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The kinetics of domain growth for a ¢ =8 state Potts model on a triangular lattice is studied us-
ing the Monte Carlo renormalization-group technique. A block-spin transformation is applied to
the evolving configurations of a two-dimensional Potts model with nonconserved order parameter.
The growth law for the average size of domains is consistent with curvature-driven growth. A scal-
ing form for the structure factor is obtained and compared to theory. The edge distribution func-

tion for the growth kinetics is also studied.

I. BACKGROUND

The kinetics of domain growth during a first-order
phase transition' occur when a system is quenched from a
high-temperature disordered phase to a temperature well
below its ordering temperature T,. In Fig. 1, we show
domains of ordered phases forming and growing to ma-
croscropic size as time goes on. This growth is often
algebraic,

R(t)~t",

where R (?) is the average domain size at time ¢ and n is
the growth exponent. Experiments and computer simula-
tions find that the spatial dependencies of such systems
scale with R (¢). The numerical value of the growth ex-
ponent is of particular interest, because it is the signature
of the thermodynamic forces driving the system to equi-
librium. Growth occurs to minimize the interfacial free
energy of the system. In the simplest case of a two-state
nonconserved system, the Ising model, the ordering pro-

FIG. 1. Evolving domain structure of the ¢ =8 Potts model
on a triangular lattice of size N =256 at temperature T =0.6.
Times shown are ¢ =100, 500, 1000, and 4000 MCS, respective-
ly.

cess depends on the local curvature only. This leads to
an n =1 growth law.>3 Here, we study a system with
many degenerate ground states ordering by nonconserved
dynamics.* '* The system is often modeled by g-state
Potts models, and experimental systems include polycrys-
talline materials, foams, and biological membranes.

Domain growth in nonconserved systems with many
degenerate ground states has been studied by several au-
thors. One motivation was an observation by Lifshitz,*
which was later made more precise and useful by Safran.’
They argued that a system with g degenerate ground
states can evolve into metastable states if ¢ =(d +1),
where d is the dimension of space. This suggested the
possibility of activated growth for ordering dynamics in
such systems, rather than the ¢ =2 power law of n =1.
This was investigated primarily by a convenient represen-
tation of the system: the g-state Potts model in two and
three dimensions. A series of interesting papers on this
and related models have been written by Grest, Srolovitz,
Anderson, and co-workers;®”!%!! Kaski, Nieminen, and
Gunton;® and Kumar, Gunton, and Kaski.’ Recently
some treatments have been done which are partly
motivated by the physics of foams;'?”* the study of
Nagai, Kawasaki, and Nakamura'* provides a particular-
ly interesting approach.

While it now seems clear that the g-state Potts model
follows an n =] growth law at nonzero tempera-
tures,® ~!! initial work was hampered by the presence of
strong transients. Very extensive numerical studies were
required to establish the growth law, which is now
thought to be independent of d and g, i.e., superuniversal.
Transients lead to significant deviations in the measured
growth exponent if the data analysis is performed over a
limited time regime: One can obtain an effective g-
dependent exponent varying from n =0.5 for ¢ =2 to
n =0.4 for g 2 30. Given these difficulties, it is of interest
to find methods which avoid those transients, and permit
the study of the superuniversal nature of domain growth
from first principles.

In this paper, we present a Monte Carlo
renormalization-group (MCRG) study of the ¢ =8 state
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Potts model on a triangular lattice. This addresses the
nature of growth in the scaling regime from first princi-
ples. Furthermore, the scaling regime can be reached
with only a modest increase in computing effort. Our re-
sults are consistent with n =, and are therefore in agree-
ment with recent studies. However, we find that MCRG
gives a significant improvement in the effective exponent
one measures for data taken over a limited time regime.
We also present results for the structure factor and the
edge number distribution functions. These are found to
be invariant under the renormalization-group transfor-
mation, to the accuracy of our study.

MCRG analysis, based on a Wilson-type block-spin
transformation,'>~!7 has recently been applied successful-
ly to a number of domain-growth problems: ferromag-
netic kinetic Ising models with both spin-flip!® and spin-
exchange kinetics,'* and the g-state Potts models on a
square lattice.’® The particular value of a
renormalization-group study is that it is the fundamental
test for the scaling properties of the system. As discussed
elsewhere,!® the renormalization-group transformation,
controlled by the strong-coupling T—0 fixed point,?!
iterates away the irrelevant scaling fields of the system,
allowing the direct study of asymptotic properties. Previ-
ously, Vifials and Gunton?® studied the dynamics of the
eight-state Potts model on a square lattice using MCRG
techniques. Their results pointed to the existence of two
distinct fixed points at zero temperature: a freezing fixed
point associated with a logarithmic R (#) ~Int growth and
an equilibration fixed point, which gave power-law
growth. The equilibration fixed point was found to be
stable at nonzero temperatures below T, while the freez-
ing fixed point was only stable if the system was quenched
directly to T=0. The existence of a freezing fixed point
can be traced to frustration of the thermodynamic forces:
The metastable states involve whether the lattice can be
tiled with local-equilibrium shapes for domains.?’ For
our purposes, since a triangular lattice cannot be tiled
with hexagons of different sizes, freezing cannot occur,
regardless of 7. Therefore, the present MCRG study of
the eight-state Potts model on a triangular lattice, where
there are no transients due to an unstable freezing fixed
point, is complementary to the work of Vifials and Gun-
ton.

The details of our MCRG study are given below. The
growth exponent we obtain, n =0.4810.04, is consistent
with the Allen-Cahn result mentioned above, although
we see evidence of a transient which gives rise to growth
exponents that are considerably less than . This tran-
sient is iterated away by the renormalization-group trans-
formation, and we tentatively identify it with an effective
exponent for domain growth with “soft” walls.”?> We
also obtain the scaled structure factor and the edge distri-
bution function.

II. METHOD AND RESULTS

A. Growth law

The Hamiltonian of the two-dimensional ¢ =8 state
Potts model is
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H=—J 36, , ,
Gy

where J is the interaction constant, the sums run over
distinct nearest-neighbor pairs on a square lattice, and
the N spins can take on values of 0;=1,2,...,8. The
system is quenched from infinite temperature to a low
temperature 7. Following the quench, the system evolves
by spin-flip dynamics: The state of a randomly selected
spin is changed to another randomly selected state if
there is no increase in energy, or with probability
e “AE/T if the exchange increases the lattice energy by
AE, where Boltzmann’s constant has been set to unity.
Fig. 1 shows some typical configurations as the domains
grow.

Lattices of size N =256 and 1282 were simulated at
T/J =0.6 and T =0 using periodic boundary conditions.
The results for the smaller system, which we studied over
5000 Monte Carlo steps (MCS), were averaged over 64 in-
dependent runs. On the larger lattice, results are aver-
aged over 45 runs. The average domain size R (¢) was
monitored in two different ways: from the inverse perim-
eter density and by monitoring the number of vertices in
the evolving system. The inverse perimeter system densi-
ty R,(1) is

R, (1)=

1
(5§ 2 50

ij)

where the angular brackets denote an ensemble average.
The average area density

R, ()=(A()/m)'"?

was found using Euler’s formula for a finite system:®
N;—N,+N,=1, where N, is the number of domains, N,
the number of edges, and N, the number of vertices, re-
spectively. Since every vertex is three rayed on a triangu-
lar lattice, this implies that 2N, =3N, so that N;=N, /2.
The mean area on the triangular lattice is therefore relat-
ed to the total area A, by (4 (7))=2A;/N,(t). The
length scales R,(¢) and R ,(¢) were sampled every 10
MCS. For both measures of domain size, we calculated
the variance from the fluctuations of each run:
AR (£)=({R?)— (R )»?»'2. From this, the estimated sta-
tistical error 8R was taken to be 8R =AR(t)/VN—1,
where WV is the number of independent runs.

We used the renormalization group to exploit the scale
invariance of the evolving system: The system is invari-
ant, provided we rescale both length and time appropri-
ately. The relationship between these rescalings is impli-
cit in the growth law. The renormalized lattices were ob-
tained by a block-spin transformation, with length rescal-
ing factor b =2. The majority-rule transformation was
used to generate new cell spin variables from the original
spin configurations. There one chooses a renormalized
spin from a block of ¢ spins by letting the spins vote,
and the majority rule. “Ties” were broken by randomly
assigning a state to the block spins. Figure 2 shows some
typical results. The transformation explicitly renormal-
izes the domains and the moving interfaces between
them. It iterates away behavior on short length scales,
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FIG. 2. Configurations on the left for N =256 system as it is
renormalized at t =4000 MCS. Configurations on the right for
N =128? system at t =1000 MCS as they are renormalized.
Note the similarity between configurations as they are renor-
malized, with this choice of time rescaling factor (n = % ).

thus permitting the investigation of the asymptotic
large-length-scale properties of the system.

The growth law is determined by a matching pro-
cedure. In principle, after the irrelevant variables have
been iterated away, the probability distribution function
will remain invariant under further renormalization-
group transformations. It is expected that, after a finite
number of iterations, contributions from the irrelevant
variables will be negligible. Then, any quantity deter-
mined after m blockings of an N spin system should be
identical to those determined after m +1 blockings of a
system of Nb? spins. However, since the larger lattice
has been renormalized once more, quantities will be at
different times ¢ and ¢’. Figure 2 shows this for some typ-
ical configurations. Hence, close to the fixed point, one
can expect a matching condition to hold:

R(N,m,t)=R (Nb%m +1,t') .

From this the time rescaling factor ¢’ /¢t can be calculated,
and the growth exponent can be obtained, since

t_, =p 1/n .

t
To ensure that the renormalized quantities are consistent
with each other, one must check that scaling occurs for
more than one iteration of the block-spin transformation.

The numerical value of the growth exponent n is the

signature of the mechanism driving phase separation.
During the late stages of domain growth the system is in
a far-from-equilibrium state with many interfaces and
thus a large amount of surface free energy. The system
decreases its free energy as domains of ordered phase
grow. If the order parameter is nonconserved, then the
interfacial motion acts to reduce local surface area;
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FIG. 3. R,(t) vs time. Starting at the top, the data for the
m =0, 1, 2, 3, and 4 iterations of the renormalization-group

transformation are shown. The solid lines show the best fit of
the data to R (1)= A4 + Bt'/%

curved interfaces move, and when part of an interface be-
comes flat, it stops moving. For g =2, the interface ve-
locity is then determined by the well-known Allen-Cahn
law,”* which leads to an R (¢)~t'/? growth law.

We first looked for the best fits to the renormalized
data. Figure 3 shows that the R » data, at all levels of re-
normalization down to m =3, can be fit exceedingly well
by R,(t)=A +Bt'>. In contrast, before renormaliza-
tion, the R , data were fitted better by n =4 than n = 1.
See Fig. 4. Note that the data are fairly noisy for m =0,
and that after renormalization the data are significantly
smoother and fit n =1 better than n =. The implica-
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FIG. 4. R (1) vs either t'/* or t'/2. Open triangles show
m =0 data vs ¢t'/%. The solid squares show R , vs t'/% for m =0,
1, and 2 iterations of the renormalization-group transformation,
from top to bottom. Solid lines show best fits. Note that m =0
data fit better to ¢!/* than ¢!/2, indicating the presence of a tran-
sient, which is iterated away by the renormalization-group
transformation.
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TABLE I. Results of forced matching for R,. The first value of R, has had the renormalization
group applied to it one less time than the value beneath it. Percent error is quoted.

m =0,1 m=1,2 m=2,3

Time R, Error R, Error R, Error

10 1.008 —5.43 0.731 2.71 0.624 —0.92
1.066 0.712 0.630

100 2.646 1.32 1.483 5.21 0.872 3.70
2.611 1.410 0.841

500 5.332 —1.20 2.881 2.36 1.543 3.57
5.398 2.815 1.489

600 5.806 —1.02 3.125 2.40 1.659 3.18
5.866 3.051 1.608

700 6.225 —1.12 3.351 2.64 1.773 3.49
6.295 3.264 1.713

800 6.618 —0.94 3.550 2.30 1.878 3.61
6.680 3.470 1.812

900 6.975 —1.32 3.743 1.93 1.972 3.10
7.070 3.647 1.913

1000 7.302 —2.10 3.919 1.29 2.066 2.71
7.456 3.869 2.011

1100 7.637 —2.20 4.104 1.15 2.157 2.43
7.809 4.056 2.106

1200 7.971 —2.90 4.269 0.60 2.250 1.69
8.210 4.243 2.213

tion is that there exists a strong transient with an
effective exponent of n=, to which R, is sensitive.
While we fitted our data for R ,(¢) to n =1, we cannot
rule out other numerical values for the transient growth
exponent; this choice is based on a tentative identification
of the transient with the effective exponent seen in sys-
tems with “soft” walls.””??> For early times, transients due
to the structure of the walls will be more important, and
the growth will resemble that in soft-wall systems.

Our estimate for n was obtained by determining the ra-
tio of times, on two lattices at different levels of renor-
malization, which gave equal domain sizes. The esti-
mates of n from four levels of matching are 0.51, 0.48,
0.47, and 0.48, respectively. Averaging these gives an es-
timate of the growth exponent of 0.48+0.04, which is
consistent with the expected value of {. We also assumed
n =3, and checked whether R’s at different levels of re-
normalization approached each other. The results, which
are again consistent, with n =%, are presented in Table I
for R,, and Table II for R ,. The large transient men-
tioned above is evident from inspection of Table II.

B. Structure factor and edge distribution function

The structure factor s(k,?) was calculated as follows:
For a given lattice configuration, we set all of the sites of

a given Potts state to unity, and the rest of the sites to
—1. The Fourier transform was then taken. This pro-
cedure was then repeated for all of the Potts states of the
system, and the results were then averaged; i.e.,

q 2
2 2(250<r,,n,i‘1)e > »

1
r, 9i=1

where r; is a vector on the triangular lattice, and
k=(2m/L)(mb,+nb,) with m,n=1,2,...,L, where L
is the system size and b, and b, are the reciprocal lattice
vectors. A spherical average then gives the circularly
averaged structure factor S(k,t). As the domain growth
proceeds, the system builds up a Bragg peak which nar-
rows with time about the kK =0 mode. The results
presented are averaged over only three independent
quenches for a lattice of size N =256, and so are fairly
noisy. For late times, all length scales have their time
dependence set by the size of growing domains. Thus the
dimensionless pair-correlation function satisfies g(r,¢)
~G(r/R (1)), which implies that its Fourier transform,

S(k,t)=R%t)F(x) ,

iker,

== —-_1_
s(k,t)—(N

where x =kR (t). For any given level of renormalization,
scaling with R, appears to hold, provided that ¢ =200
MCS. To investigate the scaling of S(k,?) in a more
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TABLE II. Results of forced matching of R ;. The first value of R , has had the renormalization-
group transformation applied to it one less time than the value below it. Percent error is quoted.

m=0,1 m=1,2 m=2,3
Time R, Error R, Error R, Error
10 1.400 —5.80 0.972 4.98 0.788 —1.16
1.4868 0.925 0.797
100 3.460 —3.63 2.680 9.12 1.166 6.14
3.590 1.906 1.098
500 6.276 —13.78 3.988 4.00 2.105 5.66
7.279 3.834 1.992
600 6.741 —14.91 4.300 3.30 2.257 5.176
7.923 4.160 2.146
700 7.114 —15.64 4.595 3.24 2.417 5.24
8.43 4.451 2.296
800 7.486 —16.01 4.878 3.28 2.561 6.08
8.920 4.723 2.414
900 7.848 —16.81 5.143 2.38 2.685 4.44
9.434 5.023 2.571
1000 8.094 —18.34 5.346 1.39 2.813 4.51
9.912 5.273 2.692
1100 8.323 —19.14 5.605 1.08 2.948 3.96
10.284 5.545 2.835
1200 8.678 —20.72 5.820 —0.68 3.068 3.68
10.937 5.860 2.959

qualitative fashion, F(x) was fit to the expression derived
by Ohta, Jasnow, and Kawasaki® for the Ising model.
Figure 5 shows that our data are consistent with their re-
sult, although we do not have enough resolution at small
x to test the form. More detailed tests of scaling have

been given by Kumar et al.’

In Fig. 6, we show our results for the edge number dis-

0.6
F(x)

FIG. 5. Scaling function F(x) vs scaled wave number
x =kR,, for m =0. Solid line is fit to Ohta-Jasnow-Kawasaki
form. Times greater than 200 MCS are shown.

tribution function P(N,), where N, is the number of
edges. We found that in the scaling regime, ¢t =200 MCS,
the distribution is time invariant to the accuracy of our
simulations after one iteration of the renormalization
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FIG. 6. Edge distribution function P vs natural logarithm of
number of edges N,. Form is approximately log symmetric.
Solid squares connected by dashed line are m =0 data with
thermal fluctuations removed; open triangles and open circles
are m =1 and 2 data, respectively. Solid line is Gaussian fit to
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group. The unrenormalized data are heavily skewed by
thermal fluctuations of domains of one site, which have
three edges. Renormalization removes these single-site
domains, giving a distribution which remains approxi-
mately invariant under the application of the
renormalization-group transformation. The functional
form of the edge number distribution function is approxi-
mately log symmetric, with an average value of five edges
per domain. We have also fitted to a log-Gaussian form
in Fig. 6, following other work,®”!%!! a5 a guide to the
eye; the data are not of sufficient quality to estimate the
form of the distribution.

C. Summary

In conclusion, quantities such as n and F have been ob-
tained by MCRG, which proved to be a computationally
efficient way to study domain growth in the presence of
strong transients. The growth exponent was estimated to
be n =0.48+0.04, although we saw evidence of a tran-
sient which gives rise to growth exponents considerably
smaller than 1. The transient was tentatively identified
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with an effective exponent for domain growth with “soft”
walls. We also obtained the scaled structure factor and
the edge distribution function. Both the growth exponent
and the scaling function agree with results for ¢ =2, the
universality class of the nonconserved Ising model, which
is consistent with these being superuniversal quantities,
as has been previously suggested.’

Finally, it is worth noting that while our results are
consistent with previous studies and provide further in-
sight into the problem, unfortunately they do not
represent a dramatic improvement over previous work.
This raises the issue of how to improve MCRG for
dynamical problems. We hope to return to this problem
at a later time.
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