PN

Distortion Free Compression of Musical Scores

by
William James McCausland

A Thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requircments for the Degree of Master of En gineering

Department of Electrical Engineering
McGill University, Montréal, Canada
September, 1991

© William McCausland, 1991

e

Abstract

Music notation represents what a composer creates. This research is concerned with
the problem of compression, without distortion, of complete scores of musical pieces.
The musical score source has many interesting characteristics which set it apart from
other information sources, for example, it is a collection of paralle! ‘parts’; the durations
of symbols (notes) arc variable; and the ransitions between notes in different parts need
not be simultaneous. These distinguishing features are discussed and incorporated into
the procedure described in this work. The research consists of thre. parts. The first is the
design of a representation system allowing musical scores to be stored on digital media.
The second is the development of a simple music editor and the compilation of two
pieces of music. The third is the design and implementation of a compression algorithm.
Significantly higher compression ratios are achieved using the designed algorithm vis-a-

vis those achieved using a standard general data compression algorithm.

Résumé

La notation musicale représente la création d’un compositeur. Cette recherche s’inté-
resse au probléme du compactage sans distorsion des partitions musicales. Une partition
est un source de données ayant plusieurs caractéristiques intéressantes qui la distingue
des autres sources d’information; c’est par exeriple un assemblage de parties en paral-
1ele; 1a durée des symboles (des notes) est variable; et les transitions entre les notes parmi
les différentes parties ne doivent pas étre simultanées. Cette recherche se compose de
trois parties. La premiére est la conception d’u. svstéme numérique de représentation de
données. La deuxi¢me est le développement d’un éditeur de musique simple, et le ras-
semblement de deux ocuvres musicales. La troisieme est la création d’un algorithme de
compactage. Des taux de compactage neitement plus élevés sont obtenus en utilisant 1’al-

gorithme proposé, en comparaison a un algorithine standard de compactage.

s

s Sk,

Acknowledgements

I thank my supervisors, Dr. Harry Leib and Dr. Salvatore D. Morgera, for their guid-
ance, advice, and helpful suggestions.

I am very grateful to the Natural Sciences and Engineering Restarch Council for two
postgraduate scholarships and to the Information Networks and Sysi»ms Laboratory

(INSL) for the invaluable use of equipment.
I greatly appreciate the contact I had with other students at INSL.. | am especially

grateful for help and interest given by Salvatore Torrente and Ronny Quesnel.

iv

-

Table of Contents

ADSITACT ..ottt sttt sea s sbae s e asae s sesn s seebbenetssnananssnsnesesessreansos i
RESUIME ...ttt st e et s e sbsase s ss snss st st se e vas s s naae st ensrntonsnns iii
ACKROWICAEEMENLS ...ttt ssisras st et erss s ssesesseesessssssssassssesssasnsssssesasns iv
Table Of CONMENLSottt ce ettt tr e e s st ssrse s e e e sensensenssensenn v
LiSt Of FIZUTEScoceiiiriniiiiniintineteieisessassecesesesstsassssassesaesesssesssssassseseseseassnss sassasssessasses vi
LiSt Of TaDbIES.....uoceeriiiiniii ittt sttt e e sratsssssssnsasssesnssaraessena sesssnsssinen viii
Chapter 1: INroduCton ... oot cesennnsieeseeas b 1
Chapter 2: REPTESCNLALONcccevrviuiiiveririaiiiiconiiinisecnssesnsissiniressssssessssesisesssassessrssnssiessasss 4
2.1 MusSiC REDIESENIALONcccieueerieriiinerieieeeeeeesteitetersreaesreeeseresesasaeasssnsansmsessrnenns 4
2.2 Music as a Collection of Parallel SOurces...........c.covveeeiere ovrccvienemrersveneniesenees 9
2.3 A Character String Description for Rhythm.............ccoooiiiiioiiieeeeeccrens 10
2.4 Evidence for Tree StUCIUNEcciiviiiiriiinsteccnneesse s ersessesseaese s seasssnssessinenns 13
2.5 Rhythm Grammar TTEes......cccccceeirnriiiinnictic et crtiniirinseeee s ntrerrestes s snsessassninnes 15
2.6 A Music Kepresentation Systemciiiuieuinninnscnensscrnnnesessesssessesenennas 23
Chapter 3: COMPIESSION........oovueiriiinirccrtitiiisess et esassssrsssssassa s anssenessersanes 28
3.1 Basic Compression AIgOrthms. ...t 28
3.2 Compression of Rhythmic Data............cccoimeeeeinicniienncniee e ceesenienes 39
3.3 Compression of PItCh Data.............ccomiineiinninnnn e seese e sessesasnasesas 47
3.4 Compression of Other Data.............coviviiuciinecnnnicie e csaesesesasaenns 50
Chapter 4: Experiments and RESULLScocoviiieciineninineereer e e s e sesesseonenens b))
4.1 The Pieces Compressed..........coeommuiiriiiiorescnemenninicssereesseiseseessesesessssscsssssens 51
4.2 Files Generated by Editor, and the . melody File of Contour Information 53
4.3 Compressed Files Generated by the String Substitution Algorithm 56
4.4 Compressed Files Generated by the Music Compression Algorithm 57
4.5 A Summary of the Results...........cocceiriiicineciiiinncene s s eesseesessienns hY)
Chapter 5: CONCIUSIONSccoveuiiineiintee it ceinie s bssss e s sraa s sbssates 62
5.1 The Music Representation SYSIEIM.........cciviiervueerseenninesseenesenssseress srneesessesnssanne 62
5.2 Rhythm COmPrESSION.......cccvcuuiimmiiciiinienses sttt ssssss s s s sssnssessesess 63
5.3 PitCh COMPTESSION......ccirtreiiriiricieisiisiinienssreesrerersamisssssssessssssssnasenssesssssassensanas 64
5.4 Compression of Other Data................ocoiiiiiiiniicninice et cersniaens 65
Appendix A: MusiC NOWHOMNcovineireniinieininete s s s bbb 66
Appendix B: A Rhythm Grammar............cvivncnnnnmmennesminssmesme 74
Appendix C: A MusicC EdItor ... s ssnsssssssssssstsnssinnas 78
REFETENCES ..o vereeererionniiintessice st esse st ssbeantb e se s et asssib e sess s s b bsas s s b e s snas e sessatnas 84
v

ity

_ List of Figures

Figure 2.1: Character String Descriptions of Various Rhythmsccvivinecnnnan, 13
Figure 2.2: The Tree Structure of Beams...........ooenriininiini e 14
Figure 2.3: The Tree Structure of Note DUIBLONScoovvvmiiiiieins coicrenninennnencsennnn 15
Figure 2.4: An Example ...ttt s saeneas 23
Figure 2.5: The PIECE SITUCIUREoocuiiiiniitiinsinsnesiieseneris sessasessesnssssnsss sesesrens 24
Figure 2.6: The PAGE SITUCHUTEc.cceceemisiier sersussvstssesresssssmisismssese sossassnnsassisessossavacsenss 25
Figure 2.7: The SYSTEM SIUCIUTC........ccocrieieectisisimninssssnsseesiessssesss ssssasssssasessenssssassansase 25
Figure 2.8: The TREE SIUCIUTEcovvvuinieessinrenernissssnssssssssosssesessassssnasusssnsssssssssssssns 26
Figure 2.9: The STEM SIUCIUTEcovimeririrsnismsimnssissssnsssssmesssssssnsesss sassrssssssssusnsmsnes 27
Figure 2.10: The NOTE SIUCIUICccoceeeiemmmesmmmsniinessssesssismsissmss ssssssssessssssssssssssssinss 27
Figure 3.1: A Binary Tree for 8 Tree Code.........uveieerienrnnvecenniiniecrs e ssensinens 31
Figure 3.2: Encoder OPCIatioN..........cociieniinrenintmnitininsisssssssississessssesssrssasessnssss sessesssss 31
Figure 3.3: Decoder Operation.............evereineiiiniinnenren oo sssesees 32
Figuie 3.4: Symbol Probabilities.............ccocoeeiermivnneneminiinis vt ccsesennn 33
Figure 3.5: Building a Tree for a Huffman Code...........niniinniinrniicniccncinnn, 34
Figure 3.6: The Rhythm Compression Algorithmcovciieniiicninnennce e 40
Figure 3.7: A Simple Derivation TreC...........ccouiimieinsminnnsnnsseenessnsesssess 43
Figure 3.8: Three Blind MICE..........ccmminiiiiiniiinnninscin cste st sasissiscssssesessanes 48
Figure 3.9: The Pitch Compression Algorithm............covoiiinniicnninniencenenne 49
Figure 3.10: Contour SYmDOIS ... ssssseeressiseaese sressssees 50
Figure 4.1: Unsupported Rhythmns ...t csnineseeccsnns 53
Figure 4.2: File Sizes in the Representations of Spring Rhythm Data........................ 58
Figure 4.3: File Sizes in the Representation of HAYDN Rhythm Data............................ 59
Figure 4.4: File Sizes in the Representation of Spring PitchData ... 60
Figure 4.5: File Sizes in the Representation of HAYDN Pitch Dataeeniicnns 61
Figure A.1: Note-heads, Stems, and FIagsooienniiininnin e cereeeeenese e enees 66
FIgUIE A.2: RESIS.....ocoiiiiiiiiiitrcntscntes e ssesis st sa s sreasa s s b s sastsrsnsese s asssssane 67
FIigure A.3: BEaMS ...t cernsss s s sonsss s sssssasaessrsssssessensese 67
Figure A.4: The Tremolo Bar............ciiiinnn s sssssssans 68
Figure A.5: Dots and TIEScvveriiviiiiiniinerinnneisssisnnsnsssasssssesssassseseesssnesesses 68
Figure A.6: THPIELS.......coouiiiiiriiiiiinni it et ssst st s sssanssmssons 69
Figure A.7: Grace NOLEScouiveniivisnninee s st ass saes st snensssassssss sessassas 69
Figure A.8: The SIaff ...ttt e e ssesneeesesesense 69
FIgure A.9: CIefs......cvviiieiiininicnininennnissisiecsesesssssssssssssssssssassssssssssssasssssone 70
Figure A.10: Accidentals and KeySignaturescooveiivcniinntinnicnnsnncnesscsnsens 70
Figure A.11: TIme SigRAtumes.........cocvenimieinrriimnsininosiessissmmississsssassseessssssessassaessss 71
Figure A.12: Organisation of StAVES.........cccevviucninisniecninnnnsinicssessessssesesss e sessasenss 72
Figure A.13: Auxiliary Symbols.........ccoicniiiiiiiice i s 73
Figure C.1: The Dialogue WIndowcocnmvninininnieciniiessieneses: 78
Figure C.2: The File WINAOWcooiiiiiinninnssssienniisinssnsssrsssenssssssnessensasses 79
Figure C.3: The Index WIndOWcccocviiiinmiiiiniiniie s sresensessesssses s sonss 80
Figure C.4: The MusiC Window...........cciiieniiinnnmiic s ssessssens 81

vi

i R

Figure C.5: The Note WInAOW........cciiviinicniniiineennensreamnesessssssnmsssssssssens
Figure C.6: The Auxiliary Windoweiviiiiniiniecnnineniiannesssssmsssassssssssens

List of Tables

Table 2.1 Note Prefixes used in the Character String Description of Rhythm.............. 11
Table 2.2: ‘Tokens Representing Time Signaturescccoovcivvinnncnnnnnneeneesseernesssennns 16
Table 2.3: Tokens Representing Note-stems and ReStSoevveericviivnnercnccreenrnn, 16
Table 2.4: Nartures Describing Note-stems and RestScocooevnnvreinciineeiiesrevencnns 17
Table 2.5: Examples of Time Signature Rules..........covriiniiiniinicinnnnenneneennnnnnenenns 18
Table 2.6: Time: Signature Rule TYPeSccocviiiniiimiiniiiisreec e 18
Table 2.7: Time Division Rule Types........ccoiiiiininnininiirnnenent crevrveneneeseeeanessens 19
Table 2.8: Examples of Rule Types Rulel:1and Rulel:1:1 19
Table 2.9: Examples of Rule Types Rule3:1,Rule7:1,Rulel:3and Rulel:719
Table 2.10: Examplesof the Rule TypeRulel:2:1c0oveivnnnn.. 20
Table 2.11: Examples of the Rule Types Rule2:1 and Rulel:2 20
Table 2.12: Examples of the Rule Types Rule2B:1 and Rulel:2B......... 20
Table 2.13: Examples of Rule TypesRule2:3:1 andRule3:1:2.......... 20
Table 2.14: Examples of the Rule Type RuleTerminalcvveeeeenn. 21
Table 2.15: Examples of the Rule Type RuleAugmentcc00eeunn.n 21
Table 2.16: Examples of the Rule Type RuleBeamed00000n.. 21
Table 3.1: A NAIVE COdC........oeiriiiiiiriieninnenisescesessesessessiesessessssasesesesassessssassesseseseres 30
Table 3.2: A Tree Code ...ttt s seeseenstststssesa e sssssssassssssssssnnsssssns 31
Table 3.3: A Summary of the Generated Huffman Code...........cccoceevverreienencccenenen, 35
Table 3.4: Operation of String Substitution Algorithmcccoermerevrecrirecseccrnernnienens 39
Table 4.1: Files Generated by the Editor, and the * . melody Contour File 56
Table 4.2: Files Generated by String Substitution Algorithm..............ccoeveeireernrirecnenen. 56
Table 4.3: Files Generated by the Music Compression Algorithm...............ccceevevenennnen. 57

viii

W

Chapter 1: Introduction

This thesis concerns the distortion-free compression of musical scores.

Distortion-free data compression is the translanon of one representation of & body of
data into another more compact representation, from which the original representation
can be restored. Compression is useful because storage space in digital media and the
capacity of communication channels are limited. Examples of data which are commonly
conipressed are iext, source code, object code, and numerical data.

Musical scores represent what a composer creates. They contain instructions to
musicians describing what to play. This thesis does not involve either the optical image
of a printed score, which incorporates the creative input of an engraver, or the audio
recording of 2 piece of mus.~. which incorporates the creative input of performing musi-
cians. All it is concerned with are the symbols of music notation, and their positions, both
of which can be represented as computer data. The distortion-free compression of these
data is the subject of this thesis.

Although an attempt was made to make this thesis more accessible by including an
appendix on music notation, the subject is quite specialised, and a background in music
notation would be an asset to the reader.

By investigating the compression of musical scores, one can gain insight into the
redur.dancies present in music notation and in music itself.

Relevant previous work comes from diverse sources. References [1] through {7]
describe attempts to represent musical scores as computer data. These references are
briefly discussed in Section 2.1. Reference {8] is a manual for the two utilities 1ex and
yacc, which were used to construct a lexical analyser and parser, respectively. Refer-
ences [9] through [14] deal with data compression. These references describe the stand-
ard data compression algorithms that were used in this research. The algorithms are

described and discussed in section 3.1. References {15] through [17] describe the concept

e

of melodic contour and argue for its importance. Melodic contour and how it is used in
this work are discussed in section 3.3. Reference [18] is a collection of musical scores,
from which two scores were selected to test the data compression algorithms developed
in the course of this work. Reference [19] is a manual of music notation. Appendix A
briefly describes some of the more common elements of music notation found in this
manual. Reference [20] 1s a text on parsing. A definition of context-free grammar is taken
from here, and is included in Appendix B.

The body of the thesis is divided into five chapters, the first of which is this Introduc-
tion.

Chapter 2: Representation concems the representation of music by computer. The
first section describes some of the difficulties in representing musical scores as computer
data, and Jists some objectives used to guide the design of a representation system.
Bricfly, the system is not intended to be complete, but it is desired to be expandable, and
to facilitate compression. The remainder of the chapter describes the system developed to
represent scores and explains the motivation behind some of its elements.

Chapter 3: Compression deals with the compression of musical data. The first sec-

tion describes two standard data compression algorithms. The remainder of the chapter
describes the compression algorithms developed to compress musical data. These algo-
rithms combine routines to preprocess the data and adapted versions of the two standard
algorithms.

Chapter 4: Experiments and Results describes the compression experiments that

were performed, and tabulates the results of these experiments. The first section describes
the two scores that were entered and compressed and lists the notational eleinents that the
representation system was unable to accommodate. A later section describes how a
standard compression algorithm was directly used to compress the musical daia. The
results for both the specialised musical data compression algorithm and the general

standard compression algorithm are then given.

ﬁ-——-—“

Chapter S: Conclusions lists the conclusions drawn from this research and suggests

improvements to boih the representation system and the compression algorithm.,

The three appendices directly relate to Chapter 2. Appendix A: Music Notation

briefly describes some of the elements of music notation. Appendix B: A Rhythm Gram-

mar contains the complete definitior. of a context free grammar described in Chapter 2.

Appendix C: A Music Editor describes a music editor developed to facilitate the entry of

SCores.

2.

Chapter 2: Representation

This chapter describes the computer representation system used to store musical
scores. The reader may wash to read Appendix A : Mysic Notation before proceeding.

In the first section, Music Representation, the general problem of representation is
discussed. The section deals with the difficulties of computer music representation,
describes the kinds of representation systems that have been used in the past, and dis-
cusses reasons for developing a new representation system.

The next four sections serve as an introduction to the new representation system. The
first of these, Music as a Collection of Parallel Sources, describes how a piece of music
consists of a set of voices, which are played in parallel. The next section, A Character
String Description for Rhythm, discusses the concept of rhythm and how rhythm can be
represented using a character string description. In the section entitled Evidence for Tree
Structure, it is proposed that thythm can be described using tree structures. Some ideal-
ised examples are given, to introduce the concepts involved. The next section, Rhythm
Grammar Trees, presents a tree structure that describes rhythms lasting a measure long
and demonstrates how the tree structure can be constructed, given the character string
description.

The closing section, A Music Representation System, describes the system devel-
oped. The reader may also wish to read Appendix C: A Music Editor, describing the

music editor implemented to input musical scores.

2.1 Music Representation

The symbols of printed music form a discrete set. Their positions on a page of music
can only indicate discrete quantities of pitch and time. It is not surprising that many
attempts at representing musical scores on computers have been made. However, the rep-

resentation problem is difficult, for many reasons.

One problem concemns the two-dimensional nature of music. A typical piece of
music consists of several parallel musical voices. Each voice is a sequence of note and
rest symbols. The symbol durations are variable, and the transitions between symbols in
different voices need not be simultaneous. In many applications, it is necessary to be able
to ecasily access not only the sequence of symbols in a given voice, but also the symbols
occurring in all voices at a given moment.

Another problem is the great variety which characterises music notation. It employs
a vast number of symbols and allows a great deal of flexibility in their use. One must con-
sider, as musical notation, not only the core set of elements one finds in most pieces of
music, but also such incidental notation as guitar chord symbols, figured bass symbols,
lyrics in any language, and fingerings for various instruments. And in the fringe of music
notation, one finds the bizarre symbols and conventions of ethnomusicolc gy, electronic
and other modern music, and ancient music.

Different applications place different demands on a computer representation system.
A music printing application may require information to specify layout in addition to that
supplied by the composer. In a computer aided composition system, the representation of
music might be integrated with a set of tools to facilitate composition. A representation
system with a small symbol set may be sufficient in a computer assisted instruction sys-
tem. A music analysis system may require that high level musical structures be incorpo-
rated into the representation system.

A great variety of tools have been used to represent music by computer. Music has
been represented as lists of statements in predicate calculus [1], lisp data [2], sets of pro-
cedures in programming languages [1], data in frames [1], character strings [3], sentences
of various grammars [1], and linked data structures [4]. In many of these cases, music has
been represented using complex data structures that bear little direct resemblance to a
printed score. In some cases, however, the correspondence between the representation

and the score is more direct. In these cases, music is usually represented as a character

string, short substrings of which map to the symbols found on a score.

Some commonly used systems which represent music as character strings are
DARMS (5], MUSTRAN [6], and ALMA [7]. Most of the advantages of these systems
derive from the fact that the representation is so similar to the score. Scores can be manu-
ally transcribed into any of these representation systems relatively easily. The character
strings may also be easily read, since they also happen to be mnemonic.

Of the three character string notations, DARMS seems to be the most widely cited
[3]. The stated purpose of DARMS is “to capture accurately all the information provided
by the composer, but not those details of layout within the province of the engraver or
autographer.” [5] In DARMS, a string representing a note or rest consists of two parts.
The first pan is either a numerical ‘space code’, specifying the line or space that the note
occupies, or an ‘R’, indicating a rest. The second part is a letter indicating the duration of
the note or test. Symbols for accidentals (#, #4#, -, -—, and * represent sharps, double
sharps, flats, double flats and naturals, respectively) follow the space code, and dots (.)
and tie indications (J) follow the duration code. Bearas are represented using a system of
brackets, where the depth of brackets in which & note rests is the number of beams touch-
ing the note. Bar lines are represented with a ‘/°. Other short mnemonic strings of sym-
bols represent other elements of music notation.

With each voice in a piece encoded using DARMS there is associated an instrument
code (‘I1°, “I2’, etc.) which precedes an ordered list of notes belonging to that voice.
Note that the length of a string representing a note is variable. Among other things, it
depends on whether the note has a printed accidental associated with it. Consider also the
fact that in a given period of time, one voice may have more notes in it than another
voice. These two facts make it very difficult to find a note in one voice that sounds simul-
taneously with a note in another voice. To do this, without any preprocessing of the data,
requires scanning all the notes in both voices up to the point of time of interest, calculat-

ing the elapsed duration with each note scanned.

ALMA and MUSTRAN share many characteristics with DARMS. As with DARMS,
short mnemonic character strings are used to represent symbols appearing on a musical
score [6)[7]). The strings, however are typically different. One of the main differences
between these two languages and DARMS iies in the representation of pitch information.
While DARMS gives a space code indicating the position of the note, ALMA and MUS-
TRAN give the pitch of the note directly, by letter name and octave. Although the pitch
information is conveyed in both cases, with DARMS the pitch (if needed) must be calcu-
lated from the space code, previous accidentals in the measure in which the note appears,
the key signature, the clef and, if the instrument is a transposing one, the nature of the
transposition. Both ALMA and MUSTRAN share with DARMS a difficulty which arises
from the fact that these character string notations are linear in nature, while music typi-
cally consists of several parallel voices with non-synchronous note transitions. Simulta-
neous notes are difficult to access.

One of the more complex representation systems, one which addresses the problem
of accessing simmuitaneous notes is one developed by Brinkman [4]. In this system, musi-
cal scores are represented using linked data structures. Brinkman has also designed a
scanner, which reads in DARMS data (the “extemnal coding language™) and constructs
these linked data structures. The desire that simultaneously sounding notes be easily
accessible is the motivation behind Brinkman’s system.

A new representation system was developed during the course of this research. As
with Brinkman’s system, a non-linear data structure is used to represent musical scores,
and a routine converts data expressed in an external coding language. Two objectives
motivate the design of the new representation system. The first is the same as Brinkman’s
objective, that simultaneously sounding notes be easily accessible. There is a strong cor-
relation between notes sounding in different voices simultaneously, and this correlation
can be exploited by a compression algorithm only is this access is possible. While the

compression algorithm developed as part of this thesis does not take advantage of this

£

correlation, it is important that the representation system does not need to be modified to
allow an improved algorithm to take this advantage.

The other objective is to take advantage of redundancy in the notation of note dura-
tions. The redundancy lies in the fact that the vast majority of measure-long rhythms in
musical scores conform to a fairly simple context-free grammar. This issue is discussed in
detail in Section 2.4, Taking advantage of redundancy is an essential part of data com-
pression. The representation system that was developed is a measure-based system,
where the set of notes of a musical voice in each measure is representcd by a tree struc-
ture, based on the context-free grammar that cai generate measure-long sequences of
note durations.

Both objectives are satisfied. One can access simultaneous sounding notes by tra-
versing in parallel the trees in diterent voices in a given measure. Much redundancy is
removed by representing scores u: such a tree structure. Only those measure long rhythms
that conform to the context free grammar discussed in Section 2.4 can be represented.

It has been mentioned that a complete musi< representation system is very difficult to
design. Since the work being done is primarily a study on the compression of musical
data, not the development of an exhaustive representation system, and in order to keep the
task of representation within reasonable limits, only those symbols of particular impor-
tance and frequent occurrence are represented. These include notes, rests, dots, beams,
ties, clefs, accidentals, key signatures, time signatures, slurs, accents and dynamics. The
system is flexible enough that changes can be made to accommodate additional symbols.
Although only the triplet, airong duplets, can be represented, other duplets could be rep-
resented in analogous fashion. Although only the 5/4 compound metre can be accommo-
dated, other compound metres could also be represented in a similar way.

The choice of a measure-based tree structure has associated problems. Incomplete
bars at the beginning or end of a section are represented by inserting rests to complete the

bar. If the system were to be expanded with a view to making the representation system

more complete, these rests could be indicated as non-printing, dummy rests. Some rare
measures do not conform to the proposed grammar, and therefore cannot be represented
using this tree structure. In a more complete system, such measures could be represented
using the external coding language, along with some indication to mark that this was
being done. While such an arrangement would not be acceptable in a musical analysis
application, it can be justified in a compression application. The rarity of such measures
would ensure that the inefficiency of spelling out these measures in full would not greatly
influence the overall compression ratio.

A simple extemns’ coding language and an editor with which a user can input this lan-
guage measure by measure were also developed. An existing language was not chosen
because the representation system is not sufficiently powerful to represent all the features
that music expressed in these languages would have. Also, the processing involved in
constructing the data structures of the representation system from the external coding lan-
guage would have been considerably more difficult, with any of the coding languages
mentioned above. However, with a sufficiently improved representation system, it would
be advantageous to use an existing character based representation language as an external

coding language.

2.2 Music as a Collection of Parallel Sources

When one listens to a piece of music, one typically hears several notes being played
at once. Each scund is represented by a note-head on a musical score. Note-heads corre-
sponding to two sounds starting at the same time are vertically aligned. There are three
ways in which note-heads can be so aligned. They may both be attached to the same stem,
they may be attached to different steins on the same staff, or they may lie in different
staves altogether. Two notes played at the same time by one violin would be represented
as two note-heads on the same stem. A note sung by the tenor section in a choir and a
simultaneous note sung by the bass section are usually represented as note-heads on two

different stems on the same staff. A note played by a viola and a note played by a trumpet

would mcst likely be found on different staves.

In this thesis, a voice is understood to mean a related sequence of rests and stems
with note-heads. There are usually one or two voices per staff, and sometimes more. If a
staff contains only one voice, then there is no need to distinguish between voices on the
same staff. In this case, stem directions are chosen for a:sthetic reasons. When two voices
occupy the same staff, they are distinguished by stem direction. The voice that is higher
pitched, on average, has stems going up. The lower voice has stems going down. When
more than two voices occupy the same staff, two voices share a stem direction. Note that
within a voice there may still be notes representing simultaneous sounds, in the form of
several note-heads on the same stem.

In the representation system use4 for this research, each voice is separately repre-
sented. However, access to simultaneous notes from different voices is still easy, as will

be discussed in Chapter 5: Conclusions.

23A ra Strin ription for Rhythm

The rhythm of a voice is defined to be the information borne by flags, stems, beams,
rests, dots, ties, triplet signs, grace notes, tremolo bars, and note-head colour (hollow or
solid). It does not depend on how many notes are attached to the stems, or what their
pitches are.

The rhythm notation of a segment of a voice is the same as the notation of the seg-
ment in standard music notation, except that there is exactly one (dummy) note-head per
stem, that all the note-heads are aligned horizontally, that there is no staff and no auxiliary
symbols, and that the stems all go up.

In the following system, a character string represents mnemonically a measure-long
rhythm.

The letters W, H, Q, E, S, T, and A represent the flagged stems of the whole note, half
note, quarter note, eighth note, sixteenth note, thirty-second note, and sixty-fourth note.

The same letters in lower case denote the corresponding rests.

10

wﬂvx:r-—-m":wvn- I o

Substrings consisting of the symbols (,), *, and # symbolise beamed groups of
notes and the rests within them. The notation for beamed notes is similar to that used by
DARMSI{S]. The asterisk stands for a stem in a beamed group, and the hash symbol, a
rest. Just as a beam joins a group of notes, a pair of brackets encloses a group of asterisks.
As beams nest to deeper levels, so do brackets. A pair of brackets surrounding a single
asterisk represents a half-beam attached to the note. Care must be taken to place the hash
symbol in the right place, in order that the rest’s duration, implied by the depth of brack-
ets in which it rests, is cofrect.

The period (.) denotes a dot; two periods, a double dot. Periods follow the relevant
letter.

A special prefix may precede any character representing a stem. These prefixes
denote grace notes, tremolo bars, and ties. The following table lists the available prefixes,

and what they indicate.

Table 2.1: Note Prefixes used in the Character String Description of Rhythm

Prefix Meanin

- Note is tied
-1E Note is preceded by a single grace note, flagged as an eighth note.
-2E Note is preceded by two grace notes, beamed as two eighth notes.
-3E Note is preceded by three grace notes, beamed as three eighth notes.
-18 Note is preceded by a single grace note, flagged as a sixteenth note.
-2S Note is preceded by two grace notes, beamed as two sixteenth notes.
-3s Note is preceded by three grace notes, beamed as three sixteenth notes.

/E Note has tremolo bars indicating repeated eighth notes.

/S Note has tremolo bars indicating repeated sixteenth notes.

/T Note has tremolo bars indicating repeated thirty-second notes.

/A Ncte has tremolo bars indicating repeated sixty-fourth notes.

The angular brackets < and > enclose triplets. The string ww represents a whole rest
lasting the whole measure.

Ten strings indicate time signatures. They are 2/4,3/4,4/4,3+2/4,3+2/4,3/
8,6/8,12/8,3/2,and 2/2. Each stands for the obvious time signature, except for

3+2/4 and 2+3/ 4, which both represent the time signature § . The former is used when

11

] the measure most naturally divides in the ratio 3:2, the latter, when the ratio 2:3 is more
L natural. It must be assumed that the transcriber of rhythm notation can tell the difference.
The time signature string, which is obligatory, begins the string.
Several examples are provided in Figure 2.1 to illustrate the use of this character

string notation.

12

-

Figure 2.1: Character String Descriptions of Various Rhythms

| 2 J m) 7) 7 4/4Q. ((<***>))EeEe
3
3 J'-j) 7n7 J-J7 4/4(* . (*))Ee(*(*#)) (*(*¥))
ﬁ Jﬂm mm A/4 (% (B7)) ((**xx)) (*(F*)) ((**nn))
3 m} mj 4/4(/S*/S*/S*/S*) (/S*/S*/S*/8%)

ﬂ - 4/4ww

§ JJJJ7 678t (14100

B 2790d7 nJ70)7 r2reae-zs0e-2see-zsee
§ 2] JTJ
i1d4dJd sv2/ 40008

id JJJ 213/anccg

ﬂ))) .rﬁ-] J J)J)s 4/4<EEE> (<* (**) *>) <QE><EqQ>
3 3 3 3

Rhythm Notation Character Sinng Descnption

2.4 Evidence for Tree Structure
The tree structure characteristic of rhythm is most immediately evident in beamed
groups of notes. Recall the character string description system for rhythm just discussed.

Beam notation can be represented using a system of brackets resembling lisp notation.

13

The structure imposed by such a system of brackets is isomorphic to a tree structure. An

illustration of the concept is shown in Figure 2.2.

Figure 2.2: The Tree Structure of Beams

JJd e */7\‘ Fd @ 1{}

L R J

Ah Notason Tres Struckire Rhythm Kotation Tree Structure
v msunon.awonm Character Stnng Descripbion

Rhythm notation conforms to a tree structure in other ways. In Figure 2.3 there are
several examples of measure-long rhythms taken from real music. The durations of each
note are plotted on a line. The marks on the linear time scale are hierarchical. The most
major marks are those which bound the measure. The next most major marks divide the
measure into two or three subdivisions of equal duration. The next most major marks
divide each subdivision into smaller subdivisions and so on. Notice that the notes start
and end on a mark, and that the marks crossed by the note are all less major than those
which bound the note. Obviously, a tree structure would elegantly describe the durations
of these notes. Each node would have a duration associated with it. An internal node
would have a duration equal to the sums of the durations of its children. Leaf nodes

would correspond to notes.

14

Figure 2.3: The Tree Structure of Note Durations

$JIM DDTD vioesseer =t mrm =
i=J2) =
14070 s D
6. D)) nm m———— A

Rhythm Notation Character Stnng Descnpon Note Durabone Tree Structure

-

e

In most cases, a measure-long rhythm does not conform to such an elegant tree struc-
ture. These examples were chosen to illustrate the concept of tree structures based on

time division. This concept is the basis for rhythm grammar trees, discussed next.

2.5 Rhythm Grammar Trees

Rhythm grammar trees are structures which represent measure-long rhythms. Data at
each internal node indicate a production rule of a context-free grammar called the
Rhythm Grammar. Leaf nodes represent note-stems and rests. Data at each leaf node
denote the nature of the note-stem or rest. The nature is simply a parameter indicating
whether the leaf node represents a note-stem or a rest, and if a note, whether it is tied or
not, what grace notes precede it, if any, and the number of tremgclo bars, if any.

Rhythm grammar trees can be constructed unambiguously from the character string
representation of a measure-long rhythm. The construction is done in two stages: the lex-
ical analysis stage and the parsing stage. During the former, substrings representing a

note-stem or rest and its nature are replaced by tokens. The name of the token describes

15

the duration of the note-stem or rest. Data describing the nature of the note-stem or rest
are attached to the token, but these data are invisible during the parsing stage. Substrings
representing time signatures, and the characters ‘ (°, *) °, ‘<’, and ‘>’ are also replaced by
tokens. During the second stage, a parser processes the token string and constructs a deri-
vation tree. The derivation tree, together with the data describing the natures of the leaf
clc@nts. constitutes the rhythm grammar tree.

In order to generate a list of tokens for the parser, the lexical analyser divides the
string into a list of substrings, and replaces each substring with a token.

The first substring always indicates a time signature. It is replaced with a time signa-

ture token according to Table 2.2,

Table 2.2: Tokens Representing Time Signatures

Substring Toker Substring Token Substring Token
2/4 Twokour 3/4 Threefour 4/4 FourfFour
3/8 Threetight 6/8 SixBight 12/8 TwelveEight
2/2 wolwo 3/2 Tveelwo

2+3/4 twolveeFour 3+2/4 Theelwokowr

Subsequent substrings fall into one of two categories. In the first category are the sin-
gle characters *>’, ‘<‘, ‘(, and ‘)’, which are replaced by the tokens >, <, (, and), respec-
tively. In the second category are substrings representing note-stems and rests. These
substrings consist of an optional prefix and one of the roots Table 2.3. The whole string is

replaced by a token, according to the following table.

Table 2.3: Tokens Representing Note-stems and Rests

Root Token Root Token Root Token
Worw Wwhole W.orw, DottedWhoie
Horh Halt H.orh DottectHalt fd..0orh. . DoubleDottedHalt
Qorqg <Quarter Q.org. DotedQuaret Q.. Org.. DoubleDottedQuarter
Eore Eghh E.ore DottedEighth E.. ore. . DoubleDoledEghth
Sors Sixteenth S.ors DoledSixteenth S.. Or S. . DoubleDoltedSixteenth
Tort ThidySecond T.oOrt DoftedThirdy-Second

*.or#. DoftedBeamed *.,. or§.. DoubleDoliedBeamed

5

*or ¢

TREN DT e e s TR

A token representing a note-stem or a rest is accompanied by a parameter called its

nature. The nature depends on whether the root represents a note or a rest, and if it repre-

sents a note, what the prefix is, if any. The assignment of the parameter name according to

this information is illustrated in Table 2.4, for the special case in which the root 15 Q or q.

Table 2.4: Natures Describing Note-stems and Rests

Substring
q
Q
-Q
-1EQ
~2EQ
-3EQ
=180
-25Q
-35Q
/EQ
/5Q
/TQ
/AQ

Nature

NATURERest
NATURESimpleNote
NATURETie
NATUREOneEighthGrace
NATURETwoEighthsGrace
NATUREThreeEighthsGrace
NATUREOneSixteenthGrace
NATURETwoSixteenthsGrace
NATUREThreeSixteenthsGrace
NATURETremoloEighth
NATURETremoloSixteenth
NATURETremoloThirtySecond
NATURETremoloSixtyFourth

The special substring ww is replaced by the token WhoieRest. This substring may only

appear as the only substring following the time signature substring. It denotes a complete

measure of silence.

The parser uses the production rules of the Rhythm Grammar to parse a sequence of

tokens. The Rhythm Grammar is fully specified in Appendix B: A Rhythm Grammar.

The production rules describe how token strings representing measure-long rhythms can

be derived from the start symbol, by way of various non-terminal symbols.

The non-terminal symbols, except for the special start symbol, fall into two catego-

ries: time-duration symbols and beam-constructor symbols. In the first category, the sym-

bols represent specific durations of time. For example, rmeHarf represents the duration of a

half note, and nme2DottedQuarters represents twice the duration of a dotted quarter note.

Beam-constructor symbols are in many ways similar to time duration symbols, but

17

FE

their explanation is not as straightforward. They derive a sequence of tokens within a pair
of bracket tokens ((and)). This sequence may include other bracket tokens at deeper
levels. The name of a beam-constructor symbol indicates the number of seamed tokens
that the symbol must derive if there are no other bracket tokens in the sequence. For
example, the beam constructor symbol 8eamed2 can only derive the token sequence
Beamed Beamed, Or some other sequence with at icast one pair of brackets tokens within.

The production rules fall into three categories: time signature rules, time division
rules, and other rules. All production rules have a type. Production rules and rule types
are discussed in detail below. Whenever examples of production rules are given, the rule
types of those production rules are given in parentheses.

All time signature rules have the siart symbol as its subject, and all rules whose sub-
ject is the start symbol are time signature rules. The first symbol on the right hand side of
such rules is either a time signature token or the whoieest token. In the former case, this

symbol is followed by one or two time duration symbols.

Table 2.5: Examples of Time Signature Rules

Staort -+ Thweetight TimeDottedQuarter (RuleThreeBight)
Start -+ TheeelwoFowr TimeX uarters TimeHolf (RuleThreeTwoFour)
Start -+ Four WholeRest (RuleWholeRest)

All time signature rules have their own unique rule type. It should be obvious how
the name of the rule type is related to the production rule from the three previous exam-

ples. The complete set of rule types for time signature rules is shown in Table 2.6.

Table 2.6: Time Signature Rule Types

RuleTwoFour RuleThreeFour RuleFourFour
RuleTwoThreeFour RuleThreeTwoFour

RuleThreeEight RuleSixEight RuleTwelveEight
RuleTwoTwo RuleThreeTwo RuleWholeRest

There are thirteen different types of time division rules, having the names shown in

Table 2.7.

18

il

Table 2.7: Time Division Rule Types

Rulel:1l Rulel:1l:1

Rule3:1l Rulel:3 Rule2:1 Rulel:2
Rule7:1 Rulel:? Rule2B:1 Rulel: 2B
Rulel:2:1 Rule2:3:1 Rule3:1:2

The names of these rule types specify the ratio of the durations denoted by the sym-
bols on the right hand side of the ruies belonging to that rule type. Rules of the type
Rulel:1 have, on the right hand side, two equal non-terminal symbols, each denoting a
duration half that of the subject. Similarly, Rulel:1:1 rules have three equal non-ter-

minals on the right hand side.

Table 2.8: Examples of Rule Types Rulel:1 and Rulel:1:1

Time8th — Time 16th Time 16th (Rulel:l)
Beamedd + Beamed2 Beamed? (Rulel:1)
Beamed3 - Beamed! Beamed! Beamed} (Rulel:1:1)

Tme3Quarters ~+ TimeQuarter TimeQuarter TimeQuarter (Rulel:1:1)

Rules of the types Rule3:1, Rule7:1,Rulel: 3, and Rulel : 7 derive rhythms
with dotted notes in them. The right hand sides of these rules consist of a token represent-
ing a dotted or double dotted note, a non-terminal symbol, and, in the case where a beam-
constructor symbol is the subject, bracket tokens pairs representing half-beams. Some

sub-measure rhythms that can be derived using theserulesare H.Qand (((*))*..)

Table 2.9: Examples of Rule Types Rule3:1,Rule7:1,Rulel:3 and Rulel:?7

TimeQuarter -+ DoledEighth Time I6th (Ruled:1)
TimeHaif -+ Time 16ih DoubleDoltedQuarter {Rulel:?)
Beamed? - (Beamed!) DoltedBsamed (Rulel:3)
Beamed? -+ DoubleDolledBeamed ((Beamed!)) (Rule?:1)

Type Rulel:2:1 rules directly derive a non-terminal symbol, followed by a note
token, followed by the same non-terminal symbol. Bracket token pairs are interspersed to
represent half beams in the second example. This rule is required to handle such rhythms

asEQE and ((*) * (*)).

19

o

Table 2.10: Examples of the Rule Type Rulel:2:1

TimeHal! -+ Time8h Quarier TiMedth {Rulel:2:1)
Beamed2 - (Beamed!) Beamed (Beamed!) (Rulel:2:1)

Rules of the type Rulel:2 and Rule2:1 derive a note token and a non-terminal

symbol. Sub-measure rhythms such as EQ and HQ can be derived using these rules.

Table 2.11: Examples of the Rule Types Rule2:1 and Rulel:2

Time3Quarters -+ Hall TmeQuarter (Rule2:1)
TimeDottedQuarter —+ Timedth Quarter (Rulel:2)

The rule types Rulel: 2B and Rule2B: 1 directly derive a non-terminal symbol,
and a beam constructor symbol within bracket tokens. These rules are required to derive

rhythms such as Q (****),

Table 2.12: Examples of the Rule Types Rule2B:1 and Rulel: 2B

TimedQuarters -+ (Beamedd) TimeQuarter (Rule2B:1)
8eamed3 » Beomed] (Beomedd) (Rulel:2B)

Rules of the types Rule2:3:1 and Rule3:1:2 are used to derive rhythms such
as the sub-measure thythm (*. (*) *) and the measure long rhythm 3/4Q.EQ. They

consist of two non-terminal symbols and a token representing a dotted note or rest.

Table 2.13: Examples of Rule Types Rule2:3:1 and Rule3:1:2

TimeDottedQuarter + Timeéth DottedEighth Time 16th (Rule2:3:1)
Beomed3 -+ DoledBeamed (Beamed!) Beamed! (Rule3:1:2)

The rules that are neither time signature rules nor time-division rules divide into
three types, called RuleTerminal, RuleAugment, and RuleBeamed. RuleTer-
minal rules whose subjects are time duration symbols always directly derive single
tokens representing a note-stem or a rest with the same duration as the subject. The only
RuleTerminal rule whose subject is a beam-constructor symbol is the one deriving

the seamed token from the Beamed! subject.

Table 2.14: Examples of the Rule Type RuleTerminal

TmeDottedQuarter + DolledQuarne: (RuleTerminal)
TimekHalf -+ Halt {RuleTerminal)
Beamed! ~+ Beamed (RuleTerminal)

The rules of the type RuleAugment have a single non-terminal symbol as their
subject. The right hand side consists of a single non-terminal symbol enclosed by a pair
of angular bracket tokens. The right hand siac non-terminal symbol has a duration equal
to 3/2 the duration of the subject. This rule is vsed to derive triplet rhythms such as

(<Hxrx>),

Table 2.15: Examples of the Rule Type RuleAugment

NimeQuarter -+ < TimeDottedQuarter » (RuleAugment)
Beomed?2 ~ < Beamaal>» {RuleAugment)

RuleBeamed rules derive a beam-constructor symbol within bracket tokens. These

rules are used to derive rhythms such as (**) and (* (**)).

Table 2.16: Examples of the Rule Type RuleBeamed

TimeQuarter -+ (Beamed?2) {RuleBeamed)
Timeé8th - (Beamed!) (RuleBeamed)
Beamed0.5 + (Beamed!) (RuleBeamed)

The parser constructs a derivation tree for the sequence of tokens. It does not store
the production rule at each node. Instead, it stores only the type of the production rule. In
most cases, the type of a production rule distinguishes it from all other production rules
with the same subject, and so this information is sufficient. The only exception is that ali
Time Signature rules which derive a time signature token followed by the ¥=oleRest token
have the same rule type. This means that measures consisting only of a whole rest, denot-
ing a measure of silence, are not distinguishable in the derivation tree. The implications
of this exception are not serious. There is no important difference between two bars of
silence having different time signatures. In any case, this ‘problem’ could be rectified by

introducing a new rule type for every production rule deriving a time signature token fol-

21

lowed by the WholeRest token.

Figure 2.4 illustrates both the lexical processing stage and the parsing stage. Th~ fig-
ure shows a sample measure-long rhythm in rhythm notation, the character string descrip-
tion of it, the sequence of tokens produced by the lexical analyser, with their natures
indicated, and the derivation tree produced by the parser. The tokens which do not repre-
sent note-stems or rests (such as Foufour or <) are indicated in this diagram, although they

are not explicitly stored in the derivation tree produced by the parser.

i—ﬁ
Figure 2.4: An Example

e 40071 10790

Character stnng descripbon 4/4 (~E* (**))<QE>eE-E..T

Token list with natures
NATUREOneEighthGrace NATURESimpleNote NATURERest NATURETie
wclh(u;nuumu)u}mﬂmmbmmmwwmwm
NATURESimpleNcte NATUREAmpleNote NATURESimpleNote
NATURESimpleNote NATURESimpleNote
Tree structure:

Fourfouwr Rulei

RuleAugment| Rulel:1

RuleBeamed
|~

) < [Rule2:1] > [RuleTerminal] [RuleTerminal]][RuleTerminal]
RuleTerminal RuleBeamed
(JRulel:1])
ﬁmermin%iule‘rermiml
Beamed IOOL lot;lrmd Quarder Eighth Eighth Bghth ThirtySecond

DoubleDottedEighth

2.6 A Music Representation System

The music representation system discussed here is hierarchical. The data structures
are described below in top-down order, using written descriptions and diagrams. A name

in capitals represents a compound data structure, described in detail further down. A

name whose first letter is a capital, but is otherwise in lower case, represents a character
string or a simple parameter. Labels in a small font are indices of arrays.

The PIECE structure is the highest level structure, containing global information
about a picce. Name is the name of the piece. FirstPage and LastPage are the first
and last page numbers of the piece. Their values establish the number of pages in a piece.
The editor uses these data to calculate intermediate page numbers. The display of these
page numbers facilitates the entry of musical scores from a book. For each page, there is a
PAGF. structure. NumberOfStaves and NumberOfParts are the numbers of staves
and voices in a piece. For each staff, Name identifies it and Clef is the clef associated
with it. For each voice, Name identifies it, and St af£ £ is the number of the staff to which

it belongs. KeySignature and TimeSignature are the default key and time signa-

tures of the piece.
Figure 2.5: The PIECE Structure
Name
FirstPage
LastPage
FirstP FirstPage + 1 LastP ‘
PAGE PAGE . e PAGE
g
NumberOfStaves
1 2 NumberOfStaves
Name § Name Name
Clef jclef | """ | clef
NumberOfVoices
1 2 NumberOfPars
Name { Name Name
Staffj staff} *°° | staff
KeySignature
TimeSignature

The PAGE structure is simply a list of SYSTEM structures

Figure 2.6: The PAGE structure

SYSTEM SYSTEM jmee | SYSTEM li

The SYSTEM structure contains onc parameter and a two-dimensional array. The

parameter, NumberOfMeasures, is the number of measures into which the system is
divided. The array is indexed by voice and measure. For each combination of voice and
measure, three items are stored. Rnyt hmSt ring is the character string description of
the rhythm in that voice within that measure. TREE is the tree structure representing the
same rhythm. KeySignature is the key signature in effect within the scope of the cur-

rent measure and voice.

Figure 2.7: The SYSTEM structure

NumberOfMeasures
1 2 NumberOfMeasures

RhythmString | RhythmString RhythmString

1 TREE TREE e TREE
KeySignature | KeySignature KeySignature
RhythmString

2 TREE
KeySignature
RhythmString RhythmString

NumberOffarts TREE TREE

KeySignature KeySignature

The TREE structure is based on the tree structure previously described in detail in
section 2.5. Internal nodes represent production rules, and these rules are identified by the
parameter RuleTyp=, indicating the type of the rule. The children of an internal node

represent symbols on the right hand side of the production rule. For each non-terminal

25

symbol, there is a child which is itself an internal node. For each token representing a

note-stem or rest, there is a child which is a leaf node. This leaf node is a STEM structure.

For all other tokens, there are ro children, since their existence is implied by the produc-

tion rule.

Figure 2.8: The TREE structure

RuleType

I RuleType

RuleType

—L

S

RuleType

X

STEM

RuleType

| STEM |

i RuleType I

v

STEM

The STEM structure contains information associated with all the notes on a single

stem, or a single rest. Nature is the nature parameter previously described. Dynamic

denotes the dynamic marking of the note. The null dynamic indicates that no dynamic

marking is present. In the same way, the parameters Accent, Ornament, and Stac-

cat o denote accents, ornaments, and the staccato symbol. A non-null Range value indi-

cates that a given dynamic range starts or ends at the stem. Likewise, a non-null Octave

value denotes the beginning or end of an octave shift.

Slurs have a special notation, since they can be nested, and because a note may be the

last in one slurred group and the first in the next. Different values of the S1ur parameter

indicate no slur, the beginning of one slur, the beginning of two slurs, the end of one slur,

the end of two slurs, and the end of one slur followed immediately by the beginning of

another.

A linked list of NOTE structures represents the note-heads on the stem. Each node
represents a note-head, and they run in descending order of pitch. An array of three NOTE

structures holds pitch information on grace notes, if any.

If the STEM structure represents a rest, then Nat ure is the only meaningful parame-

ter, and its value is NATURERest.

Figure 2.9: The STEM structure

Nature
Dynamic
Accent
Ornament
Range
Octave
Slur
Staccato

NOTE al NOTE fme= ... —OE—III

NOTE | NOTE NOTEI

The lowest level structure, called NOTE, contains two parameters describing pitch.

Line is the line or space at which the note appears and Accidental is the accidental
modifying the pitch of the note. A special case of the Accidental parameter is the null
accidental. From these two parameters, the local key signature, and the previous notes in

the measure, the pitch can be determined.
Figure 2.10: The NOTE structure

Line
Accidental

“ >

Chapter 3: Compression

This chapter concems the distortionless compression of musical data. The first sec-
tion, Basic Compression Algorithms, introduces the concept of data compression, and
introduces two basic data compression algorithms. The next section, Compression of
Rhythmic Data, discusses how one of these algorithms 'was used to achieve compression
of rhythmic data. The third section, Compression of Pitch Data, describes an algorithm
for the compression of pitch data, which employs both of the basic algorithms. The last
section, Compression of Other Data, describes how the compression of other data was

achieved.

3.1 Basic Compression Algorithms

Data compression is the translation of one representation of a body of data into
another, more compact representation, from which either the original representation, or
an approximation to it, can be restored. When data compression is further specified as dis-
tortionless, it means that the original representation can be restored exactly. Only data
whose representation has some predictability or redundancy can be compressed. Data
compression algorithms exploit such predictability and redundancy in order to achieve
compression.

Two basic algorithms for distortionless data compression are discussed below. One
is Huyffman Coding [9]. The other is one of many algorithms based on string substitution.
It is a variation on an algorithm by Ziv and Lempel [10] described by Storer [11]. Both of
these algorithms have several things in common: (1) The pre-compressed data consist of
a string of symbols generated by a source; (2) each source symbol is a random variable
which takes a value {rom a set of alphabet symbols called the source alphabet, according
to some probability distribution; and (3) the compressed data consist of a string of code

symbols from the code alphabet {0, 1}. The encoder maps strings of source symbols into

strings of code symbols, thus compressing data. It does this by breaking the source string

into substrings called source words, replacing each by a string of code symbols called a
code word and concatenating the code words together. The decoder maps strings of code
symbols back into strings of source symbols, thus restoring the original representation of

the data. For more details on the terms introduced here, see [12].

Huffman Coding

Huffman Coding is a compression algorithm which works weii when source symbols
are independent and identically distributed random variables. It is explained here by way
of several intermediate descriptions. First, a genezal class of codes is described. Then tree
codes are discussed, as special cases of these codes. Next, the code rate is introduced as a
measure of compression. At this point, Huffman Codes are presented, as special cases of
tree codes. Finally, a variation of Huffman Coding called Dynamic Huffman Coding is
discussed.

An important class of codes are those codes which map the set of source symbols to
a set of code words. Such codes might be employed by a compression algorithm in the
following manner: The encoder would map each source symbol into a code word and
concatenate all the code words to form the compressed output. The decoder would parse
the string of code symbols into code words, map each code word back into a source sym-
bol, and concatenate these source symbols to restore the original representation of the
data.

It is easy to see that some choices of a codeword set are not uniquely decipherable;
that is, it is not always possible to take a string of code symbols and unambiguously break
them into code words. Recall that a codeword is a string of symbols from the code alpha-
bet {0, 1}. Consider the naive code given in Table 3.1, where the symbol alphabet is {A,
B, C}. Faced with the string of code symbols “1010”, the decoder would be unable to

determine whether the correct string of source symbols is “ACB”, “BAC”, or “BB".

ooty

strings of code symbols, thus compressing data. It does this by breaking the source string
into substrings called source words, replacing each by a string of code symbols called a

code word and concatenating the code words together. The decoder maps strings of code
symbols back into strings of source symbols, thus restoring the original representation of

the data. For more details on the terms introduced here, see [12].

Huffman Coding

Huffman Coding is a compression algorithm which works well when source symbols
are independent and identically distributed random variables. It is explained here by way
of several intermediate descriptions. First, a general class of codes is described. Then tree
codes are discussed, as special cases of these codes. Next, the code rate is introduced as a
measure of compression. At this point, Huffman Codes are presented, as special cases of
tree codes. Finally, a variation of Huffman Coding called Dynamic Huffman Coding is
discussed.

An important class of codes are those codes which map the set of source symbols to
a set of code words. Such codes might be employed by a compression algorithm in the
following manner: The encoder would map each source symbol into a code word and
concatenate all the code words to form the compressed output. The decoder would parse
the string of code symbols into code words, map each code word back into a source sym-
bol, and concatenate these source symbois to restore the original representation of the
data.

It is easy to see that some choices of a codeword set are not uniquely decipherable;
that is, it is not always possible to take a string of code symbols and unambiguously break
them into code words. Recall that a codeword is a string of symbols from the code alpha-
bet {0, 1}. Consider the naive code given in Table 3.1, where the symbol alphabet is {A,
B, C}. Faced with the string of code symbols *“1010”, the decoder would be unable to

determine whether the correct string of source symbols is “ACB”, “BAC”, or “BB".

Table 3.1: A Naive Code

Ae]
B+ 10
Ce 0

Tree codes, however, have the property that a string of concatenated code words can
be unambiguously broken into individual code words. Tree codes are defined as those
codes for which a binary tree can be constructed having the following properties: There is
a one-to-one mapping between leaf nodes and alphabet symbols. If the left and right
branches from an internal node to its children are labelled ‘0’ and ‘1°, respectively, then
the code symbol string spelled out by traversing the path from the root node to a leaf node
is the code word which maps to the same alphabet symbol as the leaf node maps to.

The introduction of binary trees to define tree codes is not merely a theoretical
device. The following compression algorithm, based on a tree code, makes use of such a
tree. With each source symbol, the encoder does the following. It traverses the path from
the corresponding leaf node to the root node, pushing one of the code symbols ‘0’ or 1°
onto a stack with each branch climbed, according to the branch’s label. When the root
node has been reached, the code symbols are popped off the stack to form the appropriate
codeword. The decoder begins execution at the root node. It reads one code symbol at a
time from the input, and descends the appropriately labelled brs—~ch to a new node. Every
time a leaf node is reached, the corresponding symbol is added to the output and the
decoder starts again at the root node. In this way, the original source symbol string is
regenerated.

It is easy to sec that the list of codewords can be unambiguously subdivided. Code-
word boundaries follow those bits, and only those bits which lead the decoder to a leaf
node.

The following example illustrates a tree code, the corresponding binary tree, and the
operation of the encoder and decoder. The symbol alphabet is {A, B, C, D}. The input is

the source symbol string “CAB”. The tree code is given in Table 3.2, and the binary tree

representing the tree code is illustrated in Figure 3.1.

Table 3.2: A Tree Code

A+
B « 100
C « 101
D« 1l

Figure 3.1: A Binary Tree for a Tree Code

The following figure describes the action of the encoder. Each line corresponds to
onc symbol read from the input. In the first column is the source symbol read. The path
traversed from the root node to a leaf node is illustrated in the second column. The third
column lists the code symbols in the order they are pushed onto the stack. The fourth col-
umn lists the bits in the order they are popped. This list is the correct codeword. The last

column shows the output thus far.

Figure 3.2: Encoder Operation
Symbol Read Path Traversed Bits Pushed Bits Popped (Codeword) Output
c 2\ 101 101 101
A 2\ 0 0 1010
B 2\ 001 100 1010100

The next figure illustrates the action of the decoder. Each line corresponds to a single
code symbol read from the input. The code symbol read is in the first column. The branch
traversed is indicated in the second column. The third column contains the source symbol

decoded at that step, if there is one. The last column shows the output thus far.

31

|

Figure 3.3: Decoder Operation
Symbol Read Branch Traversed Symbol Decoded Output
: R
° 73
: 2\ c c
0 % A CA
1 2\ Cca
0 2\ CA
0 2\ B CAB

Obviously, many different binary trees having the required properties can be con-
structed for a given symbol set, and each one will be a tree code. Not all of the codes are
equally good, as far as compression is concerned.

With each tree code, one can compute a figure of merit called the code rate. The
code rate, expressed in bits/symbol, is the expected length of a codeword. A good code is
one with a small code rate. Intuitively, the good codes are those which assign long code
words to unlikely alphabet symbols, and short code words to more probable alphabet
symbols. A Huffman code for a given symbol alphabet and a given probability distribu-
tion over the alphabet symbols has the lowest code rate of all the tree codes that can be
constructed. A Huffman code is defined to be any code that can be generated by the fol-
lowing algorithm. At least one Huffman code exists for a given source.

Let N equal the number of alphabet symbols. First, a set of N trees is constructed.
Each tree consists of a single node. To each node is attached one of the N symbols. Each
tree has a weight associated with it, which is the probability of the attached symbol.

The following tree-combining routine is executed N -1 times, after which there

remains a single tree, which is the desired tree. The two trees with the smallest weight are

2

e

) selected. Ties are resolved arbitrarily. A new node is created as the root node of a new
1 tree. One of the two selected trees becomes the left (0) sub-tree of the new tree, and the
other becomes the right (1) sub-tree. The choice is arbitrary. The new tree has a weight

assigned to it which is equal to the sum of the weights of the two sub-trees.

The following example illustrates the tree construction algorithm. The symbol alpha-

bet is {A, B, C, D, E, F, G, H). The following probabilities are associated with the sym-
bols.

Figure 3.4: Symbol Probabilities

=% MB=x KOS D=

_ 2 _ 17 _ 8 _ 2
PO =5 MRz AO=5 =3

The first line in the figure below displays .ne set of trees after it has just been initial-
ised. The other lines display the set of trees ¢ iter each iteration of the tree-combining rou-

tine. All weights have been multiplied by 32 for ease of reading.

33

@

Figure 3.5: Building a Tree for a Huffman Code

>0
-1 X
(o] J
o®
(o1 2N
1)
711 X}
4 NN}

>®a >0 o
o®wn N w
"o [~ NTJ
0® o ne
> 21 X
S-S

5 7 8 17 LY
e & o
D F G A
O\C“
B E

8 10 14
[
G
2N
Cc H A
B E
14 is
F G
A D
(o H

The next table summarises the code. For each symbol, its probability, its codeword,
and the length of the codeword is listed. The code rate is 2.78 bits per symbol. This can be
compared to a code rate of 3 bats per symbol for a code in which each symbol maps to a
three bit codeword, and an entropy of 2.75 bits per symbol. The entropy is the minimum
average number of code symbols per source symbol that can be achicved by any code

when one relaxes the requirement that code words represent single source symbols.

u

Table 3.3: A Summary of the Generated Huffman Code
Symbol Codeword Probability ~ Length

A 010 4/32 3
B 0110 1732 4
c 1110 3732 4
D 110 5/32 3
E 0111 2/32 4
F 00 1732 2
G 10 8/32 2
H 1111 2/32 4

Dynamic Huffman Coding [13], [14] is used when the alphabet symbol probabilities
are not known. The algorithm is so called because the Huffman code, and the tree defin-
ing it, change dynamically as more and more is learned about the symbol probabilities.

Recall that Huffman codes are constructed using known alphabet symbol probabili-
ties. Dynamic Huffman Codes are constructed using measured alphabet symbol frequen-
cies. Both the encoder and the decoder initialise symbol frequencies to unity. After each
source symbol has been encoded or decoded, the frequency of that symbol is incre-
mented.

To encode and decode every source symbol, a separate Huffman code is constructed,
by building the corresponding binary tree, using up-to-date alphabet symbol frequencies.
Fortunately, each new tree does not have to be built from scratch. It can be built by rear-
ranging the previous tree. To facilitate this rearrangement, a second data structure is intro-
duced. This structure is a doubly linked list of all the nodes on the binary tree. Each node
is represented in the list exactly once, and the nodes are ordered by weight. From left to
rightin the list, the weights are non-decreasing. Furthermore, nodes which are siblings on
the binary tree must be adjacent in the linked list. It is not obvious that a list having all
these properties can be constructed, but it can be, provided the tree does, in fact, define a
Huffman code.

The following tree re-arrangement routine is carried out after each symbol has been

encoded or decoded. The weight of the leaf node corresponding to the symbol is incre-

35

e

mented. If the weight of this node is now greater than that of its right neighbour in the
linked list, then the node switches place with the right-most node in the linked list with a
smaller weight. The nodes, with all their descendants, switch place on the binary trec as
well. The weight of the new parent node is also incremented. It too changes places with
another node in the same way, if necessary. This continues until the root node has been
incremented. After all this has been done, the tree once again describes a Huffman Code.
Also, the weights in the linked list are once again in non-decreasing order, and all sibling

nodes on the tree are once again adjacent in the linked list.

A String Substitution Compression Algorithm

In many data compression problems, the data do not conform well to an independent
symbol model. Siguificant inter-symbol correlation often extends over distances of sev-
eral symbols. Problems such as text compression and source code compression are exam-
ples.

Several algorithms used to solve such data compression problems share the follow-
ing common approach. The string of source symbols is broken into substrings, and each
substring maps to a code word. The algorithm described below follows this approach. It is
based on an algorithm by Ziv and Lempel [10], and has a variation introduced by Storer
[11]. In this research, it is used to compress sequences of contour symbols and sequences
of auxiliary symbols. A modified version of the algorithm is used to compress sequences
of rhythm derivation trees.

The dictionary is an important part of this algorithm. It a list of strings of source sym-
bols, to which strings can be added, and from which strings can be deleted. The strings in
a dictionary of size N are numbered from 0 to N-1.

Codewords are simply indices to elements in the dictionary. A code word is a
sequence of [log N] code symbols taken from the set {0,1)}. This can be considered to be
a binary number. This number is the number of the dictionary element that the code word

indexes.

The encoder initialises the dictionary to contain all strings of alphabet symbols of
length one, namely the alphabet symbols themselves. In its first iteration, the encoder
matches the first source symbol with a string in the dictionary. The index of this string
becomes the first codeword. In subsequent iterations, the encoder performs the following
routine. First, it finds the longest prefix of the remaining source symbol string that
matches an clement in the dictionary. This string is called the current match. The index of
the current match in the dictionary becomes the next codeword. The dictionary is then
updated. All strings that consist of the previous match concatenated with a non-empty
prefix of the current match are added to the dictionary. They are added to the end of the
dictionary, and so the indices of existing elements are unchanged. If the size of the dic-
tionary exceeds a predetermined limit, entries are removed, on a Least Recently Used
(LRU) basis, with the provision that strings of length one are never deleted. This provi-
sion ensures that at least one prefix of any string of source symbols is in the dictionary at
all times.

The decoder initialises the dictionary in the saw.c way. In its first iteration, it reads the
first codeword. It knows how long the codeword must be by the size of the dictionary, and
the fact that codewords are [log N] code symbols in length. Using this codeword as an
index to the dictionary, it finds the first string matched by the encoder. This string, a sin-
gle symbol, is the first symbol decoded. In subsequent iterations, the decoder reads a code
word from the input, retrieves the dictionary entry it indexes, and appends this string to
the output. The dictionary is then updated in exactly the same way as it is by the encoder.
The decoder has access to the decoded string and the previous decoded string, so this can
be done.

The example below demonstrates this algorithm in use. The symbol alphabet is the

following set of symbols. The dictionary initially contains exactly these elements,

37

indexed from O to 28, in the order they appear here.

(A,B,C,D,E,F,G,H,1,J,K,L,MN,0,P,Q,R, S, U, VWX, Y, 2, ,., ')

The data to be compressed is the following string:

“THE SIXTH_SHEIK’S_SIXTH_SHEEP’S_SICK.”

Each line below corresponds to an iteration. In the first column are the strings
matched in each iteration. The index of the matched string in the dictionary appears in the
second column. The index represented as a sequence of code symbols is in the third col-
umn, The strings added to the dictionary are listed in the fourth column, with their indices
indicated in parentheses. It is assumed that the dictionary is large enough that strings
never need to be deleted.

R

Table 3.4: Operation of String Substitution Algorithm

Sting Matched Index Bit Sequence New Entries

T 19 10011
H 7 00111 TH(29)
E 4 00100 HE (30)
_ 26 11010 E_(31)
3 18 10010 _S(32)
I 8 001000 SI(33)
X 23 010111 IX(34)
TH 29 011101 XT(35), XTH (36)
S 32 100000 TH_(37), TH_S (38)
HE 30 011110 _SH (39), _SHE (40)
I 8 001000 HEI (41)
K 10 001010 IK(42)
' 28 011100 K’ (43)
s 18 010010 'S (44)
S 32 100000 S_(45),S_S (46)
IX 34 100010 _SI (47), _SIX (48)
TH_S 38 100110 IXT (49), IXTH (50), IXTH_ (51),
IXTH_S (52)
HE 30 011110 TH_SH(53), TH_SHE (54)
E 4 000100 HEE (55)
P 15 001111 EP (56)
'S 44 101100 P’ (57),P’'S (58)
sI 47 101111 *S(59),’S_S (60),’S_SI (61)
c 2 000010 _SIC(62)
K 10 001010 CK (63)
27 011011 K. (64)

3.2 Compression of Rhythmic Data

Recall that Rhythmic data consist of a collection of rhythm grammar trees, indexed
by voice, page, system, and measure. One can treat this collection of trees as a single
sequence by ordering the trees in voice-major, measure-minor order. (The system is just a
sequence of measures, and the page is just a sequence of systems.)

Several properties of rhythm are exploited to achieve compression. The evidence for
tree structure in rhythm has already been discussed in detail in Section 2.4. In most
pieces, many groups of measures sharing the same rhythm can be found. Typically, many
rhythms lasting several measures will repeat within a piece.

The algorithm for compressing rthythmic information is composed of two separate

39

algorithms. The first algorithm, a modified version of the string substitution algorithm, is
used to compress the collection of rhythm grammar trees in a piece of music. The source
alphabet is the set of unique rhythm grammar trees in the piece. The source is the
sequence of rhythm grammar trees described above. The encoder writes code words to an
output called the treestring output. The second algorithm, based on dynamic Huffman
coding, is used to compress the description of each unique rhythm grammar tree. The:
encoder writes code words to an output called the innovation output. Figure 3.6 includes a

block diagram of the rhythm compression algorithm.

Figure 3.6: The Rhythm Compression Algorithm

Uncompressed Data Encoders Compressed Data Decoders Decompressed Data

RDW:.M First Algorithm —{Tmesving Output H First Algorithm ‘-OI N[;y.:m
| | I I— J

Second Algonthm H Innovation Output H Second Algonthm

Some modifications are required for the first algorithm to be able to compress
sequences of rhythm grammar trees. These modifications are described below.

In the regular algorithm, the dictionary is initialised to contain every alphabet sym-
bol. After initialisation, these symbols cannot be added to or deleted from the dictionary.
In the modified algorithm, the dictionary is initially empty. New alphabet symbols are
added to the dictionary as they are discovered, and they cannot be removed. In both ver-
sions, strings of symbols are added to and deleted from the dictionary.

In the regular algorithm, codewords index dictionary elements. When the dictionary
is of size N, the length of a codeword is [log N code symbols. In the modified algorithm,
all but one of the codewords index dictionary elements. The code word that is not a dic-
tionary index is a special ‘escape’ code word. The length of all the dictionary index code

words is [log,(N+1)] code symbols, which ensures that there is at least one combination

o,

of code symbols equal in length to the index codewords which is not an index codeword.
The length of the escape code word is not necessarily[log, (¥ + 1)] code symbols. It is
never longer, and is typically shorter. It consists of only enough code symbols to distin-
guish it from equal length prefixes of all other codewords. It is a string of ‘1’s whose
length is one greater than the number of leading “1’s in the binary representation of N~ 1.
For example, if N = 13, = 1101,, then the codewords indexing dictionary elements are
0000 through 1100, and the escape codeword is 111. The special codeword consists of
three ‘1’s because no codeword is great enough to contain three leading ‘1’s, and at the
same time, there does exist a codeword with two leading *1°s. If N = 15, then the greatest
dictionary codeword is 1110, and the special codeword is 1111. If N = 16, then the
greatest dictionary codeword is 01111, and the special codeword is 1.

The encoder of the regular algorithm repeatedly finds the longest prefix of the
remaining source symbols that is in the dictionary. The encoder of the m:odified algorithm
tries to do the same. Sometimes, hiowever, it finds that the first remaining source symbol
is not in the dictionary. When this happens, the encoder appends the ‘escape’ code word
to the treestring output, to indicate this event. It then arranges for the second algorithm to
encode the new tree, and adds this new tree to the dictionary. The decoder of the modified
algorithm, when it encounters the escape code word, asks the second algorithm to decode
a new tree, and adds this tree to the dictionary.

The second algorithm employs dynamic Huffman coding to encode or decode a
rhythm derivation tree. These trees are discussed in detail in Section 2.5. Briefly, each
internal node has a parameter called RuleType stored at it. These parameters identify
production rules of the rhythm grammar, defined in Appendix B: A Rhythm Grammar.
Each leaf node has a parameter called Nat ure stored at it. Refer to Table 2.1: Note Pre-
fixes used in the Character String Description of Rhythm, and Table 2.4: Natures Describ-
ing Note-stems and Rests to see what the various values of the nature parameter

represent.

41

The following description of how a derivation tree is encoded and decoded is in two
parts. The first part explains a simplified version of the encoding and decoding algo-
rithms. The second part documents a set of modifications which improve the code rate by
combining code words.

In the simplified version, the derivation tree is represented in encoded form by a
sequence of code words. Each code word represents the data at a node, which in turn rep-
resent either a production rule or the value of a Nat ure parameter. The order of the code
words in this sequence is the order implied by a pre-order traversal of the derivation tree.
The pre-order traversal of a tree is the one in which the root node is visited first, and the
subtrees of the root node, if any, are traversed in order from left to right, each in pre-order.

The algorithm does not rely on a single dynamic Huffman code to encode a sequence
of RuleType and Nature parameters. The value of a parameter at a node depends
heavily on where on the rhythm grammar tree the node is found. Instead, the algorithm
makes use of a collection of dynamic Huffman codes, where each code is associated with
u different context in the tree.

With each non-terminal symbol of the Rhythm Grammar is associated a Dynamic
Huffman Code. The source symbols of any given code are the rule types of those produc-
tion rules having the associated non-terminal symbol as their subject. Each of these pro-
duction rules has a unique rule type, but not all rule types are represented by these
production rules.

Another dynamic Huffman code is used to encode and decode the Nature parame-
ters. Each source symbol in this code corresponds to a value of the Nat ure parameter.

The trees defining these dynamic Huffman codes are initialised before the execution
of the thythm compression algorithm. They are not re-initialised every time a single tree
is encoded. The codeword added to the innovation output for each internal node of each
rhythm grammar tree is chosen according to one of these codes.

To encode a particular derivation rule tree, the encoder traverses the tree in pre-order

42

Vi

fashion. At each node, the encoder determines which non-terminal symbo! is the subject
of the production rule associcted with that node. It determines the corresponding
Dynamic Huffman Code, and constructs the codeword corresponding to the rule type
stored at the node, which it adds to the innovation output. The Dynamic Huffman Code is
then updated to reflect the increased estimate of the probability of that rule type being
found in the context defined by the subject of the production rule at the encoded node.

The decoder reconstructs the encoded tree also in pre-order fashion. At each node, it
determines which non-terminal symbol is the subject of the production rule asscciated
with that node. It selects the same corresponding Dynamic Huffman Code that the
encoder did at the same point in its execution, and reads in the codeword which repre-
sents the rule type at the node. The rule type is obtained fromn the Dy ~amic Huffman
Code, and is stored at ihe reconstructed node.

The following example illustrates the encoding and decoding of a simple derivation
tree. The derivation tree is illustrated in Figure 3.7. The reader may wish to refer to

Appendix B: A Rhythm Grammar.

Figure 3.7: A Simple Derivation Tree

Node E
Node C ~——{RuleTerminal] [RuleTerminal]/
Node D--ulal qu—-——"‘ Node F
(Nature = NATURESimpleNote) {(Nature = NATURERest)

The encoder performs the following steps. It has just seen a new tree (the tree above)

and has added the special codeword signifying this to the treestring output.

1: (Encoding the Root Node) srart is the non-terminal symbol at the root of this (and

every) tree. The dynamic Huffman code associated with the Stat non-terminal is selected,

43

"7——‘

‘ and the rule type RuleFourFour is translated into a code word using this code. The
code is then updated. The rule type RuleFourFour identifies the following production

rule as the one associaied with the root node:

Start - Fourfowr TmewWhaole
2: (Encoding Node A) This node does not need to be further specified, as it does not

have a Nature parameter, nor any children.

3: (Encoding Node B) The rule type Rulel : 1 is encoded using the nmewhole code,

which is then updated. Node B thus associates with the following production rule:

TimeWhole —+ TimeHalf TimeHalf
4: (Encoding Node C) The rule type RuleTerminal is encoded using the nmetay

code, which is then updated. Node C thus associates with the following production rule:

TimeHalf - Holt
5: (Encoding Node D) The value of the Nat ure parameter, NATURESimpleNote,

is encoded using the Nature code, which is then updated.

6: (Encoding Node E) The rule type RuleTerminal is encoded using the nmeHarr
code, which is then updated. Node B thus associates with the following production rule:

TimeHalf -+ HoWt
7: (Encoding Node F) The value of the Nature parameter, NATURERest, is encoded

using the Nature code, which is then updated.

The decoder goes through the following steps. It has just read the escape code word

from the treestring input, and now proceeds to read in a description of the new tree.

1: (Decoding the Root Node) start is the non-terminal symbol at the root of this (and
every) tree. The dynamic Huffman code associated with the stat non-terminal is selected.
The next code word is read from the innovation input, and is translated into the rule type
RuleFourFour. The code is then updated. The rule type RuleFourFour identifies

the following production rule as the one associated with the root node:

N Start + FourFour TimeWhole
2: (Decoding Node A) This node is already fully specified, and is not decoded.

3: (Decoding Node B) The rule type Rulel : 1 is decoded using the nrmewnole code,
which is then updated. Node B thus associates with the following production rule:

TimeWhole -+ TimeHall TimeHal
4: (Decoding Node C) The rule type RuleTerminal is decoded using the rimeHair

code, which is then updated. Node C thus associates with the following production rule:

TimeWhoie -+ TimeHall TimeHal
5: (Decoding Node D) The value of the Nat ure parameter, NATURESimpleNote,

is decoded using the Nature code, which is then updated.

6: (Decoding Node E) The rule type RuleTerminal is decoded using the nmeHaif

code, which is then updated. Node B thus associates with the following production rule:

TimeWhole - TimeHalf TimeHalf
7: (Decoding Node F) The value of the Nat ure parameter, NATURERest, is

decoded using the Nat ure code, which is then updated.

The following list concludes the explanation of how a derivation tree is encoded and
decoded. It documents all the modifications used to improve the code rate by combining

codewords.

1: Each production rule which derives a token representing a note or a rest is repre-
sented by three symbols in the appropriate Dynamic Huffman Code, not one. The three
symbols specify the appropriate production rule, as required. The first also indicates that
the Nature of the token is NATURESimpleNote. The second indicates that the
Nature is NATURERest. The third indicates that the Nature is one of the other possi-
ble values. The symbols NATURESimpleNote and NATURERest are removed from
the Nat ure Dynamic Huffman Code, having been made superfluous. The advantage of
this lies in the fact that NATURES impleNot e is much more frequent than all other
Nature values, and that NATURERe st is much more frequent than all the others except
NATURESimpleNote. In most cases, a single code word suffices to encode both the

production rule, and the Nature of the token on its right hand side.

45

2: The first production rule of any tree is not normally coded. It is taken to be the pro-
duction rule deriving the time signature token corresponding to the default time signature
of the picce. To every Dynamic Huffman Code belonging to a non-terminal symbol that
can be directly derived from the start symbol is added a special symbol. This symbol indi-
cates that the time signature of the measure is not the default time signature of the piece.
When the encoder finds a tree whose first production rule does not derive the time signa-
ture token corresponding to the default time signature, it adds the code word comrespond-
ing to this special symbol to the innovation output, and explicitly encodes the first
production rule, using the stort code. When the decoder encounters this codeword, it

decodes the first productior rule, using the srart code.

3: The non-terminal symbols Tinewhoe and TimedDotted@uarters each have a symbol
added to their Dynamic Huffman codes specifying the rule type Rulel : 1, and indicat-
ing that both children nodes also have the rule type Rulel: 1.

4: No non-terminal symbol with only one production rule has a code. In these cases,

the production rule is determined, not random.

5: The non-terminal symbols 8eamean.2s and Beamean 125 have one special symbol
indicating the rule type RuleBeamed followed by the rule type RuleBeamed at the
child node, followed by the rule type RuleBeamed at the grandchild node, and another
special symbol indicating the rule type RuleBeamed followed by the rule type Rule-
Beamed at the child node. The non-terminal symbol 8eomean 5 has one special symbol
indicating the rule type RuleBeamed followed by the rule type RuleBeamed at the
child node.

6: The non-terminal symbols Beamed< and Beameds have four symbols instead of ons
to represent the rule type Rulel: 1. These four symbols indicate that the two children
nodes have rule types Rulel:1 and Rulel:1, Rulel:1 and RuleBeamed, Rule-

Beamed and Rulel:1, or RuleBeamed and RuleBeamed.

ey

2: The first production rule of any tree is not normally coded. It is taken to be the pro-
duction rule deriving the time signature token corresponding to the default time signature
of the piece. To every Dynamic Huffman Code belonging to a non-terminal symbol that
can be directly derived from the srart symbol is added a special symbol. This symbol indi-
cates that the time signature of the measure is not the default time signature of the piece.
When the encoder finds a tree whose first production rule does not dcrive the time signa-
ture token corresponding to the default time signature, it adds the code word cormrespond-
ing to this special symbol to the innovation output, and explicitly encodes the first
production rule, using the siat code. When the decoder encounters this codeword, it

decodes the first production rule, using the start code.

3: The non-terminal symbols Timewnole and TmedDottead@uarters €ach have a symbol
added to their Dynamic Huffman codes specifying the rule type Rulel: 1, and indicat-
ing that both children nodes also have the rule type Rulel:1.

4: No non-terminal symbol with only one production rule has a code. In these cases,

the production rule is determined, not random.

5: The non-terminal symbols 8eomed0.25 and 8eamedo. 125 have one special symbol
indicating the rule type RuleBeamed followed by the rule type RuleBeamed at the
child node, followed by the rule type RuleBeamed at the grandchild node, and another
special symbol indicating the rule type RuleBeamed followed by the rule type Rule-
Beamed at the child node. The non-terminal symbol 8Beamean 5 has one special symbol
indicating the rule type RuleBeamed followed by the 1ule type RuleBeamed at the

child node.

6: The non-terminal symbols 8eamedd and Beameds have four symbols instead of one
to represent the rule type Rulel : 1. These four symbols indicate that the two children
nodes have rule types Rulel:1 and Rulel:1,Rulel:1 and RuleBeamed, Rule-

Beamed and Rulel:1, orRuleBeamed and RuleBeamed.

;
i
4
:
3

>R

.3 Compression of Pitch Datg

Every node in a derivation tree which represents a stem has at least one pitch value
associated with it. Some have more than one notehead attached, and have a pitch value
associated with each one. Stems whose natures indicate grace notes have an additional
pitch value for each grace note.

For simplicity, pitch information is decoupled from rhythmic information, and the
different voices in a piece are decoupled from each other. This means that much correla-
tion cannot be exploited. However, the music representation system described in the pre-
vious chapter is flexible enough to allow such correlation to be exploited by an improved
compression algorithm, and the compression algorithm for piich data described here can
be expanded to take advantage of this correlation. What is required is a probabilistic
model for musical harmony. Designing and implementing even a simple model would be
difficult, and would require a great deal of musical insight. For this reason, it is beyond
the scope of this thesis. These issues will be discussed in more detail in Chapter 5: Con-
clusions.

Disregarding the relationship between rhythm and pitch, and the relationship
between different voices, the pitch data of a piece can be considered to be a collection of
pitch value sequences, one sequence per voice, with the provision that a group of pitch
values from the same stem can be so indicaied.

Three characteristics of pitch data are exploited in their compression. First, in a given
piece, some pitch values will be more likely than others. The set of likely pitch values dif-
fers between picces, and has much to do with the key signature of the piece.

Another characteristic is the importance of the order of pitch values. Contour is the
word used to describe the pattern arising out of a consideration of the relative orders of
pitch values in a sequence. Consider the following example. The first few pitch values of

the melody Three Blind Mice are shown in Figure 3.8.

47

Figure 3.8: Three Blind Mice

3 e 1 3 2 e 1

o ——py— L —0—O0—¢y

g7

‘~H>"

Three biind mics Ses how they run Thies biind mice See how they mn

In the first half of the sequence shown, the numbers indicate the ranks of the different
pitch values in the sequence.

The importance of contour is considerable. Experiments have shown that subjects
will usually recognise melodies in which pitch values have been changed [16], if the con-
tour remains the same, and that subjects often confuse two different melodies whose con-
tours are identical [17]. Often in music, two or more different sequences will share the
same contour. For example, the second half of the melody fragment illustrated above has
the same contour as the first, although the pitch values are different. Even the pitch inter-
vals between corresponding pairs of notes from each half are not identical. (This latter
fact might seem counterintuitive, on inspection of the above figure, but it is indeed true.)

Another characteristic is the importance of the distinction between steps and jumps.
Steps of pitch are intervals between two consecutive notes, one of which is on a line, the
other of which is on a space between this line and an adjacent line. (The interval is thus
cither a semitone or a tone) Jumps of pitch are those intervals between consecutive fiotes
which are larger. The importance of this distinction can be seen by noticing that in a typi-
cal piece of music, steps account for a disproportionate number of intervals

Briefly, the compression algorithm works in the following way. First, contour infor-
mation is extracted from the data. This information incorporates both that which is called
contour above, and the distinction between step and yump. It takes the form of a sequence
of contour symbols, one symbol for each pitch value. The sequence of contour symbols
generated in this way is compressed using the basic string substitution compression algo-
rithm. When the encoder encodes a pitch value, it uses the associated contour symbol to

narrow the range of possible values. The sequence of contour symbols is decompressed

before the sequence of pitch values. In this way, the decoder has the same access to the
contour symbols as the encoder has, and decodes pitch values given the contour symbol.

A block diagram of the compression algorithm is pictured in Figure 3.9.

Figure 3.9: The Pitch Compression Algorithm
Uncompressed Data Encoders Compreased Data Decoders Decompressed Dats

Pitch I Pich Compressed Puch Pitch

Dea I Algonthm Pach Deta Algonthm Data
Extracton of Standard Compressed 7 Standard
Contour informaton Algonthm Contour Data Algonthm

The alphabet of contour symbols has a size of eight. The contour symbol associated

with a given pitch value depends on the previous two unique pitch values. Two arbitrary
pitch values are assumed to occur before the first in each voice, for the purpose of encod-
ing the first few pitch values. The symbol alphabet is { JUMP_ABOVE, STEP_ABOVE,
EQUAL _ HIGHER, BETWEEN, EQUAL_LOWER, STEP_BELOW, JUMP_BELOW,
SAME_STEM}. JUMP_ ABOVE means that a pitch value is a jump above the higher of the
two previous pitch values. STEP_ABOVE indicates the note is a step above, and
EQUAL_ HIGHER means that it is equal in pitch. BETWEEN means that the pitch value is
between the two previous unique pitch values. EQUAL LOWER, STEP_BELON, and
JUMP_BELOW are analogous to EQUAL_HIGHER, STEP_ABOVE, and JUMP_ABOVE
respectively. The symbol SAME _STEM means that the pitch values belong to a note-head
on the same stem as the previous pitch value. Because the note-heads on a single stem are
ordered from highest to lowest by pitch, the pitch value is always lower than the previous
pitch value. See Figure 3.9 below for some examples. The lower of the two illustrated
notes is assumed to be the imi..>diately previous note. This is only relevant in the

SAME _STEM example.

49

Figure 3.10: Contour Symbols

Previous)
Two Notes o STEP_ABOVE BETWEEN STEP BELOW SAME_STEM
o a ©— T
——— — = © ~eh—
=
JUMP _ABOVE EQUAL_HIGHER EQUAL_LOWER JUMP_BELOW

Pitch, given contour, is compressed using a variation of Dynamic Huffman Coding.
For each voice, the frequencies of each pitch value are tallied. After each pitch value is
encoded or decoded, the frequency of that pitch value is incremented. A separate Huif-
man Code is generated to encode and decode each pitch value. Only those pitch values
which are possible given the associated contour symbol are used in the code.

3.4 Compression of Other Data
Global data for each piece, the numbers of systems on each page, and the number of
bars in each system are compressed using the basic string substitution algorithm.
Auxiliary information, like pitch information, is decoupled from rhythmic informa-
tion, generating a set of six sequences of auxiliary symbols for each voice: dynamic sym-
bols, accent symbols, ornament symbols, range symbols, octave symbols, slur symbols,

and staccato symbols. These sequences are compressed using the basic string substitution

algorithm.

Chapter 4: Experiments and Results

In this chapter, experiments and results are presented. Two pieces of music were
entered. They were compressed using both the music compression algorithm developed
in this research and using the standard string substitution algorithm. In the first section,
The Pieces Compressed, the two pieces are described. The elements of notation which
could not be represented using the representation system developed in this research are
listed in this section. In the second section, the files generated by the editor and the file of
contour side information generated by the pitch compression algorithm are described.
The names and sizes of these files are tabulated. In the third section, Compressed Files
Generated by the String Substitution Algorithm, the use of the standard string substitu-
tion algorithm to compress these files is described, and the file sizes of the compressed
versions are tabulated. In the fourth section, the files generated by the music compression
algorithm are discussed, and the sizes of these files are tabulated. The results are summa-

rised in the final section.

4.1 The Pieces Compressed

Two pieces of music were entered and compressed. One was the first movement of
La Primavera from The Four Seasons, by Antonio Vivaldi. The other was the second
movement from Jo:eph Haydn’s Symphony No. 104 in D major. Both of these scores can
be found in [18].

The piece by Vivaldi is in five voices: solo violin, first violin, second violin, viola,
and violoncello/double bass. Each voice is written in its own staff, and so there are five
staves. The key signature denotes four sharps, and does not vary. The time signature
throughout is § . The following list describes the notational elements found in this piece

that could not be represented by the present representation system.

1: Numbering of measures. The number of the first measure of each system is indi-

51

P

acd. \

cated.

2: Lettering of sections. The letters A, B, C, D, and E are used to mark five different
sections of the piece.

3: Figured bass symbols.

4: The tempo marking ‘Allegro’. Tempo markings indicate the speed at which to per-
form a passage.

5: Descriptions in old Italian. These identify particular themes in the music using
analogies with nature. One example is “Vengon' coprendo 1’aer di nero an amanto/E
Lampi, e tuoni ad annuntiarla eletti”, which means “Thunder and lightning come to
announce the season, covering the air with a black mantle”.

6: Solo and Tutt indications. Typically many individual instruments play a single
voice, in unison. For example, several violas might play the voice called ‘Viola’. ‘Solo’
indicates that a single instrument is to play the following passage. ‘Tutti’ indicates that all

instruments assigned to a voice are to play the passage.

7: The Fermata symbol, which indicates that the duration of a note is to be extended

beyond its nominal duration.
8: Brackets which indicate natural groupings of staves in a system.

The piece by Haydn is in seventeen voices: 2 flute voices, 2 oboe voices, 2 clarinet
voices, 2 bassoon, 2 hom voices, 2 trumpet voices, timpani, first violin, second violin,
viola and violoncello/double bass. The pairs of flute, oboe, clarinet, bassoon, horn, and
trumpet voices share a staff, and all other voices have their own staff. There are therefore
eleven staves altogether. The default key signature is one sharp. However, one passage
has a key signature of two flats, one of the staves has a key signature of one flat through-
out, and another three staves have a key signature of no accidentals throughout. The
staves that have their own characteristic key signatures do so because the instrument

whose voices are written in those staves are transposing instruments. The time signature

52

]

throughout is 3 . The following list describes the notational elements found in this piece

that could not be represented by the present representation system.
1: Numbering of measures. Every tenth measure is numbered.
2: The tempo markings ‘Andante’, ‘pid largo’, and ‘a tempo’.

3: The indications Vc. and Bassi. One short passage in the violoncello/double bass
voice is marked ‘Vc'., indicating that only violoncellos are to play the passage. Another
short passage in the same voice is marked ‘Bassi’, indicating that only double basses are

to play.
4: The indication rf.

S: The indication ‘zu 2’. This German indication, which means “in 2", is related to

rhythm.

6: A crescendo marking which begins half way through a note. The marking is
aligned horizontally with a note on another staff, not the note is modifies.

7: Braces which indicate natural groupings of staves in a system.

8: The following rhythms. The figure below illustrates these rhythms, and shows the

alternate forms of these rhythms that were entered instead, to complete the piece.

Figure 4.1: Unsupported Rhythms

s JJ343d M 21T
e JJTT NI JITI

4.2 Fil ner Editor, and the ,mel File of Contoyr Informati

A series of files is generated to store the data describing a musical score. The format
of each of these files is discussed below.

A file with the extension . header stores global information about the piece. The

53

following data is stored in this file, in the order shown:

QL « A single byte indicates whether the piece is complete or not, in the sense
described in Appendix C: A Music Editor. This allows the compression algorithm to
refuse to attempt the compression of a piece which is not well-formed.

* The narne of the piece, in ASCII characters, terminated by a zero byte.
» The page numbers of the first and last pages in the piece, using two bytes each.
* N,, the number of voices in the picce, followed by the names of each voice.

* N,, the number of staves in the piece, followed by the names of each staff.

N, numbers from 0 to N, - 1, indicating to which staff each voice belongs.

N, numbers from 0 to 3, specifying the clef on each staff

A number from 0 to 15, indicating the default key signature of the piece.
* A number from 0 to 9, indicating the default time signature of the piece.

A file with a . keysig extension stores the key signatures of each measure in each
staff. The key signatures are stored in staff-major, measure-minor order. Each key signa-
ture is expressed as a number from O to 14.

A file having the extension . t ree stores the derivation trees describing rhythmic
information. Nature parameters are not stored here. There is one tree for each combina-
tion of measure and voice, and these trees are stored in voice- major measure-minor
order. Each tree is represented by a sequence of numbers in the range 0 to 26, each
number representing the rule type at a node. The nodes are ordered in pre-order fashion.

A file with a . nature extension stores the value of the nature parameter for every

stem in the piece. The nature values of all the stems in a given voice are stored together

as a sequence. The file is a single sequence of nature values, formed by concatenating
these sequences. Numbers from O to 12 are used to represent any one of the 13 values of
the Nature parameter.

A file with a . raw extension stores, in another form, the data contained in the previ-

i ous two files. It stores the character string representation of the rhythms. The 35 different

o .

characters are mapped to bytes in the range 0-34. These strings are stored in voice major,
measure minor order.

A file with a . notes extension stores the pitch values of every note-head in a piece.
The pitch values on a single stem are stored in descending order of pitch. The pitch val-
ues for cach stem in a voice are stored together as a sequence. The file is a single
sequence of pitch values, formed by concatenating these sequences. Each pitch value is
stored as two bytes. The first byte specifies the accidental, and the second byte specifies
the line or space on which the note-head is aligned vertically. A dummy byte, whose
value is different from every possible accidental value, separates pitch values from differ-
ent stems.

Files with the extensions .dynamics, .accents, .orn, .rande, .octave,
.slur, and . staccato store the auxiliary symbols associated with each stem. One
byte is stored in each file for every stem. The order is the same as the order of the nature
values in the .nature file. A given file stores the auxiliary symbols of the type sug-
gested by its extension. A zero byte indicates the absence of an auxiliary symbol of that
type, and a code from 1 to N specifies one of the N auxiliary symbols of that type.

The pitch compression algorithm generates a file of side information witha .mel-
ody extension. This file stores the contour symbols for each note-head in the piece. The
order is the same as the order of pitch values in the * . notes file. Each symbol is repre-
sented by a number in the range 0 to 7.

The following table lists the files generated by the editor, and the * . melody file of

contour information, for both pieces. The sizes of the files are shown, in bytes.

55

Table 4.1: Files Generated by the Editor, and the * . me1ody Contour File

Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.

Spring.
4.3 Compressed Files Generated by the String Substitution Algorithm
The files generated by the editor, and the * . me1ody file were compressed using the

Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.
Spring.

header
keysig
tree
nature
raw
notes
dynamics
accents
ornaments
ranges
octave
slurs
staccato

melody

header
keysig
tree
nature
raw
notes
dynamics
accents
ornaments
ranges
octave
slurs
staccato

166

415
6083
2657
5345
7653
2657
2657
2657
2657
2657
2657
2657

2498

122
24
900
192
1104
1555
56
49
74
16
16
158
15

HAYDN.header
HAYDN.keysig
HAYDN.tree
HAYDN.nature
HAYDN.raw
HAYDN.notes
HAYDN.dynamics
HAYDN.accents
HAYDN.ornaments
HAYDN.range
HAYDN.octave
HAYDN.slur
HAYDN.staccato

HAYDN.melody

Table 4.2: Files Generated by String Substitution Algorithm

HAYDN.header
HAYDN.keysig
HAYDN.tree
HAYDN.nature
HAYDN.raw
HAYDN.notes
HAYDN.dynamics
HAYDN.accents
HAYDN.ornaments
HAYDN.range
HAYDN.octave
HAYDN.slur
HAYDN.staccato

283
1672
9432
3706
11406
10854
3706
3706
3706
3706
3706
3706
3706

3574

String Substitution Algorithm. The source symbols are the individual bytes. The source
alphabet for a given file is not the set of possible byte values from 0 to 255, but only the
subset of these values that have any meaning in that file. The names and sizes of the com-
pressed files are shown below. The file names of the source files and the corresponding

code files are identical. They are distinguished by the directory in which they appear.

208
84
1542
309
2175
3575
243
360
17
19
19
418
17

Spring.melody 679 HAYDN.melody 1390
4.4 Compr Files Generated he Music Com ion Algorithm
The files generated by the music compression algorithm have extensions . inno-
vation, .treestrings,and .residue. The *. innovat ion file stores the code
words generated as the innovation output of the rhythm compression algorithm. The
.treestring file stores the code words generated as the treestring output of the

rhythm compression algorithm. The file names and sizes are tabulated below.

Table 4.3: Files Generated by the Music Compression Algorithm

Spring.innovation 273 HAYDN. innovation 183
Spring.treestrings 198 HAYDN.treestrings 587
Spring.residue 230 HAYDN.residue 676

4.5 A Summary of the Results

The following figure illustrates the relative file sizes for five different representations
of the rhythm data of the Vivaldi piece. The first representation is the two uncompressed
files Spring.natureand Spring.tree, generated by the editor. This representa-
tion is the Rhythm Grammar Tree version of the rhythm data. The second is the com-
pressed versions of these two files, generated by the string substitution algorithm. The
third is the file Spring. raw, an alternate representation of the same rhythm data gener-
ated by the editor. This representation is the character string version of the rhythm data.
The fourth is the compressed form of the Spring. raw data. The fifth is the two files
Spring.innovationand Spring.treestring, generated by the Music Com-

pression Algorithm.

LS

0 Tm TR RR TR AR LT E s

57

|
s
E

Figure 4.2: File Sizes in the Representations of Spring Rhythm Data

Spring.natjure

Spring.tgee

sgring.xpw

Spring.nature

’ Spring.treestrings
Spring.tgee Sgring.rjw

thythmic data algonthm data

sentations of the rhythm data of the Haydn piece.

Spring.innovation

A Flescontaning B FiesofA alter C Filescontarung D Files of C, aher E. Files generated
Rhythm Grammar COMpression using character siing COMPrassION UsING by specialmed
Tree version of the standard version of rhythmic the ‘;ammd m%m

m

The following figure illustrates the relative file sizes for the same five different repre-

Figure 4.3: File Sizes in the Representation of BAYDN Rhythm Data

HAYDN. nat jre

HAYDN . rw

HAYDN.tr§e

HAYDN.nature

HAYDN, raw HAYDN, innovation
HAYDN.trpe

- B R B EE R EE GG
O O o o

HAYDML t reestir ings

A Flescontaning B Fiesof A after C Files contaming D Files of C,ater E Files gonerated
Rhythm Grammar compression using character string COMPTasSION UsINg by speciaised
Tree verswn of the standurd version of rhythenic the standard MUSIC com
rhythmic deta algonthm data algonthm sigorthm
The following figure illustrates the relative file sizes for three diff..ent representa-
tions of the pitch data of the Vivalcli piece. The first representation is the file . notes,
generated by the editor. The second is the compressed version of the . notes file. The
third is a combination of two files: the compressed version of the . melody file, and the

.residue file generated by the pitch compression algorithm.

59

Figure 4.4: File Sizes in the Representation of Spring Pitch Data

sp

- & g &
TEPFEFEE

ing.no

Spring.residue

Spging.nojes

pr‘lnq.lq:)dy

A File containi B Fie in A compressed C Files ted
picch mtovmanonr? using the standard wm" >

music
compression algonthm

The following figure illustrates the relative file sizes for the same three different rep-

resentations of the pitch data of the Haydn piece.

Figure 4.5: File Sizes in the Representation of HAYDN Pitch Data

Mms.noqps

H*DR .notjes

HA\&N .res ;Lue

HAYDN.melpdy

A’ File containing B File in A compressed C Files ated by

pitch informaton

using the standard
algonthm

61

speciansed music
compression algonthm

Chapter 5: Conclusions

In this chapter, conclusions are drawn from the research. The conclusions are organ-
ised into four groups, which are discussed in the four sections of this chapter. In the first
section, The Music Representation System, conclusions relating to the music representa-
tion system are drawn. The second section, Rhythm Compression, contains conclusions
about the rhythm compression algorithm. The third section, Pitch Compression, deals
with conclusions relating to the compression of pitch data. In the final section, Compres-
sion of Other Data, conclusions on the compression of other data are drawn.

One may summarise the conlusions as follows. Until the more difficult problem of
representation of music by computer has been satisfactorily solved, the compression of
musical data cannot be fully addressed. However, the algorithm developed here handles
the basic elements of music notation, and can be expanded to take advantage of better
representation systems. Significantly higher compression ratios are achieved using the
designed algorithms vis-2-vis those achieved using a standard general data compression
algorithm.

5.1 The Music Representation System

One of the considerations used in the design of a representation system was that
simultaneous notes in different voices should be easily accessible. In most cases, such
notes are indeed easily accessible. The rhythms in two different voices within the same
measure are certainly easily accessible, since measure-long rhythms are indexed by
measure. Within a measure, simultaneous notes in two different voices can be found in
the following way. The two rhythm grammar trees representing the measure long
rthythms in the two voices are traversed together. Simultaneous notes can be obtained by
traversing similar paths through the two trees. (Recall that the ratio of the durations of a

node’s children is determined by the rule type stored at the node.) Typically, the two trees

will have a lot of paths from the root node in common. However, the access of simultane-
ous notes is more difficult when there is syncopation o cross rhythms between two
voices.

Another consideration was that the system should be easily expandable. Described
below is some evidence that expansion is possible without changing what is already in

place.

1: The hierarchical structure of the music representation system: allows new symbols

10 be added in many different contexts.

2: Many additional time signatures could be recognised with minor additions.
Although only the most common time signatures are recognised in the present system,
they include examples of both duple time signatures, triple time signatures, and com-
pound time signatures. Other time signatures can be included by following the model in

the present system.

3: More rules can be added to the rhythm grammar to handle irregular and infrequent

Ccasces.

Clearly, the representation of auxiliary information is weak. Most of the notation in
the two pieces that could not be represented bore auxiliary information. This weakness is

largely due to the difficulty of such representation.

5.2 Rhythm Compression

The important comparisons of file size to be made here are between the compressed
versicrn. of the * . raw file, the compressed versions of the pair of files * . tree and
* . nature, and the pair of files * . innovation and * .treestring generated by
the music compression algorithm. The sizes of the pre-compressed files are not so mean-
ingful to compare, either with each other, or with the compressed files, since the alphabet
sizes are different, and at the same time smaller than 256, the number of different byte

™ values. Also, they depend too much on the particulars of the external coding language,

63

.

¢

:
i+

>

which although reasonably consise, is not designed with consiseness in mind.
The specialised music compression algorithm performed considerably better than the
standard algorithm performed on either of the two alternate representations of rhythm. It

has the following advantages:

1: It can not encode ungrarnmatical rhythms. The savings in not having to reserve
code word strings for ungrammatical rhythms is considerable. A compression algorithm

in which rhythm is represented as a sequence of durations would not have this advantage.

2: It combines rhythmic information into natural measure-long units. This decreases
index sizes in the string substitution algorithm. (Combining rhythmic information like

this can be a disadvantage when there are several near-identical measures in a piece.)
3: It exploits the repeated appearance of rhythmic patterns in the same context.

In all three compressed representations of the same information, the repetition of
rhythmic patterns in arbitrary contexts is exploited.

The rhythm compression algorithm has potential for improvement. Most notably, the
correlation between rhythms in different voices, which is not exploited by the present

algorithm, should be exploited.

5.3 Pitch Compression

Here, too, the important comparison is between the compressed representations of
the data. On one hand, there is the compressed file * . notes, and on the other, there is
the compressed file * . melody and the file * . residue generated by the pitch com-
pression algorithm.

The pitch compression algorithm is very simple. It merely extracts side information
from the data, and encodes both the side information, and enough data to reconstruct the
pitch data from this side information. And yet, it achieves a significant amount more
compression than the string compression algorithm does. It seems to be a useful tech-

niyae.

P e e - R TR

rywwmr

There is much potential for improvement in the pitch compression algorithm. The
correlation between pitches in different voices is very important, and so is the relation-
ship between rhythm and pitch.

Improvements designed to exploit these correlations can be made without sacrificing
the ability to consider contour. Two recommended improvements are the following.

First, some of the relationship between pitch and rhythm could be exploited by
developing a compression algorithm for contour information that would consider the
rthythmic context of a sequence of notes. Sequences of notes whose contours are the same
often have the same rhythm.

Second, a probabilistic model for harmony could be incorporated into the pitch com-
pression algorithm, to take advantage of the comelation between pitches in different
voices. Even a simple mode! might be very useful, although any mode! developed should
be designed by someone with expertise in musical harmony. Such a model could be used

to estimate the probabilities of the pitch values in the range defined by a contour symbol.

5.4 Compression of Other Data

The results of the compression of other data are not very significant. No specialised
algorithm was designed to compress these data, and the representation of the data is far
from complete. However, a rough idea of how much space these data take up in their
compressed form can be had.

Although the design of a better representation system for these data should precede
much more consideration of the design of a better algorithm to compress these data, one
recommendation can be mad‘c.

Slurs are common enough that a model for them might be used to advantage in a
compression algorithm for auxiliary data. They are strongly related to thythm and so a

model for slurs might consider rhythmic context.

! Gt

Appendix A: Music Notation

In this appendix, figures illustrate elements of music notation. Labels identify these
clements, and the accompanying text contuins further discussion. Only those symbols of
music notation supported by the computer representation system are included in this
appendix. For further information on music notation, see [19].

The appendix serves two purposes. It introduces music notation to the unversed
reader. It is also a reference, in which the reader can look up unfamiliar musical terms.

The most important symbols of music notation are notes and rests, to which other
symbols play a supporting role. The next figure shows some of the notational elements
from which one can form notes. The note-head can be either solid or hollow, and is typi-
cally attached to a stem. Each stem has one or more note-heads attached to it. The direc-
tion of the stem can be up or down. Up to five flags may be attached to a stem, or none at
all.

A whole note consists of a hollow note-head without a stem. A hollow note-head
with a stem is a half note. A solid note-head with a bare stem is a quarter note. By adding
flags, one can construct an eighth note, a sixteenth note, a thirty-second note, or a sixty-

Jourth note, as shown,

Figure A.1: Note-heads, Stems, and Flags

Whole Note Half No Quarter Note Eighth Note, Thurty-Second Note ‘\
Slmenth Note ' Sixty-Fourth Note

Noln-hends

As shown in the next figure, the rests have names similar to those of the notes. The
basic rests are the whole rest, the half rest, the quarter rest, the eighth rest, the sixteenth

rest, the thirty-second rest, and the sixty-fourth rest. Note that flags on rests are analogous

to those on stems.

Figure A2: Rests

- - 3 7 Y ¥ ¥

Whole Rest Hat Rest Quarter Rest Exghth Rest Sixteenth Rest Thirty-second Rest
Suxty-fourth Reut
The names of the notes and rests indicate their relative durations, in an obvious way.
The half note and the half rest, for example, have a duration half that of a whole note.
Beam notation provides an alternate way to represent groups of flagged notes. Exam-
ples of beam notation are illustrated in the next figure. Beams bind together two or more
unflagged stems. Beams can be nested, but cannot overlap. Sometimes a half-beam is
attached to a single note, but never at the outermost level. Each beam crossing or touch-
ing a given note acts as a flag does. For example, the first beamed group consists of two
eighth notes; the second group, two thirty-second notes followed by a sixteenth note; the

last group, a sixteenth note followed by an eighth note, followed by a sixteenth note.

e X 0 o

The tremolo bar is a shorthand notation for repeated notes. A stem with N tremolo
bars represeuts a group of notes joined by N beams. The number of notes represented is
such that the total duration of the replaced notes equals the nominal duration of the note
having tremolo bars.Two examples appear in the next figure, with their equivalent

beamcd groups

67

Figure A.4: The Tremolo Bar

The dot increasss the duration of 2 note or rest by one half, and the double dot
increases it by three quarters. These follow the note-head they modify, as shown in the
following figure. The modified note-head or rest is then called dotted or double dotted.
The tie can join two adjacent notes at the same vertical level. The second becomes silent,
and its duration is added to that of the first. For example, the eighth note tied to the half
note in the next figure increases the duration of the half note to five eighths that of a

whole note.

Figure A.S: Dots and Ties
Double Dot

4) J3) J77]

Tie

A triplet is a group of notes and rests whose durations are reduced by a factor of 3/2.
The digit ‘3’ marks the group. The use of the name triplet and the designation of a triplet
by the digit ‘3’ are related to the fact that the triplet is usually a group or three notes of
equal duration, whose durations are shortened so that they can be played in the time usu-

ally taken for two notes. See below some examples of triplets.

Figure A.6: Triplets

3

eer 74 ey 4

Grace notes do not have any nominal duration. In practice, they are very short, and
the duration of the following note is shortened by the duration of the grace note. They

sometimes appear in small groups. Some cxamples of grace notes are shown below.

Figure A.7: Grace Notes
H TNy
\”

A set of five horizontal lines called a staff (pl. staves) frames the notes and rests. The
centre of each note-head aligns vertically with either a line, or the space between two
lines. Ledger lines are used to extend the range of a staff to include note-heads that fall

above or below the staff. Bar-lines divide the staff into units called measures, and a spe-

cial double bar-line ends a piece.

Figure A.8: The Staff

Barlnes Ledger Lines

JAERNIE X

) |
) |

AN y 4
Staff 7
4

“pr-r

d
O
€~ Measure —»
The vertical position of a note-head is one of the things that indicates the pitch of a

note. Pitch is the fundamental frequency of the sound to be made by a musician playing

the note. The vertical distance between notes is roughly proportional to the logarithm of

the ratio of their corresponding frequencies.

Clefs establish a pitch reference for the notes that follow on the same staff. The four
clefs are illustrated in the next figure. The pitch references established by these clefs are
such that the four notes in that figure have the same pitch. Clefs appear at the beginning
of a staff and in those places where the clef changes.

Figure A.9: Clefs

@
g P —o—‘-)—%’.
L 4

Pitch also depends on other symbols, called accidentals. The seven accidentals are

illustrated in the next figure. An accidental changes the pitch of the note immediately to
its right, and all other notes having the same vertical position between this note and the
end of the measure. A key signature is a group of accidentals which establishes the
default pitches for each line and space on the staff. Only sharps and flats can form a key
signature, and only certain combinations occur. The key signature is repeated on every
staff, immediately after the clef, as shown. Sometimes the key changes in the middle of a

staff. In this case, the key signature begins the first measure to which it applies.

Figure A.10: Accidentals and KeySignatures

Naturs Double Sharp Flat Natral Sharp
i

N J) 7
Key Sghatre SParP Natural Fiat Double Flat

A time signature indicates the duration of the following measures. It also gives some
information on how the measure most naturally subdivides into note durations. The time

signature is only printed at the beginning of a piece, and where it changes. It appears

immediately after the key signature, as shown in the next figure. The different time signa-
tures are illustrated to the right in the same figure. These latter time signatures specify
two-four time, three-four time, and so on. The fraction obtained by taking the top number
as the numerator, and the bottom number as the denominator, is the duration of each

measure, expressed as a fraction of the duration of a whole note.

Figure A.11: Time Signatures

o SNY 4 b Ea |
FS AN | IR v -1

A voice is the name given to a sequence of related notes. For example, the sequence
of notes played by a viola in a string quartet would be the viola voice. The notes within a
voice are usually written on the same staff. More than one voice may appear on the same
staff. Staves on a page of music arz organised into groups called systems, as shown in the
next figure. A voice in one staff is played simultaneously with any other voices on the
same staff, and any other voices on other staves in the same system. If a page has more
than one system, as in the page shown below, then the systems are played one after

another

7

Figure A.12: Organisation of Staves

Sysms

Several auxiliary symbols are shown in the next figure. The either mark a note, in
which case they align vertically with the note, or they mark a range of notes, and extend
from the first note to the last. Dynamic markings indicate the loudness of a range of notes.
They apply to the note they mark and remain in effect until another dynamic marking
appears. Accents apply to a single note. They indicate that the note should be played
louder, and sometimes shorter than its nomina! durasion. In this latter case, the full dura-
tion is made up with succeeding silence. Omaments indicate the addition of extra notes
for decorative effect. Some special dynamic symbols apply to a range of notes and indi-
cate that the loudness should increase or decrease continuously over the range. Octave
shift markings signify that the notes within a range should be played an octave higher or
lower in pitch. An octave shift higher in pitch corresponds to a doubling of frequency.
Slurs, too apply to ranges of notes. They can mark groups of notes called phrases, or indi-

cate that the notes within are to be played in a non-detached manner.

Figure A.13: Auxiliary Symbols

pp mp f biij
) §
Dynamics 7 .i
ppp p mf bid
> A S r e
=006
Acoents +—1—1 + 1 Omarments
——

1 '#
Range Dynamics —

CresC - < = - J

—=— dim

- -
1 — s
taccato
Slur e i » |
-

_—/ W e e e m e = 3
8 Y X
= . q1T—
= =
Octave signs

3
3
N

Appendix B: A Rhythm Grammar

This appendix contains the complete specification of the Rhythm Grammar, a con-
text-free grammar [20]. A senies of definitions, leading to the definition of context-free

grammar serves as an introduction. For details see the reference.

An alphabet ¥ is a finite, non-empty set of symbols.
A string over an alphabet Z is a finite sequence of elements of £.
The sequence of zero symbols is called the empty string, and is denoted A.

Let x = X,X,..Xy and y = 1,Y,...Y,, be strings. The concatenation of strings x and y,
xy is the string X, X,... X\Y,Y,..Y,
Let X and Y be sets of strings. The concatenation of sets X and Y, XY, is the set
{xylxe XAye Y}
If X is a set of strings, define X° = {A}and X' = XX*“'fori21.

Note that one can consider an alphabet as a set of strings, each string being a
sequence of one symbol. Define * = {,, T. Intuitively, Z* is the set of strings over E.

A language over X is any subset Lc ¥° .

A context-free grammar is a 4-tuple (N, T, P,S), where N and T are alphabets, such
that NAnT = @, PcNx (NuT® ,and Se N. N is called the non-terminal alphabet; T, the
terminal alphabet, P, the set of productions, and S, the start symbol.

The Rhythm Grammar is a context-free grammar. The following symbols are the ele-

ments of N:
Whole DottedWnhole
Haif DottedHalf DoubieDottecHait
Quarter Dotted@uarter DoubleDottedQuarter
Eighth DottedBghth DoubieDottedBghth
Sxteenth DottedSxteenin DoubleDottadSixteenh
ThirtySecond DottedThirtySecond
SixtyFourth
Beamed DottedBeamed DoubleDoftedBeamed
WholeRest
Twofowr TheeFowr FouwrFour
Trveotight SixEight TwelveEight
TwoTwo ThveeTwo
TwoThreefFour ThveeTwoFour
¢)
< >

The following symbols are the elements of T

74

Start

TimeWhole TimeHaif TimeQuarter
Time8th Time 16t Time32na
Timeéam

Time4DottedQuarters Time2DottedQuarterns TimeDottedQuarter
Time3dHalves

Time3dQuarters

Beamealé Beameds Beomea4
Beomed?2 Beomed!

BeomedO 5 Beomed0 25 BeomedO 125

The elements of P, calied productions, are ordered pairs (A, B), with A e N and
Be (NuD®. A common notation used to represent a production is A — B, read A directly
derives B. A is called the subject, and B the right hand side. The following are the ele-

ments of P:

Start - Twokow TimeHal!

Start -+ TiweeFow Time3Quarters

Start + Fourfowr TimeWhoile

Sart +» Thweekight TimeDoNtedQuarter

Start -+ SixEight Time2DottedQuarters

Start —+ Twelvetight Nime4DottedQuarters
Start -+ TwoTiveskowr TimeHalf Tme3Quarters
Stort + TheeelwoFowr Trne3Quarters TimeHdlf
Start +» Mwolwo limeWhole

Start - Nweelwo lime3Halves

Start -+ twoFow WholeRest
Start -+ Tiveetouwr Who'shest
Start + Fourfour WholefRest
Start -+ Trweekight WholeRest
Start -+ SixElght WholeRest

Start -+ Twelvetight WholeRest
Start -+ NwoThweeFouwr WholeRe st
Start » NweelwoFour WholelRest
Start + Twolwo WholeRes?

Start + Thweelwo WholeRest

TimedDottedQuarters -+ TimeDotted@Quarter DottedHall TimeDotteadQuarter
TimedDottedQuxters —+ Time2Dotted@uarters Time2DottedQuarters
Timed4DottedQuicrters -+ DotledWhole

Time2DottedQuarters -+ TimeDottedQuarter TimeDottedQuarter
Time2DottedQuarters » DotledHol

TmeDottedQuarter —+ DoftedQuaries
TimeDottedQuarter ~+ (Beamedd)
TimeOoftedQuurier + Quarter limesth
TimeDottedQuorter -+ Timesth Quarier
TimeDottedQuartor » Timesth Time8th Timeéth
TimeDottedQuartex —+ Timesdth DottedEighth Time 16th
TimeDottedQuarter -+ DottedEighth Time 16th Timedth

Time3Halves -» Whole limeHalf

Time3Haives ~+ TNimeHalf Whole

Time3Haives -+ TimeHaif imeHdlf imeHalf
Time3Halves -+ DoltedWhole

Time3Halves -+ TirneHalf DottedHall TimeQuarter
Time3Halves —» DottedHal Timeaxuarter TimeHall

75

R
s

TimeQuarter - Time 16t Bghth Time 16th
TimeQuoarter ~+ (Beamed?)
TimeQuarter -+ < TmeDottedQuarter >

Time8th ~ Time 16th Time 16th

Timeéth —+ DottedSixieenth limed2nd
limeé8th — DoubleDoledSixieenth Timeasdth
Timedth -+ Time32nd DolledSixieenth
Timedth -+ Times4th DoubleDottedSixieenth
Time8th —+ Eighth

Nimeéth -+ Time32nd Sudeenth Time3and
Time8th ~ (Beamed))

Timed4th — SixtyFourth
Timeddih —+ { Beamedl 125)

Beamed16 —+ Beamed§ Beameds

Beameds - Beamed2 Beamed? Beamed?
Beamed8 - Beamodd Beamedd
Beamed8 — (Beamedié)

76

‘—

Beamedd -+ Beamed? Beamed?
Beomead —+ (Beameds)

Beamed3 - (Bearnedd)

8eamed3 -+ Beamed! Beamed! Beamed]
8eamedl —+ DoftedBeamed (Beamed!) Beamed |
Beomed ~+ Beamed! Dotediesamed (Beamed])
8eomed3 —+ (Beamecd) Beamed!
8eamed3 -+ Beamed) (Beamedd)

Beamed? -+ Beamed! Beamed]

Beomed2 —+ DotledBeamed (Beamed!)
8eamed? + DoubleDottedBearmed ((Beamed!))
Beamed? —» (Beamed!) Dottedieamed
Beamed? ~ (Beamed!) Beamed (Beamed|)
Beamed? +» (Beamedad)

Beamed? -+ < Beamed3 >

Beamed! -+ Beamedl 5 BeamedD 5
8eamed! - { Beamed?)
Beamed! - Beomed

8eamed0 5 -+ Beamedl 25 Beamed(25
BeamedD.5 + (Beamed])

Beamed0 25 + Beamedl 125 BeamedD 125
Beamed0 125 -+ (Beaned0 25)

Appendix C: A Music Editor

The editor, directed by user input, builds the data structure representing a piece of
music. The editor focuses in on a combination of one measure and one part at a time. The
user can add, change or delete information within this restricted scope, or move between
different measures and parts. Six windows display information to the user and accept user
input. These are the Dialogue window, the File window, the Index window, the Music
window, and the Auxiliary window.

The Dialogue window is used to prompt the user for text, accept this input, and dis-

play error messages.

Figure C.1: The Dialogue Window

New: Are you sure? y

Confirmed

What is the name of the piece? Der Ring des Nibelungen
Enter number of first page: -1

Error: Non Positive

Enter number of first page: 1

Enter number of last page: 6345

Enter total number of parts: 20

What is the name of this part? (Number 1 of 20) Violin I

The File window displays five boxes to the user, each of which the user can select
using the mouse. The boxes are labelled Save, Load, New, Quit, and Done.

Whenever the user selects the Save box, the dialogue window prompis the user for a
file name, and the editor saves the current description to disk. Several files are generated,
each having a different extension. The saved description need not be a complete descrip-
tion of a piece, but if it is the file is so marked.

The user can retrieve a description in the same way, using the Load box. Because
any description in memory is erased when a description is loaded, the user is asked to

confirm the selection before the load is performed.

8

Selecting the Quit box and confirming the selection halts the editor. No descriptions
are saved automatically.

After selecting the New box, and confirming, the editor clears any existi.ig descrip-
tion and initiates a dialogue with the user in the Dialogue window In this dialogue, the
user must enter all the global information for the new piece; that is, all the simple param-
eters of the PIECE structure.

The user may want to know if the current description is complete. Selecting the
Done box obtains the answer. If the current description is complete, the Dialogue window
will say so. Otherwise, the editor finds the first gap in the data that must be filled, and the
dialogue window indicates its location. Some musical notation is incidental, in the sense
that its absence will not make a correctly notated piece of music incorrect. If such infor-
mation has not been entered, the editor will not know that it is missing. It is the user’s

responsibility to ensure that all the incidental notation is correctly entered.

Figure C.2: The File Window

A

Load Save New Quit oone

The Index window serves two purposes. It indicates which measure and part are cur-
rent, and allows the user t0 make a new measure or part current.

To specify the current measure, the Index window displays the page number, the sys-
tem number, and the peasure number. If no system for the current page has been defined,
then the system number and measure number are omitted. The part is identified by name.
Five other pieces of information are also displayed, as helpful reminders: The staff with
which the current part is associated, the clef belonging to this staff, the name of the piece,
the default key signature, and the default time signature.

The user changes measure or part by selecting boxes at the left of the window. Two

ny,
.

buttons beside the page number can be selected to change page. Depending on the box
selected and the mouse button pressed to select it, the new page is either the first page, the
last page, the previous p. 3¢, the next page, or an arbitrary page. In this last case, the user
is prompted for the page number in the dialogue window. Two buttons also appear to the
left of the measure number and part number. Measures and parts can be changed in
cxactly the same way as pages. The system number has only on box beside it. Depending
on how it is selected, the new system is cither the first system or the next system. Select-
ing this box while the control key is pressed either inserts a new system after the current

system, or deletes the current system. If a new system is inserted, the user is asked how

many measures it has.

Figure C.3: The Index Window

Piece: Der Ring des Nibelungen
Page: 1 of 1 t0 6243

System: 1

Measure: 1 0of 5

Part: 1, (Violin 1)

Staff: 1, (First) (Treble)

Time Signature: 4 or 4

Key Signature: 3#

mn
-~
z
EE

i,
r"r
13
22

The music window displays all the available information on the current part within
the scope of the current measure. The window consists of three horizontal panels, which
display, from top to bottom, rhythm, pitch, and auxiliary information.

If a syntactically correct rhythm has been entered for the current measure, it is dis-
played in the top panel. It is displayed in rhythm notation, not the character string nota-
tion in which it is cntered. However, the space allocated to cach note and rest is

proportional to its duration. This makes the layout of the notation somewhat odd in

appcarance.

A cursor moves form left to right over the notes in the rhythm notation (thythm
notes), activated by the left and right arrow keys. The cursor’s horizontal position must
align with the horizontal position of one of the thythm note symbols.

The middle panel contains a staff, which runs the length of the panel. If the top panel
contains a thythm, there may be pitch values indicated on this staff. The pitch values are
denoted by whole notes (pitch notes) on the appropriate line or space, directly below the
rhythm notes to which they apply. Accidentals appear before these pitch notes if neces-

sary.

Figure C.4: The Music Window

el J 1 4
¥
E===r—— 5 =F———

A3
R3

The Note Window displays a greatly enlarged staff, with four ledger lines up and
down. A whole note appears in every pitch position. A note is selected by moving the
pointer over the note and pressing a mouse button. The choice of mouse button, the state
of the control key, and the state of the shift key determine which accidental to associate
with the note. When a note and an accidental have been thus selected, they appear in the

middle panel of the Music window, underneath the rhythm note which the cursor is over.

81

Figure C.5: The Note Window

The Auxiliary window displays an array of boxes, each mapping to a particular aux-
iliary symbol. An alphanumeric mnemonic is printed in the middle of each box as an
indication of the symbol it represents. An auxiliary symbol is selected using the mouse,
and the appropriate symbol is represented in the bottom panel of the Music window,
beneath the rhythm note marked by the cursor.

Only one box from each row can be selected at a time, because the boxes in each row
represent mutually exclusive symbols. In the Music window, the symbols are represented
by a letter and number combination. The letter designates the row of the Auxiliary win-
dow matrix from which the symbol was selected, and the number represents the column,

The user can enter a thythm using the Dialogue window. To initiate this, the user first
presses the escape key. If the current page has at least one system defined, then the Dia-
logue window will prompt the user to enter a thythm. The user can then type in the char-
acter string description of the rhythm. If the rhythm is syntactically correct, then it is

displayed in the Music window. Otherwise, the Dialogue window will indicate that the

string was incorrect, and will prompt the user again for a thythm,

Two relaxations of the characrer string syntax are permitted. If the time signature in
the measure-long bar is the same as the default time signature of the piece, the time sig-
nature may be omitted. It is added automatically before the string is processed by the lex-
ical analyser. The user may also begin the input string with a substring indicating a key
signature, if the key signature within the measure is not the same as the default key signa-
ture of the piece. This substring will be one of the following: “.*, ‘14, ‘24", *3#°, ‘44#°,
‘S#°, ‘6%, 74, ‘1b’, ‘2b’, ‘3b’, ‘4b’, ‘Sb’, '6b’, ‘7b’. The period denotes a key sig-
nature of no sharps or flats. The ‘#’represents a sharp, and ‘b’ represents a flat. The digit
indicates the number of accidentals in the key signature, whether sharps or flats. Any sub-
string indicating a key signature will be removed before the string reaches the lexical

ProcCessor.

Figure C.6: The Auxiliary Window

1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16
peplpp | p {mp|mf| ¢ |1 |t

nmysriviyiIw

D

Al> |2 |st

O |jtr joo|w *®
R |cre|ldec| < | >

Visv]|..|8"

S

T

83

References

{1] C. Roads “An Overview of Music Representations” in M. Baroni and L. Cal-
legeri (eds.), Musical Grammars and Compuser Analysis, Leo S. Olschki, Florence,
1984.

{2] T. Winograd, “Linguistics and the Computer Analysis of Tonal Harmony”, Jour-
nal of Music Theory 12, pp. 2-49, 1968.

[3] N.P. Carter, R. A. Bacon, and T. Messenger, “The Acquisition, Representation,
and Reconstruction of Printed Music by Computer: A Review”, Computers and the
Humanities, vol. 22, pp. 117-136, 1988.

[4] A.R. Brinkman, “Representing Musical Scores for Computer Analysis”, Jour-
nal of Music Theory 30, pp. 225-275, 1986.

[5] R.F Erickson and A. Wolff, “The DARMS Project: Implementation of an Arti-
ficial Language for the Representation of Music”, Trends in Linguistics (Studies and
Monographs, 19). Berlin and New York: Mouton, pp.171-219, 1983

[6] J. Wenker, “MUSTRAN 1I - A foundation for Computational Musicology” in J.
L. Mitchell (ed.) Computers in the Humanities, University of Minnesota Press, 1974.

[7] M. Gould and G. Logemann, “ALMA: Alphanumeric Language for Music Anal-
ysis”, in Brook (ed.) Musicology and the Computer, American Musicological Society-
Greater New York Chapter-Symposia Proceedings 1965-66. City University of New York
Press, 1970.

[8) Programming Utilities and Libraries, Part Number: 800-3847-10, Sun Micro-
Systems, Inc., Milpitas, California, pp. 203-264, 1990.

[9] D. A. Huffman, “A Method for the Construction of Minimum-Redundancy
Codes"”, Proceedings of the IRE 40, pp. 1098-1101, 1952.

{10] J. Ziv and A. Lempel, “Compression of Individual Dequences Via Variable-
Rate Coding”, IEEE Transactions on Information Theory 24.5, pp. 530-536, 1978.

[11] J. A. Storer, Data Compression: Methods and Theory, Computer Science Press,
Rockland, Maryland, 1988.

[12] R. E. Blahut, Principles and Practice of Information Theory, Addison-Wesley,
Reading, Massachusetts, 1987.

[13] N. Faller, “An Adaptive System for Data Compression”, Conference Record of
the Seventh IEEE Asilomar Conference on Circuits and Systems, pp. 593-597, 1973,

[14] R. G. Gallager, “Variations on a Theme by Huffman”, /EEE Transactions on
Information Theory, 24:6, pp. 668-674, 1978.

[15] E. W. Marvin and P. A. Laprade, “Relating Musical Contours: Extensions of a
Theory for Contour”, Journal of Music Theory 31, pp. 225-267, 1987.

{16] W.J. Dowling and D.S. Fujitani, “Contour, Interval, and Pitch Recognition in
Memory for Melodies”, The Journal of the Acousticai Society of America 49, pp.524-
531, 1971.

[17] W.]. Dowling, “Scale and Contour: Two Components of a Theory of Memory
for Melodies”, Psychological Review 85, pp. 341-354, 1978.

(18] R. Kamien, (ed.), The Norton Scores. An Antholog for Listening (4th ed.),
W.W.Norton & Company, New York, 1984.

[19] G. Read, Music Notation: a Manual of Modern Practice (2nd ed.), Victor Gol-
lancz Ltd. London, 1974.

[20] N. P. Chapman, LR Parsing: Theory and Practice, Cambridge University Press,
Cambridge, 1987.

85

