ta represent symbols appearing on a musical

score [6][7]. The strings. however are typically diffenmt. One of the main diffcrcnces

between these Iwo languages and DARMS iies in the representation of pitch infonnation.

While DARMS gives a space code indicating the position of the note, ALMA and MUS

TRAN give the pitch of the note direcdy, by letter name and octave. Although the pitch

infonnation is conveyed in both cases, with DARMS the pitch (if needed) must he calcu

laled from the space code, previous accidentais in the measure in which the note appears,

the key signature, the clef and, if the instrument is a b'ansposing one, the nature of the

transposition. Both ALMA and MUSTRAN share with DARMS a difficulty which arises

from the fact that these character string notations are Hnear in nature, ",hile music typi

cally consists of several parallel voices with non-synchronous note transitions. Simulta

ncous notes are difficult ta access.

One of the IOOI'C complex representation systems, one which addresses the problem

of accessing simnJtaneous notes is one developed by Brinkman [4J. In this system, musi

cal scores are represented using linked data structures. Brinkman has also designed a

scanner, which reads in DARMS data (the "extemal coding language") and constructs

the se linked data strucnU'eS. The desire that simultaneously sounding notes he easily

accessible is the motivation behind Brinkman 's system.

A new representation system was developed during the course of this research. As

with Brinkman's system, a non-Iinear data structure is used to represent musical scores,

and a routine con verts data expressed in an extemal coding language. Two objectives

motivate the design of the new representation system The first is the same as Brinkman's

objective, that simultaneously sounding notes he easily accessible. There is a strong cor

relation between notes sounding in different voices simultaneously, and this correlation

can he exploited by a compression algorithm only is this access is possible. While the

compression algorithm developed as part of this tbesis does not take advantage of this

7

(
COITelation. il is impon&nl thal thc reprcsentation system docs nOl need ta he modified to

allow an improved algorithm 10 take this advantage.

The omer objecti\'c is to take advantagc of rcdundancy in the notation of nOlC dura

tions. The rcdundancy lies in the facl that the vast majority of measure-Iong rbythms in

musical scores confonn :0 a fairl)' simple context-me grammar. This issue is discussed in

detail in Section 2.4. Taking advantage of redundancy is an essentiaI pan of data com

pression. The representation system that was developcd is a measure-based system.

where the set of notes of • musical voice in each measure is rcpresentoo by a tree struc

ture, based on the context-free grammar that C8il generate measurc-Iong sequences of

note durations.

Bath objectives are satisfied. One can access simultaneous sounding notes by tra

vef'iing in parallel the trees in diJ1'erent voices in a given measure. Much redundancy is

removed by representing scores .. ~ such a tree structure. Only those measurc long rhythms

th'ilt confonn to the context Cree grammar discussed in Section 2.4 can he reprcsented.

It has been mentioned that a complete musk representAtion system is very difficult ta

design. Since the work heing done is primarily a study on the compression of musical

data, not the development of an exhaustive representation system, and in order to keep the

task of representation within reasonable limits. only those symbols of particular impor

tance and frequent occurrence are represented. These include notes. rests, dots. beams.

ties. clefs. accidentaIs, key signatures, rime signatures, slurs. accents and dynamics. The

system is flexible enough that changes can he made to accommodate additional symbols.

Although only the triplet, alI10ng duplets, can he represented. other duplets could be rep

resented in analogous fashion. Although only the 5/4 compound mette can he accommo

dated, other compound mettes could aIso he represented in a similar way.

The choice of a measure-bl1sed tree structure has associated problems. Incomplete

bars at the beginning or end of a section are represented by inserting rests to complete the

bar. If the system were 10 he expanded with a view to making the representation system

8

more complete. these rests could he indicated as non-printing, dummy rests. Sorne rare

measures do not confonn 10 the proposed grammar. and therefore cannot he represented

using this tree structure. In a more complete system, such measures could he represented

using the external coding language, along with sorne indication to mark thal this was

heing done. While such an arrangement would oot he acr..eptable in a musical analysis

application, it can he justified in a compression application. The rarily of such measures

would ensure that the inefficiency of spelling out these measures in full would nOI grutly

influence the overall oom~ssion ratio.

A simple extemB~ coding language and an editor with which a user can input this lan

guage measun; by measure were also developed. An existing language was nOI chosen

because the representation system is not sufficiently powerful to represent all the fealures

that music expressed in these languages would have. Also. the processing involved in

constructing the data structures of the representation system from the extemal eoding lan

guage would have been considerably more difficult, with any of the coding languages

mentioned above. However, with a sufficiently improved representation system, il would

he advantageous to use an existing charaeter based representation language as an extemal

coding language.

2.2 Music as a Collection of Parallel Sources

When one listens to a picce of music. one typically hears several notes heing played

at once. Each scund is represented by a note-head on a musical score. Note-heads COTre

sponding to two 50llnds starting at the same time are vertically aligned. There are three

ways in which note-heads can he 50 aligne.d. They may both he attached to the same stem,

they may he attached to different ~tems on the same staff, or they may lie in difTerent

staves altogether. Two notes played al the same tirTh' by one violin would he represented

as two note-heads on the same stem. A note sung by the tenor section in a choir and a

simultaneous note sung by the bass section are usually represented as note-heads on two

different stems on the same staff. A note played by a viola and a note played by a trumpet

9

.'
~

,.
)

would me'lIt likely he found on different staves.

In Ihis thesis. a voice is understood 10 mean a related sequence of rests and ~tems

with note-heads. There are usually one or tNO voices per staff, and sometimes more. Ha

staff eontains oo)y one voice, then there is no need 10 distinguish hetween voices on the

same staff. In this case, stem directions are chosen for a~~sthetic reasons. When two voices

occupy the same staff, they are distinguished by stem direction. The voice that is higher

pitched, on average, has stems going up. The lower voice bas stems going down. Wben

more than two voices occupy the same staff, two voices share a stem direction. Note that

within a 'Ioice there may still b: notes representing simu)taneous sounds, in the form of

severa) note-heads on the SarDe stem.

In the representation system use~J for this research, cach voice is separately repre

sented. However, access ta simultaneous notes from different voices is still easy, as will

be discussed in Chapter 5: Conclusions.

2.3 A Chaneter String Description for Rhythm

The rhythm of a voice is defined 10 he the information borne by ftags, stems, beams,

rests, dots. ties. triplet signs, grace notes. tremolo bars. and note-head colour (hollow or

solid). It does not depend on how many notes are attaehed ta the stems. or what their

pitehes are.

The rhythm notation of a segment of a voice is the same as the notation of the seg

ment in standard mu sie notation. except that there is exactly one (dummy) note-head pel

stem, that aIl the note-heads are aligned horizontally. that there is no staff and no auxiliary

symbols, and that the stems ail go up.

In the following system, a charaeter string represents mnemonically a measure-Iong

rhythm.

The letters W, H, Q, E, S, T, and A represent the flagged stems of the whole note, half

note, quarter note, eighth note. sixtee:nth note, thirty-second note, and sixty-fourth note.

The same letters in lower case denote the corresponding rests.

10

Substrings consisting of the symbols (,) , ., and • symbolise beamed groups of

notes and the rests within them. The notation for beamed notes is similar ta that used by

DARMS[5]. The asterisk stands for a stem in a beamed group, and the hash symbol, a

rest. Ju~t as a beam joins a group of notes, a pair of brackets encloses a group of asterisks.

As beams nest to deeper levels, so do brackets. A pair of brackets surrounding a single

asterisk represents a half-beam attached to the note. Cale must he taken to place the hash

symbol in the right place, in order that the rest's duration, implied by the depth of brack

ets in which it rests, is correct.

The period (.) denotes a dot; IWO periods, a double dot. Periods follow the relevant

letter.

A special prefix may precede any charclcter representing a stem. These prefixes

denote grace notes, tremolo bars, and ties. The following table tists the available prefixes,

and what they indicate.

Tab~e 2.1: Note Prefixes useeS in the Character String Description or Rhythm

-lE
-2E
-3E
-15
-25
-35
lE
15
IT
lA

Meanin&
Note is tied
Note is preceded by a single grace note, flagged as an eighth note.
Note is preceded by two grace notes, beamed as two eighth notes.
Note is preceded by three grace notes, beamed as three eighth notes.
Note is preceded by a single grace note, flagged as a sixteenth note.
Note is preceded by two grace notes, beamed as two sixteenth notes.
Note is preceded by three grace notes, beamed as three sixteenth notes.
Note bas ttemolo bars indicating repeated eighth notes.
Note bas ttemolo bars indicating re~ted sixteenth notes.
Note bas tremolo bars indicating repeated thirty-second notes.
Nete has ttemolo bars indicating repeated sixty-fourth notes.

The angular brackets < and > enclose triplets. The string ww represents a whole Test

lasting the whole measure.

Ten strings indicate lime signatures. They are 2 14, 3 /4, 4 /4, 3 + 2 / 4, 3 + 2/ 4, 3 1

8, 6/8, 12/8, 3/2, and 2/2. Each stands for the obvious time signature, except for

3 + 2 1 4 and 2 + 3 1 4, which both represent the lime signature i . The former is used when

11

the measure most naturally divides in the ratio 3:2. the latter. when the ratio 2:3 is more

natural. It must he assumed that the transcriber of rhythm notation can tell the difJerence.

The time signature string, which is obligatory. hegins the string.

Severa! examples are provided in Figure 2.1 ta illustrate the use of this character

string notation.

12

--

Figure 2.1: Charader String Descriptions orVarious Rhythms

~ J. m) 7) 7
3

~ n) ,n,n,
~ J~nIJm~
~ jj)J jj)J

~
~ J~n

"--'

a rnJ 7

v ~ 7 lJJ' lJJ 7 nJ 7

a jJ. m
'--'

i J J J J
i J J J J
~))).r:Tn J)j~

3 3 3 3

Rhythm Notallon

2.4 Evidence for Tree Structure

4/40. («***») EeEe

4/ 4 (* . (*)) Ee (* (* f)) (* (* i))

4/4 (* (f·» « •••• » (* (f·» «****»

4/4 (/5*/5*/5*/5*) (/5*/5*/5*/5*)

4/4ww

4/4H(-*.«**») (* .. «*»)

6/8(*.(*)*)Qe

12/8qe-250e-2S0e-2SQe

6/8-1EO. (-***)

3+2/4oooH

2+3/4HOOO

4/4<EEE>«*(**)*»<OE><Eq>

Chanc:ter SWIg Descnpllon

The tree structure characteristic of rhythm is most immediately evident in beamed

groups of notes. Recall the charaeteT string description system for rhythm just discussed.

Bearn notation can be represented using a system of brackets resembling lisp notation.

13

Iii

-

{

The structure imposcd by such a system of brackets is isomorphic ta a tree structure. An

illustration of the concept is shown in Figure 2.2.

Figure 2.2: The Tree Structure 01 Beams

. - m «C-·)·» m (-(•• »
••

Rhythm notation confonns ta a tree structure in otht7 ways. In Figure 2.3 there aIe

severa) examples of measure-long rhythms taken froID mll music. The durations of each

note are plotted on a line. The marks on the linear lime scale are hierarchical. The most

major marks are those which bound the measure. The next most major maries divide the

measwe into two or three subdivisions of equaJ duration. lbe next most major marks

divide each subdivision into smaller subdivisions and 50 0111. Notice that the notes start

and end on a mark. and that the marks crossed by the note aare allless major than those

which bound the note. Obviously. a tree structure woold elc~gant1y describe the durations

of these notes. Each node would have a duration associated! with it. An internai node

v.'ould have a duration equal to the sums of the durations of its children. Leaf nodes

would correspond to notes.

14

--...
Figure 2.3: The Tn~ Structure 01 Note Durations

~ J 7 jj)1)1 7) 4/40eSSEEeE
.......... III 1 1 ~ 1 ! ! , 1 ! , 1

~ J)) 1 1 ~ 4/4hQEE !

~J J 7 jj ~ 4/4HQeSS ! 1

a J.)l)) 6/8Q.EEE ~
Rhythm Notation Charlicter StrIng De&c:np1lOn Note Ourallonl Tree Struc:lUre

In MOst cases, a measure-Iong rhythm does not conform to such an elegant tree struc

ture. These examples were chosen to illustrate the concept of tree structures based on

time division. This concept is the basis for rhythm gnunmar trees, discussed nexl

2.5 Rhythm Grammar Trees

Rhythm grammar trees are structures which represent measure-long rhythms. Data al

each internaJ node indicate a production role of a contexl-free grammar caJ!ed the

Rhythm Grdmmar. Leaf nodes represent note-stems and rests. Data al each leaf node

denote the nature of the note-stem or rest. The nature is simply a parame ter indicating

whether the leaf node represents a note-stem or a rest, and if a nOIe, whether il is lied or

not, what grace notes precede it, if any. and the number of tremolo bars, if any.

Rhythm grammar trees cao he constructed unambiguously from the charaCler string

representation of a measure-Iong rhythm. The construction is done in two stages: the lex

ical analysis stage and the parsing stage. During the former, substrings represenling a

note-stem or rest and its nature are replaced by tokens. The name of the token describes

1S

...

the duration of the note-stem or rest Data describing the nature ~f the note-stem or rest

are anached 10 the IOken, but these data are invisibJ~ during the parsing stage. Substrings

representing time signatures, and the characters ' (', ') " '<'. and '>' are also replaced by

tokens. During the second stage, a paner processes the token string and constructs a deri

vation tree. The derivation tree, together with the data describing the natures of the lcaf

clements, constitutes the rhythm granunar tree.

In order to generate a list of tokens for the paner, the lexical analyser divides the

string inlO a list of substrings, and replaces each substring with a token.

The fust substring always indicates a time signature. It is replaced with a time signa

ture token according to Table 2.2.

Table 2.2: Tokens Representiqg nme Signatures

Substrine Toker ~bstrine Token Sub~trin& Tok~n
2/4 l'woFour 3/4 nv..Fcu 4/4 Fourfour

3/8 nn.EIght 6/8 SIxEIght 12/8 l'wetveElght

2/2 l'woTwo 3/2 lhrHrwo

2+3/·~ TwonvNfour 3+2/4 lhrHTwoFour

Subsequent substrings fall into one of IWO categories. In the fust category are the sin-

gle characters '>', "<", '(', and 'r, which are replaced by the tokens >, <, c, and), respec-

tively. In the second category are substrings representing note-stems and rests. These

substrings consist of an option al prefix and one of the roots Table 2.3. The whole string is

replaced by a token, according to the following table.

Table 2.3: Tokens Representing Note-sterm and Rests

Root Token Root Token Root Token
Worw WhoIII W.orw. DoftedWhoIe

Horh Hal H.orh. DoftedHal rt •• orh .• Doubl.oo"edHai

Qorq Quat1ef Q.orq. eon.dQuQrMr Q .• orq .• DoubI.ooHedQuart.,

Eore E1ghlh E.ore. DofIedEJghIh E .• ore •• Doubl.oo"edElghIh

Sor s Slxt .. nlh S.ors. DoHedSlxtMnlh S .• ors .. DoubleDo"edSlxt .. nlh

Tort Thlrty·Second T.ort. Do"edThIfty-Second

* or 1 a.am.d *.orl. Dottedleamed * .. orl .. Doub'-Do"edleamed

16

,

" ,
~
i
l !, .,
1
th

l

A token representing a note-stem or a Test is accompanied by a parameter ealled its

nature. The nature depends on whether the root represents a note or a rest, and if il repre

sents a note, what the prefix is, if any. The assignment of the pa.rameter name according to

this information is illustrated in Table 2.4, for the special ease in which the root IS Q or q.

Table 2.4: Natures DescribiDg Note-stems and Rests

Substrin~
q
Q
-Q

-lEQ
-2EQ
-3EQ
-1SQ
-2SQ
-3SQ
/EQ
/SQ
/TQ
/AQ

Nature
NATURERest
NATURESimpleNote
NATURETie
NATUREOneEighthGrace
NATURETwoEighthsGrace
NATUREThreeEighthsGrace
NATUREOneSixteenthGrace
NATURETwoSixteenthsGrace
NATUREThreeSixteenthsGrace
NATURETremoloEighth
NATURETremoloSixteenth
NATURETremoloThirtySecond
NATURETremoloSixtyFourth

The special substring ww is replaeed by the token WhoIeR 'This substring may only

appear as the ooly substring following the time signature substring. It denotts a complete

measure of silenee.

The parser uses the production roles of the Rhythm Grammar to parse a sequence of

tokens. The Rhythm Grammar is fully specified in Appendix B: A Rhythm Grammar.

The production roles describe how token strings representing measure-Iong rhythms can

he derived from the Start symbol, by way of various non-tenninai symbols.

The non-terminal symbols, except for the special Start symbol, fall into two catego

ries: time-duration symbols and beam-constructor symbols. In the first category, the sym-

bols represent specifie durations of time. For example, TineHolfrepresents the duration of a

half note, and Tlme2DottodQuatoo represents twice the duration of a doued quarter note.

Beam-constructor symbols are in many ways similar to lime duration symbols, but

17

{

their explanation is not as straightforward. They derive a sequence of lOkens within a pair

of bracket tokens ((and)). This sequence may include other bracket lOkens at deeper

levels. The name of a beam~onstructor symbol indicates the number of Ieamed tokens

that the symbol must derive if there are no other blacket tokens in the sequence. For

example, the beam constructor symbol 8«Jrned2 can ooly derive the token sequence

Ieamed 1eam«I, or sorne other sequence with at leut one pair of brackets tokens within.

The production rules fall into three categories: rime signature rules, lime division

rules, and other rules. Ali production rules have a type. Production rules .. Ki rule types

are discussed in detail below. Whenever examples of production rules are given, the rule

types of those production rules are given in parendleses.

Ali time signature rules have the Staff symbol as its subject. and all rules whose 5Ub

ject is the Stan symbol are lime signature rules. The fust symbol on the ript hand side of

such rules is either a time signature token or the WhoIeIeIt token. In the fonner case, this

symbol is followed by one or two lime duralion symbols.

Table 1.5: Examples ollïme Signature Rules

Staff ... 1hIHEIght TlmeDottedQuat.
Staff 1WoFour 11rneJC'\Jcrt .. TmeHaif

(RuleThreeEiqht)
(RuleThreeTwoFour)
(RuleWholeReat) Staff ... Feu Who"".

Ail lime signature rules have their own unique rule type. Il should be obvious how

the name of the rule type is related lo the production rule from the three previous exam

pies. The complete set of rule types for lime signature rules is shown in Table 2.6.

Table 1.6: nme Signature Rule Types

RuleTwoFour
RuleTwoThreeFour
RuleThreeEight
RuleTwoTwo

RuleThreeFour
RuleThreeTwoFour
RuleSixEight
RuleThreeTwo

RuleFourFour

RuleTwelveEight
RuleWholeRest

There are thirteen different types of lime division rules, having the names shown in

Table 2.7.

18

,
r

Table 2.7: Time Division Rule Types

Rule1:1 Rule1:1:1
Rule3:1 Rule1:3 Rule2:l Rule1:2
Rule7:l Rulel:7 Rule2B: 1 Rule1:2B
Rule1:2:1 Rule2:3:1 Rule3:1:2

The names of these rule types specify the ratio of the duratioos denoted by the sym

bols on the right hand side of the ruies belonging to that rule type. Rules of the type

Ru l e 1 : 1 have. on the righl hand side. two equal non-tenninal symbols. cach denoting a

duration half that of the subject. Similarly, Ru le 1 : 1 : 1 rules have three equal non-ter

minais on the right hand side.

Table 2.8: Eumples of Rule Types Ru 1 el: 1 and Ru l el: 1 : 1

TIme8Ih 7tne,6th 7me '6th
Beamed4 lJeamed2 8Batned2
8êamed3 8tKJmed, Beomed' 8eaned'

Tlme3QuarlM TtneQJater TlmeQuat., TlmeQuartfl(

(Rulel:l)
(Rulel:l)
(Rulel:l:l)
(Rulel: l: 1)

Rules of the types Rule3: l, Rule7: 1. Rule1: 3, and Rulel: 7 derive rhythms

with dotted nOles in them. The right hand sides of these roles consist of a token represent

ing a dotted or double dotted note. a non-tenninal symbol. and. in the case where a beam

consttuctor symbol is the subject, bracket tokens pairs representing half-beams. Sorne

sub-measure rhythms that can be derived using these roles are H • Q and « (*)) * ••)

Table 2.9: Examples of Rule Types Rule3: 1, Rule?: 1, Rulel : 3 and Rulel : 7

J1rneQ.Jartfl(.... DottedElghlh Tine,6th
TmeHalf -+ Tine 76th DoubIeDoItedQua

Beamed2 -+ (Beaned,) DoIt
Beamed2 -+ DoubIeDo~ « B6amed,))

(Rule3:l)
(Rulel:7)
(Rulel:3)
(Rule?:l)

Type Rulel: 2: 1 rules directly derive a non-terminal symbol, followed by a note

loken. followed by the same non-terminal symbol. Bracket token pairs are interspersed lo

represenl half beams in the second example. This rule is required to handle such rhythms

as EQE and ((*) * (*)) •

19

l

(
Table 2.10: Eumples of the Rule Type Rulel: 2: 1

TinMkJlf... 1'tneath Ttnelth
s.amed2 ... C Beaned 1) (lIeomedi)

(Rule1:2:1)
(Rule1 :2:1)

Rules of the type Rulel : 2 and Rule2: 1 derive a note token and. non-terminal

symbol. Sub-measure rhythms such as EO and HO can be derived using these JUles.

Table 2.11: Eumples 01 the Rule Types Rule2: land Rulel: 2

(Rule2:l1
(Rulel:21

The rule types Rulel: 2B and Rule2B: 1 di.recdy derive a non-tenninal symbol.

and a beam consbUctor symbol within bracket tokens. These rules ~ required to derive

rhythms such a.~ 0 (* * * *) .

Table 2.12: Eumples 01 the Rule Types Ru le28: 1 and Ru le 1 : 28

nm.3QuQIt",. ... C Beanedf) 11meOuatt.,
Beamed3.... s.om.d 1 C s.amecu)

(Rule2B:l)
(Rulel :28)

Rules of the types Rule2: 3: 1 and Rule3: l: 2 are used to derive rhythms such

as the sub-measure rhythm (*. (11') *) and the measure long rhythm 3/ 4Q. EQ. They

consist of IWO non-tenninal symbols and a token representing a dotted note or rest.

18ble 2.13: Examples 01 Rule Types Rule2: 3: 1 and Rule3: l: 2

TmeDottedQuarlet ... TtneMh DoIMdEIghIh 11me '6th
8eamed3 ... Doltedleamed (8eamed,) 8earrHKt,

(Rule2: 3: 1)

(Rule3:1:2)

The rules that are neither time signature roles nor time-division roles divide into

three types, called RuleTerminal, RuleAugment, and Rule8eamed. RuleTer

minaI rules whose subjects are time duration symbols always direcdy derive single

tokens representing a note-stem or a rest with the same duration as the subject. The only

RuleTerminal rule whose subject is a beam-constructor symbol js the one deriving

the learned token from the Beamedl subject.

20

'Jable 2.14: Eumples of the Rule Type RuleTerminal

nn.oottedQJart., ... DoftecICIIuarII
TtneHalf ... Hal

lJfKImed 1 ,_

(Ru leT. rllll na!)
(RuleTerllll .. al)
CRuleT.rlll1nall

The rules of the type RuleAugment have a single non-tenninal symbolas their

subject. The right hand side consists of a single non-terminal symbol enclosed hy a pair

of angular bracket tokens. The righl hand siae oon-tenninal symbol has a duration equal

to 3fl the duration of the subject. This rule is u:1ed 10 derive ttiplel rhythms such as

«***"».

Table 2.15: Examples of the Rule Type Ru 1 eAugme nt.

TlmeQuatfK'" c TtneDottedOJarl. >
Beamed2... carTua.3 >

(RuleAuCJlM!nt)
CRuleAuCJIM!ntl

RuleBeamed roles derive a beam-constructor symbol wilhin bracket tokens. These

rules are used to derive rhythms such as (* *) and (* (* *)) .

Table 2.16: Examples of the Rule Type RuleBeamed

TlmeQuater'" (Beaned2)
Tlme8th ... (Beaned 1)

BeomedJ.5 ... (Beanedl)

(RuleBeamed)
(Rule8eamed)
(RuleBe.amed)

The parser constructs a derivation tree for the sequence of IOkens. It does not store

the production rule al each node. Instead, il stores only the type of the production rule. In

most cases, the type of a production rule distinguishes it from ail other production rules

with me same subject, and 50 this information is sufficient The only exception is that al;

TIme Signature rules which derive a time signature token followed by the v~ token

have the same rule type. This means that measures consisting only of a whole rest. denot

ing a measure of silence, are nol distinguishable in the derivation tree. The implications

of this exception are not serious. There is no important difference hetween two bars of

silence having different time signatures. ln any case, this 'problem' cou Id he rectified by

introducing a new rule type for every production rule deriving a rime signature token fol-

21

(

•

; ...

lowed by the WhoIeI ... token.

FiJlR 2.4 illustrates both the lexical processing stage and the parsing stage. Th~ fig

ure shows a sample measure-Iong rhythm in rhythm notation. the character string descrip

tion of il, the sequence of tokens produced by the lexical analyser. with their natures

indicated. and the derivation ttee produced by the paI'Sf.J'. The tokens which do IlOt repre

sent note-stems or rests (such as FOUIfour or c) are indicated in this diagram, although they

are not explicitly stored in the derivatiOIl tree produced by the parser.

22

Figure 2.4: An Eample

4/4(-E*(**»<OE>eE-E .• T

NATUREOneEighthGrace NATURESimpleNotl!' N1ITUREResl NATURETie
\ 1 1

Fourfour (hamed (Ieamed Iearned)) < Quarter EIghIh > Elghlh Elghlh DoubIIIOottedElghlh ~ond

NATURESimPl::cte \ NATURE~mPleNote l' N1ITURESimpleNote

NATURESimpleNote NATURESimpleNote

T1'88 IIrUCIUre:

EJghIh lhlttySecond
DoubieDottedElghlh

2.6 A Music Representation System

The music representation systl!l1l dis :ussed here is hierarchical. The data structures

are described below in top-down ordel', usin~ written descriptions and diagrams. A name

in capitals represents a compound data structure, descnbed in detail further down. A

23

4

.1

(

•
l

name whose firstlettcr is a capital, but is otherwise in lower case, represents a character

suing or • simple parameter. Labels in a small font are indices of arrays.

The PI ECE structure is the highest level structure. containing global infonnation

about 1 piece. Name is the name of the picce. FirstPage and LastPage are the fusl

and last page numbers of the picce. Their values establish the number of pages in a piece.

The cditor uses these data to calculate intermediate page numbers. The display of dlese

page numbers facilitates the entry of musical scores from a book. For each page, there is a

PAGf. ~tructure. NumberOfStaves and NumberOfParts are the numbers of staves

and voices in a picce. For each staff, Name identifies il and Clef is the clef associated

with il. For each voice, Name identifies il, and Staff is the number of the staff to which

il belongs. KeySignature and TimeSignature are the default key and time signa

tures of the piece.

Figure 2.5: lbe PIECE Structure

Name
FirstPage
LastPage

FRIP,. FnlP. + 1 ~

1 PAGE 1 PAGE] ••• ~
NumberOfStaves

Name
Clef

2

Name
Clef

NumberOfVoices

Num~

... 1 Name 1
Clef

2 NumbetOlPartI - -
Name Name
Staff Staff

KeySignature
TimeSignature

... Name
Staff

The PAGE structure is simply a Iist of SYSTEM structures

24

Figure 2.6: The PAGE structure

1 SYSTEM II-- .. ~I SYSTEM rJ SYSTEM HII

The SYSTEM structure contains one parameter and a two-dimensional array. The

parameter, NumberOfMeasures, is the number of measures into which the system is

divided. The array is indexed by voice and measure. For each combination of vaice and

measure, three items are stored. RhythmString is the character string description of

the rhythm in that voice within that measure. TREE is the tree structure representing the

same rhythm. KeySignature is the key signature in effect within the scope orthe cur-

rent measure and voice.

Figure 2.7: The SYSTEM structure

NumberOfMeasures
2

RhythmString RhythrnString
TREE TREE

KeySignature KeySignature

RhythmString
2 TREE

KeySignature

RhythmString
NumberOfPar1I TREE

KeySignature

RhythmString
TREE

KeySignature

RhythmString
TREE

KeySignature

The TREE structure is based on the tree structure previously described in detail in

section 2.5. Internal nodes represent production ruIes, aud these rules are identified by the

parameter RuleTyp,~, indicating the type of the rule. The children of an internai node

represent symbols on the right hand side of the production rule. For each non-terminal

2S

(

(

symbol, there is a child which is itself an internai node. For each token representing a

note-stem or rest, there is a child which is a)eaf node. This leaf node is a STEM structure.

For aIl other tokens, there are no children. since their existence is implied by the produc

tion rule.

Figure 2.8: The !'Ra. structure

The STEM structure contains infonnation associated with ail the notes on a single

stem, or a single Test Nature is the nature parame ter previously described. Dynamic

denotes the dynamic marlring of the note. The nuU dynamic indicates that no dynamic

marking is present. In the SaIne way, the parameters Accent., Ornament, and Stac

cato denote accents, omaments, and the staccato symbol. A non-nuU Range value indi

cates that a given dynamic range starts orends at the stem. Likewise. a non-null Octave

value denotes the beginning or end of an octave shift.

Slurs have a special notation. since they can be nested, and because a note may be the

last in one sI urred group and the tirst in the next. Different values of the SI u r parameter

indicate no slur, the beginning of one slur, the beginning of two slurs. the end of one slur.

the end of two slurs, and the end of one slur followed immediately by the beginning of

another.

26

-----,

A linked list of NOTE sttuctures represents the note-heads on the ~tem. Each node

represents a note-head, and they run in descending arder of pitch. An array of three NOTE

structures holds pitch infonnation on grace notes, if any.

lfthe STEM structure represents a rest. then Nature is the only meaningful parame

ter, and its value is NATURERest.

Figure 2.9: The 5 TEM structure

Nature
Dynamic
Accent
Ornament
Range
Octave
Slur
Staccato

1 NOTE 1 ~I NOTE J-
I NOTE 1 NOTE 1 NOTE 1

-+1 NOTE HII

The lowest level structure, called NOTE, contains two parameters describing pitch.

Line is the line or space at which the note appears and Accidenta] is the acciidental

modifying the pilCh of the note. A special case of the AccidentaI parame ter is ,:he null

accidentai. From these two parameters, the local key signature. and the previous notes in

the measure, the pitch can be detennined.

Figure 2.10: The NOTE structure

Line
AccidentaI

..

i ..
Chapter 3: Compression

This chapter concems the distortionless compression of musical data. The fust sec

tion, Basic Compression Algorithms, introduces the concept of data compression, and

inttoduces two basic data compression algorithms. The next section, Compression of

Rhythmic Data, discusses how one of these algorithms was used 10 IChieve compression

of rhytllmic data. The third section, Compression of Pitch Data, describes an algorithm

for the compression of pitch data, which employs bath of the basic algorithms. The last

section, Compression of Other Data, describes how the compression of other data was

achieved.

3.1 Basic Compression Aigorithms
Data compression is the translation of one rej)resentation of a body of data into

another, more compact representation, from which either the original representation, or

an approx.imation 10 il, can be restored. When data compression is further specified as dis

tortionless, it means that the original representation can he restored ex.actly. OnIy data

whose representation has sorne predictability or redundancy can he compressed. Data

compression algorithms exploit such predictability and redundancy in order to achieve

compression.

Two basic algorithms for distortionless data compression are discussed below. One

is Huffman Coding [9]. The other is one of many algorithms based on string substitution.

ft is a variation on an algorithm by Ziv and Lempel [lO] described by Storer [11]. Both of

these algorithms have several things in comnlOn: (1) The pre-compressed data consist of

a string of symbols generated by a source; (2) each SOUTce symbol is a random variable

which takes a value from a set of alphabet symbols called the SOUTce alphabet, according

to some probability distribution; and (3) the compressed data consist of a string of code

symbols from the code alphabet (0, l). The encoder maps strings of source symbols into

28

strings of code symbols, thus compressing data. It does this by breaking the source string

into substrings called sowre words, replacing each by • string of code symbols called a

code word and concatenating the code words together. 1be decoder maps strings of code

symbols back into strings of source symbols, thus restoring the original representation of

the data. For more details on the tenns introduced here, sec [12].

Huffman Codin&

Huffman Coding is a compression algorithm which works wc:ii when source symbols

are independent and identically distributed random variables. ft is explained here by way

of several intennediate descriptions. Fint, a gene!al class of codes is rlescribed. Then lree

codes are discussed, as special cases of these codes. Next, the code Tale is introduced as a

rneasure of compression. At this point, HujfmLJn Codes are presentec1, as special cases of

tree codes. Finally, a variation of Huffman Coding called Dynamic Huffman Coding is

discussed.

An important class of codes are those codes which map the set of source symbols to

a set of code words. Such codes might he employed by a compression aIgorithm in the

following manner: The encoder would map each source symbol into a code word and

concatenate ail the code words to fonn the compressed output. The decoder would parse

the string of code symbols into code words, map cach code word back into a source sym

bol, and concatenate these source syrnbols to restore the original representation of the

data

It is easy to see that sorne choices of a codeword set are not uniquely decipherable;

that is, it is not always possible to take a string of code symbols and unarnbiguously break

them into code words. RecaII that a codeword is a string of symbols from the code alpha

bet {O, 1}. Consider the naïve code given in Table 3.1, where the symbol alphabet is (A,

B, Cl. Faced with the string of code symbols "1010", the decoder would be unable to

determine whether the correct string of source symbols is "ACB", "BAC", or "BB".

29

«

f
•

strings of code symbols, thus compressing data. Il does this by breaking the source string

into substrings called sourc~ words, replacing each by a string of code symbols called a

code word and concatenating the code words together. 1be dccoder maps strings of code

symbols back into strings of source symbols, thus restoring the original representation of

the data. For more details on the terms introduccd here, sec (12].

Hufl'man Coding

Huf'fin2n Coding is a compression algorithm which works well when source symbols

are independent and identically distributcd random variables. It is explained here by way

of several intennediate descriptions. Fint, a general class of codes is described. Then tree

codes are discussed, as special cases of these codes. Next, the code rate is introduced as a

measure of compression. At this point, HujJman Codes are presented, as special cases of

tree codes. Finally, a variation of Huffman Coding cal1ed Dynamic Huffman Coding is

discussed.

An imponant cJass of codes are those codes which map the set of source symbols to

a sel of code words. Such codes might be employed by a compression algorithrn in the

following manner: The encoder would map each source symbol into a code word and

concatenate aIl the code words to form the compressed output. The decoder would parse

the string of code symbols into code words, map each code word back into a sowt:e sym

bol, and concatenate these source symbols to restore the original representation of the

data.

It is easy to see that sorne choices of a codeword set are not uniquely decipherable;

that is, il is not always possible to take a string of code symbols and unambiguously break

them ioto code words. RecaIl that a codeword is a string of symbols from the code alpha

bet {O, l}. Consider the naïve code given in Table 3.1, where the symbol alphabet is {A,

Bt Cl. Faced with the string of code symbols "1010", the decoder would be unable to

detemline whether the correct string of source symbols is "ACB", "BAC", or "BB".

29

Table 3.1: A Naïve Code

Tree codes, however, have the propeny that a string of concatenated code words can

he unambiguously broken into individual code words. Trec codes are defined as those

codes for which a binary tree can he constructed having the following propenies: There is

a one-(O-one mapping between leaf nodes and alphabet symbols. If the left and right

branches from an internaI node te its children are labelled '0' and '1', respectively, then

the code symbol string spelled out by ttaversing the path from the root node to a leaf node

is the code word which maps to the same alphabet symbol as the leaf node maps to.

The introduction of binary trees to define tree codes is not merely a theoreticaI

device. The following compression aIgorithm, based on a tree code, makes use of such a

tree. With each source symbol, the encoder does the following. Il traverses the l'ath from

the corresponding leaf node to the root node, pushing one of the code symbols '0' or '1 '

onto a stack with each branch climbed, according to the branch '5 label. When the root

node has been reached, the code symbols are popped off the stack to forrn the appropriate

codeword. The decoder begins executioo al the root node. It reads one code symbol al a

time from the input, and descends the appropria tel y labelled br:l"ch to a new node. Every

time a leaf node is reached, the corresponding symbol is added to the output and the

decoder stans again at the l'OOt node. In this way, the original source symbol string is

regenerated.

It is easy to sec that the list of codewords can be unambiguously subdivided. Code

word boundaries follow those bits, and only those bits which lead the decoder to a leaf

node.

The following example illustrates a tree code, the corresponding binary tree, and the

operation of the encoder and decoder. The symbol alphabet is (A, B, C, D). The input is

the source symbol string "CAB". The tree code is given in Table 3.2, and the binary tree

30

representing the tree code is illustrated in Figure 3.1.

Table 3.2: A 'me Code

A"'O
B ... 100
C"'IOI
D ... 11

Fipre 3.1: A Binary Tree for • Tree Code

nI 1\i1
B C

The following figure describes the action of the encoder. Each line corresponds to

one symbol read from the input. In the fust column is the source symbol read. The path

traversed from the root node to a leaf node is illustrated in the second column. The thini

column tists the code symbols in the order they m pushed onto the stack. The fOUM col

umn Iists the bits in the order they are popped. This list is the correct codcword. The last

column shows the output thus far.

Figure 3.2: Encoder Operation

Symbol Read Path Traversed Bits Pushed Bits Popped (Codeword) Output

c ~ 101 101 lJU.

A ~ 0 0 101.0.

B ~ 001 100 lOlOl.Q.Q

The next figure illustrates the action of the decoder. Each line corresponds to a single

code symbol read from the input. The code symbol read is in the fust column. The branch

traversed is indicated in the second column. The third column con tains the source symbol

decoded at abat step. if there is one. The last column shows the output thus far.

31

--1

r
1

Figure 3.3: Decoder Operation
SymbolRead Branch Traversed Symbol Decodee! Output

1 ~
0 ~
0 ~ C ~

0 ~ A CA

1 ~ CA

0 ~ CA

0 ~ B CAa

Obviously, many different binary trees having the required propenies can be con

structed for a given symbol set, and each one will he a tree code. Not ail of the codes are

equally good, as far as compression is concerned.

With each bU code, one can compute a figure of merlt called the code rate. The

code rate, expressed in bitslsymbol. is the expected length of a codeword. A good code is

one with a small code rate. Intuitively. the good codes are those which assign long code

words to unlikely alphabet symbols, and short code words to more probable alphabet

symbols. A Huffman code for a given symbol alphabet and a given probability distribu

tion over the alphabet symbols has the lowest code rate of all the tree codes that can he

constructed. A Huffrnan code is defined to he any code that can he generated by the fol

lowing algorithm. At least one Huffman code exists for a given source.

Let N equal the number of alphabet symbols. First. a set of N trees is constructed.

Each tree consists of a single node. To each node is attached one of the N symbols. Each

tree has a weight associated with it. which is the probability of the attached symbol.

The following tree-combining routine is executed N - 1 times, aCter which there

remains a single tree, which is the desired tree. The two nees with the smallest weight are

32

•

.,.
\ ,

selected. TIcs are resolved arbittarily. A new node is created as the mot node of a new

tree. One of the two selecte<! trees becomes the left (0) sub-tree of the new tree, and the

other becomes the righl (1) sub-rree. The choice is arbitrary. The new tree has a weight

.... signe<! 10 il which is equal to the sum of the weights of the two sub-t:Res.

The following exarnple illustrates the tree construction algorithm. The symboJ alpha

bet is (A, B, C, D. E, F, G. H). The foUowing probabilities are associaled with the sym

bols.

Figure 3.4: Symboi Probabilities

4
P(A) = 32

2
P(E) = 32

1
P(B) = 32

7
P(F) = 32

3
pCC) = 32

8
P(C) = 32

S
P(D) = 32

2
P(II) = -32

The first line in the figure bclow displays .ne set of trecs after it has just been initial

ised. The other lines display the set of trees 2, l'ter each ileration of the tree-combining rou

tine. AU weights have bc-:en multiplied by 32 for case of reading .

33

Figure 3.5: Building a Tree for a Huffman Code

4 l 3 5 2 7 8 2
• • • • • • • • A B e D E F G H

4 3 5 7 8 2 3 • • • • • ~I\ A e D F G

B E

0(5 7 B 3 5 • • • ~AI\ A D F

B Ee H

8 7 S 5 7

• • D F ~Ô\()
B E

7 8 7 10

; ~Ô\Ô\.
BEe H

8 10 14

~'À~
B E

14 18

~~
BEe H

32

BEe H

The next table summarises the code. For each symbol, its probability, ilS codeword,

and the length of the codeword is listed. The code rate is 2.78 bits per symbol. This can he

compared to a code rate of 3 bus per symbol for a code in which each symbol maps to a

three bit codeword, and an entropy of 2.75 bits per symbol. The entropy is the minimum

average number of code symbols per source symbol that can be achicved by any code

when one relaxes the requirement that code words represent single source symbols.

34

-

{

f

Table 3.3: A Summary of the Generated Hulrman Code

Symbol Codeword ~abilily Lenltb
A 010 4/32 3
B 0110 1/32 4
c 1110 3/32 4
D 110 5/32 3
E 0111 2/32 4
F 00 7/32 2
G 10 8/32 2
H 1111 2/32 4

Dynamic Huffman Coding [13], [14] is used when the alphabet symbol probabilities

are not known. The algorithm is so callod because the Huffman code. and the tree defin

ing il, change dynamicaUy as more and more is leamed about the symbol probabilities.

RecaII that Huffman codes are constructed using known alphabet symbol probabili

ties. Dynamic Huffman Codes are constructed using measured alphabet symbol frequen

cies. Both the encoder and the decoder initialise symbol frequencies to unity. After each

source symbol has bun encoded or decoded. the frequency of that symbol is incre

menled.

To encode and decode every source symbol, a separate Huffman code is constructed,

by building the corresponding binary tree, using up-to-date alphabet symbol frequencies.

Fonunately, each new tree does not have to be bullt from scratch. Il cao be built by rear

ranging the previous tree. To facilitate this rearrangement, a second data structure is intro

duced. This structure is a doubly linked li st of all the nodes on the binary tree. Bach node

is represented in the list exactly once, and the nodes are ordered by weight From left 10

righl in the list, the weights are non-decreasing. Furthennore. nodes which are siblings on

the binary tree must be adjacent in the linked liSl Il is not obvious that a list having ail

these properties can he constructed, but it can be. provided the ttee does, in fact, define a

Huffman code.

The following tree re-arrangement routine is carried out after each symbol has been

encoded or decoded. The weight of the leaf node corresponœng to the symbol is incre-

35

mented. If the weight of this node is now greater than that of its righl neighbour in the

linked list, then the node switches place with the righl-most DOde in the linked list with a

smaller weight. The nodes. with all their descendants. switch place on the binary trce as

well. The weight of the new parent node is also incn:menœd. Il too changes places with

another node in the SaIne way. if necessary. This continues until the root node has been

incremented. After all this has been done. the tree once again describes a Huffman Code.

Also. the weights in the linked list are once again in non-decreasing order. and all sibling

nodes on the tree are once again adjacent in the Iinked list

A String Substitution Compression Aigorithm

In many data compression probJems. the data do not conform we)) to an inde pendent

symboJ model. Significant inter-symboJ correJation often extends over distances of sev

eraI symbols. Problems such as text compression and source code compression are exam

pIes.

Several algorithms used to solve such data compression problems share the follow

ing common approach. The string of source symbols is broken into substrings. and each

sub~tring maps 10 a code word. The algorithm described helow follows this approach. It is

based on an algorithm by Ziv and Lempel [10], and has a variation introduced by Storer

[11 J. In this research, il is used to compress sequences of contour symboJs and sequences

of auxiliary symbols. A modified version of the algorithm is used to compress sequences

of rhythm derivation trees.

The dictionary is an imponant pan of this algorithm. It a list of strings of source sym

bols, to which strings can he added, and from which strings can he deleted. The strings in

a dictionary of sizeN are numbered from 0 toN-l.

Codewords are simply indices to elements in the dictionary. A code word is a

sequence of r log Pl code symbols taken from the set (O, 1). This can he considered to he

a binary number. This number is the number of the dictionary element that the code word

indexes.

36

(

(
c

The encoder initialises the dktionary ta contain all strings of alphabet symbols of

length one, namely the alphabet symbols themselves. In its tirst iteration, the encoder

matches the tirsl source symbol with a string in the dictionary. The index of this string

becomes the first codeword. In subsequent iterations, the encoder performs the following

routine. Fmt, il finds the longest prefix of the remaining ~ symbol string that

matches an element in the dictionary. This string is called the clUrent match. The index of

the CUITent match in the dictionary becomes the nexl c-ooewoni. The dictionary is then

updated. AU strings that consist of the previous match concatenated with a non-empty

prefix of the cUlTent match are added to the dictionary. They are added ta the end of the

dictionary, and so the indices of existing elements are unchanged. If the size of the dic

tionary exceeds a predetennined limit, entries are removed, on a Least Recently Used

(LRU) basis. with the provision that strings of length one are never deleted. This provi

sion ensures that al least one prefix of any string of source symbols is in the dictionary al

all times.

The decoder initialises the dictionary in the SalJ.C way. In its fust iteration, it reads the

first codeword. It knows how long the codeword must be by the size of the dictionary. and

the fact that codewords are r logrVl code symbols in length. Using this codeword as an

index ta the dictionary, it finds the tirsl string matche<! by the encoder. This string, a sin

gle symbol. is the tirst symbol decoded. In subsequent iterations. the decoder reads a code

word from the input. retrieves the dictionary entry il inde,ces, and appends this string to

the output. The dictionary is then updated in exactly the saIne way as il is by the encoder.

The decoder has access to the decoded string and the previous decoded string, 50 this can

be done.

The example below ttemonstrates this algorithm in use. The symbol alphabet is the

following set of symbols. The dictiooary initially con tains exactly these elements,

37

..

indexed from 0 to 28, in the order they appear here.

{~ B, C, D, E, F, G, H, l, J, K, L, M, N, 0, P, Q, R. s, T, U, V, W. x, Y, Z, _, ., ' }

The data to he compressed is the followinl suing:

"THE SIXTH SHEIK' 5 SIXTH SHEEP' 5 SICK."

Bach line helow corresponds to an iteration. In the fusl oolumn are the suings

matched in each iteration. The index of the malChed string in the dictionaty appears in the

second column. The index represented as a sequence of code syrnbols is in the thiro 001-

umn. The strings added 10 the dictionary are liSled in the founh column, with their indices

indicated in parentheses. Il is assumed that the dictionary is large enough that strings

never need to be deleted .

38

'\

Table 3.4: Opention or Strina Substitution Aleorithm

Strin& Matche<! Index Bit Seouence New Entries
T 19 10011
H 7 00111 TH (29)
E 4 00100 HE (30)

26 11010 E_ (31) -s 18 10010 _S (32)
l 8 001000 SI (33)
X 23 010111 IX (34)

TH 29 011101 XT (3S), XTH (36)
5 32 100000 TH _ (37), TH_ S (38)

HE 30 011110 _5H (39), _5HE (40)
l 8 001000 HEl (41)
K 10 001010 IK (42)

28 011100 K' (43)
5 18 010010 ' 5 (44)
5 32 100000 5_ (4S), 5_5 (46)

IX 34 100010 _51 (47),_51X (48)
TH S 38 100110 1XT (49), IXTH (SO), IXTH_ (51),

1XTH_5 (52)
HE 30 011110 TH SH (53), TH SHE (54)
E 4 000100 HEE (SS) -
p 15 001111 EP (S6)
'5 44 101100 p' (S7), P' 5 (S8)
51 47 101111 ' 5_ (S9), ' 5_S (60),' 5_S1 (61)
C 2 000010 5IC (62)
K 10 001010 CK (63)

27 011011 K. (64)

~.l CornQression 2' Rh!lhmis Dall

RecaII that Rhythmic data consist of a collection of rhythm granunar trees, indexed

by voice, page, system, and measure. One can treat this collection of trees as a single

sequence by ordering the trees in voice-major, measure-minor order. (The system is just a

sequence of measures, and the page is just a sequence of systems.)

Several properties of rhythm are exploited to achieve compression. The evidence for

tree structure in rhythm has already been discussed in detail in Section 2.4. In most

pieces. many groups of measures sharing the same rhythm can be found. lYPically. many

rhythms lasting several measures will repeat within a piece.

The algorithm for compressing rhythmic infonnation is composed of two sepanlte

39

-

algorithms. The fust algorithm, a modified version of the sb'Ïng substitution algorithm. is

used to compress the collection of rhythm grammar trees in a piece of music. The source

alphabet is the set of unique rhythm grammar trees in the piece. The source is the

sequence of rhythm grammar trees described above. The encoder writes code words 10 an

output called the treestring output. The second algorithm. based on dynamic Huffman

coding, is used to compress the description of cach unique rhythm grammar tree. Th,,;

encoder writes code words to an output called the innovation output. Figure 3.6 inc1udes a

block diagram of the rhythm compression algorithm.

Figure J.6: The Rhythm Compression Aigorithm

Uncompreued Data Deoompreaeed O ...

Innovation Output

Sorne modifications are required for the tirst algorithm to he able to compress

sequences of rhythm grammar trees. These modifications are described below.

In the regular aJgorithm, the dictionary is initialised to contain every alphabet sym

bol. Mter initialisation. these symbols cannot be added to or deleted from the dictionary.

ln the modified algorithm, the dictionary is initially empty. New alphabet symbols are

added to the dictionary as they are discovered. and they cannot be removed. In both ver

sions. strings of symbols are added to and deleted from the dictionary.

In the regular aJgorithm. codewords index dictionary elements. When the dictionary

is of size N. the length of a codeword is r1og#l cod~ symbols. In the modified algorithm.

all but one of the codewords index dictionary elements. The code word that is not a dic

tionary index is a special 'escap-e' code word. The length of ail the dictionary index code

words is r 1082 (N + 1) l code symbols. which ensures that there is at least one combination

40

(

(,

of code symbols equal in length 10 the index codewords which is not an index codeword.

1be length of the escape code word is DOt necessarilYr log 2 (N + 1) 1 code symbols. It is

never longer, and is typically shorter. Il consists of only enough code symbols to distin

guish il from equallength prefixes of aIl other codewords. Il is a string of '1 's whose

length is one greater than the numba of leading '1 '5 in the binary representation of N - 1.

For example, if N ': 13 10 = 1101 2, then the codewords indexing dictionary elements arc

0000 through l 100, and the escape codeword is 111. The special codeword consists of

three '1 's because no codeword is great enough 10 contain three leading '1 's, and at the

same lime, there does exist a codeword with two leading 'l's. If N = 15, then the grealest

dictionary codeword is 1110, and the special codeword is 111l. If N = 16, then the

greatest dictionary codeword is 0 1111, and the special codeword is 1.

The encoder of the regular algorithm repe.atedly finds the longest prefix of the

remaining source symbols that is in tbe dictionary. The encoder of the modified algorithm

tries to do the SaIne. Sometimes, however, it finds that the fust remaining source symbol

is not in the dictionary. When this bappens, the encoder appends the 'escape' code word

to the lreestring outpUl, to indicale this evenl It then arranges for the second a1gorithm to

encode the new tree, and adds this new tree to the dictionary. The decoder of the modified

algorithm, when it encounlers the escape code word, asks the second algorithm to decode

a new tree, and adds this tree to the dictionary.

The second algorithm employs dynamic Huffman coding 10 encode or decode a

rhythm derivation tree. These trees are discussed in detaiI in Section 2.5. Briefly, each

internaI node has a parameter called RuleType stored al il. These pararneters identify

production rules of the rhythm grarnmar, defined in Appendix B: A Rhythm Grammar.

Each leaf node has a parameter called Nat ure stored at it. Refer to Table 2.1: Note Pre

fixes used in the Character String Description of Rhythm, and Table 2.4: Natures Describ

ing Note-stems and Rests to see what the various values of the nature parame ter

represent.

41

The following description of how a derivation tree is encoded and dccoded is in two

parts. The tirst pan explains a simplified version of the encoding and decoding algo

ritluns. The second pan documents a set of modifications which improve the code rate by

combining code words.

ln the simplified version, the derivation tree is ~presented in encoded fonn by a

sequence of code words. Each code word represents the data at anode, which in tum rep

resent either a production rule or the value of a Nat u re parameter. The order of the code

words in this sequence is the order implied by a pre-order traversai of the derivation tree.

The pre-order traversaI of a tree is the one in which the mol node is vÎsited first, and the

subtrees of the root node, if any, are traversed in order from left to right, each in pre-order.

The aIgorithm does not rely on a single dynamic Huffman code to encode a sequence

of RuleType and Nature parameters. The value ofa parameter at anode depends

heaviIy on where on the rhythm grammar tree the node is found. Instead, the algorithm

makes USf' of a collection of dynamic Huffman codes. where each code is associated with

il different context in the tree.

With each non-terminal symbol of the Rhythm Grammar is associated a Dyrlamic

Huffman Code. The !.'-ource symbols of any given ~ode are the role types of those produc

tion rules h~ving the a5;)()Ciated non-tenninal symbol as their subject. Each of these pro

duction rules has a unique rule type, but not all rule types are represented by these

production roles.

Anotherdynamic Huffman code is used to encode and decode the Nature parame

ters. Each source symbol in this code corresponds to a value of the Nat ure parameter.

The trees defining these dynamic Huffman codes are initialised berOTe the execution

of the rhythm compression algorithm. They are not re-initialised every lime a single tree

is encoded. The codeword added to the innovation output for each internai node of each

rhythm grammar tree is chosen according to one of these codes.

To encode a particular derivation rule tree, the encoder traverses the trce in pre-order

42

f

fashion. At each node, the encoder determines which non-terminal symbo! is the subject

cf the production rule asSOCiolted with that node. It detennines the conespor1ding

Dynamic Huffman Code, and constructs the codeword corresponding to the rule type

stored al the node, which il adds to the innovation output The Dynamic Huffman Code is

then updated to reflect the increased estimale of the probability of that rule type heing

found in th~ context defined by the subject of the production rule al the encodcd DOde.

The decoder reconstructs the encoded tree also in pre-order fashion. At each DOde, it

determines which non-tenninal symbol is the subjecl of the production rule associated

with that node. It selects the saIne corresponding Dynamic Huffman Code that the

encoder did al the same point in ilS execution, and reads in the codeword which repre

sents the rule type al the node. The rule type is obtained from the Dy"amic Huffman

Code, and is slored al the reconstructed node.

The following ~xample illustrates the encoding and decoding of a simple derivation

tree. The derivation tree is illustraled in Figure 3.7. The reader may wisb to refer ta

Appendix B: A Rhythm Grammar.

Figure 3.7: A Simple Derivation Tree

NodeC

~ __ -NodeF

(Nature - NATURESimpleNote) (Nature - NATURERest)

The encoder perfonns the following steps. It has just seen a new tree (the tree above)

and has added the special codeword signifying this to the treestring output

1: (Encoding the Root Node) stal is the non-terminal symbol al the root of this (and

every) tree. The dynamic Huffman code associated with the Slat non-terminal is selected,

43

1
and the rule type RuleFourFour is translated inm a code word using this code. The

code is then updated. The rule type RuleFourFour identifies the following production

rule as the one associa,ed with the mot node:

Staff ... FourFour rmelMlale

2: (Encoding Node A) This node does not neal to he funher specified. as it does not

have a Nature parameter, nor any children.

3: (Encoding Node B) The role type Rulel : 1 is encoded using the TmeIMlole code.

which is then updated. Node B thus associates with the following production ruIe:

nme~ ... nmeHaif nmeHalf

4: (Encoding Node C) The Iule type RuleTerminal is encoded using the TmeHcif

code, which is then updated. Node C thus associates with the following production rule:

TineHalf ... Hal

5: (Encoding Node D) The value of the Nature pa.rameter. NATURESirnpleNote,

is encoded using the Nature code, which is then updated.

6: (Encoding Node E) The rule type RuleTerminal is encoded using the TmeHaN

code, which is then updated. Node B thus associates with the following produ(~tion ruie:

TineHolf ... Hal

7: (Encoding Node F) The value of the Nature parame ter, NATURERest, ~s encoded

using the Nature code, which is then updated.

The decoder goes through the following steps. Il has just read the escape code word

from the treestring input, and now proceeds to read in a description of the new tree.

1: (Decoding the ROOl Node) Starl is the non-temlÏnal symbol al the root of this (and

every) tree. The dynamic Huffman code associated wilh the Slat non-tenninal is selected.

The next code word is read from the innovation input, and is translated into the mIe type

RuleFourFour. The code is then updated. The mIe type Ru leFourFour identifies

the following production mIe as the one associated with the root node:

Starl ... Fourfour TtneWhoie

2: (Decoding Node A) This node is aIready fully spccifie.d. and is not decoded.

44

3: (Dccoding Node B) The rule type Rulel: 1 is dccoded using the Ttne~ code,

which is then updated. Node B thus associates with the following production ruIe:

'TInIfJ1MlQe ... TtrIfHkIIf nm.Hcr#(

4: (Decoding Node C) The rule type RuleTerminal is decoded using the TlrnBHaf

code, which is then updated. Node C thus associalCs with the following production rule:

TknelMlQe ... TtrNIHaIf TmeHaIf

S: (Decoding Node D) The value of the Nature parameter, NATURESimpleNote,

is decoded using the Nature code, which is then updated

6: (Decoding Node E) The rule type RuleTerminal is decoded using the TlmeHdf

code, which is then updated. Node B thus associalCs with the following production rule:

Tme~ ... TtrNIHaIf TImeHaIr

1: (Decoding Node F) The value of the Nature parame ter, NATURERest, is

decoded using the Nat ure code, which is then updated.

The following list concludes the explanation oChow a derivation tree is encoded and

decoded. Il documents ail the modifications used to improve the code rate by combining

codewords.

1: Each production rule which derives a token representing a note or a rest is repre

sented by three symbols in the appropriate Dynamic Huffman Code, not one. The three

symbols specify the appropriate production rule, as required. The fust also indicates that

the Nature of the token is NATURESimpleNote. The second indicates that the

Nature is NATURERest. The third indicates that the Nature is one of the other possi

ble values. The symbols NATURESimpleNote and NATURERest are removed from

the Nat ure Dynamic Huffman Code, having been made superfluous. The advantage of

this lies in the fact that NATURESirnpleNote is much more frequent than all other

Nature values. and that NATURERest is much more frequent than all the others except

NATURES irnpleNote. In most cases, a single code word suffices to encode both the

production role, and the Nat ure of the loken on its right hand side.

45

2: The tirst production rule of any tree is nOi normally coded. Il is taken to be the pro

duction role deriving the time signature token corresponding ID the default time signature

of the piece. To every Dynamie Huffman Code bclonging to a non-tcnrunal symbol that

can be directly derivcd from the $fart symbol is addcd a special symbol. This symbol indi

cates that the time signature of the measure is not the default time signature of the piecc.

When the encoder finds a tree whose tirst production role does not derive the time signa

ture token conesponding to the default time signatwe, it adds the code word correspond

ing to this special symbol to the innovation output. and explicitly ~ncodes the first

production rule. using the Stalt code. When the decoder encounters this codeword. it

decodes the first productior. role, using the Start code.

3: The non-tenninal symbols TrneWlo.e and Tme4DoNedQJarten each have a symbol

added to their Dynamic Huffman codes specifying the rule type Rule1 : l, and indicat

ing that both "hildren nodes aise have the rule type Rulel : l.

4: No non-lenninal symbol with only one production role has a code. In these cases,

the production role is detennined, not random.

S: The non-lenninal symbols BeamedD.25 and 88ame<1J 125 have one special ~ymbol

indicating the role type RuleBeamed followed by the rule type RuleBeamed at the

child node. followed by the rule type RuleBearned at the grandchild node, and another

special symbol indicating the rule type RuleBeamed followcd by the role type Rule

Beamed at the child node. The non-tenninal symbol86omedJ5 has one special symbol

indicating the role type RuleBeamed followed by the rule type RuleBearned at the

child node.

6: The non-tenninal symbols 8oomed4 and 8oomed8 have four symbols instead of on~

to represent the rule type Ru le 1 : 1. These four symbols indicate that the two children

nodes have rute types Rule1: 1 and Rule1: 1. Rule1: 1 and RuleBeamed. Rule

Beamed and Rule1 : 1, or RuleBeamed and RuleBeamed.

46

{

f
)

2: The first production rule of any ttee is DOl normally coded. It is taken to be the pr0-

duction mie deriving the lime signature token corresponding to the default lime signature

of the piece. To every Dynamic Huffman Code belonging to a non-terminal symbol that

can he directly derived from the StOft symbol is addcd • spcciaJ symbol. This symbol indi

cales that the time signature of the measure is nol the default lime signature of the piece.

When the encoder finds a tree whose tirsl production rule does not dcrive the time signa

ture token corresponding 10 the default time signature, it adds the code word correspond

ing 10 this special symbol to the innovation output, and explicitly encodes the tirst

production mie, using the Stad code. When the decoder encounters this codewon1 it

decodes the fust production role, using the Stan code.

3: The non-tenninal symbols Tme~~ and rm94Doff6dOuatetS each have a symbol

added 10 their Dynamic Huffman codes specifying the rule type Rule1: l, and indicat

ing that both children nodes alsa have the rule type Ru l e 1 : 1.

4: No non-lenninal symbol with only one production rule has a code. In these cases,

the production rule is detennined, not random.

S: The non-lenninal symbols SeomedJ.25 and 8eamedO. 126 have one special symbol

indicating the rule type RuleBeamed followed by the rule type RuleBeamed at t.l)e

child node, followed by the rule type Ru leBeamed at the grandchild node, and anotber

special symbol indicating the rule type RuleBeamed followed by the rule type Rule

Beamed at the child node. The non-lenninal symbol BeomedJ5 has one special symbol

indicating the rule lype RuleBeamed followed by the lule type RuleBeamed al the

child node.

6: The non-tenninal symbols 8eamed4 and Beamed8 have four syrnbols instead of one

10 represent the rule lype Rule1 : 1. These four symbols indicate that the two children

nodes have rule types Rule1: 1 a.rtd Rule1: 1, Rulel : 1 and RuleBeamed, Rule

Beamed and Rulel: l, or RuleBeamed and RuleBeamed.

46

f.
t

i,

f
r

3,3 Compression or Pitch Data

Every node in a derivation tree which represents 1 stem has at leut one pitch vah;;e

associated with il. Sorne have more than one notehead attached, and have a pitch value

asSOCÎated with each one. Stems whose natures indicate grace notes have an additional

pitch value for each grace note.

For simplicity, pitch information is decoupled from rnythmic information, and the

dIfferent voices in a piete are decoupled from each other. This means mat much correla

tion cannot he exploited. However, the music representation system described in the pre

vious chapter is flexible enough to allow such correlation to he exploited by an improved

compression algorithm, and the compression algorithm for pitch data described here can

he expanded to take advantage of this correlation. What is mIuired is a probabilistic

model for musical harmony. Designing and implementing even a simple model wou Id he

difficult, and would require a great deal of musical insight. For this reason, it is beyond

the scope of this thesis. These issues will be discussed in more detail in Chapter S: Con

clusions.

Disregarding the relationship between rhythm and pitch, and the relationship

between different voices, the pitch data of a piece can he considered to be a collection of

pitch value sequences, one sequence per voice, with the provision that a group of pitch

values from the same stem can be so indicated.

Three characteristics of pitch data are exploited in their compression. First, in a given

piece. sorne pitch values will be more likely than others. The set of likely pitch values dif

fers between pieces, and has much to do with the key signature of the piece.

Another characteristic is the importance of the order of pitch values. Contour is the

word used to describe the pattern arising out of a consideration of the relative orders of

pitch values in a sequence. Consider the following example. The first few pi~ch values of

the melody Three Blind Mice are shown in Figure 3.8.

47

\

.

Figure 3.8: 'lb .. Blind Miœ

3 2 3 2 2

Il 0 a 0 • b 0 • • Q • a • • a ,
Th... bIind ma S- how Ihey Nn nv. bInd mice S- how hy Nn

ln the fust half of the sequence shown. the numbers indicate the ranks of the different

pitch values in the sequence.

The imponance of contour is considerable. Experiments have shown that subjects

will usua11y recognise melodies in which pitch values have been changed [16], if the con

tour remains the SarDe. and that subjects often confuse two different melodies whose con

tours are identical [17]. Olten in music, two or more different sequences will share the

same contour. For example. the second half of the melody fragment illustrated above has

the same contour as the finI, although the pitch values are different. Even the pitch inter

vals between corresponding pairs of noies &om cach haJf are not identical. (This latter

fact might seem counterintuitive, on inspection of the above figure, but il is indeed true.)

Another characteristic is the imponance of the distinction between steps andjumps.

Steps of pitch are intervals between two consecutive notes, one of which is on a line, the

other of which is on a space between this line and an adjacent line. (1be interval is thus

either a semitone or atone) Jumps of pilCh are those intervals between consecutive !'1otes

which are larger. The importance of this distinction can he seen by noticing that in a typi

cal piece of music. steps account for a disproportionate number of intervals

Briefty, the compression algorithm works in the following way. Fust. contour infor

mation is extracted from the data. This infonnation incorporates both that which is called

contour above. and the distinction between step and jump. Il takes the fonn of a sequence

of contour symbols. one symbol for each pitch value. The sequence of contour symbols

generated in this way is compressed using the basic string substitution compression algo

rithm. When the encoder encodes a pitch value, it uses the associated contour symbol to

narrow the range of possible values. The sequence of contour symbols is decompressed

48

before the sequence of pitch values. In this wly, the decoder has the same access co the

contour symbols as the encoder has, and decodes pitch values given the contour ~ymbol.

A block diagram of the compression algorithm is pictured in Figure 3.9.

Figure 3.9: The Pitch Compression Algorithm

U~Da .. EncodIHs ~.II"o. ..

PiIctI
Da!a I--_---M

Exncklnol

The alphabet of contour symbols has a size of eight. The contour symbol associated

with a given pitch value depends on the previous two unique pitch values. Two arbitrary

pitch values are ass~med to occur before the tirst in each voice, for the purpose of encod

ing the fust few pitch values. The symbol alphabet is {JUMP _ABOYE, STEP _ AB OVE ,

EQUAL_HIGHE~BETWEEN,EQUAL_LOWER,STEP_BELO~JUMP_BELO~

SM1E_ STEM}. JUMP _AB OVE means that a pitch value is ajump above the hi.gher of the

two previous pitch values. S TEP _ ABOVE indicates the note is a step above, and

EQUAL _ HIGHER means that it is equal in pitch. BETWEEN rneans that the pitch value is

between the two previous unique pitch values. EQUAL_LOWE~ STEP __ BELO~ and

JUMP _BELOW are analogous to EQUAL _HI GHER, S TEP _ABOYE, and JUMP _ABOYE

respecrjvely. The symbol SAME _STEM means that the pitch values belong to a note-head

on the same stem as the previous pitch value. Because the note-heads on a single stem are

ordered from highest to lowest by pitch, the pitch value is always lower than the previous

pitch value. See Figure 3.9 below for sorne examples. The lower of the two illustrclted

notes is assumed co be the iffi1i."?diately previous note. This is only relevant in the

SAME_STEM example.

49

!

PNvIauI
TwoNoe.

'}: : 1
o o

Figure 3.10: Contour Symbois

BE'l"IfEEN SAKE_STEM

o • fi) •
EQUAL_LOWER JUMP BELOW

Pitch, given contour, is compresse<! using a variation of Dynamic Huffman Coding.

For each voice, the frequencies of each pitch value are tallied. Mter each pitch value is

encoded or decodcd, the frequency of that pitch value is incrementcd. A separate Huff

man Code is generated to encode and decode each pitch value. Only those pitch values

which are possible given the associatcd contour symbol are used in the code.

3.4 Compression of Olhee Data

Global data for each piece, the numbers of systems on cach page, and the number of

bars in cach system are compressed using the basic string substitution algorithm.

Auxilial)' infonnation, like pitch infonnation, is decoupled from rhythmic informa

tion, generating a set of six sequences of auxiliary symbols for each voice: dynamic sym

bols, accent symbols, omament symbols, range symbols, octave symbols, slur symbols,

and staccato symbols. These sequences are compresscd using the basic string substitution

algorithm.

SC)

1 Chapter 4: Experiments and Results

In this chapter, experiments and results are presented. Two pieces of music were

entered. They were compressed udng both the music compression algorithm developed

in this research and using the standard string substitution algorithm. In the tirst section,

The Pieces Compressed, the two picces are described. The clements of notation which

could not he represented using the representation system developed in this research are

listed in this section. In the second section, the files generated by the editor and the file of

contour side infonnation generated by the pitch compression algorithm are described.

The names and sizes of these files are tabulated. In the third section, Compressed Files

Generated by the String Substitution Algorithm, the use of the standard string substitu

tion algorithm to compress these files is described, and the file sizes of the compressed

versions are tabulated. In the fourth section, the files generated by the music compression

algorithm are discussed, and the sizes of these files are tabulated. The results are summa

rised in the final section.

4.1 The Pieces Compressed

Two pieces of music were entered and compressed. One was the first movement of

La Primavera from The Four Seasons, by Antonio Vivaldi. The other was the second

movement from Jo.:eph Haydn 's Symphony No. 104 in D major. 80th of these scores can

he found in [18].

The piece by Vivaldi is in five voices: solo violin, first violin, second violin, viola.

and violoncello/double bass. Each voice is wrinen in its own staff, and so there are five

slaves. The key signature denotes four sharps, and does not vary. The time signature

throughout is 2 • The following list tiescribes the notational elements found in this piece

that could not he represented by the present representation system.

1: Numbering of measures. The number of the first measure of each system i5 indi-

SI

------------------- ~------

{

=

cated.

2: Lettering of sections. The lettm A, B, C, D, and E are used ta mark five different

sections of the piece.

3: Figured bass symbols.

4: The tempo marking • Allegro'. Tempo marldngs indicate the speed at which ta per

fonn a passage.

S: Descriptions in old ltalian. These identify particular themes in the music using

analogies with nature. One example is "Vengon' coprendo l'aer di nero an amantolE

Lampi, e tuoni ad annuntiarla eletti", which means '~under and lightning come ta

announce the season, covering the air with a black mantle".

6: Solo and Tutti indications. 'JYpically many individual instruments play a single

voir.e, in unison. For example, several violas might play the voice called 'Viola'. 'Solo'

indicates that a single instrument is to play the following passage. 'Tutti' indicates that all

instruments assigned to a voice are to play the passage.

7: The Fermata symbol, which indicates that the duration of a note is to he extended

beyond its nominal duration.

8: Brackets which indicate natural groupings of staves in a system.

The piece by Haydn is in seventeen voices: 2 flute voices, 2 oboe voices, 2 clarinet

voices, 2 bassoon, 2 horn voices, 2 trumpet voices, timpani, fust violin, second violin,

viola and violoncello/double bass. The pairs of flute, oboe, clarinet, bassoon, horn, and

trumpet voices share a staff, and all other voices have their own staff. There are therefore

eleven staves altogether. The default key signature is one sharp. However, one passage

has a key signature of two 8ats, one of the staves bas a key signature of one ftat through

out, and another tblee staves have a key signature of no accidentais throughouL The

Slaves that have their own characteristic key signatures do so because the instrument

whose voices are written in those Slaves are transposing instruments. The time signature

52

throughout is i . The following list describes the notational clements found in this pie<:e

that could not he represented by the present representation system.

1: Numbering of measures. Every tenth nr.as~ is numhered.

2: The tempo markings 'Andante', 'più largo', and 'a tempo'.

3: The indications Vc. and Bassi. One short passage in the violoncello/double bass

voice is marked 'Ve'., indicating that only violoncellos are to "Iay the passage. Another

shon passage in the same voice is marked 'Bassi', indicating that only double basses arc

toplay.

4: The indication rf.

5: The indication 'zu 2'. This Gennan indication, which means "in 2", is related 10

rhythm.

6: A crescendo marking which begins half way through a note. The marking is

aligned horizontally with a note on another staff, not the note is modifies.

7: Braces which indicate natural groupings of staves in a system.

8: The following rhythms. The figure- below illusttates these rhythms, and shows the

altemate forms of these rhythms that were entered instead, to complete the piece.

Figure 4.1: Unsupported Rhythrm

U,.upported Rhylhms JJJJJJ
6

Altamal8 Rhythms mm JJJJ
3 3

4.2 Files Generated by Editor. and the • me l ody File of Contour Information

A series of files is generated to store the data describing a musicaJ score. The fonnat

of each of these files is discussed below.

A file with the extension. header stores global information about the piece. The

S3

•

(
following data is stored in this file, in the order shown:

• A single byte indicates whether the picce is complete or not, in the sense

described in Appcndix C: A Music Editor. This allows the compression algorithm ta

refuse to attempt the compression of a piccc which is not well-formed.

• The narne of the picce, in ASCII characters, tenninated by a zero byte.

• The page numbcrs of the fust and last pages in the picce, using IWO bytes cach.

• N,. the number of voices in the piece, followed by the names of cach voicc.

• N.t the number of staves in the picce. followed by the names of cach staff.

• N, numbers from 0 to N. - 1. indicating to which staff each voice bclongs.

• N. numbers from 0 to 3, specifying the clef on each staff

• A numbcr from 0 to 15. indicating the default key signature of the picce.

• A numbcr from 0 to 9. indicating the default time signature of the piece.

A file with a • ke y sig extension stores the key signatures of cach measure in cach

staff. The key signatures arc stored in staff-major, measure-minor order. Each key signa

ture is expressed as a number from 0 to 14.

A file having the extension . t ree stores the derivation trees describing rhythmic

infonnation. Nature parameters are not stored here. There is one tree for cach combina

tion of measure and voice. and these trces are stored in voice- major measure-minor

order. Each tree is represented by a sequence of numbers in the range 0 to 26. each

number representing the rule type at a node. The nodes are ordered in pre-order fashion.

A file with a . nat ure extension stores the value of the nature parameter for every

stem in the piece. The nature values of all the stems in a given voice are stored together

as a sequence. The file is a single sequence of nature values. formed by concatenating

these sequences. Numbers from 0 to 12 are used to represent any one of the 13 values of

the Nature parame ter.

A file with a . ra w extension stores, in another fonn, the data contained in the previ

ous two files. It stores the character string representation of the rhythms. The 35 d1fferent

54

---~~--....
characters are mapped to bytes in the range ()"34. 1bese strings are stored in voice major,

measure minor arder.

A file with a . notes extension stores the pitch values of every note-head in a piece.

The pitch values on a single stem are stored in descending order of pitch. The pitch val

ues for each stem in a voice are stored together as a sequence. The file is a single

sequence of pitch values, fonned by concatenating these sequences. Each pitch value is

stored as two bytes. The fust byte specifies the accidt~ntal, and the second byte specifies

the line or space on which the note-head is aligned venica1ly. A dummy byte, whose

value is different from every possible accidentai valuc:, separates pitch values from differ

ent stems.

Files with the extensions. dynamics, • accents, .orn, . range, . octave,

. slu!", and • staccato store the auxiliary symbols associated with cach stem. One

byte is stored in each file for every stem. The order is the same as the order of the nature

values in the • na tu re file. A given file stores the auxiliary symbols of the type sug

gested by its extension. A zero byte indicates the absence of an auxiliary symbol of that

type, and a code from 1 to N specifies one of the N auxiliary symbols of that type.

The pitch compression algorithm generates a file of side infonnation with a . me 1-

ody extension. This file stores the contour symbols for each note-head in the piece. The

order is the same as the order ofpitch values in the *. notes file. Each symbol is repre

sented by a number in the range 0 to 7.

The following table lists the files generated by the editor, and the * . me 1 ody file of

contour information, for both pieces. The sires of the files are shown, in bytes.

55

.

'f

t

•

Table 4.1: Files Generated by the EcIitor, and the * • me 1 od Y Contour File

Spring.header 166 HAYDN.header 283
Spring.keysig 415 HAYDN.keysig 1672
Spring.tree 6083 HAYDN.tree 9432
Spring.nature 2657 HAYDN. nature 3706
Spring.raw 5345 HAYDN.raw 11406
Spring.notes 7653 HAYDN. notes 10854
Spring.dynamics 2657 HAYDN.dynamics 3706
Spring.accents 2657 HAYDN. accents 3706
Spring.ornaments 2657 HAYDN.ornaments 3706
Spring.ranges 2657 HAYDN. range 3706
Spring.octave 2657 HAYDN. octave 3706
Spring.slurs 2657 HAYDN.slur 3706
Spring.staccato 2657 HAYDN. staccato 3706

Spring.melody 2498 HAYDN.melody 3574

4.3 Comoressed Files Generated by the String Substitution Algorithm

The files generated by the editor, and the * . me 1 ody file were compressed using the

String Substitution Algorithm. The source symbols are the individual bytes. 'The source

alphabet for a given file is not the set of possible byte values from 0 to 255, but only the

subsel of these values thal have any meaning in that file. The names and sizes of the com

pressed files are shown below. The file names of the source files and the corresponding

code files are identical. They are distinguished by the directory in which they appear.

Table 4.2: Files Generated by String Substitution Aigorithm

Spring.header 122 HAYDN.header 208
Spring.keysig 24 HAYDN.keysig 84
Spring.tree 900 HAYDN.tree 1542
Spring.nature 192 HAYDN. nature 309
Spring.raw 1104 HAYDN.raw 2175
Spring.notes 1555 HAYDN. notes 3575
Spring.dynamics 56 HAYDN.dynamics 243
Spring.accents 49 HAYDN. accents 360
Spring.ornaments 74 HAYDN.ornaments 17
Spring.ranges 16 HAYDN. range 19
Spring.octave 16 HAYDN. octave 19
Spring.slurs 158 HAYDN.slur 418
Spring.staccato 15 HAYDN. staccato 17

56

Spring.melody 679 HAYDN.melody 1390

4.4 Compressee! Files Generated by the Music Compression Aigorithm

The files generated by the music compression algorithm have extensions. inno-

vation, • treestrings, and • residue. The'" • innovation file stores the code

words generated as the innovation output of the rhythm compression algorithm. The

• treestring file stores the code words generated as the treestring output of the

rhythm compression algorithm. The file names and sizes are tabulated below.

Table 4.3: Files Generated by the Music Compression Aigorithm

Spring. innovation 273
Spring. treestrings 198
Spring.residue 230

4.5 A Summary of the Results

HAYDN. innovation
HAYDN. trE.·estrings
HAYDN.residue

183
587
676

The following figure illustrates the relative file sizes for five differenl representations

of the rhythm data of the Vivaldi piece. The tirst representation is the two uncompressed

files Spring. nat ure and Spring. tree, generated by the editor. This representa

tion is the Rhythm Grammar Tree version of the rhythm data. The second is the com

pressed versions of these two files, generated by the string substitution algorithm. The

third is the file Spr ing. raw, an alternate representation of the same rhythm data gener

ated by the editor. This representation is the character string version of the rhythm data.

The fourth is the compressed fOTm of the Spr ing . raw data. The fifth is the two files

Spring. innovation and Spring. treestring, generaled by the Music Com

pression Algorithm.

57

Figure 4.2: File Sizes in the Representations or Spr ing Rhythm Data

1000_

700()_ Spr nll.n .. ure

8000_

5000_

4000_

300()_ S~ InQ.t ee

2000_

A F_con"'l'IIng
Rhythm Grammar

T,... versIOn of
rhythmec de ..

B F .. ofA,
comprlUlOl'l UIIng

Ile ,tandard
aIgonllm

S rlnQ.r ..

+ .. +
o FlleaotC,ahIr
~\aeng

the atandMI
aIgontIm

SprlnQ.tr ••• trlnQa

E:3
SprlnQ.lnnov .. tlon

1be foUowing figure illustrates the relative file sizes for the same five ditTerenl ~pre

sentations of the rhythm data of the Haydn piece.

58

Figure 4.3: File Sizes in the Representation or BArD. Rhythm Data

11 '!!2.-

10'!!2.-
HA ON. nAt re

8000_

1000_

7000_

6000_

5000_

402!!-. H YDN.tr e

3000_

2000_

'022.-

0_

A Files conl8lnmg
Rhythm Grammer

TnIe V8fUX\ of
my1hfI'IIC da ..

HAYDN.nature

fl
B Files 01 A, alter
compl'esSiOtl U5Ing

the standaud
aIgonlh",

YON.r

C FM oonl8lf'IIng
ctunCl. 5hIg

V9nwon of mythmlC
dl ..

o Files of C, ahar
compre6Ston UlIng ... ~

algonIhm

HAYDN. InnovatIon

HAYD~lnQ.

E F~86 gonerallKt
by speaal58d

mu&IC oompre6SK)n
algorlflm

The following figure ilJustrates the relative file SilCS for three difT",:ent representa

tions of the pitch data of the Vivalc1j piece. The firsl representation is the file. notes,

generated by the editor. The second is the compressed version of the. notes file. The

third is a combination of two files: the compressed version of the. me l ody file. and the

. residue file generated by the pitch compression algorithm.

S9

;

'.
.:100_

7000_

1000_

5000_

4000_

3000_

2000_

'022.-

0_

Figure 4.4: File Sizes in the Repres4~tation of Spr ing Pitch Data

Sp lnQ.no .,

A File eonlalnll1g
pik:h Inloon.1IOn

SprlnQ.re.ldue

Sp§y

The following figure illustrates the relative file sizes for the SarDe three ditTerent rep

resentations of the pitch data of the Haydn piece.

60

eooo_

8000_

6000_

5000_

3000_

200C)_

Figure 4.5: File Sizes in the Representation of HAYDN Pitch Data

N.no _

A' Flle containeng
pi,,*, Intorm.lIOn

H~ ON. not je-

HA ON .mel dy

B File ln A compressed C F genet.1ad by
U511'1g the 5~ apecaali&ed mu.1e

aIgonthm oompntI&lOn aIgonlhm

61

.

Chapter 5: Conclusions

ln this chapter, conclusions are drawn from the research. The conclusions are organ

ised into four groups, which are discussed in the four sections of mis chapter. ln the tirst

section, The Music Representation System, conclusions relating to the music representa

tion system an: drawn. The second section, Rhythm Compression, contains conclusions

about the rhythm compression algorithm. The third section. Pitch Compression, deals

with conclusions relating to d\e compression of pitch data. ln the final section, Compres

sion of Other Data, conclusions on the compression of otber data are drawn.

One may summarise the conlusions as follows. Until the more difficult problem of

representation of music by computer has been satisfactorily solved. the compression of

musical data cannot he full y addressed. However, the algorithm developed here handIes

the basic elements of music notation, and can he expanded to take advantage of hener

representation systems. Significantly higher compression ratios are achieved using the

designed algorithms vis-à-vis those achieved using a standard general data compression

algorithm.

5.1 The Music Representation System

One of the considerations used in the design of a representation system was that

simultaneous notes in different voices should he easily accessible. In most cases. such

notes are indeed easily accessible. The rhythms in two difIerent voices within the same

rneasure are cenainly easHy accessible, since measure-Iong rbythms are indexed by

measure. Within a measure, simultaneous notes in two difIerent voices can he found in

the following way. The two rhythm grammar trees representing the measure long

rbythms in the lWO voices are traversed together. Simultaneous notes can be obtained by

traversing similar paths through the two trees. (Recall that the ratio of the durations of a

node's children is determined by the rule type stored at the node.) Typically, the two trees

62

;'

1

will have a lot of paths from the root node in common. However, the accrss or' simultane

ous notes is more difficult when there is syncopation Ol cross rhythms hetwcen two

voices.

Another consideration was that the system should he easily expandable. Described

helow is sorne evidence that expansion is possible without changing what is already in

place.

1: The hierarchical structure of the music representation system allows new symbols

to he added in many different contexts.

2: Many addition al time signatures could he recognised with minor additions.

Although only the most common rime signatures are recognised in the present system,

they include examples of both duple time signatures, triple rime signatures, and com

pound rime signatures. Other time signatures can he included by following the model in

the present system.

3: More mies can be added 10 the rhythm grammar to handle irregular and infrequenl

cases.

Oearly, the representation of auxiliary infonnation is weak. Most of the notation in

the two pieces that could not be represented bore auxiliary information. This weakness is

largely due to the difficulty of such representation.

S.2 Rhythm Compression

The important comparisons of file size to be made here are between the compressed

versk~ of the * . raw file, the compressed versions of the pair of files * . t ree and

* .nature, and the pair of files *. innovation and *. treestring generated by

the music compression algorithm. The sizes of the pre-compressed files are not 50 mean

ingful to compare, either with each other, or with the compressed files, since the alphabet

sizes are different, and at the same rime smaller than 256, the number of difTerenl byte

values. Also, they depend too much on the particulars of the external coding language,

63

,
,

which although reasonably consise, is not designed with consiseness in mind.

The specialised music compression algorithm perfomcd considerably better than the

standard algorithm perfonned on either of the two altemate representations of rhythm. It

has the following advantages:

1: ft can nOI encode ungrammatical rhythms. 1be savings in not having ID reserve

code wonl strings for ungrammaticaI rhythms is considerable. A compression algorithm

in which rhythm is represenled as a sequence of durations would not have this advantage.

2: Il combines rhythmic information into naturaI measure-Iong units. This decreases

index sizes in the string substitution algorithm. (Combining rhythmic infonnation like

this can he a disadvant3ge when there are severa! near-identieal measures in a piece.)

3: Il exploits the repeated appearance of rhythmie patterns in the same conlext.

In all thru compressed representations of the SarDe information, the repetition of

rhythmic patterns in arbitrary conlexts is exploited.

The rhythm compression algorithm has potentiaI for improvement. Most notably, the

correlation between rhythms in different voices, which is not exploited by the present

algorithm, should he exploited.

5.3 Pitch Compression

Here, 100, the imponatil comparison is between the compressed representations of

the data. On one hand, there is the compressed file * . notes, and on the other, there is

the compressed file * . melody and the file * . residue generated by the pitch com

pression algorithm.

The pitch compression algorithm is very simple. It merely extracts side information

from the data, and encodes both the side infonnation, and enough data to reconstruct the

pitch data from this side infonnation. And yet, il achieves a signifieanl amount more

compression than the string compression algorithm does. Il seems 10 be a useful tech-

ni't~e.

64

,
r
r,
(
r.

There is much polential for improvemenl in the pilCh compression algorithm. The

correlation between pitches in different voices is very impc>nant, and 50 is the relation-

ship between rhythm and pitch.

Improvements designed to exploit these correlations can he made without sacrificing

the ability to consider contour. 'IWo recommended improvements are the following.

Filst, sorne of the relationship between pitch and rhythm cou Id he exploited by

developing a compression algorithm for contour infonnation that would consider the

rhythmic context of a sequence of notes. Sequences of notes whose contours are the Sante

often have the same rhythm.

Second, a probabilistic model for hannony could be incorporated inlo the pitch com

pression a1gorithm. to take advantage of the correlation between pitches in different

voices. Even a simple model might he very useful, although any model developed should

he designed by 5Omeone with expertise in musical hannony. Such a model could he used

to estimate the probabilities of the pitch values in the range defined by a contour symbol.

5.4 Compression of Other Data

The results of the compression of other data are not very significant. No specialised

algorithm was designed to compress these data, and the representation of the data is far

from complete. However, a rough idea of how much space these data take up in their

compressed fonn can he had.

A1though the design of a better representation system for these data should precede

much more consideration of the design of a better a1gorithm to compress these data, one

recommendation can be made.

Slurs are common enough that a model for them might be used to advantage in a

compression algorithm for auxiliary data. They are strongly related to rhythm and so a

model for slurs might consider rhythmic contexL

6S

(

.

Appendix A: Music Notation

In this appendix, figtRs illustrate elements of music notation. Labels identify these

cJements, and the accompanying text conlkins funher discussion. Only those symbols of

music notation supported by the computer representation system are inc1uded in this

appendix. For further information on music notation, see [19].

The appendix serves two purposes. It introduces music notation to the unversed

reader. It is also a reference, in which the reader can look up unfamiJiar musical lerms.

The most imponant symbols of music notation are Mtes and rests. ta which other

symbols play a supponing role. The next figure shows sorne of the notational elements

from which one can form notes. The note-head can be either solid or hollow, and i:, typi

cally attached to a stem. Each stem has one or more note-hcads attached to il The direc

tion of the stem can he up or down. Up to fivejÙJgs may he attached to a stem, or n()ne al

all.

A whole note consists of a hollow note-head without a stem. A hollow note-head

with a stem is a half noIe. A solid note-head with a bare stem is a qUlJ11er note. By adding

ftags, one can construct an eighth Mte, a sixteenth note, a thirty-second note, or a sixty

fourth MIe, as shown.

Figure A.t: Note-heads, Stems, and Flags

As shown in the next figure, the rests have names similar to those of the notes. The

basic rests are the who/e rest, the half rest, the quarter rest, the eighlh rest, the sixteenth

rest, the thirty-second rest, and the sixty-fourth rest. Note that ftags on rests are analogous

66

to those on stems.

Figure A.2: Rats

7 ., If " WhoIe Real HaIt Real 0uaI1er Rnl Elghlh Re.. SIlCteench AM. Thtrty-MClOf1d ~
Sulty-Iourth ~I

The Dames of the notes and rests inrucate their relative durations, in an obvious way.

The half note and the half rest, for example, have a duration half thal of a whole nOie.

Beam notation provides an altemate way to represent groups of flagged notes. Exam

pIes of beam notation are illustrated in the nexi figure. Beams bind together two or more

unflagged stems. Beams cao be nested, but cannot overlap. Sometimes a half-beam is

attached to a single note, but never at the outennost level. Each beam crossing or touch

ing a given note acts as a flag does. For example, the fust beamed group consists of two

eighth notes; the second group, two thirty-second notes followed by a sixteenth note; the

lasl group, a sixteenth note followed by an eighth note, followed bya sixteenth note.

n
Figure A.3: Beams

8earnI

~JS lm W
Half-s.m.

The tremolo bar is a shorthand notation for repealed notes. A stem with N tremolo

bars represellis a group of nOies joined by N beams. The number of notes represented is

5uch that the total dUTation of the replaced notes equals the nominal duration of the note

having tremolo bars.Two ex amples appear in the n("1(t figure, with their equivalent

beamul groups

67

{

------- -------

Figure A.4: The Tremolo Bar

1 = JJJJJJJJ

The dol increases the duration of 2 note or l'eSI by one half, and the double dol

increascs il by three quaners. These follow the note-head they modify, as shown in the

following figure. The modified nOle-head or rest is then called doned or double dont!d.

The lie can joïn two adjacent nOIes at the same verticallevel. The second becomes sUent,

and ilS duration is added to that of the firsL For example, the eighth nOie tied to the half

note in the next figure increases the duration of the half note to five eighths that of a

whole note.

Figure A.5: Dots and Ties

~ J n
Dot

A triplet is a group of notes and Tests whose durations are reduced by a factor of 3/2.

The digit '3' marks the group. The use of the name triplet and the designation of a triplet

by the digit '3' are related to the facl that the triplet is usually a group or three notes of

equal duration, whose durations are shonened 50 that they can be played in the time usu

ally taken for two notes. See below sorne examples of triplets.

68

Figure A.6: Triplets

3

LU 7[.J
3

3 rrrr JJ
3

Grace notes do not have any nominal duration. In practice. they are very shon. and

the duration of the following note is shonened by the duration of the grace note. They

sometimes appear in small groups. Sorne examples of grace notes an~ shown below.

Figure A.7: Grace Notes

A set offive horizontal lines called a sIajf(pl. slaves) frames the notes and rests. The

centre of each note-head aligns venically with either a Hne, or the space between two

lines. Ledger Unes are used to ex tend the range of a staff to illclude note-heads that fall

above or below the staff. Bar-Unes divide the staff into units called measures, and a spe

cial double bar-Une ends a piece.

Figure A.8: The Staff

The vertical position of a note-head is one of the things that indicates the pilCh of a

note. Pitch is the fundamental frequency of the sound to he made by a musician playing

the note. The vertical distance between notes js roughly proportional to the logari~hm of

(

(

the ratio of their corre~;KH1ding frequencies.

Clefs esrablish a pirch ~ference for the notes that follow on the same staff. 'The four

clefs are illustraled in the next figure. The pitch ~ferences established by these clefs are

such thal the four notes in thal figure have the same pitch. Oefs appel&!' at the beginning

of a staff and in those places where the clef changes.

Figure A.9: Ciels

liB e liB • • l'): 4

Pitch also depends on other symbols, called accidentais. The seven accidentaIs are

illustrated in the next figure. An accidentai changes the pilCh of the nOIe immediately 10

its righl, and all other notes having the same vertical position between this noIe and the

end of the measure. A Jcey sig1UJture is a group of accidentaIs which establishes the

default pitches for cach line and space on the staff. Only sharps and flats can fonn a key

signature, and only certain combinations occur. The key signature is repeated on every

staff, immediately after the clef, as shown. Sometimes the key changes in the middle of a

staff. ln this case, the key signature begins the first measure 10 which il applies.

Figure A.lO: Accidentais and KeySignatures

A time signatlue indicates the duration of the following measures. Il also gives sorne

information on how the measure moSI nalurally subdivides into note durations. The lime

signature is only printed al the beginning of a piece, and where il changes. Il appears

70

,

immediately after the key signature, as shown in the next figure. The diffe~nt time signa

tures are illustrated 10 the right in the same figure. These latter lime signatures spccify

IWo-four lime, Ihrte10UT lime, and 50 on. The fraction obtained by taking the top number

as the numerator, and the bottom number as the denominator, is the duration of each

measure, expresscd as a fraction of the duration of. whole note.

Figure A.ll: TilDe Signatures

A voice is the name given to a sequence of related notes. For exampJe, the sequence

of notes played by a viola in a string quartet would be the viola voice. The notes withill a

voice are usually written on the same staff. More than one voice may appear on the same

staff. Staves on a page of music ~ oJ'ganised into groups called systems, as shown in the

next figure. A voice in one staff is played simultaneously with any other voices on the

same staff, and any other voices on other slaves in the same system. If a page has mo~

than one system, as in the page shown below, then the systems are played one after

another

71

"

r ,

Figure A.12: Organisation 01 Staves

,
"JL

.

...

Several auxiliary symbols are shown in the next figure. The either mark a note, in

which case they align venically with the note, or they mark a range of notes, and extend

from the first note to the last. Dynamic markings indicate the loudness of a range of notes.

They apply to the note they mark and remain in effect until another dynamic marking

appears. Accents apply 10 a single note. They indicate that the note should he played

10uder, and sometimes shoner than ilS nominal! duradon. In this latter case, the full dura-

tion is made up with succeeding silence. Ornaments indicate the addition of extra notes

for decorative effect. Sorne special dynamic symbols apply to a range of notes and indi

cale that the loudness should increase or decrease continuously over the range. Octave

shift markings signify that the notes within a range should be played an octave higher or

lower in pitch. An octave shift higher in pitch corresponds to a doubling of frequency.

Slurs, too apply to ranges of notes. They can mark groups of notes called phrases, or indi

cale. that the notes within are to be played in a non-detached manner.

72

Figure A.13: Auxiliary Symbols

pp mp f fJf

DynlllTlICI JFJF.tFJF
ppp p ml fi

> A st tr N MI r r r r r r Ornementa

-c::::::

Range OynanllCl!i J ... J rrrJJJ J ... r
cresc ____ ~ ::::::-- dim ____ ~

JJJJJ J r Staa:ato

~ ... ~
8WJ _______ .J

73

Appendix B: A Rhythm Grammar

This appendix contains the complete specification of the Rhythm Grammar, a con

rext-free grammar [20]. A series of definitions. leading to the definition of context-me

grammar serves as an introduction. For details see the reference.

An alphabet l is a finite, non-empty set of symbols.

A string over an alphabet l is a finite sequence of elements of :E.

The sequence of zero symbols is called the empty string, and is denoted A.

Let z = X1X'2, ... XN and y = Y1Y2 ... Y", be strings. The concatenation of strings x and y,
xy is the string XIX2",XNYIY2'''Y.,

Let X and Y be sets of strings. The concatenation of sets X and y, XY, is the set
{zYI z eX" Y e Y}

H X is a set of strings. define Jt = {A} and)(= xr- 1 for i ~ 1.

Note that one can consider an alphabet as a set of strings, each string being a
sequence of one symbol. Define r = U,~ r. Intuitively, r is the set of strings over :E.

A langUllge over :E is any subset L (;; r .
A context1ree grammar is a 4-tuple (N, T. P. S) • where N and T are alphabets, such

that N n T = (2). P (;; N x (N un· . and SeN. N is called the non-terminal alphabet. T, the
terminal alphabet. p. the set ofproductions; and S. the stan symbol.

The Rhythm Grammar is a context-free grammar. The following symbols are the ele-

ments of N:

WhoIe
Half
Quarter
Eighth
SlCIeenth
lhIrtySecond
Sxtyfourth
Beamed
WhoIeRest
TwoFou
Threo8ght
TwoTwo
TwoThreeFour
(

<

DottedWhole
DottedHal1
DottedQuorter
DottedBghth
DottedSldeen1i'\
DottedTNt1ySe<:ond

DottedBeamed

ThreeFou
SxElght
ThreeTwo
ThreeTwoFolr
)

>

The following symbols are the elements of T:

74

Doub/eDottedHalf
Doub/eDottedQuarter
Doub/eDottedBghth
Doub/eDottedSixteenh

Doub/eDottedBeomed

FOl/l'Fou'
TwelveElght

Stoo
nme\Nhole
nmeSth
nme64th
nme4DottedQuart811
nme3Hotv.
nme3Quorters
Beom9016
Beomed2
Beomed05

TlmeHolt
Tlrne16th

Tme2DottedQ.Jorters

8eomed8
8eomedl
8eomedJ25

TlmeQuorter
Tlme32nd

nmeOottedQJooer

8eom8d4

BeomedO 125

The elements of P, ca1ied productions, are ordered pairs (A, ~) , with Â e N and

P E (N un· . A common notation used to represent a production is A -+ p, read A directly

derives p. Ais called the subjecl, and p the righl hand sùle. The following are the ele

ments of P:

Stan -+ lwoFour TmeHatf
Stan -+ nv..Fouf Tine3Quar1etJ
Stan Fourfour 1tne~
Statt 1hNefJght rmeoottedQ)at81
Statt SbI.EJght Tme2DottedQuattetJ
Stan lwelvellght 'Tltnê4DottedQuarl81S
Stan ... lwo1tvNFour TineHalfTme3Quort81S
Stan nv..TwoFour Tme3Quort81S TiTleHaIt
Start lwolwo Tlme~
Stan -+ nv..Two TmeJHalv.

Start 1'WoFour WhoIeI ...
Stan -+ nv..Four WhoWle.
Statt Fourfour WhoIeh.t
Start 1tfte(Jght Who
Start SbElght WhoIeIeIl
Start -+ lwelvellght WhoIeIt ...
Stort -+ lwolhtMf'ow WhoIeh.
Statt -+ nv..TwoFour Who,
StOt1 lwolwo WhoIe
Statt lIv •• Two WhoIeI_

nme4DottedQuJrt81S TmeDott9dQuort9f DottedHai TiTleDottedQuort9f
nme4DottedQuart81S Tme2DottedQuort81S Tme2DoHedQJart81S
nme4DottedQuart81S -+ DottedWhole

Tlme2DottedQua'181S TlmeDottedOuort9f TlmeDoHedOuarter
nme2DottedQucnt81S DoHedHal

TmeDottedQuar19f DoHedQuartef
Tm900ttedQuaf_ -t (Beaned3»
TineDottedQuan'9f -+ Quart., Tlme8ttl
TmeDottedQuarter -+ Tme8th Quart.
Tin900ttedQuart\)f.... Tlme8th Tin98th nms8ttl
TineDottedQuartElf.... TlmeBth DottedElghlh Tlme/6ftl
TineDottedQuarter -+ DottedElghIh TiTlel6th Tme8th

Tlme3Holv96 -~ WhoIé TlmeHaf
TlmeJHolves -+ llmeHalf WhoIe
Tine3Hofves -+ TlmeHolf TlmeHaf T/meHdf
Tine3Hafves ~ DoHedWhoIe
Tme3Halves.... TlmeHaIf DottedHal TlmeQuater
Tine3Halves DoHedHalf TlmeQuart9f TlmeHolt

15

rm.~ ... 'TItneHaf TmeHdf
Ttn.~ ... DoftIdHaI7meQ.a1.,
Ttn.~ ... DGllbleDo ~
Ttn~ ... TmeQJarl., DoIIedIai
Ttn.~",.".., Doub'elloAldlal
Ttn.~ ... WhoIe
Ttn.~ -+ TmeO.Jater Hal TtneQxJrler

Tme30JartM ... Hal TmeQJart.

Tme30Jarters ... '1IrneQuarler Hal
Ttne3QuanetS -+ TlmeQuater TtneQ.Jater TmeQJarler
Tme30Jarters -+ (8eanecU) JmeQ.ater
Tme3Quafters -+ '1IrneQuarl., 8eameôI
TmeJQ.aters -+ DotIecIIaI
Tme3QJatters -+ (8ean8d6)
Tme3Quat." -+ 1ineQ.ot., DottedQI Tme81tl
TmeJQ.atM -+ DoftedQuartw 1meIIh TtneOIJatfer

TtneHalf -+ TmeQ.ater TtneQ.at.,
TtneHalf -+ DohdQuarIer 1meIIh
TtneHalf ... Doub .. DoIt.dQ Ttne 16th
TineHalf'" Tm.." DoIIedQucIIW
TtneHatr ... Tme'6th~aIef
TtneHalf ... Hal
TineHalf'" Tme8th Quarter 1:. neath
TtneHalf'" (BeanecU)

T/meQJater'" TlrneMtl Ttnelth
TlmlilQJater ... Do~ Ttn.,61h
'Iltn4JQuaft • .. ~ Ttne32nd
TltneQuafter'" Tme '6th DoeIidEIgIII'
'Iltn4JQuafter ... T1me32nd DoubIeDoftedEJg
TmeQuort. -+ QuaIter
T/meQuart. ... Tme '6th EIghIh Ttne,6ttI
T1msQuarter -+ (8eaned2)

T1meQuarler -+ < TmeDo"edQuarter:.

Tlme8th ... TIm. '6th TIme '6th
TlmeMh ... DoItecSSatMnIh Tmel2nd
TlmeMfl -+ ~ Tlrne64th
TlmeMh -+ TlmeJ2nd DoItedSbdHnIh
T/rrI88ttl -+ Tlme64th ~Iti
Tlme8th -+ Elghlti
Tlme8th -+ TlmeJ2nd SlldMnIi Tm632nd
Tlme8th -+ (Beaned')

Tm.,6th -+ Tlme32nd Ttne32nd
Ttnel6th -+ Do~ rme32nd
Tm.,6th -+ ~ond 1ine64th
Tin./6th -+ T1me32nd Dottecm*tySeconcl
Tin.,6th ... Tme64ttlDoub"D~ond
Tm. ,6th -+ SlxtMntn
Tm. ,6th -+ Tlme64th lhIItySecond Tme64th
Tin.,6th ... (/J6anedJ 5)

T/m...~ -+ T1me64th Tme64th
TIm8J2nd -+ 1hIrtySecond
TImeJ2nd -+ (8eanedJ 25)

Tine64ffl -+ SlxtyFowth
Tine64ffl -+ (Bear!edJ 125)

8eomed /6 -+ Beaned8 BeanedB

Beomed6 -+ 8eaned2 Beaned2 8eaned2
Beamed8 ... 8eaned4 BeanecU
Beamed8 (Beaned 16)

76

~ ... e.an.d2 1Jecm«12
a.am.d4 ... (lJecmedl)

8eamed3 -. C 1Jecm~)
8eamed3 -. 8eaned llJecmeclllJeaned 1
8eomed3 ~ (a.an.dl) Beamed 1
8eamedJ 8eaned 1 DottadIeG.wd (8eomec1/)
8eomed3 (lJeanecU) s.arn.d /
8eamed3 8eaned 1 (lJeatrt.o4)

8eomed2 ... 8eaned IlJeaned 1
8eom8d2 DoItedIwrned (lJeamed 1)
8eam8d2 DoubNOoItedIeanwd ((8eomed 1))
8eamed2 (fJeaned 1) DottadIeamed
lJeorned2 ... (8eanfldl) leanled (8earlfld/)
~ (1Jeaned4)
lJeorned2 ... < s.arn.d3 >

IJeatn«Il -. 8eaT!ecf) 5 BeanedJ 5
lJeomed 1 C fJeaned2)
8eamed 1 -. Iec:wned

860me<1J 5 8eaT!ecIl25 8ea'ne<1J 25
860me<1J.5 (Beaned,)

8eom6CKJ 25 .. Beanecll 125 B9ClfTIe<1} 125

Beam9dJ 125 (Beaned) 25)

n

e

J

Appendix C: A Music Editor

The editor. directed by user input. builds the data structure representing a piece of

music. The edÎlor focuses in on 1 combination of one measure and one pan at a time. The

user can add, change or delete information within Ibis restricted scope, or m>ve between

different measures and parts. Six windows display infonnation to the user and accept user

input. These are the Dialogue window, the File window, the Index window, the Music

window. and the Auxiliary window.

The Dialogue window is used to prompt the user for texl, accept this input, and dis-

play error messages.

Figure C.I: The Dialogue Window

New: Are you sure? y
Confirmed
What is the name of the piece? Der Ring des Nibelungen
Enter number of first page: -1
Error: Non Positive
Enter number of first page: 1
Enter number of last page: 6345
Enter total number of parts: 20
What is the name of this part? (Number 1 of 20) Violin l

The File window displays five boxes to the user, each of which the user can select

using the mouse. The boxes are labelled Save, Load, New, Quit, and Done.

Whenever the user selects the Save box, the dialogue window prompts the user for a

file name, and the editor saves the current description to disk. SeveraJ files are generated,

each having a different extension. The saved description need not be a complete descrip

tion of a piece. but if il is the file is so marked.

The user can retrieve a description in the same way, u~,ing the Load box. Because

any description in memory is erased when a description is loaded, the user is asked to

confirm the selection before the load is performed.

78

Selecting the Quit box and confinning the selection halts the editor. No descriptions

are saved aUlomatically.

After selectim~ the New box, and confinning. the editor c1ears any existi,tg descrip

tion and initiales a dialogue with the user in the Dialogue window In this dialogue, the

user must enter ail the global infonnation for the new piece; that is, all the simple param

eters of the PIE CE structure.

The user may want to know if the cunent description is complete. Selecting the

Done box obtains the answer. If the cunent description is complete. the Dialogue window

will say 50. Otherwi.;e, the editor finds the fust gap in the data that must he filJed. and the

dialogue window indicates ilS location. Sorne musical notation is mCldental, in the sense

that its absence will no! make a correctly notated picce of music incorrect. If such infor

mation has not been entt~red. we editor will not know that it is missmg. It is the user's

responsibility 10 ensure thal ail the incidental notation is correctly entered.

Figure C.2: The File Window

~

Load Save New Quit Done

The Index window serves two purposes. Il indicates whlch measure and pan are cur

renl, and allows the user to make a new measure or pan CUITent.

To specify the current measure. the Index window displays the page number. the sys

tem number, and the measure number. If no system for the CUITent page has been defined.

then the system number and measure number are omitted. The pan is identified by name.

Five other pieces of information are also displayed, as helpful rerr.inders: The staff with

which the current pan is associated, the clef belonging to this staff, the name of the piece,

the default key signature, and the default lime signature.

The user changes measure or pan by selecling boxes at the left of the window. Two

79

buttons beside the page number can he selected 10 change page. Depending on the box

selected and the mouse button pressed to select il. the new page is either the fust page, the

last page, the previous P4 ~e, the next page, or an arbitrary page. ln this last case, the user

is prompted for the page number in the dialogue window. Two buttons also appear to the

left of the measure number and part number. Measures and pans can he changed in

exactly the same way as pages. The system number has only on box beside it. Depending

on how il is selected, the new system is either the tirst system or the next system. Select

ing this box while the control key is pressed cither insens a new system after the cUlTent

system. or deletes the current system. If a new system is inserted, the user is askeel how

many measures il has.

Figure C.J: The Index Window

Piace: Der Ring des Nibelungen

1 FIL 1 P/NI Page: 1 of 1 to 6243

ŒZffi System: 1

1 F/Îij P/NI Measure: 1 of 5

1 FIL 1 P/NI Part: 1, (Violin 1)

Staff: 1, (First) (Treble)

lime Signature: 4 or 4

Key Signature: 31

The music window displays all the available infonnation on the cunent part within

the scope of the current measure. The window consists of three horizontal panels, which

display, from top to bottom, rhythm, pitch, and auxiliary information.

If a syntactically correct rhythm has been entered for the current measure, it is dis

played in the top panel. It is displayed in rhythm notation, not the character string nota-

tion in which il is cntered. However, the space allocated to I~ach note and rest IS

proportion al to its duration. This makes the layout of the notation somewhat odd in

appearance.

80

,1>

A cursor moves form left to right over the notes in the rhythm notation (rhythm

notes), activated by the left and righl armw keys. l'be cursor's horizontal position must

align with the horizontal position of one of the rhythm note symbols.

The middle panel contains a staff, whic:.h runs the length of the panel. If the top panel

contains a rhythm, there may he pitch values indicated on this staff. The pitch values are

denoted by whole notes (pitch notes) on the appropriate line or space, directly below the

rhythm notes to which they apply. Accidentais appear before these pitch notes if neces-

sary.

Figure C.4: The Music: Window

4/4 J J ~ l 1-) .., IJ
31

:7' - E • • ,. .. • iii 1

A3
R3

The Note Window displays a greatly enlarge.d staff, with four ledger lines up and

down. A whole note appears in every pitch position. A note is selected by movlOg the

pointer over the note and pressing a mouse button. The choice of mouse button, the stale

of the control key, and the state of the shift ke)' detennine which accidentaI to aSl>OClate

with the note. When a note and an accidental have been thus selected, they appear in the

middle panel of the Music window, undemeath the rhythm note which the cursor is over.

81

Figure COS: The Note Wando"

The Auxiliary window displays an array of boxes, each mapping to a panicular aux

iliary symbol. An alphanumeric rnnemonic is printed in the middle of each box as an

indication of the symbol il represents. An auxiliary syrnbol is selected using the mouse,

and the appropriate syrnbol is represented in the bottom panel of the Music window,

beneath the rhythm note marked by the cursor.

Only one box from each row can be selected at a rime, because the boxes in each row

represent mutually exclusive symbols. In the Music window, the symbols are represented

by a letter and number combination. The letter designates the row of the Auxiliary win

dow matrix from which the symbol was selected, and the number represenls the column.

The user can enter a rhythm using the Dialogue window. To initiate this, the user tirst

presses the escape key. If the cUITent page has at least one system defined, then the Dia

logue window will prompt the user to enter a rhythm. The user can then type in the char

acter string description of the rhythm. If the rhythm is syntactically correct, then il is

displayed in the Music window. Otherwise. the Dialogue window will indicate dIat the

82

"

string was incorrect, and will prompt the user again for a rhythm.

Two relaxations of the characlCr string syntax are pennitted. If the time signature in

the measure-Iong bar is the same as the default time signature of the piece, the lime sig

nature may be omitted. It is added automatically before the string is processed by the lex

ical analyser. The user may also begin the input string with a substring indicating a key

signature, if the key signature within the measure is not the same as the defauh key signa

ture of the piece. This substring will he one of the following: ' . " '1 i '. '2.', '3 i', '4".
'5", '6", '7", 'lb', '2b', '3b', '4b', 'Sb', '6b', '7b'. The period denotes a key sig-

nature of no sharps or flats. The '. 'represents a sharp, and 'b' represents a fiat. The digit

indicates the number of accidentaIs in the key signature, whether sharps or flats. Any sub

string indicating a key signature will be removed before the string reaches the leXical

processor.

Figure C.6: The Auxiliary Window

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 ppp pp p mp mf f ft fff

A > " sf

0 tr 00 w ~

R cre dec < >

V 8v ... 8" ...
S Il 1 V \ \\

T

83

.

References

[IJ C. Roads "An Overview of Music Representations" in M. Baroni and L. Cal

Jegeri (eds.), Musical Grammar ... and Compuzer Analysis, Lco S. Olschki, Florence,

1984.

[2] T. Winograd, "Linguistics and the Computer Analysis of Tonal Hannony", Jour

nal of Music Theory 12, pp. 2-49, 1968.

(3J N.P. Caner, R. A. Bacon, and T. Messenger, ''The Acquisition, Representation,

and Reconstruction of Printed Music by Computer: A Review". CompUlers and I~

Humanitiel', vol. 22, pp. 117-136, 1988.

[4] A. R. Brinkman, "Representing Musical Scores for Computer Analysis", Jour

nal of Music Theory 30, pp, 225-275, 1986.

[5] R. F. Erickson and A. Wolff, "The DARMS Project: Implementation of an Ani

ficial Language for the Representation of Music", Trends in Linguistics (Studies and

MOlWgraphs, /9). Berlin and New York: Mouton, pp.171-219, 1983

[6] J. Wenker, "MUSTRAN II - A foundation for Computational Musicology" in J.

L. Mitchell (ed.) Computers in the Hwnaniries, University of Minnesota Press, 1974.

[7] M. Gould and G. Logemanll, "ALMA: Alphanumeric Language for Music Anal

ysis", in Brook (ed.) Musicology and the Computer, American Musicological Society

Greater New YorkChapter-Symposia Proceedings 1965-66. City University of New York

Press, 1970.

[8] Programming Utilities and Libraries, Pan Number: 800-3847-10, Sun Micro

Systems, Ine., Milpitas, Califomia, pp. 203-264, 1990.

[9] D. A. Huffman, "A Method for the Consuuction of Minimum-Redundancy

Codes", Proceedings of the IRE 40, pp. 1098-1101, 1952.

[10] J. Ziv and A. Lempel, "Compression of Individual Dequences Via Variable

Rate Coding", IEEE Transactions on Information Theory 24:5, pp. 530-536, 1978.

84

[11] 1. A. Storer, Data Compression: Methods and Theory, Computer Science Press,

Rockland, Maryland, 1988.

[12] R. E. Blahut, Princip/es and Practice of Information Theory, Addison-Wesley,

Reading, Massachusetts, 1987.

[13] N. FalIer, "An Adapuve System for Data Compression", Conference Record of

fhe Seventh IEEE Asi/omar Conference on Circuits and Systems, pp. 593-597, 1973.

[14] R. G. Galiager, "Variations on a Theme by Huffman",IEEE Transactions on

Information Theory, 24:6, pp. 668-674, 1978.

[15] E. W. Marvin and P. A. Laprade, "Relating Musical Contours: Extensions of a

Theory for Contour", Journal of Music Theory 31, pp. 225-267, 1987.

[16] W.1. Dowling and O.S. Fujitani, "Contour, Interval, and Pitch Recognition in

Memory for Melodies", The Journal of the Acoustical Society of America 49, pp.524-

531, 1971.

[17] W. J. Dowling, "Scale and Contour: Two Components of a Theory of Memory

for Melodies", Psychological Review 85, pp. 341-354, 1978.

[18] R. Kamien, (ed.), The Norton Scores. An Antlwlog) for Listening (4th ed.),

W.W.Norton & Company, New York., 1984.

[19] G. Read, Music Notation: a Manual of Modern Practice (200 ed.), Victor Gol

lancz Ltd. London, 1974.

[20] N. P. Chapman, LR Parsing: Theory and Practice, Cambridge University Press,

Cambridge, 1987.

8S

