
Distributed Ensemble Kalman Filtering

Arslan Shahid

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

March 2014

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c⃝ 2014 Arslan Shahid



i

Abstract

Distributed estimation in a wireless sensor network has many advantages. It eliminates the

need of the centralized knowledge of the measurement model parameters and does not have

a single point of failure. Also, any sensor node can be queried to retrieve the state estimate.

Furthermore, for high dimensional measurements, local processing of information also results

in a significant reduction in the communication overhead.

The existing distributed Kalman filtering schemes have good computational and com-

munication efficiency, but do not work well for non-linear and non-Gaussian problems. On

the other hand, the distributed particle filtering schemes handle the non-linearities well, but

have a much higher computational and communication cost.

In this thesis, we propose novel distributed filtering schemes based on the ensemble

Kalman filter (EnKF). We consider three forms of the EnKF and express their update

equations in an alternative information form. This allows us to use the randomized gossip

algorithm to reach consensus on the sufficient statistics and perform local updates. The

simulation results show that all three forms of the EnKF have a considerably lower com-

putational cost compared to the particle filters. The results suggest that the proposed

distributed schemes outperform the existing state-of-the-art distributed filtering schemes in

two scenarios, a) linear measurement model with non-linear state dynamics, and b) high

dimensional measurements (model parameters known everywhere in the network) with non-

linear measurement model and state dynamics. In both of these scenarios, the proposed

schemes achieve an estimation accuracy comparable to the existing state-of-the-art schemes

while significantly reducing the communication cost.
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Résumé

L’estimation distribuée dans un réseau de capteurs sans fil possède plusieurs avantages. Elle

élimine le besoin d’une connaissance centralisée des paramtres du modèle de mesure et n’a

pas un point de défaillance unique. Aussi, n’importe quel agent-capteur peut-être consulté

pour obtenir une approximation de l’état général. De plus, pour des mesures de hautes

dimensions, le calcul local d’informations résulte en une réduction significative des coûts de

communication.

Les implémentations courantes du filtre de Kalman sont efficaces sur les plans de la

charge de calcul et de la communication mais ne le sont pas pour les problmes non-linéaires

et non-gaussiens. D’un autre côté, les techniques distribuées de filtrage particulaire gèrent

avec succès les cas non-linéaires mais sont coûteuses sur les plans de la charge de calcul et

de la communication.

Dans cette thèse, nous proposons des techniques de filtrage distribué basées sur le fil-

tre de Kalman d’ensemble (FKEn). Nous considérons trois formes du FKEn et exprimons

leurs équations de changement sous une forme alternative. Cela nous permet d’utiliser un

algorithme de gossip aléatoire afin d’atteindre un consensus sur les statistiques suffisantes et

calculer les changements locaux. Les résultats des simulations montrent que les trois formes

de FKEn ont une charge de calcul bien moindre que les filtres de particules équivalents. Les

rèsultats suggèrent que les techniques de filtrage distribué proposées sont plus efficaces que

celles de pointe pour deux scénarios: a) un modèle de mesure linéaire avec des dynamiques

d’états non-linéaires et b) des mesures de hautes dimensions (les paramtres du modèle sont

connus de chaque agent) avec un modle de mesure non-linéaire et des dynamiques d’états

non-linéaires. Dans les deux scénarios considérés, les techniques proposées atteignent une

précision d’estimation comparable à celle des techniques de pointe tout en réduisant signi-

ficativement les coûts de communication.
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Chapter 1

Introduction

1.1 Problem Statement

This thesis considers the problem of distributed state estimation in wireless sensor networks

(WSNs). In this problem, the goal is to sequentially estimate the system state that evolves

according to a discrete-time Markov process. The evolution of the state is characterized by

the system model

xk = f(xk−1) + nk−1, (1.1)

where x ∈ Rn is the system state, f : Rn → Rn is a nonlinear system function and nk−1 ∈ Rn

is the system noise which follows a Gaussian distribution with zero mean and covariance Q.

A set of wireless sensor nodes V are deployed in a physical region and record measure-

ments related to the system state. The relationship between the local measurement of a

sensor node v ∈ V and the state is specified by its measurement model

yv = hv(x) + ϵv, v ∈ V, (1.2)

where yv ∈ Rp, hv : Rn → Rp and ϵvk ∈ Rp are the sensor-dependent measurement, measure-

ment function (possibly non-linear) and measurement noise, respectively. The measurement

noise for each sensor node v ∈ V follows a Gaussian distribution with mean zero and covari-

ance Rv and the sensor nodes have uncorrelated measurement noise.

We assume that the sensor nodes do not have the complete topological information and

are only aware of their neighboring nodes. Hence, sensor nodes cannot form a spanning tree.
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The nodes that have the ability to directly communicate with each other are considered as

neighbors. We also assume that the sensor nodes are unaware of the measurement model

parameters of the other nodes. In a special case of high dimensional measurements, we relax

this condition and allow each sensor node to know all the measurement models. Conse-

quently, sensor nodes cannot exchange raw measurements and/or relay raw measurements

to a centralized fusion node; in the former case due to the unawareness of the measurement

models, and in the latter case due to the high communication cost associated with it.

1.2 Motivation

Wireless sensor networks (WSNs) consist of resource constrained and battery-powered de-

vices called sensor nodes. The sensor nodes have sensing, processing and communication

capabilities. In many practical applications like surveillance [1] and habitat monitoring [2],

these sensor nodes are deployed in a remote region and are not accessible. In order for wire-

less sensor networks to have a long lifetime, the limited battery power of the sensor nodes

must be used efficiently. Most of the battery power is consumed by wireless transmissions

and an efficient communication strategy can greatly enhance the network lifetime.

Distributed state estimation in WSNs is attractive due to many reasons. It does not have

a single point of failure and allows any sensor node to be queried to retrieve the state estimate.

It also eliminates the need for a centralized entity to have complete knowledge of the sensor

model parameters. In the case of high dimensional measurements, local processing of data

also reduces the amount of information that has to be transmitted within the network. The

distributed estimation schemes are designed such that they minimize the communication

overhead and increase the network lifetime.

The distributed Kalman filtering schemes [3, 4] have a low computational and communica-

tion overhead and perform well for linear and Gaussian problems. However, these methods

have a poor performance for problems with non-linear state dynamics and/or non-linear

measurement models. Distributed particle filtering methods [5, 6, 7, 8, 9] are attractive for

non-linear estimation problems because they have the ability to approximate more general

distributions. However, they have a much higher computational and communication cost.

Motivated by this fact, we strive to develop energy efficient distributed estimation schemes

based on the ensemble Kalman filter (EnKF) [10]. The EnKF lies in between the Kalman

filter and the particle filter. It uses a sample based approach to approximate the first two
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moments of the posterior distribution. The EnKF propagates the samples using the state

dynamics which allows it to capture the non-linearity in the state dynamics. The fact that

the EnKF only approximates the first two moments of the posterior distribution allows it

to work with a relatively small sample size compared to the particle filters. This makes the

EnKF a good candidate for development of energy efficient distributed estimation schemes

for non-linear and non-Gaussian problems.

The proposed distributed schemes identify the sufficient statistics and use gossip algo-

rithm to produce state estimates locally at every node. We have used the randomized gossip

algorithm [11] to perform gossip since most of the existing distributed filtering schemes have

reported results based on this algorithm. In future work, one could investigate how different

accelerated gossip procedures affect the proposed schemes.

1.3 Thesis Contribution and Organization

In Chapter 2, we provide the background information about the EnKF and review the

existing distributed estimation schemes. First, the structure, algorithmic implementation,

and variations and extensions of the EnKF are discussed. Following this, we provide a

review of the distributed data aggregation schemes used in WSNs. Finally, we summarize

the previous work on distributed estimation in the WSNs.

In Chapter 3, we propose distributed approximations of the three forms of the EnKF.

In order to develop a distributed update mechanism we express the update equations in

the EnKF in an alternative information form. We employ randomized gossip algorithm to

reach consensus on the statistics that are required to perform local updates. We also apply

three measurement model linearization strategies to the EnKF and developed the distributed

approximations using each of these strategies.

Chapter 4 provides a simulation based performance comparison of the proposed dis-

tributed schemes and the existing schemes. First, we compare the filtering methods in the

centralized setting to study their computation cost and explore the best linearization strategy

for the EnKFs. Finally, we compare the proposed distributed schemes to the state-of-the-art

distributed filtering schemes and study their communication efficiency.

In Chapter 5, we provide a summary of the work and present avenues for future work.
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Chapter 2

Literature Review

This chapter reviews the structure of the ensemble Kalman filter, its implementation, and

variations and extensions. It also provides a review of the state-of-the-art distributed filtering

schemes along with an introduction to the decentralized computation methods employed by

these schemes. Section 2.1 briefly outlines the KF and EKF leading to the formulation of

the EnKF. Section 2.2 provides a detailed discussion on the previous research that has been

carried out on the EnKF. In Section 2.3, an introduction to the decentralized computation

schemes in the wireless sensor networks is presented. Section 2.4 reviews the previous state-

of-the-art distributed estimation schemes.

2.1 Sequential State Estimation

In the sequential estimation problem, the goal is to estimate the system state at each time

step based on the previous state and the recorded measurements. Details of several state

estimation methods are discussed in subsequent sections. First, the formulation of the state

space model is presented.

2.1.1 Overview

The system state is modeled by a discrete-time Markov process {xk, k ∈ N}, where xk ∈ Rn

represents the system state vector at time instant k. The time evolution of the system state



2 Literature Review 5

can be characterized by the equation

xk = f(xk−1) + nk−1, (2.1)

where f : Rn → Rn is a system model function (possibly non-linear) and nk−1 is the

unknown system noise over one time step from k − 1 to k. The state process {xk, k ∈ N} is

not observable and needs to be estimated.

However, we can observe the measurement process {yk, k ∈ N}, where yk ∈ Rm repre-

sents the available measurements at time instant k. The measurement model is characterized

by the equation

yk = h(xk) + ϵk, (2.2)

where h : Rn → Rm is a measurement model function (possibly non-linear) and ϵk is the

measurement noise.

The objective here is to obtain a sequential estimate of the posterior distribution

p({x0, ..,xk}|{y1, ..,yk}) or p(xk|{y1, ..,yk}) at each time step k based on the transition

density p(xk|xk−1), prior density p(x0) and observations {y1, ..,yk}.
In order to simplify the analysis the following assumptions are made:

• The process noise sequence {nk, k ∈ N} is zero mean and i.i.d.

• The measurement noise sequence {ϵk, k ∈ N} is zero mean and i.i.d.

• The process noise ni and measurement noise ϵj are uncorrelated (E{niϵ
T
j } = 0 ∀i, j ∈

N).

2.1.2 Kalman Filter

The Kalman filter (KF) [12, 13] is a variance-minimizing algorithm with the assumption

that the posterior distribution p(xk|{y1, ..,yk}) is Gaussian at each time step. The Gaussian

assumption allows the posterior distribution to be completely parameterized by its mean

and covariance. If the model operator f(·) and measurement operator h(·) are known linear

functions and the process noise, measurement noise and prior density are drawn from known

Gaussian distributions then the posterior distribution p(xk|{y1, ..,yk}) can be proved to be

Gaussian [14].
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The KF uses a two step process to produce an estimate of the system state. First, a

forecast step is performed in which an estimate of the system state is produced by integrating

the previous state forward in time using the system model, equation (3.1). In order to

completely specify the pdf of the state forecast the known error covariance of the previous

state is also evolved in time to produce the error covariance of the state forecast. Then, an

analysis step is performed in which the observations are combined with the state forecast

using a weighted linear combination. The weights are computed based on the error covariance

of the state forecast and the error covariance of the measurement noise. This produces a

refined state estimate along with its error covariance which is a more accurate representation

of the true state of the system. We refer to this refined state estimate as the analyzed state

estimate throughout the thesis.

Representation of error statistics

In the KF, the error covariance in the state forecast, Pf , and the error covariance in analyzed

state, Pa, are defined as follows:

Pf = E{(xf − xt)(xf − xt)T}, (2.3)

Pa = E{(xa − xt)(xa − xt)T}, (2.4)

where vector x represents the system state and the superscripts f , a and t denote the forecast,

analyzed and true states, respectively. We use the same convention throughout the thesis.

The forecast step

The forecast step uses the system model, equation (3.1). The forecast equation for the

system state at time step k is given by

xf
k = Fxa

k−1, (2.5)

where the system model function f(·) is replaced by a known matrix F that defines this

linear function.
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The error covariance evolves according to the equation

Pf
k = FPa

k−1F
T +Q, (2.6)

where Q is the covariance matrix for the process noise. First, a forecast is made by using

the initial state xa
0 and initial covariance matrix Pa

0 which are defined by the prior density

p(x0).

The analysis step

In the KF, the measurement function h(·) is assumed to be linear, therefore the measurement

model can be written as

yk = Hxk + ϵk, (2.7)

where the measurement function h(·) is replaced by a known matrix H that defines this

linear function.

The Kalman filter finds the optimal solution xa
k such that the variance of the posterior

distribution is minimized. This optimal solution minimizes the cost function

J (xa
k) = (xf

k − xa
k)

T (Pf
k)

−1(xf
k − xa

k) + (yk −Hkx
a
k)

T (R)−1(yk −Hkx
a
k), (2.8)

where R is the measurement noise covariance matrix.

The analyzed state xa
k that minimizes the cost function defined above is given by

xa
k = xf

k +Pf
kH

T (HPf
kH

T +R)−1(yk −Hxf ). (2.9)

The corresponding analyzed error covariance matrix is given by

Pa
k = Pf

k −Pf
kH

T (HPf
kH

T +R)−1HPf . (2.10)

These update equations can be succinctly expressed using the Kalman gain matrix, Kk, as

follows

xa
k = xf

k +Kk(yk −Hxf ), (2.11)
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Pa
k = (I−KkH)Pf

k , (2.12)

where the Kalman gain matrix, Kk is given by

Kk = Pf
kH

T (HPf
kH

T +R)−1. (2.13)

2.1.3 Extended Kalman Filter

The extended Kalman filter (EKF) [15] uses a linearized approximation of the non-linear

system model and/or the non-linear measurement model. The forecast equations of the

EKF are given by

xf
k = f(xa

k−1), (2.14)

Pf
k = F

′

k−1P
a
k−1F

′T
k−1 +Q. (2.15)

where F
′

k−1 is the Jacobian or tangent linear operator of the the model function evaluated

at xa
k−1 and can be written as

F
′

k−1 =
∂f(x)

∂x

∣∣∣
xa
k−1

. (2.16)

A similar procedure is used to obtain a linearized approximation of the measurement

model. The linearization is performed at the most recent forecast and is given by

H
′

k =
∂h(x)

∂x

∣∣∣
xf
k

. (2.17)

The analysis equations for the mean and error covariance are as follows

xa
k = xf

k +Kk(yk − h(xf
k)), (2.18)

Pa
k = (I−KkH

′

k)P
f
k . (2.19)

Here, the Kalman gain matrix Kk is given by

Kk = Pf
kH

′T
k (H

′

kP
f
kH

′T
k +R)−1. (2.20)
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2.1.4 Ensemble Kalman Filter (EnKF)

The ensemble Kalman filter (EnKF) is a Monte Carlo (MC) scheme which was introduced

by Evensen [10]. A review article by Evensen [16] provides detailed discussion on theoretical

and practical aspects of the EnKF and serves as a reference document. The EnKF was

designed to overcome the limitations of the KF and EKF in non-linear dynamical models

and high-dimensional state spaces. The key idea in the EnKF is to represent the system

state using an ensemble of model realizations. Each ensemble member is then evolved in time

independently using the non-linear dynamical model. The mean of the ensemble members is

considered as the state estimate and the deviation of ensemble members from their mean is

used to define the error covariance. The analysis scheme also updates each ensemble member

separately which produces the analyzed state ensemble.

In contrast to the KF, this approach allows state predictions to capture the non-linearity

in the model. Although the EKF also considers this non-linearity by using a linearized

approximation, its performance degrades severely in highly non-linear models. The linearized

approximation in the EKF can also lead to unbounded linear instabilities [17]. Moreover,

the KF and EKF require an error covariance matrix to be maintained and evolved in time,

which becomes computationally expensive in high-dimensional state spaces. In the EnKF,

the computational cost of maintaining and evolving the ensemble is limited by the fact

that a relatively small ensemble size can yield good results. Therefore, the EnKF offers an

alternative approach that has better performance and higher computational efficiency.

Representation of error statistics

In the EnKF, the system state is represented by an ensemble of state vectors {x(i)}Ni=1. The

ensemble mean is defined as the average of ensemble members

x̂f =
1

N

N∑
i=1

xf
(i), (2.21)

x̂a =
1

N

N∑
i=1

xa
(i). (2.22)
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The error covariances are approximated by the sample covariances and are given by

Pf =
1

N − 1

N∑
i=1

(xf
(i) − x̂f )(xf

(i) − x̂f )T , (2.23)

Pa =
1

N − 1

N∑
i=1

(xa
(i) − x̂a)(xa

(i) − x̂a)T . (2.24)

The forecast step

The forecast equation in the EnKF has the same form as the forecast equation in the KF. In

the EnKF, each ensemble member is updated independently using the full non-linear model

function and an additional error term is added. The forecast equation for ensemble member

x(i) at time instant k is given by

xf
(i)k = f(xa

(i)k−1) + n(i)k−1 (2.25)

where the noise term is generated from a Gaussian distribution which has mean zero and

covariance Q. Hence, no explicit forecast of the the error covariance is needed. The forecast

for the error covariance can be estimated from the predicted ensemble using equation (2.23).

The analysis step

In the analysis step all the quantities have the same time index so this index will be dropped

from here onwards. The analysis step in the EnKF operates on each ensemble member

separately. Burgers et al. [18] have shown that it is necessary to treat the observation as a

random quantity. The random observations must have a Gaussian distribution with mean

equal to the actual measurements and covariance equal to R. Therefore, an ensemble of

observations {y(i)}Ni=1 is defined as follows

y(i) = y + ϵ(i), i = 1, .., N, (2.26)

where y is the recorded measurement at a particular time step and ϵ(i) is generated from a

Gaussian distribution with mean zero and covariance R.



2 Literature Review 11

The analysis step performs the following update on each ensemble member x(i)

xa
(i) = xf

(i) +PfHT (HPfHT +R)−1(y(i) −Hxf
(i)), (2.27)

The mean of the analyzed ensemble is considered as the best estimate. This can be expressed

using the Kalman gain as follows

x̂a = x̂f +K(ŷ −Hx̂f ), (2.28)

where ŷ = y, the actual recorded measurements and the Kalman gain K is defined as

K = PfHT (HPfHT +R)−1. (2.29)

The expression for the error covariance obtained from the analyzed ensemble can be derived

using equation (2.24) as follows

Pa =
1

N − 1

N∑
i=1

(xa
(i) − x̂a)(xa

(i) − x̂a)T ,

= (I−KH)

(
1

N − 1

N∑
i=1

(xf
(i) − x̂f )(xf

(i) − x̂f )T

)
(I−KH)T

+K

(
1

N − 1

N∑
i=1

(y(i) − ŷ)(y(i) − ŷ)T

)
KT ,

= (I−KH)Pf (I−HTKT ) +KRKT ,

= Pf −KHPf −PfHTKT +K(HPfHT +R)KT ,

= (I−KH)Pf . (2.30)

It can be observed that the mean and the error covariance of the analyzed ensemble in

the EnKF, equations (2.28) and (2.30), have exactly the same expressions as the analysis

equations (2.11) and (2.12) in the KF. The only difference is that the EnKF uses the error

covariances that are defined using an ensemble of state realizations. Therefore, in the limit of

an infinite ensemble size the analysis performed in the EnKF will give exactly the same result

as analysis in the KF. The complete EnKF filtering approach is presented in Algorithm 1.

In the EnKF, the system model is assumed to be non-linear, therefore the posterior distri-
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Algorithm 1 Ensemble Kalman filter

1: // Initialization at time k = 0

2: for each sample i = 1, 2, .., N do

3: Sample: xa
(i)0 ∼ p(x0)

4: end for

5: // For time k > 0

6: for k = 1, 2, .., T do

7: // Forecast step

8: for each sample i = 1, 2, .., N do

9: Sample: n(i)k−1 ∼ N (0,Q)

10: xf
(i)k = f(xa

(i)k−1) + n(i)k−1

11: end for

12: x̂f
k = 1

N

∑N
i=1 x

f
(i)k

13: Pf
k = 1

N−1

∑N
i=1 (x

f
(i)k − x̂f

k)(x
f
(i)k − x̂f

k)
T

14: // Analysis step

15: for each sample i = 1, 2, .., N do

16: Sample: ϵ(i)k ∼ N (0,R)

17: y(i)k = yk + ϵ(i)k

18: Kk = Pf
kH

T (HPf
kH

T +R)−1

19: xa
(i)k = xf

(i)k +Kk(y(i)k −Hxf
(i)k)

20: end for

21: end for

bution p(xk|{y1,y2, ..,yk}) will have non-Gaussian contributions and will not be parametrized

with mean and covariance only. Hence, the analysis performed in the EnKF is an approx-

imation using the mean and covariance of the posterior distribution. On the other hand,

the ensemble will capture non-Gaussian components during the forecast, which is performed

using the non-linear model function. A more sophisticated analysis scheme can be used that

performs the Bayesian update, which leads to the particle filtering theory [19]. However,

particle filtering methods have a much larger computational cost that makes them infeasible

for high dimensional state spaces or computationally constrained systems.
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2.1.5 Ensemble Square Root Filter (ESRF)

The ensemble square root filter (ESRF) [20] is a variant of the EnKF and only differs in

the way the analysis step is performed. This scheme calculates a transformation matrix

which when left-multiplied with a state forecast sample produces the updated sample. The

ESRF uses the KF analysis equation (2.11) to compute the mean of the analyzed ensemble

using the mean of the forecast ensemble. The deviation of the updated ensemble members

from their mean is then obtained by applying a linear transformation to the deviation of

the forecast ensemble members from their mean. The deviation of a sample from its mean

is calculated as x
′
= x − x̂, where x̂ is the sample average. The proposed transformation

operates as follows

x
′a = Tx

′f , (2.31)

where T is given by

T = (I−KH)1/2, (2.32)

where the (·)1/2 denotes the unique positive definite square root of a positive definite matrix.

This approach is described in Algorithm 2.

2.1.6 Deterministic Ensemble Kalman Filter (DEnKF)

In the deterministic ensemble Kalman filter (DEnKF) [21], the analysis scheme is similar to

the ESRF and it also uses a transformation matrix to obtain the updated ensemble from the

forecast ensemble. This scheme does not need to compute a matrix square root in order to

evaluate the transformation matrix, hence it has a lower computational cost as compared to

the ESRF. In the DEnKF, the transformation matrix is defined as

T = I− 1

2
KH. (2.33)

The DEnKF filtering algorithm is presented in Algorithm 3.
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Algorithm 2 Ensemble square root filter

1: // Initialization at time k = 0

2: for each sample i = 1, 2, .., N do

3: Sample: xa
(i)0 ∼ p(x0)

4: end for

5: // For time k > 0

6: for k = 1, 2, .., T do

7: // Forecast step

8: for each sample i = 1, 2, .., N do

9: Sample: n(i)k−1 ∼ N (0,Q)

10: xf
(i)k = f(xa

(i)k−1) + n(i)k−1

11: end for

12: x̂f
k = 1

N

∑N
i=1 x

f
(i)k

13: Pf
k = 1

N−1

∑N
i=1 (x

f
(i)k − x̂f

k)(x
f
(i)k − x̂f

k)
T

14: // Analysis step

15: Kk = Pf
kH

T (HPf
kH

T +R)−1

16: x̂a
k = x̂f

k +Kk(yk −Hx̂f
k)

17: Tk = (I−KkH)1/2

18: for each sample i = 1, 2, .., N do

19: xa
(i)k = x̂a

k +Tk(x
f
(i)k − x̂f

k)

20: end for

21: end for

2.2 Previous Research on EnKF

2.2.1 Development of EnKF

The ensemble Kalman filter (EnKF) was introduced by Evensen in [10]. In this paper, a

Monte Carlo (MC) technique is presented as an alternative to solving the error covariance

equation in the EKF. In this approach, an ensemble of state realizations is propagated in time

and the error covariance is calculated using the ensemble. It is concluded that the EnKF

eliminates the unbounded error growth suffered by the EKF because of its approximate
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Algorithm 3 Deterministic ensemble Kalman filter

1: // Initialization at time k = 0

2: for each sample i = 1, 2, .., N do

3: Sample: xa
(i)0 ∼ p(x0)

4: end for

5: // For time k > 0

6: for k = 1, 2, .., T do

7: // Forecast step

8: for each sample i = 1, 2, .., N do

9: Sample: n(i)k−1 ∼ N (0,Q)

10: xf
(i)k = f(xa

(i)k−1) + n(i)k−1

11: end for

12: x̂f
k = 1

N

∑N
i=1 x

f
(i)k

13: Pf
k = 1

N−1

∑N
i=1 (x

f
(i)k − x̂f

k)(x
f
(i)k − x̂f

k)
T

14: // Analysis step

15: Kk = Pf
kH

T (HPf
kH

T +R)−1

16: x̂a
k = x̂f

k +Kk(yk −Hx̂f
k)

17: Tk = (I− 1
2
KkH)

18: for each sample i = 1, 2, .., N do

19: xa
(i)k = x̂a

k +Tk(x
f
(i)k − x̂f

k)

20: end for

21: end for

closure scheme. It is also demonstrated that the EnKF can provide a good estimate using

an ensemble of moderate size by applying it to a non-linear quasi-geostrophic model.

In [18], Burgers et al. reexamine the analysis scheme used by the EnKF. They point out

that the derivation of the EnKF assumes that the measurements are random variables and

violation of this assumption leads to an ensemble with too low variance. They develop a

new analysis scheme in which random perturbations are added to the measurements at each

analysis step to generate an ensemble of measurements. These perturbations are generated

from a distribution with zero mean and the covariance equal to the measurement error
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covariance.

In [22], Evensen et al. derive a general filter that solves the Bayesian problem of estimating

the posterior distribution from the predicted pdf and observations. The EnKF is then re-

derived as a special case of the general filter which provides a sub-optimal solution assuming

the prior density is Gaussian.

In a review paper [16], an extensive discussion on theoretical and practical aspects of the

EnKF is provided. This paper provides a summary of all the previous research on the EnKF

along with a new interpretation of the EnKF. It is emphasized that the interpretation that

analysis in the EnKF is sought in the space spanned by ensemble members allows for efficient

algorithms to be developed. The algorithmic formulation of the EnKF is also discussed along

with an efficient numerical implementation of the EnKF.

The ensemble Kalman filter for combined parameter and state estimation is derived

in [23]. The problem is formulated as estimating the joint probability distribution of the

model parameters and the state variables given the measurements. The implementation

approach uses the prior density for the poorly known parameters to generate an ensemble

of parameter realizations. This ensemble of parameter realizations is concatenated with the

state ensemble and updated at each time step using the variance minimizing analysis scheme.

2.2.2 Square Root Filters

The analysis scheme in the EnKF uses perturbation of measurements to generate an ensemble

of measurements. The perturbation of measurements introduces an additional sampling error

which is negligible in most cases. However, this sampling error becomes substantial when

the number of measurements is larger than the ensemble size and considerably degrades the

performance of the EnKF [24]. For these situations, analysis schemes have been developed

that do not use perturbation of the measurements; these are referred to as square root

implementations of the EnKF. In this section several square root implementations of the

EnKF are summarized.

Bishop et al. [25] devise an implementation of the EnKF named the ensemble transform

Kalman filter (ETKF). In this approach transformations of the state ensemble are defined

that expedite the evaluation of forecast and analyzed error covariances. Instead of propagat-

ing every ensemble member forward in time a single ensemble forecast is performed followed

by transformations to obtain the forecast ensemble. Similarly, the analysis scheme also ap-
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plies a transformation on the forecast ensemble that results in the analyzed ensemble having

mean and covariance consistent with the KF. This scheme is used by the authors to rapidly

estimate the effect of the configuration of observations on the predicted error covariance and

identify crucial points for sensor deployment.

Anderson et al. [26] present a related method named the ensemble adjustment Kalman

filter (EAKF). In this scheme a linear operator is computed which when applied to the

forecast ensemble generates the analyzed ensemble. It is shown that this operator always

exists and can be computed efficiently. A comparison is carried out between the EAKF and

the traditional EnKF using a small number of ensemble members and results show that the

EAKF gives a better estimate of analyzed state covariance.

In [27], Whitaker et al. present another square root implementation of the EnKF named

the ensemble square root filter (EnSRF). The analysis scheme presented here is similar in

form to analysis in the EnKF, but differs in two ways. In the EnSRF the perturbation

of the measurements is avoided and the Kalman gain in the analysis equation is replaced

with a reduced Kalman gain. It is shown that perturbation of the measurement in the

EnKF analysis prevents it from underestimating the analyzed error covariance. The use of

a reduced Kalman gain is presented as an alternative way of preventing the underestimation

in the error covariance. The results show that the EnSRF gives more accurate prediction for

error covariances when the ensemble size is small (10-20 members).

Tippett et al. [28] point out that the deterministic transformation from the forecast

ensemble to the analyzed ensemble is not unique and this non-uniqueness can be exploited to

design filters with suitable properties. They provide a discussion on the previously mentioned

square root filters [25, 26, 27] and compare their computational and numerical properties.

Evensen [29] develops an implementation of the EnKF that uses a deterministic analysis

scheme. In this approach the mean of the analyzed ensemble is calculated from the standard

KF analysis equation. The deviation of the analyzed ensemble members from their mean is

then expressed as a linear transformation of the deviation of the forecast ensemble members

from their mean. The analysis scheme developed here suffers from several drawbacks. Wang

et al. [30] pointed out the introduction of bias in the mean, and in [31] Leeuwenburgh et

al. demonstrate that most of the error covariance is represented by a few outliers in the

ensemble.

Livings et al. [32] provide theoretical discussion on square root filters. They analyze the

linear transformation that maps forecast ensemble perturbations (deviation of the ensemble
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members from their mean) to analyzed ensemble perturbations. They provide sufficient

conditions for the transformation matrix under which analysis is unbiased. It is shown

that the transformation matrix is unbiased, meaning it preserves the zero mean of ensemble

perturbations, if the vector of all ones is an eigenvector of the transformation matrix. This

condition is satisfied if the transformation matrix is symmetric. It is further shown that if a

new transformation is defined by post-multiplying an unbiased transformation matrix with

another matrix which has the vector of all ones as its eigenvector, the new transformation

is also unbiased.

In [20], Sakov et al. provide similar discussion on theoretical aspects of square root

filters. They show that a mean preserving transformation can be represented as a product

of a symmetric matrix and an orthonormal mean preserving matrix. They use this property

to devise a transformation that results in correct error covariance while preserving the mean

of the ensemble.

Evensen [17] builds on [20] and presents a symmetrical square root analysis scheme which

uses a symmetric transformation matrix. In order to enable the ensemble perturbations to

better resemble a Gaussian distribution a randomization in the analysis scheme is suggested.

In this case, a new transformation is defined by post-multiplying a symmetric transformation

matrix by a random orthogonal mean preserving matrix which can be computed using the

algorithm from [20].

In [33], Reich et al. propose a transformation scheme that does not have any prior as-

sumptions about the form of the prior and posterior distributions. This approach finds an

optimal transportation [34] between the forecast state variables and the analyzed state vari-

ables. The optimal coupling between the forecast and the analyzed state variables is found

by using linear programming [35]. The optimization metric is the squared Euclidean distance

between the forecast and the analyzed state variables, which needs to be minimized. The

analyzed ensemble is computed using a deterministic transformation based on the optimal

coupling. In a review paper [36], Cotter et al. provide a discussion on the use of the op-

timal transportation and variable coupling for state estimation along with the most recent

advances in this area.
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2.2.3 Ensemble based Kalman-Bucy Filters

The Kalman-Bucy filter deals with continuous time dynamical systems. The ensemble based

extension of the Kalman-Bucy filter [13] was introduced by Bergemann et al. [37]. In this

approach, the analysis step is formulated in terms of ordinary differential equations (ODEs).

The forecast ensemble perturbations (deviation of the ensemble members from their mean)

are used as initial conditions and the solution of these ODEs over one time step gives the

analyzed ensemble perturbations. The mean of the analyzed ensemble is computed from

the standard KF analysis equation and used to obtain the analyzed ensemble. In [38],

Bergemann et al. present another formulation of the analysis step using ODEs. In this

scheme, the analyzed ensemble is directly obtained as a solution of the ODEs over a time

step. Amezcua et al. [39] provide a discussion on the above approaches [37, 38]. They

point out that in both of these approaches the stability of the filter depends on the ratio

of the forecast error covariance to the observation error covariance. It is shown that if the

time interval between two consecutive analysis steps is large, the magnitude of this ratio

is also large which makes the filter unstable. In order to improve the stability of the filter

a modification to these approaches is presented. The analyzed ensemble perturbations are

represented as a product of the forecast ensemble perturbations and a matrix of weights.

The weights are then computed at each analysis step as a solution of the ODEs. This results

in reducing the dimension of the variables for the analysis step and improves the stability of

the filter.

2.2.4 EnKF with Gaussian Mixture Models

The ensemble Kalman filter assumes that the prior distribution and model errors are Gaus-

sian which lead to a Gaussian posterior distribution. Therefore, the posterior distribution

can be characterized by mean and covariance only. In some applications the prior distri-

bution cannot be accurately modeled by a Gaussian distribution. An example of such a

situation is the reservoir models where the prior distribution can be multimodal [40]. Fur-

thermore, even if the prior distribution is accurately modeled by a Gaussian distribution,

strong non-linearities in the dynamical model can give rise to significant non-Gaussian com-

ponents in the posterior distribution. In both these situations, modeling of the posterior

distribution by a Gaussian distribution will result in an inaccurate estimate which limits

the use of the EnKF. Several methods have been developed that overcome this problem by
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modeling the prior and posterior distribution using Gaussian mixture models (GMMs). A

Gaussian mixture distribution consists of a weighted sum of Gaussian distributions and has

the ability to represent more general probability distributions.

In [41], Dovera et al. have extended the EnKF to incorporate multimodal distributions.

They model the multimodal prior distributions using a Gaussian mixture. They use the

results from [42] which show that if the prior is a Gaussian mixture, the system and mea-

surement models are linear and the likelihood is a Gaussian, the posterior distribution is

also a Gaussian mixture. At each analysis step the forecast distribution is assumed to be

a Gaussian mixture and the parameters of this distribution are learned from the forecast

ensemble using the expectation-maximization (EM) algorithm [43]. The number of com-

ponents in the Gaussian mixture is assumed to be known beforehand as prior information.

The EM algorithm is used to learn the mean and covariance of each component along with

the membership probabilities of the ensemble members. The membership probability of an

ensemble member is the probability that the member belongs to a particular component

of the Gaussian mixture. Then for each ensemble member a random component index is

selected based on the membership probabilities. Each ensemble member is associated with

the component selected in the previous step and updated using the mean and covariance of

this component. This generates samples from the posterior Gaussian mixture distribution.

Frei et al. [44] develop a similar scheme in which they use the Gaussian mixture distribu-

tions to model the prior and posterior distributions. The authors present a two stage process

to perform state estimation. In the first stage, the forecast ensemble is divided into clusters

in such a way that each ensemble member can be associated with more than one cluster.

The clustering algorithm also determines the association probabilities between the ensemble

members and the clusters. Each cluster is considered as a component and the component

mean and covariance are computed using the association probabilities. In the second stage,

the updated weight of each mixture component is computed based on the observations. Then

samples are generated by randomly selecting a component using new weights and sampling

from this component. In this sampling procedure each sample is associated with a single

component. The analyzed ensemble members are then obtained from these samples by ap-

plying the EnKF analysis equations by using the mean and covariance of the corresponding

component.

In [45], Stordal et al. identify a connection between the EnKF and the Gaussian mixture

filter [46, 47]. The EnKF is viewed as a special case of Gaussian mixture filter with the added
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constraint that all the weights are uniform. In this case, each ensemble member is treated

as a mixture component. The authors present a new scheme named the adaptive Gaussian

mixture filter (AGM) which relaxes this constraint. They introduce a weight interpolation

procedure for the forecast ensemble in the Gaussian mixture filter which is given by

wi
α = αwi + (1− α)N−1, (2.34)

where α is the tuning parameter and determines how much the original weights are inter-

polated towards uniform weights. A performance comparison of the AGM with the EnKF

is performed for reservoir models in [48]. The results show that the AGM estimates have

higher correlation with the reference data compared to the EnKF. Rezaie et al. [49] develop

a shrinkage scheme in the Gaussian mixture filter that has the same effect as weight inter-

polation in AGM. A tuning parameter is introduced that is used to perform the shrinkage of

the forecast ensemble. Each shrunken ensemble member is generated by taking a weighted

average of the ensemble member with the ensemble mean. The results indicate that the

proposed method has better performance compared to the EnKF.

In [50], Reich incorporates the Gaussian mixture prior and posterior distributions in a

continuous formulation of the EnKF [38]. Initially, the expectation maximization algorithm

is used to determine the parameters of the Gaussian mixture distribution from the forecast

ensemble. A heuristic approach is used to decide on the number of components in the

Gaussian mixture. The analyzed ensemble is obtained as a numerical solution of the ordinary

differential equations over a time step. The results show that this scheme gives better

estimates when the ensemble distribution is non-Gaussian and/or multimodal.

2.2.5 Localization

The EnKF is a Monte Carlo technique that uses an ensemble of state realizations to per-

form estimation. The use of finite sized ensemble leads to undesirable sampling errors like

spurious correlations between uncorrelated variables. These spurious correlations result in

measurements that are actually uncorrelated with the state variables having a small impact

on the state ensemble during the analysis phase. This causes a reduction in the variance

of the state ensemble and the covariance computed from the state ensemble becomes an

underestimate. The effect of spurious correlations is reduced by using a large ensemble. The

reduction in the variance can also lead to filter divergence. In order to eradicate the effects
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of spurious correlations several types of localization schemes are used in the EnKF. The

localization schemes can be classified as covariance localization, local analysis and adaptive

localization. These localization schemes are explained in subsequent sections.

Covariance Localization

Covariance localization is based on the premise that variables that are separated by a large

spatial distance must have a very low correlated. Covariance localization was introduced

by Houtekamer et al. [51]. In this approach the authors use a Schur product (element-wise

multiplication) of the covariance matrix with a specified correlation matrix to eliminate long-

range spurious correlations and perform spatial smoothing. The Schur product theorem [52]

states that the Schur product between a covariance matrix and correlation matrix is also

a covariance function. The correlation function is constructed in such a way that it has

local support and decreases monotonically with distance. In [53] Hamill et al. use the same

approach and perform a Schur product between the covariance matrix and a correlation

function with local support. They use a distance dependent correlation function which is

a fifth order function that resembles the Gaussian function [54]. This correlation function

is more compactly supported than the Gaussian function and reduces to zero after a finite

radius. They conclude that this distance dependent reduction of covariance reduces spurious

correlations and the optimal design of the correlation function strongly depends on the size

of the ensemble. Bergemann et al. [38] introduce covariance localization in the continuous

formulation of the EnKF. They also employ the Schur product between the covariance and

the correlation functions to eliminate spurious correlations.

Local analysis

Another way to reduce the impact of spurious correlations is to use local analysis. In local

analysis a model grid is constructed and analysis is performed grid point by grid point. Only

the measurements that are spatially close to a state variable are used to update that variable.

This approach is also computationally efficient when a large number of measurements have

to be used. In [16] an implementation of the local analysis scheme is provided. This approach

first computes the global analysis and then in order to obtain the local analysis at a grid

point a correction term is added to the global analysis. In [55] Ott et al. present another

local analysis scheme called the local ensemble Kalman filter. In this approach they define
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local regions and use the local state vectors which have a much lower dimension as compared

to the global state vector. They perform analysis on each local low-dimensional subspaces

and combine them to form the global ensemble. It is concluded that local analysis gives

advantages in terms of eliminating spurious correlations and reducing the computation time.

Adaptive localization

Adaptive localization methods try to explore the need for localization and try to find the

optimal localization strategy. This is extremely useful for dynamical models where the

correlations and ensemble size changes over time. Anderson [56] presents a method that he

names the hierarchical ensemble filter. In this hierarchical approach several ensembles are

used to estimate the effect of spurious correlation between observations and state variables.

An ensemble of ensemble Kalman filters is used to learn a localization function. In [57]

Fertig et al. present a local analysis scheme for cases where observations are parameters of

the state variables. Initially, the covariance matrix of the predicted observations is computed

globally using all the state variables and used to estimate the correlations. The analysis is

then performed locally by using only the observations that have considerable correlation with

the state variables. A similar scheme is developed by Bishop et al. [58] where a moderation

function is learned using the predicted covariance. The moderation function is constructed

from powers of the ensemble covariance. The moderation function damps small correlations

and eliminates the variance reduction caused by spurious correlations.

2.2.6 Inflation

Covariance inflation is another method to counter the variance reduction caused by spurious

correlations. In this approach the deviation of the forecast ensemble members from their

mean is slightly increased by multiplication with an inflation factor. This is given by the

equation

x(i) = ρ(x(i) − x̂) + x̂, (2.35)

where x(i) is the i
th member of the forecast ensemble, x̂ is the mean of the forecast ensemble

and ρ is the inflation factor. The inflation factor has a value that is slightly greater than

one.
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Several approaches have been proposed that adaptively estimate the optimal value of

the inflation parameter. In [59], a method for online estimation of the inflation factor is

presented. An inflation variable is augmented with the state ensemble and estimated as a

parameter at each time step using the analysis scheme in the EnKF. Evensen [17] provides a

scheme to approximate the inflation factor. In this approach an ensemble matrix is generated

such that each row of this matrix has zero mean and unit variance. This ensemble matrix

is then analyzed at each analysis step using the measurements. The standard deviation of

each row of the analyzed ensemble matrix is computed and an average is calculated. The

reciprocal of this average is considered to be an approximation of the inflation factor. In [60],

a discussion on the online estimation of the inflation factor is provided. It is found that in

order to get a good estimation of the inflation factor an accurate knowledge of measurement

error statistics is required and vice versa. It is shown that simultaneous estimation of the

inflation factor and measurement error statistics gives better results. Reich [61] extends the

inflation technique to the continuous formulation of the EnKF [38]. An additional term

is introduced in the continuous analysis equations that does not affect the mean of the

ensemble but causes a slight increase in the ensemble deviations. The similarities between

the proposed equations and the analysis equations in the continuous H∞ filter [62] are also

discussed.

2.2.7 Model Bias Estimation

Several schemes have been developed that use the EnKF to estimate the model bias or

systematic model errors. Keppenne et al. [63] introduce a scheme for estimating the model

bias using the EnKF. The idea is to add a new variable for model bias in the state vector. The

variable is then estimated along with the state variables using the EnKF analysis scheme.

It is shown that their approach has the ability to correct systematic errors in the model.

Fertig et al. [64] develop a similar scheme based on augmenting the state vector with a bias

variable. The online estimation of bias is done using variance minimizing analysis in the

EnKF. They also concluded that the bias estimation helps in reducing the systematic model

errors. In [65], Baek et al. present several approaches for estimating the model bias. They

develop different models for parameterizing the bias. They show that in order to obtain

good results the choice of bias parameterization becomes crucial.
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2.2.8 Other Extensions and Convergence

In [66], Gottwald et al. propose a variance-limiting ensemble Kalman filter for situations

where some of the variables in the observation space are not directly observable. It is as-

sumed that some prior knowledge about the statistical behavior of these unobserved variables

is available. In such a scenario, the analysis performed using the EnKF results in an over-

estimation of the error covariance. A variance-limiting scheme is devised in the EnKF that

counteracts this overestimation of the error covariance.

Lorentzen et al. [67] present an iterative version of the EnKF. If the observation model is

non-linear the analysis in the EnKF is not accurate and an iterative procedure is employed

to improve the estimation accuracy by repeatedly updating the ensemble until the stopping

condition is met. The results show that the proposed iterative filter gives more accurate

estimates compared to the EnKF for non-linear observation models.

In [68], Mandel et al. provide a discussion on the convergence of the EnKF. They show

that the EnKF in the limit of an infinite ensemble size converges to the Kalman filter.

The weak law of large numbers for exchangeable random variables is used to prove the

convergence of the ensemble based covariance in the EnKF to the covariance in the KF. It is

further discussed that the rate of convergence of the EnKF is increased by using localization

techniques.

2.2.9 Parallelization in EnKF

In the EnKF, the ensemble members are updated separately which makes it suitable for

parallel implementation. Parallelizing the EnKF can be advantageous when dealing with a

high dimensional model and can result in a large reduction in the computation time. In [69],

Tavakoli et al. propose a parallelization scheme for both forecast and analysis steps in the

EnKF. In the forecast step, the ensemble members are divided into groups which are passed to

different processors. The forecast for each group is performed simultaneously and the result

is communicated back to the central processor. In the analysis step, the central processor

uses the observations and the forecast ensemble to calculate the Kalman gain. The Kalman

gain is used to calculate a coefficient matrix, which when post-multiplied with a row of the

forecast ensemble matrix yields the corresponding row of the analyzed ensemble matrix. The

rows of the forecast ensemble matrix are then passed to different processors along with the

coefficient matrix. The multiplication between a row of the forecast ensemble matrix and the
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coefficient matrix is carried out locally and the result is passed back to the central processor.

Xu et al. [70] present another parallelization scheme for the EnKF. In this approach, the

ensemble is divided into partitions and each partition is sent to a different processor. The

forecast step for each partition is carried out simultaneously at each processor. The analysis

step is also parallelized and proceeds as follows. First, each processor computes a local

estimate of the mean and the covariance using its forecast ensemble. These local estimates

are communicated back to a central processor which uses them to compute the covariance

and the Kalman gain. The value of the Kalman gain is sent to all the processors and they

update their ensemble concurrently.

2.2.10 Discussion

The EnKF is a state estimation approach that was designed to overcome the weakness of the

KF and EKF. Although the EnKF has been successfully applied in many state estimation

problems, across different research areas, it does not provide good performance in all sce-

narios. Therefore, several problem specific modifications and extensions of the EnKF have

been proposed to improve its performance. In this section, a discussion on the applicability

of several extensions of the EnKF is provided.

If a large number of measurements are used then sampling errors due to perturbation of

measurements become large and performance of the EnKF degrades. A considerable decrease

in the estimation accuracy occurs when the number of measurements are larger than the

ensemble size. These sampling errors can be reduced by increasing the ensemble size. An

alternative approach is to avoid these sampling errors by using a square root implementation

of the EnKF. In square root filters no perturbation of measurements is performed. Therefore,

square root filters are a good choice when a large number of measurements are used while

the ensemble size is relatively small.

The continuous extensions of the ensemble Kalman filter (ensemble Kalman-Bucy filter)

have been developed for the problems that require frequent measurement analysis. If the

measurements are available very frequently and need to be used immediately, the ensemble

based Kalman-Bucy filters are a suitable choice.

Gaussian mixture models (GMMs) are used in the EnKF if the prior distribution is known

to have a non-Gaussian and/or a multimodal structure or the model dynamics are highly

non-linear. In both these cases, the posterior distribution develops significant non-Gaussian
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components and cannot be represented by a Gaussian distribution. In these situations,

modeling the prior and posterior distributions with a Gaussian mixture distribution gives

better results in terms of estimation accuracy.

When the ensemble size in the EnKF is small, spurious correlations appear between un-

correlated variables. The spurious correlations result in the underestimation of the error

covariance. Localization and covariance inflation are two techniques that counter the effect

of spurious correlations. Both these techniques have a similar effect and either one of them

can be used to avoid the underestimation of the error covariance. If the system dynamics

change over time, meaning that the correlation between different variables changes over time

then adaptive localization and inflation techniques are more suitable. The two localization

approaches, namely, covariance localization and local updating, have comparable perfor-

mance in terms of reducing spurious correlations. However, local updating has an added

advantage of decreasing the computational cost.

2.3 Decentralized Computation in Wireless Sensor Networks

A wireless sensor network (WSN) consists of many battery-powered devices, known as sensor

nodes, that have sensing, data processing and communication capabilities. The sensor nodes

have limited resources, specifically the power supply and the communication bandwidth.

The sensor nodes are only capable of short range communication, hence a sensor node can-

not directly communicate with all the other nodes in the network. In order to aggregate

information in these wireless networks specialized schemes are required.

Several approaches have been developed that perform data aggregation in wireless sensor

networks (WSNs). The schemes [71, 72, 73] require specific routing services from the network,

e.g. formation and maintenance of cyclic paths that pass through each node in the network.

Other methods [74, 75, 76] construct and maintain spanning trees rooted at the sink node.

In these schemes, the data reaches the sink node by propagating upwards through the tree.

Both types of methods have several shortcomings. They have a single point of failure,

introduce communication bottlenecks near the sink node and increase the communication

overhead due to maintenance of routing paths. Gossip algorithms are decentralized methods

for aggregating data in WSNs and do not suffer from the aforementioned drawbacks. In [77],

an extensive survey on gossip algorithms is presented. In the subsequent section, we present

the randomized gossip algorithm [11] that solves the average consensus problem in WSNs.
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2.3.1 Randomized Gossip Algorithm

In the average consensus problem, every node v ∈ V (the set of nodes), starts with a local

variable (vector or a matrix) ζv(0), and the goal is to compute the element-wise average

of this variable over the network, ζ = |V |−1
∑

v∈V ζv(0). The randomized gossip algorithm

iteratively and asynchronously performs data exchanges between the neighboring nodes.

The nodes that have the ability to directly communicate with each other are considered as

neighbors. In iteration k, a pair of neighboring nodes (v, w) is selected randomly. These

nodes exchange their local values and update their local estimates as ζv(k) = ζw(k) =
1
2
(ζv(k − 1)+ ζw(k − 1)). Under mild conditions on the network connectivity, as k → ∞, all

the nodes posses a local estimate ζv(k), v ∈ V that is equal to the true average ζ(0). The

communication cost of such a decentralized computation scheme can be measured in terms

of the total number of scalars that are transmitted in the network. In each iteration of this

algorithm both the selected nodes transmit their local variables to each other. Assuming

that the local variable ζv contains M scalars and the algorithm runs for K iterations, the

total number of scalars transmitted is 2MK.

2.4 Distributed State Estimation

Distributed estimation techniques in wireless sensor networks are becoming increasingly pop-

ular. This can be attributed to the fact that these schemes distribute the communication

load evenly in the network and do not have a single point of failure. In contrast to relaying

the raw measurements to a sink, such schemes perform local processing and only transmit

the essential information which significantly reduces the communication overhead when the

measurement dimensionality is high. The local processing also eliminates the need for a

central entity to have the complete knowledge of the sensor measurement models and allows

retrieval of the state estimate from any sensor node. In the following sections, we present

several schemes that perform distributed estimation in wireless sensor networks.

2.4.1 Distributed Kalman Filtering

The distributed Kalman filtering approaches [3, 4] identify and aggregate through the net-

work, the statistics, that are sufficient to implement the KF analysis equations locally at

every node. These methods provide an efficient solution to the linear estimation problem, i.e.,
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Gaussian problem, but do not work well with non-linear state dynamics and/or non-linear

measurement models. The schemes in [78, 79, 80] employ the unscented transformation to

develop the distributed unscented Kalman filters (UKFs) that have the ability to capture the

non-linearities in both the state dynamics and the measurement models. These distributed

UKF schemes also aggregate the sufficient statistics through the network and perform the

analysis locally.

2.4.2 Distributed Particle Filtering

Distributed particle filters have the ability to represent more general posterior densities which

makes them suitable for nonlinear estimation problems. However, they are computationally

expensive and have a larger communication overhead compared to the Kalman filtering

methods. In the following sections, we present several distributed particle filtering schemes.

An article by Coates [5] provides seminal work on the distributed particle filters. The

scheme presented in this paper is based on factorization of the global likelihood function. The

products of factors of global likelihood function are parametrized. The particles and their

associated likelihood functions are used to learn the parameters which are then exchanged

between sensor nodes to compute an approximation of the global likelihood function. This

scheme has a much lower communication overhead compared to any scheme that directly

transmits the raw measurements when the measurement data dimensionality is higher than

the dimensionality of the parameters.

In [6], Oreshkin et al. present a scheme that is based on parametrization of the local

posterior. The local posterior is parametrized by a Gaussian distribution. The parameters

of the local posterior densities are computed from particles and their associated likelihood

functions. These parameters are then exchanged between sensor nodes using gossip algorithm

and an approximation of the global posterior is computed. The gossip step is based on an

optimal fusion strategy that results in lowering the communication overhead of this scheme.

In [7], Hlinka et al. propose a scheme that is based on distributed computation of the

global likelihood function. This approach identifies a set of sufficient statistics that are

exchanged between the sensor nodes using gossip algorithm and an approximation to the

global likelihood function is computed locally. Then each sensor node uses this approximate

global likelihood function to update the particle weights.

Farahmand et al. [8] propose a scheme that computes a set of samples at each sensor
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node such that the set captures most of the mass in the local posterior density. Sensor nodes

then employ gossip over the local sets and compute a global set at each senor node. The

global sample set is constructed such that it captures most of the mass in the global posterior

density. This approach has a significantly lower communication overhead compared to any

scheme that gossips on all the particle weights.

In [9], Ustebay et al. present a scheme in which each sensor node computes local particle

weights based on its likelihood function and local measurement. Then sensor nodes gossip

on the local weights to compute the global particle weights which approximate the global

posterior distribution. This approach uses a selective gossip procedure that only gossips on

a subset of the local particle weights. The set of local particle weights for gossip is selected

such that it leads to a set of global particle weights that captures most of the mass in the

global posterior distribution. Hence, this approach also has a good communication efficiency

compared to the schemes that gossip on all the particle weights.

In schemes [81, 82] the likelihood for the bearings-only model is parametrized exactly

by a few sufficient statistics. These statistics are computed at all the nodes using the

gossip algorithm and the particle weights are updated locally. These approaches have good

communication efficiency, but are applicable only to the bearings-only measurement model.

2.4.3 Discussion

The distributed Kalman filtering schemes provide the optimal solution to the linear estima-

tion problem and also have a low computational and communication overhead. However,

these methods do not work well for non-linear and non-Gaussian problems. The distributed

unscented Kalman filtering approaches provide an extension to the non-linear problems.

These methods also use mean and covariance based parametrization of the posterior density,

hence they also have a low computational and communication overhead. But, they have

a limited ability to handle the non-linearities in the state dynamics and the measurement

models. Distributed particle filtering methods have the ability to approximate more gen-

eral posterior distributions and provide better estimation accuracy for non-linear problems

as compared to the Kalman filtering methods. However, they have a much higher com-

putational and communication overhead compared to the Kalman filtering methods. The

distributed particle filtering schemes [5, 6] use parametric approximations of the local pos-

terior (particle based) densities and employ gossip on these parameters. In [7], the local
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likelihoods are parametrized and gossip is used to compute the parameters of the global like-

lihood. In both these cases, parametrization is used to reduce the communication overhead,

but the estimation accuracy also decreases. The schemes [8, 83] do not use any parametriza-

tion and strive to achieve a better performance by gossiping on the particle weights, but at

the cost of a higher communication overhead.

2.5 Summary

In this chapter, we provided background information about the ensemble Kalman filter

(EnKF). The EnKF provides an extension of the Kalman filtering framework to problems

with non-linear state dynamics. The EnKF uses a set of samples to approximate the first

two moments of the posterior distribution. The samples are propagated using the state

dynamics; this allows the EnKF to capture the non-linearities in the state dynamics. The

EnKF requires a relatively small sample size to provide a good approximation to the mean

and covariance of the posterior density. Several modifications and extensions of the EnKF

have been proposed that improve its performance in specific application scenarios.

We also reviewed the distributed filtering schemes along with the decentralized com-

putation methods employed by these schemes. The distributed Kalman filtering schemes

have good computational and communication efficiency, but have a limited ability to handle

non-linearities. On the other hand, the particle filtering methods work well for non-linear

problems, but have a higher computational and communication overhead. Several particle

filtering schemes use parametrization to reduce their communication overhead, but it also

results in a lower estimation accuracy.
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Chapter 3

Distributed Ensemble Kalman

Filtering in Wireless Sensor Networks

In this chapter, we formulate the distributed implementations of three forms of the ensemble

Kalman filter. Specifically, we propose novel distributed approximations of the ensemble

Kalman filter (EnKF) [16], ensemble square root filter (ESRF) [20] and deterministic ensem-

ble Kalman filter (DEnKF) [21]. In the proposed approach, every sensor node runs a local

copy of the filter and the nodes communicate via the randomized gossip scheme [11]. We

have used the randomized gossip algorithm because most of the existing distributed filtering

schemes have reported results based on this algorithm. The difficulty in developing a dis-

tributed scheme lies in the fact that the analysis equations require the complete knowledge

of the measurements and the measurement model parameters while the sensor nodes only

possess local information. We address this challenge by expressing the analysis equations

in an alternative form and identifying and gossiping on a set of statistics that are required

by the sensor nodes to perform the analysis locally. We formulate the distributed filters for

both the linear and the non-linear measurement models.

3.1 Problem Statement

The goal is to sequentially estimate the system state that evolves according to a discrete-time

Markov process. The evolution of the state is characterized by the system model

xk = f(xk−1) + nk−1, (3.1)
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where x ∈ Rn is the system state, f : Rn → Rn is a nonlinear system function and nk−1 ∈ Rn

is the system noise which follows a Gaussian distribution with zero mean and covariance Q.

A set of wireless sensor nodes V are deployed in a physical region and record measure-

ments related to the system state. The relationship between the local measurement of a

sensor node v ∈ V and the state is specified by its measurement model

yv = hv(x) + ϵv, v ∈ V, (3.2)

where yv ∈ Rp, hv : Rn → Rp and ϵvk ∈ Rp are the sensor-dependent measurement, measure-

ment function (possibly non-linear) and measurement noise, respectively. The measurement

noise for each sensor node v ∈ V follows a Gaussian distribution with mean zero and covari-

ance Rv and the sensor nodes have uncorrelated measurement noise.

We assume that the sensor nodes do not have the complete topological information and

are only aware of their neighboring nodes. The nodes that have the ability to directly

communicate with each other are considered as neighbors. We also assume that the sensor

nodes are unaware of the measurement model parameters of the other nodes. In a special

case of high dimensional measurements, we relax this condition and allow each sensor node

to know all the measurement models. Consequently, the sensor nodes cannot exchange raw

measurements; in the former case due to the unawareness of the measurement models, and

in the latter case due to the high communication cost associated with it.

3.2 Distributed Forecast

In the proposed distributed scheme, every sensor node runs a local copy of the filter. Since,

all three forms of the ensemble Kalman filter have the same forecast step, we present a

common distributed forecast step for all of them. The distributed implementations of the

forecast step require the random number generators of all the nodes to be synchronized

(initialized with the same seed) which can be accomplished using the decentralized routine

described in [84].

At the start, every node generates the initial samples at time k = 0 by sampling from the

same prior density p(x0). At each time step k, every node v ∈ V calculates its local forecast

samples xf
(i)k by evolving its local previous time updated samples xa

(i)k−1 through the system
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model function and adding a system noise realization. This forecast is given by the equation

xf
(i)k = f(xa

(i)k−1) + n(i)k−1, v ∈ V, (3.3)

where f(·) is the system function, xa
(i)k−1 is a previous time local updated sample and n(i)k−1

is a system noise realization. The system noise is sampled from a Gaussian density with

mean zero and covariance Q.

All the sensor nodes use pseudo random number generators initialized with the same seed,

hence every node produces identical samples from the prior density and the noise density.

This distributed forecast mechanism ensures that all the nodes will have the same local

forecast samples if they had identical previous time local updated samples.

3.3 Distributed Analysis for Linear Measurement Models

The centralized measurements and measurement model parameters can be expressed in terms

of the individual measurements and measurement model parameters of the sensor nodes as

follows

y = [y1;y2; . . . ;y|V |], (3.4)

ϵ = [ϵ1; ϵ2; . . . ; ϵ|V |], (3.5)

H = [H1;H2; . . . ;H|V |], (3.6)

R = diag(R1,R2, . . . ,R|V |), (3.7)

where yv and ϵv are p-dimensional vectors representing the measurement and measurement

noise of sensor v, Hv is a p× n matrix representing the linear measurement model function

of sensor v and Rv is a p× p measurement noise covariance matrix of sensors v.

In this distributed approach, we assume that every sensor node is aware of the network

size, i.e. the total number of sensor nodes in the network. The sensor nodes can use the

decentralized scheme outlined in [6] to learn the network size. In the following sections, we

present the distributed analysis approach for the three forms of the ensemble Kalman filter.
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3.3.1 Ensemble Kalman Filter (EnKF)

In order to formulate the distributed analysis step in the ensemble Kalman filter (EnKF) we

extend the information Kalman filtering [85, 86] framework to the EnKF. In the centralized

problem, the EnKF analysis equations can be expressed in the information form as follows

xa
(i) = xf

(i) +K(y(i) −Hxf
(i)), (3.8)

where the Kalman gain K, is given by

Pa = [(Pf )−1 +HTR−1H]
−1
, (3.9)

K = PaHTR−1. (3.10)

We can express the above analysis equations in terms of the measurements and the measure-

ment model parameters of the individual sensors as follows

xa
(i) = xf

(i) +K(y(i) −Hxf
(i)), (3.11)

= xf
(i) +PaHTR−1(y(i) −Hxf

(i)), (3.12)

= xf
(i) +Pa(HTR−1y(i) −HTR−1Hxf

(i)), (3.13)

= xf
(i) +Pa

(∑
v∈V

(Hv)T (Rv)−1yv
(i) −

∑
v∈V

(Hv)T (Rv)−1Hvxf
(i)

)
, (3.14)

where Pa is given by

Pa = [(Pf )−1 +HTR−1H]
−1
, (3.15)

=

[
(Pf )−1 +

∑
v∈V

(Hv)T (Rv)−1Hv

]−1

. (3.16)

The distributed analysis step is devised based on the analysis equations 3.14 and 3.16. At

the analysis time each sensor nodes v ∈ V initializes its local variables as follows

{Yv
(i)}Ni=1 = {|V |(Hv)T (Rv)−1yv

(i)}Ni=1, (3.17)

Sv = |V |(Hv)T (Rv)−1Hv, (3.18)
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where N is the number of samples. Here, Yv
(i) is an n-dimensional vector and Sv is an

n-dimensional square matrix, where n is the number of state variables.

The sensor nodes can then perform a randomized gossip routine to compute the element-

wise average of these variables over the entire sensor network. Since, the gossip routine runs

for a finite number of iterations the local variables at all the sensor nodes might have slightly

different values. We use a second gossip routine (max gossip) which is a simple variation

of the randomized gossip routine. In each iteration of the max gossip routine both the

communicating sensor nodes choose the element-wise maximum instead of the element-wise

average for each variable. This ensures that with sufficient gossip, all the sensor nodes will

have nearly identical local variables after the two gossip routines. In the limit of infinite

gossip, these local variables will contain the following values

{Ŷ(i)}Ni=1 =

{∑
v∈V

(Hv)T (Rv)−1yv
(i)

}N

i=1

, (3.19)

Ŝ =
∑
v∈V

(Hv)T (Rv)−1Hv, (3.20)

where Ŷ(i) and Ŝ are the values obtained after running the average and max gossip routines

on the {Y(i)}v∈V and {S}v∈V , respectively.
After this, every sensor node can perform the analysis locally to compute identical updated

samples using the equation

xa
(i) = xf

(i) + [(Pf )−1 + Ŝ]−1(Ŷ(i) − Ŝxf
(i)). (3.21)

The complete distributed EnKF filtering approach is presented in Algorithm 4.

3.3.2 Ensemble Square Root Filter (ESRF)

In a similar way, the analysis equations in the ESRF can also be written in the informa-

tion form and expressed in terms of the local measurements and the measurement model
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Algorithm 4 Distributed Ensemble Kalman Filter

1: // Initialization at time k = 0
2: for each node v ∈ V do
3: for each sample i = 1, 2, .., N do
4: Sample: xa,v

(i)0 ∼ p(x0)
5: end for
6: end for

7: // For time k > 0
8: for k = 1, 2, .., T do

9: // Local forecast

10: for each node v ∈ V do
11: for each sample i = 1, 2, .., N do
12: Sample: nv

(i)k−1 ∼ N (0,Q)

13: xf,v
(i)k = f(xa,v

(i)k−1) + nv
(i)k−1

14: end for
15: x̂f,v

k = 1
N

∑N
i=1 x

f,v
(i)k

16: Pf,v
k = 1

N−1

∑N
i=1 (x

f,v
(i)k − x̂f,v

k )(xf,v
(i)k − x̂f,v

k )T

17: end for

18: // Local variable initialization

19: for each node v ∈ V do
20: for each sample i = 1, 2, .., N do
21: Sample: ϵv(i)k ∼ N (0,Rv

k)
22: yv

(i)k = yv
k + ϵv(i)k

23: Yv
(i)k = |V |(HvT (Rv

k)
−1yv

(i)k)
24: end for
25: Sv

k = |V |(HvT (Rv
k)

−1Hv)
26: end for

27: // Randomized gossip

28: [{Ỹv
(i)k}Ni=1,v∈V , {S̃v

k}v∈V ] = Average gossip({Yv
(i)k}Ni=1,v∈V , {Sv

k}v∈V )
29: [{Ŷv

(i)k}Ni=1,v∈V , {Ŝv
k}v∈V ] = Max gossip({Ỹv

(i)k}Ni=1,v∈V , {S̃v
k}v∈V )

30: // Local analysis

31: for each node v ∈ V do
32: Pa,v

k = [(Pf,v
k )−1 + Ŝv

k]
−1

33: for each sample i = 1, 2, .., N do
34: xa,v

(i)k = xf,v
(i)k +Pa,v

k (Ŷv
(i)k − Ŝv

kx
f,v
(i)k)

35: end for
36: end for

37: end for
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parameters of the sensors. The analysis equation for the mean is given by

x̂a = x̂f +K(y −Hx̂f ), (3.22)

= x̂f +PaHTR−1(y −Hx̂f ), (3.23)

= x̂f +Pa(HTR−1y −HTR−1Hx̂f ), (3.24)

= x̂f +Pa

(∑
v∈V

(Hv)T (Rv)−1yv −
∑
v∈V

(Hv)T (Rv)−1Hvx̂f

)
, (3.25)

where Pa is given by

Pa = [(Pf )−1 +HTR−1H]
−1
, (3.26)

=

[
(Pf )−1 +

∑
v∈V

(Hv)T (Rv)−1Hv

]−1

. (3.27)

The transformation matrix in the ESRF requires the evaluation of the product of the Kalman

gain K and the measurement model function H. This product can be expressed as follows

KH = (PaHTR−1)H (3.28)

= Pa

(∑
v∈V

(Hv)T (Rv)−1Hv

)
. (3.29)

Hence, at the analysis time each sensor node v ∈ V initializes its local variables as follows

Yv = |V |(Hv)T (Rv)−1yv, (3.30)

Sv = |V |(Hv)T (Rv)−1Hv. (3.31)

The sensor nodes perform two randomized gossip routines (average and max gossip) in

the similar manner as in the distributed EnKF. After the gossip routines, the local variables

at all the sensor nodes will have the values

Ŷ =
∑
v∈V

(Hv)T (Rv)−1yv, (3.32)

Ŝ =
∑
v∈V

(Hv)T (Rv)−1Hv. (3.33)
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The mean of the updated samples can then be calculated at each sensor node using the

following equation

x̂a = x̂f + [(Pf )−1 + Ŝ]−1(Ŷ − Ŝx̂f ). (3.34)

Each sensor node can then compute the transformation matrix T as follows

T =
(
I− [(Pf )−1 + Ŝ]

−1
Ŝ
)1/2

. (3.35)

After the computation of the updated mean and the transformation matrix each sensor node

updates the samples using the equation

xa
(i) = x̂a +T(xf

(i) − x̂f ). (3.36)

This distributed filtering methodology is summarized in the Algorithm 5.

3.3.3 Deterministic Ensemble Kalman Filter (DEnKF)

In the distributed DEnKF analysis scheme, exactly the same steps as the ESRF are followed

for the local forecast, local variable initialization and gossip procedures. The analysis scheme

in the EnKF differs only in the way the transformation matrix is computed. In this scheme,

the transformation matrix can be computed at each sensor node using its local variables as

follows

T = I− 1

2
[(Pf )−1 + Ŝ]

−1
Ŝ. (3.37)

The distributed DEnKF filtering approach is presented in Algorithm 6.

3.4 Distributed Analysis for Non-linear Measurement Models

The analysis scheme in the ensemble Kalman filters (EnKFs) requires the measurement

model to be linear. We explore three strategies for incorporating non-linear measurement

models in the EnKF analysis. The linearization approaches, namely linearization at sample

mean, pseudo measurement matrix representation and linearization at each sample are ex-

plained in Appendix A.1. In the subsequent sections, we formulate the distributed analysis
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Algorithm 5 Distributed Ensemble Square Root Filter

1: // Initialization at time k = 0
2: for each node v ∈ V do
3: for each sample i = 1, 2, .., N do
4: Sample: xa,v

(i)0 ∼ p(x0)
5: end for
6: end for

7: // For time k > 0
8: for k = 1, 2, .., T do

9: // Local forecast

10: for each node v ∈ V do
11: for each sample i = 1, 2, .., N do
12: Sample: nv

(i)k−1 ∼ N (0,Q)

13: xf,v
(i)k = f(xa,v

(i)k−1) + nv
(i)k−1

14: end for
15: x̂f,v

k = 1
N

∑N
i=1 x

f,v
(i)k

16: Pf,v
k = 1

N−1

∑N
i=1 (x

f,v
(i)k − x̂f,v

k )(xf,v
(i)k − x̂f,v

k )T

17: end for

18: // Local variable initialization

19: for each node v ∈ V do
20: Yv

k = |V |(HvT (Rv
k)

−1yv
k)

21: Sv
k = |V |(HvT (Rv

k)
−1Hv)

22: end for

23: // Randomized gossip

24: [{Ỹv
k}v∈V , {S̃v

k}v∈V ] = Average gossip({Yv
k}v∈V , {Sv

k}v∈V )
25: [{Ŷv

k}v∈V , {Ŝv
k}v∈V ] = Max gossip({Ỹv

k}v∈V , {S̃v
k}v∈V )

26: // Local analysis

27: for each node v ∈ V do
28: Pa,v

k = [(Pf,v
k )−1 + Ŝv

k]
−1

29: Tv
k = (I−Pa,v

k Ŝv
k)

1/2

30: x̂a,v
k = x̂f,v

k +Pa,v
k (Ŷv

k − Ŝv
kx̂

f,v
k )

31: for each sample i = 1, 2, .., N do
32: xa,v

(i)k = x̂a,v
k +Tv

k(x
f,v
(i)k − x̂f,v

k )
33: end for
34: end for

35: end for
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Algorithm 6 Distributed Deterministic Ensemble Kalman Filter

1: // Initialization at time k = 0
2: for each node v ∈ V do
3: for each sample i = 1, 2, .., N do
4: Sample: xa,v

(i)0 ∼ p(x0)
5: end for
6: end for

7: // For time k > 0
8: for k = 1, 2, .., T do

9: // Local forecast

10: for each node v ∈ V do
11: for each sample i = 1, 2, .., N do
12: Sample: nv

(i)k−1 ∼ N (0,Q)

13: xf,v
(i)k = f(xa,v

(i)k−1) + nv
(i)k−1

14: end for
15: x̂f,v

k = 1
N

∑N
i=1 x

f,v
(i)k

16: Pf,v
k = 1

N−1

∑N
i=1 (x

f,v
(i)k − x̂f,v

k )(xf,v
(i)k − x̂f,v

k )T

17: end for

18: // Local variable initialization

19: for each node v ∈ V do
20: Yv

k = |V |(HvT (Rv
k)

−1yv
k)

21: Sv
k = |V |(HvT (Rv

k)
−1Hv)

22: end for

23: // Randomized gossip

24: [{Ỹv
k}v∈V , {S̃v

k}v∈V ] = Average gossip({Yv
k}v∈V , {Sv

k}v∈V )
25: [{Ŷv

k}v∈V , {Ŝv
k}v∈V ] = Max gossip({Ỹv

k}v∈V , {S̃v
k}v∈V )

26: // Local analysis

27: for each node v ∈ V do
28: Pa,v

k = [(Pf,v
k )−1 + Ŝv

k]
−1

29: Tv
k = I− 1

2
Pa,v

k Ŝv
k

30: x̂a,v
k = x̂f,v

k +Pa,v
k (Ŷv

k − Ŝv
kx̂

f,v
k )

31: for each sample i = 1, 2, .., N do
32: xa,v

(i)k = x̂a,v
k +Tv

k(x
f,v
(i)k − x̂f,v

k )
33: end for
34: end for

35: end for
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schemes for the three forms of the EnKF using each of these linearization strategies. Two of

these linearization strategies (linearization at the sample mean and the pseudo measurement

matrix representation) compute a single linearized approximation that is common to all the

samples. The approximation can differ, but thereafter the distributed analysis scheme is the

same for the two strategies, so we group them together below.

3.4.1 Ensemble Kalman Filter (EnKF)

In case of the linearization at the sample mean and pseudo measurement matrix represen-

tation all of the samples use a common linearized model. In this scenario, we can write the

EnKF analysis equations in the information form and express them in terms of the individual

measurement models of the sensor nodes as follows

Pa =

[
(Pf )−1 +

∑
v∈V

(Hv)T (Rv)−1Hv

]−1

, (3.38)

xa
(i) = xf

(i) +Pa

(∑
v∈V

(Hv)T (Rv)−1yv
(i) −

∑
v=∈V

(Hv)T (Rv)−1hv(xf
(i))

)
, (3.39)

where Hv is the linearized measurement model of the sensor v. Here, it is assumed that a

linearized approximation of each sensor’s measurement model is available.

Hence, the distributed analysis scheme requires the sensor nodes to initialize the following

local variables

{
Yv

(i)

}N
i=1

=
{
|V |
[
(Hv)T (Rv)−1yv

(i) − (Hv)T (Rv)−1hv(xf
(i))
]}N

i=1
, (3.40)

Sv = |V |(Hv)T (Rv)−1Hv. (3.41)

The sensor nodes can then run average and max gossip routines on these local variables to

compute the average over the network. Afterwards, every sensor node can perform the local

analysis using the equation

xa
(i) = xf

(i) + [(Pf )−1 + Ŝ]−1(Ŷ(i)). (3.42)

This distributed analysis procedure is presented in Algorithm 7.

A similar procedure can be used to develop distributed analysis step for the case where
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Algorithm 7 Distributed EnKF Analysis (Common linearization )[
{xa,v

(i) }Ni=1,v∈V

]
= EnKF Analysis

(
{xf,v

(i) }Ni=1,v∈V , {Pf,v}v∈V , {Hv}v∈V
)

1: // Local variable initialization

2: for each node v ∈ V do
3: for each sample i = 1, 2, .., N do
4: Sample: ϵv(i) ∼ N (0,Rv

k)
5: yv

(i) = yv + ϵv(i)
6: Yv

(i) = |V |(HvT (Rv
k)

−1yv
(i) −HvT (Rv

k)
−1hv(xf,v

(i) ))
7: end for
8: Sv = |V |(HvT (Rv

k)
−1Hv)

9: end for

10: // Randomized gossip

11: [{Ỹv
(i)}Ni=1,v∈V , {S̃v}v∈V ] = Average gossip({Yv

(i)}Ni=1,v∈V , {Sv}v∈V )
12: [{Ŷv

(i)}Ni=1,v∈V , {Ŝv}v∈V ] = Max gossip({Ỹv
(i)}Ni=1,v∈V , {S̃v}v∈V )

13: // Local analysis

14: for each node v ∈ V do
15: Pa,v = [(Pf,v)−1 + Ŝv]−1

16: for each sample i = 1, 2, .., N do
17: xa,v

(i) = xf,v
(i) +Pa,v(Ŷv

(i))
18: end for
19: end for

the measurement model is linearized at each sample point. In this situation, the analysis

equation has the form

Pa
(i) =

[
(Pf )−1 +

∑
v∈V

(Hv
(i))

T (Rv)−1Hv
(i)

]−1

, (3.43)

xa
(i) = xf

(i) +Pa
(i)

(∑
v∈V

(Hv
(i))

T (Rv)−1yv
(i) −

∑
v=∈V

(Hv
(i))

T (Rv)−1hv(xf
(i))

)
, (3.44)

where Hv
(i) is a linearization of sensor v’s measurement model performed at the sample xf

(i).
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Algorithm 8 Distributed EnKF Analysis (Linearization at each sample)[
{xa,v

(i) }Ni=1,v∈V

]
= EnKF Analysis

(
{xf,v

(i) }Ni=1,v∈V , {Pf,v}v∈V , {Hv
(i)}Ni=1,v∈V

)
1: // Local variable initialization

2: for each node v ∈ V do
3: for each sample i = 1, 2, .., N do
4: Sample: ϵv(i) ∼ N (0,Rv

k)
5: yv

(i) = yv + ϵv(i)
6: Yv

(i) = |V |(HvT
(i) (R

v
k)

−1yv
(i) −HvT

(i) (R
v
k)

−1hv(xf,v
(i) ))

7: Sv
(i) = |V |(HvT

(i) (R
v
k)

−1Hv
(i))

8: end for
9: end for

10: // Randomized gossip

11: [{Ỹv
(i)}Ni=1,v∈V , {S̃v

(i)}Ni=1,v∈V ] = Average gossip({Yv
(i)}Ni=1,v∈V , {Sv

(i)}Ni=1,v∈V )

12: [{Ŷv
(i)}Ni=1,v∈V , {Ŝv

(i)}Ni=1,v∈V ] = Max gossip({Ỹv
(i)}Ni=1,v∈V , {S̃v

(i)}Ni=1,v∈V )

13: // Local analysis

14: for each node v ∈ V do
15: for each sample i = 1, 2, .., N do
16: Pa,v

(i) = [(Pf,v)−1 + Ŝv
(i)]

−1

17: xa,v
(i) = xf,v

(i) +Pa,v
(i) (Ŷ

v
(i))

18: end for
19: end for

In this case, the sensor nodes initialize the following local variables

{
Yv

(i)

}N
i=1

=
{
|V |
[
(Hv

(i))
T (Rv)−1yv

(i) − (Hv)T (Rv)−1hv
(i)(x

f
(i))
]}N

i=1
, (3.45){

Sv
(i)

}N
i=1

=
{
|V |(Hv

(i))
T (Rv)−1Hv

(i)

}N
i=1

. (3.46)

After gossiping on these variables all the sensor nodes perform the following analysis

xa
(i) = xf

(i) + [(Pf )−1 + Ŝ(i)]
−1(Ŷ(i)), (3.47)

This distributed analysis approach is summarized in Algorithm 8.
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3.4.2 Ensemble Square Root Filter (ESRF)

The same linearization mechanism can be employed to develop the distributed ESRF analysis

equations. In case of a common linearization, the following local variable initializations are

required

Yv = |V |[(Hv)T (Rv)−1yv − (Hv)T (Rv)−1hv(x̂f )], (3.48)

Sv = |V |(Hv)T (Rv)−1Hv. (3.49)

The analysis step can then be implemented at every sensor node using the equations

x̂a = x̂f + [(Pf )−1 + Ŝ]−1(Ŷ), (3.50)

T =
(
I− [(Pf )−1 + Ŝ]

−1
Ŝ
)1/2

, (3.51)

xa
(i) = x̂a +T(xf

(i) − x̂f ), (3.52)

where Ŝ and Ŷ are the values obtained after running the average and max gossip routines

on the {Sv}v∈V and {Yv}v∈V , respectively.
When linerization is performed at each sample point there is a need to compute a trans-

formation matrix corresponding to each sample. Also, the analysis equation that computes

the mean of the updated samples requires a linearized approximation of the measurement

model at the mean of the forecast samples. Hence, the following variable initializations are

required at every sensor node

Yv = |V |
[
(Hv)T (Rv)−1yv − (Hv)T (Rv)−1hv(x̂f )

]
, (3.53)

Sv = |V |(Hv)T (Rv)−1Hv, (3.54){
Sv
(i)

}N
i=1

=
{
|V |(Hv

(i))
T (Rv)−1Hv

(i)

}N
i=1

, (3.55)

where Hv and Hv
(i) are the linearized approximations of the sensor node v’s measurement

model performed at x̂f and xf
(i), respectively.



3 Distributed Ensemble Kalman Filtering in Wireless Sensor Networks 46

Similar to the case of common linearization, the analysis can then be performed as follows

x̂a = x̂f + [(Pf )−1 + Ŝ]−1(Ŷ), (3.56)

T(i) =
(
I− [(Pf )−1 + Ŝ(i)]

−1
Ŝ(i)

)1/2
, (3.57)

xa
(i) = x̂a +T(i)(x

f
(i) − x̂f ), (3.58)

where Ŝ, Ŝ(i) and Ŷ are the values obtained after running the average and max gossip

routines on the {Sv}v∈V , {Sv
(i)}v∈V and {Yv}v∈V , respectively.

3.4.3 Deterministic Ensemble Kalman Filter (DEnKF)

The deterministic ensemble Kalman uses the same variable initializations and the analysis

equations as the ESRF for both the common linearization approach and the individual sample

based linearization approach. The only difference is in the computation of the transformation

matrix. In the case of the common linearization approach, the transformation matrix is given

by

T = I− 1

2
[(Pf )−1 + Ŝ]

−1
Ŝ. (3.59)

For the sample based linearization approach the transformation matrix is evaluated as

T(i) = I− 1

2
[(Pf )−1 + Ŝ(i)]

−1
Ŝ(i). (3.60)

3.5 Summary

In this chapter, we presented novel distributed approximations of three forms of the ensem-

ble Kalman filter. The main challenge in devising a distributed approximation lies in the

fact that the analysis equations require the complete knowledge of the sensor model parame-

ters while the sensor nodes are only aware of the local model parameters. We addressed this

challenge by expressing the analysis equations in an alternative from and identifying and gos-

siping on the sufficient statistics. We also presented three measurement model linearization

strategies for the EnKFs and developed distributed approximations for each strategy.
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Chapter 4

Simulations and Results

In this chapter, we evaluate the performance of the ensemble Kalman filtering schemes by

applying them to a target tracking problem. We perform a set of simulations in the Matlab

software (version R2013a) [87] by generating the target tracks and artificial measurements

using a specific system model and several measurement models. In this study we consider

three measurement models and compare the performance of the centralized and distributed

filtering methods for each measurement model. In Section 4.1, the target tracking problem

is explained along with a description of the system model and the measurement models used

in this study. Section 4.2 provides the performance comparisons for the centralized and

distributed filtering schemes.

4.1 Target Tracking Problem

We consider the problem of tracking a maneuvering target using a set of sensor nodes V . The

sensor nodes are deployed in a square region and they are capable of acquiring measurements

using different measurement modalities. It is assumed that the coordinates of every sensor

node v ∈ V , sv = [svx, s
v
y]

T do not change during the course of the simulation.

4.1.1 System Model

The state of the target is defined as

x = [x1, x2, x3, x4]
T , (4.1)
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where x1 and x2 represent the position of target along the x-axis and y-axis and x3 and

x4 correspond to the velocity of target along x-axis and y-axis, respectively. The target

moves in a two-dimensional square region according to the clockwise coordinated turn (CT)

model [88]. The system model for the target is given by the equation

xk = Akxk−1 +


T 2

2
0

0 T 2

2

T 0

T 0


[
nx

ny

]
, (4.2)

where Ak is the transition matrix, xk and xk−1 are the state vectors of the target at time k

and k − 1, respectively, T is the sampling interval and nx and ny represent the zero mean

Gaussian noise with variances σ2
x and σ2

y, respectively. Here, nx and ny are assumed to be

independent.

The transition matrix for the coordinated turn model is given by

Ak =


1 0 sin(ΩkT )

Ωk
−1−cos(ΩkT )

Ωk

0 1 1−cos(ΩkT )
Ωk

sin(ΩkT )
Ωk

0 0 cos(ΩkT ) −sin(ΩkT )

0 0 sin(ΩkT ) cos(ΩkT )

 , (4.3)

where Ωk = c/(
√
(xk,3)2 + (xk,4)2) and c is a positive constant. The clockwise coordinated

turn models is a non-linear function of the system state.

4.1.2 Measurement Models

We consider three measurement modalities in this study, a) linear measurements, b) range

measurements and c) radio frequency tomography measurements. In the case of the lin-

ear and range modalities, sensor node that has the target in its sensing range acquires a

measurement. For the radio frequency (RF) tomography model all the sensors nodes ac-

quire high-dimensional measurements. We assume that in a single simulation all the sensor

nodes use the same measurement model with identical measurement noise statistics. In the

subsequent sections, we present the three measurement models under consideration.
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Linear measurement model

The linear model function for sensor v, hv(·) is defined by a matrix Hv. We use the following

measurement matrix

Hv =

[
1 0 0 0

0 1 0 0

]
. (4.4)

The measurement acquired by the sensor v is given by

yv = Hvx− sv + ϵv, (4.5)

where x is the state vector, sv = [svx, s
v
y]

T is the location of sensor v and ϵv is the measurement

noise of sensor v. The measurement noise is assumed to have a Gaussian distribution with

mean zero and covariance Rv which is given by

Rv =

[
σ2
ϵ 0

0 σ2
ϵ

]
. (4.6)

Range measurement model

The range measurement model function is defined as follows

hv(x) =
√

(x1 − svx)
2 + (x2 − svy)

2, (4.7)

where x1 and x2 represent the position of target along the x-axis and y-axis and svx and svy

represent the position of sensor v along the x-axis and y-axis, respectively.

The local measurement of the sensor v is given by

yv = hv(x) + ϵv, (4.8)

where ϵv is a Gaussian noise with mean zero and variance σ2
ϵ . The linearized approximation

of this model is presented in Appendix A.2.1.

Radio Frequency (RF) Tomography measurement model

We use the radio frequency (RF) tomography model [89, 90] to demonstrate the scenario

where the sensor nodes have high dimensional measurements. This model is based on the
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premise that a target near the line-of-sight path between two sensor nodes will cause a signal

attenuation and consequently, reduce the recorded received signal strength (RSS) value at

both the nodes. In this model, each sensor node records a RSS value corresponding to every

other node in the network. Hence, the dimensionality of the local measurement of a sensor

node scales linearly with the the network size.

According to this model the attenuation in the signal strength between the sensor nodes

u and v is given by the equation

A(u,v)(x) = ϕ exp

(
−λ(u,v)(x)2

2σ2
λ

)
, (4.9)

where λ(u,v)(x) is a function of location of the target and the sensor nodes and ϕ and σλ are

known parameters of the model. The function λ(u,v)(x) is defined as follows

λ(u,v)(x) = du(x) + dv(x)− d(u,v), (4.10)

where du(x) and dv(x) represent the distances of the target from the sensors u and v, re-

spectively and d(u,v) is the distance between the sensors.

The local measurement of the sensor node u corresponding to the node v is given by

y(u,v) = R(u,v) − A(u,v)(x) + ϵ(u,v), (4.11)

where R(u,v) is the reference RRS value recorded in the absence of the target and ϵ(u,v) is

a Gaussian measurement noise with mean zero and variance σ2
ϵ . The measurement noise

for each pair of nodes is assumed to be uncorrelated with all the other pairs. The set of

measurements acquired by the sensor node v is given by yv = [y(v,1), y(v,2), . . . , y(v,|V |−1)]T ,

where V is the set of sensor nodes. The linearized approximation of this model is presented

in Appendix A.2.2.

4.2 Simulations

In order to compare the performance of the proposed filtering schemes with the existing

schemes we conduct a set of numerical simulations in Matlab. In the following sections we

explain the simulation setup and present the simulation results along with a discussion on
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these results.

4.2.1 Target Trajectory and Sensor Deployment

We consider two simulation scenarios in this study. In the case of the linear and range

measurement model we simulate a sensor network consisting of 25 sensor nodes that are

deployed in a two-dimensional square region of length 50m. The sensor nodes are distributed

on a grid covering this square region. In this case, every sensor node can perform sensing

within a circular region around itself. The sensing radius of all the nodes is assumed to be the

same and equal to 10m. Hence, only the sensor nodes that have the target in their sensing

range acquire a measurement. In the case of the RF tomography measurement model, 24

sensor nodes are deployed on the perimeter of the square region such that they have uniform

spacing. In this case all the sensor nodes acquire high dimensional measurements (23 scalar

values) at each time step. In both the simulation scenarios, a node can only communicate

with other nodes that are within its transmitting range which is set to 15m. The target

moves in the square region according to the clockwise coordinated turn (CT) model described

previously. The sampling time T and the model constant c are both set to 1. The target

trajectory is allowed to evolve for 50 time steps using the CT model with σx = 0.25 and

σy = 0.25. Figure 4.1 and Figure 4.2 show the target trajectories and the sensor deployments

for the linear/range and the RF tomography measurement models, respectively.
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Fig. 4.1 Sensor deployment and the target trajectory for the linear and range
measurement model.
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Fig. 4.2 Sensor deployment and the target trajectory for the RF tomography
measurement model.
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4.2.2 Simulation Settings and Error Definition

We perform a set of simulations to compare the performance of the centralized and the

distributed filters. In order to have consistency, the results are averaged over 100 Monte Carlo

trials. In each trial, a different measurement realization and a different sample initialization

are generated. In all the simulations, the initial samples for each filter are generated by

sampling from a Gaussian distribution with mean equal to the initial state of the target

and standard deviation equal to 0.25 and 1 for the position and velocity state variables,

respectively. The standard deviations are chosen such that a tight initialization around the

true target state is obtained and hence the error at the first few time steps does not play a

huge role in determining the performance of the filters. Although, the initialization has an

impact on the error at the first few time steps, this does not affect the relative performance

of the filters. The error in the estimated target trajectory is calculated based on the root

mean square distance between the estimated target location and the true target location.

The root mean square (RMS) error after k time steps is given by

RMS error =

√√√√1

k

k∑
i=1

(xi,1 − x̂i,1)2 + (xi,2 − x̂i,2)2, (4.12)

where xi,1 and xi,2 are the true locations and x̂i,1 and x̂i,2 are the estimated locations of

target along the x-axis and the y-axis, respectively at time step i. If the RMS error of a trial

exceeds 2m we consider it as a lost track. The lost tracks are not included in the calculation

of the average RMS error and are reported separately.

4.2.3 Performance Comparison of Centralized Filters

In the centralized setting it is assumed that all the measurements and measurement model

parameters are available at a central location. In this setting, we compare the performance

of the bootstrap particle filter (BPF), auxiliary particle filter (APF), unscented Kalman

filter (UKF), ensemble Kalman filter (EnKF), ensemble square root filter (ESRF) and the

deterministic ensemble Kalman filter (DEnKF).



4 Simulations and Results 54

10 20 30
0

10

20

30

 

 

10 20 30
0

10

20

30

 

 ESRF

10 20 30
0

10

20

30

 

 
DEnKF

10 20 30
0

10

20

30

 

 
BPF

10 20 30
0

10

20

30

 

 
APF

10 20 30
0

10

20

30

 

 
UKF

EnKF

Fig. 4.3 Estimated target trajectories for the linear measurement model with
σϵ = 0.25 and sample size of 100. The solid line indicates the true trajectory
and the star represents the starting point.

Linear Measurement Model

Figure 4.3 shows the estimated target trajectories for a single run of the filters for the

linear measurement model with σϵ = 0.25. Here, all the filters expect for the UKF use 100

samples. The unscented Kalman filtering approach does not use random samples, but uses

a fixed number of deterministically chosen sigma points. The number of sigma points used

by the UKF is defined by the dimensionality of the state vector. In the target tracking

problem there are four state variables, hence the UKF uses nine sigma points throughout

the simulations. It can be seen in the figure that the estimated tracks for the EnKFs and

the UKF are closer to the actual target tracks as compared to the BPF and the APF.
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Fig. 4.4 Box-and-whisker plot of the RMS error over time for the linear model
with σϵ = 0.25 and sample size of 100. Boxes cover 25-75 interquartile range,
median is marked with a line, whiskers extend 1.5 times the interquartile range
and + represents the outliers.

Figure 4.4 shows the box-and-whisker plot of the RMS error over time for 100 trials with

σϵ = 0.25 and sample size of 100. The RMS error is plotted at every alternative time step.

It can be seen in the figure that for all the filters the RMS error is slightly higher at the

first few time steps and settles to a constant level. It can also be observed that the EnKFs

and the UKF have a lower RMS error compared to BPF and the APF. Among the particle

filtering methods the APF has a better performance. The EnKFs perform better compared

to the particle filters because they have a lower requirement of the sample size.

In order to further investigate the effect of the sample size on the performance of these fil-

ters we compare their RMS error by varying the number of samples. Table 4.1 and Table 4.2

provide the performance comparison for the linear model with σϵ = 0.25 and σϵ = 0.50,

respectively. The table contains the average RMS error ± standard deviation and the per-
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Table 4.1 Performance comparison of the centralized filters for the linear
measurement model with σϵ = 0.25.

Ave. RMSE ± Std. Dev. (% track loss)

Samples 1000 500 100 50 10

BPF 0.27 ± 0.09 0.30 ± 0.12 0.54 ± 0.29(14) 0.80 ± 0.37(25) 1.14 ± 0.45(94)
APF 0.25 ± 0.02 0.26 ± 0.02 0.31 ± 0.10 0.46 ± 0.28(1) 1.10 ± 0.39(42)
EnKF 0.23 ± 0.02 0.23 ± 0.02 0.24 ± 0.02 0.24 ± 0.02 0.28 ± 0.03
ESRF 0.23 ± 0.02 0.23 ± 0.02 0.24 ± 0.02 0.24 ± 0.02 0.26 ± 0.03
DEnKF 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.24 ± 0.02
UKF 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02 0.23 ± 0.02

Table 4.2 Performance comparison of the centralized filters for the linear
measurement model with σϵ = 0.50.

Ave. RMSE ± Std. Dev. (% track loss)

Samples 1000 500 100 50 10

BPF 0.44 ± 0.05 0.46 ± 0.07 0.71 ± 0.28(3) 0.91 ± 0.33(22) 1.31 ± 0.36(96)
APF 0.44 ± 0.03 0.44 ± 0.03 0.47 ± 0.06 0.55 ± 0.13 1.28 ± 0.32(47)
EnKF 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.44 ± 0.04 0.42 ± 0.06
ESRF 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.47 ± 0.06
DEnKF 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.45 ± 0.05
UKF 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04 0.43 ± 0.04

centage of lost tracks for all the filters at different sample sizes. It can be seen in both the

tables that at the sample size of 1000 all the filters have comparable performance. As the

sample size is decreased the RMS error for the BPF and the APF increases rapidly. On the

contrary, the EnKFs have almost the same RMS error up to the sample size of 50 and only

experience a slight increase in error at the sample size of 10. The EnKFs perform better

for small sample sizes because they only approximate the first two moments of the posterior

distribution. However, the particle filters approximate the complete posterior distributed

and hence require a larger number of samples for good approximation. When the sample

size is small the APF performs better than the BPF because it uses a superior sampling

strategy and performs resampling twice in each iteration of the filter.

Table 4.3 shows the average running time of all the filters for the linear measurement
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Table 4.3 Running time comparison of the centralized filters for the linear
measurement model.

Average running time (Sec)

Samples 1000 500 100 50 10

BPF 0.49 0.22 0.05 0.03 0.01
APF 0.67 0.31 0.07 0.05 0.02
EnKF 0.19 0.10 0.03 0.02 0.02
ESRF 0.20 0.11 0.03 0.03 0.02
DEnKF 0.20 0.10 0.03 0.02 0.01
UKF 0.02 0.02 0.02 0.02 0.02

model. The running time is defined as the simulation time of the filter for 50 time steps.

The running time is averaged over 100 trials and reported at different sample sizes. These

simulations were performed in the Matlab software running on a system with the Intel Core-

i7 processor (3.40 GHz) and 16 GB of RAM. It can be seen in the table that the running

time of the EnKFs at a sample size of 50 is comparable to the UKF. Since, the EnKFs

reach very close to their best performance at a sample size of 50, hence they have a similar

computational cost compared to the UKF. However, the particle filters require at least a

sample size of 1000 to give RMS error comparable to the EnKFs and UKF, hence they have

a much higher computational cost.

Range Measurement Model

Figure 4.5 shows the estimated target trajectories for a single run of the filters for the range

measurement model with σϵ = 0.25 and sample size of 100. The estimated tracks for the

EnKF, ESRF and DEnKF are generated by using linearized approximation at each sample

point.

In Figure 4.6, the box-and-whisker plot of the RMS error is presented for the range model

with σϵ = 0.25 and sample size of 100. The results for the EnKF, ESRF and DEnKF are

generated by using linearization at each sample point. Again, a similar trend to the linear

model is observed in the box-and-whisker plot. All the filters have a slightly higher RMS

error at the first few time steps and then settles to a constant level. The BPF and the APF

have a higher RMS error because they have a higher requirement of the sample size and the

APF performs relatively better than the BPF. The EnKFs have comparable performance to
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Fig. 4.5 Estimated target trajectories for the range measurement model with
σϵ = 0.25 and sample size of 100. The EnKF, ESRF and DEnKF use lineariza-
tion at each sample point.
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Fig. 4.6 Box-and-whisker plot of the RMS error over time for the linear model
with σϵ = 0.25 and sample size of 100. The EnKF, ESRF and DEnKF use
linearization at each sample point.
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Table 4.4 Performance comparison of the centralized filters for the range
measurement model with σϵ = 0.25.

Ave. RMSE ± Std. Dev. (% track loss)

Samples 1000 500 100 50 10

BPF 0.58 ± 0.09 0.63 ± 0.12(1) 1.04 ± 0.39(30) 1.21 ± 0.35(55) (100)
APF 0.56 ± 0.07 0.57 ± 0.08 0.73 ± 0.22(1) 0.95 ± 0.30(19) 1.75 ± 0.08(97)
UKF 0.60 ± 0.08 0.60 ± 0.08 0.60 ± 0.08 0.60 ± 0.08 0.60 ± 0.08

Linearization at each sample

EnKF 0.58 ± 0.10 0.58 ± 0.10 0.59 ± 0.10 0.60 ± 0.12 0.71 ± 0.15
ESRF 0.58 ± 0.16 0.58 ± 0.17 0.59 ± 0.17 0.60 ± 0.16 0.65 ± 0.16
DEnKF 0.55 ± 0.14 0.55 ± 0.14 0.55 ± 0.14 0.56 ± 0.13 0.61 ± 0.13

Linearization at sample mean

EnKF (100) (100) 1.37 ± 0.46(91) 1.22 ± 0.46(86) 0.98 ± 0.34(6)
ESRF 0.78 ± 0.25 0.78 ± 0.25 0.78 ± 0.26 0.77 ± 0.26 0.80 ± 0.27
DEnKF 0.71 ± 0.27 0.70 ± 0.27 0.70 ± 0.25 0.69 ± 0.22 0.73 ± 0.27

Pseudo measurement matrix representation

EnKF 0.85 ± 0.16 0.84 ± 0.17 0.80 ± 0.19 0.78 ± 0.17 0.85 ± 0.21
ESRF 0.83 ± 0.24 0.83 ± 0.25 0.80 ± 0.22 0.78 ± 0.23 0.78 ± 0.25
DEnKF 0.80 ± 0.25 0.79 ± 0.24 0.78 ± 0.25 0.78 ± 0.24 0.76 ± 0.24
UKF [91] 0.64 ± 0.13 0.64 ± 0.13 0.64 ± 0.13 0.64 ± 0.13 0.64 ± 0.13

the UKF in terms of the median RMS error, but have a slightly larger number of outliers.

We conduct simulations to study the effect of the sample size and linearization strategy

on the performance of the filters for the range model. Table 4.4 and Table 4.5 provide the

performance comparison for the range model with σϵ = 0.25 and σϵ = 0.50, respectively.

For the EnKFs, the performance results for each of the three linearization strategies are

presented. We also include the results for the UKF that uses the pseudo measurement

matrix based approximation [91]. The variation of the RMS error with the sample size

shows a similar trend for all the filters as seen in the linear case. As sample size is decreased

the BPF and the APF suffer from severe performance degradation while the EnKFs do not

experience much change in their performance up to a sample size of 50. All three forms of the

EnKF have a much lower RMS error when linearization is performed at each sample point

compared to other linearization strategies. For this linearization strategy, the performance
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Table 4.5 Performance comparison of the centralized filters for the range
measurement model with σϵ = 0.50.

Ave. RMSE ± Std. Dev. (% track loss)

Samples 1000 500 100 50 10

BPF 0.78 ± 0.09 0.82 ± 0.14 1.13 ± 0.27(25) 1.38 ± 0.34(59) 1.91 ± 0.00(99)
APF 0.77 ± 0.10 0.78 ± 0.11 0.92 ± 0.19(1) 1.14 ± 0.30(10) 1.90 ± 0.00(99)
UKF 0.85 ± 0.10 0.85 ± 0.10 0.85 ± 0.10 0.85 ± 0.10 0.85 ± 0.10

Linearization at each sample

EnKF 0.78 ± 0.10 0.78 ± 0.10 0.80 ± 0.10 0.82 ± 0.12 1.02 ± 0.15
ESRF 0.77 ± 0.16 0.76 ± 0.17 0.77 ± 0.17 0.78 ± 0.16 0.90 ± 0.16
DEnKF 0.82 ± 0.81 0.81 ± 0.82 0.82 ± 0.14 0.82 ± 0.13 0.90 ± 0.13

Linearization at mean

EnKF 1.67 ± 0.00(99) 1.50 ± 0.23(95) 1.57 ± 0.28(88) 1.47 ± 0.35(63) 1.15 ± 0.27(5)
ESRF 0.94 ± 0.18(1) 0.94 ± 0.20 0.97 ± 0.24(1) 0.94 ± 0.19 1.00 ± 0.26(1)
DEnKF 0.97 ± 0.24 0.98 ± 0.23 0.96 ± 0.22 1.00 ± 0.25 1.03 ± 0.27

Pseudo measurement matrix representation

EnKF 1.02 ± 0.18 1.00 ± 0.16 0.98 ± 0.16 0.96 ± 0.15 1.12 ± 0.26(4)
ESRF 0.98 ± 0.19 0.97 ± 0.19 0.97 ± 0.19 0.95 ± 0.20 1.01 ± 0.19
DEnKF 1.07 ± 0.23 1.06 ± 0.22 1.04 ± 0.23 1.03 ± 0.23 1.08 ± 0.22
UKF [91] 0.87 ± 0.12 0.87 ± 0.12 0.87 ± 0.12 0.87 ± 0.12 0.87 ± 0.12
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of the EnKFs is comparable to the best performance of the BPF, APF and the UKF. For

the ESRF and the DEnKF, the sample mean is updated separately and perturbations are

added to generate the updated samples. The analysis scheme in these filters is designed

such that the perturbations are zero mean. Both the linearization at the sample mean and

the pseudo measurement matrix representation strategies generate an approximation of the

measurement model corresponding to the mean of the samples, thus the error in the update

of the mean is mostly due to the bad estimates of the error covariances. Hence, the ESRF

and the DEnKF perform relatively better for these linearization strategies as compared to

the EnKF. In the EnKF with linearization at the sample mean, each sample is updated

individually using the linearized approximation corresponding to the mean, thus the update

causes all the samples to move in the direction defined by the sample mean. This causes the

samples on the opposite side to the mean to move further away from the true target location

which severely degrades the performance of the filter. We demonstrate this phenomenon by

plotting the samples and their motion during the update step in the EnKF for a sample

size of 200. Figure 4.7, Figure 4.8 and Figure 4.9 show the samples and their movement at

time step 2, 4 and 6, respectively. It is evident in all the figures that all the samples move

in the direction defined by the mean and the samples that are opposite to the mean move

further away from the true target location. This introduces a large error in the calculation

of the sample mean. The results in Table 4.4 and Table 4.5 show that for this linearization

strategy the performance of the EnKF degrades with increase in the sample size and filter

divergence is observed at higher sample sizes. This is due to the fact that all the samples

move in the direction defined by the sample mean, hence increasing the sample size results

in more samples going in the wrong direction and consequently, a higher error. The EnKF

does not experience such a severe performance degradation when the pseudo measurement

matrix representation is used, however the error in this case is much higher in comparison

to the linearization at each sample point. The pseudo measurement matrix representation

works better with the UKF and its RMS error is relatively close to the RMS error achieved

by the BPF and APF at a sample size of 1000.

Since all three forms of the EnKF have a much better performance when linearization

is performed at each sample point compared to the other linearization strategies, thus we

only consider the EnKFs with linearization at each sample for the running time analysis.

Table 4.6 shows the average running time of all the filters for the range measurement model.

The running time corresponds to 50 estimation steps. These simulations were performed in
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Fig. 4.7 Samples and their movement during update step in the EnKF (lin-
earization at sample mean) for a sample size of 200 at time step 2. The small
crosses represent the samples, circle represents the sample mean and the large
cross indicates the true location of the target. The small arrows indicate the di-
rection in which the samples move and the large arrow represents the direction
of movement of the sample mean.
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Fig. 4.8 Samples and their movement during update step in the EnKF (lin-
earization at sample mean) for a sample size of 200 at time step 4.
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Fig. 4.9 Samples and their movement during update step in the EnKF (lin-
earization at sample mean) for a sample size of 200 at time step 6.
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Table 4.6 Running time comparison of the centralized filters for the range
measurement model. The EnKF, ESRF and DEnKF use linearization at each
sample.

Average running time (Sec)

Samples 1000 500 100 50 10

BPF 0.50 0.23 0.06 0.04 0.03
APF 0.71 0.34 0.10 0.07 0.04
EnKF 0.46 0.25 0.09 0.07 0.05
ESRF 4.01 2.04 0.46 0.26 0.10
DEnKF 0.47 0.26 0.10 0.08 0.06
UKF 0.02 0.02 0.02 0.02 0.02

Matlab and all the filter implementations except for the ESRF were vectorized. The ESRF

requires the evaluation of the matrix square root corresponding to each sample and we were

unable to vectorize this matrix operation. Hence, the reported running time for the ESRF is

substantially higher as compared to all the other filters. In case of vectorized matrix square

root computation the running time of the ESRF is expected to be slightly higher than the

DEnKF. It can be seen in the table that the running time of the EnKF and the DEnKF at a

sample size of 50 is comparable to the UKF. However, the BPF and the APF have a higher

computational overhead because of their requirement of a larger sample size.

Discussion

In a centralized tracking problem with non-linear dynamics and a linear measurement model

the EnKF, ESRF and the DEnKF give comparable performance to the particle filters, but

have a much lower computational cost. They closely match the UKF in both the estimation

accuracy and the computational cost. Their computationally complexity is low due to the

fact that they require a much lower sample size as compared to the BPF and the APF.

The results show that a sample size of 50 is sufficient for the EnKFs to attain their best

performance and a very small performance gain is achieved by further increasing the sample

size. In case of the non-linear measurement model, linearization at each sample point appears

to be the best linearization strategy for the EnKFs. In the cases of the linearization at the

sample mean and the pseudo measurement matrix representation, the RMS error of the

EnKFs is significantly higher. For linearization at each sample point, the EnKFs are able
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to achieve performance comparable to performance of the BPF and the APF. Similar to the

linear case, the EnKFs reach very close to their best performance at a sample size of 50.

Hence, they have a much lower computational cost and similar performance compared to

the BPF and the APF for non-linear measurement models.

4.2.4 Performance Comparison of Distributed Filters

This section provides the performance comparison of the distributed filters in terms of the

communication efficiency. We compare the proposed distributed filtering scheme, namely

the EnKF, ESRF and DEnKF with the existing state-of-the-art distributed schemes. The

proposed distributed schemes use the randomized gossip algorithm [11] to perform gossip

because most of the existing distributed filtering schemes have reported results based on

this algorithm. In future work, one could investigate how different accelerated gossip pro-

cedures affect the proposed and comparative schemes. We consider the following methods

for comparison: the Gaussian approximation (GA) distributed particle filter [6], the se-

quential importance resampling (SIR) version of the likelihood consensus (LC) distributed

particle filter [7], the set membership (SM) distributed particle filter [8], the top-m selec-

tive gossip (Top-m) distributed particle filter [9], and the distributed unscented Kalman

filter (UKF) [78]. The distributed filtering schemes [81, 82] could not be included in this

comparative study because these methods are developed specifically for the bearings-only

measurement model and do not have the ability to incorporate other measurement models.

These comparative methods are discussed in Section 2.4. For the non-linear measurement

models, the proposed distributed filtering schemes use linearization at the each sample point

because it gives better performance compared to the other linearization strategies. For the

likelihood consensus approach, we use a Taylor series approximation of degree one. In the

top-m selective gossip approach, we choose m = N/4, where N represents the sample size. In

the set membership scheme, we set the oversampling parameter to 10 which is the value used

in the original paper. The distributed unscented Kalman filtering scheme models the pos-

terior distribution as a Gaussian mixture. The communication cost of this scheme increases

linearly with the number of mixture components, hence we use only one mixture component

to minimize its communication cost. We perform a series of simulations to compare the

performance of the distributed filters at different communication costs. In each simulation

all the filters transmit approximately the same number of scalars in the network. In general,
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the communication cost of the distributed filters depends on the sample size and the number

of gossip iterations, hence multiple filter settings result in the same communication cost. For

the comparative filters, we choose the sample size and the number of gossip iteration for a

certain communication cost, such that their performance is optimized. However, we do not

perform any optimization for the proposed filters and run them with default parameters.

Specifically, we choose a moderate sample size of 50 or less because the EnKFs do not give

any performance gain when the sample size is increased beyond 50. In the following sections,

we present the performance results for the linear, range and RF tomography measurement

models.

Linear Measurement Model

Table 4.7 provides the performance comparison of the distributed filters for the linear model

with σϵ = 0.25. The table contains the average RMS error ± standard deviation and the

percentage of lost tracks for the distributed filters at different communication costs. The

communication cost is measured in terms of the scalars transmitted per sensor per time-

step. Table B.1 gives information about the filter parameters that resulted in the presented

communication costs. We have also included the performance results for the centralized

bootstrap particle filter (BPF) with a sample size of 2000 to serve as an approximate lower

bound on the performance. The distributed UKF scheme [78] employs pseudo measurement

matrix approximation in its analysis scheme. We also include a variant of this scheme

in which the pseudo measurement matrix is replaced by the actual linear measurement

matrix. This new scheme is denoted by UKF* in Table 4.7. For some filters we were unable

to find a working point corresponding to a particular communication cost, hence we have

marked these cases with a dash. The results show that at a high communication cost all

the distributed filters have performance close to the centralized BPF. As the communication

cost is decreased all the filters except for the ESRF and DEnKF experience considerable

performance degradation. The LC and the UKF schemes gossip on low dimensional data,

but have a much higher demand of gossip iterations. These schemes are more sensitive

to the gossip errors and require the local estimates at the sensor nodes to be closer to

the true average. Among these schemes, the LC approach has a higher sensitivity. The SM

and the Top-m schemes gossip on the high dimensional particle weights which increases their

communication overhead. Since the SM scheme performs oversampling of the particles it can
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Table 4.7 Performance comparison of the distributed filters for the linear
measurement model with σϵ = 0.25.

Ave. RMSE ± Std. Dev. (% track loss)

Scalars 8000 480 200

GA [6] 0.26 ± 0.02 0.26 ± 0.02 0.28 ± 0.02(1)
LC [7] 0.24 ± 0.02 0.24 ± 0.02 0.84 ± 0.14
SM [8] 0.29 ± 0.10 0.45 ± 0.02 0.49 ± 0.17(1)
Top-m [9] 0.24 ± 0.02 - -
UKF [78] 0.24 ± 0.02 0.37 ± 0.20 -
UKF* [78] 0.24 ± 0.02 0.26 ± 0.04 0.82 ± 0.43(12)
EnKF 0.24 ± 0.02 0.34 ± 0.04 -
ESRF 0.24 ± 0.02 0.24 ± 0.02 0.27 ± 0.02
DEnKF 0.24 ± 0.02 0.24 ± 0.02 0.28 ± 0.02
Cent. BPF 0.24 ± 0.02 0.24 ± 0.02 0.24 ± 0.02

still work at lower communication costs by using a small sample size. The GA scheme is more

balanced in terms of the data dimensionality and the demand of gossip. However, it is more

sensitive to the filter settings, e.g., level of regularization noise. In the low communication

regime, the GA scheme performs well most of the time, but generates occasional lost tracks.

The ESRF and DEnKF gossip on low dimensional variables and also have a lower demand

of gossip iterations, hence they perform better in a low communication regime. The EnKF

scheme gossips on higher dimensional variables as compared to the ESRF and DEnKF,

therefore it has a higher communication overhead. The UKF scheme performs comparatively

better in the low communication regime when the pseudo measurement matrix is replaced

by the actual measurement matrix, but still has a substantially higher error compared to

the ESRF and DEnKF.

Range Measurement Model

Table 4.8 presents the performance comparison for the range model with σϵ = 0.25. Table B.2

gives information about the filter parameters that resulted in the presented communication

costs. Here, the EnKF, ESRF and DEnKF use linearization at each sample point. Hence,

these schemes are required to gossip on all the instances of the local variables corresponding

to each sample. This substantially increases the data dimensionality and consequently, the
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Table 4.8 Performance comparison of the distributed filters for the range
measurement model with σϵ = 0.25.

Ave. RMSE ± Std. Dev. (% track loss)

Scalars 16000 8000 800

GA [6] 0.55 ± 0.11(1) 0.57 ± 0.08(5) 0.59 ± 0.12(3)
LC [7] 0.87 ± 0.20(1) 0.86 ± 0.18(2) 0.86 ± 0.20(1)
SM [8] 0.61 ± 0.10 0.71 ± 0.18(3) 0.83 ± 0.21(5)
Top-m [9] 0.58 ± 0.08 0.61 ± 0.11 -
UKF [78] 0.64 ± 0.14 0.64 ± 0.14 0.73 ± 0.14
EnKF 0.78 ± 0.16 0.80 ± 0.18 -
ESRF 0.67 ± 0.22 0.72 ± 0.26 -
DEnKF 0.69 ± 0.25(2) 0.72 ± 0.29(1) -
Cent. BPF 0.57 ± 0.08 0.57 ± 0.08 0.57 ± 0.08

communication overhead of these filters compared to the linear case. All the comparative

filters have the same communication overhead at a particular parameter setting for both

the linear and range measurement models. However, all the filters require more samples

and/or more gossip iterations to give good performance as compared to the linear model.

This is because the range tracking problem is a more difficult problem. The results show

that the UKF performs better in a low communication regime. This is because the UKF

scheme gossips on a low dimensional data and a communication cost of 1.0e + 06 allows it

to perform sufficient gossip to achieve good performance. Again, the GA scheme has good

performance most of the times, but suffers from occasional lost tracks.

RF Tomography Measurement Model

In the RF tomography tracking problem, we assume that every sensor node is aware of

the measurement model parameters of the other nodes. However, the sensor nodes cannot

transmit raw measurements because they have high dimensionality. In this case, the EnKF,

ESRF, DEnKF and UKF only need to gossip on the local variables that involve the measure-

ments. The EnKFs can perform linearized approximations and compute the corresponding

statistics locally at every node. On the other hand, there is no change in the dimensionality

to the data on which the particle filtering methods gossip. Hence, EnKF, ESRF, DEnKF and

UKF gossip on a much lower dimensional data as compared to the distributed particle filter-
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ing methods. Table 4.9 provides the performance comparison for the RF tomography model

with σϵ = 0.50, σλ = 0.05 and ϕ = 5. Table B.3 gives information about the filter parameters

that resulted in the presented communication costs. The results show that the EnKF does

not work under any parameter setting. This is because the EnKF involves the perturbation

of measurements that introduce additional sampling errors. As the measurement dimension-

ality increases the sampling errors also increase, and consequently result in filter divergence

for high dimensional measurements. At a high communication cost (2.0e + 07), the perfor-

mance of the ESRF, DEnKF and UKF is essentially the same as their centralized versions.

In the case of the range model, it is observed that the centralized ESRF, DEnKF and UKF

have comparable performance to the BPF. However, here we observe a visible performance

gap with the centralized BPF doing much better. This is because the range model is only

mildly non-linear, but the RF tomography model is highly non-linear. As the non-linearity

in the measurement model increases the posterior distribution develops more non-Gaussian

components and the parametrization of the posterior distribution by mean and covariance

results in a less accurate estimate. The results show that the UKF suffers more performance

degradation due to the increased non-linearity as compared to the ESRF and the DEnKF.

In the low communication regime, the ESRF and DEnKF perform better than all the other

filters, however the DEnKF does suffer from occasional lost tracks. The ESRF and DEnKF

perform better because they need to gossip on a very low dimensional data compared to the

distributed particle filtering methods. The UKF also gossips on a low dimensional data, but

has a much higher demand of gossip. Hence, its performance degrades significantly at lower

communication costs.

Discussion

In the distributed tracking problem with non-linear dynamics and a linear measurement

model, two of the proposed distributed schemes, namely, the ESRF and the DEnKF give

comparable performance to the state-of-the-art distributed filters, but have a much higher

communication efficiency. This is because these schemes gossip on low dimensional data and

have a lower requirement of gossip compared to the existing methods. However, in the case

of the range model with linearization at each sample point the data dimensionality increase

which causes a significant performance reduction at low communication costs. In the case

of the RF tomography model with all the model parameters known at every sensor node
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Table 4.9 Performance comparison of the distributed filters for the RF to-
mography measurement model with σϵ = 0.50, σλ = 0.05 and ϕ = 5.

Ave. RMSE ± Std. Dev. (% track loss)

Scalars 16667 500 350

GA [6] 0.20 ± 0.01(6) 0.18 ± 0.01(6) 0.18 ± 0.01(8)
LC [7] 0.23 ± 0.15(4) - -
SM [8] 0.14 ± 0.08(4) - -
Top-m [9] 0.12 ± 0.04 - -
UKF [78] 0.18 ± 0.14(2) 0.59 ± 0.49(62) 0.60 ± 0.50(81)
EnKF - - -
ESRF 0.20 ± 0.04 0.21 ± 0.06 0.20 ± 0.07
DEnKF 0.23 ± 0.09 0.23 ± 0.08(1) 0.20 ± 0.08(2)
Cent. BPF 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

the ESRF and DEnKF outperform the existing state-of-the-art schemes. In this case, the

ESRF and DEnKF schemes allow the sensor nodes to compute linearized approximations

and evaluate the corresponding statistics locally. This results in a significant reduction in the

dimensionality of the data on which the sensor nodes gossip and hence, a low communication

overhead.

4.3 Summary

In this chapter, we provided a performance comparison of the proposed distributed schemes

and the existing state-of-the-art distributed filters for a target tracking problem. In the

centralized setting, we compared the performance of the EnKFs to the UKF and the particle

filtering methods. The results suggested that the EnKFs provide comparable performance to

the UKF and the particle filters, but have a significantly lower computational cost compared

to the particle filters. The EnKFs and the UKF have comparable computational overhead.

This is due to the fact that the EnKFs require a relatively small sample size to achieve their

best performance. The results for distributed tracking showed that the proposed schemes

outperform the existing state-of-the-art distributed filtering schemes in terms of commu-

nication efficiency for linear measurement models and/or high dimensional measurements.

In both the cases the state dynamics are non-linear. The proposed methods have a better

communication efficiency because they gossip on lower dimensional data and require fewer
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gossip iterations to achieve performance comparable to the existing distributed schemes.



73

Chapter 5

Conclusions

In this thesis, we addressed the problem of distributed estimation in a wireless sensor net-

works (WSNs). The existing distributed filtering schemes either achieve good estimation

accuracy at a high communication cost, or have low communication overhead, but do not

work well for non-linear and non-Gaussian problems. In a resource constrained and re-

motely deployed wireless sensor network, the communication overhead of the distributed

filtering scheme becomes critical and dictates the network lifetime. Motivated by this fact,

we proposed three distributed filtering schemes with the goal of reducing the communication

overhead.

The proposed distributed schemes are based on three forms of the ensemble Kalman

filter (EnKF). The EnKF uses a sample based approach to approximate the mean and

covariance of the posterior distribution. It uses the state dynamics to propagate the samples

which allows it to capture the non-linearities in the state dynamics. However, the EnKF

analysis equations still require the measurement model to be linear. We also presented

three linearization strategies to incorporate non-linear measurement models into the EnKF

analysis.

The main challenge in developing a distributed approximation of the EnKF lies in the

formulation of the distributed analysis mechanism. The analysis step requires complete

knowledge of the measurements and measurement model parameters, while the sensor nodes

only have access to their local measurement and model parameters. We overcome this

difficulty by expressing the analysis equation in an alternative information form. This allows

the sensor nodes to gossip and reach consensus on a set of statistics that are sufficient to
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implement the analysis equations locally.

In a centralized setting, we compared the performance of the three ensemble Kalman

filtering schemes, namely the ensemble Kalman filter (EnKF), ensemble square root filter

(ESRF) and the deterministic ensemble Kalman filter (DEnKF) with the unscented Kalman

filter (UKF) and the particle filtering schemes. The results showed that the EnKFs have

comparable performance to the particle filters, but have a much lower computational cost.

Also, the EnKFs and the UKF have comparable performance and computational cost. The

EnKFs have a much lower computational cost compared to the particle filters because they

require a relatively small sample size to provide a good approximation of the mean and

covariance to the posterior distribution. In the case of non-linear measurements, linearization

at the each sample gives a better performance compared to the other linearization strategies.

We also presented a performance comparison of the proposed schemes and the exist-

ing state-of-the-art distributed filtering schemes. The results suggested that the proposed

schemes give comparable performance to the existing schemes while significantly reducing the

communication overhead in two scenarios, a) linear measurement model with non-linear state

dynamics, and b) high dimensional measurements (model parameters known everywhere in

the network) with non-linear measurement model and state dynamics. The proposed schemes

have a better communication efficiency because they gossip on lower dimensional data and

have a lower demand of gossip.

In this thesis, the performance of the filtering schemes is compared for a single target

tracking problem. For future work, these schemes can be compared for a multi-target tracking

problem which has a higher state dimensionality. The increased state dimensionality affects

the Kalman filtering and particle filtering methods in different ways. For Kalman filtering

methods, it increases the dimensionality of the local variables on which gossip is performed.

Particle filtering methods require much larger sample sizes to achieve the same accuracy when

tracking higher dimensional states. The proposed distributed ensemble Kalman filtering

schemes gossip equally on all elements of the exchanged vectors and matrices. It may be

the case that some elements of the vectors or matrices, e.g. the diagonal elements of the

matrices, may have a higher impact on the estimation accuracy. Hence, the communication

overhead of the proposed schemes may be further reduced by gossiping on selective elements.
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Appendix A

Incorporating Non-linear

Measurement Models in EnKFs

A.1 Linearization Strategies for EnKFs

The ensemble Kalman filters are designed for non-linear dynamical models, but require the

measurement model to be linear. In this appendix, we present three methods for incorpo-

rating the non-linear measurement models into the EnKF analysis equations. We present

these methods for all three forms of the EnKF.

A.1.1 Linearization at Mean

This linearization approach is very similar to the extended Kalman filter linearization ap-

proach. The measurement model is linearized at the mean of the forecast samples x̂f and

the same linearized approximation is used in the analysis equation for all the samples. This

approach might be useful when the forecast sample covariance is small and all the samples

are close to the mean. The linearized approximation is defined as

H =
∂h(x)

∂x

∣∣∣
x̂f
. (A.1)
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This method requires a common Kalman gain for all the samples which can be computed as

follows

K = PfHT (HPfHT +R)−1. (A.2)

The EnKF analysis equation for each sample can then be written as follows

xa
(i) = xf

(i) +K(y(i) − h(xf
(i))). (A.3)

Similarly, the analysis equations for the ESRF can be written as

x̂a = x̂f +K(y − h(x̂f )), (A.4)

T = (I−KH)1/2, (A.5)

xa
(i) = x̂a +T(xf

(i) − x̂f ) . (A.6)

The DEnKF uses the same analysis equations as the ESRF except for the equation to

compute the transformation matrix which is given by

T = I− 1

2
KH. (A.7)

A.1.2 Pseudo Measurement Matrix Representation

In this linearization approach, we adopt the use of the pseudo measurement matrix as a

linearized representation of a non-linear model for the EnKFs. The pseudo measurement

matrix has been defined and used for the unscented Kalman filter in [79, 91]. First, we

define the predicted cross-covariance between the state variables and the measurements as

follows

ŷ =
1

N

N∑
i=1

h(xf
(i)), (A.8)

P̃ =
1

N − 1

N∑
i=1

(xf
(i) − x̂f )(h(xf

(i))− ŷ)T , (A.9)
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where N is the number of samples.

The pseudo measurement matrix can then be defined as

H = (P̃)T (Pf )−1. (A.10)

This pseudo measurement matrix serves as a common linearization and can be used to update

all the samples in the same way as in the linearization at mean approach.

A.1.3 Linearization at Each Sample

A more accurate way of adopting the extened Kalman filter linearization mechanism in

EnKFs is to perform linearization at each sample and use this sample specific linearized

approximation in the analysis equations. This is a more accurate way to capturing the non-

linearities in the model, but has a much higher computational cost. The linearized model

for the sample xf
(i) can be evaluated as

H(i) =
∂h(x)

∂x

∣∣∣
xf
(i)

. (A.11)

Hence, there is a requirement to compute an instance of the Kalman gain corresponding to

each sample. The Kalman gain for ith sample is given by

K(i) = PfHT
(i)(H(i)P

fHT
(i) +R)−1. (A.12)

The analysis equation for the EnKF becomes

xa
(i) = xf

(i) +K(i)(y(i) − h(xf
(i))). (A.13)

For this linearization methodology, the ESRF and the DEnKF use the same mean update

equation (A.4) as in the previous linearization approach. However, an instance of the trans-

formation matrix corresponding to each sample needs to be computed. In the ESRF scheme,

the transformation matrix for ith sample is given by

T(i) = (I−K(i)H(i))
1/2. (A.14)
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Similarly, in the DEnKF scheme, the transformation matrix for the ith sample is evaluated

as

T(i) = I− 1

2
K(i)H(i). (A.15)

A.2 Linearized Approximations

In this section, we present the linearized approximations of the range and RF tomography

measurement model. The linearized approximation requires the evaluation of the partial

derivatives of the model function with respect to each of the state variables. In the following

sections, the expressions for the partial derivatives are presented for the range and RF

tomography model.

A.2.1 Range Model

The range model function for the sensor node v is defined as follows

hv(x) =
√

(x1 − svx)
2 + (x2 − svy)

2, (A.16)

where x1 and x2 represent the position of target along the x-axis and y-axis and svx and

svy represent the position of sensor v along the x-axis and y-axis, respectively. The partial

derivative of the model function with respect to x1 (x-component of target location) is given

by

∂

∂x1

(hv(x)) =
∂

∂x1

([
(x1 − svx)

2 + (x2 − svy)
2
]1/2)

, (A.17)

=
[
(x1 − svx)

2 + (x2 − svy)
2
]−1/2

(x1 − svx). (A.18)

Similarly, the partial derivative of the model function with respect to x2 (y-component of

target location) is given by

∂

∂x2

(hv(x)) =
[
(x1 − svx)

2 + (x2 − svy)
2
]−1/2

(x2 − svy). (A.19)

Since the model function does not involve the state variables x3 and x4, therefore the partial

derivatives with respect to these variables are zero.
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A.2.2 RF Tomography Model

The RF tomography measurements are defined in terms of the attenuation experienced

between pairs of sensors. Hence, the linearization of the model requires the computation of

the partial derivatives of the attenuation function with respect to each of the state variables.

The attenuation function for the sensor nodes u and v is defined as

A(u,v)(x) = ϕ exp

(
−λ(u,v)(x)2

2σ2
λ

)
. (A.20)

The partial derivative of the attenuation function A(u,v)(x) with respect to the ith component

of the state variable is given by

∂

∂xi

(A(u,v)(x)) =
∂

∂xi

(
ϕ exp(−λ(u,v)(x)2

2σ2
λ

)

)
, (A.21)

= ϕ(−λ(u,v)(x)

σ2
λ

) exp(−λ(u,v)(x)2

2σ2
λ

)× ∂

∂xi

(
λ(u,v)(x)

)
. (A.22)

The function λ(u,v)(x) is defined as follows

λ(u,v)(x) = du(x) + dv(x)− d(u,v), (A.23)

=
√

(x1 − sux)
2 + (x2 − suy)

2 +
√
(x1 − svx)

2 + (x2 − svy)
2 − d(u,v). (A.24)

The partial derivative of the function λ(u,v)(x) with respect to x1 is given by

∂

∂x1

λ(u,v)(x) =[(x1 − sux)
2 + (x2 − suy)

2]−1/2(x1 − sux)+

[(x1 − svx)
2 + (x2 − svy)

2]−1/2(x1 − svx). (A.25)

Similarly, the partial derivative with respect to x2 is given by

∂

∂x2

λ(u,v)(x) =[(x1 − sux)
2 + (x2 − suy)

2]−1/2(x2 − suy)+

[(x1 − svx)
2 + (x2 − svy)

2]−1/2(x2 − svy). (A.26)

Since the function λ(u,v)(x) does not involve the state variables x3 and x4, therefore the

partial derivatives with respect to these variables are zero.
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Appendix B

Distributed Filter Parameters for

Different Communication Costs

In this section we present the filter parameters corresponding to performance results provided

in Section 4.2.4. The communication cost of the distributed filtering schemes is dependent

on the sample size and/or the number of gossip iterations. Hence, there are multiple filter

settings that result in the same communication overhead. In the following tables we provide

information about the sample size and the number of average gossip iterations that were

used to generate the simulation results. In Table B.1, the filter parameters for the linear

measurement model are presented which correspond to the performance results provided in

Table 4.7. In some cases we were unable to find a working setting for a distributed filter

at a specific cost, so we have marked it with a dash. The unscented Kalman filter does not

have a sample size associated with it, therefore we inserted NA in its sample size field which

means not applicable.

In Table B.2, the filter parameters for the range measurement model are presented which

correspond to the performance results provided in Table 4.8.

In Table B.3, the filter parameters for the RF tomography measurement model are pre-

sented which correspond to the performance results provided in Table 4.9.
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Table B.1 Distributed filter parameters (sample size and number of average
gossip iterations) for the linear measurement model at different communication
costs.

Scalars 8000 480 200

Sample size Ave. gossip Sample size Ave. gossip Sample size Ave. gossip

GA [6] 2000 7000 1000 280 1000 100
LC [7] 1000 34000 1000 1120 1000 450
SM [8] 100 1000 12 430 12 140

Top-m [9] 500 700 - -
UKF [78] NA 5000 NA 250 -
UKF* [78] NA 5000 NA 250 NA 75
EnKF 35 500 10 70 -
ESRF 100 5000 100 250 100 75
DEnKF 100 5000 100 250 100 75

Table B.2 Distributed filter parameters (sample size and number of average
gossip iterations) for the range measurement model at different communication
costs.

Scalars 16000 8000 800

Sample size Ave. gossip Sample size Ave. gossip Sample size Ave. gossip

GA [6] 1000 16000 1000 7000 1000 425
LC [7] 1000 64000 1000 34000 1000 1800
SM [8] 200 1000 100 1000 25 300

Top-m [9] 800 850 500 700 -
UKF [78] NA 10000 NA 4900 NA 350
EnKF 10 850 10 375 -
ESRF 12 800 10 436 -
DEnKF 12 800 10 436 -
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Table B.3 Distributed filter parameters (sample size and number of aver-
age gossip iterations) for the RF tomography measurement model at different
communication costs.

Scalars 16667 500 350

Sample size Ave. gossip Sample size Ave. gossip Sample size Ave. gossip

GA [6] 1000 16000 1000 280 1000 200
LC [7] 1000 64000 - -
SM [8] 200 1000 - -

Top-m [9] 800 850 - -
UKF [78] NA 50000 NA 1500 NA 1000
EnKF - - -
ESRF 100 50000 100 1450 100 1000
DEnKF 100 50000 100 1450 100 1000
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[44] M. Frei and H. R. KüNsch, “Mixture ensemble Kalman filters,” Comput. Stat. Data
Anal., vol. 58, pp. 127–138, Feb. 2013.

[45] A. S. Stordal, H. A. Karlsen, G. Nævdal, H. J. Skaug, and B. Vallès, “Bridging the en-
semble Kalman filter and particle filters: the adaptive Gaussian mixture filter,” Comput.
Geosci., vol. 15, no. 2, pp. 293–305, 2011.

[46] T. Bengtsson, C. Snyder, and D. Nychka, “Toward a nonlinear ensemble filter for high-
dimensional systems,” J. Geophy. Res., vol. 108, no. D24, p. 8775, 2003.

[47] J. H. Kotecha and P. M. Djuric, “Gaussian sum particle filtering,” IEEE Trans. Signal
Process., vol. 51, no. 10, pp. 2602–2612, Oct. 2003.

[48] A. S. Stordal, R. Valestrand, H. A. Karlsen, G. Nævdal, and H. J. Skaug, “Compar-
ing the adaptive Gaussian mixture filter with the ensemble Kalman filter on synthetic
reservoir models,” Comput. Geosci., pp. 1–16, 2012.

[49] J. Rezaie and J. Eidsvik, “Shrinked (1- α) ensemble Kalman filter and α Gaussian
mixture filter,” Comput. Geosci., pp. 1–16, 2012.

[50] S. Reich, “A Gaussian-mixture ensemble transform filter,” Q. J. R. Meteorol. Soc., vol.
138, no. 662, pp. 222–233, 2011.

[51] P. L. Houtekamer and H. L. Mitchell, “A sequential ensemble Kalman filter for atmo-
spheric data assimilation,” Mon. Weather Rev., vol. 129, no. 1, pp. 123–137, 2001.

[52] R. A. Horn and C. R. Johnson,Matrix analysis. Cambridgeshire, New York: Cambridge
University Press, 1990.

[53] T. M. Hamill, J. S. Whitaker, and C. Snyder, “Distance-dependent filtering of back-
ground error covariance estimates in an ensemble Kalman filter,” Mon. Weather Rev.,
vol. 129, no. 11, pp. 2776–2790, 2001.



References 87

[54] G. Gaspari and S. E. Cohn, “Construction of correlation functions in two and three
dimensions,” Q. J. R. Meteorol. Soc., vol. 125, no. 554, pp. 723–757, 1999.

[55] E. Ott, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corazza, E. Kalnay,
D. J. Patil, and J. A. Yorke, “A local ensemble Kalman filter for atmospheric data
assimilation,” Tellus A, vol. 56, no. 5, pp. 415–428, 2004.

[56] J. L. Anderson, “Exploring the need for localization in ensemble data assimilation using
a hierarchical ensemble filter,” Physica D: Nonlinear Phenomena, vol. 230, no. 1, pp.
99–111, 2007.

[57] E. J. Fertig, B. R. Hunt, E. Ott, and I. Szunyogh, “Assimilating non-local observations
with a local ensemble Kalman filter,” Tellus A, vol. 59, no. 5, pp. 719–730, 2007.

[58] C. H. Bishop and D. Hodyss, “Flow-adaptive moderation of spurious ensemble corre-
lations and its use in ensemble-based data assimilation,” Q. J. R. Meteorol. Soc., vol.
133, no. 629, pp. 2029–2044, 2007.

[59] J. L. Anderson, “An adaptive covariance inflation error correction algorithm for ensem-
ble filters,” Tellus A, vol. 59, no. 2, 2007.

[60] H. Li, E. Kalnay, and T. Miyoshi, “Simultaneous estimation of covariance inflation and
observation errors within an ensemble Kalman filter,” Q. J. R. Meteorol. Soc., vol. 135,
no. 639, pp. 523–533, 2009.

[61] S. Reich, “Ensemble Kalman and H filters,” in AIP Conf. Proc., vol. 1281, no. 1, 2010,
pp. 19–22.

[62] D. Simon, Optimal state estimation: Kalman, H infinity, and nonlinear approaches.
Wiley-Interscience, 2006.

[63] C. L. Keppenne, M. M. Rienecker, N. Kurkowski, and D. A. Adamec, “Ensemble Kalman
filter assimilation of temperature and altimeter data with bias correction and application
to seasonal prediction,” Nonlinear process. Geophysics, vol. 12, no. 4, pp. 491–503, 2005.

[64] E. J. Fertig, S. J. Baek, B. R. Hunt, E. Ott, I. Szunyogh, J. A. Aravéquia, E. Kalnay,
H. Li, and J. Liu, “Observation bias correction with an ensemble Kalman filter,” Tellus
A, vol. 61, no. 2, pp. 210–226, 2009.

[65] S. J. Baek, B. R. Hunt, E. Kalnay, E. Ott, and I. Szunyogh, “Local ensemble Kalman
filtering in the presence of model bias,” Tellus A, vol. 58, no. 3, pp. 293–306, 2006.

[66] G. A. Gottwald, L. Mitchell, and S. Reich, “Controlling overestimation of error covari-
ance in ensemble Kalman filters with sparse observations: A variance limiting Kalman
filter,” arXiv preprint arXiv:1108.5801, 2011.



References 88

[67] R. J. Lorentzen and G. Nævdal, “An iterative ensemble Kalman filter,” IEEE Trans.
Autom. Control, vol. 56, no. 8, pp. 1990–1995, 2011.

[68] J. Mandel, L. Cobb, and J. D. Beezley, “On the convergence of the ensemble Kalman
filter,” Applicat. Math., vol. 56, no. 6, pp. 533–541, 2011.

[69] R. Tavakoli, G. Pencheva, and M. Wheeler, “Multi-level parallelization of ensemble
Kalman filter for reservoir history matching,” in Soc. Petroleum Eng., Reservoir Simul.
Symp., 2011.

[70] T. Xu, J. J. G. Hernández, L. Li, and H. Zhou, “Parallelized ensemble Kalman filter
for hydraulic conductivity characterization,” Comput. & Geosci., vol. 52, no. 0, pp. 42
– 49, 2013.

[71] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proc. Int.
Symp. Inf. Process. Sensor Netw. (IPSN), Berkeley, CA, USA, Apr. 2004, pp. 20–27.

[72] D. Blatt and A. O. Hero, “Energy-based sensor network source localization via pro-
jection onto convex sets,” IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3614–3619,
2006.

[73] S. Son, M. Chiang, S. R. Kulkarni, and S. C. Schwartz, “The value of clustering in
distributed estimation for sensor networks,” in Proc. IEEE Int. Conf. Wireless Netw.
Commun. Mobile Comput., vol. 2, 2005, pp. 969–974.

[74] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Energy-latency tradeoffs for data
gathering in wireless sensor networks,” in Proc. IEEE INFOCOM 2004, vol. 1, Hong
Kong, Mar. 2004.

[75] A. Ciancio, S. Pattem, A. Ortega, and B. Krishnamachari, “Energy-efficient data repre-
sentation and routing for wireless sensor networks based on a distributed wavelet com-
pression algorithm,” in Proc. IEEE/ACM Symp. Inf. Process. Sensor Netw. (IPSN),
2006, pp. 309–316.

[76] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu, “Data-
centric storage in sensornets with ght, a geographic hash table,” Mobile Nets. Appl.,
vol. 8, no. 4, pp. 427–442, 2003.

[77] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip
algorithms for distributed signal processing,” Proc. of the IEEE, vol. 98, no. 11, pp.
1847–1864, Nov. 2010.

[78] W. Li and Y. Jia, “Consensus-based distributed multiple model UKF for jump Markov
nonlinear systems,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 227–233, Jan. 2012.



References 89

[79] ——, “Distributed consensus filtering for discrete-time nonlinear systems with non-
Gaussian noise,” Signal Process., vol. 92, no. 10, pp. 2464–2470, 2012.

[80] A. Simonetto, T. Keviczky, and R. Babuska, “Distributed nonlinear estimation for
robot localization using weighted consensus,” in Proc. IEEE Int. Control Robot. Autom.
(ICRA), Anchorage, AK, USA, May 2010, pp. 3026–3031.

[81] A. Mohammadi and A. Asif, “Consensus-based distributed unscented particle filter,” in
Proc. IEEE Stat. Signal Process. Workshop (SSP), Nice, France, Jun. 2011.

[82] ——, “A constraint sufficient statistics based distributed particle filter for bearing only
tracking,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2012, pp. 3670–3675.
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