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ABSTRACT

Although radar is our most useful tool for monitoring severe weather, the benefits of assimilating its data

are often short lived. To understand why, we documented the assimilation requirements, the data charac-

teristics, and the common practices that could hinder optimum data assimilation by traditional approaches.

Within storms, radars provide dense measurements of a few highly variable storm outcomes (precipitation

and wind) in atmospherically unstable conditions. However, statistical relationships between errors of ob-

served and unobserved quantities often become nonlinear because the errors in these areas tend to become

large rapidly. Beyond precipitating areas lie large regions for which radars provide limited new information,

yet whose properties will soon shape the outcome of future storms. For those areas, any innovation must

consequently be projected from sometimes distant precipitating areas. Thus, radar data assimilation must

contend with a double need at odds with many traditional assimilation implementations: correcting in-storm

properties with complex errors while projecting information at unusually far distances outside precipitating

areas. To further complicate the issue, other data properties and practices, such as assimilating reflectivity

in logarithmic units, are not optimal to correct all state variables. Therefore, many characteristics of radar

measurements and common practices of their assimilation are incompatible with necessary conditions for

successful data assimilation. Facing these dataset-specific challengesmay force us to consider new approaches

that use the available information differently.

1. Motivation: Unsatisfactory benefits

Radar is our best instrument to monitor and study

storms; data assimilation is our best approach to combine

information from different sources; numerical weather

prediction is our best forecasting tool: Given these, one

would expect that the assimilation of radar data into

convective-scale models should provide the best storm

forecasts. Yet, for example to forecast precipitation,

simple extrapolations of rainfall patterns often beat nu-

merical forecasting with radar data assimilation in the

first 2 or 3h (Fig. 1).

There is no denying that radar data assimilation helps

to improve NWP forecasts (e.g., Dowell et al. 2011;

Jones et al. 2015; and references therein), may it be

thanks to variational or ensemble-based assimilation or

via latent heat nudging. But if these forecasts do not

perform significantly better than the extrapolation of

echo movement, they are not as good and useful as one

should expect, particularly in the context of storm-scale

forecasting. If we examine forecast performance, we

note that the skill of NWP aided by radar data assimilation

often drops very rapidly in the first forecast hour (e.g.,

Fig. 1, or Fig. 10 ofAksoy et al. 2010) and/or does not have

great skill immediately after assimilation (e.g., Fig. 15 of

Mandapaka et al. 2012 or Fig. 8 of Supinie et al. 2017).

This very rapid drop in skill suggests that radar data

assimilation may not perform as well as would be ex-

pected given its use for weather surveillance. This is

problematic given that we intend to largely rely on radar

data assimilation to warn for storms on forecasts us-

ing numerical weather forecasting approaches (e.g.,

Stensrud et al. 2009, 2013). Understanding what makes

radar data assimilation difficult is hence critical. Some of

the problems have been associated with spinup issues as

explained by Kalnay and Yang (2010); others may be

of a more fundamental nature (e.g., Errico et al. 2007).

The question we sought to answer was: What seems to

make the assimilation of radar data challenging, particu-

larly in the context of convective-scale forecasting? Note

that this question is different and complementary to the

more traditional ‘‘what makes convective-scale assimila-

tion difficult’’ for which we already have many answers

(e.g., Yano et al. 2018). Since no simple experiment can beCorresponding author: Frédéric Fabry, frederic.fabry@mcgill.ca
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devised to answer the question at hand, a reasoning-based

approach is adopted. The subject of our reflection will

hence follow this axis: What could go wrong and why?

We shall accept as a starting hypothesis that data as-

similation generally works, based on existing evidence

from its everyday use in operational forecast centers (e.g.,

Kwon et al. 2018). Given this hypothesis, the challenges

of radar data assimilation must come from radar-related

specificities, namely the context and conditions under

which radar data assimilation is generally performed,

peculiarities of the radar data themselves, and how radar

data mesh with the assimilation process. To understand

what could go wrong, we must first collect the many

puzzle pieces before we try putting them together; this

involves documenting the characteristics of the data be-

ing assimilated, and highlighting peculiarities that may

cause difficulties. Issues arising from the interaction be-

tween these peculiarities and the assimilation machine

will be subsequently investigated, sometimes numeri-

cally, sometimes using more qualitative reasoning, to

expose what may affect the quality of either the analysis

or the forecast resulting from the assimilation.

2. Context of assimilation and nature of radar data

The assimilation algorithm operates on data that have

specific characteristics and error properties. Let us first

focus on the characteristics of the background information

and of the data at the meso and convective scales where

radar data assimilation is generally being performed.

a. Quality of a priori information

Many mesoscale and convective-scale assimilation

efforts start with background information originating

from a global model analysis. These analyses are already

based on the assimilation of data from a wide range of

instruments. In such setups, smaller-scale data assimi-

lation systems then take this background and add un-

used denser data such as from radars, satellite imagers,

and in situ measurements from aircrafts and surface

stations (e.g., Benjamin et al. 2016).

What is the uncertainty of the global analysis used as

background? This is not well known, especially at the

smaller scales relevant to convective storms. To get a

first-order estimate of that uncertainty, we chose to look

at the mismatch between the analyses of the control

member of ensemble forecast systems frommany global

prediction centers: If all analyses from control members

are similar, there is a good chance they are close to ac-

curate, though this is not certain; if they disagree, they

are likely all wrong. On that basis, the average difference

between these analyses probably represents a lower-

bound estimate on their expected uncertainty.

Using data from the THORPEX Interactive Grand

Global Ensemble (TIGGE; Bougeault et al. 2010), the

analyses of many global centers were compared for June

and July 2018 in the midlatitudes of the Northern

Hemisphere. The results of that comparison for key at-

mospheric properties shaping convective storms (Fig. 2)

suggest that their structure is well captured at scales

larger than 1000kmbut is poorly known at scales smaller

than 500km in summer, largely irrespective of the atmo-

spheric property considered. Hence, correct mesoscale

structures must be rebuilt from either surface forcing

(higher-resolution orography, surface properties, land-use

and vegetation cover), the assimilation of additional in-

formation, or arising processes at smaller scales. Because

larger mesoscale structures evolve more slowly than

smaller entities, such as individual convective cells, they

provide skill to longer lead-time forecasts.Hence, failing to

rebuild mesoscale structures in addition to the storm-scale

structures will limit the lead time of useful storm-scale

forecasts. If data assimilation cannot rebuild both cells and

larger-scale structures (10–1000km), forecasts will suffer.

b. Data density considerations

What data are available to rebuild those structures,

particularly at scales relevant to convection? Table 1

lists the number of measurements available over the typi-

cal scale (10km3 10km) and lifetime (1h) of a storm cell.

FIG. 1. Skill of the forecast of precipitation patternsmade by three

systems: the storm-scale ensemble forecasting system run by the

Center for the Analysis and Prediction of Storms during NOAA’s

2008 Hazardous Weather Testbed (HWT) Spring Experiment (Xue

et al. 2008)without radar data assimilation (in cyan), the same system

with radar data assimilation (in orange), and theMcGill Algorithm of

Precipitation Forecasting by Lagrangian Extrapolation (MAPLE;

Germann and Zawadzki 2002; in black). Note the rapid initial de-

crease in skill of the NWP forecast with radar data assimilation. [The

image is provided through the courtesy of M. Surcel and is based on

the work of Surcel et al. (2015).]
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Supposing that independent data are available at

roughly 1-km resolution over 20 elevation angles and are

measured every 5min, radar provides approximately

25 000 measurements of reflectivity and a somewhat

smaller number (say, 15 000) of valid Doppler velocity

measurements. Except for satellite data, nothing comes

close to the density of radar information: as illustrated in

Table 1, rare are the constraints from other data sources

in the context of the scale and lifetime of a convective cell.

In that situation, it will hence largely be the responsibility

of radar data to correct for the missing or erroneous in-

formation of the background at scales smaller than a few

hundred kilometers in between available sounding data.

But are 25000 reflectivity and 15000 radial velocity

constraints over the lifetime of a convective cell a little or

a lot? For reference, in the 1980s, we primarily relied on

radiosonde measurements to forecast synoptic-scale sys-

tems. For a typical 2000-km storm lasting 5 days, the in-

formation used from about 40 stations (one every 315km

in the continental United States) launching radiosondes

twice per day consisted of four measurements (tempera-

ture, humidity, and two wind components) at eight man-

datory levels up to 20kPa, or 12800 direct constraints.

Because at these scales one can benefit from hydrostatic

and quasigeostrophic balance to some extent, and if we

also add surface stations, the actual total number of con-

straints on atmospheric fields probably approached 20000.

Hence, the number of constraints obtained by a radar on a

convective cell is of the same order of magnitude as what

was available in the 1980s to forecast synoptic-scale sys-

tems. There are, however, two key differences: First,

whereas the data from radiosonde covered most key dy-

namic and thermodynamic fields, the data from radar are

largely limited to precipitation and one wind component.

Second, outside stormy areas, the information provided by

radar largely collapses to ‘‘no measurable echo’’, an in-

formation nevertheless precious to suppress precipitation.

An interesting sidebar is that in the 1980s, with the

data provided by radiosondes, one could usefully fore-

cast synoptic-scale storms over a period of 5 days, which

roughly corresponds to the lifetime of the event itself. If

the same logic applies for thunderstorms, one can at best

hope to reasonably forecast the outcome of 10-km scale

structures like convective cells for about their 1-h life-

time (see Fig. 9 of Sun et al. 2014) with the data that are

currently available. Although this simplistic comparison

ignores issues of predictability and advances in data

assimilation and modeling, it suggests a sobering limit

to what could ultimately be achieved with convective

storm forecasting without additional data constraints,

one that is partly corroborated by predictability studies

at the convective scale (e.g., Fig. 5 of Surcel et al. 2015).

c. Operationally available radar data

1) THE INFORMATION FROM REFLECTIVITY

Let us now focus on the nature of the information

provided by radar, starting with reflectivity. The intensity

FIG. 2. (a) Spectral decomposition of 50-kPa geopotential height

(black), 50-kPa meridional wind (green), 92.5-kPa temperature (red),

and 92.5-kPa specific humidity (blue) along lines of constant latitude

and averaged over 258–508N in June and July 2018 for the analysis of

the control member of the ECMWFensemble system. Except at small

scales, curves for control members of other global ensemble systems

are very similar. (b) Ratio of the average spectral decomposition of

differences between control members in the numerator and the av-

erage spectral decomposition of the ECMWF control in the denomi-

nator, for the same atmospheric properties as in (a). Ratios of 0 imply

that the two control members being considered are identical at that

scale, whereas ratios of 1 arise when the magnitude of control-to-

control differences are comparable to that of the patterns in the

ECMWF control. For each of the four properties listed above, four

curves illustrate the relative difference betweenECMWF controls and

those of four other centers: the Environment and Climate Change

Canada (ECCC; spaced dotted lines), the Japan Meteorological

Agency (JMA; tightly dotted lines), the National Centers for

Environmental Prediction (NCEP; solid line), and the Met Office

(UKMO; dashed lines). For all considered properties and analysis

pairs, considerable inconsistencies exist at scales below 500 km,

much larger than the resolution of all of the models considered.
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of the radar echo at traditional surveillance radar

wavelengths is mainly dictated by the number and size

of the largest hydrometeors, as reflectivity largely

depends on the sixth moment of the hydrometeor size

distribution [e.g., Z5
Ð
N(D)D6 in rain]. Radars have

a range-dependent minimum sensitivity below which

‘‘no measurable echo’’ is reported. In the absence of

significant beam blockage or attenuation, that threshold

is such that most solid and liquid precipitation are

observed by weather surveillance radars, but liquid

clouds andmany ice clouds are not. Reflectivity, or the

sixth moment of the drop size distribution, is generally

not a modeled quantity. In the process of simulating

radar observations, the assimilation system must con-

vert the moments simulated by models such as pre-

cipitation mixing ratio into reflectivity, a process not

unlike what radar meteorologists do when converting

reflectivity Z to rainfall rate R using Z–R relation-

ships. It must also do so accounting for the geometry

of radar measurements. Since the mass-to-reflectivity

conversion cannot be done perfectly, errors that are

correlated in space will result (e.g., Fig. 1c of Lee et al.

2007). For example, the same microphysical processes

that cause drops to be unusually large or small for a

given precipitation rate at one location also act in

nearby areas. In the 70 years we have had Z–R rela-

tionships, we have not definitely characterized the

statistical properties of their error, especially their

spatial error covariance. This characterization must

now be achieved to help data assimilation, and this

error must be included in the observational term error

as it reflects a basic uncertainty of the observation

operator. Yet, at this time, it is largely assumed to be

uncorrelated in assimilation systems. These corre-

lated errors will generally dwarf accepted measure-

ment errors (Keeler and Ellis 2000) unless the radar is

not properly calibrated.

More important is the spatial structure of the precipi-

tation field sampled by radar reflectivity measurements.

Meteorologically, precipitation is an intermittent double-

threshold process: first, clouds occur when saturation

is reached, primarily in updrafts; then, precipitation

grows only when enough cloud droplets are present.

As a result, it is sparse, covering only a few percent of

the United States on average in summer, and also

much more structured at small scales than other at-

mospheric fields (Fig. 3), except perhaps vertical ve-

locity. The consequences of the unusual topology of

precipitation fields on assimilation will be examined in

section 3. The relatively high structure of precipita-

tion at small scales combined with the lower quality

of background information at scales below 500 km

(Fig. 2) cause precipitation background errors to be

generally larger in magnitude and have shorter cor-

relation distances than those of other fields. This will

have consequences on the effectiveness of radar data

assimilation (section 3d).

In addition, radar cannot accurately measure reflec-

tivity under some circumstances, particularly when

echoes from hydrometeors are too weak or contami-

nated by other echoes. In such situations, ‘‘no mea-

surable weather echo’’ is generally reported. We often

take a shortcut and assume that this means ‘‘zero

reflectivity’’. Complications arise when we assimilate

logarithmic reflectivity (dBZ), as a value of minus in-

finity ensues. Since2‘ cannot be used numerically, this

problem is solved by setting all reflectivity values

below a certain threshold to an arbitrary value such as

5 or 10 dBZ (e.g., Tong and Xue 2005; Gastaldo et al.

2018). This choice also conveniently eliminates many

weak nonmeteorological echoes. Ignoring the conse-

quences of this choice, one should realize that, funda-

mentally, the information being reported by radar is

not ‘‘zero reflectivity’’ but instead ‘‘reflectivity is below

a threshold’’. In the absence of attenuation or beam

blockage, that threshold Zmin simply depends on radar

characteristics and range. For example, on WSR-88D

instruments in precipitation mode, it is approximately

20 log10(r) 2 40 dBZ, where r is the range to the target

in kilometers. Sometimes, echoes were initially present

but were later suppressed because they were deemed to

be primarily from nonweather targets such as insects or

TABLE 1. Measurements of any atmospheric variable per hour over a 10 km 3 10 km area comparable to the size of a convective

cell. For this exercise, a typical surface station reports information for five variables (pressure, temperature, dewpoint, winds, and

precipitation).

Data source No. of observations

Upper-air observation of any variable using planes,

radiosondes, global navigation satellite system receivers, etc.

’0–10 (highly variable)

Surface observations of any variable ’0–10 (highly variable)

Geostationary satellite (per thermal IR channel) ’1200 (largely limited to altitudes from cloud

top upward in the presence of clouds)

Radar reflectivity ’25 000

Radial velocity (assuming 60% echo coverage in storms) ’15 000 in storms; 0 in no echo areas
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the surface. In that case, all we know is that any pos-

sible weather echo is less intense than that of the con-

taminating echo. These two examples illustrate the lack

of specificity of the ‘‘reflectivity is below a threshold’’

information and how it does not equate to ‘‘zero

reflectivity.’’

2) REFLECTIVITY UNITS AND VALUES

Radars are generally able to detect equivalent reflec-

tivity factors Ze ranging from less than 0.1 to more than

10 000000mm6m23. For a variety of largely historical,

technical, and practical reasons, logarithmic, or decibel,

units [dBZ, or 10 3 log10(Ze)] are generally used to ar-

chive and display reflectivity values. In addition, the

distribution of reflectivity values from precipitation is

unusual (top of Fig. 4): whereas, at any given height,

most atmospheric fields generally have a quasi-symmetric

distribution around an average, precipitation intensity

and its equivalent radar reflectivity factor Ze have distri-

butions that followmore closely exponentials with a delta

function added at zero precipitation. In that context, us-

ing dBZ values for reflectivity has a potentially interest-

ing property: the distribution of 10 3 log10(Ze) values is

closer to a normal distribution (bottom of Fig. 4), and so,

it is hoped, would the distribution of their errors. For all

of these reasons, reflectivity values in dBZ units are

generally assimilated. The wisdom behind this choice will

be examined in section 4a(1).

3) THE ‘‘MEAN’’ DOPPLER VELOCITY

INFORMATION

ThemeanDoppler velocity is an estimate of the radial

component of target velocity with respect to the radar.

Its measurement is only available in the presence of

echoes, may those be from weather or from non-

meteorological targets. In many ways, it is easier to as-

similate than reflectivity as it does not suffer from

calibration or attenuation bias, and it is more directly

related to model state variables. It is also the only di-

rect constraint obtained concerning storm dynamics by

radar, complementing satellite-derived information.

Consequently, most researchers find that radial ve-

locity assimilation helps improve forecasts, as a result

of which Doppler data are assimilated by many op-

erational centers (Gustafsson et al. 2018).

Doppler velocity assimilation is, however, not free of

problems. Target velocity is largely wind velocity plus

fall velocity which can be significant for rain. It can be

FIG. 3. Composite of reflectivity fromCanadian andU.S. radars on a late-spring afternoon on

which are overlaid black contours of sea level pressure, red contours of constant 50-kPa heights,

and purple contours of constant 100–50-kPa thicknesses. Contrast the spottiness of reflectivity

with the smoothness of pressure, reflecting the strong variability at small scales and the weak

variability at large scales of precipitation fields. (The image is provided through the courtesy of

the Canadian Meteorological Centre and meteocentre.com.)
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contaminated by surface clutter, birds, and insects,

though this contamination is diminishing with improved

radar signal processing. Under some circumstances, it

can be aliased. The simulation of its measurement ge-

ometry is often too simplified (Fabry 2010). Lesser

known is that the signal-processing algorithms estimat-

ing mean Doppler velocity are biased when the distri-

bution of radial velocities is nonsymmetric [e.g., our

Fig. 5, or Eq. (4.5) of Zrnić 1979]. And while perfect

operators such as Eq. (9) of Fabry (2010) can handle

these situations, they are too complicated to be usable.

This leads to errors correlated in space that then result

in artificial convergence or divergence patterns as the

slowly elevating beam gradually traverses regions of

vertical wind shear.

4) DUAL-POLARIZATION INFORMATION

The increasing availability of dual-polarization radars

is stimulating research on the assimilation of their data

(Li et al. 2017; Augros et al. 2018; and references

therein). Dual-polarization measurements, such as

specific differential phaseKDP, differential reflectivity

ZDR, and copolar correlation coefficient rHV, provide

constraints on precipitation mass, mean target shape

and its variability.Measurements or retrieved properties

can then be assimilated to improve precipitation simu-

lation. While some benefits are observed in rain, the

unknown and complex relationship between model-

simulated properties such as hydrometeor type, number,

and mixing ratio, and radar observations in ice remains an

obstacle (e.g., Posselt et al. 2015).

d. Summarizing the assimilation context

Relative to measurements from many other instru-

ments, radar data are more challenging to interpret:

Reflectivity is a measure of higher moments of the hy-

drometeor size distribution than are generally modeled

numerically; its estimate for weak and contaminated

values is poor and ambiguous to interpret; Doppler ve-

locity can be biased; polarization signals are weak and

difficult to simulate; and last but not least, the errors on

measurements and their simulation are not well quan-

tified and their spatiotemporal correlation not well

known. By themselves, these issues would make radar

data assimilation difficult. But they are probably minor

when compared with what follows.

3. Arising issues with assimilation

a. Challenges modeling precipitation at smaller scales

As illustrated in Fig. 3, precipitation has consider-

ably more small-scale variability than other fields. The

associated mismatch between real and simulated re-

flectivity observations will hence be dominated by

FIG. 4. Time series of reflectivity at one location from a rain

event plotted using (top) linear and (bottom) logarithmic re-

flectivity scales. On the right, the associated histograms of occur-

rence of different reflectivity are plotted sideways to match the

reflectivity values on the left of the plot. Histograms of reflectivity

generally resemble exponentials, whereas those of logarithm of

reflectivity look more like normal distributions to which are added

a second peak for reflectivity values corresponding to ‘‘no echo.’’

[The figure is adapted from Fabry (2015).]

FIG. 5. MeanDoppler velocity estimated by a radar as a function

of Nyquist velocity when 75% of the received echo power comes

with a radial velocity y and 25% with a radial velocity 2y. Using

common sense and all currently used observation operators, one

would expect a measurement of y/2, but this result is not what

standard radar signal-processing algorithms such as pulse pair or

Fourier transform ‘‘on a circle’’ (Keeler and Passarelli 1990) return

as result. Note that the Nyquist velocity considered here is the raw

one from a single pulse repetition frequency (PRF) and not the

combined value arising from the use of multiple PRFs.
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small-scale patterns. Therefore, for assimilation sys-

tems to use the innovation from such observations,

models must be able to properly simulate smaller-scale

processes. Yet, this is difficult to achieve properly be-

cause of limited resolution and microphysics. If a

model is not able to reproduce an observation for the

correct meteorological reasons, the assimilation of

such an observation is unlikely to lead to the proper

correction of model fields. Consequently, the benefits

of the innovation from precipitation observations are

reduced. This is in addition to the fact that, at high

resolution, innovations can be very large, for example

if there is a spatial mismatch between simulated and

observed precipitation. A case could be made that

perhaps we should not assimilate measurements at the

highest available resolution since models cannot sim-

ulate the finest-scale processes of precipitation shaping

what radars measure. Determining what better obser-

vational constraint to provide could lead to improved

effectiveness of radar data assimilation.

b. Relevance of the measured information

Radar has become a valued operational instrument

for weather surveillance because of its ability to char-

acterize storms and monitor their impacts. Therefore,

we naturally think that its data should be equally skillful

at helping us forecast these storms numerically. But ra-

dar is much better at detecting the outcomes of storms

than at inferring their causes. In fact, radars detect

precipitating cells relatively late in their life cycle.

Consider the textbook evolution of convective cells:

Storms begin thanks to the combination of environment

conditions that provide its fuel (temperature and hu-

midity profiles), and a forcing mechanism that breaks

the capping inversion preventing the storm to form

earlier (e.g., via low-level convergence). Except some-

times for the forcing mechanism itself, radar is largely

blind to these environmental conditions. As the unstable

air parcel accelerates upward, clouds form rapidly. But

again, radar is largely blind to water clouds. Only when

coalescence or ice crystal growth is significant enough do

echoes appear aloft as illustrated by first echo studies

(e.g., Knight et al. 1983) and numerical modeling of

storms cells (e.g., Fig. 2 of Murakami 1990). It is at the

latter stages of storm evolution that radar provides its

best information. Unfortunately, this does not give us

much time to use radar information to make a valuable

numerical forecast for that cell. Note that the late

appearance of precipitation during the release of an

atmospheric instability is not limited to convective

processes but is also the case for baroclinic systems.

We can complement the time-evolution view above

with information obtained by considering atmospheric

evolution in a process-oriented context. The box-and-

arrow diagram in Fig. 6 illustrates the many interactions

between different atmospheric properties relevant to

weather forecasting. As mentioned before, radars

measure precipitation properties, and one component

of the 3D wind where echoes are available. But the

main driving force of storm dynamics is the pressure

gradient arising from temperature and/or density contrasts,

while the main control on storm intensity is low-level

temperature and humidity. And though the dynamical and

thermodynamic components of atmospheric motion are

tightly coupled (top of Fig. 6), the water cycle largely fol-

lows one large loop whose last atmospheric component is

precipitation (bottom of Fig. 6). In fact, the property best

constrained by radarmeasurements, precipitation, 1) is the

farthest from storm drivers yet 2) is short lived without

them, reducing its interactions with other fields. Indeed, if

precipitation is modified in a model analysis and nothing

else, that precipitation will fall out quickly without having

had much time to influence the evolution of other atmo-

spheric properties except through drag and evaporation.

Only if assimilation properly changes the fields that cause

precipitation may it have a lasting positive effect. Perhaps

the main exception to the above is when a radar observa-

tion of no significant echo invalidates a storm in amodel, as

suppressing rain and some humidity will generally suffice

to hinder stormactivity. Indeed,many researchers find that

suppressing model precipitation where it does not occur

contributes significantly to the skill of radar data assimi-

lation (section 2c of Wattrelot et al. 2014 and references

therein). As for Doppler velocity, its coverage is limited to

stormy regions that have considerable small-scale struc-

tures; innovations from this incomplete constraint to the

3D target velocity have complex relationships with inno-

vations in other fields.

This discussion illustrates two additional challenges of

radar data assimilation at convective scales: 1) direct

information on storm properties arrive late in the time

evolution of storms and 2) the atmospheric fields well

measured by radar are remotely connected with those

that shape the evolution of present and future events. We

must hence largely rely on indirect information—namely,

what current storm characteristics can tell us about storm

drivers in the past and what we can infer from them

concerning storm drivers in the future.

c. Strong need for information projection

This is where the nature of the precipitation field

causes challenges. Over most of the troposphere, pre-

cipitation is zero (e.g., Fig. 3). This fact is generally well

reproduced by models. In fact, for much of the model

grid space, the background and the measurements agree

perfectly that echoes are absent. Radar data hence
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provide no innovation in these areas, and there is no

reason to modify the background. Observations will

induce an innovation only when they disagree with the

background, and this occurs only in clustered areas

where either the background or observations have pre-

cipitation. This limits the spatial extent of innovations

introduced by the assimilation of radar data. More im-

portant, it leaves large regions unconstrained by radar

measurements, including many that will play important

roles in the future evolution of weather events.

Consider the tornadic supercell storm in the rounded

rectangle in Fig. 7a that struck Tuscaloosa Alabama, in

2011. It is a perfect example of the type of events we

want to forecast well in advance, say with a reasonable

lead time of an hour. To forecast such a storm, we need

to know the inflow that will provide its heat and mois-

ture (identified as the colored letters A and B in Fig. 7b).

We also need to know the properties of the air that will

make up the surrounding environment and feed the

storm’s downdrafts (colored letters C–E). An hour be-

fore, where is that air? On the basis of the radar-derived

windmeasurements, it is in the areas bounding the white

letters in Fig. 7b. Most of those are devoid of radar

echoes; therefore, radar cannot obtain much infor-

mation about them, at least directly. Note that, in this

case, these areas are also covered by high-level clouds,

limiting any help that could come from spaceborne

imagers.

Therefore, to improve forecasts, there is a critical

need for the available information to be projected from

innovative precipitating areas out to other regions de-

void of new constraints. While this need is always pres-

ent in data assimilation, it is surprisingly imperative for

radar data, given that data density should not be an is-

sue: While data density is indeed high, because of the

clustered nature of precipitation areas, there are huge

regions where radar measurements do not directly pro-

vide information about the background state. We have

also seen that there are significant background errors at

scales up to hundreds of kilometers (Fig. 2) and gaps

between precipitation areas comparable or exceeding

such distances (Fig. 3). It is therefore imperative for

assimilation systems to project information up to hun-

dreds of kilometers outward to help improve forecasts

of a few hours. In Fig. 7b for example, if information

obtained from radar data cannot reach the areas labeled

with a white A and B, radar data assimilation cannot be

used to improve our knowledge of the properties of the

air that will feed the supercell updraft an hour later,

which severely limits possible forecast improvement.

FIG. 6. System diagram illustrating critical interactions between different properties of an evolving atmosphere at scales relevant to

weather forecasting. Two interacting subsystems can be identified: the dynamical subsystems (largely in the top of the diagram), in which

interactions occur continuously largely through differential equations, and the water cycle (largely in the bottom of the diagram), in which

interactions tend to be more episodic. Highlighted elements contrast the initial drivers of storm evolution (in yellow) with properties

constrained by radar (in cyan). Phenomena or field characteristics arising from atmospheric interactions are also listed at the bottom right.
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Yet, currently (Table 1) there is no clear alternative data

source for that task, especially in cloudy areas.

d. Obstacles to information projection

The uncertainty on state variables far away from

storms can only be reduced if we can devise relation-

ships between values or errors of characteristics of radar

echoes (reflectivity, radial velocity, etc.) and values or

errors of atmospheric properties well outside echo re-

gions. Usually, these relationships are based on the co-

variance between errors in observational constraints

and errors in state variables. To be useful for assimila-

tion, these relationships must first exist, either physically

or statistically, and they must also be either known a

priori (like in 3DVar) or determined based on available

information (like in ensemble-based approaches).

Unfortunately, precipitation 1) is a delayed outcome

of its root causes (section 3b) and 2) has smaller-scale

errors than other fields [section 2c(1)], both complicat-

ing the relationship between precipitation intensity and

other atmospheric properties locally and at larger dis-

tances. As a result, the correlation between errors on

point precipitation values and on other properties is on

average weak (Fig. 8). This is particularly the case at low

levels where, by the time the rainfall arrives, the dy-

namical processes that led to its creation occurred a long

time ago. Nonetheless, the correlation r between ob-

served quantities and state variables must be strongly

positive or strongly negative for effective error reduc-

tion: Given a perfect observation, the error on the

correlated state variable will be reduced by a fraction

1 2 (1 2 r2)1/2 [Eq. (A5) of Jacques et al. (2018)]. As

such, correlations of 0.2, 0.4, 0.6, and 0.8 will then, re-

spectively, lead to an error reduction of only 2%, 8%,

20%, and 40%. If observations have errors, the re-

sulting innovations and error reduction will be even

smaller. Since high correlations between precipitation

and other state variables are rare, especially at longer

distances (Fig. 8), greatly reducing errors on other state

variables by assimilating precipitation is difficult.

While the theory of using error covariances to reduce

the uncertainty in initial conditions is sound, it is only

truly effective if error correlations are high. In the at-

mosphere, this occurs primarily when errors are small

enough to grow linearly, or when considered over

short enough time scales that the relationships are

approximately linear, and when higher-order error

terms or unexpected instabilities have minor conse-

quences. However, generally in precipitation and par-

ticularly in convection, instabilities play key roles. In

fact, precipitation largely arises as a delayed response

from atmospheric instabilities, whether baroclinic, con-

vective, or otherwise. Since radar largely provides in-

formation on precipitating areas, that information will

hence generally be concentrated in areas where insta-

bilities are being or have recently been released. A

resulting challenge is that while background errors

might have been small and Gaussian-distributed before

the triggering of the instability, this is no longer the case

by the time one detects a significant difference between

simulated and real radar measurements.

FIG. 7. Example illustrating the limited amount of direct con-

straints from radar data on areas that will shape the latter evolu-

tion of severe events: (a) radar reflectivity image of a tornadic

supercell storm at time t that we wanted to forecast at t 2 1 h

and (b) composite image of a conceptual diagram of a supercell

storm at the position of the storm in (a) and the reflectivity

image at t 2 1 h. On the diagram, which is provided through the

courtesy of Markowski and Richardson (2010), key areas are labeled

by colored letters. The air in these areas at time t originates at t2 1 h

from the areas inside the colored rectangles with corresponding

white labels. Most of these are in echo-free regions; as a result, the

properties of the air in these source areas are unlikely to be directly

constrained by radar measurements.
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This has a few consequences that affect the potential

performance of radar data assimilation positively and

negatively: 1) radar provides most of its information

in regions where more constraints are badly needed,

because precipitation occurs in areas where the atmo-

spheric state is rapidly evolving as a result of an

unfolding instability, 2) by its very nature, the rapidly

evolving atmosphere in unstable regimes makes any

information more difficult to use, especially if that in-

formation is limited to a small subset of atmospheric

properties as is the case for radar, and 3) contrary to

most other data sources, radar provides little informa-

tion in more stable atmospheric regimes where error

reduction could be easier to achieve with incomplete

constraints.

e. Resulting forecast

What will then happen when radar data are assimi-

lated? While observed fields such as precipitation and

one wind component will be significantly corrected in

the analysis, key unobserved fields such as temperature

and humidity will only be marginally updated from the

background, and only in or very close to precipitating

areas, particularly in an Ensemble Kalman filter context.

The storm dynamics and thermodynamics will hence be

largely incompatible with the updated precipitation

field. When the forecasting model will subsequently be

run, after some time, the modified precipitation will

have fallen and be replaced by one compatible with

other fields; the resulting precipitation field will then

largely resemble that of the background. The model will

consequently appear to have forgotten the assimilated

data, and will return to a trajectory somewhat resem-

bling the one prior to assimilation.

This problem goes beyond the ability to forecast

properly a storm in the ‘‘distant’’ future. For example,

let us consider what happens when assimilating obser-

vations of a burgeoning cell in a background that lacks

such convection, but that is otherwise ripe for it. The

intimidating Fig. 9 contrasts the evolution of a model

cell in a WRF nature run with that of an identical twin

model run driven by radar data assimilation; that latter

run is onemember of a 50-member ensemble constrained

by assimilating reflectivity data in an ensemble adjust-

ment Kalman filter (EAKF) framework using the Data

Assimilation Research Testbed (DART; Anderson et al.

2009). Focusing first on the nature run, we observe that

the growing cell is driven by boundary layer convergence

that feeds a growing updraft, saturates air, and generates

increasing amounts of precipitation increasingly higher as

FIG. 8. Average correlation between simulated reflectivity measurements from the ensemble generated by Jacques and Zawadzki

(2015) and nearby background state variables of rain mixing ratio qrain, cloud mixing ratio qcloud, water vapor mixing ratio qvapor, tem-

peratureT, and vertical velocityw in (top) the upper troposphere and (bottom) the lower boundary layer. These correlations are averages

over a 100 km 3 100 km region at one time in an area with scattered showers. In all cases, limited correlation is observed beyond a few

kilometers. Reflectivity measurements in the upper troposphere (here at eta level h of 0.41) can provide some information on upper-

tropospheric state variables (h5 0.35), but those in the boundary layer (h5 0.98) are not as skillful at constraining boundary layer state

variables (h5 0.98). For this calculation, all reflectivity measurements below 10 dBZ were set to 5 dBZ, and at least one member had to

have a reflectivity greater than 10 dBZ for the resulting correlation matrix to be included in our calculation.
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time progresses. However, the modeled cell evolves dif-

ferently, and the repeated assimilation of reflectivity in-

formation fails to rectify that behavior: While, at every

time step, precipitation is reasonably well corrected by

reflectivity data assimilation, changes in dynamical and

thermodynamic properties (e.g., winds and humidity) are

insufficient in the bottom half of the troposphere. There

are many reasons for this problem. One reason that af-

fects wind fields is that, especially at low levels, heavier

precipitation is associated with stronger updrafts early in

the cell’s life cycle, and stronger downdrafts late; as a

result, limited net correlation exists between reflectivity

and updrafts if members have both growing and mature

cells. At higher levels, precipitation and updrafts are

generally collocated, hence assimilation performs better

there. Another reason that this time affects humidity is

that a relative humidity near 100% can be observed for

a wide range of precipitation rates, while much drier

conditions occur generally when precipitation is absent.

The relationship between humidity and precipitation is

hence bilinear on average, increasing rapidly at first at

very weak precipitation but stabilizing beyond. Under

these conditions, when a single linear relationship be-

tween humidity and precipitation is derived by the as-

similation system, it leads to undercorrection of humidity

in weak precipitation and overcorrection in strong pre-

cipitation. For these reasons and others, 1) the lower-level

updraft (up to t 1 15min) and downdraft (t 1 20min) in

the precipitation core are not well captured and 2) the air

is generally not saturated with humidity where precipita-

tion is added near the top of the cell except at t 1 20min.

Hence, when the model runs, evaporation suppresses the

already-weak updraft and precipitation fails to grow suf-

ficiently. In the end, the modeled cell cannot evolve in like

the real cell, because it neither flows nor generates pre-

cipitation, sensible heat, and latent heat like the real cell.

FIG. 9. Comparison of the time sequence over 20min of a ‘‘real’’ growing cell (the nature run of an identical twin experiment) with that

of the same cell whose evolution is driven by assimilating reflectivity ‘‘data’’ from the nature run. Each frame represents an east–west cross

section of precipitation mass in color and of zonal (u) and vertical (w) winds as vectors, on which are superposed contours of 85% and

100% relative humidity in cyan. In the top row, black arrows illustrate the progression of time on the nature run; in the bottom two rows,

they indicate the time sequence of the succession between assimilation cycles (up-pointing arrows) followed by the modeling cycles

(oblique arrows). While precipitation mass is relatively well assimilated at every step, changes in winds and humidity, among others, are

generally insufficient in the bottom half of the troposphere. As a result, the modeled cell is anemic and does not evolve like the real one.

Model runs are from Sodhi and Fabry (2020), and the assimilation is based on EAKF under DART and is done with reflectivity data at

nine levels every 1 km horizontally with a 3-km localization window.
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It will also be unable to correctly interact with neighboring

storms, affecting our ability to forecast these storms.

All issues considered, reflecting on the analysis from this

section, we surmise that the rapid skill loss observed in

precipitation after radar data assimilation (Fig. 1) largely

stems from the inability of assimilation systems to correct

unobserved fields, including those away from storms. This

results from the fact that radar primarily takes measure-

ments in precipitation, a mostly zero-valued field that

generally has nonlinear relationships with other state var-

iables, and that largely arises fromatmospheric instabilities

where errors are large and have limited spatial correlation.

4. How do we confront these difficulties?

Radar data assimilation is difficult and prone to fail-

ure for a multitude of reasons as summarized in Table 2.

For the foreseeable future, however, it will largely re-

main all that we have to enable the use of NWP for

storm warnings. We must therefore try to make the best

of a difficult situation. Doing so requires confronting the

challenges specific to radar data assimilation, recogniz-

ing that unique problems may require unique solutions.

Although the picture we painted until now may look

bleak, we do not believe that the situation is hopeless.

For example, many numerical experiments such as

Crook (1996) show how small changes in environmen-

tal humidity or temperature lead to large changes in

precipitation and its patterns. Hence, one should be able

to take advantage of that fact to improve our knowledge

of the said temperature or humidity. However, this is not

well done with current practices (e.g., Fig. 9). In parallel,

instabilities often evolve in expectable ways, and this

could potentially be exploited. The challenge becomes

finding new approaches that account for the strengths

and limitations of radar data as well as the nature of the

problems we face. Two key goals should be sought in

priority: 1) correcting fields far away from precipitation

and 2) devising error-reduction methods that work well

in the context of large and rapidly growing background

uncertainty in atmospherically unstable regions.

We do not know how to successfully face these chal-

lenges yet. What follows are a set of possible and com-

plementary avenues of inquiry arising from the issues

raised in the previous sections. Several ideas are ex-

plored, but the list is far from exhaustive, its purpose

being primarily to stimulate reflection.

a. Simpler adjustments to current approaches

1) REFLECTIVITY INNOVATION AND ERROR

RELATIONSHIPS

We mentioned in section 2c(2) that measurements of

equivalent reflectivity factorZe are generally assimilated in

dBZ or log(Z) units. BecauseZe and the precipitation rate

R from any individual type of precipitation are closely

TABLE 2. Conditions of success and possible causes of failure of radar data assimilation.

Conditions of success of data assimilation Some radar-specific challenges

Observability condition: Measurements can be used to modify

the background if they are able to reveal a mismatch

between simulated and real observations

1) Operational radars measure a limited number of properties;

2) over most of the model domain, observations provide no new

information given the absence of both real and simulated echoes

Reproducibility condition: The model must have the variables,

physics, and resolution needed to 1) generate the real

current atmospheric state and 2) simulate accurately the

physics of the measurement process

1) The small-scale processes that shape rainfall and its reflectivity

are often not resolvable; 2) accurate observation simulation is

too complex or impossible given the available information

(e.g., indirectly derived reflectivity, or velocity biases in shear)

Error characterization condition: Observations and their

simulation must be statistically unbiased, and their error

covariance must be known

1) Radar measurements contain artifacts and have poorly

characterized correlated errors; 2) no detectable weather echo

6¼ zero reflectivity; 3) oversimplified observation simulation

adds unknown correlated errors

Usability condition: The assimilation system must be able to

use the observation–background mismatch to efficiently

adjust the model state variables affecting the simulated

observation

Especially when reflectivity is assimilated in dBZ values, the

relationship between errors in reflectivity and errors in related

state variables such as precipitation mixing ratio is not linear

Propagability condition: Innovations in observations can be

propagated to unobserved state variables if usable

relationships between them exist and are known to or

determinable by the assimilation system

Convective patterns have primarily small-scale variability and the

covariance of their error with those of other state variables is

limited, especially at longer distances and in the context of large

background errors

Relevance condition: Changed fieldsmust play a significant role

in the future evolution of the weather patterns of interest for

forecasts to be improved

Correcting precipitation has the least impact on the future

outcome of storms; key fields such as temperature and humidity

are harder to modify using radar data
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linked through a power-law relationship, the previous

statement is akin to saying that we are generally assimi-

lating log(R)radar measurements from radar. Traditional

assimilation systems then estimate or use a linear rela-

tionship between errors in log(R)bkgd in the background

and those in state variables. Once the assimilation system

has combined the log(R)bkgd and log(R)radar to determine a

new log(R)anal for the analysis, the innovation [log(R)anal2
log(R)bkgd] is then used to update state variables by

[log(R)anal 2 log(R)bkgd]D. Assimilating reflectivity in

dBZ units hence leads to the following proportionality

relationship: If an innovation a in log(R) is associated

with a state change aD, then an innovation b in log(R)

should be associated with a state change bD.

Given this assumption, the following example is ex-

pected to be true: If a change in rainfall R from 1 to

10mmh21 [or log10(R) changing by 1] is associated with

an increase in updraft velocity w of 0.3m s21, then a

change in R from 1 to 100mmh21 [or log10(R) changing

by 2] leads to an increase inw of 0.6m s21. At face value,

this is ridiculous. We know that, physically, the rate of

water vapor condensation is proportional tow and that if

the system is in steady state then rainfall must be linearly

linked to the rate of condensation and hence tow. Changes

inw do not scale with changes in log(R): While updrafts of

0–0.1 and 0.3–0.4ms21 may sustain rainfalls of 1 and

10mmh21, respectively, at steady state, an updraft of 0.6–

0.7ms21 will not be sufficient for a 100mmh21 rainfall.

Continuing this example, a rainfall of 0.1mmh21 [log10(R)

changing by 21] would then lead to a downdraft of 0.2–

0.3ms21, which is also an unlikely scenario.

These inconsistencies arise because of the assumed

linearity between increments in simulated observations

and increments in state variables. Here, because assim-

ilated observations are proportional to log(R), this as-

sumption leads to improbable results. Note that if errors

were small, the nonlinearity of the logarithm function

would not matter; but since errors are often large, it

becomes important.

We are not obliged to assimilate reflectivity as

10 log10(Z). We can take advantage of the fact that,

to a first order, Z’ aZRR
bZR , or also Z’ aZqq

bZq

rain, to

assimilate Z1/bZR or Z1/bZq , quantities roughly propor-

tional to the rainfall R and to the mixing ratio qrain,

respectively. Assimilating a transformed measure-

ment would not be unprecedented, as satellite mea-

surements are often assimilated using the transformed

quantity brightness temperature TBB, and not as rawer

measurements of radiances (e.g.,Garand2003).This is both

for reasons of convenience, errors tending to be constant in

TBB, and because it leads to near-linear relationships be-

tween innovations in TBB and innovations in wanted

properties such as T. The main benefit of assimilating a

quantity that is roughly proportional toR or qrain would be

its more linear relationship to other state variables.

However, we do not expect errors in all atmospheric

properties to be better correlated with errors in precip-

itation rate or amounts. Errors in humidity for example

probably depend more on the presence of enough pre-

cipitation than on variations of its intensity. The best

unit to use for reflectivity innovation may hence depend

on the state variables whose error we wish to reduce.

We can for example contrast the correlation between

errors in state variables with 1) errors in rain mass,

2) errors in the logarithm of reflectivity, or 3) errors

involving the mere presence or absence of echoes greater

than 10dBZ (Fig. 10). This exercise illustrates that, for

some state variables such as precipitation and updrafts,

assimilating quantities closely related to rain amounts

would lead to better error reduction while, for vapor,

assimilating the presence of precipitation echoes does as

well as assimilating any richer quantity. Note that this

result could have been predicted in advance based on

physical reasoning: rain mass is closely related to rain

rate, and so is vertical velocity as explained previously.

For vapor, the approximately bilinear relationship with

precipitation is better fitted by a simple ‘‘precipitation’’

flag where precipitating areas tend to have 100% hu-

midity while the humidity of nonprecipitating areas stays

close to that of the environment. What Fig. 10 illustrates

is that using some physically based reasoning, we can

determine which relationship should perform better, and

use it to our advantage. Here we have limited ourselves to

three simple scenarios, but more could be explored.

In parallel, for variables like precipitation that are

positive definite and non-Gaussian, ensemble data as-

similation approaches that are based on non-Gaussian

statistics may also need to be explored (Posselt and

Bishop 2018; Anderson 2019).

2) MEMBER RELEVANCE AND CONDITIONAL

SELECTION

The use ofmore complex relationships between errors

in radar-measured quantities and in state variables is

actually a timid response to a much more complex

problem. Initial background errors are large (Fig. 2).

Especially in the context of an atmosphere conditionally

unstable for convection, these then grow rapidly, de-

stroying simple error relationships. Figure 11 concep-

tually illustrates this process: It is not uncommon to

have, for any specific grid point, members with no con-

vection, some with growing convection, and some with

mature convection. In the absence of echoes, no rela-

tionship is expected between echo strength and any state

variable; in the growing stages of a cell, updrafts,

cloudiness, and temperature positively correlate with

JULY 2020 FABRY AND MEUN IER 2831

Brought to you by MCGILL UNIVERSITY LIBRARIES | Unauthenticated | Downloaded 05/13/21 06:52 PM UTC



echo strength, or maybe with echo intensification; in the

mature stage, the opposite occurs, stronger precipitation

cores being associated with stronger downdrafts and cold

pools. Under such circumstances, any attempt to find a

single relationship, however sophisticated, between errors

in echo strength and state variables is doomed: If the as-

similation system tries to derive unique relationships ap-

plicable to all situations, the result will be an odd mixture

of all of them. Consequently, error reduction is unlikely to

be very effective.

This discussion highlights the importance of meteo-

rological context and how it affects the applicability of

expected relationships between observed and unob-

served quantities. Context can include meteorological

relevance, such as whether the members are in the cor-

rect phase of the evolution of the cell. It can also be

spatial, such as whether the grid point considered is at

the center of the cell, ahead, or behind. In traditional

assimilation approaches, this context is assumed to be

correct and identical for all members, largely because

background errors are small; but when they become large,

such an assumption breaks down.

A better approach may be to use simulated and real

observations to determine the pertinent context, and then

derive a more appropriate relationship accordingly. As a

simple example, let us assume that we know from obser-

vations that the state variables to be corrected are in the

middle of the precipitation core; we can hence repeat the

computations done in Fig. 10 but only selecting members

where a local reflectivity maximum is within 1km of the

point of interest. The result, shown in Fig. 12, shows that

much higher error covariance can be achieved. This im-

plies that relevant members could be better corrected.

What this leaves out is what to do with the irrelevant

members. For those, a very different type of error correc-

tionmust be considered. In the past, these have included,

FIG. 10. (top) Average correlation between (top) rain mixing ratio, (middle) simulated reflectivity measurements, or (bottom) a flag of

presence of echoes greater than 10 dBZ from the ensemble generated by Jacques and Zawadzki (2015) and nearby background state

variables of (left) rain mixing ratio qrain, (left center) cloud mixing ratio qcloud, (center) water vapor mixing ratio qvapor, (right center)

temperature T, and (right) vertical velocityw in the upper troposphere. Shaded panel backgrounds highlight for which of the three radar-

derived quantities we observe stronger correlation with each state variable.
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among others, moving patterns around (e.g., Brewster

2003a,b; Stratman et al. 2018), adding/suppressing sur-

face heat and columnmoisture to create/suppress storms

using ad hoc processes (e.g., Wattrelot et al. 2014; De

Lozar et al. 2018), or correcting them using information

from relevant members such as by using localized par-

ticle filters (Poterjoy et al. 2017). These and new ap-

proaches should be explored more thoroughly.

3) LARGER-SCALE CORRECTIONS

As seen previously, compared to other fields, precip-

itation varies considerably at small scales, and propor-

tionally less at larger scales (Fig. 3). As a result, errors

in distant atmospheric properties are unlikely to be

correlated with errors in point rainfall (Fig. 8). The errors

in rainfall at any grid point is instead generally the result

of stormdisplacement errors ormorphological differences

in the precipitation pattern. But if smaller-scale errors or

patterns are filtered, error correlation increases (e.g.,

Fig. 13). This is partly because rapidly evolving small-scale

patterns with large errors are suppressed, and slowly

evolving larger-scale patterns with more linear errors can

be revealed. Multiscale approaches vary from smoothing

background error covariances (e.g., Miyoshi and Kondo

2013; Caron and Buehner 2018) to smoothing observa-

tions (Sodhi and Fabry 2020). While spatial smoothing of

covariances and of observations are being explored, so

could temporal smoothing. By effectively smoothing error

patterns, both approaches allow the use of much larger

localization windows that increase the projection of in-

formation. Here too, other ideas would be welcome.

b. Diversifying approaches

The ideas proposed above can largely be implemented

within traditional adjustment-based assimilation sys-

tems. But to better tackle the challenges posed by both

limited information propagation and the large back-

ground errors, radically different approaches may have

to be considered. We believe for example that the time

evolution and the spatial structure of echo patterns are

not well exploited in convective-scale assimilation, yet

could provide valuable information. When one only has

synoptic point data, all one can rely on is error covariance.

But when data are available everywhere and all the time,

derived quantities can conceivably be exploited such as

the position and strength of key features (reflectivity

cores, low-level radial divergence, tropospheric-wide ve-

locity couplets, etc.). For example, vertical velocity may

be better related with precipitation tendencies than with

the precipitation rate itself (Haddad et al. 2018). In par-

allel, we should also better take advantage of additional

FIG. 11. Illustration of the evolution of the phase state of en-

semble members as a function of time as they experience the release

of a convective instability at different times.At the annotated time of

assimilation, some members (from yellow to red) have not experi-

enced the instability, whereas only a subset of them (in green) have

precipitation. The task of the assimilation system is to devise away to

correct the model state from all those members using radar obser-

vations given a truth that may lie anywhere within such an ensemble.

FIG. 12. Average correlation between either rain mixing ratio (‘‘rain’’) or simulated reflectivity measurements (‘‘dBZ’’) from the

ensemble generated by Jacques and Zawadzki (2015) and nearby background state variables of (left) qrain, (left center) qcloud, (center)

qvapor, (right center) T, and (right) w in the upper troposphere. As opposed to Fig. 10, average error correlations in excess of 0.6 can be

observed for all of these background variables.
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radar and remotely sensed measurements to help better

constrain storms as well as their environments. We be-

lieve that traditionally assimilated radar data do not

provide enough variety of constraints to effectively re-

duce background errors.

Perhaps should we also embrace the information

provided by instability releases. The atmosphere is un-

predictable because of instabilities, and precipitation

generally occurs in themiddle or final stages of the release

of atmospheric instabilities. Paradoxically, we rarely have

a better constraint on the state of the atmosphere than at

the instant an instability is being triggered, as conditions

for their triggering are often very specific. Therefore, the

instability triggering event itself is a powerful piece of

information if it could be intelligently taken advantage of.

This would be in addition to making use of the informa-

tion of the past consequences of a storm, as is done for

example with latent heat nudging.

Then, to deal with large errors at the assimilation

level, more heuristic methods may have to be explored.

For example, Pérez Hortal et al. (2019) constructed

analyses by selecting, for each vertical column in the

model, the ensemble member whose areal precipitation

is locally closest to the observed values. Variations on

particle filters may also be possible, among others, to

eliminate members whose errors became so large that

their information turns out to be misleading.

c. Parting words

Radar data assimilation is fraught with dataset-specific

challenges (Table 2). There hence does not appear to be

any single solution that will transformatively improve its

skill. Each advancewill only bring us a bit closer to success,

but a wise colleague of ours keeps repeating ‘‘I’ll take a

few percent of something over 100% of nothing any day’’

(G. McCourt, 2010–19, personal communication). It is

only via considerable efforts that radar data assimilation

can substantially help in improving convective-scaleNWP.

And for the foreseeable future, only the proper assimila-

tion of radar and other remotely sensed data can enable

the skillful forecasting of convective weather by NWP.
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