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“All models are wrong, but some are useful”

George E. P. Box



Abstract

The discrete element method (DEM) is widely seen as one of the more accurate, albeit

more computationally demanding approaches for terramechanics modelling. Part of its

appeal is its explicit consideration of gravity in the formulation, making it easily appli-

cable to the study of soil in reduced gravity environments. The parallel particles (P2)

approach to terramechanics modelling is an alternate approach to traditional DEM that

is computationally more efficient at the cost of some assumptions. Thus far, this method

has mostly been applied to soil excavation maneuvers. The goal of this work is to imple-

ment and validate the P2 approach on a single wheel driving over soil in order to evaluate

the applicability of the method to the study of wheel-soil interaction. In particular, the

work studies how well the method captures the effect of gravity on wheel-soil behaviour.

This was done by building a model and first tuning numerical simulation parameters

to determine the critical simulation frequency required for stable simulation behaviour

and then tuning the physical simulation parameters to obtain physically accurate results.

The former were tuned via the convergence of particle settling energy plots for various

frequencies. The latter were tuned via comparison to drawbar pull and wheel sinkage

data collected from experiments carried out by another research group on a single wheel

testbed with a martian soil simulant in a reduced gravity environment. Sensitivity of the

simulation to model parameters was also analyzed. Simulations produced promising data

when compared to experiments as far as predicting experimentally observable trends, but

also showed limitations in predicting the exact numerical values of the measured forces.



Résumé

La méthode par éléments discrets (DEM) est largement considérée comme l’une des ap-

proches les plus précises, bien que plus exigeantes en calcul, pour la modélisation dans le

domaine de la terramécanique. Son attrait réside dans sa prise en compte explicite de la

gravité dans la formulation, ce qui la rend facilement applicable à l’étude des sols dans

des environnements à gravité réduite. L’approche de la modélisation terramécanique avec

particules parallèles (P2) est une autre approche par éléments discrets qui est plus effi-

cace au point de vue de temps de calcul, au détriment de certaines supposition. Jusqu’à

présent, cette méthode a été principalement appliquée aux manœuvres d’excavation de

sol. L’objectif de ce travail est de mettre en œuvre et de valider l’approche P2 sur une seule

roue traversant le sol afin d’évaluer l’applicabilité de la méthode à l’étude de l’interaction

entre roue et sol. On étudie en particulier dans quelle mesure la méthode rend bien

compte de l’effet de la gravité sur l’interaction roue-sol. Ceci a été réalisé en constru-

isant un modèle et en ajustant d’abord les paramètres de simulation numériques pour

déterminer la fréquence de simulation critique requise pour un comportement de simu-

lation stable, puis en ajustant les paramètres de simulation physique pour obtenir des

résultats physiquement précis. Les premiers ont été réglés avec l’analyse de la la conver-

gence des courbes d’énergie cinétique lors de la sédimentation pour différentes fréquences.

Ces derniers ont été ajustés par comparaison avec les données de tirant et d’effondrement

des roues tirées d’expériences réalisées par un autre groupe de chercheurs sur un banc

d’essai roue unique avec un simulateur de sol martien dans un environnement à gravité

réduite. L’effet des paramètres du modèle sur les résultats a également été analysé.

Les simulations ont produit des résultats prometteux par rapport aux expériences en ce

qui concerne la prévision de tendances observables de manière expérimentale, mais ont

également montré des limites pour la prévision des valeurs numériques exactes des forces

mesurées.
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Chapter 1

Introduction

This thesis aims to take a discrete element method (DEM) framework and explore a new

potential application in the field of wheel-soil modelling. Past research using a DEM

particle approach to wheel-soil modelling have explicitly modelled inter-particle contact

forces through springs and dampers between particles in contact. This leads to very

large systems of equations that are computationally very expensive to solve. A DEM

formulation where the spring-dampers are applied implicitly through position correction

of contacting particles can be much more efficient since the solutions for particles can be

computed in parallel. While this so-called position-based method has existed for some

time - and has been implemented for modelling flexible bodies and for modelling soil

excavation maneuvers for real-time simulations - this thesis aims to explore its potential

for application in wheel-soil interaction modelling through comparison of simulation re-

sults with experimental data made available thanks to a research group from Concordia.

Through analysis of how model input parameters affect the bulk behaviour of the model

we also lay the foundation for how this method can be tuned effectively. The available

experimental data includes results collected in a reduced gravity environment, and so the

effect of gravity on the simulation results is also of interest. The work is presented as

follows:

CHAPTER 2 : A literature review is presented to provide background on the evolution

and current state of the art of the field of terramechanics. This will range from the

early empirical methods dating back to the early 1900s, to theoretical and semi-empirical

1



Introduction 2

methods from the 1950s, to numerical methods from the 1970s - and the evolution of

each of these methods right up until today. The current understanding of the effect that

gravity has on soil behaviour and how this is considered in planetary rover design and

testing will also be discussed.

CHAPTER 3 : A more detailed description of two pre-existing but relevant mathematical

formulations is provided. i) The equations governing general dynamics of finite degree of

freedom systems. This is important since the wheel and all elements of the simulation

other than the soil particles are governed by these dynamics equations of motion. ii) The

Parallel Particle (P2) DEM method - proposed by Holz in [4] - that governs the motion

of the particles in the soil model used in this thesis.

CHAPTER 4 : An overview of the reduced gravity experiments carried out by Niksirat

et al [1] and the data that was gathered from them. Part of the objective is to suc-

cessfully implement a wheel-soil model that can be validated by replicating experimental

result gathered during Partial Gravity Experiments (PGE) and On-Ground Experiments

(OGE) carried out on a single wheel testbed with a prototype of the ExoMars rover wheel

mounted. This chapter describes the elements of the experiments necessary to build the

simulation model, as well as the experimental results and trends that the model aims to

replicate.

CHAPTER 5 : A detailed look at the construction of the wheel-soil model used in simu-

lation, constructed using the Vortex multibody simulation software. This includes details

on how the components are defined and constrained, how the components of the model

relate to their counterparts in the real-world experiments from [1], how the soil model

was implemented and tuned, a description of the stages of a given simulation run, and

what outputs from the simulation are recorded for post-processing and comparison to

experimental results.

CHAPTER 6 : Results of the simulations are presented and, where applicable, compar-

isons between the simulation results and the results of reduced gravity experiments from

[1] are made. The section first focuses on how an initial baseline simulation captures the

trends observed in the experiments and how well the simulations replicate the experi-

mental trends that arise when reducing gravity. It then goes on to study the effect that
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simulation parameters have on the outputs as well as the sensitivity of these outputs to

gravity. Finally, simulation results from a tuned version of the model are presented and

the discrepancies between the simulations and experiments are discussed.

CHAPTER 7 : The conclusions of this thesis are summarized and suggestions for future

work is detailed. Includes discussions on the challenges and assumptions that went along

with working with the experimental data acquired during the reduced gravity flights, the

effects of these on the results presented, additional steps for validation of the method, and

the overall potential and limitations of this wheel-soil modelling method going forward.



Chapter 2

Literature Review

2.1 Terramechanics Models

Though engineers have been designing wheeled vehicles for centuries, the jump-start to

progress in the field of off-road vehicles that eventually led to the birth of the field of

terramechanics as it exists today can be attributed to military interest beginning in the

early 1900s. Following the development of tracked vehicles for off-road use by various

agriculture companies, the British War Office became interested in off-road tractor tests

for their potential military application. The designs were heavily influenced by work done

in the automotive industry and largely ignored any wheel-soil or track-soil relationships

[5]. By 1912, the British War Office ran out of funding for the project and tractor design

was continued in the private sector, which soon developed the first modern tractor [5]. As

World War I began, tanks were developed mainly by adapting existing tractor designs.

Since during war times there is not much room for rigorous research, modifications were

made through a long and sometimes costly trial and error process. For instance, the

French discovered the need to increase the track width for heavy tanks after an incident

on the battlefield [5]. Between the wars, studies and developments in terramechanics

shifted away from military applications and returned to their original focus on agriculture.

In the 1920s, Terzaghi [6] proposed soil mechanics principles for civil engineering, but

they were considered too innovative for application in wheel-soil study [5]. Still, by the

4
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late 1920s and early 1930s researchers had begun to notice the importance of wheel-soil

interactions and focused on such things as center of gravity location, sinkage, the effect

of grousers and wheel dimensions in their studies [5]. While improvements and industry

standards were set during this period, all studies remained empirical and therefore results

were limited to the tested conditions and any generalizations could not be very accurate,

and could be misleading if taken out of context [5]. With the start of World War II

came renewed military interest in the field, but progress advanced in a similar fashion as

during World War I, where developments were a result of trial and error. Despite this,

useful observations were made over the course of the war that lead to improvements. For

example, it was determined that grouser depth had an effect on performance, and the

inability to further increase track width lead to investigation of whether there was an

ideal distance between grousers [5].

Thus the process of trial and error continued with slow but steady progress until the

middle of the 20th century, when the field of terramechanics as it is known today truly

took shape as a result of M.G. Bekker’s books: Theory of land locomotion: the mechanics

of vehicle mobility [5] in 1956, Off-the-road locomotion: research and development in

terramechanics [7] in 1960 and Introduction to Terrain-Vehicle Systems [8] in 1969. These

works provided some of the first theoretical (or semi-empirical) models for wheel-soil

behaviour. To this day they are still cited as a benchmark of the field, and are referenced

often in modern work. Since their publication there have been many different kinds of

models used to describe the interactions between wheel and soil. These range in their

approaches from empirical, to semi-empirical, to numerical.

Empirical Models. Empirical models are ones that rely solely on experimental data

to predict behaviour. This is done by recording data for a given set of conditions and

wheel design and then looking for patterns that can correlate design and conditions to

performance. Empirical equations can then be developed linking certain parameters of

the experiments. This is a simple brute-force method that, while not very elegant, is

sometimes able to predict the performance of a wheel under the same conditions that

the experiments were conducted in. An early example of a purely empirical method is

the Cone Index model developed by the US army during World War II to determine

trafficability of a vehicle over certain terrain [9] [10]. The Waterways Experiment Station
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developed a device called a cone penetrometer to provide military intelligence on the

basis of a go/no-go result. It does this by measuring the force required to push a cone of

known dimensions into the soil at a constant velocity and generating a Cone Index (CI)

based on this force [9]. Using this index they would determine whether a vehicle would

be able to drive over the terrain without getting stuck based on whether the measured

CI is larger or smaller than the Vehicle Cone Index (VCI), which is a function of various

vehicle parameters [10]. The bevameter technique proposed by Bekker [5] is another

example of an empirical method, this time performing both normal and shear tests on

the soil to determine soil properties that are then used to build a model. It performs a

pressure-sinkage test by pressing a plate into the soil and measuring sinkage, as well as a

shear test which measures shear displacement for various normal loads [5].

Since then, there have been many other groups who have taken an empirical approach

to the study of terramechanics. In 1969, Schlegel and Morling [11] proposed calculators

to optimize tractor travel speeds for maximum plowing acreage by relying in several

empirically determined coefficients and equations. In 1972, Zoz [12] published a paper

on his work predicting tractor field performance based on experimentally generated tire

performance curves. In 1973, Wismer and Luth [13] continued the development of the

empirical traction-equations that first emerged in the works of Bekker and discussed

their application to wheeled off-road vehicles. In 1978, Clough et. al. [14] measured

the performance of a tractor driving over different fields while varying the gear number

and number of plow bodies to develop correlations that could point to combinations that

produced an optimum work rate. In 2005, Gobbi et. al. [15] applied the Pacejka magic

formula - developed for road tire performance prediction in 1991 [16] - to tractors driving

in off-road conditions with reasonably good results. In 2010, Meirion-Griffith and Spenko

[17] did an empirical study of the effect of terrain properties on planetary rover mobility,

citing the fact that more sophisticated models such as the Bekker model are significantly

less accurate when wheel size and loading is small. And as recently as 2013, Kane et.

al. [18] employed an empirical approach to the study of multipass vehicle impacts of

military vehicles driving over soft sand. These represent just a few examples of a wide

body of works that have, with some degree of success, implemented empirical methods for

generating terramechanics models - ranging from applications in agriculture, to military,
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to planetary exploration. The fact that the approach can provide fast and reasonably

accurate predictions in a narrow scope of conditions after some testing is perhaps why

there are still recent examples of its use, despite the limitation that the models often lack

of physical insight into the forces at play.

While all of the above mentioned variations on empirical modelling of wheel-soil dynamics

can be useful, they have several significant drawbacks. Fist, since they largely rely on

recording data from experiments and looking for correlation in the results, it is near im-

possible to draw any absolute conclusions or provide valid explanations for the observed

behaviour. Additionally, again because they rely on experimental results, any extrapola-

tion of the results for conditions outside of those for which there is data available cannot

be accurate. Both of these drawbacks culminate in the third which is that, since new

tests would need to be done to generate models for new operating conditions, the cost

and time requirement of this method can become expensive if models for a large num-

ber of operating conditions are needed. This last problem can be further exacerbated

if the operating condition of interest is a reduced gravity environment, as would be the

case in the study of planetary rover mobility, since these conditions are very difficult and

expensive to replicate on Earth.

Semi-empirical Models. Semi-empirical models have the advantage of the insight of

well understood physical properties and phenomena, such as the stress-strain relationship,

to create models of the soil that are tuned with real-world data. There are many types

of models that can be developed in this style, but one common one is an elasto-plastic

representation of the soil. In this kind of model, the deformation of the soil up to a

certain failure point can be described by elastic deformation - wherein the soil returns

to its original state - and by plastic deformation after this failure point. Wong uses the

Mohr failure criterion in [9]. A given deformation of the soil will generate a strain that

can be solved for by solving differential equations and then integrated over the surface

of the wheel to obtain the interaction forces felt by the wheel. These models can vary

in complexity, but many suffer from the same drawback of relying on a great deal of

assumptions to be able to predict behaviour completely theoretically [19] [20] [21].
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The Bekker method is currently the most widely used method for modelling wheel-soil

interactions. It was first proposed in Bekker’s book [5], and expanded on by himself in his

subsequent books [7] [8] and by many others including Wong and Reece [20] [21] in the

years that followed. In his method, Bekker combines theoretical models of stress-strain

relationships and the Mohr failure criterion with experimental data to tune coefficients

in the theoretical model. The coefficients are tuned using the aforementioned bevameter

test. The result is a theoretical model that includes coefficients that are determined

by empirical tests performed on the soil. It relies on data from experimentation to tune

coefficients used in its formulation, but it uses a physics-based model to predict behaviour

[8]. Certain assumptions are inevitably made. For example, Bekker simplifies the wheel to

be a rigid cylinder traveling over flat soil in steady-state conditions. More recent versions

of the method reduce the number of assumptions by adding more empirical coefficients

that are determined experimentally [9]. Other features in newer versions of the model

such as grousers [22], multi-pass effects [23] and flexible wheels [23] also help to do away

with some of the assumptions made in Bekker’s original model.

The strength that allows semi-empirical models to be accurate is perhaps also its biggest

weakness. Like the original empirical models, the Bekker model also requires extensive

tuning of coefficients which is done through experimental tests. This allows the model

to be accurate at reproducing data under the same conditions that the experiments were

run in but makes it difficult to use the same model to predict behaviour in new conditions

that have not first been reproduced experimentally. It might have a slightly larger scope

than a pure empirical model but it still requires additional experimentation to predict

behaviour in drastically different conditions. At best this can prove to be an expensive

process, and at worst this can be impossible - say in the case of designing a wheel for a

planetary rover destined to drive on the surface of Mars. In both cases, it is impractical

to always be forced to experimentally reproduce the exact conditions one is trying to

predict the behaviour for. After all, by definition, if we are to be successful at predicting

the behaviour we must do so without using the knowledge of the expected behaviour

to inform a model. Ideally, the experiments should be used as a means of validating

models rather than tuning coefficients. Additionally, Bekker [5] himself pointed out that

his method lacks accuracy for small wheel loads or small wheel radii. As previously
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mentioned, some recent studies have even reverted back to empirical models to describe

the motion of small ground vehicles to point out these flaws in the Bekker method [17].

While admittedly flawed, the Bekker method remains the industry standard and was even

used in the design of the ExoMars rover [24].

Numerical Approaches. The third and final type of method for creating terramechan-

ics models are the numerical methods. These encompass both the Finite Element Method

(FEM), which treats the soil as a continuum but breaks it down into finite elements to

capture the stresses generated in the soil, and the Discrete Element Method (DEM),

which treats the soil as a collection of individual particles that interact with each other

and the wheel. While they are computationally more expensive, improved computing

power since the 1950s have made them more feasible [9]. These methods can still be time

consuming, even with improved computation power, but when properly implemented they

often come with several advantages over semi-empirical methods [10].

The Finite Element Method (FEM) is a common numerical method that has been used

for many years in many different fields of engineering, but in the 70s and 80s its potential

for application in the field of terramechanics became apparent. The essence of the method

is to spatially discretize a continuum body using a piece-wise polynomial approximation.

It’s main limitation for modelling soil is the continuum assumption and the need for

proper constitutive relations [25]. In 1971, Permupral et. al. [25] proposed a way in

which the method could be adopted in the study of wheel-soil mechanics by using it to

predict the stress distribution and soil deformation under the wheel of a tractor. Others

such as Chung et. al. [26], Yong [27], Yong et. al. [28] and Oida [29] continued to

study how the stresses in the soil could be modelled by treating the soil as a deformable

continuum.

The Discrete Element Method was first proposed in 1979 by Cundall and Strack [3]. The

goal was to model the soil by individually modelling the particles or groups of particles

that make up the soil as distinct rigid bodies. The method uses explicit constitutive

relations to describe the interactions between particles. When particles overlap, there is

a force-displacement relationship developed at the point of contact. This comes in various

forms, most of which are some combination of springs and dampers modelled between
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interacting particles. In the original proposal, both normal and shear force increments

are computed as a function of the normal and shear displacement increment, respectively.

This increment is obtained by integrating the respective velocity component with respect

to time and multiplying this increment by a stiffness factor. The value of the normal

contact force increment is then added to the force calculated in previous time-steps.

Coulomb friction is incorporated by adding the calculated shear force increment to the

value obtained in previous time-steps and then checking the new shear force against the

maximum allowable shear force - which is determined based on the normal contact force,

the smaller of the friction angles of two colliding particles, and the smaller cohesion of the

two colliding particles. Together, these represent the contact forces [3]. Thus, the original

model only uses springs to model the contact, while more recent models also include

damping when calculating normal and shear forces [30]. Additionally, while the original

concept uses spherical particles to simplify contact detection, more recent studies have

used more complex shapes such as composite geometries formed by combining multiple

spheres [31] [32] or elliptical geometries [33] [34] because they claim that more complex

geometries are able to more accurately capture the interlocking of soil particles. Another

development in the method since its inception is the continued increase in complexity

of the contact model. When originally proposed, the model consisted of a spring with

a no-tension joint in the normal direction to model normal forces and a second spring

with no-tension joint in the tangential direction whose force is also bounded by the laws

of Coulomb friction to model shear forces [3] [9]. In later iterations, an extra torsional

spring-damper was added at the contact interface [35]. Even more recently researchers

began to include an additional spring without a no-tension joint in the normal direction

to model the adhesive force that can exist between particles [30]. All of these models

that use springs and dampers to model the interaction forces of particles in contact can

be tuned to match the soil sample in question by modifying the various stiffness and

damping coefficients. Many commercial and open-source software such as LIGGGHTS

and EDEM exist to create soil models using various versions of DEM.

While the above mentioned papers focused more on improving or modifying DEM contact

models, others have focused their study on using the method for different types of analysis,

validating the accuracy of the method, and tuning the parameters to match real world
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soil samples. Tuning the coefficients of these springs and dampers used for modelling

the particle contact remains one of the more difficult steps in successfully using a DEM-

based approach, but when tuned correctly the results can be more accurate than a semi-

empirical approach [30] [36]. In 1992, Yen and Chaki [37] studied the random packing of

spherical DEM particles by comparing simulation results to that of the random packing

of steel balls, producing satisfactory results. In 2000, Tanaka et. al. [38] conducted a

comparison study of soil deformation caused by penetration of a thin bar by comparing

experimental results to those obtained using DEM. The results showed that with tuning

of parameters, good simulation results could be obtained. In that paper, many important

factors related to DEM are discussed. Among these is the study of how the simulation

parameters, in this case the friction angle, affect simulation results - and the importance

of selecting the right parameters to ensure accurate results. Also highlighted in this

publication is the importance of a sufficiently small time-step to the stability and accuracy

of the simulation [38]. In 2011, Briend et. al. [31] did work on the calibration of DEM

parameters by simulating angle of repose and direct shear tests while varying simulation

parameters in an effort to find the parameters that best match the real life results of

those same tests on the desired soil sample. Others have also used similar testing to tune

DEM parameters [39] [40].

Like the other discussed methods, DEM has been used in study of soil for application

in the agriculture industry - for example Lia et. al. [41] who studied soil tillage using

DEM. More recently, however, the method has been used in the design and simulation

of wheels for planetary exploration rovers. Jiang et. al. [42] conducted reduced gravity

experiments on a single wheel testbed with a lunar soil simulant and compared results to

a numerical DEM simulation, Nakashima et. al. [43] studied the effect of grousers using

DEM, Knuth et. al. [44] and Hopkins et. al. [45] focused on the influence of reduced

gravity on granular material using DEM, and Smith et. al. [30] [46] modelled wheel-soil

interaction of a rover wheel with grousers driving over rough terrain.

A variation of the classic DEM method, termed Position Based Dynamics (PBD), was

developed by Müller et. al. in 2006 [47]. This created a simplified model where the

particles have a radius but no orientation. This allows for faster computation and can
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still be accurate. The original name, position-based, refers to the fact that, unlike in clas-

sic DEM, the interaction forces are applied implicitly by creating distance and velocity

constraints when particles are in contact, and performing several iterations of position

correction during which the positions of particles that are in violation of any constraints

is changed in order to satisfy the violated constraints [47]. The magnitude of this posi-

tion correction can then be transformed into an equivalent reaction force comparable to

that which is applied directly by the various spring-dampers in the classic DEM method

described above. The PBD method was designed as a lump parameter representation of

a flexible body using particles as nodes, but the method was extended by Holz in [4] to

become the Parallel Particle (P2) method. This method took the formulation governing

the nodes in [47] and developed a method in which the nodes behave like soil particles

through design of the contact constraints. The constraints that are generated when par-

ticles are in contact are meant to implicitly have the same effect as a the constitutive

relations used in the traditional DEM models that were previously described [4]. The

details of how the constraints are designed to achieve this will be explained in Chapter 3.

2.2 Gravity Effects

When performing Earth tests on a rover that is designed to operate in the reduced gravity

environment of Mars or the Moon, the intuitive method for reproducing the reduced

gravity effect is to reduce the load applied to the wheel of the rover by an equivalent

amount. Thus, to test a rover on Earth that is designed to operate on the moon, one

would reduce the mass of the rover to about about 1/6 of its original mass while testing

it on Earth so that the load applied to the wheels during tests on Earth is the same as

that which will be applied when the full mass of the rover is on the moon. What this

approach fails to capture is the effect that Earth’s stronger gravitational field has on the

soil itself. The soft soils that rovers are expected to drive over on other planets are made

up of fine grains, and the effect of gravity on the interactions between these grains is

overlooked when one simply reduces the mass of the rover to artificially mimic reduced

gravity conditions [48]. The strategy of simulating reduced gravity by reducing the mass

of the rover and maintaining the same gravity (Earth gravity) unsurprisingly yielded a
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lower sinkage when tested by Kobayashi et. al. in [48] and reported by Wong in [49].

However, after Kobayashi et. al. [48] carried out reduced gravity experiments with the

full rover mass in reduced gravity to see if the sinkage results in 1/6-g correspond to the

sinkage results in 1-g with 1/6 of the mass, results showed that the sinkage values for the

on-ground experiments did not match up with those of the reduced gravity tests. In fact,

the sinkage results with the original mass in gravity fields ranging from 1/6-g to 2-g were

all fairly similar. Wong [49] then compared these experimental results with what would

be expected based on the standard Bekker pressure sinkage relationship:

σ =
(kc
b

+ kφ

)
ζn (2.1)

where kc, kφ and n are coefficients related to soil properties that must be tuned, σ is

pressure acting on a contact patch, ζ is sinkage and b is the size of the contact patch.

Through comparison of experimental results and predicted results based on simulations

using Equation 2.1, Wong [49] showed that to predict sinkage on an extraterrestrial sur-

face using identical normal loads, the relationship between sinkage on Earth and sinkage

on another planet, as well as the relationship between wheel compaction resistance, de-

pend on the ratio of the gravity fields as well as an exponential coefficient used in the

Bekker model, which may not be readily available. Alternatively, predicting sinkage on

an extraterrestrial surface from tests on Earth is much simpler using an identical mass,

as the sinkage on Earth will be equal to the sinkage in an environment with different

gravity, and the compaction resistance of the soil is only a function of the ratio of the two

gravity fields [49] - thus removing the need to know any of the coefficients of Equation 2.1

in order to predict behaviour based on on-ground experiments. Kobayashi [48] came to

a similar conclusion, stating that the increased flowability of the soil in reduced gravity

that results from lower stress between grains combined with the reduced wheel load that

results from the mass being in a lower gravity environment effectively cancel each other

out and result in equal sinkage on Earth and in reduced gravity environments if equal

masses are used in both sets of experiments.



Chapter 3

Introduction to

General Dynamics Modelling and

the Parallel Particles Formulation

In order to run a good simulation we need to create a physics-based model that can repli-

cate real world systems. In our case, the system in question is a single wheel testbed with

soft soil [1]. The mechanical system will be described in detail in Chapter 4. Modelling

a system that includes wheel-soil interactions does pose a significant challenge as there

are many different modelling approaches that have different strengths and weaknesses,

however, other than the soil, all elements of the model used in this work are governed

by well established dynamic equations that are commonly used in multibody dynamics

modelling. The soil is, after all, just one component of the simulation. The fist section of

this chapter will focus on the basics of dynamics modelling as it is applied in the simula-

tion tool used in this project. The second section will focus on the details of the parallel

particles (P2) method, developed in [4] by Holz, that was implemented to model the soil.

Together, these two formulations are used model the mechanical system.

14
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3.1 General Dynamics Modelling

The model built includes some dynamic elements interacting with a terramechanics model.

As such, it is important to have the proper background on how both of these elements

are formulated. This section will focus on the formulation guiding the motion of the rigid

body elements of the simulation that were used in this work. Figure 3.1 illustrates the

model that was created. It features six main elements. Five of these can be described in a

general sense as rigid bodies and are governed by the formulation described in this section.

These are: the wheel - which has a composite collision geometry composed of a cylinder

with boxes representing the grousers, two links which are represented as a horizontal

and vertical boxes, the bin which is represented as a composite of five box geometries

forming a container that is open on top, and the pressure plate which is represented as

a box covering the open face of the bin. The specifics of each element will be discussed

in Chapter 5. The elements interact with each other through bilateral constraints which

will be defined in this section on general dynamic modelling. There are no unilateral

constraints between any of these rigid bodies, which simplifies the formulation somewhat

since it means there is no need for a friction model or contact constraints that can detach.

The only contact between elements involves the sixth component of the model, which is

the the soil. The soil particle dynamics is handled in a slightly different manner, which

will be described in Section 3.2.

Figure 3.1: 3D rendering of full dynamic system
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3.1.1 General Dynamic Equations

A dynamic system can be represented with a finite degree of freedom model whose state

is defined by p generalized coordinates collected in q = [q1, q2, ..., qp]
T and n generalized

velocities collected in v = [v1, v2, ..., vn]T . These generalized coordinates and velocities

are used to define the motion of all the mass elements in the system. Often, these mass

elements are grouped together to form rigid bodies. In general, the velocity components in

v are related to the time-derivatives of the generalized coordinates by the transformation:

q̇ = Nv (3.1)

where N is a p × n transformation matrix with p ≥ n. The resulting system, excluding

any interaction between components, can be described by the dynamic equation:

Mv̇ + c = f (3.2)

where M is the n × n mass matrix, c is an n × 1 matrix that contains terms that are

non-linear in v which represent Coriolis and centrifugal components of the motion, and

f represents the generalized forces acting on the bodies.

3.1.2 Interactions Between Elements

In addition to the generalized forces acting on the bodies, an extra m equations are

added to the system to describe the interactions between the elements through interaction

velocity components u = [u1, u2, ..., um]T . These are related to the velocities through the

following relation:

Av = u (3.3)

where A is an m×n Jacobian matrix representing the interaction kinematics. Constraints

can either be of the equality type u = b, as is the case for revolute joints, prismatic

joints, and spherical joints, or of the inequality type u ≤ b, as would be the case for

unilateral contact between bodies. For the purposes of this work we deal only with
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equality constraints. Eq.(3.3) can be rewritten at the acceleration level as:

Av̇ + Ȧv = u̇ (3.4)

where Ȧ is the time derivative of the constraint Jacobian and v̇ represents the gener-

alized accelerations. Each constraint velocity component in u has an interaction force

component associated with it. These forces are collected in λ = [λ1, λ2, ..., λm]T . Since

the components of u can represent either linear or angular velocity, the associated com-

ponent of λ can either represent a force or a moment. Including the interaction forces in

Eq.(3.2) yields:

Mv̇ + c = f + ATλ (3.5)

The interaction forces are determined either by the kinematic constraints or a consti-

tutive model - which is generally used for modelling contacts. In the case of kinematic

constraints, the relative motion of interacting elements is restricted and the forces are

solved for such that the constraint velocities, u, are satisfied. Constitutive models are

those in which the forces, λ, are calculated as a function of stiffness and damping terms.

In the case where interaction are defined through kinematic constraints, Eq.(3.5) must

be solved with Eq.(3.4). They can be combined and expressed in matrix form as:

M −AT

A 0

v̇

λ

 =

 f − c

u̇− Ȧv

 (3.6)

The structure of the Jacobian matrix, A, depends on the type of joint between two system

elements. Two joint types used in the model illustrated in Figure 3.1 are prismatic joints

and revolute joints. To illustrate how the Jacobian is structured for these joints we will

consider the simple case of two arbitrary rigid bodies connected by a single joint.

F0

Gi Bi

Gk

Bk

Figure 3.2: Constrained rigid bodies
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Say there are two arbitrary three dimensional rigid bodies i and k, shown in Figure 3.2,

with constraints restricting the motion between points Bi and Bk on bodies i and k.

Then, the following describes the relationship between the generalized velocities of the

bodies and the relative motion of the two points of interest on those bodies:

Ri
T Ri

T rF0
GiBi

Ri
T Ri

T rF0
GkBk

0 Ri
T 0 Ri

T


︸ ︷︷ ︸

J6x12


vF0
Gi

ωF0
Gi

vF0
Gk

ωF0
Gk


︸ ︷︷ ︸
v12x1

=

vFi
Bik

ωFi
Bik


︸ ︷︷ ︸

u6x1

(3.7)

where F0 is the inertial frame, Fi is a body fixed frame attached to body i, Ri is the

rotation matrix between the coordinate systems defined in reference frames F0 and Fi,

rF0
GiBi

is the vector from Gi to Bi expressed in the inertial coordinate system, rF0
GkBk

is

the vector from Gk to Bk expressed in the inertial coordinate system, and vFi
Bik

and ωFi
Bik

are the desired relative linear and angular velocities between points Bi and Bk expressed

in the coordinate system in reference frame Fi. For simplicity, the coordinate systems

are generally chosen so that the desired relative motion is along the axes in one of the

systems. For each joint, we can form a Jacobian matrix Aj by removing one or more rows

from matrix J which is defined in Eq.(3.7). We will examine how this is done for the two

joint types of interest.

Prismatic Joint. A prismatic joint allows free or controlled relative translation between

two bodies along a given axis while restricting all other relative motion between the

bodies. The coordinate systems are selected such that the axis of motion is an axis of

the coordinate system in the body-fixed frame of one of the two bodies. In Eq.(3.7)

the relative velocity components are expressed in the coordinate system in frame Fi, so

we will assume that one of these three velocity components is to be left un-constrained.

In the above example, this would be achieved by deleting the row of matrix J that is

associated with the axis of motion that is to be left free. For example, if the bodies are

to be free to translate along the axis defined by the first axis of the coordinate system in
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reference frame Fi, then the sub-matrix of the Jacobian representing this joint would be:

Aj = J1 (3.8)

where the notation J1 refers to matrix J with the 1st row deleted. The associated row

in the u vector would also be deleted, and all remaining components of u would be

set to zero to indicate that relative motion in these directions is not permitted. In this

scenario, there would be five components of λ associated with the five constrained degrees

of freedom. Thus, this adds five rows to the Jacobian matrix A.

Revolute Joint. A revolute joint allows free or controlled relative rotation between

two bodies about a given axis while restricting all other relative motion between two

bodies. The coordinate systems are selected such that the axis of rotation is an axis

of the coordinate system in the body-fixed frame of one of the two bodies. As before,

since in Eq.(3.7) the relative velocity components are expressed in the coordinate system

attached to bodyi we will assume that one of these three angular velocity components

is to be left un-constrained. In the above example, this would be achieved by deleting

the row of matrix J that is associated with the axis of motion that is to be left free.

For example, if the bodies are to be free to rotate along the axis defined by the first

axis of the coordinate system in reference frame Fi, then the sub-matrix of the Jacobian

representing this joint would be:

Aj = J4 (3.9)

where the notation J4 refers to matrix J with the 4th row deleted. The associated row

in the u vector would also be deleted, and all remaining components of u would be

set to zero to indicate that relative motion in these directions is not permitted. In this

scenario, there would be five components of λ associated with the five constrained degrees

of freedom. Thus, this too adds five rows to the Jacobian matrix A.

In a general system with an arbitrary number of bodies and j constraints between bodies

- each with an associated sub-matrix Aj - the Jacobian matrix would look like:
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A =


A1

...

Aj

 (3.10)

Chapter 5 will describe how the various elements seen in Figure 3.1 are connected using

the joints described above.

3.1.3 Time-Stepping

In order to run a dynamic simulation, we have to be able to update the system state

from one point in time to the next. We consider a time-step from tk to tk+1 with step

size h = tk+1 − tk as illustrated in Figure 3.3. It is assumed that the state of the system

is known at the start of the time-step and we would like to solve for the state at the end

of the time-step.

h
0 t

tk tk+1

Figure 3.3: Discrete time-step

We use qk and vk to represent the state at the start of the time-step, and qk+1 and vk+1

to represent the state at the end of the time-step. A first order approximation - often

called Euler approach - can be employed to step the system forward in time.

Explicit Euler Method. The explicit Euler method calculates the state of the system

at time tk+1 based on the current time tk by assuming that the slope of the solution is

constant for the duration of the time-step, and that this slope is equal to the slope at the

start of the time-step. Because this is an approximation, the assumption is more accurate

when h is small. For a simple ODE the problem looks like:

∂q

∂t
= f(t, q(t)), q(t0) = q0 (3.11)

With the aforementioned assumption that the slope is constant for the duration of the

time-step we can write:
qk+1 − qk

h
= f(tk, qk) (3.12)
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where qk is the approximate solution of the system at time tk calculated during the

previous time-step, f(tk, qk) represents the slope of the function at the start of the time-

step, and qk+1 is the unknown solution at the end of the time-step. Therefore, the

approximate solution at the end of the time-step is given by:

qk+1 = qk + hf(tk, qk) (3.13)

Implicit Euler Method. The implicit Euler method, sometimes called the backward

Euler method, aims to solve the same type of ODE as the previous method, seen in

Eq.(3.11). The same assumption is made that the slope is constant for the duration of

the time-step. The difference here is that in this version of the method it is assumed that

the slope throughout is equal to the value at the end of the time-step. This leads to the

following expression for the state at the end of the time-step:

qk+1 − qk
h

= f(tk+1, qk+1) (3.14)

where f(tk+1, qk+1) represents the slope of the function at the end of the time-step. As

in the previous method, this approximation is more accurate for small values of h. The

backward Euler method approximates the solution at the end of the time-step as:

qk+1 = qk + hf(tk+1, qk+1) (3.15)

where the unknown qk+1 term is on both sides of the equation. It can then be solved for

by iterating until it converges to a solution or by other solver schemes. Several methods

exist to solve such a problem.

Semi-Implicit Euler Method. The semi-implicit Euler method can be used as a more

accurate way of solving a pair of differential equations. Suppose we consider a case where

we would like to solve the system:

∂q

∂t
= f(t, v(t)), q(t0) = q0

∂v

∂t
= g(t, q(t)), v(t0) = v0

(3.16)
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The values of the two functions at the end of the time-step can be approximated as:

vk+1 = vk + hg(t, qk)

qk+1 = qk + hf(t, vk+1)
(3.17)

The difference between this method and the two previous methods is that vk+1 is calcu-

lated using the state at the start of the time-step, as in the explicit Euler method, while

qk+1 is calculated using the state at the end of the time-step, as in the implicit Euler

method. Returning to the original problem we can get the generalized positions and

velocities at the end of the time-step through a semi-implicit Euler integration scheme

by first updating the generalized velocities and then updating the positions using the

velocity from the end of the time-step:

vk+1 = vk + hv̇k

qk+1 = qk + hNvk+1

(3.18)

where the generalized acceleration terms, v̇k, are computed by the solver based on the

initial state state of the system. This method is used to obtain a time-discretized version

of Eq.(3.6).

3.2 Parallel Particles Formulation

Besides the elements that are governed by the dynamic equations described in the previ-

ous section, another major component of the model is the soil. The soil is governed by a

formulation called the Parallel Particle (P2) method which was presented by Holz in [4]

and is an evolution of the Position Based Dynamics (PBD) method presented by Müller

et. al. in [47]. This method is a version of a discrete element method in which kinematic

constraints implicitly apply interaction forces through position correction rather than ap-

plying them explicitly through constitutive spring-damper-type relations like traditional

discrete element approaches. The P2 formulation can be summarized by the pseudo-code

seen in Algorithm 1 for a simulation containing n particle and integrated with a time-step

of h. The initial particle position vectors, xi , velocity vectors, vi, masses, mi, and radii, ri
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are initialized in Line 2 and then time-stepping begins. Within a time-step, the algorithm

first computes a predicted position for each particle at the end of the time-step in Line

6. Then begins an iterative position correction process that corrects the initial predicted

particle positions. The solver runs a collision detection algorithm in Line 9 to detect

any contacts. In the case of a contact, collision constraints are generated in Line 10.

Based on these constraints, position correction vectors are calculated and applied to each

particle in the system in Lines 12-13, thus generating new predicted particle positions.

The collision detection and position correction process in Lines 9-13 is then repeated for

a fixed number of iterations before the position and velocity vectors for each particle are

eventually updated at the end of a time-step in Lines 15-16. This section will provide a

detailed explanation of the P2 method as it is presented in [4] and [47].

Algorithm 1 Parallel Particles Algorithm

1: for i = 1 : n do
2: xi = x0

i , vi = v0
i , mi = m(i), ri = r(i) . Initialize particle states

3: t = 0
4: while t < tf do
5: for i=1:n do . Beginning of time-step
6: pi ← xi + hvi + h2 fe

mi
. Predict particle position

7: c = 0
8: while c < ns do . Run ns solver iterations
9: CollisionDetection(p, r)

10: (C1, ..., Cm) = GenerateCollisionConstraints(p, r)
11: for i = 1 : n do
12: ∆pi = PositionCorrection(C1, ..., Cm,p)
13: pi ← pi + ∆pi . Update predicted position

14: c = c+ 1

15: vi ← (pi − xi)/h . Update Velocity
16: xi ← pi . Update Position
17: t = t+ h . End of time-step

3.2.1 Position Based Dynamics

In the Müller et. al. [47] framework, the system is represented by a set of point mass

nodes and a series of constraints that connect the nodes. We’ll consider a system that

contains n nodes. The state of node i at the start of a time-step is defined by a position

vector xi = [xi1, xi2, xi3]
T , a velocity vector vi = ẋi = [vi1, vi2, vi3]

T and a mass mi. The
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state of each node at the end of a time-step, x+
i and v+

i , is obtained through an iterative

process that involves predicting new node coordinates and correcting the predictions

if they create any constraint violations. After a fixed number of position correction

iterations the final node positions and velocities are computed for the end of the time-

step. The vector pbi represents the predicted position of node/particle i after b solver

iterations and Pb = [pb1, ...,p
b
n] is an array containing all node positions after b solver

iterations. The following procedure describes how the algorithm works for a single time-

step of length h.

After initializing xi, vi and the inverse mass, wi = 1/mi, of a node, an initial predicted

position p0
i = [p0i1, p

0
i2, p

0
i3]
T is calculated. This represents an initial estimate of the coor-

dinates of the node at the end of the time-step. The initial prediction is derived through

an explicit Euler integration:

p0
i = xi + hvi + h2

fe
mi

(3.19)

where fe contains the external forces acting on the node, such as gravity. Once the initial

predicted positions are generated an iterative position correction process begins.

At the start of each solver iteration, the solver generates a full list of constraints to

represent the interactions between nodes. These constraints restrict the allowable relative

position of nodes. Bilateral constraints are present in the system at every time-step and

every solver iteration. In [47] the bilateral constraints fix the distance between adjacent

nodes. Thus, a flexible object, for example a piece of cloth, can be modelled with such a

lumped parameter model. A collision detection algorithm is also run during each iteration

to generate an extra set of constraints due to contacts that exist in the system’s current

predicted configuration. These are unilateral constraints because they are applied only

in the case of contact. When a contact is detected, constraints are added to the system.

The set (C1, ..., CM) contains all the constraints - bilateral and unilateral - that exist

after the collision detection phase within a solver iteration. When this method is used

for modelling soil particles, as in [4], the only constraints in the system are the unilateral

constraints that are created during the collision detection phase because soil particles only

interact with each other through contacts. The structure of the constraints developed
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in [4] that are used for the modelling soil particle contact will be described in detail in

Section 3.2.2.

Once a full list of constraints is generated for the current solver iteration, the solver

checks which constraints are violated in the position of the nodes predicted at the end

of the previous iteration - or by Eq.(3.19) for the first iteration. Because the predicted

node coordinates defined by Eq.(3.19) do not consider restrictions on motion imposed by

the various constraints, the predicted system state is likely to be in violation of several

constraints. For each of the constraints that are violated in a given solver iteration, the

solver computes position correction vectors that will move the nodes into positions that

do not violate the constraint. The position correction vectors are computed based on the

constraint equations and the positions and masses of the nodes involved. The process for

calculating this term will be detailed later in this section. Each of the constraints also has

an associated scalar stiffness factor, kpb, between 0 and 1 to represent the compliance of

the constraint. The stiffness factor of a constraint is denoted here by kpb to differentiate

it from the stiffness coefficient of a mechanical spring, denoted by k, though later a

relation between the two will be defined. This means that instead of applying the full

calculated position correction, the solver displaces the nodes according to the relaxed

position correction vector. A stiffness factor of 1 means that there is no relaxation. A

problem noted in [47] is that the effect of the stiffness factor kpb becomes non-linear after

multiple solver iterations. The solution proposed in [47] is to adjust stiffness factors to

account for the number of iterations that the solver is set to run for. The adjusted stiffness

factor is given by:

k′pb = 1− (1− kpb)1/ns (3.20)

where ns is the total number of solver iterations the solver will run for. Based on the

stiffness factor and position correction induced by a constraint the solver generates a new

predicted position for the node. In a Gauss-Seidel-like fashion, each constraint is resolved

sequentially. Therefore, the position of node i at the end of solver iteration b is given by:

pbi = pb−1i +
c∑
j=1

(k′pb∆pbi)j (3.21)

where c is the number of constraints violated by node i during the solver iteration,
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(∆pbi)j is the position vector applied to particle/node i due to constraint Cj during

solver iteration b, (k′pb)j is the adjusted stiffness factor associated with constraint Cj,

and pb−1i is the predicted node position from the previous iteration. Once all the new

predicted node positions have been calculated, the next solver iteration begins. A new

list of collisions, constraints, and constraint violations is generated based on the predicted

node positions from the previous iteration and another position correction is applied to

each node. The coordinates and velocity of each node at the end up the time-step, xi
+

and vi
+ respectively, are given by:

v+
i = (pns

i − xi)/h

x+
i = pns

i

(3.22)

where ns is the total number of solver iterations and pns
i is the predicted position of node

i given by Eq.(3.21) after the final position correction iteration.

Position Correction

The following is a description of the formulation given in [47] for calculating the position

correction vector for a node/particle due to a single constraint. If we consider position

correction iteration b, projecting of the position based on a constraint Cj means moving a

node i to a physically permissible position through a position correction vector (∆pbi)j =

[∆pbi1,∆p
b
i2,∆p

b
i3]
T
j . The magnitude of position correction is weighted according to the

inverse mass of the nodes. If we define an array containing the current node position

vectors Pb−1 = [pb−11 , ...,pb−1n ] calculated in the previous iteration and assume that we

have a constraint of the type Cj(P
b−1) = 0 that is violated, then we are trying to recover

a ∆Pb
j = [∆pb1, ...,∆pbn]j such that:

Cj(P
b−1 + ∆Pb

j) = 0, (3.23)

where ∆Pb
j is an array containing the position correction vectors applied to each particle

due to constraint Cj during solver iteration b. During the constraint projection phase, in

which nodes are displaced within a time-step, it is important that the linear and angular
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momentum of the system be conserved so as not to introduce any artificial forces. In [47]

this is achieved by ensuring that the following equations are satisfied:

∑
i

mi(∆pbi)j = 0 (3.24)

∑
i

di ×mi(∆pbi)j = 0 (3.25)

where di is the distance between node i and some center of rotation for the system, and

mi is the mass of node. The change in the total linear and angular momentum of the

particles in the system caused by their position correction vectors is given by Eq.(3.24)

and Eq.(3.25), respectively. To ensure that these are satisfied, the position correction is

restricted to be along the gradient of Cj [47]. The gradient operator, ∇, is used to extract

the direction of greatest change of the constraint function at a given point. The effect of

the operator for a system with generalized coordinates q1...qn and basis vectors e1...en is

given by:

∇ =
n∑
i=1

ei
∂

∂qi
(3.26)

By taking a Taylor series expansion of Eq.(3.23) and dropping the non-linear terms,

Eq.(3.23) is approximated as [47]:

Cj(P
b−1 + ∆Pb

j) ≈ Cj(P
b−1) +∇Cj(Pb−1)∆Pb

j = 0 (3.27)

where ∇Cj(Pb−1) is the gradient of constraint function Cj and is given by:

∇Cj(Pb−1) =

[
∂Cj

∂pb−11

, ...,
∂Cj
∂pb−1n

]
(3.28)

If the the position correction to be along the constraint gradient, the position correction

can be expressed as [4]:

∆Pb
j = βW∇Cj(Pb−1)T (3.29)

where β is a scaling factor and W = diag(w1, ..., wn) is the diagonal matrix which contains

the inverse mass, wi, of each node [47]. Substituting Eq.(3.29) back into Eq.(3.27) yields
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a position correction vector for a single node due to constraint Cj given by:

(∆pbi)j = −swi∇pb−1
i
Cj(P

b−1) (3.30)

where Cj is the violated constraint, ∇pb−1
i
Cj(P

b−1) is the gradient of Cj with respect to

pb−1i , and the scaling term is given by:

s =
Cj(P

b−1)
N∑
k=1

wk|∇pb−1
k
Cj(Pb−1)|2

(3.31)

where N is the total number of nodes implicated in the constraint equation in question.

For our purposes a single constraint doesn’t involve more than two nodes so we would

generally have N = 2. Eq.(3.30-3.31) are simply calculating the total scalar distance

required to satisfy the constraint, Cj(P
b−1), and applying a fraction of that correction

to each node in the constraint gradient direction. The fraction of the displacement that

each node takes is determined according to the relative mass of the nodes. Thus, the

sum of the correction applied to all nodes will equal the total required correction. All

the position correction terms calculated by Eq.(3.30) are substituted into Eq.(3.21) to

get the new predicted node positions at the end of a solver iteration.

∆pb
2

∆pb
1

d

pb−1
1 ,m1

pb−1
2 ,m2

Figure 3.4: Distance constraint violation with weighted position correction

A simple example given in [47] is the position correction for a distance constraint that

affects a pair of nodes with m1 < m2, as seen in Figure 3.4. The constraint can be

expressed as

Cj(p
b−1
1 ,pb−12 ) = ||pb−11 − pb−12 || − d = 0 (3.32)

where two nodes are constrained to be at a fixed distance d from one another. The

gradient with respect to the first node is:

∇pb−1
1
Cj(p

b−1
1 ,pb−12 ) =

∂
(
||pb−11 − pb−12 || − d

)
∂pb−11

=
pb−11 − pb−12

||pb−11 − pb−12 ||
= n (3.33)
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where the result defines the contact normal direction, n. Similarly, they find that

∇pb−1
2
Cj(p

b−1
1 ,pb−12 ) = −n. Solving Eq.(3.30) and (3.31) results in position correction

vectors [47]:

(∆pb1)j = − w1

w1 + w2

(||pb−11 − pb−12 || − d)n

(∆pb2)j =
w2

w1 + w2

(||pb−11 − pb−12 || − d)n
(3.34)

where w1 > w2. It can be seen that the lighter node takes a greater percentage of the total

displacement needed to correct the constraint violation. This example is in fact relevant

for the soil simulation application of this method since, as will be explained in the next

section, distance constraints similar to the one in Eq.(3.32) will be used to model part of

the normal contact between particles.

3.2.2 Parallel Particles

The P2 method developed by Holz [4] builds on the PBD framework and adapts it more

specifically to the application of modelling soil particles. In this framework, the point

mass nodes represent soil particles with spherical collision geometries. As is the case in

the PBD method, these particles are defined by a position vector xi, a velocity vector vi

and mass mi, but now they have an additional property that is their radius ri which is

used for collision detection purposes. Some of the other key modifications made to the

PBD method in [4] are:

• The sequential solver is replaced with a parallel solver that can process each particle

individually, allowing for parallel computation of position corrections.

• A method to model a spring-damper element implicitly through constraints and

position-corrections is included to represent the normal contact forces between col-

liding particles with mechanical stiffness and damping.

• A method to model Coulomb friction and proposed forces implicitly through con-

straints and position-corrections is included.
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Parallel Solver

The parallelization of the position correction computation is done by independently com-

puting the all position corrections induced by the constraints that a particle violates in

any given solver iteration. Instead of applying each individual position correction to a

particle, the total correction for a node, ∆pbi , is now calculated as the average of each

individual position correction. Therefore, Eq.(3.21) used for calculating the predicted

particle position at the end of a solver iteration is replaced with:

∆pbi =
1

c

c∑
j=1

(k′pb∆pbi)j

pbi = pb−1i + ∆pbi

(3.35)

where c is the total number of constraints that particle i is violating. Formulating the

problem in this way allows for the new position of each particle to be solved for inde-

pendently from the others. The parallelization is achieved by dividing the particles into

separate threads that can then compute the position correction for particles at the same

time. A given thread solves all its assigned particles one at a time, but the simple fact

of being able to have multiple threads compute particles positions simultaneously speeds

up the solver significantly [4]. After the position corrections have been applied to all

particles, the solver repeats the entire position correction process for a fixed number of

iterations, as was the case in the PBD framework.

Contact Constraints

In the PBD formulation, the list of constraints is made up mostly of bilateral constraints

that are present at every time-step, with unilateral constraints being added to the list in

the case of contacts [47]. In the P2 formulation there are no bilateral constraints. Instead,

at each time-step and during each solver iteration, a new list of constraints is generated

based on which particles are in contact with each other or a rigid body. Contact detection

is made simple by the spherical shape of the particles. A contact is detected if the sum of

two particles’ radii is larger than the distance between the two particles. If two particles
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are in contact, a series of constraints representing various contact forces are generated,

a position correction is computed for each constraint violated by a given particle, and

the average of all the position corrections is applied to that particle - as described in the

previous section. Figure 3.5 shows a simple position correction case. In this example we

have detected a collision between two particles, and the solver has therefore generated a

constraint C(p) = ||p1−p2||− (r1 +r2) = 0. This constraint is violated and therefore the

solver computes a position correction ∆p = [∆p1,∆p2]. As in PBD, the lighter particle

is displaced more.

r1,m1

r2,m2

p1

p2

∆p2

∆p1

Figure 3.5: Constraint violation with weighted position corrections

In the P2 framework, the magnitude of a position correction imposed by a constraint is

still governed by Eq.(3.30) as in the original formulation, but the constraint equations

take on a different form. The objective in designing the normal contact constraints is

to define constraints whose resulting position correction will have the same effect as a

spring-damper element in traditional DEM formulation. In [4] it is shown that the stiffness

factor, kpb, that is associated with a constraint in [47] can be correlated to the stiffness

or damping coefficient in a contact model that uses a spring-damper element to model

normal contact forces - such as in traditional DEM formulations [30] - with an implicit

Euler integration scheme. This correlation will be important in later sections when we

tune the model using the equivalent stiffness and damping coefficients that are associated

with the constraint stiffness factors. To create a spring, we would want a constraint that

restricts the relative position of two particles in the contact normal direction. To create a

damper, we would want a constraint that restricts the relative velocities of two particles in

the contact normal direction. The pair of constraints proposed in [4] to implicitly model

a spring-damper element between two particles i and j during contact are formulated as:

Cs(pi,pj) = (pi − pj) · n− (ri + rj) = 0 (3.36)
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Cd(pi,pj) = ((pi − xi)− (pj − xj)) · n = 0 (3.37)

where n =
(pi−pj)

|pi−pj | is the unit vector in the contact normal direction. The constraint in

Eq.(3.36) constraints the distance between two particles to be equal to the sum of their

radii. Once Eq.(3.23) is applied to calculate the required position correction due to this

constraint, a stiffness factor that we will refer to as kpb is applied to the correction. Sim-

ilarly, the constraint in Eq.(3.37) constraints the relative velocity in the contact normal

direction between two particles to be equal to zero. Once Eq.(3.23) is applied to calculate

the required position correction due to this constraint, a stiffness factor that we will refer

to as cpb is applied to the correction. A correlation between cpb and kpb and the equivalent

stiffness and damping coefficients in the mechanical sense, c and k can be derived. This is

done in [4] by considering a one-dimensional spring-mass-damper system and comparing

the velocity at the end of a time-step if motion were governed by the P2 method - in

which case we have a mass subjected to two constraints described by Eq.(3.36-3.37) - to

the velocity at the end of an implicit Euler integration of a spring-mass-damper system

in one dimension with no gravity.

Spring-Mass-Damper System. In the form of Eq.(3.6), a one dimensional spring-

mass-damper system in zero-gravity can be defined by the following equation of motion:

mẍ+ cẋ+ kx = 0 (3.38)

Holz [4] assumes that the position, xk, and velocity, vk = ẋk, of the mass element are

known at time tk and uses an implicit Euler scheme to determine the position and velocity

at time-step tk+1, where h = tk+1 − tk. The resulting state at the end of the time-step is

given by [4]:

vk+1 = vk − h
c

m
vk+1 − h

k

m
xk+1

xk+1 = xk + hvk+1

(3.39)

P2 System with Sprint-Damper Constraints. In [4], the same mass element with

position xk and velocity vk = ẋk at the start of the time-step tk is analyzed again. The

P2 formulation is used to determine the state at time-step tk+1. In this one dimensional
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case, the initial predicted position of the particle is given by:

p0 = xk + hvk (3.40)

Two constraints would then be generated in the form of Eq.(3.36) and Eq.(3.37), respec-

tively:

Cs(p) = p0 = 0

Cd(p) = (p0 − xk) = 0
(3.41)

Based on the same position correction formula given by Eq.(3.30) the position correction

for the spring constraint will be be ∆ps = −p0 relaxed by factor kpb, and the position

correction for the damper constraint will be be ∆pd = (p0 − xt) relaxed by factor cpb [4].

For a formulation with a single solver iteration this yields the following at the end of a

time-step:

xk+1 = p0 − kpb∆ps − cpb∆pd

= (1− kpb − cpb)p0 + cpbxk

vk+1 =
xk+1 − xk

h

(3.42)

Solving these equations and performing a coefficient matching of the resulting equation

with the result obtained in Eq.(3.39) yields the following relationship between the scaling

factors and the mechanical stiffness and damping coefficients [4]:

kpb =
h2 k

m

1 + h c
m
h2 k

m

cpb =
h c
m

1 + h c
m
h2 k

m

(3.43)

As in [47], the constraint stiffness factors must be modified from what is defined in

Eq.(3.43) in such a way that they become factors k′pb and c′pb that have the same effect

but are independent of the number of solver iterations. In [4] this is achieved by writing
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out the expression for the position correction after ns solver iterations as:

p(0) = xk + hvk

p(1) = (1− kpb − cpb)p(0) + cpbxk
...

p(ns) = (1− kpb − cpb)p(n−1) + cpbxk

(3.44)

Substituting everything into the expression for p(ns), the position correction after ns

iterations, yields [4]:

fns(kpb, cpb) = p(ns) = p(0)αns + cpbxk

ns−1∑
j=0

αj (3.45)

where α = (1− kpb − cpb). From here the geometric series is replaced with 1−αns

1−α [4]:

fns(kpb, cpb) = p(0)αns + cpbxk
1− αns

1− αns
(3.46)

This represents the effective scaling factor generated by the kpb and cpb terms after ns

iterations. In order for the solution to be independent of the number of iterations, kpb

and cpb must be replaced with terms k′pb and c′pb that are designed such that the overall

corrected position is given by p(ns) = (1−kpb− cpb)p+ cpbxk, as was the case in Eq.(3.42).

In essence, the following equation must be satisfied [4]:

fn(k′pb, c
′
pb) = p(0)αns + cpbxk (3.47)

It is found in [4] that this condition is satisfied if we use:

k′pb = 1− cpb
1− α1/ns

1− α
− α1/ns

c′pb = cpb
1− α1/ns

1− α
α = (1− kpb − cpb)

(3.48)

Therefore, if the collision detection determines that there is a collision between two par-

ticles then the constraint projections are applied and the resultant position correction
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imposed on particle i by its collision with particle j is given by [4]:

∆pi←j = k′pb∆pi,s + c′pb∆pi,d (3.49)

where ∆pi,s and ∆pi,d are the position correction terms determined by plugging the

respective constraint equations - Eq.(3.36) for the spring and Eq.(3.37) for the damper -

into Eq.(3.30). Thus, by using a scaling factor that depends on both the desired equivalent

real stiffness and damping effects and modifying it further based on the number of solver

iterations being used for a given simulation, the real effect of a visco-elastic collision

model between two particles is created. It is worth noting that all of the forces that

are implicitly generated through the use of these coupled constraints are in the normal

direction. Constraints designed to represent friction will act in the tangential direction.

Friction

The next main element in [4] is that constraints are developed to model Coulomb friction

forces acting on particles that are in contact. The standard Coulomb friction law can be

given by:

|Ft|

 ≤ µs|Fn| if |v⊥| = 0

= µk|Fn| if |v⊥| 6= 0
(3.50)

where Fn is the normal contact force vector, Ft is the tangential friction force vector and

v⊥ is the relative tangential velocity vector. In this representation of friction, the friction

force is related to the normal force, opposes the relative motion in the tangent direction,

and is capped. To model this, the following damper constraint is proposed [4]:

Cf (pi,pj) = v · t = 0

v := (pi − xi)− (pj − xj)
(3.51)

where t is the unit vector in the contact tangent direction. The resultant position cor-

rection that comes from applying Eq.(3.30) to this constraint is calculated, but instead

of being directly applied to the particle position or subjected to a stiffness factor like

the normal contact constraints, this constraint’s position correction is capped based on
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the friction coefficient and the position correction in the normal direction computed by

Eq.(3.49). The constraint in Eq.(3.51) requires that the relative tangential velocity be-

tween the two particles be zero. The direction of motion along the contact tangent is given

by t = v⊥
|v⊥|

where the tangential component of the velocity is given by v⊥ = v − (v · n)n

- with n being the unit vector in the contact normal direction. If this relative tangential

velocity is zero, then there is no position correction induced by the friction constraint. If,

however, the relative tangential velocity is non-zero, then the position correction imposed

on particle i by its contact with particle j is [4]:

∆pi←j =
wi

wi + wj
εt (3.52)

where ε is the total position correction required to fully satisfy the constraint in Eq.(3.51)

and the previously defined unit tangent vector t is also the constraint gradient direction,

∇pi
Cf . Since we want Cf (pi,pj) = 0 to satisfy the constraint, if the actual value of

Cf (pi,pj) is non zero we can say that ε = Cf (pi,pj). In the the same way that standard

Coulomb friction models caps the tangential friction force as a function of the normal

force using the friction cone, the tangential position correction is applied as a capped

displacement εf based on the normal position correction εn which is determined by the

normal contact constraint applied in Eq.(3.49). This yields an overall position correction

caused by the contact between two particles that combines friction and normal contact

forces which is expressed as [4]:

∆pi←j =
wi

wi + wj
(εft + εnn) (3.53)

where

εf =

 ε if |ε| ≤ µs|εn|

sgn(ε)µk|εn| otherwise
(3.54)

Adhesion

In [4] the change in velocity resulting from a position correction is analyzed to develop

a relation between the position correction ε applied to a particle i with mass mi and the

equivalent constraint force which is implicitly induced by the position correction. This
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relation can be written as [4]:

λ =
m

h2
ε (3.55)

where λ is the equivalent constraint force induced by a position correction of ε, and h is

the length of the time-step. In order to apply adhesion to the particle interaction, the

adhesive force is expressed as [4]:

Fa = aAc

Ac = πr2min

(
1−

(
ζ

rmin
− 1

)2
)

(3.56)

where a is the adhesion coefficient, Ac is contact surface area of the two particles, ζ is the

penetration, rmin and the smaller of the two colliding particle radii, and Fa is the adhesive

force. The adhesive force is then converted to an equivalent position correction εa using

Eq.(3.55). The adhesion gets applied differently in both the normal and tangential direc-

tions. In the normal direction it is applied by creating an un-relaxed damper constraint

in the form of Eq.(3.37) and capping the displacement allowed by the constraint at εa.

In the tangential direction, εa is added to the cap of the friction force in Eq.(3.54) [4].

The relation given in Eq.(3.55) is used both for calculating the position correction induced

by adhesive forces, and for calculating the force that must be applied to other rigid bodies

in the simulation that interact with the P2 particles. When a rigid body in the system

collides with a particle, constraints are generated and the position correction terms are

computed as usual. The difference being that while the particle will feel the contact force

implicitly as a result of position correction, the calculated position correction that would

be applied to the body is instead converted to an external force to be applied to the body

through Eq.(3.55) and added as an external force acting on the body in Eq.(3.6).

3.3 Terramechanics Model Comparison

The methods outlined in the previous sections all come with their own advantages and

drawbacks. What was ultimately used to build the wheel-soil model for this project

was, as previously stated, an implementation of the P2 method. The software used is



Dynamics and Terramechanics Formulations 38

Vortex and it is a product developed by CM Labs for the purpose of creating simulation

environments. The two main alternatives to the P2 method that is implemented in

this work are variations of the semi-empirical Bekker model [5] [20] [21] and variations

of a traditional DEM method [3] [30] where particles are treated as rigid bodies with

orientation. A more detailed description of the formulations for the later two methods

can be found in Appendix A, but a survey of Table 3.1 will help to compare and contrast

these methods.

The Bekker method and its variants, with all the assumptions they carry, are very fast.

Because they use a simple equation to relate pressure to sinkage, they have a relatively

small computational cost associated with them. This is of particular importance when

simulations need to be able to run in real time. With proper tuning of the coefficients

in the pressure sinkage equation, these methods can give good results within the limited

scope for which the coefficients are were calculated and the equations have been proven to

be reliable. As previously mentioned though, the results are only reliable in the scope of

the experiments that were used to tune the parameters of the formulation, which makes it

hard to account for something like behaviour in reduced gravity without doing expensive

additional testing.

Table 3.1: Comparison of Soil Models

Bekker Method Traditional Discrete
Element Method

Parallel Particles

Bekker, 1956 Cundall and Strack, 1979 Holz, 2014
Semi-Empirical Numerical Numerical
Physics-based equations re-
late soil pressure to wheel
sinkage. Equations include
coefficients that are deter-
mined experimentally.
σ =

(
kc
b

+ kφ
)
ζn

Soil modelled as discrete
bodies. Contact mod-
elled using combinations of
springs, dampers and fric-
tion models

Soil modelled as discrete
particles. Contact forces
modelled implicitly using
constraints and position
correction
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The traditional DEM methods are on the other side of the spectrum. They can provide

more details but simulations can take days or even weeks to run. The fact that this method

models individual particles makes the study of soil velocity fields straightforward. This

method also makes it easy to study the effect of gravity because it is easy to directly

change the external force that gravity applies to each discrete element.

The P2 approach - summarized in Figure 3.6 for a simple case of two colliding particles -

is a version of DEM that retains many of the advantages of the traditional DEM. Gravity

can be directly modified and soil velocity field is directly observable. However, there are

key changes to the model. The model implicitly models contact forces through position

correction and uses an iterative solver to account for coupling of the interactions. The

illustrations of the DEM and P2 contact models in Table 3.1 illustrate this difference

between the methods. Additionally, particle orientation is not considered in this scheme.

These features allow for reduced computational cost to the point where it has been used

for real-time simulation of soil-excavation [4]. As of now, however, there has not been

much research into how applicable this model is to the study of wheel-soil interaction -

either in real-time or otherwise. This work explores non-real-time applications for using

the P2 method to model wheel-soil interaction. If successful, the P2 method has the

potential to be a much faster discrete element method for studying the general effect of

gravity on wheel-soil interactions.

Figure 3.6: Simplified P2 Formulation



Chapter 4

Reduced Gravity Experiments

The main goal of this work is to attempt to build a model that can reproduce results

gathered during a series of reduced gravity experiments that were conducted by a Con-

cordia research team [1]. A full description of the experiments, as well as other work done

to create a semi-empirical wheel-soil model to reproduce the results, can be found in [50]

and [1]. Some of the important aspects of the setup that are necessary for the model

constructed in Chapter 5 are outlined here.

4.1 Single Wheel Testbed

Let us begin with the mechanism as a whole. The testbed is an automated robotic

mechanism and can be seen in Figure 4.1 with its key components highlighted. Three

motors and actuators control the motion of the wheel during the experiments. First, a

linear actuator controls the horizontal motion of the wheel. The control of this actuator

is paired with that of the wheel motor, which controls the angular velocity of the wheel

and records motor current and torque via a torque sensor. A vertical load is applied

to the wheel by pneumatic actuators while allowing for the wheel the translate freely

in the vertical direction. The motor current of the linear actuator is recorded and in

post-processing is converted to an applied force and the vertical position of the wheel is

40
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also recorded to measure sinkage [1]. The testbed allows for mounting of different wheels.

Details of the wheel that was used in these experiments will be discussed in Section 4.1.1.

The sandbox itself contains 80kg of the ES-2 martian soil simulant, the properties of

which will be discussed in Section 4.1.2 [1]. As seen in Figure 4.1, the sandbox has one

wall that is made of glass so that the - with the help of a properly positioned mirror - a

high-speed camera can capture video images that are later processed to analyze the soil

velocity field through a visualization process described in [51].

Another important feature of the testbed is its soil preparation mechanism. The soil

preparation process was designed in [52] and was shown to create similar soil conditions

for each run through repeatability of the experiments during the reduced gravity flights

[1] [52]. The process involves covering the sandbox, blasting the soil compressed air to

loosen the soil and vibrating the box to level the soil [52].

Figure 4.1: Illustration of the Single Wheel Testbed
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4.1.1 ExoMars Wheel

The wheel that was mounted in the testbed is a prototype of the ExoMars rover wheel,

designed by ESA. All known design parameters of the wheel are listed in Table 4.1. As

can be seen in Figure 4.2, the wheel has a very flexible outer ring, with a stiffer inner

portion. This outer portion of the wheel compresses almost completely when the load of

the rover is applied to it - resulting in a much larger contact patch with the soil that can

be seen in Figure 4.3. The flexibility of the wheel and the shape of the contact patch as

determined in [50] will play an important role in the modelling of the wheel that will be

discussed in Chapter 5. As mentioned, the wheel is equipped with a motor to drive it and

a force/torque sensor to measure the wheel outputs. In addition, a potentiometer tracks

the vertical position of the wheel hub [1]. Thus, the total mass of the wheel assembly is

significantly larger than the mass of the wheel on its own.

Figure 4.2: 3D Rendering of
ExoMars Wheel

Figure 4.3: Compliance of
ExoMars Wheel

Table 4.1: ExoMars Wheel Dimensions

Parameter Units Value
Diameter [mm] 285

Mass [kg] 1.743
Mass (with sensors) [kg] 9.6

Width [mm] 120.8
Grousers [#] 12

Grouser size [mm] 25Lg × 5tg × 13Hg × 110Wg
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4.1.2 ES-2 Soil

A few ES-2 soil parameters were available to help guide the tuning of particle parameters,

these are summarized in Table 4.2. However, soil parameters are very sensitive to things

that are very hard to measure or predict, such as humidity, temperature, moisture, etc.

[53] [54] [55] The exact temperature and moisture content at the time of the experiments

is not fully known. This is one reason that the theoretical soil parameters provided are

not enough to select the appropriate simulation parameters. Another reason for not being

able to accurately set the particle parameters directly without a tuning process is that

the particle parameters available for tuning do not all directly correlate to the physical

parameters given in Table 4.2.

Table 4.2: ES-2 Soil Parameters

Parameter Units Value
Dry Bulk Density [kg/m3] 1450± 25

Cohesion [kPa] 0.75± 0.75
Internal Friction Angle [o] 37± 5

Grain Sizes [µm] 30-100

4.2 Reduced Gravity Flights

In order to study soil behaviour in reduced gravity, the entire testbed described in Section

4.1 was loaded onto a Falcon-20 aircraft at the National Research Council of Canada

(NRC) which followed a flight profile similar to the one illustrated in Figure 4.4 [1]. This

flight pattern is a common method to achieve a reduced or zero-g effect. The key part

of the flight is the parabolic part of the trajectory at the top of which the reduced-g

effect can be felt. The aircraft, after flying in steady flight for long enough to prepare

the next run of the experiment, enters a 2-g pull-up maneuver to enter the parabola and

begin its ascent. At the peak of the parabola - as the aircraft turns down towards the

Earth - a period between 20 and 30 seconds of reduced or zero gravity is experienced.

The degree to which gravity is effectively reduced is determined by the pitch and speed

of the aircraft [1]. During the period of reduced gravity, one experiment is carried out.

The aircraft would then begin its descent and pull out of the parabolic maneuver by
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way of a 2-g pull-out. The aircraft would then return to level flight, during which time

a repeatable soil-preparation mechanism was activated to reset the wheel and soil in

order to be ready for the next parabola with the same initial conditions [52]. Each flight

consisted of between 5 and 10 parabolas, after which maintenance was required on the

testbed before the next flight - for a total of 16 parabolas [1].

Figure 4.4: Profile of a typical reduced gravity flight [1]

4.3 Input Parameters

Various runs of the experiment used different experimental parameters in order to gather

a wide range of data on the effect of gravity on a wheel driving over soft soil. Two

actuators control the motion of the wheel in the testbed - a horizontal linear actuator

and a wheel motor. By keeping the rotational speed of the wheel such that there is a

constant rim speed of rω = 20mm/s and varying the translation speed, different wheel

slip values can be targeted. A pneumatic cylinder applies a vertical load on the wheel.

This load is calibrated in different gravity levels such that the total load (including the

mass of the wheel) was at a constant value for all gravity levels [1].
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4.3.1 Wheel Load

As described in Section 4.1, a wheel load, W , was applied to the wheel during the exper-

iments to reproduce the normal load that a wheel might feel due to the mass of the rover

that it is attached to. The total wheel load accounts for both the weight of the wheel

apparatus, given in Table 4.1, and the vertical load applied by the pneumatic cylinders.

The load was set to be either 164N or 225N , depending on the experiment run. The cylin-

der was programmed to keep the wheel load constant in all gravity conditions by taking

into consideration the effect of reduced gravity on the wheel and applying increased load

in reduced gravity conditions such that the total load, W , is consistent across all tests

in Earth, martian and lunar gravity. The reduction in gravitational force acting on the

wheel is directly compensated for by increasing the force that is applied by the cylinder

so that the overall load remains the same. Thus, the load applied by the cylinder can be

expressed as [1]:

Wpn = W −mwg (4.1)

where Wpn is force that is applied by the cylinder, W is the desired overall load, mw is the

total mass of the wheel apparatus (including instrumentation) and g is the acceleration

due to gravity. It is pointed out in [1] that the load applied by the cylinder was not

in reality perfectly constant during testing, but rather periodic with an average applied

force that is consistent with the desired total loads of either 164N or 225N .

4.3.2 Wheel Slip Ratio

Wheel slip is an important measure of wheel performance because of its close relation to

the amount of traction the wheel is able to develop under the given conditions [5]. Good

performance can be measured by how little slip is required given the amount of traction.

Conversely, maximizing traction for a preset slip-controlled test is an equivalent measure

of performance - as was the case in these experiments. The wheel slip ratio is defined as:

s =
rω − vx
rω

× 100% (4.2)
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where vx is the translational velocity of the wheel hub, r is the undeformed radius of

the wheel, ω is the angular velocity of the wheel, and together rω is the rim speed of

the wheel (kept at a constant 20mm/s). The tests carried out in [1] were slip-controlled

and measured traction for various slip conditions that were varied between 10% and 70%

in increments of 10%. As previously mentioned, and as seen in Figure 4.3, the wheel

is deformable. It could therefore be argued that the wheel slip ratio might be not be

trivial to accurately determine. However, since the rim of the wheel is made of steel it is

assumed in [1] that the overall perimeter, and thus the rim speed given by rω, does not

change significantly when the wheel is deformed. Therefore, it is assumed that the slip

definition given by Eq.(4.2) still holds for the deformable wheel. This is supported by

Wong in [9] where they say the value of r used for Eq.(4.2) for a deformable wheel should

be the rolling radius which is taken as rr = p
2π

where p is the distance that the wheel hub

would travel in one wheel revolution with zero wheel slip. Therefore, assuming that the

perimeter of the steel wheel is relatively unchanged when the wheel deforms, the definition

for wheel slip ratio given in Eq.(4.2), taking r to be the radius of the undeformed wheel,

holds true.

4.3.3 Gravity

Since the reduction of gravity was also something that could be controlled by altering

the profile of the flight, the runs were divided between Martian and Lunar gravity -

approximately a third and a sixth of Earth gravity, respectively. There were also tests

run on the ground at full Earth gravity. Table 4.3 illustrates the number of experiments

that were carried out in [1] for each combination of the wheel load, wheel slip, and

gravity input parameters. Due to the limited flight time available to conduct partial

gravity experiments (PGEs), the only experiments that were repeated were the 164N

load and 20% slip cases for both Lunar and Martian gravity.



Reduced Gravity Experiments 47

Table 4.3: Number of experiments run in [1] for various combinations of wheel load,
wheel slip ratio and gravity

Number of Tests Cases
Slip (%) Wheel Load (N) Earth-g Martian-g Lunar-g

10 225 1 1 0
20 225 1 1 0
30 225 1 1 0
10 164 1 1 1
20 164 3 3 2
30 164 1 1 1
40 164 1 1 1
70 164 1 1 1

4.4 Outputs

As discussed, the testbed was equipped with instrumentation to measure various outputs

that are of interest. These were described in more detail the Section 4.1. A high-speed

camera captured images of the soil that were later used to analyze the differences in the

velocity field of the soil as the wheel drives over it in both reduced gravity and Earth

gravity. The force applied by the linear actuator to maintain the constant horizontal

velocity is also recorded by converting the motor current into an applied force. Finally,

the position of the wheel hub is tracked via potentiometer in order to measure wheel

sinkage.

Figure 4.5: Illustration of measured outputs
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4.4.1 Drawbar Pull

Drawbar pull (DP) is a common indicator of the traction being generated by the wheel

under given conditions. It is defined as:

DP = T −
∑

R (4.3)

where T is the total thrust generated and
∑
R is the sum of resistive forces from the soil

acting on the wheel. In the slip-controlled experiments the DP is equal to the force that

the linear actuator applies to maintain the constant horizontal velocity of the wheel. All

other conditions being the same, increased sinkage often has the effect of decreased DP

because the extra soil surface in contact with the wheel results in more resistive force

which in turn results in lower DP as per Eq. (4.3). Similarly, increased soil strength with

all other conditions the same will result in lower DP for the same reason. It is of course

possible for both sinkage and/or soil strength to increase along with DP, but this would

usually be the result of multiple conditions changing. For example, the experiments in

[1] show that we will see an increase in both sinkage and DP as the wheel slip ratio is

increase from 10% to 70%. When comparing the results of different experiments, drawbar

pull weight ratio, DP/W, is often used for comparison in place of directly comparing the

DP values. This quantity how much a vehicle can tow relative to its own weight. In the

context of the experiments conducted in [1], it is equal to the DP divided by the total wheel

load. Due to the previously discussed periodicity of the wheel load, W, this was calculated

as the average DP divided by the average measured W for each experiment [1]. Since it has

been shown in [56] that DP/W is approximately constant within the operating conditions

of a wheel, comparing the DP/W ratio rather than directly comparing DP between tests

can lead to a more meaningful comparison. An assumption in the simulation model that

will be presented in Chapter 5 is that applying a constant W in line with the average

experimental W rather than trying to replicate the time-varying W that was applied in

experiments would be acceptable. The finding in [56] supports this assumption as we can

assume that the DP/W at the peaks and valleys of the real applied load would still result

in a relatively constant DP/W. Thus, analysis of DP/W rather than DP also makes sense

for the purposes of comparison between the experiments and simulations.
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4.4.2 Sinkage

The sinkage is another measure that affects wheel performance. It represents how much

the wheel sinks into the soil. Sinkage increases with slip and can result in higher resistive

forces from the soil, but also higher traction. Higher sinkage at the same slip value is likely

to result in reduced DP for the reasons discussed in Section 4.4.1. However, when we have

increased sinkage caused by increased slip, the result tends to be higher DP - as will be

seen in the results section. The sinkage was measured as the vertical displacement of the

wheel hub relative to the soil surface by a potentiometer mounted on the wheel apparatus.

Since the wheel was flexible, the wheel hub displaces vertically both due to sinkage and

deformation of the wheel. However, for a given loading condition, the deflection of the

wheel was assumed to be constant and the amount of displacement attributed to the

deformation of the wheel is subtracted from the overall measurement [1].

4.4.3 Images

As discussed, a high-speed camera captures video footage of every experiment and pro-

cesses them through a procedure presented in [51]. This process outputs a detailed map

of the magnitude and direction of the individual soil particles under the wheel as it drives.

This allowed for direct comparison of soil flow at equivalent points in the trials for various

test conditions. Following in the footsteps of the experiments carried out by Nakashima

[43], being able to qualitatively observe the increase flow in the soil in reduced gravity is

an important part of the experiments.

4.5 Conclusions of the Experiments

Niksirat et. al. [1] draw many conclusions about the effect that varying gravity has on

the various outputs. These trends will form the basis for the initial validation of the

applicability of the P2 simulation model in Chapter 6.



Reduced Gravity Experiments 50

4.5.1 Effect of gravity on DP/W

Niksirat et. al [1] showed that the DP/W value was, on average, 20% lower in lunar gravity

when compared to Earth gravity. For Martian gravity, the overall DP/W reduction was

slightly smaller - 6% for the 164N loading case, 14% for the 225N loading case and 8%

if all cases are combined. While these changes between Earth and Martian gravity were

quantifiable, they were deemed not statistically significant for Martian/Earth comparison.

However, the fact that reduction in DP/W was observed both in Martian gravity and,

to a larger degree, in Lunar gravity suggests that DP and gravity are related. The study

concludes that reduction in DP/W indicates reduced soil strength in lower gravity [1].

4.5.2 Effect of gravity on sinkage

The results found in [1] for the effect of gravity on sinkage were far more conclusive in all

gravity levels. They found that, on average, there was a 38% increase in sinkage in Lunar

gravity compared to Earth gravity, an increase of 27% when comparing the Martian and

Earth gravity tests for 164N load and a 47% increase when comparing the Martian and

Earth gravity tests for 225N load.

4.5.3 Effect of gravity on sensitivity to loading

Another observation made in [1] is the fact that changing gravity has an effect on how

much certain outputs are affected by increased wheel loads. This was especially apparent

for the sinkage output. When load was increased from 164N to 225N in Earth gravity,

the sinkage increased by an average of 14%. Meanwhile when the same load increase was

tested in Martian gravity it lead to an average sinkage increase of 31%, suggesting that

reduced gravity leads to an increased sensitivity of sinkage to wheel load [1].
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4.5.4 Effect of gravity on velocity fields

Unlike DP and sinkage, the velocity field of the soil is less simple to quantify for each

experiment. However, a simple qualitative analysis and comparison of the soil velocity

field images captured in [1] can help to characterize the effect that gravity has on the

velocity and flowability of the soil. The comparison shows beyond a doubt that there is

increased flow in the soil in reduced gravity, consistent with the theory put forth in [43]

that soil strength is reduced in lower gravity.



Chapter 5

Dynamic Model

and Simulation Setup

Vortex is used to model both the rigid bodies and particles in this work. The particle

formulation described in Chapter 3 is fully implemented in the latest version of Vortex

and is used for real-time simulation of rigid body/particle interaction in the context of

soil excavation maneuvers. In that context it is acceptable to use particles and time-steps

that are large enough to simulate realistic-looking soil behaviour in real-time. In the set-

up described in this section we will detail how this particle system was pushed beyond

the scope of what it was originally implemented for to run simulations at much smaller

time-steps, with much smaller particles, and with the ultimate goal of creating a model

that is validated not by how realistic the behaviour appears to be visually but by how

well it can match experimental data and trends.

5.1 Mechanical Components

While the behaviour of the particles is the main focus of study, on their own they cannot

be used in any useful simulation without the ability to interface with other types of

elements - in this case mechanical system models generated using rigid bodies. The

physical maneuver being simulated is actually fairly simple: a single rover wheel driving

52
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(a) Model (b) Experiment

Figure 5.1: Mechanical model (left) vs Experimental testbed (right)

in a straight line over soft soil. However, this still requires a mechanism to mount it

onto the testbed. Figure 5.1(b) illustrates the mechanical system being modelled and

Figure 5.1(a) illustrates the dynamic model that was created to represent the mechanical

system. This section will discuss the geometry and purpose of each element of the model

and Section 5.2 will go into detail on how the elements interact through constraints like

those described in Section 3.1 in order adequately capture the motion of the mechanical

system.

Wheel. The wheel itself is perhaps the most complex element to model. This is because

the real ExoMars rover wheel that was used in the experiments that are used to validate

the simulation is flexible. Were it not for the flexibility of the wheel, most of the param-

eters listed in Table 4.1 would be directly applied to create a collision geometry for the

rigid body wheel used in simulation. Because it can be very difficult to model the flexi-

bility of the wheel directly, a technique often used in the literature is the determination

of an effective wheel radius. This effective radius, which is larger than the undeformed

wheel radius, is then used in calculations in place of the real radius because it allows the

model to more accurately capture the true shape of the contact patch. This technique was

originally suggested by Bekker [5] and continues to be used today so that terramechanics

models designed for rigid wheels can be used to model the motion of flexible wheels. Many

other works have developed other methods for determining more complex shapes for the
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contact patch such as elliptical [57], parabolic [58] and exponential [59] approximations.

In [50], still images captured during the experiments described in [1] are analyzed using

Taubin’s method [60] to determine an appropriate effective radius. This effective radius

was used in [50] to model the experiments using a semi-empirical terramechanics model

that assumes rigidity of the wheel. The analysis in [50] found that the radius of the

contact patch is approximately double the radius of the uncompressed wheel. In order

to use a rigid body to represent the wheel in the model in this work, the same effective

radius technique was used to more accurately capture the shape of the contact patch.

With the underlying assumption that a rigid wheel would have to be made twice as large

to have a contact patch that is similar to that of the wheel in the experiments, the other

parameters given in Table 4.1 had to be altered accordingly. The radius, as mentioned,

was doubled - and so it followed that the number of grousers should also be doubled so

as to maintain the same frequency of grousers around the perimeter of the wheel. What

remained constant were the overall mass of the wheel, the width of the wheel, as well the

dimensions of the grousers. The collision geometry for the wheel is a compound geometry

made up of standard cylinder and rectangular shapes positioned to capture the shape

of the wheel and grousers. While this collision geometry is active, in the context of the

simulation the only elements that the wheel will come into contact with are the particles.

Link 1. This link, depicted as a red box in Figure 5.1(a), is a body with no active

collision geometry. It is essentially used as a moving frame of reference. It is constrained

such that it can only move at a fixed velocity in the horizontal direction relative to the

inertial reference frame, or the ”ground” as it can be referred to. This axis of movements

is shown as a red line in Figure 5.1(a). It is necessary for simulation purposes and does

not directly represent any real part of the experimental testbed. As such, its mass is

set to be negligible so as not to have an impact on the simulation outputs. It is simply

necessary so that the vertical axis constraining the motion of the load moves laterally as

the wheel moves forward. Physically, it represents the slider of the linear actuator shown

in Figure 5.1(b).

Link 2. Link 2 is depicted as a green box in Figure 5.1(a). Like link 1, it has no active

collision geometry but unlike link 1, it does represent real components in the system.

Physically, it represents the instrumentation attached to the wheel in the assembly shown
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in Figure 5.1(b). It has a mass of 7.857kg which, when combined with the mass of the

wheel itself, results in a wheel assembly with the same total mass as the instrumented

wheel described in Chapter 4. Through a prismatic constraint designed to mimic the

motion induced by the pneumatic actuators in the real system seen in Figure 5.1(b), the

motion of link is restricted to be in the vertical direction relative to link 1. This axis of

motion is shown as a green line in Figure 5.1(a). Link 2 is also connected to the wheel

through a revolute joint that allows the wheel to rotate about an axis in the body-fixed

frame of link 2 that is orthogonal to the axis of motion of the aforementioned prismatic

joints.

Bin. The main function of the bin is to act as the domain in which the simulation is

carried out. The bin is simply a container for the particles to settle in. It is made up of

five rectangular collision geometries combining to form a single rigid body, each enforcing

one of the limits of the domain with the top remaining open. Unlike the two links,

this element’s contact geometry is active, however, in the context of this model the only

elements it will come into contact with are the particles. It is shown in brown in Figure

5.1(a). The bin is constrained to be static at all times and so there are no constraints

applied to it.

Pressure Plate. The final component of the mechanical system is a plate that is used to

compress the particles before the wheel is engaged. It has a rectangular collision geometry,

illustrated in purple on Figure 5.1(a) and has the same length and width as the opening

at the top of the bin. A prismatic joint allows only for motion in the vertical direction.

The axis of this motion is shown in dark purple in Figure 5.1(a). The purpose of this

component is to apply a compaction pressure to the particles before the wheel is engaged

just as the soil in the experiments is compacted before the experiments are carried out.

5.2 Constraints

A subset of the mechanical model is the set of constraints that are used to move the wheel

during simulation. There are only a few constraints needed to produce the desired motion.

Three constraints control the motion of the wheel, another is used to apply pressure to
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Figure 5.2: Kinematic diagram of the mechanical system

the soil in the soil preparation phase of the simulation - which will be discussed in Section

5.3.1 - and another set fix the bin to remain static.

The schematic shown in Figure 5.2 illustrates how the five bodies in the mechanical model

interact with each other through constraints. In Section 3.1 we discussed how bilateral

constraints are added to a dynamic system to control to relative motion of the various

elements of the simulation. It was shown that the relation Mv̇ + c = f + ATλ combined

with the constraint equations Av = u could be used to calculate the unknown constraint

forces λ if the constraint velocities u are specified. There are some constraints in this

model that will have capped constraint forces, meaning that the equalities shown above

will become inequalities and form a Linear Complimentary Problem (LCP). The Vortex

solver handles these constraints by asking for a desired constraint velocity as well as

a maximum/minimum constraint force, λmax, that is permissible for the constraint in

question. In the cases where we would like the developed constraint force to be capped at

a specific value, we still specify the constraint velocities, u, but we also indicate what the

maximum acceptable constraint forces are. If the calculated constraint force for a specific

constraint exceeds its limit, λmax is taken as the solution for the associated element of λ.
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Translation. The first of the three constraints that controls the overall motion of the

wheel is the translation constraint. This constraint is part of the prismatic joint that

connects link 1 to the ground and is labeled as Prismatic Joint 1 in Figure 5.2. In the

experimental setup shown in Figure 5.1(b), a linear actuator moves the wheel assembly

forward at a constant velocity. The force that this actuator applies to maintain this

constant velocity is recorded as the DP. Likewise, the prismatic joint between link 1 and

the ground is designed such that the constraint velocities, u, are equal to the velocity that

the linear actuator moves the wheel with in the experiments. The associated component

of the developed constraint forces, λ, is interpreted as the DP output for the model. In

this case, there is no restriction on the permissible value for the developed constraint

force.

Loading. The second of the three constraints that controls the overall motion of the

wheel is the loading constraint. This constraint is part of the prismatic joint that connects

link 1 to link 2and is labeled as Prismatic Joint 2 in Figure 5.2. In the experimental

setup shown in Figure 5.1(b), a pneumatic actuator applies a constant load to the wheel

assembly while allowing the wheel to move freely in the vertical direction. To represent

this component in the model, the prismatic joint was defined to control the constraint

force that is developed. As in the previous case, the constraint velocities, u, are defined.

In this case, however, a maximum constraint force is enforced because we would like the

developed constraint force to be equal to the force applied by the pneumatic actuator.

The maximum value of the constraint force is set to be equal to the load load applied

by the pneumatic actuator - defined by Eq.(4.1). To ensure that the developed force is

always equal to the maximum force, the constraint velocity is set such that the computed

component of λ will always exceed the limit, and thus the limit constraint force, λmax,

is always developed and taken as the solution for the associated component of λ. Thus,

the load applied to the wheel by the pneumatic actuator in the experiments is reflected

in the constraint forces developed by the prismatic joint between links 1 and 2.

Rotation. The final of the three wheel constraints is the rotation constraint. This con-

straint is part of the revolute joint that connects link 2 to the wheel and is labeled as

Revolute Joint 1 in Figure 5.2. In the experimental setup shown in Figure 5.1(b), the
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wheel motor applies a torque to the wheel to maintain a constant angular velocity. Like-

wise, the revolute joint between link 2 and the wheel is designed such that the constraint

velocities, u, are such that the the 20mm/s rim speed that was used in the experiments

described in Chapter 4 is reproduced. Because the effective radius used for the modelled

wheel is larger than the radius of the real wheel, in order to achieve the same rim speed

in the model, the component of u corresponding to angular velocity about the wheel’s

axis is set according to:

ω =
vrim
r

(5.1)

where ω is the component of u corresponding to angular velocity about the wheel’s axis,

vrim is the desired rim speed and r is the radius of the wheel in the model - which is equal

to the effective radius of the contact patch of the deformable wheel used in experiments.

Compaction. The last notable constraint in the system is the one controlling the com-

paction pressure applied to the particles before the wheel is engaged. This constraint

works in much the same way as the loading constraint between links 1 and 2. This

constraint is part of the prismatic joint that connects the pressure plate to the ground

and is labeled as Prismatic Joint 3 in Figure 5.2. In the experimental setup shown in

Figure 5.1(b), before the wheel is allowed to drive, there is a soil preparation phase. As

discussed in Chapter 4, this phase involves compacting the soil with compressed air. To

apply a similar compaction in the model, a pressure plate is used to compress the par-

ticles. As was the case for the loading joint, the constraint velocities, u, are defined as

well as maximum allowable constraint forces. In this case, the maximum constraint force

component associated with the vertical axis is set to be equal to the desired compaction

force - which is derived based on the desired compaction pressure and the total surface

area of the pressure plate. As was done previously, the constraint velocity associated with

the vertical direction is set such that the computed component of λ will always exceed

the limit, and thus the limit constraint force value is always developed.
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5.3 Simulation Steps

The various elements of the simulation are divided into phases. During each phase, the

constraint velocities of the mechanism are set to the appropriate values in order to achieve

the desired motion. The following is a chronological list of the various simulation phases,

what occurs during that phase, and what triggers the simulation to move on to the next

phase. The three phases are: soil preparation, wheel engagement, and driving.

5.3.1 Soil Preparation

An important aspect of any DEM type soil simulation is the method in which the soil

itself is initialized. It has been shown that the configuration of the soil particles can have

a large impact on the bulk response of the system [61] [62]. For this reason, it is important

that there always be a consistent soil preparation phase for each simulation. The method

for preparing the soil has four stages: particle generation, settling, compaction, and

resettling.

Before beginning the description of the soil preparation process, it is important to define

what is meant when we say that particles are settled. In real life this definition is trivial. A

pile of soil is settled when it comes to rest. In DEM simulation this definition is less trivial

since there will be small instabilities causing extraneous particles to have instantaneous

jumps in velocity, particularly at lower frequencies. Thus, it is important to define what

a settled pile is in the context of a simulation. In order to determine if the particles are

settled, the total kinetic energy of the pile is calculated. If the total kinetic energy of

all the particles in the system is below a certain cut-off energy value, the pile is said to

have settled. The exact value of the cut-off energy is varied depending on the stage of

the simulation, as will be discussed.

In the first stage of the soil preparation phase of the simulation, the desired number of

particles with the specified radii and properties are generated at random positions within

the confines of a bin representing the testbed. This is done by randomly generating a

position within the domain of the bin, then randomly selecting one of the allowed radii,
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and finally making sure that this new particle does not interfere with any of the already

generated particles. The process is repeated until the specified number of particles is

added to the model. Once all the particles are generated, we move to stage two.

In the second stage of the soil preparation phase, the particles are allowed to settle under

the influence of whatever gravity the simulation is being run under (Martian, Lunar,

or Earth). Once the particles have settled in the bin according the the aforementioned

definition of the word ”settled” in the context of a DEM simulation, we move to stage

three.

In the third stage of the soil preparation phase, the pressure plate - which covers the whole

surface of the bin - is lowered from the top to compress the particles. This step serves

three purposes. First, as the sinkage of the wheel will later be measured as the distance

between the wheel hub and the surface of the soil, a clearly defined soil surface level is

necessary to accurately calculate sinkage. Since the particles are generated at random,

the height of the pile in the rectangular bin can be uneven at first. This makes accurately

determining the height of the pile difficult. The compaction makes the surface level more

clearly defined. Second, as previously discussed, the soil compaction has an impact on soil

behaviour [61] [62] and this stage ensures that the particle compaction for all simulation

runs is the same. Third, as discussed in Chapter 4, the soil samples underwent similar

compaction in the experimental soil preparation phase. Thus, including this phase as

part of the model helps it more accurately match the experiments. The constraint that

controls the motion of the pressure plate has the plate move down towards the soil at a

constant velocity while developing a maximum constraint force equivalent to a pressure

of 5000Pa evenly applied to the soil surface. Once the force applied to the plate is no

longer sufficient to move it any further towards the soil, the plate is removed from the

simulation - triggering the final stage of the soil preparation phase.

The final stage of soil preparation is the re-settling of the particles. After compaction

under the pressure of the plate, the particles are allowed to settle again as the compaction

relaxes. Once the particles resettled, the soil preparation phase is complete and the next

phase of the simulation can begin.
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5.3.2 Wheel Engagement

Once the various stages of soil preparation have been completed, the wheel maneuver can

begin. The first phase of this process involves engaging the wheel by lowering it into the

soil. Initially, the wheel is suspended above the bin where it will not interfere with the

soil preparation phase. Once the soil is set, the desired velocity for the vertical direction

is set to −0.1m/s. This is so that the constraint will lower the wheel until it contacts

the soil, and then keep lowering it as much as it can until the constraint force reaches

its maximum value. Recall that the constraint force developed in the vertical direction is

not allowed to exceed the desired wheel load. Once the max constraint force is reached,

the wheel will eventually come to rest. Once the wheel comes to rest, the particles are

once again allowed to resettle while in contact with the wheel. After the particles have

resettled, we move on to the third and final phase of the simulation.

5.3.3 Driving

The final phase of the simulation is the actual driving motion of the wheel. Until this

phase of the simulation, the constraint velocities associated with the horizontal and an-

gular velocity of the wheel are set to zero. Once the wheel is lowered into the soil and

the particles have settled, the wheel can begin to move forward. At this point, the con-

straint velocities associated with these two degrees of freedom are set to their non-zero

values determined based on the desired wheel slip ratio and rim speed. As discussed,

the constraint forces associated with these constraints are not capped, therefore the de-

sired motion in these directions is always enforced. The constraint forces developed are

recorded as outputs of the simulation for later analysis. The simulation comes to an end

after 25 seconds of simulation time has elapsed. This duration was chosen because it is

approximately the same duration as the experiments.
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5.4 Simulation Parameters

Tuning the multitude of parameters involved in the simulation is crucial to getting ac-

curate results. In order to streamline this process, the parameters available for tuning

are broken down into three distinct but equally important categories. These are the nu-

merical parameters, the particle parameters, and the simulation input parameters. The

methods used to tune each set of parameters will be discussed in this section.

5.4.1 Numerical Parameters

Unlike explicit DEM, for the P2 soil model there are two numerical parameters that can be

tuned. These are the simulation frequency (or time-step size) and the number of solver

iterations for the particle solver. The estimation of the maximum allowable time-step

for DEM simulation is a key issue in the field. Too large a time-step can lead to large

particle overlap from one time-step to the next, causing instability in the system, but

too small a time-step can lead to unnecessarily long computation time or even numerical

rounding error [63]. Cundall and Strack’s [3] original proposal of the method included

a recommended critical time-step that was related to the natural frequency of a spring-

mass system consisting of the mass of the smallest particle in the system and the stiffness

coefficient used for modelling the contact. This led to a critical time-step of 2
√
m/k.

Tsuji et. al. [63] used a method based on Cundall and Strack’s proposal in which they

began with the oscillation period of the spring-mass system, 2π
√
m/k, and divided half

of this period by a factor N to determine the appropriate time-step. They did this by

measuring the dissipation of kinetic energy in the system as particles in a tube came to

rest for various values of n. It was shown that for larger time-steps the kinetic energy

dissipated more slowly, and that for N ≤ 4 the simulation was unstable. Tanaka et.

al. [38] used a slightly different approach to determine critical step size - calculating the

energy consumed by the dashpot when a particle collides with the wall and claiming that

the energy in the system post-collision must be less than before - but arrive to a similar

critical time-step of 0.75
√
m/k.
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Kinetic Energy Dissipation Convergence. The method used to select the appro-

priate step size is based on the method proposed by Tsuji et. al. [63]. Their method

involved calculating the dissipation of kinetic energy of the particles in an explicit DEM

model as they settle under the influence of gravity. The total kinetic energy of the system

is defined as the sum of the kinetic energy of all the particles in the model and is given

by:

KE =
n∑
i=1

1

2
miv

2
i =

n∑
i=1

2

3
ρπr3i v

2
i (5.2)

where mi, vi, ri are the mass, velocity, and radius of the ith particle, respectively, and ρ is

the density of the soil material. Tsuji et. al. [63] hypothesized that the critical time-step

for convergence of the energy dissipation plot was some fraction of half of the natural

frequency of the system, given by ∆t = π
√
m/k. They plotted the energy dissipation for

different frequencies:

f =
1

∆t
=

N

π
√
m/k

, {N ∈ R, N > 0} (5.3)

where ∆t is the time-step length, m is the mass of the lightest particle in the system,

k is the stiffness coefficient used for the particle contact model, and N is a coefficient

indicating that a fraction, 1/N , of half of the natural frequency is being tested. They

found that when they used N = 5, or a simulation frequency equal to one tenth of the

natural frequency, the energy dissipation plots converged. This process is applied in

the model described in this chapter to determine the appropriate simulation frequency.

Particles are initially generated at random in the bin and are then allowed to fall and

settle at the bottom of the bin under the force of gravity. The total kinetic energy given

by Eq.(5.2) is calculated at each time-step of the simulation, and the dissipation plots for

different simulation frequencies are analyzed for convergence. For any given convergence

test, the particle parameters and number of simulation iterations are kept constant. The

only variable is the simulation frequency. Figure 5.3 is a sample of a convergence test

plot with 20 particle solver iterations per step.

Results from various kinetic energy dissipation convergence tests show a clear convergence

of the plots as the frequency is increased. The initial particle parameters are different

from the ones used to generate the energy dissipation plots in Figure 5.3, but the same

procedure was used to determine the appropriate numerical simulation parameters - listed
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Figure 5.3: Sample kinetic energy dissipation plot

in Table 5.1 - for the initial set of physical particle parameters. For the particle parameters

used in this work, and with the solver iteration count fixed at 20, it was generally found

that the energy dissipation plots converged for frequencies corresponding to N ≈ 0.09 in

Eq.(5.3).

Table 5.1: Initial Simulated Numerical Parameters

Parameter Units Value

Simulation Frequency, f [Hz] 5000
PB Solver Iterations 20

5.4.2 Particle Parameters

The particle parameters refer to many quantities, mostly affecting to the formulation of

particle contact constraints described in Section 3.2. Particle parameters are difficult to

accurately tune because the resulting behaviour of the particles must reflect the behaviour

of real-world soil but the parameters available for tuning do not all correlate directly to

any measurable soil properties. Lack of understanding into how DEM parameters affect

the bulk system behaviour has in itself be the focus of studies such as in [36]. The

parameters in this work were selected through a parametric sensitivity analysis that will
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be described in detail in Chapter 6. To begin this process a few key properties were

selected for tuning. These were adhesion (a), contact stiffness (k), contact damping (c),

particle/particle friction coefficient (µ), material density (ρ), and particle radii (ri). The

number of particles in the system is also a parameter that can be varied, however in this

case we treat it as a function of the particle radii - where given the average size of the

particles, the number of particles is adjusted so that there is adequate soil depth. The

outputs resulting from different combinations of parameters are compared to equivalent

experimental outputs to determine which parameters are the closest match for the soil

that was used.

Table 5.2: Initial Simulated Soil Parameters

Parameter Units Value

Particle Radii, ri [mm] 6, 7, 8
Number of Particles 17500
Material Density, ρ [kg/m3] 2600 [44]

Stiffness, k [N/m] 7.257× 107

Damping Ratio, γ [1/ms] 2500
Damping, c [Ns/m] 2.06× 106

Adhesion, a [Pa] 750
Kinetic Friction Coefficient, µ 0.75

The initial values for a, µ and ρ were determined either directly or indirectly by the ES-2

soil parameters provided in Table 4.2 and information from the literature. Adhesion (a)

is taken directly as the cohesion value listed in the ES-2 soil properties. Material density

(ρ) is used to determine the mass of each particle. In the P2 formulation particles are

treated as point masses, but the mass of a particle is determined as the product of the

volume of a sphere of the associated radius and the material density, which is the same

for all particles in the simulation. It is set to a value significantly larger than the bulk

density listed in the ES-2 properties because the voids in between particles mean that

the overall bulk density is lower than the material density of individual grains. The exact

value for material density was chosen based on values used in other works for similar

soil simulants [30] [44]. The kinetic friction coefficient (µ) is set as the tangent of the

internal friction angle of the soil [43]. In Vortex, the static friction coefficient is determined

by a static friction scale, which was left at the default value of 1.3 for all simulations.

For simplicity, particle-bin stiffness, damping and friction coefficients were considered to
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be the same as the equivalent values for inter-particle contact. Particle-wheel contact

had the same friction coefficient, but the stiffness and damping were set to lower values

to fit the default wheel stiffness properties of Vortex. To ensure that the interaction

properties for the wheel-soil contact model was not having too large an impact on the

results, simulations were run with the particle-wheel stiffness and damping set to be the

same as the particle-particle values and it was shown to have little to no impact on the

outputs. Since simulating with the actual grain size of soil is not computationally feasible,

it is widely accepted in DEM simulation that much larger particle radii can be used for

simulation. This is because simulating the actual size of the grains would be far too

computationally demanding. The initial radii were selected based on values used in other

DEM wheel-soil publications such as [30] in which Martian soil simulants are modelled.

Based on the size of the particles, the total number of particles used was selected such

that the soil depth was enough to allow for a reasonably thick buffer of particles that are

not affected by the wheel’s motion between the wheel and the bottom of the bin. The

initial contact stiffness was set according to:

k =
4G

3(1− ν)
(5.4)

where G is the shear modulus of the soil - estimated to be 0.0381 × 109Pa in [50] - and

ν is Poisson’s ratio - set to 0.3 according to the value used by in DEM to modelling of

Martian soil simulants in the literature [30]. Damping was initially set to correspond to a

damping ratio of about 2500 because it is the order of magnitude that is used as a default

value in the Vortex implementation of P2 particles. It is then tuned to find the value

that best matched experimental results. Damping is given by:

c = ζcc (5.5)

where c is the damping coefficient, ζ is the damping ratio, and cc is the critical damping

value given by cc = 2
√
km. As previously mentioned, in addition to finding the set of

parameters that best matches the experimental outputs, Chapter 6 will comment on the

effect that these parameters have on the resulting simulation output.
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5.4.3 Simulation Input Parameters

Besides all the parameters that need to be tuned to run the simulation, certain parameters

are just seen as inputs required to simulate the different tests that were carried out

during experimentation on the single wheel testbed. These are the magnitude of gravity,

the desired wheel slip value, and the load applied to the wheel. The input parameters

were mostly selected to correspond to the inputs for which there is experimental data for

comparison, listed in Table 4.3.

5.5 Simulation Outputs

There were three main outputs of interest from the simulations of the wheel driving over

soil. These were the drawbar pull, sinkage and soil velocity field. The drawbar pull

is taken to be the constraint force developed by the constraint controlling the lateral

motion of the wheel, as described in section 5.2. As is done in the experiment analysis in

Chapter 4, the average DP/W ratio for each slip value is analyzed in the results presented

in Chapter 6. This is calculated by taking the average DP recorded during a run of the

simulation and dividing it by the wheel load for that simulation - which in the case of

the simulations is constant throughout.

The sinkage is defined as:

∆z = zsurf − (zw − rw) (5.6)

where zsurf is the calculated soil surface level, zw is the z-coordinate of the center of the

wheel, and rw is the radius of the wheel. Since the soil is modelled as a granular medium,

the surface level is not an absolute number, and can vary locally. At each step, the average

surface level of the particles in the bin is computed according to the procedure described

in Algorithm 2. The experiments described in Chapter 4 used the maximum sinkage

during an experiment as a way of comparing trials rather than comparing the plots of

sinkage as a function of time. Therefore, the maximum sinkage that each simulation

achieves during its 25 seconds of simulation time is the output of interest.
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Algorithm 2 Determining DEM particle surface level

1: ∆x = interval . Fixed sample interval for surface level calculation
2: x range = [x−, x+] . Limits of the domain containing the undisturbed particles
3: POS3×n . Global (x, y, z) coordinates of all n particles
4: j = 1 . Interval counter
5: for x = x− : ∆x : x+ −∆x do
6: max=0
7: for i = 1 : n do
8: if POS(1, i) in range [x, x+ ∆x] then
9: if POS(3, i) >max then

10: max=POS(3, i)

11: height(j)=max . Find the max particle height in each interval

12: j = j + 1
13: surface level = mean(height) . Take the average height of intervals

As previously mentioned, one of the main advantages of a DEM soil model is that the

velocity field is easy to extract from the model. Unlike semi-empirical models in which

there is no clear way to extract the velocity field below the surface, in DEM we can

generate this velocity field by plotting the magnitude and direction of the velocity vectors

of the particles in the model. In the simulations for this work, this was done in order to

qualitatively compare the flow of the particles for different simulation inputs in an effort

to asses the effect that gravity has on soil flowability. An example of the visualization of

the particle velocity field can be seen in Figure 5.4.

The animation snapshot in Figure 5.4 was run using the baseline simulation parameters

described in the previous sections. It is worth noting that Figure 5.4 is a 2D side-view

visualization of 3D elements. Figure 5.5 shows the measured outputs, sinkage and DP,

as a function of time during this simulation. Also plotted is the surface height of the

undisturbed soil - as calculated using Algorithm 2 - as a function of time. The constant

surface height is used an indicator of simulation stability. Additionally, the computation

time for each time-step using the baseline parameters is plotted as a function of both

the simulation time and the time-step. Simulations were run on an AlienWare Aurora

desktop computer.
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Figure 5.4: Magnitude (top) and direction (bottom) of particle velocities in baseline
simulation at Lunar-g, 164N wheel load, 70% slip

Figure 5.5: Outputs (Computation time, surface height, sinkage, DP) as a function
of time for baseline simulation at Lunar-g, 164N wheel load, 70% slip



Chapter 6

Results

The goal of this work is to produce simulation results that are in reasonable agreement

with the experimental results collected in the tests described in Chapter 4. To this end,

there are two levels of agreement that can be defined. The first level of agreement be-

tween simulations and experiments is a qualitative matching of trends that were observed

in the experiments, especially trends related to how the system behaves in reduced grav-

ity. This was done through detailed analysis of the simulation results obtained using a

baseline set of simulation input parameters that were chosen for the reasons described

in 5. The second level of agreement between simulations and experiments is the quan-

titative matching of the simulation and experiment outputs. This result is much more

challenging to achieve and it was not expected that we would get a perfect match. This

in due in part to the fact that quantitative matching of the outputs requires accurate

tuning of the model parameters, which can be challenging, but also in large part due

to the potential inaccuracy of the experimental reduced gravity results. The potential

source of error in the experimental results will be discussed in detail in this chapter. The

challenge of accurately tuning the model is also addressed in this chapter through a para-

metric sensitivity analysis of the simulation outputs. This analysis involves changing one

parameter at a time from the baseline parameter set and commenting on how the change

affects the simulation outputs and the sensitivity of those outputs to changes in gravity.

Through this analysis we gain a deeper understanding of the relationship between the

model parameters and the physical behaviour of the system.

70
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6.1 Baseline Results and Discussion

With data available from both on-ground experiments (OGE) and partial gravity experi-

ments (PGE), one source of validation for the P2 particle method is its ability to replicate

some of the general trends observed experimentally when running experiments with the

same loading and wheel slip in varying gravity conditions. The results presented in this

section are recorded prior to tuning of parameters based on experimental data. The initial

set of parameters, selected for the reasons described in Section 5.4, is again summarized

in Table 6.1. With these parameters, every combinations of load, slip and gravity that

was tested experimentally was simulated. This required a total of 21 simulations that

span five slip cases, two wheel loading cases, and three gravity levels.

Table 6.1: Baseline Simulation Parameters

Parameter Units Value

Simulation Frequency, f [Hz] 5000
PB Solver Iterations 20

Particle Radii, ri [mm] 6, 7, 8
Number of Particles 17500
Material Density, ρ [kg/m3] 2600

Adhesion, a [Pa] 750
Stiffness, k [N/m] 7.257× 107

Kinetic Friction Coefficient, µ 0.75
Damping, c [Ns/m] 2.06× 106

When compared to the experimental data, this data set produced drawbar pull weight

ratios (DP/W) that were significantly lower than the experiments as well as max sinkage

values that were slightly below what was observed in experiments, as shown in Figure 6.1.

Plots of each of the outputs as a function of time for each gravity and slip case for the

experiments and baseline simulation parameters can be found in Appendix B. It should

be noted that, despite disparities between the simulation and experimental outputs, the

results in Figure 6.1 are still quite promising as a proof of concept for the P2 particle

modelling method, as it did give reasonable results prior to any tuning of parameters.

The average error in sinkage for this first set of results was a reasonable 4.4% while the

average DP/W error was a larger 45%. This suggests that the model is capturing the

motion reasonably well, and the forces less so. At the qualitative level the results are even

more encouraging. Figure 6.1 shows that the model captures the shape of both curves
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Figure 6.1: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and experimental results in Earth gravity with 164N wheel load

fairly well. The parametric sensitivity analysis that will follow later in this chapter will

also show that for different parameter combinations, the qualitative agreement of the

shape of these two curves is still present even as the values of the outputs change.

At a quantitative level, the experimental results are difficult to work with because they

were collected in less than ideal conditions. This is due to the fact that the gravity level

was not always perfectly consistent for the duration of an experiment and the fact that

testbed is affected by the vibration of the aircraft. For these reasons, the quantitative

results obtained may not be reliable and would therefore be even more difficult to repli-

cate through simulation. Despite this, when looking at the effect that gravity has on the

outputs there are a few qualitative and quantitative observations that can be made. The

comparison of simulation results in Earth and Lunar gravity - illustrated in Figures 6.2

and 6.3 shows that reducing gravity has the expected effect of increasing sinkage and de-

creasing DP/W, however, the effect of gravity is not quite as significant in the simulations.

In the experiments, the average increase in max sinkage between Earth and Lunar gravity

was 38% [1]. The same comparison in the baseline simulation showed a 14% increase in

max sinkage. The average drop in DP/W between Earth and Lunar gravity was 20% in

the experiments [1] and a slightly higher 24% in the baseline simulation. This seemingly

larger sensitivity to gravity for the simulation DP/W output is probably due to the fact
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Figure 6.2: Effect of gravity on max sinkage for baseline simulation (left) and exper-
iment (right)

Figure 6.3: Effect of gravity on max DP/W for baseline simulation (left) and experi-
ment (right)

that the actual values of DP/W in the simulations were smaller than the experimental

results. These two results seem to contradict each other as it seems that depending which

output we use as an indicator, we would come to a different conclusion about whether it

is the baseline simulations or the experiments that are more sensitive to gravity. Because

the change in maximum sinkage due to gravity was more drastic and also more consistent

in the simulations, it was decided that the change in the maximum sinkage output would

be used as the indicator for sensitivity of the simulation to gravity. By this metric, the
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baseline simulation is less sensitive to variations in gravity than the experiments. The

smaller sensitivity to gravity of the simulation compared to the experiments is even more

clear when comparing the Earth and Martian gravity simulations seen in Figures 6.4 and

6.5. Experimentally there was an average 27% increase in sinkage between Earth and

Martian gravity for 164N wheel load, meanwhile the simulations only showed a 4.5% in-

crease in sinkage. As was the case for the Lunar-g comparison, the sensitivity of DP/W

to gravity was similar in both experiments, where the experiments showed a 9.9% drop

in DP/W and the simulation showed a 9.6% drop.

Figure 6.5 also highlights one experimental trend that is not captured by the simulation,

and that is the effect that increasing the wheel load has on DP/W. In the experiments,

increasing wheel load with all other inputs remaining the same had the effect of slightly

increasing the DP/W while also increasing sinkage. In the baseline simulation, the sinkage

increases with wheel load but the DP/W decreases. However, Niksirat et. al. [1] comment

primarily in the effect that increased loading has on sinkage, since they deem this effect to

be statistically significant while the effect on DP/W may not be. In particular, they look

at how gravity affects the sensitivity of the output to increased loading. In Earth gravity,

they saw an average maximum sinkage increase of 14% when the load was increased

from 164N to 225N. The same load increase in Martian gravity led to a 31% increase

in maximum sinkage. The same comparison in the baseline simulations shows a 24%

increase in sinkage at Earth gravity and a slightly larger 26% increase at Martian gravity.

Thus, while the percent change is not the same, the baseline simulation does replicate the

experimental conclusion that decreasing gravity increases the output sensitivity to wheel

loading. The effect of each parameter on the sensitivity of the simulation to gravity will

be explored in the next section in order to get better results.

One of the other key points that the reduced gravity experiments set out to prove is the

effect that reduced gravity has, not just on the load felt by the soil but on the flow of

the soil itself. In [1], the authors show velocity field data for several equivalent test runs

under varying gravity conditions to qualitatively illustrate the higher degree of motion

of soil particles in reduced gravity. Figure 6.6 shows a similar comparison of a 70% slip,

164N load simulation test case in which all simulation parameters except for gravity are

the same. Plots of the soil motion under the wheel are shown for each gravity level at
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Figure 6.4: Effect of gravity on max sinkage for baseline simulation (left) and exper-
iment (right)

Figure 6.5: Effect of gravity on max DP/W for baseline simulation (left) and experi-
ment (right)

5 second intervals. From these plots we can qualitatively confirm that the P2 soil model

is able to replicate the trend observed experimentally in [1]. This is particularly evident

in the soil near the rear of the wheel (left) where we can visually see that the band of

particles that are in motion is generally larger in the Lunar gravity cases than in the

Earth and Martian gravity cases.

While the outputs are not perfectly matched with the experiments in this first set of

results, there are important conclusions and observations that can be made. Firstly, the



Results 76

Earth-g, 164N Load Martian-g, 164N Load Lunar-g, 164N Load
t=0s

t=5s

t=10s

t=15s

t=20s

t=25s

Figure 6.6: Effect of reducing gravity on soil velocity field at 70% slip for baseline
simulation parameters

effect of gravity on the soil behaviour is what the reduced gravity flights set out to prove in

the first place. With the objective of disproving the intuitive method of testing planetary

rovers on Earth by simply testing them on Earth and applying the same load they would

experience on the Moon or Mars, Niksirat et. al. [1] performed Earth-g and reduced-

g tests, applying the same load in each case. If the aforementioned intuitive approach

worked, there would not have been any significant difference between the Earth-g and

reduced-g outputs - this was not the case. Our simulations were able to confirm that the
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same load in different gravity levels does not result in the same outputs. The simulation

results presented in this section also showed that our modelling approach was able to

predict the qualitative effects that gravity had on the outputs of interest - even if the

actual numerical values of those outputs did not match perfectly. The simulations showed

that reduced gravity leads to increased sinkage, decreased DP/W, and a qualitatively

observable increase in soil flowability. Secondly, setting the effect of gravity aside, the

general shape of the DP/W vs Slip and Max Sinkage vs Slip curves match the shape

that is expected based on the experimental results. At least at the qualitative level, this

modelling method is reasonably successful at predicting some wheel-soil behaviour. All

of these results combined suggest that, with some tuning of the parameters, the method

would be able to reproduce the experimental results and, by extension, predict outputs

for untested input parameters.

6.2 Parametric Sensitivity

As has been noted by many researchers since DEM was first proposed, one of the main

drawbacks of the method is the difficulty related to selecting the appropriate parameters,

and the lack of understanding of how these parameters affect the system response. Smith

et. al. [30] select values for every parameter except damping by correlating the parameters

with measurable soil sample properties through theoretical equations. They proceed to

tune the one remaining parameter by trial and error. This process can be long and does

not help to understand the physical effect of each parameter. Yan et. al. [36] go a step

further and analyze the effect of the variation of various parameters on system behaviour

by varying the Youngs modulus, coefficient of restitution, static friction coefficient and

rolling friction coefficient and analyzing how changes to these parameters affected bulk

system responses such as the angle of repose and discharge time for the angle of repose

test. In our case, the effect of the parameters on the DP/W and on maximum sinkage

will be analyzed.

This section will focus on the effect that each individual parameter in Table 6.1 has on

the DP/W and maximum sinkage outputs. This is done by starting from the baseline
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simulation just described and modifying the value of a single parameter while keeping all

other parameters the same as described in Table 6.1. The objective here is not just to find

the right combination of parameters, but to understand how each parameter affects the

outputs so that this information can be used to tune the parameters to match experiments

in a more systematic way.

To save computation time, most parameter combinations were only simulated for three to

six of the 21 test cases. These simulations were selected so as to sufficiently well capture

all the effects we wish to study. The 10%, 30% and 70% slip cases with 164N wheel load

at Earth and Lunar gravity were simulated for new variations of the parameters. In some

cases only the Earth simulations were carried out for the purposes of analyzing the effect

of the parameter on sinkage and DP/W without looking at the effect it has on sensitivity

to gravity. This allows us to not only observe how each parameter affects the sinkage and

DP/W outputs, but also to determine which parameters, if any, affect the sensitivity of

the model to changes in gravity. This is an important output to monitor because, as was

illustrated in Figures 6.2 - 6.5, the baseline simulation was less sensitive to gravity than

the experiments. The results gathered from each new set of simulations help to gain an

understanding of how each parameter affects the simulation outputs and provides insights

into how the model can be more efficiently tuned. The parameters that will be varied are

the stiffness coefficient (k), the damping coefficient (c), the adhesion constant (a), the

material density (ρ), the inter-particle kinetic friction coefficient (µ) and particle radius r.

These are not the only parameters that could have an effect on the outputs. Parameters

such as wheel-particle friction, bin-particle friction, particle size, and packing pressure

could also affect the results. In order to make for a reasonable amount of simulations

required given the long computation time required for each simulation, this work focuses

on the effect of the six parameters mentioned above.

6.2.1 Effect of Stiffness

Figure 6.7 illustrates the effect that the stiffness coefficient, k, has on the simulation

outputs that are relevant in this study. Because stiffness also has an effect on the necessary

time-step - given the relationship between time-step size and natural frequency defined
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Figure 6.7: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied stiffness in Earth gravity with 164N wheel load

in Eq.(5.3) - as the stiffness was varied from the baseline simulation parameter value the

simulation frequency was adjusted accordingly.

In Figure 6.7 we see what happens when the stiffness is increased from its baseline value by

50%. This has the effect of decreasing the maximum sinkage. Additionally - as is usually

the case when sinkage decreases - the drawbar pull increases. This inverse relationship

between sinkage and drawbar pull is due to the fact that there is more resisting force

applied to the wheel by the particles when the wheel sinks more since there are more

particles in contact with the wheel [1]. Drawbar pull would be increased further if there

was a way to decrease soil strength (i.e. resistive force per particle) without increasing

sinkage too much. Given the results from Section 6.1, this is precisely the kind of effect

we are looking for, since we need to greatly increase the drawbar pull without decreasing

sinkage in order to match the experiments. In this case, an increase in stiffness resulted in

an average maximum sinkage drop of 22% and an average DP/W increase of 23%. These

results suggest that there is a inverse relationship between stiffness and sinkage and a

direct relationship between stiffness and DP/W. Because only one one variation of the

parameter was tested it is possible and even likely that this relationship is non-linear. The

results also suggests that neither output is significantly more or less sensitive to variation

in stiffness. Figure 6.7 also illustrates how the general shape of the curves is similar as
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Figure 6.8: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
increased inter-particle stiffness

stiffness is varied, with the curves largely being shifted higher or lower on the Y-axis as

the parameter is varied.

Figure 6.8 shows some interesting behaviour with respect to how the system behaves in

reduced gravity with the increased stiffness parameter. On a qualitative level, one of

the key differences between the baseline simulations and the experiments is that in the

experiments the sinkage output was much more sensitive to changes in gravity than in

the simulation. This was evidenced when comparing the 38% increase in max sinkage

between Earth-g and Lunar-g measured experimentally to the 14% increase in max sinkage

in the baseline simulation. When stiffness was increased by a factor of 1.5, the average

increase in max sinkage when gravity was reduced from Earth-g to Lunar-g was 41%.

This suggests that increasing stiffness could help to better match the simulation results

to the experiments. Because the baseline simulation matched the Earth gravity sinkage

results so closely, an increase in stiffness will result in a worse match for the maximum

sinkage output. A possible solution for this would be to pair increased stiffness with a

change in one or more other parameters to offset the decrease in sinkage that is associated

with increasing stiffness.
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6.2.2 Effect of Damping

Figure 6.9 illustrates the effect that the damping coefficient, c, has on the simulation

outputs that are relevant in this study. The baseline damping coefficient is equivalent to

a damping ratio of around 2500, a value that is close to the default damping used for real-

time particle simulation in Vortex. In this plot, damping was reduced from its original

value to a damping ratio of 0.3, which is a damping value used in other DEM works [30].

The average effect across all slip values at Earth gravity with 164N wheel load was a 40%

increase in DP/W and a 47% decrease in sinkage. This suggests that there is a direct

relationship between damping and sinkage and an inverse relationship between damping

and DP/W. As before, these relationships may be non-linear. Determining linearity of

the relationship would require further simulations. The results also suggests that sinkage

is more sensitive to damping than DP/W.

Figure 6.9: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied damping in Earth gravity with 164N wheel load

A second variation of damping that is seen in Figure 6.9 is the effect of increasing damping

by the same 50% relative to its baseline value, as was done for stiffness. Since decreas-

ing damping decreased sinkage, the result that increased damping increased maximum

sinkage was expected. The average increase in maximum sinkage was 18%. This result

is significant because a relatively small increase in damping has a significant impact on
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the sinkage and almost no effect on DP/W. The sinkage increases noticeably in this case

while the DP/W is almost unchanged in comparison - decreasing by a mere 0.05%. This

is in start contrast to the much more drastic change to damping that occurred when the

damping ratio was set to 0.3 in the first variation of the damping parameter, resulting in

noticeable changes to both outputs. We can conclude that any change in damping will

have an effect on the sinkage, but only a significant change (i.e. by one or several orders

of magnitude) will affect the DP/W in a significant way. The ability of damping to be

adjusted so as to impact one output more than the other makes it very useful for model

tuning and supports the DEM tuning method used in other works where damping is the

only parameter that is changed [30].

Next, as was done for stiffness, the effect of damping on sensitivity to gravity was tested

by running the same simulations with varied damping coefficients at Lunar-g. The results

showed that increased damping reduced the sensitivity of the maximum sinkage output

to changes in gravity. As seen in Figure 6.10, the result of comparing Earth-g and Lunar-

g results after increasing damping by a factor of 1.5 is a 11% increase in max sinkage

and a 36% drop in DP/W. Therefore we can say that for higher damping the sinkage

less sensitive to gravity in than baseline simulation while the DP/W appears to be more

sensitive.

Figure 6.10: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
increased inter-particle damping
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6.2.3 Effect of Adhesion

Figure 6.11 illustrates the effect of the adhesion coefficient, a, on the simulation outputs

that are relevant in this study. This is analyzed by running simulations with two new

variations of the adhesion coefficient. The first is a 50% percent increase of this param-

eter, as was done for stiffness and damping, and the second is with no adhesion. Both

variations have a relatively minimal effect on the output. This suggests that, for the

values tested, the adhesive force is overshadowed by other more dominant forces such as

the ones associated with stiffness and damping. For the zero-adhesion case, the DP/W

increased by 7% and the maximum sinkage decreased by 2%. For the case where adhesion

was increased to 150% of its baseline value (to 1125 Pa) the result was a DP/W increase

of 4% and a maximum sinkage increase of 3%. Increasing the adhesion even further, to

the 5000Pa that has been used by other researchers modelling Martian soil simulants [30],

still showed minimal changes in the outputs. The result was a drop in maximum sinkage

of 5% and an increase in DP/W of 5% relative to the baseline simulation. This result is

interesting because makes adhesion the only parameter whose effect on the outputs does

not seem to be consistent as it continues to increase or decrease. Looking at the sinkage

of the 70% slip case it can be seen that at 1125Pa there is more sinkage than at 0Pa,

but the sinkage drops again as the adhesion is raised to 5000Pa.

Figure 6.11: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied adhesion in Earth gravity with 164N wheel load
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The effect of adhesion is thus much more complex than the more straightforward effects

of some of the other parameters that it can be said without a doubt that a certain change

in a certain direction will universally have the effect of either raising or lowering a given

output. Despite all this, given the relatively small effect that adhesion has on the outputs

in all cases suggests that for the outputs being monitored there is little evidence that

tuning adhesion will help much with the goal of matching the experiments quantitatively.

It is worth noting, however, that Holz [4] showed, using the P2 framework, that adhesion

does have an effect on the angle of repose of the particles. Meaning that adhesion can

have an impact in certain types of simulations but it is simply not a dominant force in the

case of wheel-soil interaction unless it set to be well above what was initially calculated

based on the real internal friction angle of the soil.

Figure 6.12: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
increased inter-particle adhesion

Figure 6.12 illustrates the effect that increased adhesion has on the sensitivity of the

outputs to changes in gravity. Unsurprisingly, the sensitivity to gravity for the 1125Pa

adhesion case demonstrates a sensitivity to gravity that is very similar to the baseline

case. The average sinkage increase between Earth-g and Lunar-g is of 15% and the

average DP/W drop is of 19%. Thus, the sinkage output is slightly more sensitive to

gravity while the DP/W output is slightly less affected by gravity than in the baseline

cases. This result reinforces the fact that adhesion is not the most useful parameter to

tune since its overall effect is small in comparison to the effect of other parameters.
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6.2.4 Effect of Material Density

Within a simulation, the particles generated come in a range of sizes. For the baseline

simulation, the size of particles ranged from 6mm to 8mm. While in the P2 formulation

the particles are treated as point masses, as has been discussed, the mass of a particle

is determined as the product of the volume of a sphere of the associated radius and

the material density, which is the same for all particles in the simulation. Figure 6.13

illustrates the effect that the material density, ρ, has on the simulation outputs. As was

the case when stiffness was varied, when material density changes it is also necessary to

alter the time-step accordingly. This is again because the particle mass, like the stiffness

coefficient, has an impact on the natural frequency of the system - as per Eq.(5.3). Besides

simulation frequency and material density all simulation parameters are the same as the

ones from the baseline simulation summarized in Table 6.1. The results show that the

relationship between material density the outputs is similar to the relationship the outputs

have to changes in stiffness. There is a direct relationship between density and DP/W

and an inverse relationship between density and sinkage. More specifically, increasing

material density from 2600kg/m3 to 3500kg/m3 led to a 34% increase in DP/W and a

17% decrease in max sinkage while a decrease of material density to 2000kg/m3 led to a

12% decrease in DP/W and a 10% increase in sinkage.

Figure 6.13: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied material density in Earth gravity with 164N wheel

load
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Figure 6.14 shows the effect that material density has on the sensitivity of the model to

changes in gravity. In the baseline simulation, the average sinkage increase when gravity

was reduced from Earth-g to Lunar-g was 14%. In the 3500kg/m3 density case the

percentage increase in sinkage is up to 23%. The percentage decrease in DP/W for the

same density case is 22%, which is similar to the 24% decrease in the baseline simulation.

The main takeaway from this comparison is that material density does have a significant

impact on the sensitivity of the model outputs to changes in gravity.

Figure 6.14: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
increased material density

6.2.5 Effect of Friction

Figure 6.15 illustrates the effect that the inter-particle kinetic friction coefficient, µ, has

on the simulation outputs. Because particle orientation is not considered in the P2 formu-

lation. This means that static and sliding friction exist in the system but the only possible

relative motion between particles is sticking or sliding, not rolling. Yan et. al. [36] found

that decreasing the inter-particle friction coefficients has the effect of increasing the soil

flowability. Increased flowability is associated with reduced soil strength [1] and thus, the

increased sinkage seen in Figure 6.15 as friction is gradually decreased from the baseline

value is in line with the parametric analysis of friction in traditional DEM methods. For
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Figure 6.15: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied friction in Earth gravity with 164N wheel load

the larger decrease in friction coefficient, to the extreme low value of µ = 0.19, the max

sinkage increased by 24% from the baseline simulation while DP/W dropped by 39%.

Figure 6.16 shows how reduced kinetic friction affects the sensitivity of the outputs to

changes in gravity. Simulations were run in Earth-g and Lunar-g for the µ = 0.19 friction

case and the results showed that, while the DP/W drop was not drastically different

between Earth-g and Lunar-g, there was a huge spike in the sensitivity of the sinkage

output to gravity. On average, the sinkage increase between Earth and Lunar gravity

was of 150%. The DP/W drop was by an average of 28%. This result conclusively

proves that lower friction greatly increases the sensitivity of the model to gravity. For

tuning purposes however, the µ = 0.19 is an extreme case that corresponds to an internal

friction angle of 11o which is a far cry from the 37± 5o value taken from the known soil

properties in Table 4.2. The µ = 0.57 corresponds to a friction angle of 30o which is closer

to being in the range of the internal friction angle of the ES-2 soil sample used in the

experiments. For this value Figure 6.15 showed that there was not significant deviation

from the baseline. Therefore, while we can say that the model can be very sensitive to

drastic changes in friction, if we limit ourselves to the range of permissible values dictated

by Table 4.2, the effect of tuning friction is less significant.



Results 88

Figure 6.16: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
reduced inter-particle friction

6.2.6 Effect of Particle Radius

Figure 6.17 illustrates the effect that the particle radius, r, has on the simulation outputs.

As was the case when stiffness was varied, when particle radius changes it is also necessary

to alter the time-step accordingly. This is again because the particle mass, like the stiffness

coefficient, has an impact on the natural frequency of the system - as per Eq.(5.3). Besides

simulation frequency and particle radius, all simulation parameters are the same as the

ones from the baseline simulation summarized in Table 6.1. The results show that there

is a direct relationship between radius and both DP/W and sinkage. More specifically,

decreasing the particle radius range from 6 − 8mm to 4 − 6mm led to a 13% decrease

in DP/W and a 9% decrease in max sinkage. While at first glance these results seem

to create a worse match with the experimental results, the particle radius parameter is

particular when compared to other parameters in that its relationship with both recorded

outputs is in the same direction (i.e. direct or indirect). Since, based on the baseline

results, getting a better match with the experiments will necessarily require tuning of at

least one parameter that has this quality, this result suggests that the particle radius is

an important tuning parameter.

Figure 6.18 shows the effect that material density has on the sensitivity of the model to

changes in gravity. In the baseline simulation, the average sinkage increase when gravity
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Figure 6.17: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters and varied particle radius in Earth gravity with 164N wheel load

was reduced from Earth-g to Lunar-g was 14%. In the 4− 6mm particle radius case, the

percentage increase in sinkage is up to 38%. The percentage decrease in DP/W for the

4−6mm particle radius is 32%, which also significantly larger than the baseline simulation.

The main takeaway from this comparison is that particle radius has a significant impact

on the sensitivity of the model outputs to changes in gravity - with smaller particles being

more sensitive to reduced gravity.

Figure 6.18: Effect of gravity on DP/W (left) and sinkage (right) for simulation with
reduced inter-particle friction
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6.2.7 Discussion

Based on the results presented in this section, it is clear that choosing the correct pa-

rameters to model a given soil sample is no simple task. For the purposes of this project

only six parameters were analyzed, but the degree to which each affects the outputs

make it clear that coming up with a systematic way to select the parameters is crucial to

effectively implementing this type of method. Consider the fact that there are more pa-

rameters still that could have been analyzed. Particle size and compaction pressure come

to mind immediately. It has been mentioned that the particle size used in this simulation,

which is known to be much larger than the size of the grains, was selected out of neces-

sity to allow for reasonable computation time. Some analysis was done on simulations

with smaller particles to study the effect of particle size, and it was shown that smaller

particles result in less sinkage - but the full effect of particle radius is left to be explored

in future research due to the computation time required for extensive simulations using

smaller particles. Future work could determine whether the extra computation time that

would be required to simulate a larger amount of smaller particles is necessary. The de-

gree of accuracy required from the model would depend on the application - specifically

whether speed or accuracy is more important. Additionally, while this work used DP/W

and sinkage as the outputs of interest for characterizing the effect of each parameter,

other indicators could also be used. As previously mentioned, in [36] they look at how

the parameters affected outputs such as the angle of repose of particles, discharge time

of particles through an opening, and the inter-particle contact forces that are developed.

DP/W and sinkage can be considered bulk system responses, while an analysis of the

magnitude of position corrections applied - which can be equated to the contact forces

developed - could be considered an intrinsic system response [36]. The number of ways

to do a parametric analysis is virtually endless, here we presented one while leaving the

door open for others to be explored.

Of the parameters that were tested it was found that the outputs were both quite sensi-

tive to stiffness and material density. Both parameters were shown to have a direct re-

lationship with DP/W and an inverse relationship with maximum sinkage, though these

relationships may be non-linear. Outputs were also determined to be highly sensitive
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Table 6.2: Parametric sensitivity summary

Change from
baseline

Max Sinkage
at Earth-g

DP/W
at Earth-g

Change in Sensitivity
of Sinkage to Gravity
(from 14% baseline)

k ↑ 50% ↓ 22% ↑ 23% +24%
c ↑ 50% ↑ 18% ↓ 0.05% −3%
c ↓ 99% ↓ 47% ↑ 40% un-tested
a ↑ 50% ↑ 3% ↑ 4% +1%
a ↑ 667% ↓ 5% ↑ 4% un-tested
a ↓ 100% ↓ 2% ↑ 7% un-tested
ρ ↑ 35% ↓ 17% ↑ 35% +9%
ρ ↓ 23% ↑ 10% ↓ 12% un-tested
µ ↓ 24% ↑ 1% ↓ 0.6% un-tested
µ ↓ 75% ↑ 24% ↓ 39% +136%
r ↓ 29% ↓ 9% ↓ 13% +24%

to damping, but for this parameter there was an inverse relationship with DP/W and a

direct relationship with maximum sinkage. It was also shown that the maximum sinkage

output was significantly more sensitive than DP/W to small changes in damping. The

outputs displayed much smaller sensitivity to adhesion and friction when variations in

these parameters is limited to the range of values that is in line with the known soil

parameters. Table 6.2 summarizes all the variations that were tested for each variable

and how they affected the model outputs.

It was also shown that changing the parameters has a quantifiable effect on the sensitivity

of the model to variations in gravity. This is an important finding, as it was shown that

the baseline simulation was less sensitive to gravity than the experiments that are being

used for validation. Stiffness, friction and particle radius are the parameters whose effect

on gravity was the most significant, but the effect of friction was only significant when its

value was well below the value expected based on the known soil properties - meaning that

tuning stiffness or particle size are best methods for improving the agreement between

simulation and experimental sensitivity to gravity. Table 6.2 lists the degree to which

tuning each parameter made the percent increase in maximum sinkage between Earth-g

and Lunar-g go up or down.
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6.3 Results After Tuning

Given the results of the parametric sensitivity simulations, it is logical that stiffness and

damping be the focus for the parameter tuning. This is because the other parameters

- friction, adhesion, and material density - can be directly correlated with the ES-2 soil

properties given in Table 4.2. Contact stiffness and damping, however, are more difficult

to relate to measurable soil properties. While equations like Eq.(5.4) attempt to relate

stiffness to real measurable soil properties, the use of this equation for determining the

baseline simulation stiffness and damping does represent one of the biggest assumptions

that was made - particularly since the shear modulus and Poisson’s ratio used in the

calculation are not exactly known for the soil sample in question.

Table 6.3: Final Simulation Parameters

Parameter Units Value

Simulation Frequency, f [Hz] 6700
PB Solver Iterations 20

Particle Radii, ri [mm] 6, 7, 8
Number of Particles 17500
Material Density, ρ [kg/m3] 2600

Adhesion, a [Pa] 750
Stiffness, k [N/m] 1.31× 108

Kinetic Friction Coefficient, µ 0.75
Damping, c [Ns/m] 3.31× 106

The goal of the parametric sensitivity analysis is to ultimately use the knowledge gained

to assess the parameters and ultimately get a better agreement between simulation and

experimental outputs. The baseline simulation parameters can be thought of as an ed-

ucated first guess, the results of which were promising as a pre-tuning output. Many

of the general trends observed in the experiments were also present in the simulation

results, but the simulation was noticeably less sensitive to changes in gravity and the

DP/W values were lower than expected. In order to achieve a sensitivity to gravity that

is closer to what was obtained experimentally, the stiffness was increased. This has the

added effect of also increasing DP/W, thus fixing two of the main conflicts between the

baseline simulations and experimental outputs. One undesirable side-effect of increasing

stiffness is that it also results decreased sinkage. The original sinkage results were very

close, and even a bit below what was determined experimentally. In order to offset this



Results 93

undesired sinkage drop, damping was also increased by a factor comparable to the factor

of 1.5 that was done in the parametric sensitivity test. This value was chosen because it

was shown that this results in an increase in sinkage and has a negligible effect on the

DP/W output.

Figure 6.19: DP/W (left) and max sinkage (right) as a function of slip for baseline
simulation parameters, NRC experiments, and final simulation parameters

The results of this final simulation are not perfect, the comparison in Figure 6.19 makes

this clear, but it represents an improvement in some senses from the baseline. Though

the sinkage is now further from the experiments than the baseline, the match for both

DP/W and sensitivity to gravity are improved in this iteration of the model. With more

study of parametric effects, it can be possible to get a better match. We stop here in this

work because it illustrates the overall point that with tuning the model can be made to

better match the experiments - though a perfect match may not be possible for reasons

which will be discussed in the next section. The particle radius was not changed in this

final simulation because the effect of particle radius on the simulation results is unclear

from the simulation results available
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6.3.1 Discussion

After many attempts at replicating experimental results with various combinations of

simulation parameters, it became clear that it was unlikely that it would be possible to

exactly match the experimental results. There are several factors that could cause this.

First and foremost, the reliability of the experimental data, particularly for the reduced

gravity, must be considered. The conditions under which the reduced gravity experiments

were carried out introduce many possible sources of uncertainty. The unintended periodic

loading that was applied to the wheel in experiments instead of the constant wheel load

that was planned for is one issue that was only addressed in simulation by assuming that

applying the average of this periodic load and analyzing the DP/W ratio rather than the

DP directly would be sufficient corrective actions. It is not clear what kind of effect these

peaks and valleys of higher and lower loading would have on the outputs. This mechanical

fault was discovered very late in the post-processing phase of the experimental data after

many simulations had already been carried out. It was been shown in works such as

[56] that within the operating range of a wheel the DP/W does not vary much with

increased or decreased loading, and so we were comfortable carrying on with the constant

wheel load assumption for the purposes of simulations. Another source of error in the

experiments described in [1] is the variance in soil properties that could exist between

trials. Finally, vibrations of the single-wheel device during operation, vibrations of the

plane in which the device was loaded for the reduced gravity flights, and the not perfectly

consistent gravity level felt during the reduced gravity portion of the flight could also

introduce some error which is hard to account for in simulations. For all of these reasons,

replicating general trends rather than numerical results was always expected to be the

more likely outcome of this work. Section 6.1 details how many of the general trends

observed experimentally were captured from the first set of simulations that were done.

Besides experimental error, a major cause for the discrepancy between experimental re-

sults and the multiple iterations of simulation results using different parameters could

be the formulation itself. One of the main challenges that prevented a perfect match

for both the maximum sinkage and DP/W output was the fact that they are directly

linked to each other, and from the start they were off by much different degrees. The
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initial maximum sinkage data was very close to what was obtained experimentally, but

with a much lower DP/W. Through the parametric sensitivity tests, it was shown that in

almost every case when sinkage increased, drawbar pull would decrease, and vice-versa.

Because of this it was not possible to find parameters that corrected the DP/W - which

was 45% lower than the experiments - without worsening the match of the sinkage data

- which was less than 5% below the experimental value. This begs the question as to

why, for approximately same sinkage, the average drawbar pull in the simulations is so

much lower than in the experiments. The answer to this may lie in the very definition of

what drawbar pull is. As Eq.(4.3) indicates, it is the difference between the thrust that

the wheel is generating and the total resistive force from the soil acting on the wheel.

Smaller than expected DP/W values mean larger than expected resistive forces in the

soil. There could be many reasons for this, but the most logical is the omission of par-

ticle rotation from the particle formulation. It has been previously suggested that lack

of particle rotation in a DEM-type simulation might result in unrealistically high shear

forces [35]. This would suggest that if particle rolling were considered in the formulation,

the resistive forces acting on the wheel would decrease resulting in higher drawbar pull -

which would be more in line with the experimental results.

Despite these challenges and uncertainties, there are many positive takeaways from the

results presented in this work. Even the baseline results were quite encouraging as a proof

of concept of the P2 soil model. The model was able to capture many important trends

related to the behaviour of the system as the input conditions are varied. Specifically,

the qualitative effects of wheel slip ratio and gravity on the outputs are reflected in these

results. At the quantitative level, the results were not in perfect agreement with the

experiments, but the parametric sensitivity analysis combined with an understanding of

the shortcomings of both the particle formulation and experimental setup give reason to

believe that a better agreement is possible if these issues are properly addressed.
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Conclusion

In this thesis, an implicit position-correction based variation of the traditional DEM

method for soil modelling is implemented for use in wheel-soil interaction modelling. The

soil settling under the effect of gravity, the soil being compressed by a constant pressure,

and a wheel driving over the compressed soil is simulated using the framework of the

Vortex multibody dynamics simulation software. The drawbar pull and wheel sinkage

outputs are compared as individual parameters are varied in order to qualitatively and

quantitatively describe the sensitivity of the outputs to each of the studied parameters.

In theory, after correct tuning of the parameters, the resulting soil model is applicable to

a wider scope of situations for which experimental results do not exist than would be the

case for a semi-empirical model. In a semi-empirical approach, a set of coefficients is valid

for a unique soil sample paired with a specific wheel in a specific gravity environment [5].

If any of these factors are varied, a new set of experiments is required for tuning. With a

DEM approach such as the one proposed in this thesis, the coefficients are specific only

to the soil sample - meaning that once correctly tuned, one can reliably model the same

soil interacting with a different wheel or in a different gravity environment.

The overall trends observed in the experiments do seem to be reflected in the simulation

results. All other parameters being constant, increasing the wheel slip has the desired

effect of increasing both sinkage and drawbar pull in a qualitatively similar way. Addi-

tionally, this method is able to capture the experimentally observed effect that decreasing
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gravity increases motion in the soil, increases sinkage and decreases drawbar pull. The

simulation parameters do have an effect on the degree to which gravity affects the outputs,

but in all cases the change is in the right direction to some degree.

The work presented has many potential applications. Wheel-soil models have many uses

that range from real-time applications in simulators to design optimization simulations.

The reduced gravity element of the work applies specifically to rovers or other mechanisms

that are designed to interact with soil in reduced gravity. This research could aid in the

design of the rovers themselves or in the mission planning for existing rovers to avoid

situations in which a rover attempts a maneuver that it cannot complete. A prime

example of why this kind of work is important is NASA’s Spirit rover which got stuck

in a sand dune on Mars in 2009. The rover was unable to free itself which resulted in

the termination of that mission in 2010 [64] [65]. In a similar fashion, this work could

aid in the design of excavation tools for mechanisms that may be sent to Mars or other

planets in the years to come to aid with construction. There are also applications for

this work here on Earth in the design and mission planning of vehicles and mechanisms

intended for operation on unstructured terrain such as soil or sand. The P2 wheel-soil

model could also have potential uses in real-time simulators. This application would

likely require much larger particles to allow for larger time-steps, as is done for P2 soil

excavation simulations in [4]. The effects of these larger particles on the accuracy of the

results which would have to be analyzed to determine the viability of this method for

real-time wheel-soil simulations. Another potential application for this work would be in

the field of fluid dynamic modelling. DEM can also be used for fluid simulations in which

a liquid is modelled as discrete particles. Thus, the P2 method could also have potential

applications in this field of study.

7.1 Future Work

The work detailed in this thesis leaves many possibilities open for further exploration

of applications of the P2 method for modelling of wheel-soil interactions. These range
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from improvements to the model, to new types of experimental validation, to additional

experimental setup suggestions that would help to further validate or refine the model.

Model Improvement. In terms of model improvements, there are a few options that

can be explored. The first relates to the particles themselves. The P2 method achieves its

improved efficiency both through the omission of particle orientation as a factor and the

use of a parallelizable iterative solver scheme to couple particle interactions. Modifying

the method to account for orientation of the particles using a similar iterative angular

position correction scheme would be an interesting addition to improve results while still

maintaining the parallel solver scheme that makes the method significantly faster than

traditional DEM. The addition of particle orientation to the P2 method would also allow

for the possibility of non-spherical particles. This would also be an interesting avenue to

explore as many studies have suggested that more complex particle shapes are better at

capturing the interlocking of particles observed in real soil samples [31] [32] [33] [34] [45].

Another improvement to the model that could be made would be the representation of

the wheel itself. As mentioned in Section 5.1, it was assumed that increasing the radius

of the wheel from its actual size to the effective radius of the deformed flexible wheel

would allow for the wheel to be modelled as a rigid body for the mechanics analysis

purposes. This assumption was supported by a previous study using the same data [50],

however, a future iteration of this model could improve upon it by doing away with

this assumption and instead tackling the complex task of modelling the flexible wheel.

All DEM methods have the advantage that the soil model is completely independent of

the wheel model. Thus, implementing the same particle model with an improved wheel

model could be seamless. Alternatively, rather than completely modelling the flexible

wheel, other assumptions could be tested and compared to the one that was made for

this study.

Simulation Types. Another category of work that could be done to expand on this

research is the study of different simulation configurations. The scope of this work focused

almost exclusively on the simulation described in Section 5.3, where soil was poured into

a bin, the soil was compacted under a constant vertical pressure and the wheel was

lowered into the soil and allowed to drive. Different sections of this simulation process

were analyzed in order to tune parameters but in the end this process was the main focus.
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This was mainly due to the fact that experimental data was available for this case. There

are, however, many other types of experiments that are routinely used to characterize

soil and these would be worth modelling. These include pressure-sinkage tests [46], soil

shear tests [46], wheel digging tests [30] [44] [45], cone penetrometer tests [66] and angle

of repose tests [39] [36]. For parametric sensitivity analysis in particular, analyzing the

effect of each parameter on the outputs of these different simulations would help gain

extra insight into the effect that each parameter has on bulk soil properties.

Experiment Design. The goal of the work presented in [1] was to study the effect of

gravity on wheel soil interaction. In the design of the experiment, it was not considered

that the data would be used to tune or validate a model. Therefore there are several sug-

gestions for improvement that could be used in the design of future experiments in order

to make the data collected more useful for modelling purposes. One such improvement

would be to collect experimental data using a wheel that is less complex to model. This

could entail using a rigid wheel rather than a flexible one and/or using a wheel with no

grousers. An example of such an experiment can be seen in the experiments described in

[48] and [46]. Since the main goal of a future experiment would be to see if the soil model

behaves in a way that is representative of real life, it would be beneficial that all other

elements of the simulation be simple to model more exactly. If the wheel used were not

flexible, the rigid body assumption would in fact be quite valid and the effective radius

assumptions would be unnecessary.

P2 v DEM. Another avenue that could be explored in future work is a direct comparison

between the outputs of a P2 wheel-soil model and a traditional DEM wheel soil model.

This comparison would help to easily understand the effects that the assumptions made

in the P2 formulation have on the behaviour of the system.

Computer-aided parameter tuning. The parametric sensitivity analysis allowed for a

systematic tuning of parameters through an understanding of the effect of each parameter

on the outputs. Future work might address the tuning process further and perhaps

develop a computer-aided tuning method that involves an optimization algorithm to

determine the ideal parameter combination more quickly and efficiently.



Appendix A

Other Common Terramechanics

Formulations

A.1 Bekker Model

The Bekker method is currently one of the most widely used method for modeling wheel-

soil interactions. It is a semi-empirical method that was proposed by Bekker [5], and

expanded on by Wong [9] [20]. In his method, that was first proposed in 1956, Bekker

simplifies the wheel to be a rigid cylinder traveling over flat soil in steady state conditions.

Figure A.1 illustrates the model used in the Bekker method.

Figure A.1: Contact geometry for Bekker (left) and Wong-Reece (right) methods [2]

The Bekker method relies on knowing how much the wheel is initially penetrating the soil,

and how much the soil recovers after the wheel has passed over [2]. In his formulation,
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Bekker [5] defines the slip ratio as:

s =

 (rω − vx)/(rω) if driving

(rω − vx)/(vx) if breaking
(A.1)

where vx is the horizontal velocity of the center of the wheel, r is the radius of the

wheel, and ω is the angular velocity of the wheel. The Bekker method and it’s recent

modifications first rely on physical experimentation to characterize the properties of the

soil [5]. The required tests are a penetration test to measure normal stress-displacement

relationships, and a shear test to measure shear stress-displacement relationships. The

pressure-sinkage relationship that Bekker proposes in [8] is given as:

σ =

(
kc
b

+ kφ

)
ζn (A.2)

where kc, kφ and n are determined experimentally, b depends on the test setup, σ is

the pressure on the wheel and ζ is the sinkage [2]. Once the soil properties have been

determined through experimentation, equations are developed to calculate the normal

and sheer stresses. In Wong and Reece’s [20] [21] version of the model, the equations

developed to compute the shear stress and pressure along the contact patch between the

wheel and the soil. There are many variations of the method that have been proposed

over the years [20] [9], but one expression for the stresses as a function of the angle about

the wheel is [2]:

σ =

(
kc
b

+ kφ

)
Rn(cos θw − cos θ1)

τ = (c+ σ tanφ)

(
1− e−

jd
Kd

) (A.3)

where θ1 is the entry angle, c is the cohesion term, jd is shear displacement as a function

of the angle about the wheel, Kd is shear deformation, and θw is a function of the slip

and exit angle, θ2. These are then integrated over the contact patch to get the forces and

torques acting on the wheel [2]:
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Fn =

∫
S

(σz + τz)dS

Ft =

∫
S

τxdS

Fc =

∫
S

σxdS

Trr =

∫
S

r(τ − τx)dS

(A.4)

A.2 Traditional Distinct Element Method (DEM)

The distinct (or discrete) element method was first proposed by Cundall and Strack [3]

in an effort to model a granular medium by considering the distinct soil particles that

make up the soil. The following is a brief description of the formulation of the method

as proposed in [3].

Figure A.2: Collision detection for circular particles in DEM method [3]

As shown in Figure A.2, the particles in this model are allowed to overlap. When the

distance D between two particles is smaller than the sum of the radii of the particles, a

contact is detected. The model then generates force that is directly proportional to the

overlap distance and applies it to both particles. Thus, the normal and shear contact

forces take the form [3]:
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∆Fn = kn∆n = kn{(ẋ− ẏ)ei}∆t

∆Fs = ks∆s = ks{(ẋ− ẏ)ti − (θ̇xRx + θ̇yRy)}∆t
(A.5)

where the resultant ∆Fn and ∆Fs are added to any existing contact forces from previous

time-steps. What is essentially being modeled in Eq.(A.5) is a spring connecting any two

particles that are in contact. Similarly, contact damping forces at time step N are added

to the formulation as follows [3]:

(Dn)N = cnṅ = cn[ẋ− ẏ]N− 1
2
ei

(Ds)N = csṡ = cs

[
(ẋ− ẏ)N− 1

2
ti − (θ̇xRx + θ̇yRy)N− 1

2

] (A.6)

where cn and cs are directly proportional to the stiffness factors - related by a constant β.

Once all contact forces are determined for a time-step, accelerations are updated according

to Newton’s second law. One final inclusion that Cundall and Strack [3] adds to their

model is the option to have global damping during the solving of Newton’s equations for

the updated accelerations:

mxẍi =
∑

[(Fx)i + (Dx)i]− Cẋi

Ixθ̈x =
∑

Mx − C∗θ̇x
(A.7)

where C and C∗ are damping coefficients. Since it’s inception by Cundall and Strack [3],

others have adapted this method specifically for terramechanics applications and modeling

of wheel-soil contact forces [9] [38]. Iwashita et. al. [35] add an extra torsional spring

and damper to create two more parameters available for tuning, and Smith et. al. [30]

include an additional constitutive force to represent a cohesive force between particles.

Figure A.3: Sample contact model for DEM
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Plots of Outputs Versus Time

Figure B.1: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Earth-g, 164N load, 10% slip
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Figure B.2: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Earth-g, 164N load, 20% slip

Figure B.3: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Earth-g, 164N load, 30% slip

Figure B.4: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Earth-g, 164N load, 40% slip
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Figure B.5: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Earth-g, 164N load, 70% slip

Figure B.6: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Martian-g, 164N load, 10% slip

Figure B.7: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Martian-g, 164N load, 20% slip
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Figure B.8: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Martian-g, 164N load, 30% slip

Figure B.9: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Martian-g, 164N load, 40% slip

Figure B.10: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Martian-g, 164N load, 70% slip
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Figure B.11: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Lunar-g, 164N load, 10% slip

Figure B.12: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Lunar-g, 164N load, 20% slip

Figure B.13: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Lunar-g, 164N load, 30% slip
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Figure B.14: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Lunar-g, 164N load, 40% slip

Figure B.15: DP/W (left) and max sinkage (right) as a function of time for baseline
simulation parameters and NRC experiments: Lunar-g, 164N load, 70% slip
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