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ABSTRACT.

The changes in spin-lattice relaxation time with
the magnitude and orientation of the dc magnetic field,
frequency, and temperature have been calculated from
simplified expressions for the spin-phonon tranmsition
probabilities of an § = 3/2 ion. The relaxation times for
very low Cr3+ concentrations 1in K3Co(CN)6, A1203, and

RbA1 (SO 12H,_ 0 have been measured by the resonance-dispersion

4)2' 2
method at frequencies of 0.89 and 9.4 Gec/s, and at tempera-
tures in the one-phonon relaxation region. A comparison of
these as well as other published measurements with the cal-
culations shows that the changes in relaxation time are
usually predicted to better than a factor of two.
Calculations have shown that the resonance-dispersion
analysis of experimental data, which is based on a two-
level system, should yield single-valued relaxation times in
the case of multi-level systems as well, and the results
should be equal to those of pulse-saturation measureménts

where the return to equilibrium in the latter case can be

characterized by a simple exponential.
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I. INTRODUCTION

When the thermal-equilibrium energy distribution of a
group of paramagnetic ions, whose paramagnetism is due to a net
magnetic dipole moment associated with their spins, is in some
way disturbed, the subsequent return to equilibrium is said to
take place through spin-lattice relaxation if it occurs as the
result of the exchange of energy-conserving quanta between the

spins and the thermal spectrum of the host lattice,

From the early work of Waller, Casimir and DuPré, Kronig,
and Van Vleck*, and a later re~examination of Van Vleck's work
by Mattuck and Strandberg (1960), the spin-lattice interaction
of paramagnetic ions in crystals is understood to occur through
the thermal modulation of the crystalline electric field. The
theory predicts that at very low temperatures, T, the spin-lattice
transition probability, wij’ between spin states i and j will be

determined by a direct, one-phonon process with w varying as T,

1j
while at higher temperatures a two-phonon, Raman mechanism will
dominate with wij varying as T7 or Tg.

In the case of a two-level system the return to equili-

brium of the population of levels 1 and 2 is characterized by a

spin-lattice relaxation time T, where T, = 1/2w No such

1 1 12°
simple relationship exists in the case of multi-level systems
but an effective spin-lattice relaxation time TR is still used to

describe the return to equilibrium of the population of a pair

of levels, even though this generally involves all the

*Woonton (1961) furnishes an excellent bibliography
related to theoretical and experimental work on
spin-lattice relaxation.



other spin levels as well.

Much of the early theoretical and experimental work was
centred on the ions of the 3d iron group. The measured values
of TR often did not agree well with the theory, and explanations
for some of the inconsistencies were proposed by Bloembergen
et al (1959), who considered the role played by cross-relaxation,
and by Bloembergen and Pershan (1961), Van Vlieck (1961), and
Gill and Elliot (1961), who extended the concept of cross-
relaxation to excited states.

Several effects predicted by the theory of spin-lattice
relaxation have been verified experimentally. Thus Pace
et al (1960) and Feng and Bloembergen (1963) have verified
the inverse temperature dependence for the $=3/2 Cr3+ ion in

Al at low temperatures, while Paxman (1960), Rannestad and

2°3
Wagner (1963), and Scott and Jeffries (1962) have observed the
changeover with temperature from the single phonon process to
the highly temperature dependent Raman mechanism, for S=1/2
ions of both the iron and rare earth groups., Davids and Wagner
(1964) were able to verify that for an S=1/2 ion such as Fe3+
in K3Co(CN)6 the spin-lattice relaxation time at temperatures
where the one-phonon process dominates, varies with the steady
magnetlic field H as H-4.

Experimental data on the field and frequency dependence
of the spin-lattice relaxation time in multi-level spin systems
are rather scarce 1f one excludes measurements made by the

nonresonant method of Gorter and his group, which are difficult

to interpret in terms of the theories considered here. Generally



the measurements do not show any strong dependence of TR on
either H or the resonant frequency ¢ . An experimental investi-
gation of the dependence of relax;tion time on these two para-
meters in potassium chromicyanide was started here by this
author (Rumin 1961), and the measurements were repeated by
Carruthers and Rumin (1965) using the resonance-dispersion
method., Because those measurements did not show the strong
11-2 dependence reported for this salt (Van Vleck 1961) it

was decided to re-examine the implications Iin the results of
Van Vleck's theory of spin-phonon interaction when applied to
multi-level systems, particularly in the light of the more
general treatment by Mattuck and Strandberg (1960). Because
the exact calculation of spin-phonon transition probabilities
is extremely difficult it was decided to use, at least as a
first attempt, the order of magnitude expressions obtained by
Mattuck and Strandberg (1960). Calculations were under way,
yielding very promising results, when Donoho (1964) published
his work on ruby 1in which he carried out detailed calculations
of relaxation times from published experimental data on the
elastic properties of ruby. His work provided a certain amount
of justification for the use of Mattuck and Strandberg's
approximate equations, at least in the case of ruby. It also
confirmed what our calculations for potassium chromicyanide

had already shown, namely that the frequency dependence of the
one-phonon, spin-lattice relaxation time for salts such as rubj
or potassium chromicyanide, where there is zero-field splitting

of the ground state, is not as strong as is implied by the ‘Vz



term which appears in the approximate expression for the spin-
phonon transition probability. From measurements on ruby and
some rough calculations Feng and Bloembergen (1963) concluded
that the relaxation time is essentially independent of H below
4000 gauss and thereafter decreases approximately linearly with
H to 15000 gauss, Just as Donoho, they suggested that this be-
havior may be e#plained by the zero-field splitting which was
not taken into account in Van Vleck's calculations.

As it was pointed out above, the calculations of spin-
phonon transition probabilities is extremely difficult and can
not, in general, be carried out without an appreciable number of
approximations. Furthermore, experimental data which would
facilitate this calculation, such as the elastic strain data
that were used by Donoho (1964), have been obtained for only
one or two host lattices, and may not be forthcoming for the
remaining large number of crystals for some time. Consequently,
a primary objective of the present work was to investigate the
accuracy with which the variations of the one-phonon, spin-
lattice relaxation time with magnitude and direction of the steady
magnetic field, frequency, and temperature could be predicted
for a given ion-host lattice combination from a highly simplified
theory. Using two spectrometers, one operating at 0.89 Gc/s
and the other at 9.4 Gec/s, relaxation times were measured for
very low concentrations of Cr3+ in potassium cobalticyanide,
rubidium alum, and aluminum oxide. These results as well as

other published data indicate that the changes in relaxation



time can be predicted usually to well within a factor of two,
from calculations in which only the quadratic spin operator and
temperature and frequency dependent terms are retained in the
calculation of the spin-lattice transition probabilities,

Because Donoho (1964) provides detailed calculations
of the angular dependence of spin-lattice relaxation times in
ruby at 9.3 Gec/s, a second objective of this work was to verify
these experimentally. For reasons discussed in a later chapter,
one can only conclude from the measurements that Donoho's calcu-
lations, as well as those reported here, predict the general
behavior of the changes in the relaxation time with the magni-
tude and orientation of the de¢ magnetie field.

Relaxation times have usually been measured by either the
pulse saturation technique (Bowers and Mims 1958) or the steady-
state saturation method (Bloembergen et al 1948). More recently
Carruthers and Rumin (1965) proposed the resonance-dispersion
method., Because the technique employs an analysis based on a
two-level system but was used by them and in this work for
measurements on multi-level systems, it was deemed important
to establish the validity of this approach. Calculations 1indi-
cate that, subject to certain restrictions which experimental
data indicates are usually satisfied in the case of dilute
paramagnetic erystals, the three methods should yield the same
resultsa. These conclusions were confirmed by measurements on
poetassium chromicyanide, There 1is thus appreciable justifi-
cation for the use of the resonance-dispersion method which does

not suffer from many of the inaeccuracies associated with the



steady-state saturation technique, and which is more suited to
measurements on lines having intensities that, in general,
preclude the use of the more straightforward pulse saturation
method.

The concentration dependence of relaxation times, which
is not predicted in the theory of spin-lattice relaxation, has
been observed by Gill (1962), Mims and McGee (1960), Pace et al
(1960), to name just a few. Carruthers and Rumin (1965) also
observed a concentration dependence in their resonance-dispersion
measurements on potassium chromicyanide at 0.89 Gc/s and 4.2
Kelvin, which manifested itself in a manner that made the deter-
mination of the true spin-lattice relaxation time difficult.
Their suggestion that this effect would become negligible at
sufficiently low concentration, making the experimental data
easier to interpret, has been confirmed in this work, and it has
also been shown that at 0.89 Gec/s the single-phonon, spin-lattice
relaxation mechanism is still not dominant at 4.2°K in potassium
chromicyanide at the field of 340 gauss where most of their

measurements were made.



II. THEORY OF SPIN-LATTICE RELAXATION,

In the study of paramagnetic relaxation phenomena,
the interaction between the paramagnetic spins and the phonon
field of the host lattice plays an important role. As noted in
the introduction, explanations of the process of energy transfer
between the spins and the lattice were proposed by Kronig (1939)
and Van Vleck (1940), while Mattuck and Strandberg (1960) pre-
sented a more general treatment of the problem. The energy
transfer 1is understood tovtake place principally via two
mechanisms, a direct process in which a spin absorbs (or emits)
a phonon of energy equal to the spin transition, and a Raman
process in which two phonons whose energy difference is equal
to the spin transition participate. An outline of the theory
of spin-lattice relaxation is presented on the following pages,

the treatment following closely that of Mattuck and Strandberg.

IT.1. The Interaction Hamiltonian.

The theory of spin-lattice interaction is developed on
the basis of a model in which the paramagnetic ion is acted on
by an’ electric field ﬁroduced by the surrounding ligands. Since
bthe ligands are part of the crystal lattice they vibrate, and
this results in a modulation of the electric field, which perturbs
the orbital motion of the paramagnetic electrons, and in turn
induces spin transitions by means of spin-orbit interaction.

If one assumes that the crystal is sufficiently diiute

that the effects of spin-spin coupling are negligible, then
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one can describe the state of a paramagnetic ion by a Hamiltonian

of the form

-

(1) H= "HL +Ho + Vv + 288 H+AL.S + AL.H

whereaﬁ;is the lattice energy,?ﬂa is the energy of the free
ion, V is the crystalline field potential at the ion,B3 is the
Bohr magneton, A is the spin-orbit coupling constant,'g is the
external dc magnetic field, and ? and-f are the spin and orbital

angular momenta of the ion.

Since it is only the modulation on the crystalline
electric field which induces §6pin transitions, a plausible
approach to the problem is to express V in terms of a static and
a time-dependent part, and then to treat the latter as a pertur-
bation on the total Hamiltonian }*. This is done by expanding V
in a power series in the normal displacements Qf of the paramagnetic
ion's nearest neighbors, which are in turn expanded in normal
lattice modes. - As a result V can be put in the form

(2) V=1V +V
o I

where V0 is the static portion of V, and VI is the modulation of

v . The total Hamiltonian can now be written in the form

(3) 'H'=’:H'L +}\‘S + HI

where 3+I = VI’ and

iy

H =3+° + Vot Zﬁ—g.'ﬁ'+ ATL.S + /_2,—1.’.H.

The term 3+s involves only paramagnetic electron co-

ordinates and, when diagonalized to second order, gives rise



to the spin Hamiltonian which describes the energy levels that
result froﬁ the splitting of the ground state by the laboratory
de field H. In spin-lattice relaxation experiments one is
interested in the phonon-induced transition probabilities
between pairs of these spin levels, If, following the approach
outlined above, one considers 3+I to be a perturbation inducing
energy-consérving exchanges of quanta between%+s and LS the
transition probabilities are calculated by diagenalizing ?*—,
evaluating its eigenvalues Ek and eigenvectors q/k’ and com~-
pweting the appropriate matrix elements of qﬁi between simul-
taneous eigenstates of(%+s and%*i.

The proposed computation is quite difficult, in part due
to the fact that thellUk are complicated mixtures of both ortibal
and spin states, since they contain the effect of the excited
states on the ground level. Mattuck and Stranberg show that the
evaluation of matrix elements of Q+I between the qlk's is
equivalent to calculating, for the single-phonon process,
matrix elements of a spin-phonon interaction Hamiltonian q+b
between the relatively simple spin functions ¢k of the spin
Hamiltonian which is produced whenqﬂs is diagonalized to second

order. Their equation (44) for q*b has the form:

4 W, - = Afp(a11;+ap){_terms 0(ABHS )+ ALE 5.8 1.

p,E,1,] 13710 ]

where ag and a_ are the creation and annihilation operators
corresponding to the normal lattice mode-branch p, Afp(a; +. ap)
is the normal displacement corresponding to nearest neighbor

mode f and lattice mode~branch p,S, and S, are spin operators

i J
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(i and j being x,y, or z) and JLij is a tensor which contains
the effect of the excited states.

The problem of calculating the spin-phonon transition
probabilities is thus reduced to one of calculating matrix
elements of ?+D involving the comparatively simple wave
functions ¢k of the spin Hamiltonian.

The expression corresponding to equation (4) for the
Raman process 1is much more complex and will not be given since
it is of little interest insofar as the work reported here is

concerned,

ITI.2 Spin-Phonon Transition Probabilities for the Direct Process,

It is in the evaluation of ?* , more specifically, of
Afp andJ\fj, that severe difficulties are encountered in the
calculation of spin-phonon transition probabilities. Although
it is possible to express the spin-phonon interaction Hamiltonian
in terms of the normal modes of an 1solated cluster of
nearest neighbor atoms, there remains the very complex problem
of relating these to the physical consténts of the host lattice
of which the cluster is a part. Investigators have conse-
quently resorted to averages over the modes which, Iin the end,
remove many of the physical properties of the host lattice froﬁ
the calculation.

Using the simple model of a paramagnetic ion at the
origin with two nearest neighbors of charge e lying at

X et R, Mattuck and Strandberg obtain the following crude

formula for order-of-magnitude calculations of the interaction
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Hamiltonianr}+D:

~S % 2
(5) (H'D iZKvp (a; + ap) [?\ s, + terms O( ')\ﬁHSi)J )

where §, is the spin anticommutator (§.8S + S S + S S +
A Xy y X X z

Ssz + S Sz +SzSy), and some of the terms in their expression
for q+b which are constants for a given ion and host lattice
have been grouped into the constant K. Equation (5) assumes

an average over phonons of all propagation directions, polari-
zations and phases.

Since the particular model considered here is used
primarily to estimate the size éf the kaj’ with the resulting
terms being all grouped into the constant K, it is assumed in
what follows that equation (5) applies in form to a more
physical model. In fact, a comparison of equation (5) with the
more exact equation (4) reveals that the approximation which is

implicit in obtaining (5), insofar as the J\ terms are con-

f
1]
cerned, 1is

£ _ f f f f
%J\‘xx zf'j\'yy and Zf—/ny = %—I\.xz =Zf '/\'yz'

The magnitudes of the J\fj were estimated for ruby from data
presented by Donoho (1964) and the results indicate that, at
least for this salt, the above approximation 1is not an un-
reasonable one,

For the direct process, the spin-phonon transition
probability between states k and k' is:

(©) g = L |G 13l e 2P

o
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where ﬂ/r is the resonance frequency between the two levels and
/9(44) is the density of states in the phonon field. If it is
assumed that the lattice is dispersionless and isotropic, then

the phonon density can be described by the Debye equation
2
12 1Y
(7) /O(/V)= 3

where\J is the phonon velocity.
The operators ap and ag in equation (6) have the properties
5

8 al | n = (n_+ 1 n + 1

(8) alln>= (o + D*|n + 1>

5

n n -1

>= ()| - 1>

Upon substituting equations (5) and (7) into (6) and making use

a | n
p P

of (8) and the fact that the average number of phonons in mode p,
when the lattice is in thermal equilibrium at a temperature T, is

given by

-1
(9) np = [exp(h '))p/kT) -1] ,

the transition probability for an emission process between a spin

state k and a lower one k' 1is

_ <=k Y2 exp(h W _/kT)

10 , ) 2
(10) w, . exp (RV_ 7R -1 |<k\7\ s, + terms 0(7\3Hsi)]k>‘

where K' = 120Tk%/ £25° .
The spin-orbit coupling constant for many paramagnetic ions,

including Cr3+ is of the order of 100 cm-l. Hence, for fields of

b

a few thousand oersteds 7\ﬁH is approximately two orders of
magnitude smaller than Z? and, therefore, the 7\BHSi terms may

be dropped when SA is of the order of unity. They will be

dropped in all cases, since when the contribution of SA is
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small the addition of these terms will not markedly affect

the magnitude of w which will also be small and will,

kk'
therefore, not contribute significandly to the spin-lattice
relaxation process involving the 2S + 1 levels of an S> % ion.
Hence equation (10) simplified to:-
3
11 W = K" exp (h kT
( ) kk' ’Vr P( ,Vr/ ) |<ktSA\k'> \ 2
exp(hq)r/kT)-l

where K" = K!' A4_

It should be noted that equation (ll) is not valid for
S = % ions since the spin anticommutator SA does not connect

-¥ and ¥ states, and the terms linear in Si can not in fact
be dropped.

Although in the calculations reported here the LA
were always calculated from equation (11), it is instructive
to consider the form of this expression under the high tempera-
ture approximation h Mr<< kT. In this case the terms multi~
plying the matrix elements simplify to K"T1}i. However,
because the matrix elements are evaluated between spin states
which, in general, are mixed, the amount of mixing being
dependent on the magnitude and orientation of the dc magnetic
field H, the Wik will depend on these two parameters as well
and, consequently, the frequency dependence should, in general,
be different from that implied by the ‘Vi term. Because the
high temperature approximation seems to hold quite well for a
major portion of the experimental data considered in this work,

it is important to note that, in using equation (l1) under

conditions where the approximation is valid, one assumes that the
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relative magnitudes of spin-phonon transition probabilities
for the direct process are determined by the product of the
temperature, the square of the resonant frequency, and the

square of the spin anticommutator matrix elements.
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III. THE MEASUREMENT OF SPIN-LATTICE RELAXATION TIMES,

A large portion of the study of paramagnetic relaxation
is concentrated on the measurement of spin-lattice relaxation
times, and the subsequent comparison with calculations based
on theories such as the one outlined in Section II. Even
under conditions where the single-phonon process is the
dominant mechanism in determining the rate of energy transfer
between the spins and the bath in which the crystal is immersed,
vrelating measurements to theory is often complicated by the fact
that for multi-level spin systems all the levels, in general,
participate in the spin~lattice relaxation process even though
resonant excitation 1is applied to only a pair of levels. This
problem will be considered in terms of two established techniques
of measuring relaxation times. A discussion of the difficulties
which arise in the case of the resonance-dispersion technique,
which was us2d to obtain the measurements reported here, is

left to a separate chapter.

IITI.1. Relaxation Times in a S=% Spin System.

In the absence of resonant radiation, the differential
equations governing the time dependence of the populations of
the two levels into which the ground state is split by a

laboratory dc field H are

n
|
£

(12) nl
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In the high temperature approximation (h#¢<kT) these can be
transformed into a single equation (Andrew 1956)

(13) n = 2w(n_ - n)

where n is the excess number of spins in the lower state, n
is the thermal equilibrium value of n, and w is the mean of
the two spin-phonon transition probabilities w12 and w21. The
solution of (13) is

(14) n/n_ =1 -(1 - n_/n )exp(-2wt)

where n_ is the initial value of n. Thus the approach of the
spin system and the lattice te thermal equilibrium can be
characterized by a spin lattice relaxation time T1 where

-
Tl - 1/2W.
In the presence of resonant radiation, equation (13)

becomes

(15) n = 2w(n_ - n)-2nP

where P is the radiation~induced transition probability. Under
steady state conditions ﬁ = 0 and the solution of (15) for the
steady state population difference ng is

(16) =n_/n_ = (1+ P/w) 1= 2

where Z is the saturation factor.
Equations (14) and (16) are the basis of two techniques

for measuring T, and, hence, w. In the steady-state saturation

1
technique (Bloembergen et al 1948) one essentially measures
Z as a function of the intensity of the resonant rf field. P

depends on the intensity of the rf field, the line-shape

factor g(¥% ), and the wave functions ¢k associated with the two



-17 =

levels, and can, in principle, be calculated. Hence w can be
evaluated from (16).

In the pulse saturation technique (Bowers and Mims 1959),
rf excitation is applied in the form of a pulse having an
amplitude and duration sufficient to drive the spin system
into steady-state saturation, 1i.e. cause ns~>0. The return to
equilibrium of the spin system after the end of the pulse is
evidently given by equation (l&4) with n = 0. A small monitor
signal is used to observe the behavior of n/no as a functicn
of time and hence w 1s obtained directly from a semilcgarithmic
plot of the monitor signal level versus time.

Thus for a S = % system one can measure the spin-phonon
transition probability between the pair of levels to which

rvesonant excitatior is applied.

IT1.2. Pulse Saturation Measurements on a S22 % System.

For a spin system with S> % there are 2S + 1 levels.
The rate equations which describe the dynamic behavior of the

spin system are (Lloyd and Pake § 1954):
(17) n, =§%(wjinj - wijni)

where n, is the population of the i-th level. When a pair of

levels, say 1 and 2, are subjected to resonant excitation, Vi,

and Vo1 in equations (17) must be replaced by Vi, + P and

Yoy + P, respectively. The solution for the return to equili-

brium of the populations of levels 1 and 2 after a pulse of rf

power sufficient to saturate the pair of levels, is given, in
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the case of four levels, by (Andrew and Tunstall, 1961)

(18) (nl-nz)/(nlo-n2°)=1-Alexp(-t/T1)-Azexp(-t/Tz)-A exp(-t/T3)

3
where each of the time constants Tl’ T2 and T3 is a complicated
combination of the wij's. More generally, the number of time-
dependent terms is one less than the number of levels. Thus in
the case of a multi-level system a pulse saturation measurement
will not, in general, yield the spin-phonon transition proba-

bility between a given pair of levels, even in cases where the

relationship between the terms in equation (18) is such that the

equation can be closely approximated by a simple exponential.

III.3. Steady-state Saturation Measurements on a S> % System.

Under conditions of steady-state rf excitation of
transitions between levels k and 1, the saturation factor
Z = (nk - nl)/(nko - nlo) is obtained by solving equations {(17)
with all the n, = O and w,, and w,, replaced by w. + P and

i 1k kl 1k

Vi1 + P, respectively. The solution is (Lloyd and Pake, 1954)

-1

(19) Z—(nk-nl)/(nko-nlo)—(1+P/W)

where W is a complicated expression involving all the wij's.
Equations (19) and (16) are identical except for the fact that

W in equation (19) is an effective relaxation probability that

is not related in any simple way to LIRE
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IV, THE RESONANCE DISPERSION TECHNIQUE,.

The resonance-dispersion technique for measuring re-
laxation times has been described by Carruthers and Rumin (1965)*
and is presented here in a éondensed form, It is similar to
both the steady-state saturation method and the audio-frequency
relaxation approach (Waller 1932, Gorter 1947). The dispersion
of the incremental susceptibility at audio modulation frequencies
is observed at various levels of saturation, produced by re-
sonance absorption at the rf frequency. The dispersion observed
can be related to the spin-lattice relaxation time by extending
saturation theory to include the effect of fluctuating spin
populations during the modulation cycle.

Because the theory for this technique has been worked
cut in detail only for a two-level system, the effect of using

this method on multi-level systems will be discussed.

IV.1. Theory for a Two-level System,

a. Saturation theory.

Experimental measurements in both the steady-state
saturation and the resonance~-dispersion techniques are based on
determining the power absorbed in the paramagnetic sample as a
function of incident power. The power absorbed per unit volume

of the sample is given by

(200 ®= (n, - n)yne

*A copy of the paper is included at the end of the
thesis as Appendix II.
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The power can also be expressed In terms of the imaginary
component of the complex susceptibility, j(", and the rf field
strength, Hl (Andrew 1956):

(21) P= 45Ty X"u?

The radiation induced transition probability can be written as

(22) P = JHig(V)

>
where J 1s a constant for a given dc magnetic field H.

Combining equations (20), (21), and (22), and making use of
the definition of the saturation factor Z, yields the following
result:

(23) X" = Kzg(¥y)
where K = [(n,5 = n,)h3 ] /40T

For measurements of the transition probability w
by the steady-state saturation technique only relative values
of X" are important. It is seen from equation (21) that K"
is proportional to the ratio of the power absorbed to the power
incident, and the change in this ratio, as saturation occurs,
is all that needs to be measured to determine Z. The transition
probability w is then calculated using equations (22) and (19).

In practice it is customary to use magnetic field modu-
lation and synchronous detection to obtain a better signal-to-
noise ratio. The magnetic field H is modulated at an audio
frequency (), while H is swept slowly through the line. The
modulation amplitude is kept small compared to the resonance
linewidth and the curve traced out on the recorder is pro-

portional to the slope of the X" versus H plot (Rumin 1961).
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One is therefore interested in the differential of X" which
can be obtained from equation (23). Since it is H that is varied

and not 4 , the line shape factor g(¥% ) should be replaced by

g(H) where
o
Jg(H)dH = 1
(o]
The result is
(24) dX" = K[zdg(H) + g(H)dz] .

It is now interesting to consider the effect of the
modulation frequency () on d“X". When W is small compared to
the spin-phonon transition probability, the spin population
readjust quickly enough during the modulation cycle for stationary
conditions to be assumed to apply at all times. Hence from
equations (24), (19), and (22)

(25a) dx" = KzZdg(H)

at very low modulation frequencies.

When () 1s very large compared to w the spin population

1]

can be assumed to be constant during the modulation cycle. Hence

dZ = 0 and one obtains

(25b) d X" = KZdg(H)

Equations (25a) and (25b) show that if H is set at some
arbitrary point of a partially saturated line and the modulation
frequency is slowly varied, a form of dispersion should be
observed with the signal at a very high frequency greater than
that at a very low frequency by the factor 1/Z. This dispersion

results because the spin-lattice relaxation probability is
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comparable to the modulation rate over a particular range of
modulation frequencies, In the next section the dispersion
region is examined more fully in order to show how this effect
can be used to advantage in measurements of spin-lattice
relaxation time.

b. The dispersion equations.

Equation (15) describes the behavior of the excess number
of spins in the lower state when resonant rf power is applied.
When sinusoidal modulation is applied to the magnetic field
the line-shape factor g(H) is caused to fluctuate, and 1if
the modulation amplitude is small the g(H) term is sine-wave
modulated. Now P is proportional to g(H) and hence P can be
written as

(26) P =P[1 + a exp(jut)]
where a is small compared to unity.

Assume a solution for n of the same form as for P,

(27) n = %[l + b exp(jwt)] .
Substitution of equations (26) and (27) into (15) yields an
expression which can be separated into two parts, one involving

the mean values, the other containing the time-varying terms:

(28a) W/n_ = (1 + F/wy) L

(28b) Tb(2w + jW) + 2aP(a + b) = 0

Here a small, second-harmonic term which would be rejected by
the synchronous detector has been dropped.
Equation (28a) is identical to equation (16) defining

the saturation factor Z. Equation (28b) involves the amplitudes
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of the alternating components and hence must contain infor-
mation on the dispersion. But to use this equation for
experimental determinations of w it is necessary to interpret
the equation in terms of a particular experimental procedure.
For future reference equation (28b) 1is rewritten using the

definition of Z and substituting T. for 1/2w:

1

(29) (a + b)/a = (Z + JOJZTI)/(I + JWZT,) ,

c. Experimental procedure.

The spectrometer, described more fully in Secﬁion VI,is
of the bridge type with a heterodyne receiver. The audio-
frequency signal from the linear detector of the I.F. system is
fed to an amplifier and phase-sensitive detector.

Consider that the dc magnetic field is set at a particular
value somewhere near the center of the absorption line and
that the bridge is adjusted so as to be sensitive to the
imaginary component of the incremental susceptibility, dX".
The magnetic field is modulated over an amplitude range that is
small compared to the linewidth.

The rf power is first set to a very low level so that
saturation effects are negligible. The phase-sensitive
detector and recorder are adjusted to give a good deflection,
it being understood that any phase shift in the modulation coils
and in the audio system can be balanced out. Several measurements
can now be made at different power levels, and at other modu~

lation frequencies, to determine the effect of power level



-24-

and modulation frequency on the phase and magnitude of the
output signal.

In a spectrometer employing a heterodyne receiver
the amplitude of the signal 1s proportional to the incremental
power absorbed in the sample. Making use of equations (20),
(26) and (27) we obtain for the incremental power d®

(30) d@® = hy RF(a + b)ed®t

where the second-harmonic term has been neglected,.

The rf field Hl is proportional to the square root
of the input power. Therefore, according to the procedure
outlined above, the relative signal from the phase-sensitive
detector is proportional to déplﬁf which, from equations (30)
and (22), is given by

(31) d@/af = [oyn_sgm] z(a + byed Bt

where Zno has been written in the place of m, and g(H) is the
average value of g(H) over the modulation cycle.

When the input power level is low enough for saturation
effects to be negligible, we have that Z-*1 and n is effectively
constant. Hence b=»0 as Z-»1, and the term ( a + b)-»a. This
unsaturated condition corresponds to maximum relative signal
strength.

From equation (31) the effect of saturation on the
relative signal strength is determined by the product Z(a + b).
If the ratio of the relative signal strength when the system

is partially saturated to that when Z = 1 is denoted by A, then

(32) A =[2(a+ b)] /a
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Making use of equation (29) and letting A = A' 4+ jA" and tan @ =
A%/A', we obtain

(33) A" = z(z + Q%271 Q1 +w2zzrf)

(34) tan © =0 ZT1(1-Z)/(Z +Q)222Ti) .

A', and tan ® are measurable quantities., Using
equations (33) and (34), and knowing (), it is possible to
deduce values of both Z and Tl' But since the equations are

not linear in T1 there is possible ambiguity in the reduction
of data. In this respect it is instructive to interpret the

dispersion in terms of a Cole-Cole diagram (Cole and Cole 1941).

d. Cole-Cole dispersion diagram.

With the substitution of U for ZTl, the attenuation

A can be written as:
(35) A = 2(Z + iOT)/(1 + jWT)

By rearrangement,

(36) (2 - 2%) = (Z - A) + JWT(Z - A)

The amplitude A is plotted in the complex plane in
terms of its real and imaginary components A' and A" in
Figure 1. If only () is allowed to vary, equation (36) shows
that the locus of A is a semicircle which crosses the A' axis
at A' = Z and A' = 22, when (Q =0© and W= 0, respectively.

For a particular value of () the locus of A is con-
strained to lie only within the region represented by the

family of semicircles corresponding to different values of Z.

The path followed by A as Z is varied depends primarily. on
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the value of&)Tl, and if 03T1>> 1 the path is along the A'
axis until very small values of Z are obtained. The modulation
frequencies are therefore chosen so that measurable phase

shifts occur when Z is somewhere in the range 0.5-0.01.

e. Reduction of data.

From Figure 1, because (Z ~ A) and (A - ZZ) are per-
pendicular, it follows that

(37)  (A")?% = (z - Ay - z?)

which, upon substituting A' tan® for A", gives

(38) z2 -a'z? - Az 4 (A% 4 tan’® ) = 0
Since equation (38) is cubic in Z, there are three roots. of
these one 1s negative and can be neglected. The presence of

two allowable solutions for Z follows from the observation
that a measured value of A can correspond to two of the Cole-
Cole semicircles. If @ is close to the maximim angle per-
mitted for A, the two solutions for S are very nearly equal and
it is difficult to decide which is the correct one. Hence, for
each modulation frequency it is advisable to keep the power
level below that for which this condition arises. A useful
criterion is that Z:>1ﬂ0Tl. If this precaution is observed,
the correct solution for Z is the smallest of the two
allowable roots of equation (38).

The method of successive approximations is a simple
means for finding the roots of equation (38). The equation may

be rewritten in a form which lends itself to this approach:
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S N )
(39) Z = A' 1 + —7 tan &
A' -
A
and which yields the lower of the two allowable roots. The

approximate relation corresponding to equation (39) is:

(40) Z.:‘-'_Al[l_'_]t.%:i]

and can be used to obtain the first approximation to the correct

value of 2.
In the Cole-Cole diagram in Figure 1 (A - z2)=oyt(z - A)

Hence, from similar triangles,

WT(Z - &) _ (a' - z%)
(Z - &) AT
Putting A" = A' tan © , and 'C= ZT1, we have
(41) . _ A - z2
1 A'Z¢)tan O

Thus if the precaution 22 l/L,\.)T1 is observed, the correct
value of T1 and Z is obtained from equations (40), (39) and

(41).

IV.2. Extension of Method to Multi-level Systems.

Because of the added complexity of considering more
than two levels it has not been possiblé to extend the theory
for the resonance-dispersion technique to multi-level systems.
However, because pulse saturation measurements carried out at
low temperatures on dilute crystals often yield essentially

single time-constant decays, it is tempting to use the
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resonance~-dispersion theory as it stands on such crystals.
This was in fact done by Carruthers and Rumin (1965) who noted
that the X-band results of Castle et al (1960) show that it is
often a good approximation to assume thgt a single-valued
relaxation time occurs for the four-level Cr3+ ion in dilute
crystals of K3C0(CN)6. It is instructive to investigate the
validity of such an approach even though the complexity of
the problem forces one to numerical solutions.

Using the four-level system as an example, we obtain
from equation (17) four equations in terms of the populations
of the four levels. Taking the radiation induced transition

probability P to be, as before, of the form
(26) P = ? Ll + a exp(jﬁJt)]

we assume solutions for the four populations of the form:
(42) o, =w [ 1+ b, exp(Jth)]

where b, = bt + jb", etc.
i i i

Let us assume that P acts between levels 2 and 3.
Substituting equations (42) and (26) into equations (17)

speclialized to the four-level case, and replacing Vo3 and

by Lo + P and w + P, respectively, we obtain four

Y32 32

equations each of which, just as in the two-level case, can be
separated into two parts. The four equations involving mean
values are identical to the steady-state saturation equations

for which the solution is given in equation (19):

1

(43)  (8,~8,)/(n, =n,y,) = (L+E/W) 7

"30
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The four equations containing the time-varying terms
can be further separated into real and imaginary parts which
gives eight equations in the eight unknown coefficients b,
b;, bé, bg, etc. These can, in principle, be solved.

Making use of equations (20), (26), (42b), and (42¢)

the power absorbed in the sample is
(44) G)—.- hV_P-{1+a exp (il t)} [?2{1+b2 exp(joot)}

-'n‘3 { 1+b, exp(j(.)t)}]

Hence the incremental power a@®@ is, ignoring second-harmonic

terms,
(45) d®=hwy F{?z(a+b2)-33(a+b3)} exp(§GIt)

Equation (45) can be manipulated in a manner similar to that

used on equation (30) to yield the attenuation A:

n,(a + b,) =n.(a + b;
(46) A = -2 2’ "3 3

(nyg -n3p)a

Separating into real and imaginary parts, and letting tan©®=

A"/A', we obtain

n.(a+ b!) - T (a+ b')
(47a) A' = -2 2 33
(nyp = P32
‘E’bn _'rTbn
(47b) tan © = 2 2 33
n.(a+ b') - n.(a+ b))

A high speed digital computer is used to solve for the

—

ni, bi, and b;, in terms of a given set of w 's,modulation

1]

frequency, and various values of P, Equations (47) are then

evaluated and the resulting values for A' and tan® together
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with () are used in equations (40), (39) and (41) to calculate
Z and Tl. These results can now be compared to values of T1
calculated from the steady-state saturation equation (43), and

also to the time dependence of the return to equilibrium after

pulse saturation calculated from equation (18).
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V. THE PARAMAGNETIC SALTS,

All the measurements and calculations reported here
have been made on the Cr3+ ion present as a substitutional
impurity in three diamagnetic host lattices, namely aluminum
oxide, potassium cobalticyanide and rubidium alum.

In the three host lattices being considered, Cr3+
has a ground state degeneracy of four 8o that the effective
spin § = 3/2. 1Its energy states can be described by the
following spin Hamiltonion?

2

. 2 2
(48) 'H—a(gxuxsx+gynysy+gzuzsz)+n(sz 5/4)+E(s2-50)

where the nuclear terms have been dropped since their contri-
bution in the salts considered here is quite small.
3+

V.1l. Cr in A1203

A trigonal crystalline field gives Cro' a single
orbital ground state, four-fold degenerate as to spin. Spin-
orbit interaction partially lifts the degeneracy leaving two
two-fold degenerate spin levels, and the application of a dc
magnetic field completely removes the degeneracy. The spin
Hamiltonian for ruby is circularly symmetric about the z-axis
because of the trigonal crystalline field, and is given by
equation (48) with E = O.

In the calculations reported here, the values of g and
D quoted by Donoho (1964) were used, namely g=1.980 (isotropic)
and D=5.733 Gc/s. Extensive data on the energy levels of ruby
have been presented by Chang and Siegman (1958A), and Schulz

du Bois (1959).
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v.2. croF in K, Co(CN) .

The crystal of KBCr(CN)6 contains two distinct magnetic
complexes per unit cell, each consisting of a paramagnetic ion
surrounded by a nearly regular octahedron of six CN groups.
The two complexes are identical except for the orientation of
their axes.

A cubic crystalline field leaves a singlet orbital
ground state, four-fold degenerate as to spin. Fields of lower
symmetry together with spin-orbit interaction split the ground
state into two Kramers doublets.

The energy states of one complex are described by
equation (48) with g=1.992 (isotropic), D=0.083 cm-l, and
E=0.011 cm-l (Bowers and Owen 1955). Extensive data on the
energy levels is given by Chang and Siegman (1958B), Butcher
(1957) and Weber (1959).

3+
Vv.3. Cr in RbAl(SOA)z.IZHZO.

The unit cell of rubidium chrome alum contains four
unequivalent complexes whose axes of symmetry are the [llf]
directions of the cubic crystal. The spin Hamiltonian is
circularly symmetric about the z-axis of the complex, and is
given by equation (49) with g=1.975 (isotropic) and

D=0.342 cm-1 (Vanier 1962),

For all three types of crystal the appropriate spin
Hamiltonian was diagonalized and the energy levels and

eigenvectors were evaluated on McGill's IBM 7044 computer,
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for the particular values and orientations of the dc magnetic
field H at which relaxation time measurements were made. The
convention adopted for defining the orientation of H is shown

in Figure 2 below,

&

2T
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V1. APPARATUS,

Two spectrometers were used for the measurements re-
ported here. The 890 Mc/s spectrometer, shown in block
schematic form in Figure 3, is patterned after apparatus des-
cribed by Feher (1957) and has been described by Rumin (1961).
The modifications necessary to implement the resonance-
dispersion technique have been discussed by Carruthers and
Rumin (1965).

The main oscillator is a General Radio 12093. It is
free running and has been provided with good temperature
lagging, sound insulation, and well-regulated dc supplies
for the filament and H.T. currents. The bridge element is a
coaxial ring circuit built from modified General Radio 874
components, and is isolated from the main oscillator by means
of a 10 dB pad and a 20 dB isoclator.

The superheterodyne receiver is linear over the signal
range used in the measurements. The balanced detector is a
GR 1602B admittance bridge modified to give adequate crystal
currents. This drives a balanced I.F.I. P205 preamplifier
which is followed by a GR 1216A I.F. amplifier with one stage
bypassed and the bandwidth increased from the factory setting.

The high gain audio amplifier uses plug-in twin-T
elements to provide narrow-band response at the frequencies
used, namely 15, 35, 140 and 400 c¢/s. A Phazor 200A phase-
sensitive detector drives a Texas Servoriter recorder of 5 mV
full-scale sensitivity. A conventional phase-shifting circuit,

using an RC load on a center-tapped transformer, is placed in
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the line to the modulating coils to control the phase of the
modulating field.

A magnet with 6-inch diameter pole-pieces provides
fields up to 2000 oersteds, the stability being one part in
104 or better.

A double-dewar system permits operation at liquid
Helium temperatures, and facilities have been provided for
obtaining lower temperature by pumping over the Helium. A
Manostat Corp. Model 8 manostat is used to stabilize the
vapour pressure at intermediate points down to 1.6°K which 1is
the lowest attainable temperature.

The 9.4 Gc/s spectrometer has been discussed by
Vanier (1962) and is patterned quite closely after apparatus
described by Feher (1957). Measurements on this spectrometer
were made using the resonance-dispersion technique, and the
audio system from the 890 Mc/s spectrometer was utilized for

this.
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VII. PROCEDURE,

VII.1l. Experimental.

All the measurements were made using the resonance-=-
dispersion technique. The procedure is described by Carruthers
and Rumin (1965) and more briefly in Chapter IV.

The sample is mounted close to the wall of the coaxial
cavity (Rumin 1961) to minimize the curvature of the rf magnetic
field lines of force over the sample. For the same reason
the sample size is kept quite small. The cavity 1s not a
sealed type so that the crystal is in direct contact with the
liquid helium.

The microwave power is initially set to a low level so
that saturation effects are negligible. The bridge is ad-
justed so as to be sensitive to the imaginary component of
the incremental susceptibility, dX". Any quadrature component
present in the audio signal is balanced out by means of the
phase-shifting network in the line to the modulation coils.

The microwave power is then increased until measurable amounts

of saturation and phase-shift are observed. Several measurements
are made at different power levels and, where possible, various
modulation frequencies. In each case the magnetic field is

swept slowly through the line with the synchronous detector
switched first to read the real and then the quadrature
component. Each measurement is repeated several times.

The attenuation A' and phase angle ® are obtained

by comparing signal intensities at corresponding points,
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that is, points equally distant from the center of the line.
This procedure is illustrated with the help of Figure 4

below, which shows possible recorder tracings, first for the
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I RF=50dB PN RF=20dB
l IF=10dB | | N IF=40dB
: AF=50dB : | N AF=38dB
¥ l i /\
| | ' N
| | \
| | | A
| | AN
|
| \ I \ | N
o R |
™ X~ by — k= z |
Figure 4

unsaturated line, and then for the real and quadrature
components of the partially saturated line. The net change
in attenuator settings is evidently 12 dB and, since the
derivative of a curve 1is proportional to its amplitude, it

follows that the attenuation A' 1s given by

A' = x/[ y(antilog l&)]
20

and tan© is
tan © = y/z
The values of A', tan © , and the modulation frequency ()
are then used in equations (40), (39), and (41) to determine

Z and Tl'
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VII.?. Calculations.

The McG1i1ll IBM 7044 computer was used to evaluate the
relaxation times that would be yielded by the pulse saturation,
resonance-dispersion, and steady-state saturation techniques
for the experimental conditions considered. Given the constants
of the spin Hamiltonian in equation (48), the magnitude and
orientation of the magnetic field H, the temperature T, and
the transition to which resonant radiation is applied, the
program evaluates the corresponding eigenvalues and eigen-
vectors of the spin Hamiltonian and calculates the spin-phonon

transition probabilities w from equation (11). Actually

kk'

relative magnitudes of the w 's are calculated since no

kk'

attempt is made to evaluate the constant K'". The rate
equations (l7) are then solved, given pulse saturation

conditions, and the values of Al’ A2, A3 and Tl’ T2, T3

in equation (18) are evaluated. The solution is also plotted
in semilogarithmic form.

The values of the wkk,'s are also fed, together with

values of (), into an auxiliary program which solves for the

average steady state populations n, and the real and quad-

i

rature components, bi and b;, of the time-varying portions

of the populations (see Section IV.2). A' and tan © are
evaluated using equations (47), and are then used in equations
(40), (39) and (41) to yield the saturation factor Z and re-
laxation time T1 that would be obtained from a resonance-

dispersion experiment in which the data i8 processed using an
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analysis based on a two-level system.

The populations n, are also used in equation (43),

i
for different values of the radiation induced probability P,
to yield the effective T1 = 1/2W that would be obtained in a
steady-state saturation experiment.

Since only relative magnitudes of relaxation times
are calculated, in the final analysis the values are nor-
malized to coincide with one experimental point for a given
ion and host lattice,

In the case of the pulse saturation calculation,
situations arise where the relative magnitudes of the co-
efficients and time constants of the return-to-equilibrium
solution are such that the decay can not be characterized by
a single time constant. In such a case the simple exponential
solution which "best fits" the decay over approximately two
time constants is taken as the effective relaxation time
TR. Figure 5 shows three examples of such a situation.

The complete calculation involving the steps described

in the above paragraphs is outlined in Appendix I with the help

of a specific numerical example.
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VIII. RESULTS AND DISCUSSION,

VIII.1. cr>F in K,Co(CN) .

Relaxation times in potassium chromicyanide were
measured both at 0.89 Gc/s and at 9.4 Gec/s. Most of the low-
frequency measurements were made with the dc magnetic field
parallel to the z axis of one of the complexes because under
these conditions four transitions are observed over quite a
wide range of fields, namely, 105, 340, 1440 and 2050 gauss.*
Actually there are six lines since the other complex gives two
lines close to the low-field ones. The two lines near 300
gauss are sufficiently far apart that cross-relaxation effects
between them were expected to be negligible. But the lines
near 100 gauss are improperly resolved and for these measurements
the magnetic field was rotated 6 degrees in the ab-plane placing
it parallel to the a axis where the energy levels of the two
complexes are identical and hence the two lines are super-
imposed. Since the 100-gauss lines are '"radiation forbidden",
being (-3/2, 3/2) transitions, the 6dB improvement in signal-to-
noise ratio resulting from working with the superimposed lines
is quite valuable.

The high-frequency measurements were made on the three

radiation-allowed transitions which are observed at 1540,

3360 and 5100 gauss when H is parallel to the axis. Because

*See Figure 8 of Carruthers and Rumin (1965) Appendix II.

i
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Castle et al (1960) and Kipling et al (1961) observed re=
laxation rates which increased with concentration, an effect
not predicted in the theory of spin-lattice relaxation, a dilute
crystal was used, namely 0.04% Chromium (the percent con-
centration being the Cr/Co ratio x 100). Weissfloch* has
shown that at thils dilution there 1is negligible concentration
dependence for the magnetic field orientation selected.

The results of the high-frequency measurements are
shown in Figure 6. As expected the smallest scatter of
experimental points was obtained for the 2-3 transition
(where the numbering of levels is in order of increasing
energy) which is very much stronger than the other two lines.
The measurements were made at 4.2°K since Castle et al (1960)
and Weissfloch* have shown from an examination of the
temperature dependence of the relaxation times that the
single-~phonon process is dominant at this temperature. For
the 2-3 transiticon a value of 7.6 msec. was obtained, which
is in fairly good agreement with Weissfloch's* pulse saturation
measurements of 8.2 msec. But the relaxation time for the
3-4 transition (see Table I, page 49) is apparently somewhat
higher than Weissfloch's. Since the accuracy of the measure-
ments on the 3-4 transition was quite limited due to the poor
signal-to-noise ratio, the actual difference may not be quite
as great.

The low-frequency measurements were made on a 0.015%

*C.F. Weissfloch. Private communication.
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crystal in the case of the 340 gauss line, since Carruthers
and Rumin (1965) reported some concentration dependence of
the relaxation time still present at 0.06%. The 340 gauss line
was sufficiently strong to permit an investigation of the
temperature dependence of the relaxation time, and these
measurements are shown in Figures 7 and 8. The points which
are plotted in Figure 8 were, somewhat arbitrarily, read from
the curves in Figure 7 for 1/Z = 10. It is evident that the
relaxation time at 4.2°K varies more rapidly than as 1/T
suggesting that other relaxation mechanisms besides the single-
phonon are operative. Below approximately 2°K the inverse
temperature dependence seems to take over.

The slopes in the logarithmic plots of the relaxation
time '1‘1 versus the inverse of the saturation factor Z pose a
problem that eludes satisfactory explanation. Carruthers and
Rumin (1965) observed similar slopes at 4.2°K which decreased
with dilution, and the present measurements at 4.2°K confirm
their speculation that the slope would be zero for sufficient
dilution with the resultant relaxation time corresponding
approximately to the value at which the higher concentration
curves intersected. It would seem that the mechanism which
produces the slopes at the lower temperatures is different
from the one which results in the concentration dependent
slopes. This problem will be considered again in a later section.

The other three lines are so much weaker than the 340

gauss transiton that for them measurements were made on a
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Figure 8. Temperature dependencé of relaxation time in
K3Cr(CN)6 at 0.89 Gec/s for 340 gauss line with
H parallel to z-axis.
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Figure 9. Relaxation times in K3Cr(CN), at 0.89 Gc/s and
1.7°K for 105, 1440, and 2058 gauss lines. H
parallel to z—axis except for 105 gauss line
parallel to a-axis.
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0.06% sample. It was assumed that the temperature dependence
of their relaxation times is similar to that of the 340 gauss
transition so that the measurements in Figure 9 were also made
at a temperature below 2°K.

The results of the above measurements are tabulated in
Table I together with other published experimental data on
relaxation times in dilute potassium chromicyanide, and the
calculated values of the effective relaxation time TR (see
Chapter VII). The calculated values were normalized to coin-
cide with the 9.4 Gec/s pulse saturation measurement for the
2-3 transition corresponding to ©= 6°, ¢ = 0. The nor-
malization is somewhat arbitrary and was chosen mainly because
the 2-3 transitioen at high frequencies is a strong line, and
this particular transition has been studied by both the pulse
saturation and resonance-dispersion techniques with quite good
agreement. Examination of the tabulated data, which, although
not by any means comprising an exhaustive study of this salt,
nevertheless represents a fair sampling of magnetic fields,
orientations and transitions, and a large change in frequency,
indicates that the calculations predict the changes in re-
laxation time to well within a factor of two.

It is interesting to note that the resonance dispersion
and the pulse saturation calculations yield relaxation time
values which differ by not more than 30%, the pulse saturation
values usually being greater. Many of the calculated decay
curves had a slight curvature when plotted on semi-

logarithmic paper, and, in general, the calculated resonance-
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TABLE I

Calculated and Measured Relaxation Times for Cr3+

in K Co(CN)6 at T = 1.89K.

3

Freq. Field Angle Tran- Relaxation Time TR-msec.
sition
Resonance- Pulse
1@ H e ) Dispersion Saturation
Ge/s Kgauss.| deg.| deg. Meas. Calc.1 Meas. Calc.1
0.9 0.106 6 0 3-4 170 107 120.
0.9 0.340 0 0 1-2 190 114 127.
0.9 1,440 0 0 1-2 220 195 234,
0.9 2.050 0 0 1-2 140 116 130.
9.4 3.360 6 0 2-3 182 18.9 21.3°% 21.3
9.4 1.540 6 0 3-4 372 22.0 23.5° 29.9
3.4 5.1G0 6 0 1-2 152 12,2 12.7
9.4 3.2 90 90 2-3 14.0 18.52b 14.1
9.4 3.78 40 |90 2-3 15.3 15.5° 14.2
1. Values normalized to coincide with measurement
of 2-3 transition for 14 = 9.4 Gc, © =609, § = c°.

2. Extrapolated from 4.2°K measurement assuming
inverse temperature dependence.

a. C.F. Weissfloch. Private communication.
b. Kipling, Smith, Vanier and Woonton (1961).

¢c. Castle, Chester, and Wagner (1960).
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dispersion values seem to correspond to the assymptotes to
the early portions of these curves. Since the normal range
of saturation factors over which resonance-dispersion
measurements are made, namely 0.5 - 0.01, represents spin
population departures from thermal equilibrium, which in a
pulse experiment correspond to points on the decay trace
between 0.99 and 0.5 of initial amplitude, it may not be un-

reasonable to expect smaller values of T_ by the resonance-

R

dispersion technique in cases where the pulse decay exhibits

a faster component in the early part of the trace. The last

entry in Table I does not seem to fit into this explanation.
3+

VIII . A .
I 2 Cr in 1203

At 0.89 Gc/s only one line could be observed in ruby
over the range of magnetic fields attainable with the existing
magnet power supply. This was the 1-2 transition, situated
at approximately 300 gauss when H is parallel to the z axis.
The relaxation time was measured on a sample containing
approximately 0.006% Chromium* and was found to be 360t70 msec.
The line is quite weak at this low concentration, resulting
in appreciable scatter in the experimental points, but this
could not be avoided in view of the concentration dependent
relaxation times that have been observed in ruby at higher

concentrations (Mims et al 1960). Measurements were made at

*Analyzed by Technical Service Laboratories,
Toronto, Ont.
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4.2°K since available data on the temperature dependence of
spin-lattice relaxation timeé in ruby (Feng and Bloembergen
1963, Pace et al 1960) indicated that the single~phonon process
would be dominant at this temperature.

The angular dependence of relaxation time was explored
on the 9.4 Gc/s spectrometer. A cylindrical sample, 3.2 mm
thick and 6 mm in diameter, containing 0.0033% of Chromium,*
was used, and the measurements were made at 4.2°K. Figure 10
shows the data obtained at those angles where the transitions
studied were strong enough to permit measurement. As in the
case of chromicyanide at low temperatures slopes are ob-
served in the logarithmic plots of T1 against 1/2. The fact
that the slope seems to be constant for a given transition is
noteworthy although not very illumirating.

In an attempt to clarify this problem pulse saturation
measuremerts were made with C.F, Weissfloch on his 9.2 Ge/s
spectrometer., For angular variations close to the z axis usable
measurements were obtained only for the 2-3 transition** at
& = 20° where an essentially single exponential decay with a
time constant of 180 msec. was observed. This corresponds to

resonance-dispersion measurements at a saturation factor Z of

approximately 0.1.

* Analyzed by Bell Telephone Laboratories, Inc.,
Murray Hill, N.J.

*%* For many angles there are two 2-3 transitions™>in
ruby at 9.2 Gec/s, one at low fields and one at
Lhigh fields, and, unless otherwise noted, the high
field one will be understood.
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With the possibility of the slopes being caused by a
phonon bottleneck in mind, the crystal was cut in half per-
pendicular to its flat face, and resonance-dispersion measure-
ments were‘repeated for a few orientations. Some of the
results of these measurements are presented in Figure 11. In
general the data were quite poor, to a large extent due to
the smaller sample.v Nevertheless, the results are good
enough to suggest that the measured relaxation times T1 are
not functions of the degree of saturation, and correspond to
the values obtained at the highest values of 1/Z on the large
sample,.

Since Weissfloch's pulse saturation measurements on
the uncut sample were obtained at the limit of the spectro-
meter’s sensitivity, no attempt was made to determine whether
decays with larger time constants would be observed with the
smaller crystal.

Using the measurements on the smaller sample as a
basis, values of T1 were read from Figure 10, corresponding
to 1/Z = 10 for the 1-2 transition, 1/Z = 40 for the 2-3,
and 1/Z = 20 for the 3-4 transition, and were plotted as a
function of the angle © . The results are plotted in Figures
12 and 13, together with the effective relaxation times TR
for pulse saturation conditions calculated following the
procedure discussed in Chapter VII. Making use of experi-
mental data on the spin~lattice interaction Hamiltonian for

ruby, Donoho (1964) calculated the w,,'s and hence the para-

ij

meters of the decay equation (18). His calculations, just as
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those reported here, show that in general one time constant,
usually the largest one, dominates the form of the return to
equilibrium. Consequently, his data have also been used to
compute the resulting decay curves which were then fitted with
single exponentials as discussed in Chapter VII. The results
of these calculations appear in Figures 12 and 13. No
normalization was required for Donoho's results since he

.'s but the results of the present

calculated the complete wiJ

calculations were normalized to coincide with the measured data
for the 2-3 transition at & = 20°.

The curves calculated on the basis of equation (l1)
agree with Donoho's 1insofar as the general trend of the
angular dependence is concerned. Thus both calculations
predict for the 1-2 transition longer relaxation times around
S = 90o than around © = Oo, and vice versa for the 3-&
transition. In the case of the 2-3 transition Donoho's
results seem to predict a little better the relative change
of relaxation time with © . For the other two trangitions the
experimental data is rather limited but it is interesting
that, as the calculations predict, the relaxation time for the
3-4 transition does increase when H is rotated away from
Q= 900, and in the case of the 1-2 transition the relaxation
times are appreciable longer near © = 90° than around e = 00
Measurements of relaxation times for ruby at several

frequencies have been reported. Those which were made at

paramagnetic ion dilutions sufficient to minimize concentration
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effects are tabulated in Table II together with Donoho's
results and the calculations of this author. Of the measure-
ments reported here only the 0.89 Ge/s one and a randomly
selected point from Figure 12 are included. The present
calculations seem to predict the changes in relaxation time
about as well as Donoho's*. Once again the resonance-
dispersion calculations yield relaxation times somewhat
shorter than those calculated for pulse saturation conditions.
This is particularly noticeable for the 2.9 Gc/s case where
there was appreciable departure from simple exponential
behavior in the calculated decay curve,

Pace et al (1960) measured the relaxation times of
the several transitions that can be observed in ruby with
“Ur = 34.6 Gc/s and O = 900, Thus both frequency and
orientation were kept conmstant. Table III shows their results
for two temperatures at which the measurements indicated

that the single-phonon process was dominant, together with

*The results of Donoho's calculations were

taken from his Table I which serves the same
purpose as our Table II. In the case of the

9.3 Gc/s data for the 2-3 transition at © =54°
it was possible to also make use of his Figure 3
which shows the angular dependence of the para-
meters of the return-to-equilibrium equation (18).
This is a particularly simple case since one
time constant wholly dominates the decay for
all values of © . It is clear from those
curves that T, 1s approximately 0.38 sec. and
not the 0.226 sec. shown in Donoho's table
which, to the accuracy with which the graphs

can be read, is the value of one of the other
time constants. There is also some disagreement
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the calculated values which were normalized in the same way as
those in Table II. The predicted changes in relaxation time on
the whole seem to be in quite fair agreement with experiment. It
should be noted however that while the calculations seem to pre-
dict a diminishing temperature dependence at higher fields, the
measured relaxation times vary approximately as T-1 even at 14.5

34.6 Ge/s and T = 4.2°K or less, the high

Kgauss. With ﬁé
temperature approximation h4<< kT, on the basis of which the
inverse temperature dependence of the spin-phonon transition
probability is predicted, becomes quite poor, and for sufficiently
wij and wji do not vary
in the same way (equation 11). Because of this and the fact that

high frequencies and/or low temperatures,

we are dealing here with multiple relaxation paths, it is not easy
to predict the behavior of the effective relaxation time with
temperature, More high frequency and low temperature measurements
are needed to decide whether the rather poor agreement for the

14,5 Kgauss line is meaningful or not.

*(continued from previous page)

between Table II and Donoho's Table I in the
designation of transitions. For example, his

Table I identifies the 7.2 Gc/s entry as a 2-3
transition at 80° which is surprising in view

of what Mims et al (1960) report, and because
according to Donoho's convention of numbering

levels the 2-3 gap never becomes as small as

7.2 Ge/s at 8 = 80° Attempts to clear up these
points by communication with Donoho have elicited

no response, It is believed that the data preserted
in Table II 1s consistent with what has been reported
by the authors of the various measurements, in the
light of the convention adopted here of numbering
levels with increasing energy.
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TABLE II

Calculated and Measured Relaxation Times for Cr3+

in A1.0, at 4.2°9K.

273
Freq. | Field Angle | Tran=- Relaxation Time TR-sec.
sition
Resonance- Pulse
ﬂ& H e Dispersion Saturation
* *

Ge/s Kgauss deg. Meas. Calc. Meas. Calc. | Donoho
34,6 7.0 90 2-4 0.033 0.0542 0.034 | 0.080
9.3 4.0 54 2-3 0.188 0.20 b 0.200 ] 0.226
9.4 7.5 0 1-2 0.15 0.105 0.115

9.2 4.3 20 2=3 0.252 0.18€ 0.280

7.2 1.4 30 1-2 0.314 0.50d 0.343 ) 0.539
2.9 0.6 60 1-2 0.672 0.50° | 0.920] 0.750
0.9 0.3 0 1-2 0.36 0.358 0.390

* - Values normalized to coincide with pulse
measurement for 9.3 Gec/s, 6 = 54°,

a - Pace, Sampson and Thorp (1960).

b - Nisida (1962).

¢ - C.F. Weissfloch. Private communication.
d - Mims and McGee (1960).

e - Armstrong and Szabo (1960).



-G1-

TABLE III

Comparison of Pulse Saturation Measurements3
and Calculations of Relaxation Times for Cr>t
in A1,0, at T=1.4 & 4.29K, 6=90°, and ¥,=34.6 Gec/s.

273
Relaxation Time TR—msec
_Field H Transition T=4.2°K T=1.4°K
Kgauss a * a *
Meas. | Calc, Meas. Cale.
3.8 1-4 - - 296 256.
4.8 1-3 56 45,2 100 117.
7.0 2-4 54 33.5 147 83.8
10.0 1-2 22 23.6 59 £9.4
12.3 2-3 15 17.5 64 42.4
14.5 . 3-4 21 13.5 60 16.7

*-3ame normalization as in Table IIL.

a~-Pace, Sampson and Thorp (1960).

VIII.3. cCr>F% in RDA1(S0,),.12H,0.

Resonanc¢ce~-dispersion measurements were made at 0.89

Ge/s on & rubidium alum crystal containing approximately 0.

Chromium., For most orientations the lines due to the four
complexes are clustered within a range of magnetic fields

between approximately 50 and 400 gauss, and are either im-

properly resolved or are situated sufficiently close together

that the presence of cross-relaxation may not be ignored.

However, when the magnetic field is directed parallel to the

z axis of any one complex a transition is observed at
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approximately 1100 gauss. The results of measurements on
this line are presented in Figure 1l4. Once again slopes in
the T. versus 1/Z plots complicate the picture. The factor

1
of ten change in T, between 4.2°K and 1.97°K suggests that at

1

the higher temperature other mechanisms besides the single-
phonon one are operative. At the lower temperatures the
scatter of the experimental points prevents a decision on the
exact nature of the temperature dependence, although it is not
likely to be much faster than T-l.

At X-band the relaxation time of the 2-3 transition
has been measured by Dyment (1965) as a function of tempera-
ture, and by Vanier (1962) at 4.2°K. In view of the temperature

dependence at 0.89 Gc/s, Dyment's results are used in the

comparison of experimental and calculated values shown in Table IV.

TABLE IV

Calculated and Measured Relaxation Times for Cr3+

in RbA1(804)2.12H20 at T=1.95K.
Freq. Field Angle Trans'n | Relaxation Time TR-msec
Y B ° Dispersion Sacuracion
Ge/s Kgauss deg Meas. | Calc* Meas.| Calc*
9.4 3.375 90 2.3 | 9.4 10° 10
0.9 1.065 0 1-2 150 |[220. 250

* - Values normalized to coincide with pulse
measurement at 9.4 Gec/s.

a - Dyment (1965).
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As in the case of chromicyanide the value of T, corresponding

1
to 1/Z=10 was read from the graph in Figure 14, and the
calculated values were normalized to coincide with the X~band
measurement of the 2-3 transition.

Measurements on one or two of the lines at low fields
ylelded times that were as much as an order of.magnitude
shorter than predicted by the calculations, adding some support
to the assumption that cross~relaxation mechanisms were operative
between those closely spaced lines.

VIII.4. The Slopes in the Logarithmic Plots of T, versus 1/Z.

1

An important point which emerges from the resonance-
dispersion calculations is that even in cases where there is
relatively severe departure from simple exponential behavior
of the calculated pulse saturation decay, the relaxation time
T, 1s constant for modulation frequencies and saturation

1

factors down to those satisfying the expression WT_ Z=1 (see

1
Chapter IV). On the basis of these calculations one would not
expect the slopes in the logarithmic plots of T1 versus 1/Z
that have been observed for so many of the measurements re-
ported here.

No satisfactory explanation for the variation of T1 with
Z has been arrived at from a consideration of both some known
physical processes which may be operative at the concentrations

and temperatures of interest, and the possibility of the effect

being instrumental. For example, the order of magnitude
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equation given by Giordomaine and Nash (1965) for predicting
the occurence of a phonon bottleneck indicates that this
phenomenon is extremely unlikely with the experimental
conditions and results reported here. Although a size de-
pendence of relaxation time may be associated with a phonon
bottleneck it is felt that the measurements on ruby, when size
is reduced, are inconclusive.

The effects of cross-relaxation were also considered
as a possible explanation for the dependence of T1 on Z.

Bloembergen et al (1959) discuss the case of a lattice with

N ions with two energy levels separated by hy& and N

oL A

ions with two energy levels separated by h4), , where 11—1£<K44:

A
Assuming for simplicity that Q* = Nﬁ , their rate equations (14)
were simplified (Weissfloch, 1964) and solved on a high-

speed computer for the case of an applied rf field at the
frequencydﬁ, in a manner similar to that used for resonance-
dispersion calculations for a multi-level system (see Chapter
VII). This was done for a range of the two spin-lattice re-
laxation times Ta and T,5 , the cross=relaxation time T21,

and modulation frequency (0. Although T1 = %* was found to

increase with 1/Z whenever T21 was shorter than T* , the results
were very strongly dependent on modulation frequency, an

effect which was not observed in the present measurements

(see, for example, results for 3-4 transition in Figure 11).

To the extent that a multi-level system can be looked upon as

behaving like a two-level one, the above model does not explain

the observed variation of T1 with Z. Nor does it, one might add,
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explain the concentration dependent slopes observed by
Carruthers and Rumin (1965).

The cross-relaxation model described above was also
used as a basis for investigating the effect of spin diffusion
in a manner similar to that suggested by Bloembergen et al (1959).
The resonance line was simulated by four equally populated,
two-level spin systems having identical spin-lattice relaxation
times but different cross-relaxation times. As before the
results showed appreciable dependence of T1 on 1/Z but again
a very strong modulation frequency effect.

The failure to explain the slopes thus leaves unanswered
the question of how to determine the spin-lattice relaxation
time from the experimental data. However, because in most
cases the relaxation time T1 changes by a factor of only approxi-
mately two in going from large to small Z, the general con-
clusions that are drawn from the measurements are not greatly
affected by how one selects a relaxation time from a given

plot of T, versus 1/Z,providing one is consistent from then on.

1

Thus, for example, the conclusions regarding the angular de-
pendence in ruby are not significantly affected by whether one

selects the relative values of Tl by the method adopted, or

by reading values of T, from Figure 10 corresponding to a

1

fixed, arbitrarily selected value of 1/Z, or even by taking

averages of T, over the appropriate range of saturation factors.

1
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VIII.5. Calculations for Steady State Saturation Conditions.

As mentioned in Chapter VII, calculations were made of
the effective relaxation time that a steady-state saturation
measurement would yield. Since none of the experimental data
considered here were obtained by this technique, the results
of these calculations were not included in the preceding
sections of this chapter. For every experimental point con-
sidered the calculations yielded identical values of re-
laxation time for the resonance-dispersion and steady-state
saturation conditions. Since the rate equations were solved
for selected values of the radiation-induced transition
probability P, none of the difficulties which the experi-

mentalist encounters in the calculation of P ever arose.
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IX. CONCLUSIONS

The following results emerge from the work reported
here:

1) The relative magnitudes of the S$(2S 4+ 1) spin-phonon
transition probabilities between the 2S5 4+ 1 levels of the
S = 3/2 ion Cr>F in R,Co(CN) ,, A1l,0,, and RbAL(S0,),.12H,0
are approximately determined, for the single-phonon relaxation
process (equation 11), by:

a) the quadratic spin operator matrix elements, and

b) the temperature and frequency dependent
terms, namely the Debye equation (7), the Bose-Einstein factor,
and the 1/% in equation (5) which appears in the coefficients
of the expansion of the crystalline field potential in normal
lattice modes. The relative changes in the effective spin-
lattice relaxation time with the magnitude and direction of
the dc magnetic field, frequency, and temperature are predicted,
on the basis of such a simplified theory, with an accuracy
that is usually better and rarely worse than a factor of two.
There seems to be no reason why the above simplifications can
not be generalized to any spin system of S >%.

2) Although in the recently proposed resonance-
dispersion technique the experimental data is processed by
an analysis based on a two-level system, calculations indicate
that for a multi-level system the measured singlee=phonon, spin-
lattice relaxation time T, should be constant for all modulation

1

frequencies () and saturation factors Z down to those
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satisfying the expression Q)leﬁsl. Furthermore, it should be
equal to the value obtained by the pulse saturation method
if the decay 1s essentially a simple exponential. Where there
is appreciable departure from single-time-constant behavior the
resonance~dispersion value is still independent of Q) and Z
but is better approximated by the time constant obtained from
the assymptote to the early portion of the decay's semi-
logarithmic plot. Calculations also indicate that in both
cases discussed above the steady-steady saturation technique
should yield results identical to those of the resonance-
disperéion method.

3) Relaxation times have been measured at both
0.89 Gec/s and 9.4 Ge/s by the resonance-dispersion technique,.
The low-frequency measurements constitute, to the best of the
author's knowledge, the first paramagnetic resonance measure-
ments on dilute crystals of potassium chromicyanide, ruby,
and rubidium chrome alum at a frequency an order of magnitude
lower than the X-band where most measurements have been made*,
and at a temperature low enough to ensure that the single-
phonon relaxation mechanism was dominant. The measurements
at X-band have shown the feasibility of using the resonance-

dispersion technique at this frequency and, in the case of

* Van Vleck (1961) reports briefly on frequency
dependence measurements on potassium chromicyanide,
but no numerical details of the measurements
are given nor have they apparently been pub-
lished elsewhere.
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potassium chromicyanide, have coﬁfirmed that the spin-lattice
relaxation times measured by both this and the pulse saturation
method should be equal if the pulse measurement exhibits simple
exponential behavior. It is believed that the measurements on
ruby represent the first reported systematic investigation of
the angular dependence of spin-lattice relaxation times in
crystals of extremely 10& Chromium concentration. For reasons
mentioned below the measurements sometimes introduce some
uncertainity into the determination of the relaxation time but
the general trend is in agreement with the calculations re-
porved here and the more exact ones made by Donoho {136%).,

4) In many cases the interpretation of measurements
has been complicated by an apparent slight dependence of the
relaxation time T, on the saturation factor Z, resulting in

1

Tl at the smzllest values of Z where measurements could be made
being approximately twice the value obtained at the largast
values of Z. A satisfactory explanation for this effect has
not been found. No similar effect has apparently been reported
for pulse-saturation measurements on very dilute crystals.

The reason for this may be that in the resonance-dispersion
technique, measurements are made on transitions between levels
whose populations have been severely disturbed by continuous
resonant radiation, while in the pulse technique the effective
relaxation time is read off that portion of the decay which
corresponds to relatively light disturbances of populations

returning to thermal equilibrium some time after the removal

of resonant radiation.
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5) Experimental confirmation has been obtained for
the speculation by Carruthers and Rumin (1965) that the
concentration~dependent slopes in the logarithmic plot of
T1 versus 1/Z, which they observed at 0.89 Gc/s and 4.2°K
in potassium chromicyanide, would tend to zero at sufficiently
low Cr3+ concentration, with the resultant T1 being approxi-

mately equal to the value obtained corresponding to the

smallest Z.
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APPENDIX I,

Calculation of Relaxation Times.

Example. Relaxation time of 1-2 transition in ruby for H=600
gauss, ©6=60 ", T=4.2°K.
INPUT
E=0.0
D=5.733 (Gco/s)
g.=1.980
X
g =1.980
g7=1.980
$20.0
6=60.0
H=600. (gauss)
AW Level| Energy Eigenvectors
Diazgonalization _ _
ot Eoiohamito| Ge/s.| 3/2 | 1/2 |-1/2 |-3/2
tonian. - 1 -7.355| .052 |~-.595 .797 | -.084
(Equation 48) 2 | -4.385|-.087 | .797 | .592 | -.083
3 4.633]-.008 .016 117 .992
4 7.107( .994 .101 .012 .005
i INPUT
T=4.2(°K)
Evaluation of spin-
Sho?on probabilities >
(ﬁauation 11) Y
i j |Matrix w, ., W,
Elements 1] 11
Squared
112 10.0935 0.71 0.73
b 1 13 |2.5146 295.04 338.36 \(
\ 114 |0.3866 65.08 76.77
2 |3 ]10.3816 25.77 28.57
1 2 |4 [2.5232 272.84 | 311.14 z
3 |14 |0.0496 0.26 0.27
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INPUT

(Resonant /
\; radiation

N/ applied to)
1-2 trans'n.

Solution of equation
(17) for steady-state
n. in the presence of
P=0OO applied to 1-2
transition.

]
Solution of equation /
(17) for nl—nZ/nlo-n20 £ .
with P=0,.
<
CONSTANTS OF EQUATION (18)
A1 A2 A3 T1 TZ T3
Y -.885 | -.007 | -.108 | .0105 | .0014 | .0016
,:I -0 "Best fit" simple
PLOTTER N o8} exponential T_=0.009
INPUT | N (Manual opera§1on)
N\
Modulation Q-6
frequency () = N
’ﬁf(i) v220 _
ii) 440}sec 4k
(iii) 880 n. - n 04
1
1-n -n
10 20 FAfter norma-
lization to
experiment (see AN
= N
o.l_Table II),TR 0.92 sec.
I I 1 1 | 1 !
0.0l
v '
Time—arb. units.
1 2




Operation on equation
(17), (modified by
equations (26) and
(42), and with Wi
and w replaced

by w 2 P and w21+P),
namely:

1) Steady-state portion
solved for Ei'

2) T_=1/2W solved for
from equation (43).

3) Time dependent

portion solved for

b! and b'.
i i

Solution of equations
(47) for A' and tan 0.

Solution of equations
(40), (39), and (41)

for Z and Tl'

-77-

>-
v Y Y
>
Y
>
Yy ¥
' 6)=220 sec”*

T1 Z tan © TR nl-n2 P )
sec sec|n,-n,.|sec
.673|.189].029 .672 .189 3.2
.673|.104].058 .672 .104 6.4
.673]|.055(.116 .672 .055 12.8
.674|.,028(.232 .672 .028 25.6

W =440 sec:_l
.6721.189].014 .672 .189 3.2
.672|.104].029 .672 .104 6.4
.672]1.055|.0658 .672 .055 12.8
.673(.028|.116 .672 .028 25,6

-1

(D =880 sec
.672]1.189].007 .672 .189 3.2
.672].104(.014 .672 .104 6.4
.6721.055(.029 .672 .055 12.8
.6721.028].058 .672 .028 25.6
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APPENDIX II

MEASUREMENT OF SPIN-LATTICE RELAXATION AT 890 Mc/s

BY A RESONANCE~DISPERSION TECHNIQUE.

J.A. Carruthers and N.C. Rumin.
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ABSTRACT

A new technique has been used to measure the spin-lattice relaxation time
of Cr**+* in K3Co(CN)g at 890 Mc/s. The method depends on observing both the
amplitude and phase of the audio signal developed at the modulation frequency
in a bridge-type microwave resonance spectrometer. One or more modulation
frequencies are used, depending on the value of the relaxation time and the
degree of saturation employed. Although similar to the saturation technique, this
method does not require knowledge of the power level or the linewidth, and is
suited to measurements on weak lines. Results have been obtained for lines at
100, 300, 1 400, and 2 100 oersteds, using crystals containing 0.06%, and 0.49%,
chromium. The values of T for the lower concentration are in the 20-30-milli-
second range, but relaxation appears to be not equivalent to a single time-constant.
For the higher concentration the relaxation times are shorter and there is a
marked evidence of multiple time-constants.

1, INTRODUCTION

Measurements on paramagnetic relaxation in recent years have emphasized
the microwave resonant approach, using either the saturation method or the
pulse technique. The audio-frequency relaxation method, used mainly by the
Leyden group, dates to a much earlier time (Waller 1932; Gorter 1947). The
technique described here is similar to both the microwave saturation method
and the audio-frequency relaxation approach. The dispersion of the incre-
mental susceptibility at audio modulation frequencies is observed at various
levels of saturation, produced by resonance absorption at the microwave
frequency. The dispersion observed can be related to the spin-lattice relaxation
time by extending the saturation theory to include the effect of fluctuating
spin populations during the modulation cycle.

Values of relaxation time (7';) obtained by various techniques have shown
inconsistencies and have not fitted well into a general theory (Van Vleck 1960).
Until recently the theories of the interaction between the electron spins and
the crystal lattice have been based on two mechanisms, a direct process in
which a spin absorbs (or emits) a phonon of energy equal to that of the spin
transition, and a Raman process in which one phonon may be absorbed and
another emitted at a different frequency. An example of the changeover from
the Raman to the direct process is reported by Paxman (1960) for K;Fe3+(CN),
as the temperature is lowered from 4.2 °K to 1.6 °K. Bloembergen, Shapiro,
Pershan, and Artman (1959), in reporting the effects of cross relaxation, have
helped to point out the reason for some of the inconsistencies. In addition,
Bloembergen and Pershan (1961), Van Vleck (1961), and Gill and Elliot (1961)
have recently extended this concept to excited states.

1Present address: Department of Electrical Engineering, University of Minnesota, Minne-
apolis, Minnesota, U.S.A,

Canadian Journal of Physics. Volume 43 (April, 1965)
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The present experiments were undertaken in order to determine the value
of T for K;Cr(CN)g at a frequency lower than those previously reported.
Van Vleck (1961) has pointed out that the values obtained at 10 cm, 3 cm, and
8 mm are in approximate agreement with a 1/f* frequency dependence, so
that by working at 890 Mc/s one could obtain a check on this law.

The theory of microwave saturation in a paramagnetic sample is reviewed
briefly and then extended to include the dispersion effects which are observed
at the modulation frequency. Use is made of the concept of an equivalent
conductance mesh in order to help in the visualization of the saturation and
relaxation mechanisms,

2. REVIEW OF SATURATION THEOQORY

Two papers (Lloyd and Pake 1954; Kipling et al. 1961) give detailed develop-
ments of the theory of saturation in paramagnetic resonance, and only a brief
review is included here. Where possible, the expressions are simplified by the
use of constants of proportionality since the technique described in the later
sections depends only on relative signal intensities, not on absolute values.

If the population of spin state j in a multilevel system is #,° at thermal
equilibrium, and is #; when partially saturated, the saturation factor Sy for
the transition between the j and % levels is given by

(1) Sp = (mx — n))/(m° — n,0).

The rate equations which describe the changing population densities can
be written as:

(2) dn,/dt — Zk (nkaj = ?Z‘,'ij).

The total transition probability Wy from level j to level k is the sum of the
phonon-induced probability w;. and the radiation-induced probability V.
The values of w;; and w;; are related by the Boltzmann factor corresponding
to the energy difference between the two levels. The radiation-induced prob-
abilities are reversible so that V. = Vy,.

When radiation acts on a particular pair of levels long enough for steady-
state conditions to be established, the system can be described as having
reached a stationary state, but this does not correspond to thermal equilibrium.
The rate equations have dn,;/d¢ = 0 and hence for stationary conditions

(3) 2k (Wi — n,Wy) = 0.

In experimental work the microwave radiation is applied between a par-
ticular pair of levels, and the radiation-induced probability is zero except for
this transition. The subscripts on V are therefore unnecessary and are omitted
to simplify terminology. Similarly, the symbol S, without subscripts, refers
to the saturation factor for this same pair of levels. The net effective relaxation
probability from the upper to the lower of these two states includes the effect
of relaxation by way of the other levels, and is given the symbol .

Lloyd and Pake (1954) show that the saturation factor in the presence of
radiation is given by
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4) S=Q0Q+ v/w)y?,

and W can be written, for the 1-2 transition, in the form,

(5) W =wun+ Ca ' D), wuCu.

k=3
The expressions for the cofactors Cj. are given in the original paper, but are
not included here. In spite of the complexity of equation (5), the representation
of the net effective relaxation probability is fairly simple if one works with the
equivalent passive network of conductances. The equivalent mesh for a four-
level system is shown in Fig. 1, where each node point corresponds to one of

| ,\m 3

W W § Wia gwu

Waz

AM- d

£ W24

F16. 1. The equivalent conductance mesh for a four-level system determining the net
effective relaxation probability W in terms of the phonon-induced probabilities w;:.

the energy levels of the system, and each individual conductance is the
corresponding phonon-induced relaxation probability . To be more precise,
one should use in the equivalent mesh the mean of wj and w;;, but at 4.2 °K
and 890 Mc/s these two terms are different by only about 19, and the error
involved in neglecting this difference is not significant.

It is worth noting that the equivalent-circuit concept can be useful in
calculating the saturation factor S. In the series circuit of Fig. 2, consisting of

vV
__IVW__

3 w

FiG. 2. The equivalent circuit for calculating .S from the radiation-induced probability
and the net relaxation probability W. The value of .S is given by (1 + V/W)™, which is the
ratio of the voltage across V to the total voltage E.



CARRUTHERS AND RUMIN: SPIN-LATTICE RELAXATION 579

the radiation-induced probability V, the relaxation probability I, and a series
e.m.f. E, the value of S given by equation (4) is the ratio of the voltage across
V to the source voltage. The analogy between a partially saturated system and
an active mesh is found to be of general value in analyzing the behavior of
the system and is further developed in Section 7.

The objective in saturation measurements is to determine the relaxation
probability V. It follows from equation (4) that the value of I can be deter-
mined from measurements which determine .S as a function of V, and this
procedure is the basis of the saturation technique. The spin-lattice relaxation
time 7' is related to W, for a simple two-level system, by

Even in multilevel systems, in which it may not be possible to describe the
relaxation process by a single time-constant, it is common practice to define
T by equation (6).

The experimental measurements are based on determining the power
absorbed in the paramagnetic sample as a function of the incident power.
If we arbitrarily designate the levels between which the radiation acts as levels
1 and 2, the expression for the power absorbed per unit volume of the sample
is given by

() P = (ny — n)vhV.
From the definition of the saturation factor, equation (7) can be written as
(8) P = S(n® — n,")whV.

But the power absorbed can also be expressed in terms of the imaginary part
of the magnetic susceptibility, x"/, and the microwave magnetic field strength,
H1:

(9) P = 4nvx"" H,\%
From equations (8) and (9),
(10) x" = [S(ns® — A V]/4rH,

The actual value of V depends on many factors, including the orientation
of the crystal with respect to the steady magnetic field. But since the dispersion
technique developed in Sections 3-6 does not require knowledge of the absolute
magnitude of V, we shall write it merely as being proportional to H;%g(»),
where g(v) is the line-shape factor defined by

J;mg(v)dzf = L

(11) V = JH% ().

Combining equations (10) and (11), and introducing a new constant of
proportionality K, we have
(12) X' = KSg(),
where
K = [(n® — n,")hJ]/4x.
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For measurements of the relaxation probability W by the saturation
technique, only relative values of x’" are important. From equation (9) x”/ is
seen to be proportional to the ratio of the power absorbed to the power incident,
and the change in this ratio, as saturation occurs, is all that needs to be
measured. The saturation factor S can be determined experimentally for par-
ticular values of input power, and using equations (4) and (11) the relaxation
probability can be calculated. The conventional saturation technique therefore
requires accurate knowledge of the radiation-induced probability ¥, and thus
J, H;, and g(») must be known. One advantage of the resonance-dispersion
method described in later sections is that these quantities do not appear
explicitly in the final equations.

In practice it is customary to use frequency or magnetic field modulation
and synchronous detection in order to obtain a better signal-to-noise ratio.
Modulation of the magnetic field is the preferred approach because extraneous
reflections in the microwave system can cause difficulty when frequency
modulation is employed. The magnetic field H is modulated at an audio
frequency w while H is slowly swept through the line. The amplitude of modula-
tion is small compared to the linewidth and the curve traced out on the recorder
is proportional to the slope of the x" versus H plot. We are therefore interested
in an expression for the differential of x”’, which can be obtained from equation
(12). But when H is varied instead of the frequency », the line-shape factor in
equations (11) and (12) will be written as g(H), where

fg(H)dH= i

Therefore, we have
(13) dx"” = K(Sdg(H) + g(H)dS).

Equation (13) is the basis of measurements of relaxation probability by
the saturation technique when low-level modulation of the magnetic field is
employed. As discussed by Bloembergen ef al. (1948) and Andrew (1956),
there are two conditions under which this equation can be put in a simple
enough form for reduction of experimental data.

Case (1). When the magnetic field is modulated at a rate which is very
slow compared to the relaxation probability, the spin populations readjust
quickly enough during the modulation cycle for us to assume that stationary
conditions apply at all times. Equations (4) and (11) can be used to express
dS in terms of dg(H). Therefore, at very low modulation frequencies,

(14a) dy’ = KS*dg(H).

Case (2). When the modulation rate is very fast compared to the relaxation
probability, the spin population can be assumed to be constant during the
modulation cycle. Hence dS can be put equal to zero and we have

(145) dx” = KSdg(H).
Equations (14e) and (144) show that if H is set at some arbitrary point of a
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partially saturated line and the modulation frequency is slowly varied, a form
of dispersion should be observed with the signal at a very high frequency,
greater than that at very low frequency by the factor 1/S. This dispersion,
illustrated qualitatively in Fig. 3, results because the spin-lattice relaxation

S=a constant

RELATIVE SIGNAL

lw=l/T
MODULATION FREQUENCY-w

Fi1c. 3. Qualitative dispersion curve showing the increase in signal as the modulation
frequency is increased.

probability is comparable to the modulation rate over a particular range of
modulation frequencies.

In conventional measurements using the saturation technique it is important
to choose a modulation frequency such that dispersion is not present. But, as
shown by Bloembergen et al. (1959) and Andrew (1956), the effective value of
relaxation time when radiation is applied is ST, not 7';. The region of disper-
sion therefore shifts to higher frequencies as the saturation factor decreases,
and the choice of modulation frequency for performing experiments on a sample
which has T’} equal to several milliseconds is a serious practical problem.

In the sections which follow, the dispersion region is examined more fully
in order to show how the effect can be used to advantage in measurements of
spin-lattice relaxation time.

3. THE DISPERSION EQUATIONS

In order to obtain equations which describe the region of dispersion it is
necessary to go back to the rate equations. Stationary conditions are not
applicable, and the fluctuations in the spin populations during the modulation
cycle must be taken into account. The additional complexity involved in
dealing with nonstationary conditions has resulted in our being able to obtain
a solution for a two-level system only. However, the results of Castle ef al.
(1960) show that it is often a very good approximation to assume that a single-
valued relaxation time occurs for the four-level Cr®*t ion in dilute crystals of
K;Cr(CN)g. In this case it would appear difficult to distinguish between
relaxation occurring between the two levels directly, and relaxation by way of
the other two levels. Consequently, the solution of the two-level case should be
of interest, at least as a first step.

If the upper and lower of the two levels are designated 1 and 2 respectively,
the rate equations become
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dﬂl/dl = naWyo — 1, Wi,
dﬂg/dt = Wi — naWa,

using the relation w2 = w:e"*7, and letting w be the mean of ws; and w;s,
we have, to good approximation,

Wu = 'IU(]. + hv/ZkT) + V,
Wo = w(l — hv/2RT) + V.

By subtracting the two rate equations, and using the condition that n, + n, =
N, the total ion density, we obtain

d(n-,g = ﬂ])/dt = QW(NkF/QkT = (ﬂ'} —_ 'n:)) = 2(?’52 b ﬂl) V.

If we let # represent the population difference, #s — n;, and let n, be the
difference at thermal equilibrium, the rate equation becomes

(15) dn/dt = 2w(ny — n) — 2nV.

When sinusoidal modulation is applied to the magnetic field, the line-shape
factor g(H) is caused to fluctuate. If the amplitude of modulation is small
compared to the linewidth, the g(H) term will be sine-wave modulated. The

expression for V can therefore be written in terms of a mean value V and a
small component which varies at the modulation frequency w:

V = V(1 + ae™).
We assume a solution for z of the same form as for V,
n = il + be’").
Substitution for » and V in equation (15) yields
(16) 2now = A2w + 2V) + e 2wib + juwib + 2aAVh + 2AVa)
+27 Vabe 2,

The last term is very small and, being at twice the modulation frequency,
it will be rejected by the synchronous detector. Equation (16) can then be
separated into two parts, one involving the mean values, the other containing
the time-varying terms:

i7e) i/m = (1 + V/w)™,
(170) b (2w + jw)e’ + 2aV (a + belt = 0,

The first part of equation (17) gives the mean value of the saturation factor
during the modulation cycle, and is given the symbol .S:

(18) S=0+ V/w
Equation (178) involves the amplitudes of the alternating components and

hence must contain information on the dispersion. But to use this equation for
experimental determinations of w it is necessary to interpret the equation in
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terms of a particular experimental procedure. For future reference equation
(178) is rewritten, using the definition of § from equation (18) and substituting
T for 1/2w:

(19) @+ 8)/a = (S + jwST1)/ (1 + juST).

4. EXPERIMENTAL PROCEDURE

The spectrometer, described more fully in Section 8, is of the bridge type
with a heterodyne receiver. The receiver is linear over the whole range of
signal levels employed. The microwave power level can be adjusted by variable
attenuators between the oscillator and the bridge element. The audio-frequency
signal from the linear detector of the I.F. system is fed via attenuators to an
amplifier and phase-sensitive detector. The audio system is linear over the
whole range of operation.

Consider that the d-c. magnetic field is set at a particular value somewhere
near the center of the absorption line and that the bridge is adjusted so as to
be sensitive to the imaginary component of the incremental susceptibility,
dx” (Feher 1957). The magnetic field is modulated over an amplitude range
that is small compared to the linewidth, and the frequency is chosen from one
of the several fixed audio frequencies for which the narrow-band amplifier is
designed.

The microwave power is first set to a very low level so that saturation effects
are negligible. The phase-sensitive detector and recorder are adjusted to give
a good deflection, it being understood that any phase shift in the modulation
coils and in the audio system can be balanced out.

The microwave power is increased by a definite amount, say 10 dB, by means
of the microwave attenuators. If saturation is still negligible, an increase in
the audio attenuation of 10 dB will leave the deflection unaltered. But if
saturation is starting to become apparent, the deflection will be less and the
phase-sensitive detector may show that the phase of the audio-frequency
signal has been altered by a measurable amount. Several measurements can
be made at different power levels, and at other modulation frequencies, to
determine the effect of power level and modulation frequency on the phase
and magnitude of the output signal. It should be noted that the use of a
square-law detector in place of the heterodyne receiver would alter the pro-
cedure only to the extent that for each 10-dB decrease in microwave attenuation
there should be a 20-dB increase in audio attenuation in order to maintain
the same output signal, in the absence of saturation. Also, although we continue
to discuss the procedure for the condition of a fixed value of the d-c. magnetic
field, in practice the field is swept slowly through the line, and the signal
intensities at corresponding points, that is, points equally distant from the
center, are compared for various power levels and modulation frequencies.

In a spectrometer employing a heterodyne receiver the amplitude of the
signal is proportional to the incremental power absorbed in the sample (Feher
1957). If = is the population difference between the two levels, the power
absorbed per unit volume of the sample is given by hvnl/. Writing n and V
in terms of their average and fluctuating components, we obtain
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P = V(1 4 ae’t) (1 + belst),

If the second-harmonic term is neglected, the incremental power dP can be
written as

dP = iV (@ + b)e’t.

We can substitute for 7 the product Sny. ¥V can be replaced by JH,%z(H),
where g(H) is the average value of g(H) over the modulation cycle. Therefore,

dP = hnoJi(H)H,2S(a + b)e’*,

The microwave field /1, is proportional to the square root of the input power.
Therefore, according to the procedure outlined above, the relative signal from
the phase-sensitive detector is proportional to dP/H,? which is given by

(20) dP/H* = [henoJi(H)]S(a + b)e’*,

When the input power level is low enough for saturation effects to be negligible,
we have that S — 1 and # is effectively constant. Hence 6 — 0 as S — 1, and
the term (¢ + ) — @. This unsaturated condition corresponds to maximum
relative signal strength.

As the input power is increased, the saturation factor S decreases from unity
and (¢ + &) changes in magnitude and phase. From equation (20) the effect
of saturation on the relative signal strength is determined by the product
S(a + b). If we use the symbol 4 to denote the relative signal strength when
the system is partially saturated to that when .S = 1, we have

(21) 4 = [S(e + b)]/a.

Making use of equation (19), the dispersion equation becomes
(22) A = S(S + juSTy)/ (1 + juSTy).
Letting 4 = A" + jA"”, and tan 8§ = A”/A’, we obtain

(23) A" = 8(S + 25270/ (1 + wi5°T,%),
(24) A" = w8T1(1 — S)/(1 + wiS2T,%),

(25) tan 0 = oST1(1 — 5)/(S + »2S2T,%).

For a particular value of S the real and imaginary components of 4 change
with frequency in much the same way as observed for other relaxation pheno-
mena. From the form of the expressions it is apparent that the relaxation time
T is equal to ST}, in agreement with derivations by Bloembergen ef al. (1959)
and Andrew (1956).

A’, A", and tan 0 are measurable quantities. Using two of the above equa-
tions, and knowing w, it is possible to deduce values of both .S and 7';. But since
the equations are not linear in 7', there is possible ambiguity in the reduction
of data. In this respect it is instructive to interpret the dispersion in terms of a
Cole-Cole diagram, as is often done for dielectrics (Cole and Cole 1941).
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5. COLE-COLE DISPERSION DIAGRAM

With the substitution of 7 for ST in equation (22) a simpler form of the
dispersion equation is obtained:

A = 8(S + jur)/ (1 + jur).
By rearrangement,
(26) (S —8%) =(S—4) + jur (S — A).

The amplitude A is plotted in the complex plane in terms of its real and
imaginary components 4’ and 4" in Fig. 4. If only w is allowed to vary,

(A-S2)=wT(S-A)

(S-A)

A'-AXIS

-

-~
~
- e
W=oca ~-

P ~a
2 A § '
)
A-AXIS
Fi6. 4. Cole-Cole diagram for relative signal amplitude when saturation is present. The
effective relaxation time 7 is ST.

equation (26) shows that the locus of 4 must cross the A’ axis at 4" = Sand
A" = 52, when & = = and w = 0, respectively. According to equation (26),
(S— A4) and wr(S — A4) are at right angles and add vectorially to equal
(S — S?). Therefore, the locus of 4 must be a semicircle, and (4 — 5?%) is
equal to wr(S — 4).

There is one semicircle for each value of S, and so a whole family of semi-
circles can be drawn to include all values of S. As S approaches either of its
limiting values, 0 or =, the semicircle diameter — 0. The maximum diameter
is 0.25 and occurs for S = 0.5.

Ideally one might choose to set the power level, which in turn fixes .S, and
then take several determinations of 4 as w is varied through the region of
dispersion. But it is difficult to follow this experimental procedure since
narrow-band amplifiers are required and the phase adjustments are sensitive
to frequency. Measurements are therefore made at one modulation frequency
for several levels of input power; then the frequency is altered and the process
is repeated.

For a particular value of the modulation frequency the locus of 4 is con-
strained to lie only within the region represented by the family of semicircles.
The path followed by A4 as S is varied depends primarily on the value of
wT'1. If Ty >> 1, the path is along the 4’ axis until very small values of S are
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obtained. For example, if w7 =~ 10, the phase angle 0 is approximately 45°
when S = 0.1. The modulation frequencies are therefore chosen so that
measurable phase shifts occur when S is somewhere within the range 0.5-0.01.

6. REDUCTION OF DATA

The Cole-Cole diagram provides a simple means for reexpressing the informa-
tion contained in equations (23), (24), and (25). Both S and 7T, have to be
derived from the measured quantities 4’, 4", and tan 6, and it is important
to remove ambiguity in the calculated results as far as possible.

The angle between (S — 4) and (4 — 5?) is 90°, and therefore

(27) 4" = (§— 4 ) =5
Substituting 4’ tan 0 for 4" gives
(28) SP— 4’5 — 4'S 4+ (47)*(1 + tan?) = 0.

Since equation (28) is cubic in S, there are three roots. Of these one is negative
and can be neglected. The presence of two allowable solutions for S follows from
the observation that a measured value of 4 can correspond to two of the
Cole—Cole semicircles. If 8 is close to the maximum angle permitted for 4, the
two solutions for S are very nearly equal and it is difficult to decide which is
the correct one. Hence, for each modulation frequency it is advisable to keep
the power level below that for which this condition can arise. A useful criterion
is that wr > 1, or S > 1/wT). If this precaution is observed, the correct
solution for .S is the smaller of the two allowable roots of equation (28).

The method of successive approximations is a simple means for finding the
roots of equation (28). The equation is quoted in two other forms, equations
(29a) and (298), which lend themselves to this approach:

(29a) S=4’ [1 + A—ﬁi—sg tarfaJ ;
(296) S = /A’ [1 e S nﬂﬁ]%
a IR

For the first approximation, one sets S = A’ in the right-hand side of equation
(29a) and calculates the approximate value of S from the experimental figures
for A’ and tan 8. This approximate S value is then used in the right side of the
equation and a more accurate calculation made. The process can be repeated
as often as warranted by the accuracy of the experimental data. This procedure,
using equation (29a), leads to the lower of the two allowable roots, while a
similar approach using equation (296) leads to the higher of the two solutions.
In using equation (298) one substitutes +/A4’ for S in the right side of the equa-
tion for the first approximate calculation. The approximate relations corre-
sponding to equations (29a) and (29%) are given in equations (30a) and (308),
respectively:

2
(30a) S=A’(1+1E‘_“—jr),
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/A mnze)*
V=il ’

One further set of equations is necessary for calculating 7°; from the data

on A’; tan g, S, and w. In the Cole-Cole diagram (4 — 5% = wr(S — 4);
hence, from similar triangles,

(300) S = /4" (1

or(S—4) (4'= 52)
S=s A ’
Putting A" = 4’ tan 8, and r = ST, we have
N )

S h1= Y Satans’

An equivalent expression can also be derived:

__A'tané
T Sw(S—4")

Both equations, (31a) and (314), should give the same answer for 7). But
small experimental inaccuracies can lead to fairly large errors in 7', because
of the difference in term (4’ — S%) or (§ — A’). If the magnitude of 4’ is
closer to S than to 5%, then equation (31a) should be used. This will be the case
if wr > 1,

In all experimental work reported here w7’y > 1. Under these circumstances
the power is increased until 8 is about 45° and the data are reduced by equa-
tions (30a), (29a), and (31a).

When w7, = 1 it should be possible to employ a different approach. Using
equation (25), we find by differentiating the numerator and denominator that
tan # — w7} as S— 0. When w7, 3> 1, this limit is approached only when
S is very small, but if w7, = 1, the value of tan 8 should be within 109, of its
limiting value when S = 0.05.

(31d) T,

7. EQUIVALENT CIRCUIT

Equations (17) to (25) can be interpreted in terms of an equivalent circuit
shown in Fig. 5. The choice of parameters to correspond with voltage is some-
what arbitrary, but the circuit as illustrated has been found to be helpful.

v
ANV
(D 2sn,aek o
“[e=lr2 §W

Ee

F1G. 5. Equivalent circuit of a two-level system. The mean saturation factor is obtained
from the fractional d-c. voltage across ¥, and the relative a-c. signal can be calculated from the
a-c. voltage across V.
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Equation (17a), which gives the mean value of the population difference, 7,
in terms of V, w, and 7, can be considered to correspond to the d-c. circuit.
The relaxation path is by way of the spin-lattice probability w, and the
relaxation process is equivalent to a RC discharge. The capacitance value
should be % in order to have the correct relaxation time 7"y, = 1/2w. The equiva-
lent charge should be proportional to the amount by which the population is
disturbed from the equilibrium value, and if we take g as equal to (1, — #)
the remainder of the d-c. circuit is determined; that is, the voltage across the
capacitor is 2(ny — 7), the em.f. is 2n,, and the voltage across V is 2.
Incidentally, the microwave power absorbed in the sample is proportional to
the equivalent current 2i2V. The current has dimensions of d#/d¢, and equation
(17a) expresses the fact that the average current flowing into the capacitance
is zero because the radiation-induced rate of change of population is balanced
by the relaxation rate. The saturation factor 7/n, is given by the ratio of the
voltage across V to the source voltage.

The dispersion relationship expressed by equation (178) is also described by
the same basic RC circuit, with the addition of an a-c. source voltage. The
incremental voltage across V increases when the modulation frequency is
made to increase, resulting in a signal at very high frequencies 1/S times the
low-frequency value. Equation (175) can be interpreted as showing that the
net a-c. current at the junction point of V, w, and C is zero. If we drop the
frequency factor e’’, the current flowing through V equals 27V (a + b), the
component through w is 2fibw, and that through the capacitance is jord. If a is
taken as a positive real number, then it is necessary for & to be complex, with
the real part negative and the imaginary part positive. The a-c. voltage across
the capacitance is given by —2ib, that across V is 27i(a + b), and the source
voltage must equal 27ia, or 25na.

A slightly different version of the circuit for a two-level system is shown in
Fig. 6. It appears obvious that one should be able to extend this circuit to
include multilevel systems by placing a capacitor between each node of the
mesh and the neutral point, but theoretical justification for this has not yet
been established for more than the two-level system.

FiG. 6. Modified equivalent circuit which has a capacitor from each node to a neutral point.
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8. APPARATUS

Figure 7 shows a block diagram of the spectrometer which is patterned after
apparatus described by Feher (1957). The superheterodyne receiver is linear

5 _@b{“, ?50 OHMS X‘@mu—
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COUPLER OSCILL AUDIO

SCOPE AMP.
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SUPPLY RECORDER

F16. 7. Block diagram of the spectrometer.

over the signal range used in the experiment. The bridge element is a coaxial
ring circuit built from modified General Radio 874 components. The balanced
detector is based on a GR 1602B admittance bridge modified by increasing
the coupling between the ‘“‘detector” arm and the “load’ arms to give adequate
crystal currents from the local oscillator coupled into the “detector” arm.
The 1209B main oscillator is free running and has been provided with good
temperature lagging and sound insulation. Well-regulated d-c. supplies are
used for the filament and H.T. currents. In the receiver a balanced I.F.I. P205
preamplifier is followed by a GR 1216A L.F. amplifier which has one stage
bypassed and the bandwidth increased from the factory setting. The audio
amplifier uses plug-in twin-T elements to provide narrow-band response at the
audio frequencies used, i.e. 35, 140, 400 ¢/s. A Phazor 200A phase-sensitive
detector drives a Texas Servoriter recorder of 5-mV full-scale sensitivity. A
conventional phase-shifting circuit using an RC load on a center-tapped trans-
former, is placed in the line to the modulating coils to control the phase of the
modulating field.

9. EXPERIMENTAL CONDITIONS

Crystals of dilute K;Cr(CN)s were grown in the laboratory from solutions
of paramagnetic K3Cr(CN); and diamagnetic K3;Co(CN)4. Concentrations of
the Cr®* jon were measured by the method of Sandell (1959) and found to be
about one half of the nominal concentration. The two concentrations used for
these experiments were 0.19, and 1.09; nominal, 0.06%, and 0.4, measured.
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Tables of the energy-level structure of potassium chromicyanide have been
published by Chang and Siegman (1958), and several graphs are given by
Butcher (1957). Most of the data reported here are for a crystal orientation
which places the z axis of one magnetic complex parallel to the static magnetic
field. The four transitions are indicated in Fig. 8. Actually there are six lines,
because the other magnetic complex gives additional lines at 100 and 300 gauss.

8=90°
$=t 6

TRANSITIONS SHOWN FOR »=890 Mc/s

ENERGY—KMc/s

- ! ] ! | ey | [t | |
ke ' 10 20 X103
H — OERSTEDS

FiG. 8. Energy level diagram for K;Cr(CN)g for H parallel to the z axis. The four transitions
at 890 Mc/s occur for 100, 300, 1 400, and 2 100 oersteds.

Since the two 100-gauss lines are not properly resolved, some of the data for
the 100- and 300-gauss lines were taken with the crystal rotated 6° in the ab
plane, so that the static magnetic field and the ¢ axis of the crystal were
parallel. In this case the energy levels for the two complexes are superimposed
and single lines are observed at 100 and 300 gauss. Comparison of data for the
300-gauss lines did not show a measurable difference in the value of T’ for the
two orientations.

All measurements were made at 4.2 °K with the crystals in contact with the
liquid helium. The microwave operating frequency was 890 me/s. The ampli-
tude of modulation was maintained at a low level to ensure that the line shape
did not depend on the modulation amplitude.

10. RESULTS

The 300-gauss line was studied more intensively than the others because of
the better signal-to-noise ratio. Data were obtained at three audio modulation
frequencies and for each of the two orientations. These results are summarized
in Fig. 9, where the observed values of 7', are plotted as a function of the satura-
tion factor S. The fact that the points are grouped into lines with finite slope
is an indication that the relaxation system does not have a unique time-constant.

The results for the lower concentration (0.06%,) lie along a line of much
lower slope than those for the higher concentration, and it is more meaningful
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Fic. 9. Relaxation times at 890 Mc/s and 300 cersteds for dilute K;Cr(CN); crystals. The
dependence of Ty on the saturation factor indicates that relaxation cannot be represented by a
single time-constant.

to speak of the effective lattice relaxation time 7'\. The question still arises as to
which value should be picked from the graph, and in this respect the data do
not give as clear a picture as would be obtained from results using the pulse
technique. It is seen that the lines for the two concentrations cross, and it is
presumed that for lower concentration of the Cr®*t ion the results would lie
along a line with less slope and would again cross the other two. For this
reason, and others discussed in the next section, it is considered that the best
value of T, is about 30 milliseconds.

For comparison of T for the four different lines several results have been
averaged with .S between 0.25 and 0.1, measured with w, = 35 ¢/s. Note that
the data in Fig. 9 do not indicate significant differences for the two crystal
orientations. The averages of Table I were obtained by using only data for the

TABLE 1

Spin-lattice relaxation time 7 in 0.06%,
crystals of K;Cr(CN); for four lines at

890 Mc/s
H, (oersteds) T, (milliseconds)
100 22
300 23
1 400 24
2 200 29

0.069, crystals. Poor signal-to-noise ratios were observed for the high field
lines and it was not feasible to work at small values for S. Similar comparisons
were obtained for the higher concentration, 0.49.
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11. DISCUSSION

From the x-band results of Castle et al. (1960) and Kipling et al. (1961) it
was expected that single-valued relaxation times would be observed at con-
centrations below 19%,. Failure to observe this even at 0.069, shows the need
for further studies. Although Castle ¢t al. (1960) observed an inverse tempera-
ture dependence of T'; at temperatures of 4.2 °K and lower, there was a sugges-
tion of a changeover to a Raman process at temperatures only a little above
4.2 °K. From this, one might expect that the results reported here, at 4.2 °K
and 890 Mc/s, do not correspond to a ‘‘direct” process and are therefore not
comparable with those at x band. Further work in this area is now in progress,
and preliminary data seem to indicate that for the 300- and 1 400-gauss lines
at least, T, varies slightly faster than the reciprocal of the temperature at
4.2 °K, suggesting that the relaxation mechanism is in a transition region from
the Raman to the direct.

The measured values of T at 890 Mc/s are longer than those observed at
x band by a factor of slightly more than 3. But calculations currently being
worked out, which take into account the multiple relaxation paths present in
the system, yield results for the average relaxation times at 890 and 9 400 Mc/s
which are in fair agreement with measurements. The results of these calcula-
tions, when completed, will be published separately.

The extent of the variation of T, with S was found to depend on the concen-
tration, much as the appearance of multiple time-constants in x-band pulse
measurements at higher concentrations. Although the presence of several
relaxation paths can obviously result in multiple time-constants, this effect
should not be dependent on the concentration. Furthermore, one should
observe a different dependence of Ty on S for each of the modulation frequencies,
an effect which did not show up in the measurements. Therefore, it appears
necessary to look for some other mechanism to account for the variation of
7'y with S. Cross relaxation between pairs of levels is not expected to be
observable at the crystal orientations used. However, cross relaxation via
excited states along the lines suggested by the work of Gill and Elliot (1961)
and Bloembergen and Pershan (1961) is suggested as a possible explanation.
Further experiments at different concentrations and orientations are indicated
in order to clarify this aspect.
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