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ABSTRACT. 

The changes in spin-lattice relaxation time with 

the magnitude and orientation of the de magnetic field, 

frequency, and temperatut'e have been calculated from 

simplified expressions for the spin-phonon transition 

probabilities of an S c 3/2 ion. The relaxation times for 

3+ 
very low Cr concentrations in K

3
Co(CN}

6
, Al

2
o

3
, and 

RbAl(S0
4

}
2

.12H
2

0 have been measured by the resonance-dispersion 

method at frequencies of 0.89 and 9.4 Gc/s, and at tempera-

tures in the one-phonon relaxation region. A comparison of 

these as well as other published measurements with the cal-

culations shows that the changes in relaxation time are 

usually predicted to better than a factor of two. 

Calculations have shown that the resonance-dispersion 

analysis of experimental data, which is based on a two-

level system, should yield single-valued relaxation times in 

the case of multi-level systems as well, and the results 

should be equal to those of pulse-saturation measurements 

where the return to equilibrium in the latter case can be 

characterized by a simple exponential. 
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I. INTRODUCTION 

When the thermal-equilibrium energy distribution of a 

group of paramagnetic ions, whose paramagnetism is due to a net 

magnetic dipole moment associated with their spins, is in sorne 

way disturbed, the subsequent return to equilibrium is said to 

take place through spin-lattice relaxation if it occurs as the 

result of the exchange of energy-conserving quanta between the 

spins and the thermal spectrum of the host lattice. 

/ 
From the early work of Waller, Casimir and DuPre, Kronig, 

* and Van Vleck , and a later re-examination of Van Vleck's work 

by Mattuck and Strandberg (1960), the spin-lattice interaction 

of paramagnetic ions in crystals is understood to occur through 

the thermal modulation of the crystalline electric field. The 

theory predicts that at very low temperatures, T, the spin-lattice 

transition probability, wij' between spin states i and j will be 

determined by a direct, one-phonon process with wij varying as T, 

while at higher temperatures a two-phonon, Raman mechanism will 

dominate with wij varying as T 7 or T
9

. 

In the case of a two-level system the return to equili-

brium of the population of levels 1 and 2 is characterized by a 

spin-lattice relaxation time T
1 

where T
1 

= l/2w
12

• No such 

simple relationship exists in the case of multi-level systems 

but an effective spin-lattice relaxation time TR is still used to 

describe the return to equilibrium of the population of a pair 

of levels, even though this generally involves all the 

*Woonton (1961) furnishes an excellent bibliography 
related to theoretical and experimental work on 
spin-lattice relaxation. 
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other spin levels as well. 

Much of the early theoretica1 and experimental work was 

centred on the ions of the 3d iron group. The measured values 

of TR often did not agree well with the theory, and exp1anations 

for some of the inconsistencies were proposed by Bloembergen 

et al (1959), who considered the role played by cross-relaxation, 

and by Bloembergen and Pershan (1961), Van Vleck (1961), and 

Gill and Elliot (1961), who extended the concept of cross-

relaxation to excited states. 

Several effects predicted by the theory of spin-lattice 

relaxation have been verified experimentally. Thus Pace 

et al (1960) and Feng and Bloembergen (1963) have verified 

3+ the inverse temperature dependence for the 8=3/2 Cr ion in 

Al 2o
3 

at low temperatures, while Paxman (1960), Rannestad and 

Wagner (1963), and Scott and Jeffries (1962) have observed the 

changeover with temperature from the single phonon process to 

the highly temperature dependent Raman mechanism, for S=l/2 

ions of both the iron and rare earth groups. Davids and Wagner 

(1964) were able to verify that for an S•l/2 ion such as Fe 3+ 

in K
3

Co(CN)
6 

the spin-lattice relaxation time at temperatures 

where the one-phonon process dominates, varies with the steady 

-4 magnetic field H as H . 

Experimental data on the field and frequency dependence 

of the spin-lattice relaxation time in multi-level spin systems 

are rather scarce if one excludes measurements made by the 

nonresonant method of Gorter and his group, which are difficult 

to interpret in terms of the theories considered here. Generally 
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the measurements do not show any strong dependence of TR on 

either H or the resonant frequency V . An experimental investi-
1 

gation of the dependence of relaxation time on these two para-

meters in potassium chromicyanide was started here by this 

author (Rumin 1961), and the measurements were repeated by 

Carruthers and Rumin (1965) using the resonance-dispersion 

method. Because those measurements did not show the strong 

-2 V dependence reported for this salt (Van Vleck 1961) it 

was decided to re-examine the implications in the resulta of 

Van Vleck's theory of spin-phonon interaction when applied to 

multi-level systems, particularly in the light of the more 

general treatment by Mattuck and Strandberg (1960). Be cause 

the exact calculation of spin-phonon transition probabilities 

is extremely difficult it was decided to use, at least as a 

first attempt, the order of magnitude expressions obtained by 

Mattuck and Strandberg (1960). Calculations were under way, 

yielding very promising resulta, when Donoho (1964) published 

his work on ruby in which he carried out detailed calculations 

of relaxation times from published experimental data on the 

elastic properties of ruby. His work provided a certain amount 

of justification for the use of Mattuck and Strandberg's 

approximate equations, at least in the case of ruby. It also 

confirmed what our calculations for potassium chromicyanide 

had already shown, namely that the frequency dependence of the 

one-phonon, spin-lattice relaxation time for salts such as ruby 

or potassium chromicyanide, where there is zero-field splitting 

of the ground state, is not as strong as is implied by the V2 
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term which appears in the approximate expression for the spin-

phonon transition probability. From measurements on ruby and 

some rough calculations Feng and Bloembergen (1963) concluded 

that the relaxation time is essentially independent of H below 

4000 gauss and thereafter decreases approximately linearly with 

H to 15000 gauss. Just as Donoho, they suggested that this be-

havior may be explained by the zero-field splitting which was 

not taken into account in Van Vleck's calculations. 

As it was pointed out above, the calculations of spin­

phonon transition probabilities is extremely difficult and can 

not, in general, be carried out without an appreciable number of 

approximations. Furthermore, experimental data which would 

facilitate this calculation, such as the elastic strain data 

that were used by Donoho (1964), have been obtained for only 

one or two host lattices, and may not be forthcoming for the 

remaining large number of crystals for some time. Consequently, 

a primary objective of the present work was to investigate the 

accuracy with which the variations of the one-phonon, spin­

lattice relaxation time with magnitude and direction of the steady 

magnetic field, frequency, and temperature could be predicted 

for a given ion-host lattice combination from a highly simplified 

theory. Using two spectrometers, one operating at 0.89 Gc/s 

and the other at 9.4 Gc/s, relaxation times were measured for 

very low concentrations of Cr
3+ in potassium cobalticyanide, 

rubidium alum, and aluminum oxide. These results as well as 

other published data indicate that the changes in relaxation 
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time can be predicted usually to well within a factor of two, 

from calculations in which only the quadratic spin operator and 

temperature and frequency dependent terms are retained in the 

calculation of the spin-lattice transition probabilities. 

Because Donoho (1964) provides detailed calculations 

of the angular dependance of spin-lattice relaxation times in 

ruby at 9.3 Gc/s, a second objective of this work was to verify 

these experimentally. For reasons discussed in a later chapter, 

one can only conclude from the measurements that Donoho's calcu­

lations, as well as those reported here, predict the general 

behavior of the changes in the relaxation time with the magni­

tude and orientation of the de magnetic field. 

Relaxation times have usually been measured by either the 

pulse saturation technique (Bowers and Mims 1958) or the steady­

state saturation method (Bloembergen et al 1948). More recently 

Carruthers and Rumin (1965) proposed the resonance-dispersion 

method. Because the technique employs an analysis based on a 

two-level system but was used by them and in this work for 

measurements on multi-level systems, it was deemed important 

to establish the validity of this approach. Calculations indi-

cate that, subject to certain restrictions which experimental 

data indicates are usually satisfied in the case of dilute 

paramagnetic crystals, the three methods should yield the same 

resulta. These conclusions were confirmed by measurements on 

potassium chromicyanide. There ia thus appreciable justifi-

cation for the use of the resonance-dispersion method which does 

not suffer from many of the inaccuracies assoeiated with the 



-6-

steady-state saturation technique, and which is more suited to 

measurements on lines having intensities that, in general, 

preclude the use of the more straightforward pulse saturation 

method. 

The concentration dependence of relaxation times, which 

is not predicted in the theory of spin-lattice relaxation, has 

been observed by Gill (1962), Miros and McGee (1960), Pace et al 

(1960), to name just a few. Carruthers and Rumin (1965) also 

observed a concentration dependence in their resorrance-dispersion 

0 measurements on potassium chromicyanide at 0.89 Gc/s and 4.2 

Kelvin, which manifested itself in a manner that made the deter­

mination of the true spin-lattice relaxation time difficult. 

Their suggestion that this effect would become negligible at 

sufficiently low concentration, making the experimental data 

easier to interpret, has been confirmed in this work, and it has 

also been shown that at 0.89 Gc/s the single-phonon, spin-lattice 

relaxation mechanism is still not dominant at 4.2°K in potassium 

chromicyanide at the field of 340 gauss where most of their 

measurements were made. 
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II. THEORY OF SPIN-LATTICE RELAXATION. 

In the study of paramagnetic relaxation phenomena, 

the interaction between the paramagnetic spins and the phonon 

field of the host lattice plays an important role. As noted in 

the introduction, explanations of the procass of energy transfer 

between the spins and the lattice were proposed by Kronig (1939) 

and Van Vleck (1940), while Mattuck and Strandberg (1960) pre-

sented a more general treatment of the problem. The energy 

transfer is understood to take place principally via two 

mechanisms, a direct process in which a spin absorbs (or emits) 

a phonon of energy equal to the spin transition, and a Raman 

process in which two phonons whose energy difference is equal 

to the spin transition participate. An outline of the theory 

of spin-lattice relaxation is presented on the following pages, 

the treatment following closely that of Mattuck and Strandberg. 

II. 1. The Interaction Hamiltonian. 

The theory of spin-lattice interaction is developed on 

the basis of a model in which the paramagnetic ion is acted on 

by a~ electric field produced by the surrounding ligands. Sin ce 

the ligands are part of the crystal lattice they vibrate, and 

this results in a modulation of the electric field, which perturbs 

the orbital motion of the paramagnetic electrons, and in turn 

induces spin transitions by ~ans of spin-orbit interaction. 

If one assumes that the crystal is sufficiently dilute 

that the effects of spin-spin coupling are negligible, then 
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one can describe the state of a paramagnetic ion by a Hamiltonian 

of the form 

'11 'LI 'li ~- ?_.,. --( 1) Tf • n L + n
0 

+ V + 2 (3 :::; . H + 7\ L. S + (3L. H 

where 3-f-L is the lattice energy, ~ is the energy of the free 

ion, V is the crystalline field potential at the ion,~ is the 

Bohr magneton, Â is the spin-orbit coupling constant, gis the 
,..,.. _.. 

external de magnetic field, and S and L are the spin and orbital 

angular momenta of the ion. 

Since it is only the modulation on the crystalline 

electric field which induces spin transitions, a plausible 

approach to the problem is to express V in terms of a static and 

a time-dependent part, and then to treat the latter as a pertur­

bation on the total Hamiltonian 1+. This is done by expanding V 

in a power series in the normal displacements Qf of the paramagnetic 

ion's nearest neighbors, which are in turn expanded in normal 

lattice modes. As a result V can be put in the form 

where V is the static portion of V, and V is the modulation of 
o I 

V . The total Hamiltonian can now be written in the form 
0 

where '1...L JTI 

'}ts 

= VI, and 

"LL _.._ -- ?-
=JT +V + 2{5S.H + ?\L.S + f-.L.H. 

0 0 

The term 1+
8 

involves only paramagnetic electron co-

ordinates and, when diagonalized to second order, gives rise 
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to the spin Hamiltonian which describes the energy levels that 

result from the splitting of the ground state by the laboratory 

de field H. In spin-lattice relaxation experimenta one is 

interested in the phonon-induced transition probabilities 

between pairs of these spin levels. If, following the approach 

outlined above, one considera 1+
1 

to be a perturbation inducing 

energy-consé'rving exchanges of quanta between'tt
8 

and 1*-L' the 

transition probabilities are calculated by d.iagonalizing 1'+
8

, 

evaluating its eigenvalues Ek and eigenvectors YJk' and com­

ptl>t1rig the appropriate matrix elements of '1+r between simul-

t aneous ei gens ta tes of 1\-
8 

and 1-\--L. 

The proposed computation is quite difficult, in part due 

to the fact that the~k are complicated mixtures of both ortibal 

and spin states, since they contain the effect of the excited 

states on the ground level. Mattuck and Stranberg show that the 

evaluation of matrix elements of 't\-
1 

between the 'J'k's is 

equivalent to calculating, for the single-phonon process, 

matrix elements of a spin-phonon interaction Hamiltonian qt
0 

between the relatively simple spin furrc.tions 0k of the spin 

Hamiltonian which is produced when1+
8 

is diagonalized to second 

order. Their equation (44) for 1+
0 

has the form: 

(4) 1+
0 

= 2:_f 
1 

jAfp(at+a )! terms O(Î\,8HS
1

)+ 7{-JL.: .S-,c~sj} , 
p, , , p p \.. ~J ~ 

where at and a are the creation and annihilation operators 
p p 

corresponding to the normal lattice mode-branch p, Afp(at ~ a ) 
p ' p 

is the normal displacement corresponding to nearest neighbor 

mode f and lattice mode-branch p,s
1 

and Sj are spin operators 
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(i and j being x,y, or z) and Jlfj is a tensor which contains 

the effect of the excited states. 

The problem of calculating the spin-phonon transition 

probabilities is thus reduced to one of calculating matrix 

elements of tt
0 

involving the comparatively simple wave 

functions ~k of the spin Hamiltonian. 

The expression corresponding to equation (4) for the 

Raman process is much more complex and will not be given since 

it is of little interest insofar as the work reported here is 

concerned, 

11.2 Spin-Phonon Transition Probabilities for the Direct Process. 

It is in the evaluation of ~D' more specifically, of 

Afp and Jlij 
1 

that severe difficulties are encountered in the 

calculation of spin-phonon transition probabilities. Although 

it is possible to express the spin-phonon interaction Hamiltonian 

in terms of the normal modes of an isolated cluster of 

nearest neighbor atoms, there remains the very complex problem 

of relating these to the physical constants of the host lattice 

of which the cluster is a part. Investigators have conse-

quently resorted to averages over the modes which, in the end, 

remove many of the physical properties of the host lattice from 

the calculation. 

Using the simple model of a paramagnetic ion at the 

origin with two nearest neighbors of charge e lying at 

+ x =- R, Mattuck and Strandberg obtain the following crude 

formula for arder-of-magnitude calculations of the interaction 
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Hami1tonian '14--
0

: 

(5) 

where SA is the spin anticommutator (S S + S S + S S + x y y x x z 

S S + S S +S S ), and some of the terms in their expression 
z x y z z y 

for 1n- which are constants for a given ion and host 1attice 
D 

have been grouped into the constant K. Equation (5) assumes 

an average over phonons of a11 propagation directions, polari-

zations and phases. 

Since the particular mode1 considered here is used 

primari1y to estimate the size of the Jl~ .. with the resu1ting 
~J 

terms being a11 grouped into the constant K, it is assumed in 

what follows that equation (5) app1ies in form to a more 

physica1 mode1. In fact, a comparison of equation (5) with the 

more exact equation (4) reveals that the approximation which is 

implicit in obtaining (5), insofar as the Jlij terms are con­

cerned, is 

f f f 
and :2_ Â == Z .Â == 2_ A . 

f xy f xz f yz 

The magnitudes of the Jlij were estimated for ruby from data 

presented by Donoho (1964) and the results indicate that, at 

1east for this salt, the above approximation is not an un-

reasonable one. 

For the direct process, the spin-phonon transition 

probability between states k and k' is: 

(6) 
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where ~ is the resonance frequency between the two levels and 
r 

,f'("Vr) is the density of states in the phonon field. If it is 

assumed that the lattice is dispersionless and isotropie, then 

the phonon density can be described by the Debye equation 

(7) 

where '\5 is the phonon velocity. 

The operators a and at in equation (6) have the properties 
p p 

(8) at 1 n) 
p p 

a 1 n ) = p p 

(n + 
p 

( n ) ~ 
p 

1)~ 1 n + 1> 
p 

1 n - 1) p 

Upon substituting equations (5) and (7) into (6) and making use 

of (8) and the fact that the average number of phonons in mode p, 

when the lattice Ls in thermal equilibrium at a temperature T, is 

given by 

(9) n = 
p 

[exp(h '))p/kT) -1 J -l , 

the transition probability for an emission process between a spin 

state k and a lower one k' is 

?K' '\)
3 

exp(h 1\j /kT) 
(lO) wkk' = 

1 r r \/k\J\
2 sA + terms O(?\BHS

1
.)jk')l

2 
exp (h.Y /kT) -1 ""-

1 

r 

where K' = 12J\'K
2

/ t_ 2 v-3 
. 

The spin-orbit coupling constant for many paramagnetic ions, 

. 1 d . c )+ . f h d f 1 0 0 - 1 
1nc u Lng r , l.S o t e or er o cm . Renee, for fields of 

a few thousand oersteds l\.{3H is approximately two orders of 

magnitude smaller than Â2 
and, therefore, the Ât3HS. terms may 

1 

be dropped when SA is of the order of unity. They will be 

dropped in all cases, since when the contribution of SA is 



-13-

small the addition of these terms will not markedly affect 

the magnitude of wkk' which will also be small and will, 

therefore, not contribute significan;,fly to the spin-la.ttice 

relaxation process involving the 2S + 1 levels of an s> ~ ion. 

Renee equation (10) simplified to:-

(11) 

where K" = K' Î\4. 

It should be noted that equation (11) is not valid for 

S = ~ ions since the spin anticommutator SA does not connect 

-\ and \ states, and the terms linear in Si can not in fact 

be dropped. 

Although in the calculations reported here the wkk' 

were always calculated from equation (11), it is instructive 

to consider the form of this expression under the high tempera-

ture approximation h ~ (( kT. 
r 

In this case the terms multi-

plying the matrix elements simplify to K"T1) 
2

. However, 
r 

because the matrix elements are evaluated between spin states 

which, in general, are mixed, the amount of mixing being 

dependent on the magnitude and orientation of the de magnetic 

field H, the wkk' will depend on these two parameters as well 

and, consequently, the frequency dependence should, in general, 

be different from that imp1ied by the 
2 'V term. 
r 

Because the 

high temperature approximation seems to hold quite we11 for a 

major portion of the experimental data considered in this work, 

it is important to note that, in using equation (11) under 

conditions where the approximation is valid, one assumes that the 
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relative magnitudes of spin-phonon transition probabilities 

for the direct process are determined by the product of the 

temperature, the square of the resonant frequency, and the 

square of the spin anticommutator matrix elements. 
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III. THE MEASUREMENT OF SPIN-LATTICE RELAXATION TIMES. 

A large portion of the study of paramagnetic relaxation 

is concentrated on the measurement of spin-lattice relaxation 

times, and the subsequent comparison with calculations based 

on theories such as the one outlined in Section II. Even 

under conditions where the single-phonon process is the 

dominant mechanism in determining the rate of energy transfer 

between the spins and the bath in which the crystal is immersed, 

relating measurements to theory is often complicated by the fact 

that for multi-level spin systems all the levels, in general, 

participate in the spin-lattice relaxation process even though 

resonant excitation is applied to only a pair of levels. This 

problem will be considered in terms of two established te~hniques 

of measuring relaxation times. A discussion of the difficulties 

which arise in the case of the resonance-dispersion technique, 

which was used to obtain the measurements reported here, is 

left to a separate chapter. 

III.l. Relaxation Times in a S=\ Spin System. 

In the absence of resonant radiation, the differentia! 

equations governing the time dependence of the populations of 

the two levels into which the ground state is split by a 

laboratory de field H are 

(12) nl = -wl2nl + w21n2 

n2 = wl2nl - w2ln2 
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In the high temperature approximation (htv.((kT) these can be 

transformed into a single equation (Andrew 1956) 

(13) • n = 2w(n - n) 
0 

where n is the excess number of spins in the lower stat~, n 
0 

is the thermal equilibrium value of n, and w is the mean of 

the two spin-phonon transition probabilities w
12 

and w
21

. The 

s o 1 ut ion of (13) i s 

n/n = 1 -(1 - n /n )exp(-2wt) o a o 

where n is the initial value of n. 
a 

Thus the approach of the 

spin system and the latti~e to thermal equilibrium can be 

characterized by a spin lattice relaxation time T
1 

where 

T 
1 

'E 11 2w. 

becomes 

In the presence of resonant radiation, equation (13) 

(15) n = 2w(n - n)-2nP 
0 

where P is the radiation-induced transition probability. Under 

• steady state conditions n = 0 and the solution of (15) for the 

steady state population difference n is 
s 

(16) n/n = (l+P/w)- 1=.z 
s 0 

where Z is the saturation factor. 

Equations (14) and (16) are the basis of two techniques 

for measuring T
1 

and, hence, w. In the steady-state saturation 

technique (Bloembergen et al 1948) one essentially measures 

Z as a function of the intensity of the resonant rf field. P 

depends on the intensity of the rf field, the line-shape 

factor g(~), and the wave functions ~k associated with the two 
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levels, and can, in principle, be calculated. Renee w can be 

evaluated from (16). 

In the pulse saturation technique (Bowers and Mims 1959), 

rf excitation is applied in the form of a pulse having an 

amplitude and duration sufficient to drive the spin system 

into steady-state saturation, i.e. cause n ~0. 
s 

The return to 

equilibrium of the spin system after the end of the pulse is 

evidentlY given by equation (14) with n = O. A small monitor 
a 

signal is used to observe the behavior of n/n as a function 
0 

of time and hence w is obtained directly from a semilcgarithmic 

plot of the monitor signal level versus time. 

Thus fer a S = \ system one can measure the spin-phonon 

transition probability between the pair of levels to which 

resonant excitation is applied. 

III.2. Pulse Saturation Measurements on a S);. System, 

For a spin system with S) lz there are 2S + 1 levels. 

The rate equations which describe the dynamic behavior of the 

spin system are (l;..loyd and Pake ;1954): 

( 17) ~ i =~(w. in . - w i J'ni) 
ft J J 

where ni is the population of the i-th level. Wh en a p ai. r of 

levels, say 1 and 2, are subjected to resonant excitation, w
12 

and w
21 

in equations (17) must be replaced by w
12 

+ P and 

w
21 

+ P, respectively. The solution for the return to equili-

brium of the populations of levels 1 and 2 after a pulse of rf 

power sufficient to saturate the pair of levels, is given, in 
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the case of four levels, by (Andrew and Tunstall, 1961) 

where each of the time constants T
1

, T
2 

and T
3 

is a complicated 

combination of the w
1
j's. More generally, the number of time-

dependent terms is one less than the number of levels. Thus in 

the case of a multi-level system a pulse saturation measurement 

will not, in general, yield the spin-phonon transition proba-

bility between a given pair of levels, even in cases where the 

relationship between the terms in equation (18) is such that the 

equation can bP. closely approximated by a simple exponential. 

III.3. Steady-state Saturation Measurements on aS)\ System. 

Under conditions of steady-state rf excitation of 

transitions between levels k and 1, the saturation factor 

Z = (nk - n 1 )/(nko - n 10 ) is obtained by solving equations (17) 

• 
with all the ni = 0 and w1 k and wkl replaced by w1 k + P and 

wkl + P, respectively. The solution is (Lloyd and Pake, 1954) 

(19) 

where W is a complicated expression involving all the wij 1 s. 

Equations (19) and (16) are identical except for the fact that 

W in equation (19) is an effective relaxation probability that 

is not related in any simple way to wkl' 
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IV. THE RESONANCE DISPERSION TECHNIQUE. 

The resonance-dispersion technique for measuring re-

* laxation times bas been described by Carruthers and Rumin (1965) 

and is presented here in a condensed form. It is similar to 

both the steady-state saturation method and the audio-frequency 

relaxation approach (Waller 1932, Gorter 1947). The dispersion 

of the incrementa1 susceptibility at audio modulation frequencies 

is observed at various levels of saturation, produced by re-

souance absorption at the rf frequency. The dispersion observed 

can be related to the spin-lattice relaxation time by extending 

saturation theory to include the effect of fluctuating spin 

populations during the modulation cycle. 

Because the theory for this technique bas been worked 

out in detail only for a two-1evel system, the effect of using 

this method on multi-level systems will be discussed. 

IV.1. Theory for a Two-leve1 System. 

a. Saturation theory. 

Experimental measurements in both the steady-state 

saturation and the resonance-dispersion techniques are based on 

determining the power absorbed in the paramagnetic sample as a 

function of incident power. The power absorbed per unit volume 

of the samp1e is given by 

*A copy of the paper is inc1uded at the end of the 
thesis as Appendix II. 
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The power can also be expressed in terms of the imaginary 

component of the complex susceptibi.lity, ?(", and the rf field 

strength, H
1 

(Andrew 1956): 

(21) CP= 45T'Y'X"HÎ 

The radiation induced transition probability can be written as 

( 2 2) 

...Il> 
where J is a constant for a given de magnetic field H. 

Combining equations (20), (21), and (22), and making use of 

the definition of the saturation factor Z, yie1ds the fo11owing 

resu1t: 

( 2 3) X" = KZg ( ')} ) 

where K = [(n 20 - n
10

)hJ] /4'JT 

For measurements of the transition probability w 

by the steady-state saturation technique on1y relative values 

of '/( 11 are important. It is seen from equation (21) that X." 

is proportiona1 to the ratio of the power absorbed to the power 

incident, and the change in this ratio, as saturation occurs, 

is al1 that needs to be measured to determine Z. The transition 

probability w is then calcu1ated using equations (22) and (19). 

In practice it is customary to use magnetic field modu-

lation and synchronous detection to obtain a better signa1-to-

noise ratio. The magnetic field H is modulated at an audio 

frequency GV, while His swept slowly through the line. The 

modulation amplitude is kept small compared to the resonance 

linewidth and the curve traced out on the recorder is pro-

portiona1 to the slope of the 'X" versus H plot (Rumin 1961). 
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One is therefore interested in the differentiai of X" which 

can be obtained from equation (23). Since it is H that is varied 

and not 1i , the line shape factor g( V) should be replaced by 

g(H) where 

The result is 

(24) d'X" = K[Zdg(H) + g(H)dz]. 

It is now interesting to consider the effect of the 

modulation frequency W on d'X". When (A.) is small compared to 

the spin-phonon transition probability, the spin population 

readjust quickly enough during the modulation cycle for stationary 

conditions to be assumed to apply at all times. Hence from 

equations (24), (19), and (22) 

(25a) d X" = KZ 2 dg(H) 

at very low modulation frequencies. 

When W is very large compared to wij the spin population 

can be assumed to be constant during the modulation cycle. Hence 

dZ = 0 and one obtains 

(25b) d X" = KZdg (H) 

Equations (25a) and (25b) show that if H is set at sorne 

arbitrary point of a partially saturated line and the modulation 

frequency is sl~wly varied, a form of dispersion should be 

observed with the signal at a very high frequency greater than 

that at a very low frequency by the factor 1/Z. This dispersion 

results because the spin-lattice relaxation probability is 
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comparable to the modulation rate over a particular range of 

modulation frequencies. In the next section the dispersion 

region is examined more fully in order to show how this effect 

can be used to advantage in measurements of spin-lattice 

relaxation time. 

b. The dispersion equations. 

Equation (15) describes the behavior of the excess number 

of spins in the lower state when resonant rf power is applied. 

When sinusoidal modulation is applied to the magnetic field 

the line-shape factor g(H) is caused to fluctuate, and if 

the modul.ation amplitude is small the g(H) term is sine-wave 

modulated. Now P is proportional to g(H) and bence P can be 

written as 

(26) P = P[l + a exp(j Wt)] 

where a is small compared to unity. 

Assume a solution for n of the same form as for P, 

(27) n = nll + b exp(j(..lt)]. 

Substitution of equations (26) and (27) into (15) yields an 

expression which can be separated into two parts, orie involving 

the mean values, the other containing the time-varying terms: 

( 28 a) n/n = (1 + P/w)- 1 
0 

(28b) iib(2w + jW) + 2nP(a + b) = o 

Here a small, second-harmonie term which would be rejected by 

the synchronous detector has been dropped. 

Equation (28a) is identical to equation (16) defining 

the saturation factor Z. Equation (28b) involves the amplitudes 
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of the alternating components and hence must contain infor-

mation on the dispersion. But to use this equation for 

experimental determinations of w it is necessary to interpret 

the equation in terms of a particular experimental procedure. 

For future reference equation (28b) is rewritten using the 

definition of Z and substituting T
1 

for l/2w: 

(29) 

c. Experimental procedure. 

The spectrometer, described more fully in Section VI,is 

of the bridge type with a heterodyne receiver. The audio­

frequency signal from the linear detecter of the I.F. system is 

fed to an amplifier and phase-sensitive detector. 

Consider that the de magnetic field is set at a particular 

value somewhere near the center of the absorption line and 

that the bridge is adjusted so as to be sensitive to the 

imaginary component of the incrementa! susceptibility, d'X". 

The magnetic field is modulated over an amplitude range that is 

small compared to the linewidth. 

The rf power is first set to a very low level so that 

saturation effects are negligible. The phase-sensitive 

detector and recorder are adjusted to give a good deflection, 

it being understood that any phase shift in the modulation coils 

and in the audio system can be balanced out. Several measurements 

can now be made at different power levels, and at other modu­

lation frequencies, ta determine the effect of power level 
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and modulation frequency on the phase and magnitude of the 

output signal. 

In a spectrometer employing a heterodyne receiver 

the amplitude of the signal is proportional to the incremental 

power absorbed in the sample. Making use of equations (20), 

(26) and (27) we obtain for the incrementa! power d~ 

(30) ~ -- j(,.)t d I.J""' = h '1.1 nP (a + b) e 

where the second-harmonie term has been neglected. 

The rf field H
1 

is proportional to the square root 

of the input power. Therefore, according to the procedure 

outlined above, the relative signal from the phase-sensitive 

de tee tor is proportional to d@ /Hi which, from equations (30) 

and (22), is given by 

(31) 

where Zn has been written in the place of n, and g(H) is the 
0 

average value of g(H) over the modulation cycle. 

When the input power level is low enough for saturation 

effects to be negligible, we have that Z_.l and n is effectively 

constant. Renee b-+0 as Z--+1, and the term ( a+ b)....,..a. This 

unsaturated condition corresponds to maximum relative signal 

strength. 

From equation (31) the effect of saturation on the 

relative signal strength is determined by the product Z(a + b). 

If the ratio of the relative signal strength when the system 

is partially saturated to that when Z = 1 is denoted by A, then 

(32) A = ( Z(a + b)] /a 
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Making use of equation (29) and letting A • A' + jA" and tan 9 = 

A"/A', we obtain 

(33) 

(34) 

A' • Z(Z +W 2 z2
Ti)/(l +w2 z 2T~) 

2 2 2 
tan e =WZT

1 
(1-Z)/(Z + W Z T

1
). 

A', and tan 9 are measurable quantities. Using 

equations (33) and (34), and knowing ~. it is possible to 

deduce values of both Z and T
1

. But since the equations are 

not linear in T
1 

there is possible ambiguity in the reduction 

of data. In this respect it is instructive to interpret the 

dispersion in terms of a Cole-Cole diagram (Cole and Cole 1941). 

d. Cole-Cole dispersion diagram. 

With the substitution of "( for ZT
1

, the attenuation 

A can be written as: 

(35) A • Z(Z + jW't)/(1 + jW"'C) 

By rearrangement, 

( 3 6) ( Z - Z 
2

) • ( Z - A) + j ~'t ( Z - A) 

The amplitude A is plotted in the complex plane in 

terms of its real and imaginary components A' and A" in 

Figure 1. If only W is allowed to vary, equation (36) shows 

that the locus of A is a semicircle which c~osses the A' axis 

2 
at A'= Z and A'= Z, whenW•oO and t:ù• 0, respectively. 

For a particular value of W the locus of A is con-

strained to lie only within the region represented by the 

family of semicircles corresponding to different values of Z. 

The path followed by A as Z is varied depends primarily. on 
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the value oftùT
1

, and if WT
1
>> 1 the path is along the A' 

axis until very small values of Z are obtained. The modulation 

frequencies are therefore chosen sa that measurable phase 

shifts occur when Z is somewhere in the range 0.5-0.01. 

e. Reduction of data. 

2 
From Figure 1, because (Z -A) and (A - Z ) are per-

pendicular, it follows that 

(37) (A 11
)

2 
= (Z- A)(A' - z2

) 

which, upon substituting A' tanS for A", gives 

(38) 

Since equation (38) is cubic in Z, there are three roots. Of 

these one is negative and can be neglected. The presence of 

two allowable solutions for Z follows from the observation 

that a measured value of A can correspond to two of the Cole-

Cole semicircles. Ife is close ta the maximim angle per-

mitted for A, the two solutions for S are very nearly equal and 

it is difficult ta decide which is the correct one. Renee, for 

each modulation frequency it is advisable ta keep the power 

leve1 below that for which this condition arises. A usefu1 

cri teri on i s th at Z > 1/WT 
1 

. If this precaution is observed, 

the correct solution for Z is the smal1est of the two 

allowable roots of equation (38). 

The method of successive approximations is a simple 

means for finding the roots of equation (38). The equation may 

be rewritten in a form which 1ends itse1f ta this approach: 
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(39) [ 
A' 

Z =A' 1 + 
A, - z2 

and which yields the lower of the two allowab1e roots. The 

approximate relation corresponding to eq~ation (39) is: 

(40) 

and can be used to obtain the first approximation to the correct 

value of Z. 

In the Cole-Cole diagram in Figure 1 (A - z 2 )=GJ~(Z - A) 

Renee, from similar triangles, 

W't'(Z - A) 
(Z - A) 

= 

Putting A"= A' tan e, and 1::= ZT
1

, we have 

( 41) 

A'ZCVtan9 

Thus if the precaution z> l/WT
1 

is observed, the correct 

value of T
1 

and Z is obtained from equations (40), (39) and 

( 41). 

IV.2. Extension of Method to Multi-level Systems. 

Because of the added complexity of considering more 

than two levels it has not been possible to extend the theory 

for the resonance-dispersion technique to multi-level systems. 

However, because pulse saturation measurements carried out at 

low temperatures on dilute crystals often yield essentially 

single time-constant decays, it is tempting to use the 
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resonance-dispersion theory as it stands on such crystals. 

This was in fact done by Carruthers and Rumin (1965) who noted 

that the X-band results of Castle et al (1960) show that it is 

often a good approximation to assume that a single-valued 

relaxation time occurs for the four-level Cr
3+ ion in dilute 

It is instructive to investigate the 

validity of such an approach even though the complexity of 

the problem forces one to numerical solutions. 

Using the four-level system as an example, we obtain 

from equation (17) four equations in terms of the populations 

of the four levels. Taking the radiation induced transition 

probability P to be, as before, of the form 

(26) P = P l1 + a exp(jW t)] 

we assume solutions for the four populations of the form: 

(42) 

where b = b1 + 'b" t i i J i' e c. 

Let us assume that P acts between levels 2 and 3. 

Substituting equations (42) and (26) into equations (17) 

specialized to the four-level case, and replacing w
23 

and 

w32 by w
23 

+ P and w
32 

+ P, respectively, we obtain four 

equations each of which, just as in the two-level case, can be 

separated into two parts. The four equations involving mean 

values are identical to the steady-state saturation equations 

for which the solution is given in equation (19): 

(43) 
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The four equations containing the time-varying terms 

can be further separated into real and imaginary parts which 

gives eight equations in the eight unknown coefficients bi, 

bÏ, bl' bÏ, etc. These can, in principle, be solved. 

Making use of equations (20), (26), (42b), and (42c) 

the power absorbed in the sample is 

(44) (? = h11P { l+a exp(jW t)} [ ïï2(l+b 2 exp(jtA>t)} 

-"i13 {. 1+ b 3 exp ( jtJt)} J 
Hence the incrementa! power dij) is, ignoring second-harmonie 

terms, 

( 4 5 ) d <? = h v P ( ~ 2 ( a+ b 
2

) -ü 
3 

( a+ b 
3 

) } exp ( j w t ) 

Equation (45) can be manipulated in a manner similar to that 

used on equation (30) to yield the attenuation A: 

(46) A = 
n2 (a + b 2 ) -ii3 (a + b.) 

(n20 -n30) a 

Separating into real and imaginary parts, and !etting tan9= 

A" /A', we ob tain 

(4 7 a) 
n2(a + b') - n3 (a + b 1) 

A' 2 3 
= 

(n20 - n30)a 

- bll - n b" 
tan e n2 2 3 3 = (47b) 

n2(a + b 1) - n3 (a + b') 
2 3 

A high speed digital computer is used to solve for the 

ni, bi, and b{, in terms of a given set of w
1

j•s,modulation 

frequency, and various values of P. Equations (47) are then 

evaluated and the resulting values for A' and tan9 together 
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with l.) are used in equations (40), (39) and (41) to calculate 

Z and r
1

. These results can now be compared to values of r
1 

calculated from the steady-state saturation equation (43), and 

also to the time dependence of the return to equilibrium after 

pulse saturation calculated from equation (18). 
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V. THE PARAMAGNETIC SALTS. 

All the measurements and calculations reported here 

have been made on 
3+ 

the Cr ion present as a substitutional 

impurity in three diamagnetic host lattices, namely aluminum 

oxide, potassium cobalticyanide and rubidium alum. 

In the three host lattices being considered, cr
3

+ 

has a ground state degeneracy of four so that the effective 

spin S = 3/2. Its energy states can be described by the 

following spin Hamiltonion: 

(48) 
t'LI 2 2 2 
1T = /3(g H S +g H S +g H S )+D(S -5/4)+E(S -S ) 

x x x y y y z z z z x y 

where the nuclear terms have been dropped since their contri-

bution in the salts considered here is quite small. 

v. 1. 

3+ A trigonal crystalline field gives Cr a single 

orbital ground state, four-fold degenerate as to spin. Spin-

orbit interaction partially lifts the degeneracy leaving two 

two-fold degenerate spin levels, and the application of a de 

magnetic field completely removes the degeneracy. The spin 

Hamiltonian for ruby is circularly symmetric about the z-axis 

because of the trigonal crystalline field, and is given by 

equation (48) with E = O. 

In the calculations reported here, the values of g and 

D quoted by Donoho (1964) were used, namely g=l.980 (isotropie) 

and 0=5.733 Ge/s. Extensive data on the energy levels of ruby 

have been presented by Chang and Siegman (1958A), and Schulz 

du Bois (1959). 
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V.2. 

The crystal of K
3

Cr(CN)
6 

contains two distinct magnetic 

complexes per unit cell, each consisting of a paramagnetic ion 

surrounded by a nearly regular octahedron of six CN groups. 

The two complexes are identical except for the orientation of 

their axes. 

A cubic crystalline field leaves a singlet orbital 

ground state, four-fold degenerate as to spin. Fields of lower 

symmetry together with spin-orbit interaction split the ground 

state into two Kramers doublets. 

The energy states of one complex are described by 

equation (48) with g=1.992 (isotropie), D=0.083 -1 cm and 

-1 
E=O.Oll cm (Bowers and Owen 1955). Extensive data on the 

energy levels is given by Chang and Siegman (1958B), Butcher 

(1957) and Weber (1959). 

v. 3. 

The unit cell of rubidium chrome alum contains four 

unequivalent complexes whose axes of symmetry are the lllY 

directions of the cubic crystal. The spin Hamiltonian is 

circularly symmetric about the z-axis of the complex, and is 

given by equation (49) with g=l.975 (isotropie) and 

-1 
D=0.342 cm (Vanier 1962). 

For all three types of crystal the appropriate spin 

Hamiltonian was diagonalized and the energy levels and 

eigenvectors were evaluated on McGill's IBM 7044 computer, 
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for the particular values and orientations of the de magnetic 

field H at which relaxation time measurements were made. The 

convention adopted for defining the orientation of H is shown 

in Figure 2 below~ 

Figure 2. 
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Vl. APPARATUS, 

Two spectrometers were used for the measurements re-

ported here. The 890 Mc/s spectrometer, shown in black 

schematic form in Figure 3, is patterned after apparatus des­

cribed by Feher (1957) and has been described by Rumin (1961). 

The modifications necessary to implement the resonance­

dispersion technique have been discussed by Carruthers and 

Rumin (1965). 

The main oscillator is a General Radio 12093~ It is 

free running and has been provided with good temperature 

lagging, sounè insulation, and well-regulated de supplies 

for the filament and H.T. currents. The bridge element is a 

coaxial ring circuit built from modified General Radio 874 

components, and is isolated from the main oscillator by means 

of a 10 dB pad and a 20 dB isolator. 

The superheterodyne -eceiver is 1inear over the signal 

range used in the measu~emente. The balanced detecter is a 

GR 16028 admittance bridge modified to give adequate crystal 

currents. This drives a balanced I.F.I. P205 preamplifier 

which is followed by a GR 1216A I.F. amplifier with one stage 

bypassed and the bandwidth increased from the factory setting. 

The high gain audio amplifier uses plug-in twin-T 

elements to provide narrow-band response at the frequencies 

used, namely 15, 35, 140 and 400 c/s. A Phazor 200A phase­

sensitive detecter drives a Texas Servoriter recorder of 5 mV 

full-scale sensitivity. A conventional phase-shifting circuit, 

using an RC load on a center-tapped transformer, is placed in 
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the line to the modulating coils to control the phase of the 

modulating field. 

A magnet with 6-inch diameter pole-pieces provides 

fields up to 2000 oersteds, the stability being one part in 

10 4 or better. 

A double-dewar system permits operation at liquid 

Helium temperatures, and facilities have been provided for 

obtaining lower temperature by pumping over the Helium. A 

Manostat Corp. Mode1 8 manostat is used to stabi1ize the 

0 
vapour pressure at intermediate points down to 1.6 K which is 

the lowest attainab1e temperature. 

The 9.4 Gc/s spectromet~r has been discussed by 

Vanier (1962) and is patterned quite close1y after apparatus 

described by Feher (1957). Measurements on this spectrometer 

were made using the resonance-dispersion technique, and the 

audio system from the 890 Mc/s spectrometer was uti1ized for 

this. 
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VII. PROCEDURE. 

VII.l. Experimental. 

All the measurements were made using the resonance-

dispersion technique. The procedure is described by Carruthers 

and Rumin (1965) and more briefly in Chapter IV. 

The sample is mounted close to the wall of the coaxial 

cavity (Rumin 1961) to minimize the curvature of the rf magnetic 

field lines of force over the sample. For the same reason 

the sample size is kept quite small. The cavity is not a 

sealed type so that the crystal is in direct contact with the 

liquid helium. 

The microwave power is initially set to a low level so 

that saturation effects are negligible. The bridge is ad­

justed so as to be sensitive to the imaginary component of 

the incremental susceptibility, d~". Any quadrature component 

present in the audio signal is balanced out by means of the 

phase-shifting network in the line to the modulation coils. 

The microwave power is then increased until measurable amounts 

of saturation and phase-shift are observed. Several measurements 

are made at different power levels and, where possible, various 

modulation frequencies. In each case the magnetic field is 

swept slowly through the line with the synchronous detecter 

switched first to read the real and then the quadrature 

component. Each measurement is repeated several times. 

The attenuation A' and phase angle 6 are obtained 

by comparing signal intensities at corresponding points, 
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that is, points equally distant from the center of the line. 

This procedure is illustrated with the help of Figure 4 

below, which shows possible recorder tracings, first for the 

UNSATURATED. SATURATED. 

Real Quadrature 

A t t e nu a t or s 
RF=SOdB 
IF=lOdB 
AF=50dB 

Attenua tors 
RF=20dB 
IF=40dB 
AF=38dB 

1 1 --,xr- !-o----z---__, 

Figure 4 

unsaturated line, and then for the real and quadrature 

components of the partially saturated line. The net ch ange 

in attenuator settings is evidently 12 dB and, since the 

derivative of a curve is proportional to its amplitude, it 

follows that the attenuation A' is given by 

and tan e is 

A' = x/[ y(antilog 12)] 
20 

tan e = y/z 

The values of A', tan 6 , and the modulation frequency W 

are then used in equations (40), (39), and (41) to determine 

Z and T 
1

. 
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VII;1. Calculations. 

The McGill IBM 7044 computer was used to evaluate the 

relaxation times that would be yielded by the pulse saturation, 

resonance-dispersion, and steady-state saturation techniques 

for the experimental conditions considered. Given the constants 

of the spin Hamiltonian in equation (48}, the magnitude and 

orientation of the magnetic field H, the temperature T, and 

the transition to which resonant radiation is applied, the 

program evaluates the corresponding eigenvalues and eigen­

vectors of the spin Hamiltonian and calculates the spin-phonon 

transition probabilities wkk' from equation (11). Actually 

relative magnitudes of the wkk' 's are calculated since no 

attempt is made to evaluate the constant K". The rate 

equations (17) are then solved, given pulse saturation 

conditions, and the values of A
1

, A
2

, A
3 

and T
1

, T
2

, T
3 

in equation (18) are evaluated. The solution is also plotted 

in semilogarithmic form. 

The values of the wkk' 's are also fed, together with 

values of~, into an auxiliary program which solves for the 

average steady state populations ;
1 

and the real and quad­

rature components, bl and bl' of the time-varying portions 

of the populations (see Section IV.2). A' and tan 6 are 

evaluated using equations (47), and are then used in equations 

(40), (39) and (41) to yield the saturation factor Z and re­

laxation time T
1 

that would be obtained from a resonance­

dispersion experiment in which the data ia processed using an 
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analysis based on a two-level system. 

The populations ni are also used in equation (43), 

for different values of the radiation induced probability P, 

to yield the effective T
1 

= 1/2W that would be obtained in a 

steady-state saturation experiment. 

Since only relative magnitudes of relaxation times 

are calculated, in the final analysis the values are nor­

malized to coincide with one experimental point for a given 

ion and host lattice. 

In the case of the pulse saturation calculation, 

sitùations arise where the relative magnitudes of the co­

efficients and time constants of the return-to-equilibrium 

solution are such that the decay can not be characterized by 

a single time constant. In such a case the simple exponential 

solution which "best fits" the decay over approximately two 

time constants is taken as the effective relaxation time 

TR. Figure 5 shows three examples of such a situation. 

The complete calculation involving the steps described 

in the above paragraphs is outlined in Appendix I with the help 

of a specifie numerical example. 
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VIII. RESULTS AND DISCUSSION. 

VIII.l. 

Relaxation times in potassium chromicyanide were 

measured both at 0.89 Gc/s and at 9.4 Ge/s. Most of the low-

frequency measurements were made with the de magnetic field 

parallel to the z axis of one of the complexes because under 

these conditions four transitions are observed over quite a 

* wide range of fields, namely, 105, 340, 1440 and 2050 gauss. 

Actually there are six lines since the other complex gives two 

lines close to the low-field ones. The two lines near 300 

gauss are sufficiently far apart that cross-relaxation effects 

between them were expected to be negligible. But the lines 

near 100 gauss are improperly resolved and for these measurements 

the magnetic field was rotated 6 degrees in the ab-plane placing 

it parallel to the a axis where the energy levels of the two 

complexes are identical and hence the two lines are super-

imposed. Since the lOO-gauss lines are "radiation forbidden", 

being (-3/2, 3/2) transitions, the 6dB improvement in signal-to-

noise ratio resulting from working with the superimposed lines 

is quite valuable. 

The high-frequency measurements were made on the three 

radiation-allowed transitions which are observed at 1540, 

3360 and 5100 gauss when H is parallel to the axis. Because 

*See Figure 8 of Carruthers and Rumin (1965) Appendix II. 
·1 
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Castle et al (1960) and Kipling et al (1961) observed re• 

taxation rates which increased with concentration, an effect 

not predicted in the theory of spin-lattice relaxation, a dilute 

crystal was used, namely 0.04% Chromium (the percent con-

centration being the Cr/Co ratio x 100). * Weissfloch bas 

shown that at this dilution there is negligible concentration 

dependence for the magnetic field orientation seleeted. 

The results of the high-frequency measurements are 

shown in Figure 6. As expeeted the smallest scatter of 

experimental points was obtained for the 2-3 transition 

(where the numbering of levels is in order of increasing 

energy) which is very rouch stronger than the other two lines. 

0 The measurements were made at 4.2 K since Castle et al (1960) 

* and Weissfloch have shown from an examination of the 

temperature dependenee of the relaxation times that the 

single-phonon process is dominant at this temperature. For 

the 2-3 transition a value of 7.6 rosee. was obtained, which 

* is in fairly good agreement with Weissfloch's pulse saturation 

measurements of 8.2 rosee. But the relaxation time for the 

3-4 transition (see Table I, page 49) is apparently somewhat 

higher than Weissfloch's. Since the accuracy of the measure-

ments on the 3-4 transition was quite limited due to the poor 

signal-to-noise ratio, the actual difference may not be quite 

as great. 

The low-frequency measurements were made on a 0.015% 

*C.F. Weissfloch. Private communication. 
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crystal in the case of the 340 gauss line, since Carruthers 

and Rumin (1965) reported some concentration dependence of 

the relaxation time still present at 0.061. The 340 gauss line 

was sufficiently strong to permit an investigation of the 

temperature dependence of the relaxation time, and these 

measurements are shown in Figures 7 and 8. The points which 

are plotted in Figure 8 were, somewhat arbitrarily, read from 

the curves in Figure 7 for 1/Z = 10. It is evident that the 

0 relaxation time at 4.2 K varies more rapidly than as 1/T 

suggesting that other relaxation mechanisms besides the single-

phonon are operative. 
0 

Below approximately 2 K the inverse 

temperature dependence seems to take over. 

The slopes in the logarithmic plots of the relaxation 

time T
1 

versus the inverse of the saturation factor Z pose a 

problem that eludes satisfactory explanation. Carruthers and 

0 
Rumin (1965) observed similar slopes at 4.2 K which decreased 

0 with dilution, and the present measurements at 4.2 K confirm 

their speculation that the slope would be zero for sufficient 

dilution with the resultant relaxation time corresponding 

approximately to the value at which the higher concentration 

curves intersected. It would seem that the mechanism which 

produces the slopes at the lower temperatures is different 

from the one which results in the concentration dependent 

slopes. This problem will be considered again in a later section. 

The other three lines are so much weaker than the 340 

gauss transiton that for them measurements were made on a 
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Figure 8. Temperature dependence of relaxation time in 
K3Cr(CN) 6 at 0.89 Gc/s for 340 gauss line with 
H parallel to z-axis. 
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0.06% sample. It was assumed that the temperature dependence 

of their relaxation times is similar to that of the 340 gauss 

transition so that the measurements in Figure 9 were also made 

at a temperature below 2°K. 

The results of the above measurements are tabulated in 

Table I together with other published experimental data on 

relaxation times in dilute potassium chromicyanide, and the 

calculated values of the effective relaxation time TR (see 

Chapter VII). The calculated values were normalized to coin-

cide with the 9.4 Gc/s pulse saturation measurement for the 

0 0 
2-3 transition corresponding to e= 6 • (J = o. The nor-

malization is somewhat arbitrary and was chosen mainly because 

the 2-3 transitiQp at high Drequencies is a strong line, and 

this particular transition has been studied by both the pulse 

saturation and resonanceçdispersion techniques with quite good 

agreement. Examination of the tabulated data, which, although 

not by any means comprising an exhaustive study of this salt, 

nevertheless representa a fair sampling of magnetic fields, 

orientations and transitions, and a large change in frequency, 

indicates that the calculations predict the changes in re-

laxation time to well within a factor of two. 

It is interesting to note that the resonance dispersion 

and the pulse saturation calculations yield relaxation time 

values which differ by not more than 30%, the pulse saturation 

values usually being greater. Many of the calculated decay 

curves had a slight curvature when plotted on semi-

logarithmic paper, and, in general, the calculated resonance-
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TABLE I 

Calcul~ted and Measured Relaxation Times for cr
3+ 

in K
3

Co(CN) 6 at T = 1.8°K. 

Field Angle Iran- Relaxation Ti me TR-msec. 
sition 

Resonance- Pulse 
H 9 (> Dispersion Saturation 

Kgauss. deg. deg. Me as. Cale. 1 Me as. 

0.106 6 0 3-4 170 107 

0.3<+0 0 0 1-2 190 114 

1.4.:..0 0 0 1-2 220 195 

2.050 0 0 1-2 140 116 

3.360 6 0 2-3 18
2 

18.9 21.3a ...___ 

1.540 6 0 3-4 37 2 22.0 23.5a 

5.100 6 0 1-2 15
2 

12.2 

3.2 90 90 2-3 14.0 18.5 2b 

3.78 40 90 2-3 15.3 15 . .5c 
' 

1. Values norma1ized to coincide with measurement 
of 2-3 transition for 1J. = 9.4 Ge, 9 =6o, tJ"" 0°. 

r 

2. Extrapo1ated from 4.2°K measurement assuming 
inverse temperature dependence. 

a. C.F. Weissfloch. Private communication. 

b. Kipling, Smith, Vanier and Woonton (1961). 

c. Castle, Chester, and Wagner (1960). 

Cale. 

120. 

127. 

234. 

130. 

21. 3 -
2 9. 9 

12.7 

14.1 

14.2 

1 
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dispersion values seem to correspond to the assymptotes to 

the early portions of these curves. Since the normal range 

of saturation factors over which resonance-dispersion 

measurements are made, namely 0.5 - 0.01, representa spin 

population departures from thermal equilibriumt which in a 

pulse experiment correspond to points on the decay trace 

between 0.99 and 0.5 of initial amplitude, it may not be un-

reasonable to expect smaller values of TR by the resonance­

dispersion technique in cases where the pulse decay exhibits 

a faster compor.ent in the early part of the trace. The last 

entry in Table I does not seem to fit into this explanation. 

VIII 2. 

At 0.89 Gc/s only one line could be observed in ruby 

over the range of magnetic fields attainable with the existing 

magnet power supply. This was the 1-2 transition, situated 

at approximately 300 gauss when H is parallel to the z axis. 

The relaxation time was measured on a sample containing 

* + approximately 0.006% Chromium and was found to be 360-70 msec. 

The line is quite weak at this low concentration, resulting 

in appreciable scatter in the experimental points, but this 

could not be avoided in view of the concentration dependent 

relaxation times that have been observed in ruby at higher 

concentrations (Mims et al 1960). Measurements were made at 

*Analyzed by Technical Service Laboratories, 
Toronto, Ont. 
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0 
4.2 K since available data on the temperature dependence of 

spin-lattice relaxation times in ruby (Feng and Bloembergen 

1963, Pace et al 1960) indicated that the single-phonon process 

would be dominant at this temperature. 

The angular dependence of relaxation time was explored 

on the 9.4 Gc/s spectrometer. A cylindrical sample, 3.2 mm 

* thick and 6 mm in diameter, containing 0.0033% of Chromium, 

was used, and the measurements were made at 4.2°K. Figure 10 

shows the data obtained at those angles where the transitions 

studied were strong enough to permit measurement. As in the 

case of chromicyanide at low temperatures slopes are ob-

served in the logarithmic plots of T
1 

against 1/Z. The fact 

that the slope seems to be constant for a given transition is 

noteworthy al.though not very illuminating. 

In an attempt to clarify this problem pulse saturation 

measuremeDts were made with CF. Weissfloch on his 9.2 Gc/s 

spectromeLer. For angular variations close to the z axis usable 

** measurements were obtained only for the 2-3 transition at 

e = 
0 

20 where an essentially single exponential decay with a 

time constant of 180 msec, was observed. This corresponds to 

resonance-dispersion measurements at a saturation factor Z of 

approximately 0.1. 

* Analyzed by Bell Telephone Laboratories, Inc., 
Murray Hill, N.J. 

**For many angles there are two 2-3 transitions~in 
ruby at 9.2 Ge/a, one at low fields and one at 
hlsh fields, and, unless otherwise noted, the high 
field one will be understood. 
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Figure 10. Relaxation times in uncut ruby crystal at 9.4 Gc/s 
and 4.2°K. Numbers indicate angle of H with z-axis. 
W ==220 sec-1. 
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With the possibility of the slopes being caused by a 

phonon bottleneck in mind, the crystal was eut in half per-

pendicular to its flat face, and resonance-dispersion measure-

ments were repeated for a few orientations. Some of the 

results of these measurements are presented in Figure 11, In 

general the data were quite poor, to a large extent due to 

the smaller sample. Nevertheless, the results are good 

enough to suggest that the measured relaxation times T
1 

ate 

not functions of the degree of saturation, and correspond to 

the values obtained at the highest values of 1/Z on the large 

sample. 

Since Weissfloch's pulse saturation measurements on 

the uncut sample were obtained at the limit of the spectro-

meter's sensitivity, no attempt was made to determine whether 

decays with larger time constants would be observed with the 

smaller crystal. 

Using the measurements on the smaller sample as a 

basis, values of T
1 

were read from Figure 10, corresponding 

to 1/Z = 10 for the 1-2 transition, 1/Z = 40 for the 2-3, 

and 1/Z = 20 for the 3-4 transition, and were plotted as a 

function of the angle e . The resulta are plotted in Figures 

12 and 13, together with the effective relaxation times TR 

for pulse saturation conditions calculated following the 

procedure discussed in Chapter VII. Making use of experi-

mental data on the spin-lattice interaction Hamiltonian for 

ruby, Donoho (1964) calculated the wij 's and hence the para-

meters of the decay equation (18). His calculations, just as 
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those reported here, show that in general one time constant, 

usually the largest one, dominates the form of the return to 

equilibrium. Consequently, his data have also been used to 

compute the resulting decay curves which were then fitted with 

single exponentials as discussed in Chapter VII. The results 

of these calculations appear in Figures 12 and 13. No 

normalization was required for Donoho's results since he 

calculated the complete wij 's but the results of the present 

calculations were normalized to coincide with the measured data 

for the 2-3 transition at e = 20°. 

The curves calculated on the basis of equation (11) 

agree with Donoho's insofar as the general trend of the 

angular dependence is concerned. Thus both calculations 

predict for the 1-2 transition longer relaxation times around 

0 0 e = 90 than around e = 0 , and vice versa for the 3-ù 

t r an si t i on . In the ~ase of the 2-3 transition Donoho's 

results seem to predict a little better the relative change 

of relaxation time with e . For the other two transitions the 

experimental data is rather limited but it is interesting 

that, as the calculations predict, the relaxation time for the 

3-4 transition does increase when H is rotated away from 

and in the case of the 1-2 transition the relaxation 

e 0 0 
times are appreciable longer near = 90 than around e = 0 . 

Measurements of relaxation times for ruby at several 

frequencies have been reported. Those which were made at 

paramagnetic ion dilutions sufficient to minimize concentration 
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effects are tabulated in Table II together with Donoho's 

results and the calculations of this author. Of the measure-

ments reported here only the 0.89 Gc/s one and a randomly 

selected point from Figure 12 are included. The present 

calculations seem to predict the changes in relaxation time 

* about as well as Donoho's . Once again the resonance-

dispersion calculations yield relaxation times somewhat 

shorter than those calculated for pulse saturation conditions. 

This is particularly noticeable for the 2.9 Gc/s case where 

there was appreciable departure from simple exponential 

behavior in the calculated decay curve. 

Pace et al (1960) measured the relaxation times of 

the several transitions that can be observed in ruby with 

1)r = 34.6 Gc/s and e = 90°, Thus both frequency and 

orientation were kept constant. Table III shows their results 

for two ~emperatures at which the measurements indicated 

that the single-phonon process was dominant, together with 

*The results of Donoho's calculations were 
taken from his Table I which serves the same 
purpose as our Table II. ln the case of the 
9.3 Gc/s data for the 2-3 transition at 6 =54° 
it was possible to also make use of his Figure 3 
which shows the angular dependance of the para­
meters of the return-to-equilibrium equation (18). 
This is a particularly simple case since one 
time constant wholly dominates the decay for 
all values of 6 It is clear from those 
curves that TR is approximately 0.38 sec. and 
not the 0.226 sec. shown in Donoho's table 
which, to the accuracy with which the graphs 
can be read, is the value of one of the other 
time constants. There is also some disagreement 
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the calculated values which were normalized in the same way as 

those in Table II. The predicted changes in relaxation time on 

the whole seem to be in quite fair agreement with experiment. It 

should be noted however that white the calculations seem to pre-

dict a diminishing temperature dependence at higher fields, the 

-1 measured relaxation times vary approximately as T even at 14.5 

Kgauss. With v = r 
0 34.6 Gc/s and T = 4.2 K or lesa, the high 

temperature approximation hV<< kT, on the basis of which the 

inverse temperature dependence of the spin-phonon transition 

probability is predicted, becomes quite poor, and for sufficiently 

high frequencies and/or low temperatures, wij and wji do not vary 

in the same way (equation 11). Because of this and the fact that 

we are dealing here with multiple relaxation paths, it is not easy 

to predict the behavior of the effective relaxation time with 

temperature. More high frequency and low temperature measurements 

are needed to decide whether the rather poor agreement for the 

14.5 Kgauss tine is meaningful or not. 

*(continued from previous page) 

between Table II and Donoho's Table I in the 
designation of transitions. For example, his 
Table I identifies the 7.2 Gc/s entry as a 2-3 
transition at 80° which is surprising in view 
of what Mima et al (1960) report, and because 
according to Donoho's convention of numbering 
levels the 2-3 gap never becomes as small as 
7.2 Gc/s at 9 = soo Attempts to clear up these 
points by communicaëion with Donoho have elicited 
no response. It is believed that the data presertted 
in Table II is consistent with what has been reported 
by the authors of the various measurements, in the 
light of the convention adopted here of numbering 
levels with increasing energy. 
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TABLE II 

3+ 
Calculated and Measured Relaxation Times for Cr 
in Al 2o3 at 4.2°K. 

Field Angle Tran- Relaxation Ti me TR-sec. 
sition 

Resonance- J:'U!Se 
H 9 Dispers'ion Saturation 

Kgauss deg. Meas. ~c~ Me as. 

7. 0 90 2-4 0.033 0. 0 51+ 

4.0 54 2-3 0.188 0.20 
1 -

7.5 0 1-2 0. 15 0. 105 

4.3 20 2-3 0.252 0.18c 

1.4 90 1-2 0.314 o.sod 

0. 6 60 1-2 0.672 0.50 
e 

0.3 0 1-2 0.36 0.358 

* - Values normalized to coincide with pulse 
measurement for 9. 3 Gc/s, Q = 54°. 

a- Pace, Sampson and Thorp (1960). 

b - Nisida (1962). 

c - C.F. Weissf1och. Private communication. 

d- Mims and McGee (1960). 

e- Armstrong and Szabo (1960). 

a 

b 

* Cale. 

0.034 

0.200 

0. 115 

0.280 

0.343 

0.920 

0.390 

Donoho 

0.080 

0.226 

0.539 

0.750 
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TABLE III 

Comparison of Pulse Saturation Measurements
3 and Calculations of Relaxation Times for Cr + 

in Al
2
o

3 
at T•l.4 & 4.2°K, 9•90°, and Vr=34.6 Ge/s. 

Relaxation Ti me Ta-tnsec 

Field H Transition 
0 T=4.2 K T== 1. 4 °K 

Kgauss 
Meas~ * Meas~ Cal'C, 

3.8 l-4 - - 29 6 

4.8 1-3 56 45.2 lOO 

7.0 2-4 54 33.5 147 

10.0 1-2 22 23.6 59 

12.3 2 .. 3 16 17.5 64 

14.5 . 3-4 
1 

21 13.5 60 

*-Same normalization as in Table II. 

a-Pace, Sampson and Thorp (1960). 

Resonanèe-dispersion measurements were made at 0.89 

* Cale. 

256. 

117. 

83.8 

69.4 

1+2. 4 

16.7 

Gc/s on a rubidium alum crystal containing approximately 0.03% 

Chromium. For most orientations the lines due to the four 

complexes are clustered within a range of magnetic fields 

between approximately 50 and 400 gauss, and are either im-

properly resolved or are situated sufficiently close together 

that the presence of cross-relaxation may not be ignored. 

However, when the magnetic field is directed parallel to the 

z axis of any one complex a transition is observed at 
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approximate1y 1100 gauss. The results of measurements on 

this line are presented in Figure 14. Once again slopes in 

the T
1 

versus 1/Z plots complicate the picture. The factor 

0 0 of ten change in T
1 

between 4.2 K and 1.97 K suggests that at 

the higher temperature other mechanisms besides the single-

phonon one are operative. At the lower temperatures the 

scatter of the experimental points prevents a decision on the 

exact nature of the temperature dependence, although it is not 

-1 
likely to be much faster than T . 

At X-band the relaxation time of the 2-3 transition 

has been measured by Dyment (1965) as a function of tempera-

0 ture, and by Vanier (1962) at 4.2 K. In view of the temperature 

dependence at 0.89 Gc/s, Dyment's results are used in the 

comparison of experimental and calculated values shown in Table IV. 

Freq. 

1.{ 
-
Gc/s 

9.4 

0.9 

TABLE IV 

Calculated and Measured Relaxation Times for cr 3+ 
in RbAl(S0

4
)

2
.12H

2
0 at T=1.95K. 

Field Angle Trans' n Relaxation Ti me TR-msec 
-

H 9 Resonance- Pulse 
Dispersion Saturation 

Kgauss deg Meas. Cale* 
~-

3.375 90 2-3 9.4 

1.065 0 1-2 150 220. 

* - Values normalized to coincide with pulse 
measurement at 9.4 Ge/s. 

a- Dyment (1965). 

Meas. Cale* 

lOa 10 -- -
250 
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CD r·=4·2°K ,w=2510 sec·! 
x T =1·75°K ,w =220 sec·} 
e T=I·97°K, u " " 

Figure 14. Relaxation times in RbCr(S04) 2 .12H 2 0 at 0.89 Gc/s 
for 1100 gauss line with H parallel to z-axis. 
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As ~n the case of chromicyanide ~e value of T
1 

corresponding 

to 1/Z=lO was read from the graph in Figure 14, and the 

calculated values were normalized to coincide with the X•band 

measurement of the 2-3 transition. 

Measurements on one or two of the lines at low fields 

yielded times that were as much as an order of magnitude 

shorter than predicted by the calculations, adding some support 

to the assumption that cross-relaxation mechanisms were operative 

between those closely spaced lines. 

VIII.4. The Slopes in the Logarithmic Plots of T
1 

versus 1/Z. 

An important point which emerges from the resonance­

dispersion calculations is that even in cases where there is 

relatively severe departure from simple exponential behavior 

of the calculated pulse saturation decay, the relaxation time 

T
1 

is constant for modulation frequencies and saturation 

factors down to those satisfying the expression UlT
1

Z=l (see 

Chapter IV). On the basis of these calculations one would not 

expect the slopes in the logarithmic plots of T
1 

versus 1/Z 

that have been observed for so many of the measurements re­

ported here. 

No satisfactory explanation for the variation of T
1 

with 

Z has been arrived at from a consideration of both some known 

physical processes which may be operative at the concentrations 

and temperatures of interest, and the possibility of the effect 

being instrumental. For example, the order of magnitude 
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equation given by Giordomaine and Nash (1965) for predicting 

the occurence of a phonon bottleneck indicates that this 

phenomenon is extremely unlikely with the experimental 

conditions and resulta reported here. Although a size de-

pendence of relaxation time may be associated with a phonon 

bottleneck it is felt that the measurements on ruby, when size 

is reduced, are inconclusive. 

The effects of cross-relaxation were also considered 

as a possible explanation for the dependance of T
1 

on Z. 

Bloembergen et al (1959) discuss the case of a lattice with 

N~ ions with two energy levels separated by hV~ and N~ 

ions with two energy levels separated by h~ , where ~-~<.<..Yd.... 

Assuming for simplicity that N~ = NA their rate equations (14) 

were simplified (Weissfloch, 1964) and solved on a high-

speed computer for the case of an applied rf field at the 

frequency 'V, in a manner similar to that used for resonance­
Cl 

dispersion calculations for a multi-level system (see Chapter 

VII). This was done for a range of the two spin-lattice re-

laxation times T~ and T~ , the cross-relaxation time T
21

, 

and modulation frequency UJ. Although T
1 

= T~ was found to 

increaae with 1/Z whenever T
21 

was shorter than T~ , the resulta 

were very strongly dependent on modulation frequency, an 

effect which was not observed in the present measurements 

(see, for example, results for 3-4 transition in Figure 11). 

To the extent that a multi-level system can be looked upon as 

behaving like a two-level one, the above model does not explain 

the observed variation of T
1 

with Z. Nor does it, one might add, 
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explain the concentration dependent slopes observed by 

Carruthers and Rumin (1965). 

The cross-relaxation model described above was also 

used as a basis for investigating the effect of spin diffusion 

in a manner similar to that suggested by Bloembergen et al (1959). 

The resonance line was simulated by four equally populated, 

two-level spin systems having identical spin-lattice relaxation 

times but different cross-relaxation times. As before the 

resulta showed appreciable dependance of T
1 

on 1/Z but again 

a very strong modulation frequency effect. 

The failure to explain the slopes thus leaves unanswered 

the question of how to determine the spin-lattice relaxation 

time from the experimental data. However, because in most 

cases the relaxation time T
1 

changes by a factor of only approxi­

mately two in going from large to small Z, the general con­

clusions that are drawn from the measurements are not greatly 

affected by how one selects a relaxation time from a given 

plot of T1 versus 1/Z,providing one is consistent from then on. 

Thus, for example, the conclusions regarding the angular de­

pendance in ruby are not significantly affected by whether one 

selects the relative values of T
1 

by the method adopted, or 

by reading values of T
1 

from Figure 10 corresponding to a 

fixed, arbitrarily selected value of 1/Z, or even by taking 

averages of T
1 

over the appropriate range of saturation factors. 
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VIII.5. Calculations for Steady State Saturation Conditions. 

As mentioned in Chapter VII, calculations were made of 

the effective relaxation time that a steady-state saturation 

measurement would yield. Since none of the experimental data 

considered here were obtained by this technique, the resulta 

of these calculations were not included in the preceding 

sections of this chapter. For every experimental point con­

sidered the calculations yielded identical values of re­

laxation time for the resonance-dispersion and steady-state 

saturation conditions. Since the rate equations were solved 

for select~d values of the radiation-induced transition 

probability P, none of the difficulties which the experi­

mentalist encounters in the calculation of P ever arose. 



-68-

IX. CONCLUSIONS 

The following results emerge from the work reported 

here: 

1) The relative magnitudes of the S(2S + 1) spin-phonon 

transition probabilities between the 2S + 1 levels of the 

S = 3/2 ion cr 3+ in K
3

Co(CN)
6

, A1
2

0
3

, and RbAl(S04 ) 2 .12H 2 0 

are approximately determined, for the single-phonon relaxation 

process (equation 11), by: 

a) the quadratic spin operator matrix elements, and 

b) the temperature and frequency dependent 

terms, namely the Debye equation (7), the Bose-Einstein factor, 

and the v~ in equation (5) which appears in the coefficients 

of the expansion of the crystalline field potential in n0rmal 

lattice modes. The relative changes in the effective spin-

lattice relaxation time with the magnitude and direction of 

the de magnetic field, frequency, and temperature are predicted, 

on the basis of such a simplified theory, with an accuracy 

that is usually better and rarely worse than a factor of two. 

There seems to be no reason why the above simplifications can 

not be generalized to any spin system of S>~· 

2) Although in the recently proposed resonance­

dispersion technique the experimental data is processed by 

an analysis based on a two-level system, calculations indicate 

that for a multi-level system the measured single-phonon, spin­

lattice relaxation time T
1 

should be constant for all modulation 

frequencies ~ and saturation factors Z down to those 
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satisfying the expression CùT 1 Z~::H. Furthermore, it should be 

equal to the value obtained by the pulse saturation method 

if the decay is essentially a simple exponential. Where there 

is appreciable departure from single-time-constant behavior the 

resonance-dispersion value is still independent of W and Z 

but is better approximated by the time constant obtained from 

the assymptote to the early portion of the decay's semi-

logarithmic plot. Calculations also indicate that in both 

cases discussed above the steady-steady saturation technique 

should yield results identical to those of the resonance-

dispersion method. 

3) Relaxation times have been measured at both 

0.89 Gc/s and 9.4 Gc/s by the resonance-dispersion technique. 

The low-frequency measurements constitute, to the best of the 

author's knowledge, the first paramagnetic resonance measure-

ments on dilute crystals of potassium chromicyanide, ruby, 

and rubidium chrome alum at a frequency an order of magnitude 

* lower than the X-band where most measurements have been made 

and at a temperature low enough to ensure that the single-

phonon relaxation mechanism was dominant. The measurements 

at X-band have shown the feasibility of using the resonance-

dispersion technique at this frequency and, in the case of 

* Van Vleck (1961) reports briefly on frequency 
dependence measurements on potassium chromicyanide, 
but no numerical details of the measurements 
are given nor have they apparently been pub-
lished elsewhere. 
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potassium chromicyanide, have confirmed that the spin-lattice 

relaxation times measured by both this and the pulse saturation 

method should be equal if the pulse measurement exhibits simple 

exponential behavior. It is believed that the measurements on 

ruby represent the first reported systematic investigation of 

the angular depenqence of spin-lattice relaxation times in 

crystals of extremely low Chromium concentration. Fo~ reasons 

mentioned below the measurements sometimes introduce some 

uncertainity into the determination of the relaxation time but 

the general trend is in agreement with the calculations re­

por~ed here and the more exact cnes made by Donoho (19~4). 

4) In many cases the interpretation of measurements 

bas been complicated by an apparent slight dependence of the 

relaxation time T
1 

on the saturation factor Z, resulting in 

T
1 

at the smallest values of Z where measurements could te made 

being approximately twice the value obtained at the largest 

values of Z. A satisfactory explanation for this effect has 

not been found. No similar effect bas apparently been reported 

for pulse-saturation measurements on very dilute crystals. 

The reason for this may be that in the resonance-dispersion 

technique, measurements are made on transitions between levels 

whose populations have been severely disturbed by continuous 

resonant radiation, while in the pulse technique the effective 

relaxation time is read off that portion of the decay which 

corresponds to relatively light disturbances of populations 

returning to thermal equilibrium some time after the removal 

of resonant radiation. 
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5) Experimental confirmation has been obtained for 

the speculation by Carruthers and Rumin (1965) that the 

concentration-dependent slopes in the logarithmic plot of 

0 T
1 

versus 1/Z, which they observed at 0.89 Gc/s and 4.2 K 

in potassium chromicyanide, would tend to zero at sufficiently 

3+ low Cr concentration, with the resultant T
1 

being approxi-

mately equal to the value obtained corresponding to the 

smallest Z. 
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APPENDIX I, 

Calculation of Relaxation Times. 

Example. Relaxation time of 1-2 transition in ruby for H=600 

0 0 gauss, 8=60 , T=4.2 K. 

INPUT 

E=O.O 
D=5,733 (Gc/s) 
gx= 1. 980 
g =1.980 
gy=l.980 
,s~o.o 
8=60.0 
H=600. {gauss) 

Diagonalization 
of Spin-Hamil-
tonian. ,. 
(Equation 48) 

INPUT - T=4. 2(°K) 
iJ 

Evaluation of spin-

Level Energy 

Ge/s. 

1 -7.355 

2 -4.385 

3 4.633 

4 7.107 

Eigenvectors 

3/2 1/2 -1/2 -3/2 

.052 -.595 .797 -.084 

-.087 .797 • 59 2 -.083 

-.008 .016 . 117 .992 

.994 .101 .012 .005 

phonon probabi1itiesr-------~----------------~-------------------------------~ ,. 

(!~~ation 11) ,, 

i j Matrix wij wji 
Elements 
Squared 

1 2 0.0935 0. 71 0.73 

1 3 2.5146 295.04 338.36 '~ '~ 
1 4 0.3866 65.08 76.77 

2 3 0.3816 25.77 28.57 
1 2 4 2.5232 272.84 311.14 2 

3 4 0.0496 0.26 0.27 



1 

,, 
' 

INPUT 

(Resonant 
radiation 
applied to) 
1-2 trans 1 n. 

Solution of equation 
(17) for steady-state 
ni in the presence of 
P=Oo applied to 1-2 
transition. 
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2 

1 

Solution of equation 
(17) for n 1 -n 2 /n 10 -n 20t-~1r-----;.~----...., 
with P=O. 

1 

1 PL 0 T TER ~t----,~+{----f 
~======--....., 

INPUT 

Modulation 
frequency W = 

Ü'(i) .a20} 1 
"'~"ii) ~440 sec-
(iii) 880 . 

1[/ 

1 

~/ 

2 

CONSTANTS OF EQUATION (18) 

-.885 -.007 -.108 .0105 .0014 .0016 

n - n 
1- 1 2 

nl0-n20 

,.o,r---------------~1 
~ "Be s t fit" s i mp 1 e 

0·8 ~. "\ exp onen t i a 1 T R = 0 . 0 0 9 
~~ (Manual operation) . 

~ ~ 

0·61- ~~ 

1-

~ 
~ 

lization to ' 
experiment (see ' 

After norma- ~~ 

0·'2.-Table II) ,TR=0.92 sec.', 

1 1 1 1 1 

0•0\ 

Time-arb. units. 

' ' 
1 



1 2 

Operation on equation 
(17), (modified by 
equations (26) and 
(42), and with w12 and w21 rep1aced 
by w12+P and w21+P), 
name!y: 
1) Steady-state portion 
solved for ni. 

2) TR=l/2W solved for 
from equation (43). 

3) Time dependent 
portion solved for 
bi_ and bi· 

Solution of equations 
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.... 

(47) for A' and tan Q. ~--~~,------~ 

Solution of equations 
(40), (39), and (41) 
for Z and T1 . 

-

.673 

.673 

. 67 3 
• 67 4 

.672 

.672 
.672 
.673 

. 6 7 2 

.672 
• 6 7 2 
• 6 7 2 

z 

.189 

.104 

.055 

.028 

.189 

.104 

.055 

.028 

.189 

.104 

.055 

.028 

1 1 

(Ï.)=220 

tan Q 

.029 

.058 

.116 

.232 

(....) =440 

.014 

.029 

.058 

.116 

(,..) =880 

.007 

.014 
• 029 
.058 

-1 sec 

• 6 7 2 
.672 
. 6 7 2 
. 6 7 2 

-1 sec 

• 6 7 2 
.672 
• 67 2 
.672 

-1 sec 

.672 
• 6 7 2 
• 67 2 
.672 

,, 

.189 

.104 

.055 

.028 

.189 

.104 

.055 

.028 

.189 

.104 

.055 

.028 

1 

p 

-1 sec 

3.2 
6.4 

12.8 
25.6 

3.2 
6.4 

12.8 
25.6 

3.2 
6.4 

12.8 
25.6 
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APPENDIX II 

MEASUREMENT OF SPIN-LATTICE RELAXATION AT 890 Mc/s 

BY A RESONANCE-DISPERSION TECHNIQUE. 

J.A. Carruthers and N.C. Rumin. 

Canadian Journal of Physics, Volume 43 (April, 1965) 
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ABSTRACT 

A new technique has been used to measure the spin-lattice relaxation time 
of Cr+++ in K3Co(CN)& at 890 Mc/s. The method depends on observing both the 
amplitude and phase of the audio signal developed at the modulation frequency 
in a bridge-type microwave resonance spectrometer. One or more modula tion 
frequencies are used, depending on the va lue of the relaxation time and the 
degree of saturation employed. Although similar to the saturation technique, this 
method does not require knowledge of the power leve! or the linewidth, and is 
suited to measurements on weak !ines. Results have been obtained for !ines a t 

· 100, 300, 1 400, and 2 100 oersteds, using crystals containing 0.06% and 0.4% 
chromium. The values of T1 for the lower concentration are in the 20-30-milli­
second range, but relaxation a ppears to be not equivalent to a single time-constant. 
For the higher concentration the relaxation times are shorter and there is a 
marked evidence of multiple time-constants. 

1. INTRODUCTION 

Measurements on paramagnetic relaxation in recent years have emphasized 
the microwave resonant approach, using either the saturation method or the 
pulse technique. The audio-frequency relaxation method, used mainly by the 
Leyden group, dates to a much earlier ti me (Waller 1932; Gorter 1947). The 
technique described here is similar to both the microwave saturation method 
and the audio-frequency relaxation approach. The dispersion of the incre­
mentai susceptibility at audio modulation frequencies is observed at various 
levels of saturation, produced by resonance absorption at the microwave 
frequency. The dispersion observed can be related to the spin-lattice relaxation 
time by extending the saturation theory to include the effect of fluctuating 
spin populations during the modulation cycle. 

Values of relaxation time (T1) obtained by various techniques have shown 
inconsistencies and have not fitted weil into a general theory (Van Vleck 1960). 
Until recently the theories of the interaction between the electron spins and 
the crystal Iattice have been based on two mechanisms, a direct process in 
which a spin absorbs (or emits) a phonon of energy equal to that of the spin 
transition, and a Raman process in which one phonon may be absorbed and 
another emitted at a different frequency. An example of the changeover from 
the Raman to the direct process is reported by Paxman (1960) for K 3FeH(CN)6 

as the temperature is lowered from 4.2 °K to 1.6 °K. Bloembergen, Shapiro, 
Pershan, and Artman (1959), in reporting the effects of cross relaxation, have 
helped to point out the reason for some of the inconsistencies. In add ition, 
Bloembergen and Pershan (1961), Van Vleck (1961) , and Gill and Elliot (1961) 
have recently extended this concept to excited states. 

1Present address: Department of Electrical Engineering, University of Minnesota, Minne­
apolis, Minnesota, U.S.A. 

Canadian Journal of Physics. Volume 43 (April. 19G5) 
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The present experiments were undertaken in order to determine the value 
of T 1 for K 3Cr(CN) 6 at a frequency lower than those previously reported. 
Va n Vleck (1961) has pointed out that the values obtained a t 10 cm, 3 cm, and 
8 mm are in approximate agreement with a 1/P frequency dependence, so 
that by working a t 890 Mc/s one could obtain a check on this law. 

The theory of microwave saturation in a paramagnetic sample is reviewed 
briefty and then extended to include the dispersion effects which are observed 
at the modulation frequency. Use is made of the concept of an equivalent 
conductance mesh in order to help in the visualization of the saturation and 
relaxa ti on mechanisms. 

2. REVIEvV OF SATURATION THEORY 

Two pa pers (Lloyd a nd Pake 1954; Kipling et al. 1961) give detailed develop­
ments of the theory of saturation in paramagnetic resonance, and only a brief 
review is included here. Where possible, the expressions are simplified by the 
use of constants of proportionality since the technique described in the later 
sections depends only on rela tive signal intensities , not on absolute values. 

If the population of spin state j in a multilevel system is n 1° at thermal 
equilibrium, a nd is n 1 when partia lly saturated, the saturation factor S 1k for 
the tra nsition between thej and k levels is given by 

(1) 

The rate equations which describe the changing population densities can 
be written as : 

(2) 

The total transition probability W 1k from level j to level k is the sum of the 
phonon-induced probabiJity WJk and the radiation-induced probability V Jk• 

The values of w 1k and wk 1 are related by the Boltzmann factor corresponding 
to the energy difference between the two levels. The radiation-induced prob­
a bili ti es are reversible so th at V Jk = V ki · 

When radiation acts on a particular pair of levels long enough for steady­
state conditions to be established, the system can be described as having 
reached a stationary state, but this does not correspond to thermal equilibrium. 
The rate equations have dn1/ dt = 0 and hence for stationary conditions 

(3) 

In experimental work the microwave radia tion is applied between a par­
ticular pair of levels, and the radiation-induced probability is zero except for 
this transition. The subscripts on V are therefore unnecessary and are omitted 
to simplify terminology. Similarly, the symbol S, without subscripts, refers 
to the saturation factor for this same pair of levels. The net effective relaxation 
probability from the upper to the lower of these two states includes the effect 
of relaxation by way of the other levels, and is given the symbol W. 

Lloyd a nd Pake (1954) show that the saturation factor in the presence of 
radia tion is given by 
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(4) S = (1 + V/ W)- 1, 

a nd W can be written, for the 1-2 transition, in the form, 

n 

(5) w = Wn + c 21- l L W2kc2k · 
k- 3 

The expressions for the cofactors C1k are given in the original paper, but are 
not included here. In spi te of the complexity of equation (5), the representation 
of the net effective relaxation probability is fairly simple if one works with the 
equivalent passive network of conductances. The equivalent mesh for a four­
leve! system is shown in Fig. 1, where each node point corresponds to one of 

FrG. 1. The equivalent conducta nce mesh for a four-levet system determining the net 
effective relaxa tion probability Win terms of the phonon-induced probabilities W jk· 

the energy levels of the system, and each individual conductance is the 
corresponding phonon-induced relaxation probability w 1k. To be more precise, 
one should use in the equivalent mesh the mean of w 1k and wkil but a t 4.2 °K 
and 890 Mc/ s these two terms are different by only about 1%. and the error 
involved in neglecting this difference is not significant. 

1 t is worth no ting that the equivalent-circuit concept can be useful in 
calculating the saturation factor S. In the series circuit of Fig. 2, consisting of 

v 

E w 

FrG. 2. The equivalent circuit for calcu la ting S from the rad iation-induced prob~bil!ty V 
and the net relaxa tion probability W. The value of S is given by (1 + V / W) - 1

, wh1ch 1s the 
ratio of the voltage across V to the total voltage E. 
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the radiation-induced probability V, the relaxation probability W, and a series 
e.m.f. E, the value of S given by equation (4) is the ratio of the voltage across 
V to the source voltage. The analogy between a partially saturated system and 
an active mesh is found to be of general value in analyzing the behavior of 
the system and is further developed in Section 7. 

The objective in saturation measurements is to determine the relaxation 
probability W. It follows from equation (4) that the value of W can be deter­
mined from measurements which determine S as a function of V, and this 
procedure is the basis of the saturation technique. The spin-lattice relaxation 
time T1 is related to W, for a simple two-level system, by 

(6) T 1 = 1/ 2W. 

Even in multilevel systems, in which it may not be possible to describe the 
relaxation process by a single time-constant, it is common practice to define 
T1 by equation (6) . 

The experimental measurements are based on determining the power 
absorbed in the paramagnetic sample as a function of the incident power. 
If we arbitrarily designa te the levels between which the radiation acts as levels 
1 and 2, the expression for the power absorbed per unit volume of the sample 
is given by 

(7) 

From the definition of the saturation factor, equation (7) can be written as 

(8) 

But the power absorbed can a lso be expressed in terms of the imaginary part 
of the magnetic susceptibility, x", and the microwave magnetic field strength, 
H1: 

(9) 

From equations (8) and (9), 

(10) x" 

The actual value of V depends on many factors, including the orientation 
of the crystal with respect to the steady magnetic field. But since the dispersion 
technique developed in Sections 3- 6 does not require knowledge of the absolu te 
magnitude of V, we shall write it merely as being proportional to H 1

2g(v), 
where g (v) is the line-shape factor defined by 

i co g(v)dv = 1: 

(11) V = JH1
2g(v). 

Combining equations (10) and (11), and introducing a new constant of 
proportionality K, we have 

(12) x" = KSg(v), 

where 
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For measurements of the relaxa tion probability W by the saturation 
technique, only relative values of x" a re important. From equation (9) x" is 
seen to be proportional to the ratio of the power absorbed to the power incident, 
and the change in this ratio, as saturation occurs, is a li that needs to be 
measured. The saturation factorS can be determined experimenta lly for pa r­
ticular values of input power, and using equations (4) and (11) the relaxation 
probabili ty can be calculated. The convent ional saturation technique therefore 
requires accurate knowledge of the radiation-induced probabili ty V, and thus 
J , H 1, and g(v) must be known. One advantage of the resonance-dispersion 
method described in later sections is that these quantities do not appear 
explicitly in the final equations. 

In practice it is customa ry to use frequency or magnetic field modulation 
and synchronous detection in order to obtain a better signal-to-noise ratio. 
Modulation of the magnetic field is the preferred approach because extraneous 
reftections in the microwave system can cause difficul ty when frequency 
modulation is employed. The magnetic field H is modulated at a n audio 
frequency w wh ile His slowly swept through the li ne. The amplitude of modula­
tion is small compared to the linewidth a nd the curve t raced out on the recorder 
is proportional to the slope of the x" versus H plot. We are therefore interested 
in an expression for the differentiai of x", which can be obtained from equation 
(12). But when His varied instead of the frequency v, t he tine-shape factor in 
equations (11) and (12) will be written as g(H), where 

i "' g(H)dH = 1. 

Therefore, we have 

(13) dx" = K(Sdg(H) + g(H)dS). 

Equation (13) is the basis of measurements of relaxation probability by 
the satura tion technique when low-level modulation of the magnetic field is 
employed . As discussed by Bloembergen et al. (1948) and Andrew (1956) , 
there are two conditions under which this equation can be put in a simple 
enough form for reduction of experimental data. 

Case (1 ) . When the magnetic field is modulated a t a rate which is very 
slow compared to the relaxation probability, the spin populations readjust 
quickly enough during the modulation cycle for us to assume that stationary 
conditions apply at ali t imes. Equations (4) a nd (11) can be used to express 
dS in terms of dg(H). Therefore, at very low modulation frequencies, 

(14a) dx" = KS2dg(H). 

Case (2) . When the modulation rate is very fast compared to the relaxation 
probability, t he spin population can be assumed to be consta nt during the 
modulation cycle. Hence dS can be put equal to zero a nd we have 

(14b) dx" = KSdg(H). 

Equations (14a) and (14b) show that if His set at sorne a rbitrary point of a 
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partially saturated Iine and the modulation frequency is slowly varied, a form 
of dispersion should be observed with the signal at a very high frequency, 
greater than that at very low frequency by the factor 1/ S . This dispersion, 
illustrated qualitatively in Fig. 3, results because the spin-lattice relaxation 

...J 
<t z 
(!) 

en 

S=a constant 

IJJ 1 
2:: 1-------~ 1 
1- : 
<t 1 

...J : 
IJJ 1

1
W=I/T 

~~------------~--------------~ 
MODULATION FREQUENCY- (ù 

FIG. 3. Qua litative dispersion curve showing the increase in signa l as the modula tion 
frequency is increased. 

probability is comparable to the modulation rate over a particular range of 
modulation frequencies. 

In conventional measurements using the saturation technique it is important 
to choose a modulation frequency such that dispersion is not present. But, as 
shown by Bloembergen et al. (1959) and Andrew (1956), the effective value of 
relaxation time when radiation is applied is ST1, not T1• The region of disper­
sion therefore shifts to higher frequencies as the saturation factor decreases, 
and the choice of modulation frequency for performing experiments on a sa mple 
which has T 1 equal to several milliseconds is a serious practical problem. 

ln the sections which follow, the dispersion region is examined more fully 
in order to show how the effect can be used to advantage in measurements of 
spin-lattice relaxa tion time. 

3. THE DISPERSION EQUATIONS 

In order to obtain equations which describe the region of dispersion it is 
necessary to go back to the ra te equations. Stationary conditions are not 
applicable, a nd the fluctuations in the spin populations during the modulation 
cycle must be taken into account. The additional complexity involved in 
dealing with nonstationary conditions has resulted in our being able to obta in 
a solu tion for a two-level system only. However, the results of Castle et al. 
(1960) show that it is often a very good approximat ion to assume tha t a single­
valued relaxation t ime occurs for the four-Ievel CrH ion in dilute crystals of 
K 3Cr(CN) 6. ln this case it would appear difficult to distinguish between 
relaxation occurring between the two levels directly, and relaxation by way of 
the other two Ievels. Consequently, the solution of the two-level case should be 
of in terest, at !east as a first step. 

If the upper and Iower of the two Ievels are designat ed 1 and 2 respectively, 
the rate equations become 



582 CANADIAN JOURNAL OF PHYSICS. VOL. 43, 1965 

dn1 / dt = n2 W21 - n, W12, 

dnddt = n,W12- n2W21, 

using the relation W12 = w 21eh•lkT, and !etting w be the mean of w21 and w12 , 

we have, to good approximation, 

W12 = w(1 + hP/ 2kT) + V, 

W21 = w(1 - hv/ 2kT) + V. 

By subtracting the two rate equations, and using the condition that n 1 + n 2 = 
N, the total ion density, we obtain 

If we let n represent the population difference, n2 - n 1, and let n 0 be the 
difference at thermal equi librium, the rate equation becomes 

(15) dn/ dt = 2w(n 0 - n) - 2n V. 

When sinusoïdal modulation is appl ied to the magnetic field, the line-shape 
factor g(H) is caused to fluctuate. If the amplitude of modulation is small 
compared to the linewidth, the g(H) term wil l be sine-wave modulated. The 
expression for V can therefore be written in terms of a mean value V and a 
small component which varies at the modulation frequency w: 

V = V(1 + ae 1w
1

) . 

We assume a solution for n of the same fonn as for V, 

n = n(1 + beiwt). 

Substitution for n and V in equation (15) yields 

(16) 2n0w = n(2w + 2V) + e1w1(2wnb + jwnb + 2nVb + 2nVa) 

+2nVabe12w1
• 

The last term is very small and, being at twice the modulation frequency, 
it will be rejected by the synchronous detector. Equation (16) can then be 
separated into two parts, one involving the mean values, the other containing 
the time-varying terms: 

(17a) 

(17b) 

n/no = (1 + V / w)- 1
, 

nb(2w + jw)eiwt + 2nV(a + b)eiwt = o. 

The first part of equation (17) gives the mean value of the saturation factor 
during the modulation cycle, and is given the symbol S: 

(18) S = (1 + V/ w)- 1. 

Equation (17b) involves the amplitudes of the alternating components and 
hence must con tain information on the dispersion. But to use this equation for 
experimental determinations of w it is necessary to intèrpret the equation in 
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terms of a particular experimenta l procedure. For future reference equation 
(17b) is rewritten, using the definition of S from equation (18) and substituting 
T1 for 1/ 2w: 

(19) (a+ b)/ a = (S + jwST1)/ (1 + jwST1). 

4. EXPER IMENTAL PROCEDURE 

The spectrometer, described more full y in Section 8, is of the bridge type 
with a heterodyne receiver. The receiver is linear over the whole ra nge of 
signallevels employed. The microwave power leve! can be adjusted by variable 
a ttenua tors between the oscilla tor a nd the bridge element. The audio-frequency 
signa l from the linear detector of the J.F. system is fed via attenuators to a n 
a mplifier a nd phase-sensitive detector. The audio system is linear over the 
whole ra nge of operation. 

Consider that the d-e. magnetic field is set at a particular value somewhere 
nea r the cen ter of the absorption line and tha t the bridge is adjusted so as to 
be sensitive to the imagina ry component of the incrementai susceptibility, 
dx" (Feher 1957). The magnetic field is modulated over a n amplitude ra nge 
tha t is small compared to the linewidth, and the frequency is chosen from one 
of the severa! fixed a udio frequencies for which the na rrow-band amplifier is 
designed. 

The microwave power is first set to a very low leve! so that saturation effects 
a re negligible. The phase-sensitive detector a nd recorder are adjusted to give 
a good deflection, it being understood t hat any phase shift in the modulation 
coils a nd in the a udio system can be balanced out. 

The microwave power is increased by a defini te amount, say 10 dB, by means 
of the microwave attenuators. If saturation is still negligible, an increase in 
the a udio attenuation of 10 dB will leave the deflection unaltered. But if 
s:1 turation is starting to become apparent, the deflection will be less a nd the 
phase-sensitive detector may show that the phase of the audio-frequency 
signa l has been altered by a measura ble amount. Severa! measurements can 
be made a t different power levels, and at other modula tion frequencies, to 
determine the effect of power leve! a nd modulation frequency on the phase 
a nd magnitude of the output signa l. I t should be noted th a t the use of a 
squa re-law detector in place of t he heterodyne receiver would alter the pro­
cedure on ly to the extent that for each 10-dB decrease in microwave attenuation 
there should be a 20-dB increase in a udio a ttenuation in order to maintain 
the sa me output signa l, in the absence of saturation. Also, a lthough we cont inue 
to discuss the procedure for t he condition of a fixed value of the d-e. magnetic 
field, in practice the fi eld is swept slowly t hrough the line, a nd the signa l 
intensities at corresponding points, t hat is, points equally distant from the 
center, a re compared for various power levels and modula tion frequencies . 

In a spectrometer employing a heterodyne receiver the ampli tude of the 
signal is proportiona l to the incrementai power absorbed in the sample (Feher 
1957) . If n is the popula tion difference between the two levels, the power 
absorbed per unit volume of the sample is given by hvnV. Writing n and V 
in terms of t heir average and fluctuating components, we obtain 
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If the second-harmonie term is neglected, the incrementai power dP can be 
written as 

dP = hviiV(a + b)e1"•1
• 

We can substitute for ii the product Sn 0• V can be replaced by JH1
2g(H), 

where g(H) is the average value of g(H) over the modulation cycle. Therefore, 

dP = hvnoJg(H)H1
2S(a + b)eiwt. 

The microwave field H 1 is proportional to the square root of the input power. 
Therefore, according to the procedure outlined above, the relative signal from 
the phase-sensitive detector is proportional to dP/ H1\ which is given by 

(20) dP/ H 12 = [hvn 0Jg(H)]S(a + b)e1"'1• 

Wh en the input power leve! is low enough for saturation effects to be negligible, 
we have that S ~ 1 and n is effectively constant. Bence b ~ 0 as S ~ 1, and 
the term (a + b) ~a. This unsaturated condition corresponds to maximum 
relative signal strength. 

As the input power is increased, the saturation factorS decreases from unity 
and (a + b) changes in magnitude and phase. From equation (20) the effect 
of saturation on the relative signal strength is determined by the product 
S(a + b). If we use the symbol A to denote the relative signal strength when 
the system is partially saturated to that when S = 1, we have 

(21) A = [S(a + b)]/a. 

Making use of equation (19), the dispersion equation becomes 

(22) 

Letting A =A'+ jA", and tan 0 = A"/ A', we obtain 

(23) 

(24) 

(25) 

A' = S(S + w 2S 2T1
2)/ (1 + w2S2T 1

2
), 

A" = wS2T1(1 - S) / (1 + w2S 2T12), 

tan 0 = wST1(1 - S) / (S + w2S 2T 1
2
). 

For a particular value of S the real and imaginary components of A change 
with frequency in much the same way as observed for other relaxation pheno­
mena. From the form of the expressions it is apparent that the relaxation time 
T is equal to ST1, in agreement with derivations by Bloembergen et al. (1959) 
and Andrew (1956). 

A', A", and tan 0 are measurable quantities. Using two of the above equa­
tions, and knowing w, it is possible to deduce values of both Sand T 1• But since 
the equations are not linear in Tb there is possible ambiguity in the reduction 
of data. In this respect it is instructive to interpret the dispersion in terms of a 
Cole-Cole diagram, as is often clone for dielectrics (Cole and Cole 1941). 
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5. COLE- COLE DISPERSION DIAGRAM 

With the substitution of r for ST1 in equation (22) a simpler form of the 
dispersion equation is obtained: 

A = S(S + jwr) / (1 + jwr) . 

By rearrangement, 

(26) (S -52) = (S-A) + jwr(S- A). 

The amplitude A is plotted in the complex plane in terms of its real a nd 
imaginary components A' and A" in Fig. 4. If only w is a llowed to va ry, 

( A-S2)=wT(S-A) 

(S-A) 

-----~w=oa ....... __ _ 

s 
A-AXIS 

FIG. 4. Cole-Cole diagram for relative signal a mplitude when saturation is present. T he 
effective relaxa tion time r is ST 1• 

equation (26) shows that the locus of A must cross the A' axis at A' = S a nd 
A' = 5 2, when w = oo and w = 0, respectively. According to equation (26), 
(S-A) and wr(S- A) are at right angles and add vectorially to equa l 
(S- 5 2) . Therefore, the locus of A must be a semicircle, a nd (A - 5 2) is 
equal to wr(S- A). 

There is one semicircle for each value of S, a nd so a whole family of semi­
circles can be drawn to include ali values of S . As S approaches either of its 
limiting values, 0 or oo , the semicircle diameter ~ O. The maximum diameter 
is 0.25 and occurs for S = 0.5. 

Ideally one might choose to set the power level, which in turn fixes S, and 
then take severa! determina tions of A as w is va ried through the region of 
dispersion. But it is difficult to follow this experimental procedure since 
narrow-band a mplifiers a re required and t he phase adjustments are sensitive 
to frequency. Measurements are therefore made a t one modula t ion frequency 
for severallevels of input power ; then the frequency is a ltered a nd the process 
is repeated. 

For a particular value of the modulation frequency the locus of A is con­
strained to lie only within the region represented by the family of semicircles. 
The path followed by A as S is va ried depends primarily on the value of 
wT1• If wT1 » 1, the path is a long the A' axis until very small values of S are 
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obtained. For example, if wT1 ~ 10, the phase angle (} is approximately 45° 
when 5 = 0.1. The modulation frequencies are therefore chosen so that 
measurable phase shifts occur when 5 is somewhere within the range 0.5-ü.Ol. 

6. REDUCTION OF DATA 

The Cole-Cole diagram provides a simple means for reexpressing the informa­
tion contained in equations (23), (24), a nd (25) . Both 5 and T 1 have to be 
derived from the measured quantities A', A " , a nd tan 0, a nd it is important 
to remove a mbiguity in the calculated results as far as possible. 

The angle between (5- A) a nd (A -52) is 90°, a nd therefore 

(27) (A") 2 = (5 - A') (A ' - 5 2). 

Substituting A' tan(} for A " gives 

(28) 5 3
- A'52 - A'5 + (A')2(1 + tan 20) =O. 

Since equation (28) is cubic in 5, there are three roots. Of these one is negative 
and can be neglected. The presence of two a llowable solu t ions for 5 follows from 
the observation that a measured value of A can correspond to two of the 
Cole-Cole semicircles. If(} is close to the maximum angle permitted for A, the 
two solutions for 5 are very nearly equal a nd it is difficult to decide which is 
the correct one. Hence, for each modulation frequency it is advisable to keep 
the power leve! below that for which th is condition can arise. A useful cri terion 
is that wr > 1, or 5 > 1/ wTJ. If this precaution is observed, the correct 
solution for 5 is the smaller of the two allowable roots of equation (28) . 

The method of successive approximations is a simple means for finding the 
roots of equation (28) . The equation is quoted in two other forms, equations 
(29a) and (29b), which !end themselves to this a pproach: 

(29a) 5 = A ' [ 1 + A 1 ~ 52 tan 
20] , 

(29b) [ A ' ] ' 5 = v' A ' 1 - 5 _ A 1 tan 
2
0 . 

For the first approximation, one sets 5 = A ' in the right-hand side of equation 
(29a) and calculates the approximate value of 5 from the experimental figures 
for A' and tan O. This a pproxima te 5 value is then used in the right side of the 
equation and a more accurate calculation made. The process can be repeated 
as often as warranted by the accuracy of the experimenta l data. This procedure, 
using equation (29a), Ieads to the lower of the two a llowable roots, while a 
similar approach using equation (29b) Ieads to the higher of the two solutions. 
ln using equation (29b) one substitutes v' A' for 5 in the right side of the equa­
tion for the first a pproximate calculation. The approximate relations corre­
sponding to equations (29a) and (29b) are given in equations (30a) a nd (30b), 
respective! y: 

(30a) 5 = A ' ( 1 + 1 t~n ~ ) ' 
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(30b) , ( vA' 2 )t 5 = v A 1 - 1 _ v A tan 0 . 

One fur ther set of equations is necessary for calculating T1 from the da ta 
on A'1 tan 0, 5, a nd w. ln the Cole-Cole diagram (A -52

) = wT(5 - A); 
hence, from similar tria ngles, 

WT(5- A) (A ' - 52
) 

5 - A = --A-n- . 

Putting A" =A' tan 0, a nd T = 5T~, we have 

(31a) 
(A ' - 5 2

) 

T1 = A 5w tan 0 · 

An equiva lent expression can a lso be derived : 

(31b) 
, A ' tan 0 

71 = 5w(5 - A ) . 

Both equa tions, (31a) a nd (31b), should give the same a nswer for T1• But 
small experimental inaccuracies can lead to fa irly large errors in T1 because 
of the difference in term (A' - 5 2) or (5- A') . If the magnitude of A' is 
doser to 5 than to 5 2, then equation (31a) should be used. This will be the case 
if WT > 1. 

In ali experimental work reported here wT1 > 1. Under these circumsta nces 
the power is increased until 0 is about 45°, a nd the data a re reduced by equa­
tions (30a), (29a) , and (31a). 

When wT1 = 1 it should be possible to employ a different approach. Using 
equation (25) , we find by differentia ting the numerator a nd denominator that 
ta n 0---) wT1 as 5 ---) O. When wT1 » 1, this limit is a pproached only when 
5 is very small, but if wT1 = 1, the value of tan 0 should be within 10% of its 
limi ting value when 5 = 0.05. 

7. EQU IVALENT C IRCUIT 

Equations (17) to (25) can be interpreted in terms of an equivalen t circuit 
shown in F ig. 5. The choice of para meters to correspond with voltage is some­
what a rbitra ry, but the circuit as illustrated has been found to be helpful. 

v 

=n-n 
0 

C=l/2 
w 

FIG. 5. Equivalent circu it of a two-Jevel system. The mean saturation factor is obtained 
from the fractional d-e. voltage across ii', and the relative a-c. signal can be calculated from the 
a-c. voltage across ii'. 
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Equation (17a), which gives the mean value of the population difference, ii, 
in terms of V, w, and n 0 , can be considered to correspond to the d-e. circuit. 
The relaxation path is by way of the spin-lattice probability w, and the 
relaxation process is equivalent to a RC dis-..:narge. The capacitance value 
should be tin order to have the correct relaxation time T 1 = 1/ 2w. The equiva­
lent charge should be proportional to the amount by which the population is 
disturbed from the equilihrium value, and if we take q as equal to (no - ii) 
the remainder of the d-e. circuit is determined; t ha t is, the voltage across the 
capacitor is 2(no- ii), the e.m.f. is 2no, a nd the voltage across V is 2ii. 
Incidentally , the microwave power absorbed in the sample is proportional to 
the equivalent current 2iiV. The current has dimensions of dn/ dt, and equation 
(17a) expresses the fact that the average current flowing into the capacitance 
is zero because the radiation-induced rate of change of population is bala nced 
by the relaxation rate. The saturation factor ii/ no is given by the ra tio of the 
voltage across V to the source voltage. 

The dispersion relationship expressed by equation (17b) is a lso described by 
the same basic RC circuit, with the addition of a n a -c. source voltage. The 
incrementai voltage across V increases when the modulation frequency is 
made to increase, resulting in a signal at very high frequencies 1/ S times the 
low-frequency va lue. Equation (17b) can be interpreted as showing that the 
net a-c. current at the junction point of V, w, and C is zero. If we drop the 
frequency factor e1"'1, the current flowing through V equals 2iiV(a + b) , the 
component through w is 2iibw, and that through the capacitance is jwiib. If ais 
taken as a positive real number, then it is necessary for b to be complex, with 
the real part negative and the imaginary part positive. The a -c. voltage across 
the capacita nce is given by -2iib, that across Vis 2ii(a + b) , and the source 
voltage must equal 2iia, or 2Snoa. 

A slightly different version of the circuit for a two-level system is shown in 
Fig. 6. I t appears obvious that one should be able to ex tend this circuit to 
include multilevel systems by placing a capacitor between each node of the 
mesh a nd the neut ra! point, but theoretical justification for this has not yet 
been established for more than the two-level system. 

v 

w 

FIG. 6. Modified equivalent circuit which has a capacitor from each node to a neutra! point. 
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8. APPARAT US 

Figure 7 shows a block diagram of the spectrometer which is patterned a fter 
appara tus described by Feher (1957). The superheterodyne receiver is linea r 

RECOROER 

F IG. 7. Block diagram of t he spectrometer. 

over t he signal range used in the experiment. The bridge element is a coaxial 
ring circui t built from modified Gene.ral Radio 874 components. The ba la nced 
detector is based on a GR 1602B admittance bridge modified by increasing 
the coupling between the "detector" arm and the "load" arms to give adequate 
crystal currents from t he local oscilla tor coupled into the "detector" a rm. 
The 1209B main oscillator is free running a nd has been provided with good 
tempera tu re lagging a nd sound insula tion. Well-regula ted d-e. supplies are 
used for the fi la ment and H.T. currents. ln the receiver a bala nced I.F .I. P205 
preamplifier is followed by a GR 1216A I.F . a mplifier which has one stage 
bypassed a nd the bandwidth increased from t he factory setting. The a udio 
amplifier uses plug-in twin-T elements to provide narrow-band response a t the 
audio frequencies used, i.e. 35, 140, 400 c/ s. A Phazor 200A phase-sensitive 
detector drives a T exas Servori ter recorder of 5-m V full -scale sensitivity. A 
conventional phase-shifting circuit using a n R C load on a center-tapped tra ns­
former , is p laced in the line to the modulating coils to control t he phase of t he 
modulating field. 

9. EXPERIM ENTAL COND ITIONS 

Crystals of dilute K 3Cr (CN) 6 were grown in t he labora tory from solutions 
of pa ra magnetic K 3Cr (CN)6 a nd dia magnetic K 3Co (CN) 6• Concentrations of 
the CrH ion were measured by the method of Sandell (1959) a nd found to be 
about one half of the nomina l concent ra tion. The two concentrations used for 
these experiments were 0.1% a nd 1.0% nomina l, 0.06% a nd 0.4% measured . 
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T ables of the energy-level structure of potassium chromicyanide have been 
published by Chang and Siegman (1958), and severa! graphs are given by 
Butcher (1957). Most of the data reported here are for a crystal orientation 
which places the z axis of one magnetic complex parallel to the static magnetic 
field. The four transitions are indicated in Fig. 8. Actually there are six !ines, 
because the other magnetic complex gives additiona llines a t 100 and 300 gauss. 

~ 
u 
~ 

" 1 
>­
(!) 
0::: 
w 
z 
w 

10 

B=9o• 
.P=t 6° 

TRANSITIONS SHOWN FOR •s890 Mc/s 

-IOOL-__ J-__ _L __ _J ____ L---~I.~O---L--~~--~---L--~2~·0~--~~x~I03 

H- OERSTEDS 

FIG. 8. Energy leve! diagra m for KaCr(CN)6 for H para llel to t he z axis. T he four transitions 
at 890 Mc/s occur for 100, 300, 1 400, and 2 100 oersteds. 

Since the two lOO-gauss !ines a re not properly resolved, sorne of the data for 
the 100- and 300-ga uss lines were taken with the crystal rotated 6° in the a b 
plane, so that the static magnetic field and the a axis of the crystal were 
parallel. In this case the energy levels for the two complexes a re superimposed 
and single !ines are observed at 100 and 300 gauss. Comparison of data for the 
300-gauss !ines did not show a measurable difference in the value of T 1 for the 
two orientations. 

Ali measurements were made at 4.2 °K with the crystals in contact with the 
liquid helium. The microwave operating frequency was 890 mc/ s. The ampli­
tude of modulation was maintained at a low leve! to ensure that the line shape 
did not depend on the modulation amplitude. 

10. RESULTS 

The 300-gauss tine was studied more intensively than the ethers because of 
the better signal-ta-noise ratio. Data were obtained a t three audio modulation 
frequencies and for each of the two orientations. These results are summarized 
in Fig. 9, where the observed values of T 1 are plotted as a function of the satura­
tion factor S. The fact t ha t the points are grouped into !ines with finite slope 
is an indication that the relaxation system does not have a unique t i me-constant. 

The results for the lower concentration (0.06%) lie along a line of much 
lower slope than those for the higher concentration, and it is more meaningful 
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F rc. 9. Relaxa tion times a t 890 Mc/sand 300 oersteds for dilute K 3Cr(C)I)6 crystals. The 
dependence of T1 on the satura tion factor indicates that relaxa tion cannot be represented by a 
single time-constant. 

to speak of the effective la ttice relaxa tion ti me T 1• The question still a rises as to 
which value should be picked from the graph, and in this respect the data do 
not give as clear a picture as would be obtained from results using the pulse 
technique. It is seen that the lines for the two concentrations cross, a nd it is 
presumed that for lower concentration of the CrH ion the results would lie 
along a line with Jess slope a nd would again cross the other two. For this 
reason, and others discussed in the next section, it is considered that t he best 
value of T 1 is about 30 milliseconds. 

For compa rison of T 1 for the four different lines severa) results have been 
averaged with S between 0.25 a nd 0.1, measured with wm = 35 c/ s. Note that 
the data in Fig. 9 do not indicate significant differences for the two crysta l 
orientations. The averages of T able 1 were obtained by using only data for the 

TABLE 1 

Spin-lattice rela xation time T 1 in 0.06% 
crystals of K 3Cr(CN) 6 for four !ines at 

890 Mc/s 

Ho (oersteds) 

100 
300 

1 400 
2 200 

T1 (milliseconds) 

22 
23 
24 
29 

0.06% crystals. Poor signal-to-noise ra tios were observed for the high field 
lines and it was not feasible to work at small values for S. Similar comparisons 
were obtained for the higher concentra tion, 0.4% . 
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11. DISCUSSION 

From the x-band results of Castle et al. (1960) and Kipling et al. (1961) it 
was expected that single-valued relaxation times would be obscrved a t con­
centrations below 1% . Failure to observe this even at 0.06% shows the need 
for further studies. Although Castle et al. (1960) observed an inverse tempera­
ture dependence of T 1 a t temperatures of 4.2 °K and lower, there was a sugges­
tion of a changeover to a Raman process at temperatures only a little above 
4.2 °K. From this, one might expect that the results reported here, at 4.2 °K 
and 890 Mc/ s, do not correspond to a "direct" process and are therefore not 
comparable with those at x band. Further work in this area is now in progress, 
and preliminary data seem to indicate that for the 300- and 1 400-gauss !ines 
at !east, T1 varies slightly faster than the reciprocal of the temperature at 
4.2 °K , suggesting that the relaxation mechanism is in a tra nsition region from 
the Raman to the direct. 

The measured values of T1 a t 890 Mc/ sare longer tha n those observed at 
x band by a factor of slightly more than 3. But calculations currently being 
worked out, which take into account the mul tiple relaxation paths present in 
the system, yield results for the average relaxation times at 890 and 9 400 Mc/ s 
which are in fair agreement with measurements. The results of these calcula ­
tions, when completed, will be published separately. 

The extent of the variation of T 1 with S was found to depend on the concen­
tration, much as the appearance of multiple time-constants in x-band pulse 
measurements at higher concentrations. Although the presence of severa! 
relaxation paths can obviously result in multiple time-constants, this effect 
should not be dependent on the concentration. Furthermore, one should 
observe a different dependence of T 1 onS for each of the modulation frequencies, 
an effect which did not show up in the measurements. Therefore, it appears 
necessary to look for some other mechanism to account for the variation of 
T 1 with S. Cross relaxation between pairs of levels is not expected to be 
observable at the crystal orientations used. However, cross relaxation via 
excited states a long the !ines suggested by the work of Gill and Elliot (1961) 
and Bloembergen a nd Pershan (1961) is suggested as a possible explanation. 
Further experiments a t different concentrations and orientations a re indicated 
in order to clarify this aspect. 
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