
Structural efficiency metrics for integrated selection of layup, material, and 
cross-section shape in laminated composite structures  

 
Haichao An a, b, Singh Jasveer b, Damiano Pasini b,* 

 
a School of Astronautics, Beihang University, XueYuan Road No.37, HaiDian District, 100191 

Beijing, China 
b Department of Mechanical Engineering, McGill University, Montreal, QC H3A 0C3, Canada 

 
Abstract:   
Previously introduced to assess the structural efficiency and to ease the selection of 
solid materials and cross-section shapes, the method of shape transformers is here 
extended to deal with the structural design of laminated composites. In particular, this 
work examines laminated composites under bending and torsional loading, and 
considers as free variables of selection the layup, the number of plies, the shape of the 
cross-section, and the materials that make up a laminated structure. Structural 
efficiency measures are first formulated to assess the merit of selecting each of these 
variables separately, and later applied to generate design charts that enable their 
concurrent selection. The results visualized in maps help identify in a glance the role 
that each of the variables plays in the structural efficiency of a laminated composite 
structure, as well as assist in the choice of the best laminated composite concept at the 
preliminary stage of design.  
 
Keywords: Material selection charts; Performance indices; Selection for composite 
materials 
 
1. Introduction 

With the recent advent of automated processes for composite manufacturing, the 
use of laminated composites is steadily increasing and stretching its potential with 
applications stemming from a large spectrum of sectors, including aerospace, marine, 
and land. In general, fiber orientations, stacking sequence, and laminate thickness are 
some, among several others, design variables that can be rationally optimized to 
obtain laminated structures with excellent mechanical properties at minimum mass. 

The design of a single laminate is generally less challenging than the design of a 
structure, like a cantilever, made of composite laminates. In this case, besides the 
stacking sequence, other design variables, such as the cross-section shape and the 
overall form of the structure, can be chosen as design variables to achieve a 
performance improvement. In a composite laminated structure with constant stiffness, 
variables governing its specific stiffness and strength include the fiber orientation in 
each layer, the layup, the constituent materials of each layer as well as the 
cross-sectional shape of the structure. Since some of the material-related variables are 
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directional and their interaction with the structural variables can be strong, the 
structural design of laminate composites can often present higher complexity than that 
with conventional materials. Thence, design tools of selection can be handy at the 
concept stage of design as they can assist in making educated choices on the design 
variables that can best maximize structural efficiency in a given application. 

A number of approaches have been proposed for material and shape selection of 
monolithic or hybrid materials [1]-[3]. One of the most popular is the pioneering 
method of Ashby, which was first introduced for the selection of monolithic shaped 
materials via performance indices, and then it was extended to hybrid materials 
[4]-[6], with fibrous composites being an example [7]. More recently, in the context of 
composite materials, Buckney et. al [8] presented shape factors to measure the 
structural efficiency of beam cross-sections under asymmetric bending, and applied 
them to a cross-section composed of multiple materials. Another work that provides 
metrics for ranking alternative design configurations for composites is that of Thomas 
and Qidwai [9], who used material-architecture indices to quantitatively correlate 
system-level performance of discrete composite components to that of their 
constituent properties describing material and geometry. While effective in providing 
design tools of selection for multiple material components, the works above do not 
examine the layup of a composite laminate and thus are of limited use in the choice of 
the layup for a laminated composite structure.  

With respect to the layup design of a laminate composite, tools for layup selection 
exist and carpet plots are one example [10]. Carpet plots allow to find an appropriate 
laminate layup for given load conditions and mechanical requirements. Carpet plots 
illustrate how a given laminate property depends on the percentage of plies at each 
orientation. Carpet plots are handy to use and can thus offer a convenient tool for the 
early stage selection of the laminate layup. Later, such plots were used and extended 
by Weaver [11] in a work for layup selections of composite structures, where a 
database of laminate layup was developed to store the properties of all permutations 
of layup angles. A series of maps presented to search a subset of laminates that 
perform well on each chart, allows to visually identify trends of properties that might 
otherwise be overlooked by using numeric methods. Building upon Weaver’s 
methodology [11], more recently Monroy Aceves et al. [12] combined the use of FE 
analysis with the selection software CES [13] to help designers select a shortlist of 
composite structures from a large number of options. These charts give freedom to 
modify the selection criteria and design requirements to allow interactive selection of 
data. The methodology was also applied to a real case study, requiring the design of a 
small low-speed composite wind turbine blade [14], showing its suitability in 
identifying the most promising concept for a composite blade. Whereas the works 
mentioned above focus on the layup and/or material selection in shell or plates made 
of composite materials, the interaction between cross-section shape, material and 
layup in laminated composite selection has not been examined yet and it is thus the 
focus of this paper.  

In this work, we extend a method previously introduced for material and shape 
selection of lightweight structures [15]-[18]. It is based on the definition of shape 



transformers, dimensionless measures that can be defined for any geometric 
properties of a structure, such as its volume. Shape transformers describe shape 
properties regardless of size and material, and are thus invariant to any scaling 
imposed to the size of a structure. The method allows to distinctly capture the role of 
cross-section shape and material in the structural properties and structural efficiency 
of a structure. Previously used for the co-selection of shaped materials in single and 
multi-objective applications [15]-[18], the method is here extended to integrate 
information on the layup, making it capable of handling the design and selection of 
laminated composite structures. In Section 2, the paper starts by reviewing the 
fundamentals of the method before focusing on extending the formulation to obtain 
performance indices for laminated composite beams. In section 3, the developed 
indices are used to generate selection charts showing the role of cross-section shapes 
material properties and layup in bending and torsional stiffness design. Selection 
charts for bending and torsional strength design are also presented in Section 4, which 
is followed by concluding remarks.  

 
2. Methodology 
2.1 A brief review of the concept of shape transformers  

Introduced for solid materials and applied to problems of selection for lightweight 
design [19], vibration[15], and biological beams [20], shape transformers have been 
formulated for a range of loading scenarios including stiffness and strength in pure 
bending [16][21], torsion stiffness [18], and combination of bending and shear [17]. 
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Fig. 1 Hollow prismatic beam made of a uniform homogenous material with its design variables 
(M, S, D) 

For a given prismatic structure, such as that shown in Fig.1, we can conveniently 
assume the structural properties to be dependent on the material (M) it is made of, the 
shape (S) of its cross-section, and the overall size, here conveniently described by the 
rectangular envelope (D) with dimensions (H), (B) and (L). As material properties 
allow comparing materials for a given envelope D, similarly we can define shape 



properties, namely shape transformers, that are normalized with those of the envelope 
and are thus dimensionless. Shape transformers can be defined for the area, volume, 
second moment of area and other given geometric quantities (G) of a structure, so as 
to be invariant to scaling. For a given cross-section, a shape transformer (𝛹G) of a 
geometric quantity G is defined by normalizing the geometric quantity G by the same 
geometric quantity of its envelope G𝐷 , such that 𝛹G = G G𝐷⁄ . For example, 
𝛹𝐴 = 𝐴 𝐴𝐷⁄  is the shape transformer of area, where 𝐴  is the area of the 
cross-section and 𝐴𝐷 is the area of the envelope.  

Table 1 shows a summary of the performance indices containing shape 
transformers that were formulated to measure the structural efficiency of a 
cross-section in stiffness and strength designs under bending and torsional loadings. 
On the upper part there are indices for solid materials [15]-[18], whereas in the lower 
part are those that are derived in the next section of this work for laminated 
composites.  
 
Table 1 Performance indices for conventional solid materials and composite laminates. u=B/Bo 
and v=H/Ho describe relative changes in size between a reference baseline envelope 
(𝐵0,𝐻0, 𝐿0) and that (𝐵,𝐻, 𝐿) of the structure which the baseline is compared to. If the 
envelope is prescribed u=v=1, which corresponds to the case examined in this work for laminated 
composites. E, G and ρ  are the Young’s modulus, shear modulus and material density, 
respectively, and σf and τf are the material strengths in bending and torsion, respectively. Mf 

and Tf are the critical failure bending moment and torsion torque, and ΨI and ΨJT are the 

shape transformers for bending and torsion. 
 

Material 
type 

Cross-section 
scaling 

Loading 
case 

Stiffness Strength 

Solid 
materials 

Arbitrary 
scaling  

Bending (𝐸𝛹𝐼)𝑞

𝜌𝛹𝐴
  (𝑞 = ln𝑢𝑢

ln𝑢𝑢3
)  �𝛹𝐼𝜎𝑓�

𝑞

𝜌𝛹𝐴
 (𝑞 = ln𝑢𝑢

ln𝑢𝑢2
)  

Torsion �𝐺𝛹𝐽𝐽�
𝑞

𝜌𝛹𝐴
 (𝑞 = ln𝑢𝑢

ln𝑢1.55𝑢2.45)  �𝛹𝐽𝐽𝜏𝑓�
𝑞

𝜌𝛹𝐴
 (𝑞 = ln𝑢𝑢

ln𝑢1.55𝑢1.45)  

Prescribed 
envelope 

Bending 𝐸𝛹𝐼
𝜌𝛹𝐴

  𝛹𝐼𝜎𝑓
𝜌𝛹𝐴

 𝑜𝑜 𝑀𝑓

𝜌𝛹𝐴
  

Torsion 𝐺𝛹𝐽𝐽

𝜌𝛹𝐴
  𝛹𝐽𝐽𝜏𝑓

𝜌𝛹𝐴
 𝑜𝑜 𝑇𝑓

𝜌𝛹𝐴
  

Laminated 
composites 

Prescribed 
envelope 

Bending 𝛹𝐸𝐼
𝜌𝛹𝐴

  
𝛹𝑀𝑓

𝜌𝛹𝐴
  

Torsion 𝛹𝐺𝐽

𝜌𝛹𝐴
  

𝛹𝐽𝑓

𝜌𝛹𝐴
  

 
2.2 Extension of the definition of shape transformers to laminated composites 

Whereas Fig. 1 shows a prismatic beam of solid materials, Fig. 2 shows its 
counterpart beam made of composite laminates, the object of our study. Variables we 
focus here our attention on, are (M, S, θ, n), where M is the material of each ply, S the 



cross-section shape, θ and n the ply angle of each layer and the number of plies. The 
size of the structure, namely the envelope D, is prescribed. With convention following 
the right-hand-rule, the x-axis is the beam axis and the beam cross-section is in the y-z 
plane. In this work we examine the stiffness in the z-direction. Further work is 
required to generalize the analysis to other directions. 
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 Fig. 2 A composite laminated beam with emphasis on the variables (M, S, θ, n) considered in 
this work 

 
Whereas for solid materials the role of material and shape could be conveniently 

decoupled in the formulation of the performance indices [15]-[18], for laminated 
composites there exists a intrinsic interaction between material, shape, and layup, 
variables that are thus are difficult to decouple, as seen from the formulations derived 
in [22]. For this reason, the performance indices for laminated composites are here 
defined for stiffness and strength design as a bending index (Ψ𝐸𝐸) which is the ratio of 
bending stiffness of a candidate cross-section normalized to the reference 
cross-section. For the reference cross-section, the beam is made of composite 
materials, and its cross-section shape, number of plies and ply angle for each layer can 
be specified according to the design references and requirements. In this work, as later 
described in Section 3, we refer to a reference cross-section with square box shape, 16 
plies and 0° degree of angle for all layers made of E-Carbon Epoxy (CFRP). With this 
information on the reference cross-section, we can define the bending stiffness index 
as 

 𝛹𝐸𝐸 =
𝐸𝐸

(𝐸𝐸)0
 (1) 

Similarly, the torsional stiffness index 

 𝛹𝐺𝐺 =
𝐺𝐽

(𝐺𝐽)0
 (2) 

where the subscript “o” indicate the properties of the reference cross-section. 



Similarly a mass index can be defined as 𝛹𝜌𝐴 = 𝜌𝐴 (𝜌𝐴)0⁄ . But since the material 

density in the product 𝜌𝐴 can be decoupled from the cross-sectional area, the mass 
index corresponds to the respective shape transformer defined for conventional solid 
materials.  

In terms of strength, a set of performance indices need to be defined for laminate 
composites. Due to the strong interaction between the design variables and the ply 
stress as well as the complexity in choosing an appropriate failure criterion for 

laminate composites, we define a composite index for bending strength as 𝛹𝑀𝑓 . 

Expressed in terms of the critical failure moments, this index is given by the ratio of 
the critical bending failure moment of a candidate cross-section and that of the 
reference cross-section as 

 𝛹𝑀𝑓 =
𝑀𝑓

�𝑀𝑓�0
 (3) 

And for torsional strength design, the corresponding index is defined as  

 𝛹𝑇𝑓 =
𝐽𝑓

�𝐽𝑓�0
 (4) 

We note that the shape transformer indices defined above for composite laminates 
depend on the material, cross-section shapes as well as layup, as opposed to those for 
conventional materials, which depend on the cross-section shape only, due to the 
uncoupling existing between material and geometry.  

We now use the indices defined in Eqs.(1)-(4) to formulate performance indices for 
stiffness and strength designs in bending and torsion loading conditions. In this work, 
we focus on laminate composite structures of given size, i.e. the envelope is 
prescribed, thereby leaving material, shape, and layup as active variables of selection. 
For a given envelope, the performance index of a cross-section for bending stiffness 
design can be written with respect to that of the reference cross-section as 

 𝑃 =
𝛹𝐸𝐸
𝜌𝛹𝐴

 (5) 

Similarly, for torsional stiffness design, the performance index is defined as 

 𝑃 =
𝛹𝐺𝐺
𝜌𝛹𝐴

 (6) 

A third performance index is formulated to compare the performances in bending and 
torsion simultaneously, which can be suitable to plot selection charts for maximum 
bending and torsional stiffness. This is expressed as 

 𝑃 =
𝛹𝐸𝐸
𝛹𝐺𝐺

 (7) 

A high value of the performance index in Eq.(7) indicates the candidate cross-section 
performs better in bending than in torsion.  

For strength, similar to the case of conventional solid materials (see Eq.(A.18) in 



Appendix A), the bending strength index of performance is given for a candidate 
cross-section with respect to a reference cross-section (of given size) by 

 𝑃 =
𝛹𝑀𝑓

𝜌𝛹𝐴
 (8) 

Similarly, for torsion strength design (see Eq.(A.21) in Appendix A), the index is 

 𝑃 =
𝛹𝑇𝑓

𝜌𝛹𝐴
 (9) 

To measure the strength in bending relative to that in torsion, we can define  

 𝑃 =
𝛹𝑀𝑓

𝛹𝑇𝑓
 (10) 

This index is useful to produce selection charts for maximum bending and torsional 
strength, as shown in a later section of this paper. A high value represents 
cross-section performing better in bending than torsion for strength. The lower part of 
Table 1 summarizes the performance indices for composite laminates; and Appendix 
B shows the derivation of the critical loadings that are used in the expressions of the 
shape transformers and performance indices presented above.  
We note that the indices for laminate composites become identical to those for 
conventional materials if the reference cross-section is assumed to be solid and if the 
properties of the materials in the ply are non-directional. In this case, the structure 
becomes a multimaterials system identical to that described in [15], where the 
material and the geometry were uncoupled. Hence the indices defined here are more 
general and can model all the cases previously examined with this method.  
 
3. Selection charts for bending and torsional stiffness design 

In this section, we apply the performance indices presented above to four types of 
composite laminated beams (Fig.3) with material properties given in Table C.1 
(Appendix C). The size of each beam cross-section is specified, i.e. the envelope is 
given. The goal is to examine different combinations of layup, cross-section and 
materials, by using the indices to first assess their structural efficiency and then 
illustrate how they can be of aid in developing design maps of selection. 

To develop selection charts, we consider here a demonstrative design scenario, i.e. 
a cantilever beam, although the results here presented can be extended to other design 
cases with other geometric parameters and layup attributes for the beam. Given here 
are the size of the cross-section, i.e. the envelope, with B=50mm and H=50mm, and 
the length equal to L=0.5m. The lay-up under investigation here are orthotropic, as 
these are commonly used in laminate composite design. We recall that to make any 
laminate orthotropic, one can either use only 0 and 90 degree plies, or use a balanced 
laminate in which plies of positive and negative angles are placed adjacent to each 
other. These laminates can be represented as, 
Angle Ply:                          �𝜃  – 𝜃     𝜃     − 𝜃 … � 



Cross Ply:                      [0   90   0        90 … ] 
For demonstrative purposes, here we also assume that the laminate beams have a 
number of plies that can vary from 0 to 24. In addition, the reference cross-section is 
appropriately selected to be a square box, with 16 plies and 0° degree of angle for all 
layers made of E-Carbon Epoxy (CFRP).  

(a) (b)

(c) (d)
 

Fig. 3 Standard sections used in this work as demonstrative application for the development of 
selection charts for laminate composites. (a) Hollow square or square box, (b) Hollow cylinder or 

tube, (c) I-beam, (d) Z-beam.  
 
3.1 Selection charts for minimum mass and maximum bending stiffness 

In laminated composite design a common goal is often to seek for values of the 
design variables that can provide minimum mass and maximum bending stiffness. 
These two objectives are strictly in conflict. Hence, often the need for numeric 
analysis is felt even at the conceptual stage. The design charts presented in this work 
aim at bypassing this step of numeric analysis by providing readily available charts 
that assist in selecting separately and concurrently the best combination of (M, S, θ, 
n). To do so in the following sections, we proceed by activating the design variables 
gradually: first M and S are given, leaving (θ, n) as variables, then S becomes active 
and variables are (S, θ, n), and finally (M, S, θ, n) as variables of selection. 

 
3.1.1 Co-selection of shape and layup 

In this scenario, where the material properties are given and the active variables are 
cross-section shape and layup, the performance index reduces to 

 𝑃 =
𝛹𝐸𝐸
𝛹𝐴

 (11) 

Fig.4 shows a plot of the bending index, i.e. the numerator of Eq. (11), on the y-axis, 
versus the shape transformer of the area, i.e. its denominator, on the x-axis. The 
results are obtained from closed-form expressions for laminate composites [22]. Each 
point on this chart represents a design configuration for a square box with varying ply 
angle and number of plies. For a given material, in this case CFRP, the boundaries of 
the triangular domain represent the potential for the angle ply of a laminate beam with 
square box shape; in particular the domain informs of all possible configurations a 
layup can offer for a ply angle ranging from 0 to 90o (i.e. from A to B) and number of 
plies from 0 to 24 (from O to A). For example, consider a case where the designer has 



to compare the performance of a cross-section having 20 plies with ±20° layup, 
indicated as P on the chart, with other candidate layups. From this chart, we can infer 
that this layup is 0.8 times stiffer and 1.25 times heavier than the reference 
cross-section (a CFRP square box with 16 plies and 0 degree of angle for all layers), 
which is given by 𝛹𝐸𝐸 = 𝛹𝐴 = 1 and represented by a horizontal line. A number of 
other useful insights can be directly gained from the chart. For example, there exist an 
infinite number of designs that have the stiffness equal to the one of the reference 
cross-section, but the reference-cross-section is the lightest. Yet, depending upon the 
application, a designer may be inclined towards selecting a design with 24 plies at 
±20° (denoted as Q on the chart), as this layup may meet the required level of shear 
stiffness. In this case, it is the trade-off between mass and shear stiffness that needs to 
be assessed since the bending stiffness is equal for both designs. 
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Fig. 4 Design chart for the selection of ply angle and number of plies for a given square box. (Red 

stars indicate numerical results obtained from FEA) 
 

Whereas all the charts presented in this paper are obtained from closed-form 
expressions [22], we emphasize that numeric simulations have been carried out for 
validation purposes using a commercial finite element software (MSC.Patran/Nastran, 
Newport Beach, CA). To avoid overcrowding the maps, however, the validation 
points in this work are reported for two cross-section shapes only, i.e. the square box 
section (closed cross-section) and the I-beam section (open cross-section), (Fig.4 
above and Fig.5 below, respectively). For each finite element simulation, a proper 
mesh size, convergence and accuracy were ensured for elastic analysis. Concerning 
the boundary conditions, the cross-section was assumed to be free to warp so as to be 
able to retrieve the numerical values of the warping constant given in [22]. The 
maximum difference between the numeric and analytic results is found to be for all 



cases below 6%, a value that originates from the approximations made in deriving the 
constants. Nevertheless, this accuracy is deemed acceptable especially for the 
conceptual stage of design. 
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Fig. 5 Design charts for the selection of shape and layup for a prescribed material. ( Blue stars 

represent FEA obtained solutions; cross-angle designs are shown in thin solid lines, i.e. from O to 
C) 

 
While Fig. 4 is plotted for a square box, the bending stiffness efficiency is plotted 

in Fig. 5(a) to 5(c) respectively for the other cross-section shapes examined in this 
work (Fig. 3), with given material and beam size. Fig. 5(d) illustrates all of them on a 
single chart that allows the concurrent comparison of cross-section shape and lay-up. 
Looking at the top boundary of each domain, we observe that the tube cross-section 
has the lowest slope and hence is the least efficient, followed by the Z-beam and 
square box sections. The I-beam performs best. The overall extents of their domain, 
however, change. By simply inspecting the chart, we can infer that if one wishes to 
replace a square box section with a tube one, the number of plies should increase by 
more than 1.5 times, thus increasing the mass by 30%. Also, for a given shape, the 0° 
angle ply gives the best performance in bending. This is due to the different behaviors 
of a laminate, which strictly depends on the fiber direction: composite layers are much 
stiffer in the fiber direction than in the perpendicular direction. In addition, the 
performance decreases gradually as the angle increases from 0 to 10 degrees and then 
deteriorates sharply from 10 to 40 degrees. Thereafter, the performance decrease 
becomes gradual again. Quantitatively, the decrease can be measured from their 
respective slopes. This chart also aids in interpreting the performance of a cross-ply 



laminate with respect to the angle ply. For instance, for a given shape and number of 
plies, a cross-ply laminate (indicated by thin lines on the chart, i.e. from O to C) 
performs equally in bending as angle ply with the angle around 24°.  

As a further example demonstrating the use of these charts, consider a design 
problem in which the stiffness requirement is given and depicted by a dotted 
horizontal line in the co-selection chart of Fig. 5d. There are infinite cross-sections 
that fulfill the stiffness requirement prominent among which are (a) I-beam, 0° angle 
ply, 12 plies; (b) Square box, 0° angle ply, 12 plies; (c) Z-beam, 0° angle ply, 20 plies; 
(d) Tube, 0° angle ply, 16 plies; (e) I-beam, cross ply, 20 plies; (f) Square box, cross 
ply, 20 plies. These designs are arranged in accordance to their performance (mass). 
Since the relative performance can be measured directly from the chart, the designer 
can choose one of the listed cross-sections depending upon other criteria, such as a 
given shear stiffness requirement, and manufacturing issues among others. It can also 
be seen that a tubular cross-ply cannot fulfill this requirement. 
 
3.1.2 Co-selection of material, shape, and layup 
 If, besides shape and layup, material becomes an active variable, the pertinent 
performance index p=f(M, S, θ, n) is given by Eq.(5). In Fig. 6, this index is plotted 
for two candidate shapes, the square box and I-beam section, which are the most 
efficient among the four here examined (Fig. 3), and for two candidate materials, 
E-Carbon Epoxy (CFRP) and Kevlar (KFRP). The following insight can be gained 
from Fig 6, where each candidate solutions can be conveniently identified by 
respecting this format: (M, S, θ, n), which we recall indicate (material, shape, ply 
angle ( ), number of plies).  

(1) If only the angle-ply with 𝜃 = 0° and the cross-ply are examined, then the 
cross-sections can be arranged with decreasing order of stiffness for a given envelope: 
(CFRP, Square box, angle-ply); (CFRP, I-beam, angle-ply); (KFRP, Square box, 
angle-ply); (CFRP, Square box, cross-ply); (KFRP, I-beam, angle-ply); (CFRP, 
I-beam, cross-ply); (KFRP, Square box, cross-ply); (KFRP, I-beam, cross-ply). 

(2) For a given number of plies, a cross-ply offers the stiffness of the one with the 
angle ply around ±24°. These apply for all the selected shapes and materials. Hence, 
other factors, such as shear and torsional stiffness requirements will come into the 
picture to drive selection. This statement holds for all combinations of shapes and 
materials.  

(3) Consider two cross-sections with 𝜃 = 0° , one of which is the reference 
cross-section: (CFRP, Square box, angle-ply, 16) and (CFRP, I-beam, angle-ply, 20). 
It can be seen that the latter is stiffer and lighter, hence an ideal alternative. Another 
cross-section that has also similar stiffness is (CFRP, I-beam, angle-ply (10°), 24). 
Despite the similar bending stiffness, it is heavier but possibly has good resistance to 
shear. 

The points reported above show that a number of insights can be obtained from Fig. 
6 without the need of numerical calculations. The chart also represents the potential 
that each material can offer. For instance, by a mere inspection of the domains, one 
can conclude that on average, KFRP cross-section should be around 0.5 times stiffer 



than those in CFRP. 
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Fig. 6 Design chart for the selection of material, shape, and layup (thin solid lines indicate 

cross-angle designs) 
 
3.2 Selection charts for maximum bending and torsional stiffness 

In this section, we focus our attention on the conflict between bending stiffness and 
torsion stiffness, and show the extend of this trade-offs by gradually activating the 
number of variables, starting first with (S, θ, n) and then (M, S, θ, n). 

  
3.2.1 Co-selection of shape and layup 

To include torsional stiffness in the design charts, we resort to Eq.(7). Similar to the 
case of conventional materials [18], open cross-sections performs poorly in torsion, as 
they are several hundred times less stiff. For this reason, this section examines closed 
cross-sections, leaving open sections in Appendix D.  

Fig. 7 shows selection charts for closed cross-sections. For a fixed angle, the 
stiffness in both bending and torsion increases along with the number of plies. 
However, from the curves representing a constant number of plies, we observe that 
the torsional stiffness reaches its peak at 45° as expected, while the maximum bending 
stiffness is at 0°. Moving from left to right along one of these curves (where the 
number of plies is fixed), the torsional stiffness firstly increases and then decreases 
with bending stiffness growing all along. If we divide these curves into two parts with 
the peak point as divider, there exists an improved design on the right half-curve for 
each design on the left half-curve. Hence, all the solutions on the left half-curves can 
be neglected, leaving the bending and torsional stiffness as perfectly antagonist 
objectives. The right halves of all those curves represent Pareto front solutions. For a 
constant number of plies, as the angle increases from 0° to 10°, the bending stiffness 



decreases and the torsional stiffness increases; however, this change is more evident if 
the angle increases from 10° to 40°. Hence, a designer might be inclined to choose an 
angle ply with a lower angle if the bending contribution is more important, or 
conversely with a higher angle (but smaller than 45°) if the torsion has a heavier 
weight. The final decision depends upon the designer’s preference and design 
specifications. 

 

  
Fig. 7 Co-selection of closed cross-section shape and layup for bending and torsional stiffness. 

(Cross-angle designs are indicated by thin solid lines, i.e. from O to C) 
 

A general observation to draw from Fig. 7 is that a square box cross-section 
outperforms a tube one in both torsion and bending. This difference in performance is 
more manifest at lower angles for bending, and higher angles for torsion. For example, 
a square box angular laminate with 45° is about 1.25 times stiffer in torsion than their 
tube counterpart and their bending stiffness is almost identical. On the other hand, a 
square box angular laminate with 0° is about 1.65 times stiffer in bending than their 
tube counterpart but their torsional stiffness remains similar. The cross-plies perform 
poorly in both bending and torsion, whereas they are worse in torsion. 

Appendix D reports selection charts for open cross-sections with curves showing 
similar patterns; hence most of the comments reported above on the angle ply still 



hold. In general, an I-beam performs better than a Z-beam, in both bending and 
torsion. 
3.2.2 Co-selection of material, shape, and layup 

In this section, we consider (M, S, θ, n) as variables of selection. Since displaying 
the effect of all of them might overcrowd the figure, we illustrate only the boundaries 
each combination of shape and material can offer. The candidate materials are CFRP 
and KFRP, and candidates shape are the closed ones (square box and tube in Fig. 3), 
as open cross-sections are very inefficient in torsion.  

Fig. 8 illustrates the relevant domains with that of the CFRP square box 
cross-section as the most efficient for both torsion and bending. With this combination, 
a torsional stiffness of about 8 times the reference cross-section or a bending stiffness 
of 1.4 times the reference cross-section can be achieved. These two are the extreme 
points, that is, these points should be selected if a designer seeks to maximize one of 
the stiffness. However, if a designer intends to maximize both the stiffness, relative 
weights in the formulation of the multi-objective optimization problem can be 
imparted as proposed in [18]. The negative slopes of each region show the conflicting 
behavior of the objectives. As discussed in [18], each point on these slopes 
corresponds to a unique weight factor, which has to be decided by the designer.  

In addition, we note that although selection charts for minimum mass and 
maximum torsional stiffness are not given here, the reader can easily reproduce these 
charts by using the performance index in Eq.(6). Even though these charts are not 
presented here, some insight for torsional stiffness can still be observed from the 
charts for maximum bending and torsional stiffness.  

  
Fig. 8 Chart representing selection domains for combinations of the material, shape, and layup. 

(thin solid lines indicate cross-angle designs) 



 
4. Selection charts for bending/torsional strength design 

In this section we examine the design for strength of a composite laminated beam. 
As failure criterion for the calculation of the strength, we resort to the Tsai-Wu 
quadratic interaction criterion, for the others fail to represent the interactions existing 
in the failure mechanism between the different stress components. Based on the 
performance indices developed in Section 2.2, we calculate via FEA 
(MSC.Patran/Nastran, Newport Beach, CA) the strength ratio (SR) of the candidate 
cantilever beam with specified parameters, such as number of plies, angle, 
cross-section shape and material. By multiplying the values of the applied load (the 
bending moment, M, or the torque, T, both of which are assumed to be unity) by SR, 
we can obtain the critical load (Mf or Tf), for which the beam would fail.  

 
4.1 Selection charts for minimum mass and maximum bending strength 
4.1.1 Co-selection of cross-section shape and layup 
  For given material, the performance index for bending strength design as a function 
of (S, θ, n) is  

 𝑃 =
𝛹𝑀𝑓

𝛹𝐴
 (12) 

Fig. 9 is a plot of the numerator versus the denominator of Eq. (12) for a beam with 
CFRP square box cross-section in bending strength design. Similarities are readily 
observed with the selection chart for stiffness selection shown in Fig. 4: the angle 
increases moving vertically from the top of the triangle to the bottom of the figure. 
The top boundary of the triangle shows that a square box beam with 0° angle ply 
performs better than the others with other ply angles for different number of plies. 
This result is reasonable since the top and bottom walls of a box section undergo the 
maximum tensile and compressive stress, and most of the composites have different 
tensile and compressive strengths. They are weaker in the transverse direction, and 
due to this behavior, the 90° ply angle beams are the worst.  
  Similarly to stiffness design, consider a case where the performance of a 
cross-section with number of plies equal to 20 and fiber orientation of ±20°, has to be 
evaluated and compared to other candidate layups. The chart shows that this candidate 
cross-section is 0.35 times stronger than the reference and 1.25 times heavier. 
Additionally, other different designs exist that have the strength equal to that of the 
reference cross-section, as shown by the horizontal dotted line; yet the 
reference-cross-section is still the lightest. Depending on the application, a designer 
may be inclined toward using the design, which has 24 plies at ±10° and has equal 
collapse load, but a higher mass, which is a trade-off between mass and strength.  
  In addition, there also exists difference between the selection charts for stiffness 
and strength. Firstly, for bending stiffness, there is a slight decrease in the stiffness 
values when the angle varies from 0° to 10°, while a sharp decline from 10° to 40°. A 
moderate drop appears between 40° and 90°, and the stiffness values do not change 
too much within this range. However, for bending strength design, sharp decreases 



occur from the 0-degree ply, and this phenomenon ends for 𝜃 = 20°. From 20° to 30°, 
the bending capacity has a slight drop and since then, the values changes in a small 
range until 𝜃 = 90°. Furthermore, as stated in Section 3.1.1, for the performance of a 
cross-ply laminate with respect to the angle ply, a cross-ply laminate performs equally 
in bending with the angle ply around 24°, while for the case of bending strength 
design this occurs for an angle of about 20.5°. Quantitatively, each decrease described 
above, can be measured from its respective slope. The differences described in this 
paragraph can also be observed and applied to comment on the other shapes shown in 
Figs. 10 (a) to 10 (c). 
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Fig. 9 Bending strength design chart for the selection of ply angle and number of plies for the 

shape of square box. (Cross-angle designs are shown as a thin solid line, i.e. from O to C) 
 

Fig. 10 visualizes the effects of cross-sectional shape and layup for a CFRP beam 
of prescribed envelope. Quite similar to the bending stiffness, the I-beam also 
performs best in bearing the bending moment, as represented by its steepest slope, 
followed by the square box and tubular sections. On the other hand, differences also 
exist between the stiffness and strength design charts. Z-beam sections are the most 
inefficient in bending strength, whereas tubular sections are rather inefficient in 
stiffness. From Fig. 10, it can also be observed that the boundary of the Z-beam is 
completely encompassed in that of the tubular beam. Hence, the designer might be 
inclined to choose a tube cross-section beam with smaller angle if the strength 
requirement is more important, or a Z-beam if the goal is to reduce mass. Similar 
comments apply when comparing a tube with a square box section. A simple 
inspection reveals that if one wishes to replace a square box section with a tubular one, 
the number of plies should be increased by more than 1.5 times, thereby increasing 



the mass by 30%. The final decision is governed by other factors including prescribed 
design constraints and functional requirements.  
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Fig. 10 Bending strength design charts for the selection of shape and layup for a prescribed 
material. (Cross-angle designs are indicated by thin solid lines, i.e. from O to C) 

 
4.1.2 Co-selection of material, shape, and layup 

This section further takes into account the effect of material properties, and 
corresponding charts are governed by the index in Eq.(8). Similarly to the previous 
sections, to avoid overcrowding the chart, only the boundaries of each combination 
are displayed in Fig. 11 for square box and I-beam sections (since these are more 
efficient as shown in the preceding section), and candidate materials, E-Carbon Epoxy 
(CFRP) and Kevlar (KFRP).  

When considering only the angle-ply with𝜃 = 0° and the cross-ply, the order 
obtained for stiffness design (Section 3.1.2) cannot be retrieved for strength design. 
The cross-sections can be ranked in a decreasing stiffness order as: (CFRP, Square 
box, angle-ply); (CFRP, I-beam, angle-ply); (CFRP, Square box, cross-ply); (CFRP, 
I-beam, cross-ply) (KFRP, Square box, angle-ply); (KFRP, I-beam, angle-ply); (KFRP, 
Square box, cross-ply); (KFRP, I-beam, cross-ply). For a given number of plies, a 
cross-ply has the strength of the one with the angle ply of around ±20.5° for CFRP, 
while the angle ply is about 15° for KFRP. The boundary for the square box beam 
with KFRP is located closed to that of the CFRP square box beam. This is similar to 
the case for the I-beam. Hence, the designer might be inclined to choose a 
cross-section with a smaller angle made of CFRP if the strength requirement is more 



important, or a KFRP-beam if he wants to reduce the mass.  
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Fig. 11 Bending strength design chart for the co-selection of material, shape, and layup. (Thin 

solid lines indicate cross-angle designs) 
 

4.2 Selection charts for maximum bending and torsional strength 
4.2.1 Co-selection of shape and layup 

To take into account torsional strength, Eq.(10) can be used to generate design 
charts for co-selecting shape and layup bending and torsional strength. Similar to 
stiffness design, closed sections performs much better than open sections in torsion, 
and they are dozens of times stronger. Thus, design charts only for closed sections are 
given in Fig. 12, whereas for open sections in Appendix D. 

In Fig. 12, yellow and purple regions represent respectively square box and tubular 
sections, where dashed lines indicate the angle ply laminates, and solid lines the 
cross-ply laminates. Similar to stiffness design, the strength in both bending and 
torsion grows with an increase in the number of plies if the angle is fixed. On the 
other hand, if the number of plies remains constant, the torsional strength reaches its 
peak at 45° and the maximum bending strength is at 0°. In strength design, the 
tendency of these curves is similar to that in stiffness design, as stated in Section 3.2.1. 
Likewise, when those curves (where the number of plies is given) are dived into two 
parts by the peak points, all the solutions on the left half-curves can be neglected and 
the right halves then represent Pareto solutions conflicting in both objectives, i.e. 
maximizing both bending and torsional strength. On the other hand, if the number of 
plies is fixed, with the angle ranging from 0° to 20°, the bending strength has a sharp 
decrease, and this decrease becomes moderate when the angle changes from 20° to 
30°, with even less reduction between 30° to 40°. Torsional strength exhibits a 



phenomenon that is distinct from that in bending strength. As the angle increases from 
0° to 10°, the torsional strength increases moderately; however, this change is more 
evident when the angle increases from 10° to 40°. A designer might thus be inclined 
to choose an angle ply with a lower angle if the bending is more important, or with a 
higher angle for the torsional case. 

From Fig.12, it can be obviously observed that a square box cross-section performs 
better than a tubular one in both torsion and bending strength, and this difference in 
performance is more manifest at lower angles for bending, and higher angles for 
torsion, which are cases identical to those in stiffness design. A square box angular 
laminate with 45° is about 1.15 times stronger in torsion than the tube counterpart 
while there is not much difference between their bending strength. In addition, a 
square box angular laminate with 0° is about 1.70 times stronger in bending than their 
tube counterpart but their torsional strength is similar. Furthermore, the cross-plies 
perform poorly in both bending and torsion, as is the case in stiffness design. 
 

  
Fig. 12 Co-selection of shape and layup for bending and torsional strength (closed cross-sections). 

(Cross-angle designs are indicated by thin solid lines, i.e. from O to C) 
 
4.2.2 Co-selection of material, shape, and layup 

In this last section, also the material is considered as variable. Candidate materials 
are CFRP and KFRP, and only closed shapes (square box and tube) are considered. 
Fig. 13 shows the domain boundaries only for the variable combinations (M, S, θ, n). 



Similar to stiffness design, the square box section with CFRP is the most promising. A 
torsional strength of about 8 times the reference cross-section or a bending strength of 
1.5 times the reference cross-section can be obtained, which are the two extreme 
points. If strength is to be maximized, then one of these two points can be selected. 
However, if both strengths should be maximum, then relative weights at each 
objective should be assigned as proposed in [18].  

 
Fig. 13 Design chart representing the potential combination of the material, shape, and layup for 

bending and torsional strength (thin solid lines indicate the cross-angle designs) 
 
5. Conclusions 

The method of shape transformers has been extended in this paper to develop 
performance indices and to generate design maps for the integrated selection of 
material, shape and layup in composite laminated structures. Performance indices 
have been developed for the load cases of bending and torsion in stiffness and 
strength design, and have been exemplified by generating multiple selection charts 
that help visualize the interactions between material, shape and layup. From a 
comparison of closed- and open-walled cross-sections, it appears that the former are 
much stiffer than the latter in torsion, whereas their bending stiffness performances 
differ not much. Based on the Tsai-Wu criterion, selection charts for strength 
evaluation of laminated structures are also presented for bending and torsional cases. 
Two most prevalent layups, i.e. angle ply and cross ply, can be easily visualized and 
their performance compared. From both stiffness and strength designs, it can be found 
that designs with angle ply in small angles are stiffer and stronger than those with 
cross ply. For angle ply designs, both stiffness and strength decrease for increased 
angles in bending, whereas they reach their peaks at 45° for torsion. This method 
provides insight into the optimal selection for laminated composite designs where 



numerical methods may prevent designers from visualizing optimal trade-offs among 
design alternatives. The method can be automated to fill the gap in the well-known 
Ashby’s charts with the addition of layup, which are particularly suitable at the 
conceptual stage of design.  
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Appendix A. Formulation of the performance indices for mass in bending/torsion 
strength design (conventional solid materials) 
 

Whereas the derivation of the performance indices for bending and torsion stiffness 
can be found in [16]-[18], here we present those for bending and torsion strength 
cases since they are unpublished yet. Even though the index for bending strength 
design was reported in [21], this work only considered solid rectangular cross-sections, 
whereas herein we consider any types of cross-sections.  

Let P0 be the performance index (mass) for the reference cross-section (solid 
square). Then, the performance index, P1 for any arbitrary cross-section with respect 
to a reference cross-section can be written as 
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 (A.1) 

In terms of shape transformers and envelope multipliers, it can be expressed as 
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In bending strength design, both structures are required to meet the same moment 
failure requirement, Mf, and therefore 
 𝑀𝑓 = 𝜎𝑓1𝑍1 = 𝜎𝑓0𝑍0 (A.3) 
and 

 
𝜎𝑓1
𝜎𝑓0

=
𝑍0
𝑍1

=

𝐸0 𝑦𝑚0�

𝐸1 𝑦𝑚1�
 (A.4) 

where ym is the furthest distance of the outer fiber from the neutral axis. When the 
concerned shape is symmetric along the neutral axis, and the centroid is located on the 
neutral axis, ym=ℎ 2⁄ , where h is the height of the envelope. Thus, 
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 (A.5) 

Rearranging the terms, the bending strength constraint can be written as 



 𝑢𝑢2 =
1
𝛹𝐸
𝜎𝑓0
𝜎𝑓1

 (A.6) 

Based on Eq. (A.6), the envelope multipliers, u and v, can be found 
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 (A.7) 

where 
 𝛼 + 2𝛽 = 1 (A.8) 

Finally, the ratio of performance indices can be stated as 
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(A.9) 

where α and β are obtained by taking logarithm from both sides of Eq. (A.7), and are 
given by 

 𝛼 = log�𝑢𝑢2�(𝑢),    𝛽 = log�𝑢𝑢2�(𝑢) (A.10) 

The ‘‘𝛼 + 𝛽’’ term in Eq. (A.9) is referred to as the scaling parameter, q. Using Eq. 
(A.7), the scaling parameter, q, can be expressed in terms of envelope multipliers, u 
and v, as 

 𝑞 = 𝛼 + 𝛽 = log�𝑢𝑢2�(𝑢𝑢) =
ln(𝑢𝑢)

ln(𝑢𝑢2) (A.11) 

Hence, a unique performance index can be assigned to each cross-section, and can be 
expressed in terms of material, shape, and size properties as 
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1
𝑚
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 (A.12) 

When the selectable shapes are limited to solid rectangular cross-sections,𝛹𝐸 = 𝛹𝐴 =
1, and the performance index becomes 

 𝑃 =
1
𝑚

=
�𝜎𝑓�

𝑞

𝜌
 (A.13) 

which is the same with the index derived in [21]. 
Additionally, for the co-selection of shape and material of a prescribed envelope, 

the performance index is given as 

 𝑃 =
1
𝑚

=
𝛹𝐸𝜎𝑓
𝛹𝐴𝜌

 (A.14) 

As the envelope is non-scaled, i.e. u=v=1, by rearranging Eq. (A.5) gives 



 𝛹𝐸𝜎𝑓1 = 𝜎𝑓0 (A.15) 
Considering the strength requirement in Eq.(A.3), Eq.(A.15) can be expressed as 

 𝛹𝐸𝜎𝑓1 = 𝜎𝑓0 =
𝑀𝑓

𝑍0
 (A.16) 

Correspondingly, the co-selection of shape and material for non-scaled cross-sections 
is governed by the index 

 𝑃 =
𝛹𝐸𝜎𝑓
𝛹𝐴𝜌

=
𝑀𝑓

𝑍0
 

1
𝛹𝐴𝜌

 (A.17) 

With 𝑍0 as the section modulus of the reference cross-section, which is a constant, 
the index in Eq.(A.17) can also be given as 

 𝑃 =
𝑀𝑓

𝛹𝐴𝜌
 (A.18) 

where 𝑀𝑓 is the critical failure bending moment of a non-scaled cross-section with 
optional shapes and materials. 

When the approach above is used for torsion strength design, the performance 
index can be expected to have an expression similar to that in bending strength design, 
as that in Eq.(A.14). Without detailed derivation process, here we directly give the 
performance index for mass in torsion strength design 
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1
𝑚
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where 𝑞 = ln(𝑢𝑢) ln(𝑢1.55𝑢1.45)⁄ . For the co-selection of shape and material of a 
non-scaled envelope, this index can be expressed as 

 𝑃 =
1
𝑚

=
Ψ𝐺𝑇𝜏𝑓
Ψ𝐴𝜌

 (A.20) 

or 

 𝑃 =
𝐽𝑓
Ψ𝐴𝜌

 (A.21) 

where 𝐽𝑓 is the critical failure torsion torque. 
 
Appendix B. Calculation for the critical bending moment and torsion torque 

For the calculation of the critical failure loadings, the first ply failure criterion is 
used here, and the Tsai-Wu quadratic interaction criterion is employed to evaluate the 
strength performance. We chose Tsai-Wu criterion since it fully considers the 
interactions of different stress components in the equations of failure mechanics. The 
failure index (FI) under the Tsai-Wu criterion is written as 
 𝐹𝐸 = 𝐹11𝜎12 + 𝐹22𝜎22 + 𝐹12(𝜎1𝜎2) + 𝐹66𝜎122 + 𝐹1𝜎1 + 𝐹2𝜎2 (B.1) 
where 𝜎1 is the ply longitudinal stress, 𝜎2 is the ply transverse stress, 𝜎12is the ply 
shear stress, and 𝐹1 = (1 𝑋𝑇) − (1 𝑋𝐶)⁄⁄ ,𝐹2 = (1 𝑌𝑇) − (1 𝑌𝐶)⁄⁄ , 𝐹11 = (1 𝑋𝑇 ⋅ 𝑋𝐶)⁄ , 

𝐹22 = (1 𝑌𝑇 ⋅ 𝑌𝐶)⁄ , 𝐹66 = (1 𝑆2)⁄ , 𝐹12 = −0.5 �𝐹11 ⋅ 𝐹22. For laminated composites, 



the Strength Ratio (𝑆𝑆) is a direct failure indicator compared to the Failure Index (FI) 
which indicates only if failure occurs. Generally, 𝑆𝑆 is defined as 
 𝑆𝑆 = [𝜎] / σ (B.2) 
where [𝜎] is the allowable stress and 𝜎 is the calculated stress. For example, a 
SR=1.2 indicates that the applied loads can be increased by 20% before failure occurs. 
If we multiply the values of the applied load by this ratio, we can obtain the critical 
load for which the beam will fail. We now introduce the applied stress as the ratio SR 
times the applied stress equated to a FI of unity. 

 1.0 = 𝐹11𝑆𝑆2𝜎12 + 𝐹22𝑆𝑆2𝜎22 + 𝐹12𝑆𝑆2(𝜎1𝜎2) + 𝐹66𝑆𝑆2𝜎122
+ 𝐹1𝑆𝑆𝜎1 + 𝐹2𝑆𝑆𝜎2 

(B.3) 

The solutions of this quadratic equation are obtained as 

 𝑆𝑆1 =
−𝑏 + √𝑏2 − 4𝑎𝑎

2𝑎
    𝑎𝑎𝑎    𝑆𝑆2 =

−𝑏 − √𝑏2 − 4𝑎𝑎
2𝑎

 (B.4) 

where 
 𝑎 = 𝐹11𝜎12 + 𝐹22𝜎22 + 𝐹12(𝜎1𝜎2) + 𝐹66𝜎122  (B.5) 

 𝑏 = 𝐹1𝜎1 + 𝐹2𝜎2 (B.6) 

 𝑎 = −1.0 (B.7) 
The roots of the equation have to be determined, and the positive one is the value of 
SR. After obtaining SR, by multiplying the values of the applied load by this ratio, the 
critical load for which the beam fails can be obtained as 
 𝑀𝑓 = 𝑀 ⋅ 𝑆𝑆 (B.8) 

 𝐽𝑓 = 𝐽 ⋅ 𝑆𝑆 (B.9) 
Hence, the equations above provide the critical failure loads that are used in Eqs.(24), 
(25) and (26).  
 
Appendix C. Composite material properties  

Table C.1 Properties for the composite materials that are used in this work for demonstrative purposes 

Property E-Carbon Epoxy 
(CFRP)  Kevlar (KFRP)  

Longitudinal modulus, E1 [GPa] 147 80 

Transverse modulus, E2 [GPa] 10.3 5.5 

Out of plane modulus, E3 [GPa] 10.3 5.5 

In plane shear modulus, G12 [GPa] 7.0 2.2 

Out of plane shear modulus, G23 [GPa] 3.7 1.8 

Out of plane shear modulus, G13 [GPa] 7.0 2.2 

Major in plane Poisson's ratio ν12 0.27 0.34 

Out of plane Poisson's ratio ν23 0.54 0.40 

Out of plane Poisson's ratio ν13 0.27 0.34 

Density,  ρ [g/cm3] 1.60 1.38 



 
Appendix D. Selection charts for bending and torsional stiffness/strength designs 
of open cross-sections 
 

 
Fig. D.1 Co-selection of shape and layup for bending and torsional stiffness (open cross-sections). 

(Cross-angle designs are indicated by thin solid lines, i.e. from O to C) 
 

Longitudinal tensile strength, F1t [MPa] 2280 1400 
Transverse tensile strength, F2t [MPa] 57 30 
Out of plane tensile strength, F3t [MPa] 57 30 
Longitudinal compressive strength, F1c [MPa] 1725 335 
Transverse compressive strength, F2c [MPa] 228 158 
Out of plane compressive strength, F3c [MPa] 228 158 
In plane shear strength, F6 [MPa] 76 49 
Out of plane shear strength, F4[MPa] 39 44 
Out of plane shear strength, F5 [MPa] 37 37 
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Fig. D.2 Co-selection of shape and layup for bending and torsional strength (open cross-sections). 

(Cross-angle designs are indicated by thin solid lines, i.e. from O to C) 
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