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Abstract 

) 
• 1 

'~ Th~ asymptotic properties of discrete time stochastic systems operatin,~un-

der feedback is addressèd. It is assumed that a Markov chain • evolving on Eucli'an 
\ 

space exisls, and that the mput and output processes appear as functions of •. The , .-
main ~bjectiv~s of the thesis are (t) to extend' various asymI?totlc properties or Markov' 

chains to hold for arbitrary initial distributions; and id), to develop a robust~ess tlÎeory 

. for Markovian systems. 

A condition called local stochastic controlJabl/ity, a generalization of the con~ . , ' 

cept ~f controllabiliiy from' .linear Q~ystem theory, is introd~ced and "is ~ho<Cn to be 

sufficient to ensure that the first, objective is met. The second objective is 'explored by 

introducing à notion of convergence for stochastic systems and investlgating the behav- _ 

ior of ~he invarlant probabilities corresp~nding t~ a convergent sequence of stoc,hastic 
> , 

-----systems. 

These general results are applied to two previously unsolved pl'oblems:, The ' 

asymptotic behavior of linear state space systems operating under n~nlinear feedback, 

and the stability and asymptotic behavior of a c1ass of random pârameter AR(p) stochas-

tic systems under optimal control. 
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Résumé· '4 

.' 
""-1 

Nous étudions les propriétés asymptotiques de systèpler;> stochastiques à: temps 
Â 

discret soumis à une contre-réaction~ Nous supposerons que les processus d'entrée et de 

sortte sont fonction d'une chàîne de Markov q,"à va~r dans un espace Euclidien, Les 
. 

·.principaux objectifs de cette thèse sont: (l) de généraliser diverses propriétés asympto­
~ 

tiques des chaînes de Markov à des dfstribu,tions, initiales arbitraires; (lZ) de développer 

une théorie d~ la robustesse pour les systè~es Markoviens, 

----,~-.-

Nous introduirons la condition de commandabilité stochastique locale, qui - " 
, . 

" généralise le concept de commandabilité pour les systèmes linéaires, et nous :tnontrerons 

lqu'effe est, suffisarrce pour assurer que notre premier objectif est atteint. Le second ob­

jectif sera examiné grâ~e à l'introduction d'u~e notion de convergence pour les sys.tèmes 
,. 

'stochastiques, et l'étude du comportement des mesures de probabilités invariantes cor-

respondant à des suites,convergentes de systèmes stochastiques. 

Ces résultats généraux sont. appliqués à deux problèmes juSqU'iCI non résolus: 

Le comportement asymptotique des systèmes linéaires à états soumis à une contre-

réaction ,non linéaire, àinsi que la stabilité et lelcomportement asymptotique d'une 
\ --- \ 

( - , 
classe de systèmes stochastIques A.R. r d ordre 

j 

commande opti~aJe. 

... 

p à paramètres aléatoires soumis à une 
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Chapter 1 

, -
:. , 

\ 1 

PRELIMINARIES 

In Part, lof tJYs chapter we presènt' a b~ief summary of sorne basic fé1cts frorn probability 
-

theory. and Markov chains, and in Part II we give a short review of sorne ideas from 

:toc!'astic system tqeo"" This chapter is ,intention~y bi,:,:ed t~ illustrate 

connection between stochastic systems and the theory ~arkov mains. 

the close 

.. 

I
PART 1 r', . 
MARKOV CRAINS 

-
~ ~~ ~r- t 

\ .- i 

j --< 

\ 
- 1 

~ - . 
M'ar.kov chains have been called. "a basic rnodel for rnany types of statistical and control 

p~~blerns" [Kushner, J971 1 and have already played a large role in stochastic system 

theory. )n this thesis we will find ~ha:t a Markov state processes rnay often be generated 

fronql.l1 input-output ,stochastic system once a tirne invariant feeâback control law has 

been assigned. This Markovianization will, in many cases, allow the asymptotic analysis 
, 

of the distributions, and the sample path averages of the input and output processes. In 
\ . , 

this section we will give a review of sorne of'the key results from the theory of Markov 
" 

chains evolving on Êuclidean space and ~ring together many of the important ergodic 

properties of these processes. This theory forms the foundation of the rest of this work. 
'\. 

) t~ ~ . -
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) 1 Weak and Vag~ Convergence 

, . . ( 

1.1 Weak and Vague~Convergence 

The theory of -the weak convergence of pr<?bability measures on metric spaces -has been 

investigated in detail in [Parthasarathy, 1967], and ~BiIlingsley, 1968]. I!l tKushner, 1984] 1 

and [Ethier and Kurtz, 1986.! th,is, theory has been extended and apphed to form a ,-!seful 
. e -, . 

and Itinteresting theory for the approximation of c~ntinuous time stochastic sy~terns. In 
,1 

) 

this secti~n we present- the results on weak and vague convergence oL measures which ,1 
- -_/ ------

will be needed later in the thesis. For further information on vague c~nvergence ofiX 

sub-probabilities see [Chung, 1974), and [Loève', 1977]. 

Let X be an open su bset of 1R M. By measure we will always· mean a positiv~ 

u-finite measure on X. A probabillty (sub-probabllity) f~ a meas\lre whose total rriass is .. 
1 pess than or equal ·t~1). The set of ail bounded Borel measurable functions on X 

'. 

forms a Banach space B w~e 

11111= Â sup If(x)l .. 
X(x 

Letting C de?ote the set of continuous f ( B, and M. the 'set of probability measures 
J . "\ 

on 13 fX), it is easy to see that .M c C*, the dual of C, and hence M together with the 

relative topolog,y of C* on M is a topological space (as a notational convenience, and 

to emphasize the duality betwern .M and C- we wil} often wnte (/-i, f) for f f dJl.) In 
, 

this topology a sequence {vd b 1 converges to v if .and only if (Vb J) -t ('J.L, J) for every 
" t - , '-

f f C. A subset A C ,M is open if and only if for each v E A and every sequence {Vk}k::l 

~onverging weakly to v, there exists an N f Zl+ such that {Vk}bN C A . .M together 

wit~ this..topology is metrizable. in fact, ~f the norm Il . Ilw is deined. by ,,~ 

00 

II/-illw ~ I: I(Jl, f~) 1 

2 

•• 
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Il Weak and V<l;gue C'onverg;nce 

wh""." p.,is a finite signed measure and {h}~1 C C is a~itabIY. <jefined 5:: of functlOns 

(see IParthasarathy, 1967]), then the topology on .M generated by this norm is equivalent 
a "... 

to the ~OPO~?gy of weak convergence. The set of probabilities A c M is precompact if 

an~ only if it is tight, where we say a set ot probabilitles {VoJacA ç ~ is tight if for 
J. 

every ê ;::: 0 there exists a compact set CcX for which 

for every a E A. 
, 

Ç!> '-. 

The following is taken from [Billingsley, 1968] and iPartliasarathy, 1967]. 
'\. 

\ 
Theorem 1.1.1. The fol/owing are equivalent for a sequence,{vk}~l C .M 

(i) 

(il) 

( iii) 

(zv ) 

{Vk}b1 
w.eakly 

-----4 V 

for aIl open sets 0 eX, lim inf vk {O} ;::: l/ {O} 
k-oo-

for-all closed sets CcX, lim sup Vk {C} :Ç 1/ {C} 
'k-+oo 

for every equicontinuous family of functions CcC, 
, .,' "" 

lim sup I(Vk -v,/)I = o. 
k-..oo IEe 

.-

~ 

o 

. Let Co c C denote the set of continuous functions on X wt\ich converge to 
, 

zero on the "boundary" of X. That is, f (; Co if for sorne (and hence any) sequence 
'. J."" • 

l{ Ck : k (; ~+} of compact sets which satisfy 

00 

Ck C ChI> and U Ck =X, 
k=O 

we h~ve 
\ . 

.... •• "li 
, 

Iim sup 1/(x)1 = o. 
k-+oo XtCC 

k 

f. ,- 3 

,. 
( J 1) 

! 

,"' .. 

• 

_ .-.,' l 
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1 l ,Weak and Vague Convérgence 

, . ) 

Q ~ sequence of sub-probabil~ties {Vk-}~l is saicl to converge vague/y, to (l. sub-probability 

v if for an ! ~ Co 

tl 
, ~nd in this cas~ we will write 

vaguely 
Vk ~ v 

.~ 

r 

ask-oo 

Obviousfy weak convergence implies vagué convergence. On the other hand, 

weakly 
it is easy to verify that a sequence of probabilities {I.lk}b:l ---t v if and-only if , 
{ }

OO vaguely cl { }~ . . lrt' 
vk ,k=l ---;--' v, an Vk k=l IS tlg . 

~ i We say the function f~ X -> IR is umformly Integrable with respect to (~e 

prot~bilities {Vk : k € .ll+} if ~ 
. 

lirn sup sup r If 1 dv/s, = O. 
N-oo kâZ+ J{lfl>N} - , 

This condition is satisfied if 

/. 

for sorne 6, Ai > o. We c01'lclude this section with the following sufficient condition to. 
') . 

. ~~ 
ensure the converg~l1ce of morn~nts.on X when Vk --+ Il. This result is taken from 

. \ 
Theorem 5.4 of [Billingsley, 1968]. 

Theorem 1.1.2. Suppose the f~~ction !:X - lR is c-ontinuJus, uniformly integrabie with f 
r:.espect to the probabilities {vk : k € ~+}, and vk w~Y v as k - 00. The~, ' 

\ -- \ 

lim / f dVk = f f d/!. \ 
k-+oo 

Dl! 

4 

, -
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" 12 Markov Transit.101I FunctlOn~ ., 

, ~ J Markov c~ain '. is not really 'one stochastit process but a family of stochas-

, tic processfs parameterized by the initial distribution: tiya"ïs 1 the dist.· tion'~ J..I.o of cbo~ 

The fundamental object which. makees the definition ~f ~ Mar~ov' c in ~ossible and fa­
y-

cilitates it's analysis is the Mar;kov transition function. 

1.2 Markov Transition/Functions 

Here we giv..r thEl stand:,:d definitio'n of a Markov ~ransitlon fl.lnction as in [Doob, ~9531, 

amf then 'we will' use i"t to 8efine"line.ar operators T and U, defined on Band, .M ;~spec-
• 

tively. The key property of U which is investigated in [Saperstone, 1981] is that if a 

technical condition known as the Feller qroperty holds, t]len the pair(.M, U) is a semi­

dynamical ~ystem~ Besides it's intu'itiv!appeal, this ~roperty of Feller chains enabl~s us 
1 J 

to exploit many'important résults from the theory of semidyna~ic'al systems. In par-

ticular, important notiqns from this field such as positive limit sets, stationary points, 
r'" • ' 

periodic ûrbits and stability have new significance in the cO,ntext of Markov chain 

stochastic ,system theory. ' 

A Markov t~nsition function is a mapping P: ff.x-B-~':iû;tj·"Sllctrth 
~-

for each x € X, 

.' , P(x, ,) (. .M (1.1 ) 

and for each A € B(X), 

P( ,l,A) €~. (1.2) 

• 4 

'A Markov transition function toiether with'an 'initial distributio~ J..I.o gep.er-

aies a ,Markov ch~in • = 4{ ()k }k::O on (Xz?, B (XZ?) , Pif 0) where Xz• is the set of sequences 

5 

{ 

o 

" 
/ 
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1 2 Markov Transit ion FunctJOn~ 

"" tt ~ ." 

- '''-' 

and 8 (Xz+) is the. smallest a-algebra on XZ
- containing tl}é sets 

,," -t .... ,.,.:' • • 

\

'" ,9' " 

. {Ao x ... x Ak x X.x ... : At E 8 (X), k E Zl+} . .. , 

0, With the stochastic process t 50 defined it follows that the distribution of each 4)k is 

UkJ,LO (denoted 4)k "" Uk/to), and that t satisfies. the Markov property: . 

./ , . 
~{~k f. AI~o, .. · ,4)k-d = P.{~k f. AI~k-d ~ 

. a.s. :p IlQ 1 for A E B (X) , (1.3) \ 

, 
A Markov transition operator T: B ~ B is defined fot- 1 E B by 

TI (x) = f P(x,dy)f(y) .. (1.4) 

It's adjoint U: M -t M is defined for iL ( .M and A E 8(X) by 

VjL (A) = f J,L(dx)P (x, A). (1.5) . .. . . 
'. 

l , --... b' \ ' ....... 

Note that the domain and range of U Rlay' bë &tended to include aU a-finite measur.es 
, ~ .) r 

qn. B (X) and 'similarly, the domain and ra~ge of T may be extended to inc1ude aIl 
\ . ' 

(/j positive 8 (X)-measurable functions. W.e have 

• • (UJ,L, n = (Il, Tf) '. 

~ .' for any signed measure J,L and Borel function,1 which JIlake.s one of the expressions mean­

ingful. Obser,ve that for an initial distribution J.tOr and a function f l L2(X,B(X),~o) . " , , 

the !cast squ,ares estimate of 1 (4) N +k) given {~o,.·· ,~N} is 
oc " 

Î 

.. 
'. 

6 

.. 
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) and the me~ squ~e errot' ffi 

1.3 Feller-Processe~ and Invariant Probabihti\:'~ 

" 

/ 

~ 

As an example,' consider the stochastic proçess generated by the recursion 
'--

(1. 7) 

, : 

where F: X y JR.P "-t'y X is BoreL measurable. Suppose that é)o and the disturbance 
~ .. -

proc~~s w are mutually independent Borel random variables on the probability space 
- -. 

(nt 1, P~o)' and that w is 'ln independent and identically distributèd (i.i.d. ) process. 
~ . 

) 1 

Then t~e stochastic process • generated by (1.7) is a Markov chain with Markov tran-

sition operator 
t ~ 0 

. . 
Tf (x~ = J f (F(x, w)) ~w(~w) 

'._ ~ 'W4.e~e I,h~ is t~e distribution of wk' , 

1.3 -Feller Processes and In~ariant Probabilities 

The maj~rity of important results concerning the asymptotic behavi6r of Markov chains 
., - . ' 

require the existence of an invariant measure. By this we mean a (positive q--fi.nite) 
• ' 'lib' / <-

1 

measure i with the property that 

V1r = 1r. (1.8) 

" . . 
. If 1r is a probability and if iPo has distribution 'Ir then «Pic' "" 1r for aIl k > Ot and in fact 

• is a stationary stochastic process in this case. The first result below ~es necessary '" . . 

• and sufficient conditions for the existence of a,n invariant probaQjJjty. 

'. 
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1:-1 Feller Procel'!:"es and ID\'anant Probabllitie~ 

) A function f: X -+ R- is called a moment if there exists a sequence of 

compact sets, Kn C X, Kn Î X S.t. , 
r 

. 
where we ad6lpt the convention that the infimum of a function O\~er the empty set is 

. 
irifinity. li X is .c1osed and unbounded it is evident that f(x) = IIxil P is a momën~ for 

, t\ any p > O. Furthermore, if X is compact then our convention implies that f is still a 

~ 

j 

moment because we may-seJ; K n '= X- for aIl k l 'll-+. , 

A Markov transition function P is "said to haye the Fellfrproperty if 
'" ... ~ . , 

J P(y, dx)h(x) 

is a continuous functipn of y { X for every h f C. Hence, -P has the Fe~ler property 

if and only if T: C -+ C where T is the Markov transition operator corresponding to 
" . . ~ 

P. It follows that the rnap U: Jvt -+ .M is continuous, and in particular x - U 8x is a , 
, 

continuous mapping from X to .M. As an example,. the Markov chain generated by the 

recursion in (1.7) has the Feller property if the function F(. ,z) is continuous for.a.e 

!Jlwl z (RP. 

Theorem 1.3.1. (Benes, 1967 and Saperstone, 1981) Suppose 'that the Markov transition 

'function P s.atisfies the Peller property. Then a~ invarjant measure 11" exjsts jf and only .. 
if a moment f exists such that for sorne initial distribution /-Lü either 

s'!p E~o!f(~k)l'< 00, 
, 

(1.9) ) 

k€~+ . 
~ 

\D ./' 

or _. 
. - 1 !( .: . 

sup N' L E~o[f(~k)] < 00. (1.10) 
N~o k=l . 

F~rthermore, jf one of these "conditions holds we ha.ve for a.ll 9 (. oC 

8 
1 

.. 

1 

" 
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, .. .' 1.3 Feller Processes and Invariant Probabilitle$ 

(1.11) 

Proof. 
• 9 

~he proof of the existence of an invariant probability is straight fqrward: ~ (1.9) or '. 

(1.10) holds,' then the collection of probab"ilities . . 

, 
N -

{ N; 1 L Uk 
/-Lo : N € Z+ } + k ,.. 

t =0 

(1.12) • 
. ' 

.t 

is tight, and hence is a precompact sJlbsèt of .M. By tne Feller property,-eny weak limit 

point must be an invariant proba1?-ility. 

To establish (1.11) it is suffiêïent to show that thére is at most one invariant 

probability in' the closed convex hull of the probabilities in (1.12). For a proof of this 

fact the reader is referred to [Saperstone, 1981]. 
CI 

op 

\ . .' 

Observe th'at equation (l.U). is equivalent to the statement that' 

N 
1 '" weakly 
N L- /-Lk --+ 11" 

k=l , 
. . ~ 

wherè ror k E Zl+, /-Lk.~ Uk/-LO = the,dist~bution of ~k' 

_' _ ~ X is a cl~sed suhset of 1R n, and for sorne initial distribution" there e~sts a 
" ~ il" 

"(2 such that either ' ~ 
,; fil \ "" ...... 

, (1.13) 

or 

c 
9 

, . 
o .. , ~ 
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11 -1 3 Feller Processes and Invariant Probablht le;; 

l "). _ 

then by Theorem 1.3.1 an invariant probability exists. In fact if (1.13) is satisfied then 

for eve"ry L > 0 • ,. 

, . 

<~J 

Renee, denoting the distribution of 4Ik b! Jlko'thè probabilities {~ Ef=l Pk} :::::1 ~re 
tight. This is equivalent to the existence 01 a mQment ,satisfying (1.10) and hence an 

invariant prob~bility exists. 

We conclude this section with a new characterization of systems which pos-

sess inva~iant probabilities. 
) , 

\ 
Theo~ein 1.3.2. Suppose ~hat an invariant probability does not exist for U. Then for 

any f ,f Co 
<' N 

-11 1 L;4 , lim -- TJ = o. 
N-oo N·+ 1, 00 

,. J =0 "t 

(1.15) 

That is, ;~l Lf~o TJ f ~ a uniformlyas k --t 00. 

. 
Conversely, if an invariant probability 1f does exi.~t then by Theorem 1.3.1 

:> 

the limit in (1.15j is non-zero for any f l Co for which J f d1f f O. 

.. 
10 
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1 3 Feller Processes and Invariant Prob_abtlitie~ 

Proof. " " 

Fix f l Co and ~ > O. Define the open sets {Ak : k f. ~+} by 

, 1 N 

AN = {x ( X : N + 1 L TJ f > {; }: (1.16) 
• DJ=O 

H (1.15) do~s not hoÏd th.en there exists {) "> 0 and a subsequence {Nt: l € ~+} of ~+Q 

with A Nt :f 4> for .aU 1. Let {Ilt : i f. ~+} c .M be pro,babJlities for which J1. t {A N) = l, 

éWld define 
. • N t -----, 

~~'\' J >'t - N L- U Ilt' 
t J=1 

The set of sub-probabilities is sequentially compact with respe.tO~ to vague- convergence..-

(see !Chung, 1974].) LeV>'oo be any vague limit point: Àn v~ly Àoo for sorne subse­

quence {~t :, € ~+} of ~+. The sub-pr:bability ;\00 =F 0 tbecause by the ~efi~it;on of 
, 

vague convergence and the definition of An, . 
.... ~ 

Nt J f d>'oo ~ li~~f ~~. L J f d( U 3 
J1.t ) 

J=1 

= li~~f J ( ~, ~ T' f ) d#, 

~ olim inf Ilt\ AN"} = (; > O. 
t-+OO f t 

(1.17) 

We will now show that >'00 is invàriant. Letting 9 f. Co satisfy 9 2 0, and 

Tl l Co satisfy 0 ::; 77(X) :s 1 for ail x f. X, we have 

J 9 d>'oo = lim J 9 d>'n ' 
t-->oo t 

. 
11 

" 

, 
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1 _ 

!Ii ' 
1 . nt J 

~ Hm 1\T L. TJ(17T9)dJ-l1 9'0 
t-+oo JV n 

t J =1 ' 

'-'1'. = t~ f (17(X) f P(~,dy)g(y)) Ant (dx) 

= / (77 (x) f P(x, dy)g(y) ) Aoo(dx). 
. .' 

(1.18) , . 

'L.etting the fûnction 77 i 1 it follows .that 

/ 9 dAoo ~ f 9 d(VApe) " 
/ 

and this implies that for aIl A;f. B (X) .. 

, 

This is only possible if 

>'00 {A} = U>'oo {A}, 

. 
and hen~ >'00 is an invariant sub-proba,bility. SiRce we have assumed that no tnvariant' . 
pro~i1ity exists it follows that >'00 = p, which contradicts '(1.~ 7). So, AN = 4> for 
, \ . 
sufficiently large N .and this completes the proof. 

o 

1.4 • Irreducible Méfrkov Chains J 

In this section we present ~ome results from the theory of irreducible Markov chains. 

Most of this material c<?mes fro~ [Nummelin, 1984]. Irreducible Markov, chains exhibit 

many of the properties of Markov chains evolving on ç. finite set. In particular, in the 

first part of this section it is shown that there exists a (unique) cycle of disjoint Borel 

sets {~ : 1 :S i :S.A} for which lX
t 

is taken to lX
t

_
1 

(mod >') by the M,arko~ transition 

operator T. 

.' 12 
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1 4 lrreducible Markov C'ltal/l< 

- . 
1.4.1 Periodic Behavior in Markov Chains 

We say a set A t: a (X) is attamable from x € X, and write x ~ A if for 'Sorne k t: m!..., 
.... '. .. , 

pk(x, A) > O. It is called absorbzng if P(x, Ar = 1 for aIl x € A,' and X is called 

indecomposabJe if it does not c~ntai) two disjoint absorbing sets. 
_ ." J, > 

, -
.. Il • 0 

'Fhe potential kerne/ G is defined for x t: X and A € 8 (X) by 

(le 

G(x,A) = L pk(x,A). 
k=O 

F~r a set A f a (X) the set Ao € a (X) is defined as the set of point~ in X from which A 
1 > 

~. is not attainable. Hence, 
.,. 

Ao = {x € X :'G(x,A) = D} . . . 
The set Ao is either absorbing or ~mpty, so if A is absorbing and X is inaecomposible 

then Ao must qe empty. 

Let.p be a measure. The Markov chain • is said to be rrrea.ucJble if x --> A 

1 

\ 
\ 

for· every A t: a(~) for which 'ip{A} > O. We pay that the measure J.l ~s absolutely \ 

co~tznuous with respect to the Ïneasure Qlfor A ta (X),: /1 {A} ... = 9 ~ Jf{A} = 0; il 
"-

and 1/ are, said to be equl valent (denôted J.L ~ 1/) if J.L -< 1/, and 1/ -< J.l. Suppose that m 

is a measuru which satisfies 
,1"·i~ 

Um -< m. (1.19) 

" Such a measure ahvays exists since if J.l t: .M then 

00 

m =!- L 2-(k.+l}UkJ.L 

k=O 

is such a measure. Furthermor~, any invariant measure trivially satisfies equation (1.19). 

H m is an" irreducibility measure for. satisfying (1.19) then m is called a maxImal 

irreducibility measure. It is a remarkable fact that in this case m is indeed maximal in 

13 
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lA Irreducible Markov Cham" 

the sense th~t if :p is any _other irreducibility measure then r.p -< ID. and in particular, if 

ID and _n are maximal irreducibility measures then n ~ ID (see [Nummelin, 1984].) 

The following lemma shows that it is possible to restnct the Markov chain 
1 

~ to a set oT full ID-measure when ID is a maximal irreducibilitr rneasure. 

Lemma 1.4.1. Let m be ~ maximal i.rreducibility measure. Then: 

(i) If Ais-an absorbing..set then ID{AC
} = Oj • 1 

(ii) 0 If F f ~ (X) and m{ FC} = 0 then there exists an absorbing set A ~ F . .;r 

o 

Assume now that • is irredu;ible. We will sh~w that for SOrne À (Zl+ the 

state spaèe X may be written as a disjoint union 

,?-' ).-1 

X= {U Xk'} UN 
k=O 

where N is a set of m-rneasure zero, and the set~ {X; : 0 :::; ,i :::; À - 1} form a cycle: 
J 

That is, , 

P(x,X}) = 1 for XE XJ - 1 ' (mod A). 
~ 

Observe that if {~ : 0 :::; i :::; À ob- 1} is a cycle then their union is an absorbing set.' A 

positive Borel function S $lnd non-zero finite positive measure Il are called small if for 

sorne N f Zl+, and ail x f X, a!,!d A f. 8 (X) 

(l.:W) 

Surprisingly, for irreducible.chains there always exist sm ail ftti:ns and rneasures: 

Theorem 1.4.1. Suppose. is irreducible. Then there exists li small function s, and a 
\ . 

small measure Il for which f s dll > O. 
o 

14 
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1 4 Irr€'ducible Markov ('i;alll, 

It turns out that a small function s vanishes' ~n ail but one set'X
l 

of a cycle: 

The proof of the followîng lemma follows directly from the definitions. 
4 1 

Lemma 1.4.2. If {~ : 0 ~ i ~ À, - I} is a cycle and s Îs a small function then for some l 

- <1 

s(x) = 0 for all x f XJ~' and a11 j =1= t (rnod .\). 

\ 

y, ( o 
.11-
We now present the existence, theorem for- cycles. Let À be the greatest 

commgn divisor of the set 

j ~ {m ~ 1 : pm( " .) ~ ,Bms{. )v{ .} for sorne f3m > o} . 

Jj1 11_'-:''' i ! ... ;... 

The set 1 is closed U:nder addition and hence contains all sufficiently large multiples of 

À (see [Orey, 1971J.) 

• 
Theorem 1.4.2. Suppose that • lS irreducible. with. maximal irreduciblity measure m. _ 

'/ , 

Let À f JZ+, s and v Qe as above. Then: 
, / 

\ 
, f 

(i) There is a À-cycle {~ : 0 ~ i ::; .,\\.,- I}. 

)< (li) If {x:' : 0 :s " :s A' - 1} is another cycle then >i divides À, and any X: is the 

union a.e. [ml of sets from the collection {~ : 0 ~ i ~ .,\ - ,I}. 

Proof. 

For j =0,° ... ,"\ -'1 set 
"' 

-L (1.21) 

15 
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1,4 Irr'eduçible ~arkov Cham:f 

lt IS easv to show that bv irreducibilitv 

, ~ 

• 
" 

\. . . 
) f J pk(~, dy)s(y) = J G(x, dy)s(y) > à 

k=O ' 

everywhere, (l.22) 

_and hence U;:~ ~ =;~. Furthermore, by irred'tcibility a~d"the definition of >. a simple 
. . 

argument (see INummelin, 1984]) shows that these sets are m - a.e. disjoint: / 

for i --1= J (mod >.). 

. . , 
By Lemma 1.4.1 there is an a~sorbing set F with m{F C

} = 0 su ch that the s~ts Xl = 

~ n Fare disj.oint. By l1.21) if P(x,~) > 0 then x must belong to ~-1 (mod >.~, and 

hence {~ : 0 :S l :S >. ...:. 1 t is a cycle: The iiniqueness asserti?n (il) follows easily. 
o 

,,-
1.4.1 ~urrence and Convergence Of The Underlying Distributions 

'" 
ln this section we present two standard recurrence condiÎïons' f9r Mark:-chains, and a 

variety of limit theorems for recurrent Markov chains. 

1 
Suppose that the Markov Çhain ~ is irre"ducible with m,aximal irreducible 

measure m. It is caIled: 

(t) recurrent if 

{ 
> 0 for aIl x f X; 

m{A}>O=>Px{<I>k fA t.o.} =1 f Ail or a.a. x f m. 

(i) Harris recurrent if 
, ' 

'. ' 

m{A} > 0 :;:> Px {(Pk f A i.o.} = 1 for aIl x f X, \ 
1 

.. 
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1 4 lrreducible Markov C'haill5' 
. ' 

We cali ~ Markov chain ip-recurrent- if for every A E ~ (X). 

ip{A} > O.=::;. Px {ipk {A for sorne k { 7L+} = J. (1.23 ) 

lt follows frorn Proposition 3.12 of !Nummelin, 1984] that ~ is ip-recurrent if and only 

if it is Harris recurrfnt. . ' 
We see' in th~ollowing theorern that there is not a great deal of difference 

- ) 
between recurrent and Harris 'recurrent Markov chains: 

o 

Theorem 1.4.3. Suppose that' ~ is 'r~~rent Then ther,e exisrt> an absorbing set H f. 

8 (X) such thaf the restriction of. to Ïl is Harris. 
o 

, 0 

_ It turns out that for Ha:-ris recurrent M:arkov chains the existence of an 
" 

invariant me as ure is guaranteed: 

Theorem 1.4.4. Sl}ppose that • 'is Harris rec_urrent. Then there exists a positive a-finite ..... 
'" invariant measure m. lfn is any other a~finite invariant measure then n = cm Ivr some 

c { Dl .• 

We summarize here sorne extremely important lirnit theorems for Harris re-

c\1rren.~ Markov chains. The Markov chain ~ is called dperwdtc if À = 1 where À is the 

integer defined above Proposition 1.4.2, otherwise it is called penodzc. 
, 1 

, 

T~eo'rem 1.4.5. Suppose that (i Ïs an aperiodic Harris recurrent Markov chain wtth 
\ ,1 ~ 

invariant measure m. Let Ji. and v be any twl initiàl distributions, and let I,g € 

LI (X, 8 (X), m) be such th!lt J 1 dm = J 9 dm. Then: 

1 
1. 

17 
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1.5 , Sample Path Prop,ertlei" of MaJ"kov (,ham~ 

J'and 
'\>.~ 

. k J fdm 
1 hm T f = {X} k-+oo m 

for l!-.a. lm] XiX. 

,. o 
) 

We have the following corolla~y in case. possesses an invariant probability: 

. _ CoroUa y, 1:41 If " possesses an i~V~rian t pTobabil;ty 1r then under th e 'con d (tions of 

Theore 1.4.5) we have 

" 

\ , 

< ,and 

for a.a. [11"] x f X. --
/ 

"t-o 

. ~ ~ 

For a probability J10 i .M the sequence {J1k ~ Uk J10 : k E Zl+} is called the . 
tra)ectorlstartmg at J.Lo. Cali a trajectory Il ~ {lib k l Zl+} a periodic orbit if there 

~ 

exists À ( .ll+ such that 

(1.24 ) .. ' 

The smallest À ~ 1 for whi,ch (1.24) holds will be called the period of Il. 

If. is positive Harris recurrent (that is, • is Harris recurrent and its invariant 

measure is finite), and if. is periodic with period À > 1 then Proposition 1.4.2 implies 

that non-trivial periodic orbits always exist. The C<;>rollary' to Proposition 1.4.5 implies 

~ -
that for a positive Harris recurrent Markov chain every trajectory converges to a periodic 

orbit in total variation norm. 
\ 
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1 5 Sam pIe Path Propertles of Markov (,haJn~ 

1.5 Sample Path Properties of Màrkov ChaillS 

In this section we describe the sample path ptopertie~ of Markov chains whi~h possess 
• Q 

invariant probabilities. As remarked before, if 1f is an invariant measure then the Markov 
• • Ii . . 

chain .' evohring on XZ generated by 1f is strictly stationary. Let El C 8 (XZ
) denote 

the a-algebra of invariant Sets of the stationary stoc_h~tic procesfi,.. For the special - , . '.-
case of a stationary Markov process every A i E{ is of the fonn . . 

A ~ { ... · ... xAx1xAx ...... } ()..25) .~ 

-for sorne A f..E (X) where A has the invariance property 

P{x, A) = lA (x) • a.e. [1f]. " ,(1.26) 

. , . 
. . The set pf aIl A f ,8 (X) satisfymg (I.~6) is a s~b a-algebra of 8 (X) and any snch 4 wi!1 

also be called 1f-invariant. Similarly, let Poo C 8 (XZ) denote 'the n~gatjve taU a-algebra . 
~ 

of the stationary stochastic process •. That is, 

~ \ 
Poo ~ n a {- .. 4)k-l, 4)kl· 

k:50 , 
Let ~D C Poo den ote t4e a-algebra 

~Every'5et if: E D is of. the forIn 

1 

1 j • ~ • 

for a set A f: 8 (X), and ~ince A € Poo it follows by the Markov property""'that there exists 
rJ ' 

a sequence of sets f~k : k f ll+} such tha~ 
~t 

pk(x',A) = TklA (x) =.IAk(x) ( 1.27) 

Q ~ 1 • 

~\ ,\ Conversely, if A € 8 (X)- satisfies (1.27) then A == l~O(A f Poo. Hence we shall not 
\ ! 1 - . 

distin~'uish between the sets .A and A and w~ will use ED to denote the sub-a-algébra 
.. ..., .. ... 

of se~~oA. f 8(X) which satisfy (1.2?) .. , 

.. " .~ 19 

" 
l' .. 

'\ 
J 



Il. 

.. 

, 
> 

\. 

.. 

. , 
• • 15 Samplt' Path Propertif'~ of Markov C'ha\ll~ 

. The ergodic theorem for stationary l>roçesses applies: 

. For ~ny li f I,l(xz·,B(XZT),p71')" 

1 N t> 

Hm N "" Y(~btk-l"''') =ï E,r[YIEII N~oo ~ \ 
,a.s. [P,..j. 

\ k=I ' 
\. -' 

Hence, 

.: (1.28) 

l' '. 

(1.29) \ 
\ 

.. 
and it follows that 

\ 
N . 

1 = Px{ l~ ~ LY(~bcllk-l,":) = E1r!YIEI1} 
N _00 k=l 

(1.30) 

for a.a. x f X 111" J. This proves: 

• (1.3J) , 
• l , 

'almost surely for a.Er. (11") initial condition 4>0 - x ( X, ~r almost surely when '410 ha..'i , 
.'1 . 
initial .distributions f..l.o which i'!, absolutely con~in~ous with respec~ to 'Tf. 

o -
• l' . 

Wè have the following Corollary to Propà!ition 1.5.1 -which rela.tes positive , 
, ~ 

, Harris recurrence to the ~xi~tence of the Iimi~(1.31) for ail initial conditiol) distributions. 
" ./ 

" Although this is a simple result, it appears to be new. 
.. 

/ ,1 

If 
·""0' 

1 

L 

,1 \ 
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1 5 Sample Path Properties of Markov (,halll~ 

.., 
~ ...... 

Corollary 1.5.1. 4) is positive Harris reeurrent if and on/y if there e),(ists a unique in-

-- -
variant probability 7r. and Eor fty~y Eunction y satisEying the conditions of Proposition 

1.5.1 . " 

, JV • 

.. Hm NI LY(c)b~k~l"") = E1r !Yl 
o N-+oo 

k=l 

a.s. ,[PJ.tol 

/'" for every initial distrib.ution J.to f .M. 
• • 

·Prooi. 

If • is positive Harris reeurrent with invariant probability 7t then Dy Proposition 1.5.1 

there exists. a set G f 8(X) .of full .1r-measure such that (1.32) holds whenever thè 

distribution of C)O is supported on G. Since • is positive Harris' recurrent and 1r{G} = 

1 > Q, for an arbitràry initial condition distribution J.to f .M, PJ.LO {4) enters G}, =" 1, and 
- . 

~ f~lows by a standard argument (see the proof of Theorem 6.2 of Chàlo'ter V of [Doob, 

1953]) {hat (1.32) holds for arbitrary initial dist,ributions J1.0'-

Convetsely, if (1.32) holds for every initial condition distribution then in 

particular for every x f X anP A f 8 (X), 

'\ 1 N ' 

~~oo N L l{4JkfA} = 7r{1}-
k=l 

a.s. [Px]. 

Hence if ~{A} > ,0 then Px {-. enters A • z.o.} = 1. This shows thât • is" positive 

Harris recurrent and the eorollary is proved. 

r- o 

, - . - \", 
We state here the following theorem of Wiener which will be useful later in 

the thesis. The functiç>n log+:1R+ ---+ R+ is cÏefined by log+(x) == max (0, log (x).). 

-< 

,\ 
\ 

/ 
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1 5 Samplt' Path Propertle!< of Markov Cha\ll-

1 -

Theorem 1.5.2. (Wiener. 1939) Let y { LP(xz',8(Xz+).p7f ) forsome p > 1. or more 

generally suppose tiJat 

Then, 

IPART II' , 
SYS';fEM THEORY 

d, 

,f IYllog+ lYI dP11' < 00. lx'" . 

, ) 

\. 

(' 

Cl 

r: 

.,. " ..... ~ '" .,.: .. 

In i{s most general formulation, a (disere,te time input- utput)" stochastic system IS a 
''f. 

causal' ra~dom mapping t.p: U -- y where U and y are ,ets of discrete time stochastic 

, processes on a probability space (n.1 y P) taking values ri Euclidean spac('. U is ca\led 
~ 

the set of outp'ut processes, and y is c~lIed l.h~ set of I~put proce88é8. ' Dy causal Wf.> 
r' •• . , 

mean that if k lll+, u, V l U and Un ::=. oVn for n:S k then (~u)n :=: ft.pv)n.for aU n $ k~ 
- , 

A precise defini~ion is. difficult, but for an interesting <fl!Jc;ussion on stochastic systems 

~reader is refened' to ICaines, 1987]. / 

( 

/ 

• 
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An ~xample which we will often be referring to is the ARMAX system mode! 

of the form 

A
(k) . - A,(k) , ' 

Yk + 1 Yk-l + ... + nI Yk-nl 

. '_ (k) - (k) , .. 
- Bd uk-d + ... + B n2 'Uk- n2 ' .' 

• ,..Jk) • (k)' 
t wk + U'I}" wk-l + ... + Cn3 Wk-n3 

/. -, . 
(1.33) 

....... where the processes y and w,are lRP-valued, u is. m.m-valued, and initial conditions are 
, 

assigned a! k = O. The process u = {udk:o is such that Uk is 1kt 
measurable where 

lk ~ a{Yo"",Ykl Furthermore, the parameter pro~ess (A,B,C) is independe~t of 

. the disturbance process w .. It is readily seen-that these equations generate a random 

mapping from input processes u ta output processes y. However, if a non-random 

mapping is desired then the input space must bé enlarged. In this case the new input 
, ' 

process v takes on the form 

for k = Oi 

otberwise. 

. \ . 
It is not appealing to be forced to consider the 'parameters and disturbances as inputs 

~ 

and this is thé main reason for defining stochàstic systems as random mappings. 
~ l 'z • • 

1.6 Stochastic State Space S;rstems 

In this section we introduce atiefinitian of a stochastic state space system by generalizing 

thtnotion of a countable state controlled Markov chain as described in [Kushner, 1971]. 

A stochastic state-space system is just an input-output system of a special form. Astate 

process x is assumed to evolve along with the input process u, and the output process 

23 
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"!. The state process summarizes the past behavLor of thE' input and stalr pro~ ('~s('~ in 

t'he sens~ that YN +k is in~endent of x~ -1 and u~ -) given observati?ns on x N and 

uZ .... k. AJready we see a close connection between Markov chains and stochastic state 

space systems. 
" 

/ 

We introdùcf! here a formai definition of astate space system, but tirst we 
. . 

make the following generalization of a Markov transition functiQn: Let Y, X. and U 

denote Borel subsets of IR nI, IR 1'12, and m.n3 ...œspectively. A controJl~ Markov transItIOn 

functlon is a ~apping P: X >: U _" 8 (X) --+ [0,11 such that for eac~. u ( U, 

. 
P( .; u, .)" is a Markov transition funçt.ion, . (1.34) 

and for each'Af B(X), 

P(·; ·,A) f 8(X)®B(U) (1.35) • 

~ . 
where for two u-algebr'8.s j and 9 on Xl i an<l.Xz rèspective~; w(> let 1 ®.9 denote the 

smaJl~t u-algebra on Xl x ~z containing the sets A x B for A { 1 and B ( g. 

\ 
Let \1' be a Borel function on X y U, and P be a controlled Markov traf\sition 

, . 
function. We cali the pair (P, \11) a (tlme Invariant)'stochastlc stale spa ce system. Tht> . , ' ., . 
transition function Pis used to d(>nne probabilistically the dynamics of th~ map u -, • x. 

and the read out map \11 takes (Xk" u/r) to Yk withouf rnernory or dynarnics. 
Gr 

i>. To define the input~fltat('-o\ltput prOCCRS (u.x. y) w~ need a proc(>dur(' for 

determining the input uk givcn pélbt ohservation., on x and y. Th('re are rnany ,;it Il a-

tions where one wishe~ to u!:>e fcedhafk which j:., Ilot only a fUflction of th(' 11tate, hut 

also ')f vanablcs which art" md('Jwndcnt of the' 11y-;tt'lIl. "or ('xarnple. wJj('JJ P or '" 

. contains unknown paramcterfl a "dither !1ignal" is added to th(> control for t lU' purpo.,,, 
( .,... L , 

of identification in some'estimation hchem('s (see ICainf5 and Lafortuf1(> 19!H,), or to 

\ 
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16 StoChastlC State Space 'System::: 

\ . 
ensure, "noise controllability" (see Chapt ers II and III) In order to incorporate thls 4 

ihto our model 'we assume that ther~ is a probability space (n, J, P), and a sequ~nc,e 

of leedba"èk laws {In: n f ZL..,..} such that each ln € B(Xn) @ J'~/Two -special cases are 

when In(xo, ... ,xn,w) = 9nfw), whlch is a typical feedback law if the only go<v IS to 

identify unknown paramet~rs, and fn(xQ, ... ,xn,w) = g71,(xo"",xn ), which is typical 
. . 

in optimal control. Finally, to "start up the syst~m" , we need a probability J-Lo on 8 (X) 

which will serve as an initial condition distribution for XQ. 

" 
To summa;ize, we have define~ the following obJects: 

(P, w) a stat@ space system; -

J-LO an initial condition distribution; 

{In: n,€ 7.l+} -: a set of feedback ctmtroI lawsj 

(n"l,p) a probability space .. 

- , 
Using these we now construct the input-state-output process on the probability space 

and 

• 1 

The stochastic processes of interest will be defined by specifying the probability PILO on' 
1 

lx- For a set of the form.-.Ao x B € B (X) @ n we define 

, For k·~ 1, a sequence of sets {At: At ~ '8 (X), 0 ~ i ~ k} and Bas above we define-

. 
uk-l = fk-I(Xk-I,··· ,xo,~) 

and the probability PILO {Xk € Ab' .. , Xo € Ao, w € B} is defin~d b~ 

25 
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." 1.6 Stocha.~tic Stal eSpace S\'slcm< 

" .' These equations define a consistent set of finite dimensionirl distributions on 

lx, and hence define a probability P"Q on 'x (see !Doob, 1953].) Finally, we may define 

for al! k t: .7.l+. 
)", 

Observe that if the feedback laws' {f k : k t: ~+} are independent of k, and 
\ 

'depend only on the present state 50 that Uk = f (Xk),. k t: 7l+, theil the state process x . ., 

becomes a Markov process with Markov transition function Q given by 

Q(x, A) = P(x; J(x), A) for x ( X and A l 8 (X). 
c 

This definition .~f astate space system.is general enough to model almost 

any tifne invariant stochastic system in which the dist urbance- processes are ass'umed to 

be i.i."d." As an example j consider the linear 1'"tate space system 

40-

where A,B,C,D,G, and II, are real matrices, and the jolnt process (:) is i.i:d .. .. ' 
~. 

X k = (;~) we ha.ve ') 

for sorne continuous fum:tion F "and hence letting 

( 1.36)(!) 

(iî) 

~ 

Letting 

(1.37) 

• The time varying case may be modeled ln a.n analogou. way uam, a HqUfnC! {Pk"' kt Z+} 
of controUed Markov tranaition funcliom, and dt!6n inl Pk- 1 (zk_.; "k" l' ) lo bl' the 

distribution oÇrk given %k-l and "k-l' . < 

0-

, " , 
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1 7 Stabihty and Optima) C()ntro) 

where l/ and J.L are the distributions of Vk. and Wk respectively for I~ E .ll-r, it is easy 

to verify that 'p is a eontrolled Markov transition function whieh is equivalent to the, 
• , vIr 

system description (1.36). Similarly, the ARMAX system (1.33) may be modeled using 
q 

a controlled Markov transition f1!nction with state process 

k~1. 

~ .~ 

We now show how the results of Part'" 1 mày be applied to the stability:analysis ' 
l' 

of stoehastic state space systems opera,ting under feedback. 

d _ 

1.7 Stability and Optimal Control 
o 

A number of stability criterià are available for stochastic state space systems operating 
• 

uncler feedback of the- generaÎ form described above. Below we summarize -a few rea-- . 
sonable choices. In this thesis we will be eoncerned exclusively with the infinite horizon 

control problem. Renee, the st ab iIit y criteria presented below evaluate the long run . . , 
: . 

pérf ormance of the c10sed loop -system. " 

( 

(i) We say a control law is mean square stabillzing if for each initial condition 

x l X, and for sorne bound ,i > 0 the familiar performance criterion J k 

satisfies 

J oo == lim supJk'~ Hm supEx [IIYk11 2 !pllukll~] 
k ........ oo k-too 

2 
::; lx' (1.38) 

(ii) A natural sample path analogue of the above is the following: A control law 

is ealled sampie mean square (s.m.s) stabrlizing if the sample path criterion 

27 
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, . 

Loo satisfies for each initial condition x f X, 'l' 

Loo :;=: liIll ,sup LN 
N-+oo 

That is, ExiLoo] < 00. 

.. 

wè will also say that a feedback law is.U -stabilizing for p > 1 if (1.38) holds with 2 

replaced by p. l ) • 
, , 

Ali of the stochastic systems treated in this t-hesis will assumed to be Marko-
1 

vianizable under feedback. That is, for sorne.Markov chain. evolving on astate space 

X c RM', and contjnuou~ functions u:X -+ U, and y:X -+ Y the output processes u 

and y have ~he form . " 

( 1.40) 

"\ 

and in this case • will be called the Markov state process. For 'example, if' (P,.W) is 

a stq.te space system, and the control Uk is chosen to be a continuous function of the' 

present state; Uk = U(Xk) for ail k f Zl+', then the c1osed' loop syste~ is Mark~vianizable 

with Markov state process x. 

In man y ,c.ases, 'the mean square or s.m.s. stability of a Markovianizabl(~ 
, 

stoclrastic system depends on the stability of thE' Markov statc ptocess.. Bere w(' 

jntroduce two useful stability criteria for Markov chains: 

(iii) A Markov chain. is called stable ln probabl/ity if for each initial condition 

to = "X l X and ë > 0, there exists a compact set G ( X Buch that 

~, 
Hm sup Px {~k ( CC} <'..c; (1.41 ) 

k·---oo 
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1 ï Stablhty and Optimal Control 

(iv) The Màrkov chain ~ is called stable in probabzlzty on average if for each initia! .. ' .'(,. 

condition ~o f X and ~ > 0, there exists a compact set ~ C X such that 

N 

lim sup ~ L Px {~k f CC} < é. 

N-+oo k=l 
1 

(1.42) 

These four st ab ility criteria are close!y related for a Markovianizable system 
.,. 

with Markov state process •. In particular, (iii) implies (tv), and in many instances, . ' . 
, 

(i) and (ii) eqch imply (iv t In Chapter II wc, will find that if ~ satisfies a condition 

known as local stochastic controllability then (iii) and (-iv) are equivalent . 

. .. 
Hert we stote a necessary and suffieien! eonditÎon for th. last .fonn of stability. 

Propo~ition :.,.1. The Mar~ov chain. is stable in probabi/it.v on averag; jf and only jf 

for each deterministic initial condition cI>o = x f X there exists an invariant probability 

7rx such that for alJ f f. C, \ 

1 N / Hm N" pk(x,dy)f(y) 
N ..... oo L.." 

k=l - ' 

/ f(y) 7rx (dy) (1.43) 

'. aÏ, :~qu~valently, 
• • < 

1· 

t ~. 

N •. 
.!.. "uk"J: weakly , If L Ux --+ 7rx· 

J k=l 

Proof . 
1 • 

This follows from Theorem 1.3.1 because the Markov process-. has the Feller property 

and (1.42) is equivalent to the existence of a moment. .. 
o 
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1 7 ~ta~ihtv and Opt,imal Control 

ln the following example we show how the ergodic theory of Markov chains 

described in Part 1 above may be âpplied to the optimal control of stochastic state space 

systems, a~d exhibit the close connection between the four stability criteria presented 

above. 
• 

Consider the stochastic state space system defihed by the recursion 
" . 

(1.44) 

where the output process' y = x. We assume that -1 < a < l, the initial condition 

IO is independent of w, w is an i.i-,d. stochastic proéels on 1R, and for aIl k f. ll+, 

wk""" J.Lw where J.Lw is the uniform distribution on [-1,1]. Bence Jlw possess thttdensity 
" \ 

Pw(x). ~ 1/21'_1,1](X), The con~.rol Uk ~iIl be a continuous function of xk:'_and hence. 1 

, 1» • 

each feedback law in this class generates a Feller Markov chain x. . ,~, 

Our objective is to minimize the sample mean square criterion function 

2. ,A. 1 ~ 2 2 
LOC; = hm sup N L- Yk + P'l/;k' 

N -+00 \ k=l 
(1.45) 

1 

When P = 0 the unique solution to this problem is to set uk' = - O:Xb and in thib . ' 

case the Markov chain x becomes arr i.i.d. stochastic process (for k ~ 1~ (ith invariant 

probability Jlw. 

However, if P 1- 0, or because of satura~ion considerations or imperfect knJwl-

edge of the parame ter a, the ieedback control might be chosen to be lof the form 

Uk = 9(Xk) where 9 is contin!l~us. Suppose now that the resulting Markov cnain x 

is stable in probability. Then Proposition 1.7,1 implies that for each x E X there exists 

an invariant probability '!r x such that 

(1.46) 
.. 
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1 
J 

for eve,ry 1 (C. Bence for any continuous po~itive' function 1: X --+ 1R-r we have for 

every m > 0, 

IN ' IN, ' 

lim inf N ~ Ex!f(xk)] ~ lim inf N '" Ex[1 1\ m(xk)] N~oo L- , N~oo ~ 
. k=l k=l 1 

= J 1 /\ m d'If x, ,1 

and by-the monotone convergence theorem this-implies that 

(1.4 7) 

~ ~~~ 

which in partic~lar implies that the mean square st~ility criterion J oo may be bounded 
" , 

\ 
from belpw using- the invariant probability 7r x. 

Furthermore, if: may be verified that by the assumptions made on Ilw, and 

siflce the control law u is continuous, the Markov state proëess x generated by the 

system (1.44) is locally stochastically controllable (see Chapter II.) By Proposition 2.2.4 

of Chapter II, for each x { X the limit 

. 
" 

N 
T. l' 1 ~ 2 2 
)00 = lm N ~ Yk + PUk N-4oo 

\ k=:::l 

- . 

exists, and in fact the expectation of Loo may ~e computed using the invariant proba­

bility 'lfx: 

( 1.48) 

Hence the contr?l g is s.m.s. stabilizing if and nly if (1.48) is finite for every x { X. 

This example illustrates how fe ack laws may be evaluated by an analysis -

of the inv.~robabilities that t~ey generate. For example, if p = 0 and the optimal . 
{eedback law Uk = -Q:Xk which m'akes Xk ~ J.Lw for k 2 1 is not avail~ble, then a 

reason<}.bJe alternative is to attempt'" to find an admissible ci>ntrol which makes the 
-
resulti~g invariant probability '/rx close to Ilw for ail x { X. 

... 

.. 
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Let us now restrict our atten tion to linear controllaws of the form Un ::::: --- kItl' 

-We will find that the stability criterion functions j 00 and Loo take on a simple form in 
L l 

this special c~e. li fJ .â. -10: - kl < 1 then the closed loop sy-stem is stable in probabilit), 
~ /~ 

and using }he résults to be presented_ in Chapt ers II and"'lII we may show that in this L 

case x is an ape'riodic; positive Harris recurrent Markov chain. This example is studied 

in '[Athreya and Pantula, 1986] where it is shawn that the Markov process x is also 
, 

unifotmly mixing. 

Renee, 'there ex!sts a UJlique. invariant probability '/r such that for every initial 
) 

distrihution0J'Q for xo, the resuJting trajectory {J'k : k'f Zl+} of probabiIities governing 

the S'tate process converge to 'Ir in total variation norll!: 
.; . 

'lim sup 1?J.lo{xk f B} - '/r{B} 1 = 0, 
k-.oo BE8 (X) . 

and for ~very x f X the costs J oo and Loo rnay he computed ùsing the inva ant proba­
-~ 

bility 11, 

( 1.49) j'oc, = Loo .= J (t2 + p~(t)2) 7f1 dt ). 
• ._ 1 

We will now compute 1 Loo for each k.f [0, ~l to find the opti~al control law 
r 

. in this class. It is easily verified t'hat with 

00 

ç ~ L(a - k)Tl wn , 

n=O 

the distribution of the random variable'; is the invariant probability '/r. Hence by (1.49), 

for each k € [0, a] the s.m.s. criterion function bec ornes 

/ 

1 
..( 

( LlO) 

• 2 r 

where u~ =: E[wo)' The optimal linear control law k- may therefore be computed 

by setting the derivative of Loo with respect to k equal to zero, 

poly~omial equation. 
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1.8, Stochastlc Adaptlv.t' CORtrol 

For general continuous controllaws we do n.ot have an ~xplicit description of 
.... ,5 0;. , -;.. ~ C\. 

the invariant p~obabrlity '!rx , and in ihis general case computing thé-s.lIl.S. cost Loo for P 

. , 
a given control may not be possible. However in ,many cases useful bounds ar4 availablt 

0 

as is .illustra~etl in the examples studied in Chapters IV and V. 
,. • .. 1 ~ 10 

, .. .. 

~ .' 
" 

1.8 ·Stochastic Adaptive Control 

, . 
tir 1 ~ • 0 

Over the past. ten years there has been extensive stuây of the stochastic ad'aptive control 
.. v, _ .. 

,. - Q \ 

of ARMAX ~ystems of tlÎ~f'Ûrm (1.33)' whère the parame ter process takes on different 
-

forms .in different papers'. In f'Goodwin, Ramadge and Caines, 1981], IGoodwin, Sin, 

1982j, and [Kumar, Pra:ly, }.985] the' parameters Ak(z), B(k) (z) ~a C(k) (zf are npt time 

dependent, while in [Chen, Cain~s, 19851,these parameters are the sum of a bounded 
~ 

\ 

, martingale diiference process and an unknown constant value. In each of these papers 

., 
" 

the objective is to s.m.s. stabilize the sysfem,,,and mmlmlze the S.m.S. performance 
·0 

U Griterion Loo. 

,As an example, con~id:r the control al~orithm in [GoodwinJ Ramadg«;., and 

Cain~, 1198[1]; this treats the system .model given'in" equ.ation (1.~3) with al! of the 
. , . , 

. paraI1leters taken lo he' 'constant. Furthet, for simplicity, we' take the.. delay d = 1, 
.. ,.. ~ 'i ~ 

al! processes to be seaIar, and the reference signal y* to be zero. TheH"the regulation - .. " 

algorith~ of (Goodwin, Ramadge, Caines; I~81) is given by 
9 / 

..... -. -1 
Ok = ,(Jk-1 + T k-1 CPk":'1Yk 

-1 
-1 . rk- 1 

T
k = 1 + rk~~ flcpkll 2 ' ; 

'where 
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tpo,is given as initial con~ition. and uk js computed by set:.ting 
-"1 

" 

• .J"_. 

Observe that with ~k f: R+ x 1R2!nl+ n z)+n3 defined as 

- 1 , rk - . \ , 
'Y}. k ..: 

Cl Bk 
( 1.51 ) cI>k == wk 

. : 

,'- wk-n:i+ 1 

4) is of the form 
",. 

cI> k+ 1 = S ( ~ b W k ) Yi' 

w~ere S. is a Borel measu,rable f.unctioTl on lb." >-1R)2(n1 +.n;}-t n:i (becau~f ~; is continuou:i 

I~r~ and ~ence the c10séd loop ~ystem is ,Markovi~nizable. 

In èach of the papers cit('d above a method based on Neveu's vrrsion of 
. . 

the mart.ingale convergence Theorem (sec !;'\eveu. 1975]) is appIied to cstablish th<, 
, 

" 
D .s.m.s. stability of (1.33) undcr the approprJate hypothcses. A 1k -adapted stoclllu;tk . 

• f • 

Lyapynov funC!tion \t'k" is introduced which ha. .. the SUJH'r martingal(' propert.y 

1 

• 
"w~re the random variables l.!k and Pk are functionals of the sêquence 1{) and ar(! almo8l 

s~rely posrtive, -a~d 2:0' Ok < 00. It follows that VJ; ._'. V 00 a.s. as k --t 00, and thal 

'- tü i1~ < 00. ) 

\ . 

, , 
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Using these facts it is shown in ~Goodwin, Ramadge. Caines. 1981, and 

[Goodwin, S~n, 1982) that the system is s.m.s. stable,' and that for sorne C > 0 and , 
aIl iriitial conditions 4lo = x f X, . 

... 

1 N • 
Loo ~ Hm sup N LY~ + pu~ < C, 

N-C?O k=l 

~nd 

• • !:J. 
where O'~ ;:= E[w~: . 

. 
Until recently, the super-martingale technique has beén the princip le tool 

availab1e for the stability analysis of adaptive control laws. It is limited because the job 

of finding 8: suitable super-martingale bec~JDes e~tremely difficult if the dynamics of·the 
ft! 

process (}.;:= {On,n 2: 1} becornè more cornplicated than, for instance, those treated in 

"'" ~hen, Caines, 1~85l. 

, 
'"'" In the remainder of this thesis we inyestigate) new approach to the stability -

analysis of stochastic systems based upon the ergodic the ory of Markov chains. . .! . 
Î 

'" • \ 
, 

-
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Chapter 2 NOISE CONTROLLABILITY 

" 

2.1 Iritroduction 

. 
Recently, th'ere has beenôconsiderable interest in applying the ergodic theory of Markf)V . " 

chains to the analysis of stochastic control syst'ems (see for exàmple IMeyn, Caï'nes . 
. , .. 

J1987], [Kumar, 1983;, and 1 Kus}mer, 1971),) ln Chapter 1 we showed.that if a Markov 

state may be constructed for the controlled output pro'ces~ then subject to tcrhnical (OJl-

ditions whîch include stabilitYfof the Markovian state procè'3s one may deducc (amongst 

other facts) (i) the existence of an invariant probability 7r for the proccss and (ii) the 

convergénce almost surely of the sample averàges of a function of th(' stat~ process (and 
• 

of its expectation) to its conditional expectation 111' 1 with respect to a !iUb-o-field of 

invariant sets EJ. One of the drawbacKs to this approarh is"that rnany of the dcsired 

ergoditity properties hold only when the initial condition lies in a set of full measure 

with. respect to the invariant probability 1l'. The, goal of generalizing these resûlts ta 
, " 

" ) 

arbftrary initia'J conditions is one of the major objectives of this ~hesis. 

One solution to this problem is to search for an irt~~~cibi!i~asure for the 

state process • and apply the theory of irreducible Markov chains (seeïRevuz, 1975j 

1~ 1 !'iummeli: , 19841·) Th. major ~rawback& 10 thi. 'ApprollCh are that findin, an 

.. 

\ 
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irreducibility measure can be a. formi?able task, to ob tain useful results a proof that 

the Markov chain satÏsfies a œcurrence condition is needed and furthermore. stochastic 

, systems do not possess irreducible "Markov state processes in general. The approacn 

which we introduce in this chapter is based on the concept of con trolla bilit y from linear 

system theory. The task of finding an irreducibility measure and ,verifying a recurrence 
." '" 

condition will be replaced by a computation of the rank of a controllabilitJ;: matrix, and 

~ a proof that the Markov state process is stable in probability on average. 

To motivate the discussion and definitions that follow, consider the Gaussian 

Markov process • gênerated by the recursion 

.. 
èpk+l = Aèpk + BWk+l (2.1) 

J-; where A and B are respectiv.ély n x n and n x p matric",!, w = {Wk : k 2 l} is an 
. ... -

x __ • i.i.d. Gaussian stochastic process on lR.P with W k ,..,. N (0,1) for aU k, and the determin-., ' 

istic initial condition <Jlo {: 1R n is given. 

• 
. Sup~ose that the :igenvalues of A fall strily within the u~it cirde-in C. 

Then many of:the asy~ptotic properties of (2.1) are determined by its unique invat:iant 
. . 

probability 7r. The probahility 7T is Gaussian with zero mean and covariance matrix FI 
, 

where F is the unique solution to the Lyapunbv equation 

U; the pair (A, B) is contro/lable then an analysis of the asymptotic properties' 

of • is straight forward. It m~ay he verified that in this case the matrix F is positive 

definite and it follows that • is a positive Harris recurrent Markov· chain. Renee for 

.1 
, 
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example, if f is any positive Borel function on )Rn. then for E'yer\ ini~ial condition 

~o = x (1R n. '\ 

• (2.2)(i) 

and- by a simple co~putation, ~ 

. lim Ex[f(~k)l = J f d'Ir. (ii) 
k--+oc> 

Hence if (2.1) describes a stochastic system operatlng under feedback. and"f is a loss 

function on the state process ., then by (2.2) the infinite horizon performance is deter­

plined by the invariant,p'robability 71". 

On'the other hand if (A,B) is not controllable then • is not Harr.is in general, 
\ 

and this and other technicalities. preyent (2.2) from holding for such a general class of) 

functi«?ns. Because the covariance matri~ F is not full rank in this case, the invariant 

probability 'Ir is supported on â hyperplane L c )Rn whose dimensi9n is strictly Jess 

than n. Hence (2.2) may not hold unless f is continuous on L. To establish (2.2) even 
, 1 

for continuous functions requires extensive exploitation.4f the Iinear structure of (2.1) . . , -

Our objective in this chapter is to generalize the notion of controllability to analyse 
- . 

nonlinear stoch~tic systems operating under feedback. 

ln Section 2°t"he concept of local stochastic controllability is introduced. It 

is shown that for locally stochastically controilable systems the concepts of sta~i1ity in 

probability, and stability in probability on average are equivalent, and t.hat sueh systems 

exhibit very regular asymptotic behavior. For ex.ample, averages of functions of the 

statf> process coi'lVerge for every initial condition f'Or locally !>tochastically controllable 

syste~ whi~h are stable in probability. For locally stochastically controllable Jyst(lms 

it is shown that if the closed loop system generating • is stable in probàbility, then for 

~.t." 
l 

.... J.~ 
i 
.)~ 
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2.2 Locally Stoch astically Conr.rollablr Syi't em" 

every initial distribution /Lo { .M, the resulting trajectory '{/Lk.: k f. IL.:} converges in 

total variation norm to a convex combination of periodic orbIts. Furthétmore. I( the , 
system is stable in probability and there is exactly one invariant probability 7r, then the 

Markov chain. is positive Harris recurrent. Hence, the probabilities {/Lk : k f 72+} 

,governing the state process either converge t~' 7ï, or to a periodic orbit consisting of 
of 

weighted averages of restrictions of the invariant prbbability to cyclical sets. . -

2.2 Locally Stochastically Controllable Systems 

. In tbis chapter we consider input-~utput st:t~ti'; systenu: possessing Mark~ian real· 

izations of the form / 

(2.3) 

where for ail k, 4.>k E X = an opèn subset of 1ftn, Wk f lRP , and F : X x lRP -t X is 

continuous. 

• • • 
To complete the description of the state process • we assume that the initial 

_, condition 4.>0 and the disturbance process w satisfy 

" 

Al (4.>0, w) are Borel ran'dom varjables on the probabiIity space (0,1, P~o); 

A·2 4.>0 is lindependent of w; 

A3 w is an independent and identically distributed (Li.d) proceSSj , 
R • 

and we wÙI occasionally assume: 

. A4 There exists an open set Ow C 1RP such that the" distribution /Lw of, Wb k f 

1l+, is equivalent to Lebesgue measure on Ow. (We say two measures /L and ,1 

\ 
• 

r 
39 
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LI are equrvalent if for ail A (B(X), 1.t{N} = 0 <=::> 

be written J.L ~ v.) 

LI{.'V} = 0 and thb shall 

1 

Assumption A4 is satisfied when the distribution of Wk possesses a continuous densi!y. 

Markovian systems of this form will be ,obtained from'stofhastîc state space systems of 
1 • 

the form introduced in Chapter 1 by t"he choice M time invariant feedback control laws. -
For e'xample, the Markov state process • define~ in equation (1.51) is of this gt>n<>ral . 

"form. In order to obtaiI) the ergodic propcrties of interest for (2.3) it will. of course. be 
•• 

necessary to verify that each particular feedback law generates a system satisfying the 

appropriate hypotheses. 

The state readout map S: : Il. kp -+ X of the system (2.3) IS defiited induc-
- ~ 

s: = F (S~-l(Zl' 

S~ ::;: x. 

.... 

. 
The state readout map is 50 named becatise for ail k 2: 1, tk = S:(~], . ~. ,w0 wJ~n 
~o = x. " 

"-

Wc now introduce a notion of stochastic controllability: 

r 

Definition. The system (2.2) is called local/y stochasticall" control/able if there e~ist5 

T f ~+ stlch that for cach initial condition x f X there t'xists an open set 0% C R" for. . , 

which the distribution of the random variable tT ::fJ SJ(Wb"" wr) is equivalent to 

Lebesgue measure on Oz. 
o 

, . 

40 
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22 Local!} .Stochastlcall) ~trollablE' ~y;:.lt'm~ 

One consequence of this definition may be roughly descnbed as follow~: If 

(2.3) is locally stochastically controllable, and if starting at a point x 1: X it is possible to 

reach a p,int y f X ;t sorne time ~ ~ T, then at tirne k ail p~in~s in sorne neighborhood 

, çf y aie reachable frorn x. The terminology may also be motivated by the fact that -

if F : X x RP ~ X is !inear then the notions of local stochastic controllabilîty, and 

controllability in the uS,ual sense are equivalent. 

- . 
Figure 2.1 below ilIll:strates the evolution of the underlying distributions gov-

erning a locally stochastically controllable state process t. 

1 

k==O k = 1 

.. , 
Figure 2.1 Local Stochastic Controllability 

o ' 

1 , , 

• 

k= T .. 

/ 
/ 

Here we give a sufficient condition for local stochastic controllability. For 

y ( X and a sequence {Zk : zlè { HP, k { Zl+} let {Ab Bk, k f lZ+} depote the matrices 

and 
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22 Locally Stocha~tJC.ll1v ('olltroHahle Sv!'t\'rn-

Proposition 2.2.1. The system (2.3) is locally stochasticall.'r' controIJable l[ F ?: X ) IR 1 -. 
, l 

X is a continuously differentiable (ClJJun5tion, and [or all initial conditions x ( X there 

exists sorne T 2: 1 such that the generallzed controllabl/ity matrax 

• A • 
CT = CT(X,Zl, ... ,ZT) = IAT-I'" AIBo/AT-l'" A2 B I/··· .. ·/AT-IBT~2IBT-l1 

1 

(2.4) 

i~ full Tank for all sequences (z}, ... ,ZT) f o! \ Z where Z c RPT has zero Lebesgue, 

measure. 

We remark that if f' is of the form 

F(x, z) == Ax + Bz 

then the generalized controllability matrix becomes the familiar controllability" matrix 
• 

Note that aIl quantities in the' matrix' (2.4) are deterministic. 

Proof. 

To prove Proposition 2.2.1 we will need the following Jemma: , 
~ , 

Lemma 2.2.1. Let li 1 C IR m and 'VI C nt 11 be open and suppose G: li 1 x V} -+ IR n , 

. (x,yj ~ z, is Cl, and that the matrix ;;G is full Tank at some {XOd/O} (li} ~ 'V). Then 
~ . vy 

there exists an open set li x 'V C~l x 'VI containing {XO,yo} and an open set 0 C Rn 

such that for any strictly positive Borel [unction p: li x 'V -+ (0,00) thè measure Il 

defined for A f 8 (R n) by 

(2.5) 

is equivaJent to Lebesgue measure on O. 

42 
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2.2 Locally Stochastlcally Controllable System" 

Proof. 
". 

Consider the function G*: li 1 X 'VI -+ IR m x IR n defined for (x, y) f. li 1 X 'VI by , 
- * !::J. ( x ) G ~x,y) = G(x,y) . 

. ~ . 
Under the conditions of Lemma 2.2.1 the function G* is Cl and its derivative is full 

~ 

rank at (XO,yo). By the implicit function theorern there exist open sets W C ]Rm X ]R.n, 
, - \.' 0 

li X 11 C Ul X VI with (xo,yo) f. li x,V and a Cl function H*,; W ---+ U x V such that 

W = { ( G(;, y)) : x, 'U, y, 11 } and H*(G*(~,y)) = (x,y) 

for (x, y) di x V. Applying a projection to the function H* we)~ay find a Cl fiIqction 

H: W ---+ 11 for which 

'H(x,G(x,y));;::: H(G*(x,y)) = y • 

for (x, y) ( li x V. 

We now construct a density for the rneasure / v by à change of variables and 

Fubini 's Theorem: 

~ 1 {t ' . 'aH } 1I{:4} = l{zfA} p(x, H(x, z)) Ideta--I dz dx 
li G(x,1JL ' z '" 

= !IRn l{uA} {!IRm l{(x,z)fW} p(x, H(x, z)) Idet a;: 1 dx} dz 

Let Pl: IR n -+ IR+ be the density defined for z f. IR n by 

• !::J. h Pl (z) = q(x, z) dx 
]R.m 

.' 

, 
where q(x, z) ~ l{(x,z)EW} p(x, H~;, z)) Ide: ~~ 1. Observe that {(x, z) : q(x, z) > D} = 

W and hence;defining the open set 0 C IR n by - \ 

o ~ {z : q(x,z) ~ D for sorne x f. li} = {G(x,y) : x f. li, y f. 11} 

, . it ~asily follows that {z : Pl(Z) > D} = O. Bence v is equivalent to Lebesgue mea.c:iure .. 
on the open set 0 and this completes the proof. 

o 
\ 

\ 

./ 
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22 Locall} Stocha~tlralb C'ontrollahl<, Sy~t"IlI-

We now prove Proposition 2.2.1. For a- set Al 8 (X). and a measure Jl Wf> leI 

lAJ.L denote the measure defined for B l 8 (X) b* 
J 

Fix a point il (X. By Lemma 2.2.1 we can co,:,er Ow'x ... x Ow \ Z by a countable union 

of open rectangles / , . 
Et A. El Et = 1 x ... x T' 

where for each i ( ll+; the distrib~tion V l defined by 

vt{A} ~ r ... r lST( \ \) A J.Lw(d,xd ... J.Lw1d,xT) J Bt J Bt Y "1···IIT ( 
1 T, r, 

1 is' e~uivalent to Lebesgue measure on an open set O~ C X .. Set Oy ~ U~O O~. Then 

" L~o vt is_ equivalent to Lehesgue measure on 0Y' Furthermdre, since 
00 

LVt {'}, 2: pT(y".), for aIl t ( ll+, 
• t=O \ , 

,it foll~~s that pT(y, .) -~ I:~o v1 ' Hence, pT(y, ,) ~ . . lO
lJ

J.L Leb ,and this proves the . - . 
proposition. 

o 

2.2.1 Invariant Probabilities 

We now i!lvestigate the invariant prohabilities of locally stochastically controllable syl'l­

tems. In the lemma below we establish an important property of the invariant prob-
, 

abiIities of such systems which will be used to establish Propositions 2.2.2 and 2.2.3 

below. 

l, 
Lemma 2.2.2. If (2.3) is Jocally stochastically control/able then for any invariant measure 

7r there exists a11 open set W such that 

. . 
that is, 7r is equiva/ent to Lebesgue measure on the open set W . 

. 1 
~ 
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22 Locally Stochagtlcally Controllable Systeln~ 

Proof. 

Let S denote the support of the invariant measure 7f (this is often d~notèd S~7f). , . 
That is, y f. S if for every open set li c X containing y, 7f{li} > O. To prove the lemma 

we first show that Oy C S for every y f. S where Oy is "the open set used in the definition 

of local stochastic contr611ability. 

-

Let y f. S, Z f. Oy, and let li C X be any open set containing z. By the 

Feller property pT(., li) is lower semi-continu9~ (see [Bjllingsley, 1968]), and by the 

definition of Oy, pT(y,li) > O. Renee, pT(x,li) > 0 for aIl x in an open .set 0+ 

containing y. But since y f S, 7T{ O ...... } > 0, and these~ facts imply that 7f{U} > O. Since 

li is an arbitrary open· set containing z, we must have z f. S, and since ft; is an arbitrary 
..... ~.. () 

elem~nt of Oy' this shows. that Oy C $. 

Let W ~ UzfS Oz. We hav~ just shown 'that W c S and on the other hand, 

beca'use 

7F{'} = 17f{d~}pT(;c, .), j 
S _. 

~ 'Ir. ' 

6 we must also have S C -W and this shoWs that S :::: W. 

We will now show that ir ~ 1 W Il Leb • To do this we need the following fact: 

1 - À -
Supposé G is a dense subset of W. Then with Wa = UZfG Oz, . , 

" 

To establish this fact obs~rve that if (2.6) does not hold the~ the open set Wo ~ W \ W~ . -
is non-empty (this follows beêause the boundary of an open set has Lebesgue measure 

zero.) Since Wo is open, we may use the Feller pt.operty to ~how that pT(., Wo) is 

positive on an open subset of W', but this contradicts the hypothesis that G is dense i,n 

W. 
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22 Locally Stocha5tltally C'ontroU<lblf> Sy~tt'llI~ 
.('c ( 

We may now complete the proof of the Jemma. 

\ ' 
First of aH, since 71" = 1S7l", and 71" -< J.LLeb we have 

. 
'Ir -< lSJ.LLeb = 1'U1J.LLeb., (2.7) 

. ' 
where the equalÏty in (2.7) tol1ows from the fact that the boundary of an open set in 

r 

X has Lebesgue measure zero. To show tbat 'Ir ~ 1 W J.LLe~ and coffi'ph:~te the proof of-
~ 

Letnma 2.2.2 we will now show that lWJ.LLeb -< 7I" ... ·têt A c X be a Borel set for which 

'Ir {A} .= O. Then since W = Sand \.... 

l 
o 

there exists 'a dense subs~t G c W,with pT(x, A) = 0 for x E -G, and hence by local 

stochastic controllability, 

for x f. G. (2.8) 

\ 

Using (2.8) and the ract that W \ UxcG Ox bas Lebesgue measure zero, lt fo1low8 tl1'at 

J.l Leb {W nA} = 0, !i~d this proves the le~a. 
o .. ' 

One very important fact established in the proof of Lemma 2.2.2 is that if. , . 
is locally stochastically controllable and 'Ir is an invariant measure which is equivalent . , 

to Lebesgue measure on the open set W, then Ox c W for every x f. W. This, implies 
.. 

that pk(x,··) -< 'Ir' for every x (. W ~nd k 2: T. Furtherf!1ore, we may prove that W is 

absorbing, and hence the !vfarkov chain • may be restricted to W. This follows from 
1 

the Feller property: Let f E C be any' continuous function which vanishes on W. Then, 

0= / f d7l" = / / 7I"(dy)P(y,dx)f(x), . -' 

, 
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2.2 Locally Stochast~ally Controllable Sy!'t.!"m~ 

which shows that J P(y,dx)fi(x) = 0 for a.f. [p,Leb] y ( W, and by continuity it follows 
- , 

that J P(y,dx)f(x) :::: 0 for every y E·W. This'sho~s that P(y, W) = 1 for e~ery y ( W, ". : ,". 
an~ hence • rnây he restricted to W.' . 'ci' 

Let 1 c .M dentote the set of aIl invariant probabilities. 1 and .M are 

ol;>viously con\rex sets. Using the terminology of [Rosenblatt, 1967] we cali an invarian~' 

prob~bility 7r f 1 ergodic if 

for ev~r~ f ( LI (X, 8 (X), 11-). This is equivalent to the condition that the invariant 

a-algebra cortespondtng to 7r is trivial. In rRosenblatt,' 1967] it is shown that the set of . . 
r' • 

ergodic probabilities is precisely the set of extreme points of the convex set 1: That is, . . 

• 

if 71" ( 1 isoergodic and 

for ..\ { [0, 1 ~ and 71"1,71"2 f 1 then ~ = 1 or ..\ =;= 0, and conversely, if 7r f 1 is .an· extreme . . 
point in 1 tlien it is ergodic. 

In J;>roposition 2.2.2 below w~ show that when (2.3) is l,Ocally stochastically 

controllable there exists an at. most countable collection {7r~ : k f ll+} c 1 of ergodic 

prohabilities for (2.3). Fûrthermore,.'the set .of ergodic probabilities in: l.(the extreme . . -

points) actually generate 1, just as the set of extreme points in a compact convex subset 
, .. 

~ 

CeRn generate the set C. (see the Krein Milman Theorem in . [Dunford, Sch~arz, 
, 

1957].) yslng Lemma 2.2.2 we now pr?ve this important result. 
p. .. 

(;) 

Proposition 2.2.2. Suppose that (2.3) is locl!lly s,tochastically controllable. Then there 

exists an at most' count!1b1e (possibly empty) collection of ergodic prC?babilities {7rt 
: i E 

ll+} ànd open sets {Oi ;. i E ll+} such -that: 

J. 
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2,2 Locally &tocha~tîcally C'ontroUahl" Sy$t(,/Il~ 

(i) 1l't ~ lOt dx,. for z € 7l,.., 
1 

\ ,( ii) # Any finit'€! invariant.. measurt 7r has the {orm 'Ir ~ L qt 'lr1 for a ,summable 

5~quence {'qt : i € '!+} C lR~, .• 

Renee, letting , 

" 

t=O 
every .finite' invariant measure is weake~ than Lébesgue measure on O . 

.. , 
Proof. , . 0' , " 

The proof ~s similar to the proof ~f Theo:~m D of Ch5Pter V Of,IFog~9691. We first 

s~ow thatÎ-he- invaria~t sigm~ field of any invariant prObabilit*s atomie. If this is not 

the case then there exists an invariant proba:bility 1l' which 'is equivalent to Lebesgue 

measure on an open .,set U apd contains no atoffi&.. 

Fix BeX open with compact closure such that U n B 1= 4>, Since 1l' h~ no 

atoms we may eonstruct a decreasing sequence of invariant sets {Ak : k f 7l+} such that 
~ 

" 

Ak n B ::j=. 4> and 0 < 1l'{Ad < 2- k for ail k l. m+. By local stochastic controllabil!ty wc . 

may assume that for each k, Ak is open. Let 

.1 

00 

x f.- n Ak n B, 
k=l 

such a point exists by compactness, and sinee Ak is invariant we may show that Or C Ak 

for each k i 7.l+. However, rik?O 1\k c li has 1r-mcasure zero and hene~ Lebesgue' 

measùre zero. We conclude that Or ::= 4> which is impossible. 

This implies that every invariant probabiJity is a WCI 

. -0 
invariant prqbabilities supported on disjoint open sets. Since there can b cl more thàn 

-- . 
a countable !lumbe~ of disjoint open subsets in X .the- proposition")s proved. 

o 
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2,2 Locallv Stochastical1y Controllable .System::: 

2.2.2 Asymptotir Behavior 

We now present sorne important propfrties of the ergodic invariant .probabilities {7rt 

i f. ~+}. For each i l ~+ the stationary Markov process • with in!>~ial distribution 7rt 

v • Jo 

is ergodic. Hence by Proposition 1.5.1, if J.LO --< 1f~ then for ~ve~ A ~ B (X), 'IJ 

1 N 
'lim -" lcllk(A = 1f{A} a.s. ! PJ.LO l" 

N-+oo N L-
. k=;l • 

"'-
and 50 whenever J.Lo ~ 1ft and 1ft{A} > 0, 

, f 
(2,10). 

-.... For any x f. tY we have shown that pT(x, . ) --< ?Tt and." using (2.10), 
~ . 

This and the remarks below the proof of Lemma 2.2.2 proves: 
-' ~ 

Lemma 2.2.3. 'If (2.3) is locally stochastically controllable then for any i l ~+ the 

lvfarkov process • may be restricted to Dt, and the restricted proceSB is positive Harris' 

reeurrent. 
o 

~ 

. The foIÏowing, useful resuJt. describès., the asymptotic behavi-or of averages of 

functjons of • which vanish on the open set 0 defined in (2.9), and' will
a 
be used to 

esta'blish Proposition 2,2.3 berqw. . 

Lemma 2.2.4 .. Let f f Co and suppose f == 0 on 0: Then\ 

,- N 

N~II,y~J~TjfIL =0. (2.11) 

That is, N~l L:=O T.1 f -t 0 unaJorm'lyas N, -t 00.' 

1) 

,v 

'.f 

• 

" 
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2.2 Loca'!l" StochasLÎcally Conlrollahlt> !:'~'I'tt>/TI" 
, 

Proof. 
r 

Fix f ~ cJatisfying ~'the co~ditio~s of tHe Proposition, and é >:J' De ne ,the open 'sets 
)" J' - . 
{A N = N l 2Z+} by , __ 1 • • 

, N 

, AN = {x lX: 'N ~ 1 L Tl f (x) > é }, 
);=0 

(2.12) 

and observe that sinee (; is absor~ing, A'k C Oc for eaeh k. If (2.11) does not hold then 

there exists é > 0 allld a subsequence {NI: l l 2Z+} of 7L. with AN f=. tP fo~ ail i. Let 
" ''''~' ' 

{Jl.t : il llt} C .M 1:>e probabilities for whieh Jl, {A~ } == ),' an@define 
t 

vaguely 
As in the proof of Theorem 1.3.2 we may find a sub-probability Aoo for which An -t 

1 

>'00 for sorne subsequence {nt : t ( 2Z+} of 2Z+. The sub-probability >'00 f 0 because 

/ 

(2.13) 

~ 

By the same argument used in the proof of Proposition 1.3.2, it may be shown that ~oo 

is an invariant sub-probability. We have Aoo{ O} :=,0 sinee by Theorem 2.1 o~ IBillingsly, 

1969) 

l 

and >'k{ O}o:'" 0 for aU k l 2Z+. Furthermore, >'cx:,{ OC} == 0 ainee we have already shown 
1 

" 

that T {OC} = 0 for any finite invariant meélJure T. It follow8 th~t >'00 = 0 which 

contra,dicts (2.13). So AN = 4> for sufflciently large N, and t'his completes the proof. 
o 

\. 50 
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2.2 Locally Stochastlcally Controllable Sv~tem" 

If (2.3) is locally stochastically controllable, and 1fk is one of the lllvariant 

probabilities introduced <l;bove, then because • restricted 10 Ok is positivlt Harris re-. 
current it may be decomposèd uniqu~ly as an average of probabilities {dt: 1 :S l :S À}; 

, ' 

1 ,\ 
• 1fk ,= >: I: dt . 

t=l 

where ~ and dJ are mutually singula~ (de~oted dt .1 dJ ) for i =1= i. 

t 
...".l J (2.14) 

The pro abilities 

el 

{~ : 1 :S i:S À} satisfy 

(2.15) 

Henc~ the trajectory starting at dl is a periodic orbit. Because the probability dt 1S. 

invariant under UÀ for €ach i, it f~llows by Lemma 2:2.3 that the probability dt is , 

equivalent to Lebesgue rneasure on an open set Dt C X. Hence Ok may be written as .. 
the disjoint union . . 

« ' 

. 
The following Proposition deroons:rates how the underlying distributions of 

locally stochastically controllable systems exhibit asyrp.ptotically periodic behavior. 

Proposition 2.2.3. If (2.3) i~ locally stochastically controllable'then for each initial con­

dition x l X, the resulting t?aje~tory {Jlk ~ Uk Ox : k l Ll+} ma~. be written 
700 

Jlk = nk + I: atJlk 
t=O 

":here {nk': k f Zt+} is a sequen~e ofsub-probabilities.for which 
N 

1 L vaguely 0 f. 
- nk ---+ as N ~ 00, 
N 

k=l 

(2.16) 

(2.17) 

and for each i ( 7l+,' the sequence of sub-probabilitieS" {Il}; : k f 2Z+} converges in total 

variation norm to a periodic orbit: That is, there exists a periodic orqit {"Yi: k E Zt+} 
1 

such that 

(2.18) 

1 

/ 
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. 
Proof. 

ln the rernarks after the.proof of Lemma 2.2.2 we showed tlfat for each i ( ~+, the open , . 

set ot has the invariance property 

1 

P(x, ot) ::;:: 1 for each x f Ôt
• 

t 

, This implies that ~ ~ limk-+oo pk(x, 0') exists and is in f~~ t:qual to Px{ tk ( ot for 

,sorne k f m+}. 

The proof of Proposition ,2.2.3 will be completed in two steps. Stép 1: We 
./ . 

show that for each'i {ll+, the sequence of sub-probabilities {J.LÎc ~ (l/a, )1 01 J.Lk : k ( . 
72:+} converges to a periodic orbit whenever 0t ;f O. 

For each l < k < A, the set Ok defined bclow equation (2.15) has the 
• 

inVariance property 

P),(x, Ok) = 1 for every x ( Ok. 

If wc let So, defining f3k f JR-f' by Pk" ~ limn~oo pnJ..(x, Dk) we have. a, := L~= 1 Pk' 
1 ). 

" ïQ =:!;. - L f3k db and ïk =, UkïO 
a, k-:=} 

(2.19) 

~ 
then, since (2.15) is satisfied and Îk f .M for each k (ll-t;, '1::= {1k: k E m+}.is a 

if ' 
periodic orhit. 

By Corollary 1.4.5, 

It f ollows . 'tliat 
• . 1 

lim sup !-l-o,J.Lk.dB} - CY6{B}/ =:: 0, 
k-oo B(8(X) ~ " ' :' 

and further th,at for each j ( ~-f 

, , 

~ 

Hence {tt~ : k E 1l+} converges in total 1 var~Îion norm to the periodic orbit , . 
o ' 
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2 2 Locally St ochastlcally C'ontrollablt' Svst em< 

Step 2: We ar9ft to show that with (, = U~O O-t. and nk, ~ Ioe J.tb ' 

• 1 N 'j!' / 

L vaguely 0 / \ 
- nk --jo • 

N 
(2.20) 

k=l 

Using the same methods used in the proof of Theorem 1.3.2 we mJ.y show that any 1""" ~ _ 
1 ' 

vague 1imit point noo of the prob~bilities {N ~f=l nk : N 2 1} must be tnvariant. 
• v 

Since noo {O} == 0, and every invariant sub-probability vanishes on Oc it follows that 
.. 

noo = 0, and this completes the proof of Proposition 2.2.3. • 
o 

1 

Observe that by Proposition 2.2.3, if (2.3) is locally stochastically controllable 

theIi for each x f. X 
N 1, vaguely 

N L., Il k --jo 0:'Tr x 
k=l 

where 0: == L ~, and for Cl: > 0 the invariant probability 'Tr x is defined by 
00 

1 ,- t 
'Trx == - L- ~'Tr • 

il: 
k=Q 

If 0: =:= 0 then (2.21) still holds with 'Trx == O. \ 

(2.21 ) 

(2.22) 

The statement of. Proposition 2.2.3 takes on a simpler form when (2.:V is 
, -

stable in probability. As already shown, by th~nce of a, pk(x,a c) is-decreasing 
, , 

in k for every x f. X, and hence for each fixed x it's limit as k -+ 00 exists. If (2.3) 

is stable in probability, or just stable in probability on average then we will show in 

Proposition 2.2.4 that limk->oo P~(x, O,C) = 0, and he~ce limk ....... oo nkP9 == O. ln other 

wor~s, {nk : k f ZZ+} converges to zero in total variation norm if • is stable in pro ba­

bility. We will see that this implies that the law of large numbers holds for every initial 
. 

condition distribution for locally ,stochastically controllable systems which are stable in 

probability. 

, 

The following lemma illustra tes the sample path properties of locally stochas-

tically controllable systems. 
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. 

o Lemma 2.2.5. Suppose that (2.3) is Jocally s10chasticaJJy controllable. Let the invariant 

'J>robability 7rx and T l ~+ be as above, and recal} that . 

. . 
Then for any x (X, _and f f LI (xz• ,B(XZ-),PlI'x) there exists a fûnction 

f 00 € Ll (xz• , B (xz.), Px) such that 

N . 0 

Px{.lim ~ '"' f(ipk'~k+l'''') = /oo(4)o,ipl''' .)} ~ Ox (2.23) 
1 • N -+00 N kL- . 

=1 

. where '0:; f [0,1] is defined 'by 

(2.24) 

In fact, J 

1 00 

foo = lr<oo 2: 1{tf>TFOk}~71': [/(~O,ipl';." .)) 
k=9 

(2.25) 

where r is the first entrante Ume into t'he set ,,: / 
T = mi~ k f ~+ : 4> k { "}. . . 

Proof. 
, 

By the corollary to Theorem 1.5.1, for each n E lZ+, and f l LI (XI., iqxl.), Ptrn ) , 

, . 
N 

P~O{)~06~ L f(4)k,4>k+j, .. ·):: Elfnlf(4)>o,tb· .. )1} = 1 
k=l • 

lSl' t 
.f 

/ . .. • ,- r 
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2.2 Locally Stocha~tically C:ontrollable :-vstemi3 

for any initial condition distribl!tion 11-0 for which 11-0 { 0 n} = 1. Frpm,.this it follows that 

for any.x € X, 

" 

= Px{r < oc} = o.x. 

. Hence, 
N -

'Px{)~oo~ L f(~b~k+l"") = fOO(éf?O'~l,: .. j} ~ Clx, 
k=l 

and this establishes Lernrila 2.2.5. 
o 

In Proposition 2.2.4 ~el~ local stochastic controllability is l,lse~o establi,sh 
o _ 

the equivalence of the two forrn.i" of stability for Markov chains introduced in Chapter l, 

and Theorem l.S.l-is géneralized to hold for arbitrary initial conditions. \These results 

hold even in the case wh~re • possesses more than one invariant probability and hence 
1 

is not Harris recurrent 01 even irredllcible. 
• '1 

Proposition 2.2.4. If (2.3) is local1y stochastically controllable then the iollowing are ' 

equivalent: 

.' (i) '(2.3) is stable in pro ba bilit y 

~ 
(ii) (2.3) is stabl~ in probability on average 
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(iil) O:x = Px{<Pk f. 0 for sorne k E ll-:-} = 1 for all x (x. • 

l ' 

Hence if any of the above hold ·then by Lemma 2.2.5, , , 

(2.26) , 

for any f ( LI (xz., 8 (xz.), P1Tx ) where foc is defined in equatÏ<>n ~~.25}, and 1I"z. ls defined 

in equation (2.22). 

Proof. 
~ 

We will proceed by establishing that (i) is equivalent to (ii), and that (ii) is equivalent 
, \ 

to (Iii). 
/ 

(ii) =? (li~). For x ( X ~e"rnust show that Px{r < 'oc} = 1. Since (ji)·and Proposi-

. . ,IN k weakly \,. . • .. 
tl~n 1:7.1 Irnply that N ~k=l ~ (x,·) ----t 1rx where 1rx IS an ,InVariant probablhty, 

Theorern 1.1.1 (ii) applies to give 

·N 
Hm inf NI L Px { 4> k ( O} ~ 11" X { O} = 1. 
N-+oo 

k=l 

(2.27) 

) ~ 

This implies t~at i enters 0 'at sorne time k ( ll+ a.s. [Px] sinee for any i ( ll+ 

00 

Px{ U {4>k f "} } ~ Px {4>t ( o} . 
h=O 

Consequently, 

00 

Px { u {4Jk ( À') } ~ sup Px {4>t c "} '/ 
k=O t~O , , 

. " '= l ' (2.28) 

by (2.27), and this establishes (iii). 
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(ù) => (z). Let ê > O. If (2.3) is stable in probabIlity on average then we have already 
\ , 

seen in equation (2.28) that 0. 

Px { ~ k f. 0 JO for some k f. ~+ } = 1. (2.29) 

Hence, 
00 00 

J.Lk = L ~JLk+ nk,Q wh~re L 0:, = 1~ • 
i=O 

vaguely "M . " 
and nk --+ 0 as k -- 00. Choose Mf. 7.l+ so large that L,.,~=o ~ ? 1 - €; ~d choose 
'} , ' 

a' compact set e c X such that 

"tHe} > 1 - ê, fot 0 S; i ~ M, anp 1 :S~ >..i. 

Then, 

M 

iim inf Pk{e} ~ Hm inf L ~J.LÜe} + nk{e} 
k-+oo k--oo 

t=l 

M 

., > ~ 0:, min1k{e} -L, k 
,=1 

>(I-ê)2. 

Renee (2.3) 'is stable in probability. 

~ • 

. (2.30,) 

It is obvious that (i) => (ii), so we are left, to show that (iii) => (ii). ___ _ 

H (iii) holds th~n by Lemma '2.2.5 for every x fl X, and every 1 f' C 

1 N 
Hm - L I(~k) = 100 a.s. [Px] 

N ....... ooN . 
k=l 

/ 

(~.31 ) 

.. Taking expectations of both sides of (2.31), and using the 'dominated convergence the-

orem and (2.25) shows that as N. ---+ 00, ~ 

N 0 00. '\ 
..!.. " Uk r weakly ~ t" 
N L- CJx --+ L-~7r. ' 

k=l ,t=O 

(2.32) 

It follo~s from this and Proposition 1.7.1 that (2.3) is stable in probability on average~ 
. 

and this establishes the proposition.' 

( 

oC 

. ' 
• 
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2.3 IrreduClbl(' StochJi'tÎc SWlt'l11' 

Proposition 2.2.4 together with Corollary 1.5.1 makes the following connE'c· 
-

tion between stability in probability and positive Harris recurrenc~ for a Jocally stochas-. ' 

tically controllable Mar~ovian 'system: 1 
l ') } 

Corollary 2.2.4. Suppose that (2.3) ')S loeally stoehastically eontrollable. Then. i5 
1 

-positive Harris reeurrent if and onl~ if it is sfabJe in probability and posses'ses exactl.v 

one invariant probability. , 

. 2.3 

1 

l o 
J 

" 

In tuis section we will continue our investigàt on of stochastic systems of-the form (2.3). 

Our goal is to find sufficient cOllditlons to ensure that the 'Markov state processes for such 

systems are i'treducible and more generally, to find conditions which ensure that there 
< , 

is ~t most one invariant probability. This is an importa~t question in stochastic system 

the<:>ry because it" is a necessary condition for the Markov state .process to be Harris 

reeurrent which, as we saw in Chapter 1, facilitates the computation of the petformancë 
, ~ . 

criteria Joo and Loo introduced in that chapter. Moreover, if certain technical conditions 

are met, then -the values of these performance criteria do not depend orr' the initial 

conditions of the system. 

3.3.1 Recurrence and Stability 

We' saw in the previous section that when a Markov state process is locally. stochastically 

controlIa?le, stability and Harris recurrence are strongly related. ln fact, if t~.state 

process ~ is locally stocha-<,ticaily controllable and irrcduciblc then, Harris recurrence 

and stability in probability are equivalent concepts. lt would be very lIsefuJ if this 

remained true without the stochastic controllability' assumption. How'evcr, this is not 
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the case as can be seen from the following simple example: Let X = IR, and consider 

the Markov transition function P defined by 

, . 

P(x,{1/2x}} = 2-~:!1 

P(x,{O}) -- 1- 2-1;;1. 
.-

The corresponding Markov chain • has the Feller property, is stable in prob-. . 
, 

ability, and is irreducible with maximal irredu'cibility m~asure DO. However, • i
1
s not 

, 
Harris r~current since for any x l X, x f 0, ' .. 

• 0 

\ ' 
Px{(lk =j; 0 for aU le} = 2-lxI2~lx/212-lx/.41 .. , 

= 2- 21xf > O. 

" \ . , 

'l ,The following ~eslllt 'relates the notions of stability anl positive re~!lrrence: 
. " 

) 

Proposition 2.3.1~ If. is irreducible and possesses an invariant probaoility then it is 
, ," 

~ 

positive reçurrent. 
'" 

.. 

~ 
o 

Prouf. . ' . . ' 

, First we 'show that if • iSf.d:clbl~ wit~ irr.d,!~i~iljty rn.asure <p, and 1f ~ ~ ~variant 
probability then'> .~' 

(> 

tp --< 11". {2.3:}1 
. " J 

If rp{A} > 0 then G(~, Aj >' 0 everywher~. Renee, there exists an N i Zl+ such th~t 
~ Lf=l pk(x, A) > 0 on a set of positive 7f measure: It follows that, 

1 Nf 0< N L 7r(dx)pk(x, A) = 1I'{A} , 
k=l 

, . 
59 , 
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and hence (2.33) holds. lt follows that the~e' exists only one invariant probability since , 

(2.33) cannot hold for tw~ mutually singular invariant probabilities. 

... To complete the proof we will now show that whenever 1T{A} > 0, 

Pz{1 enters Ai:o.}:>O for every x ( X. (2.34) 

. , 
By TlJ.eorem 1.5.1 and since 1T is ergodic, for each A ( 8 (X) for which 1T{A} > 0 there . 
e~ists a set F f 8 (X) of full 1f measure such that 

.. 
Px{1 "enters\ A i.o.} ='1 "for al! x f: F. (2.35) 

By (2.33) it follows that tp{F} = tp{X} > O. Hence by ifreducibility we have for ail 
" 1 -

X l X, 

P;{I .enters F} > 0, 

an~ by .; standard .rgumen·t (2.34r foll,:,ws. 

• 

'l' 

From (2.34) and (2.33) it follows that 1f is ~ maximal irreducibility measure, 
l ' 

and by (2;34) and (2.35) the Markov ~hain 1 iS, p/urrent. ' 

~, '\, , ~-

o 

Hence by Proposition 2.3.1, if l.is. irreducible and stable in probability on 

,aver!lge then it is positive recurrent. W now turn to the pmblem of finding general 

conditions under which a Markov chail{ 0 is irrcducible. 

1 2.3,.2 Irredudoility 
1 • [ 

~) ~ 
f 

(Il 1 In most cases, stochastlc sys~ms of the form (2.3) which are stable in probability 
u " 

exhibit the following related property: Givèn a system oC the form (2.3) we will cali the 

deterministic system' 
..6 

(2.36) 
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with initial condition do eX the freely evolving system. -We say the system (2.3) satzsfies 

condItion GA if sorne x· f X is globally attract!ng for~'the freely evolving system.' That 

îs, for each initial condition do E X, 

Condition GA " lim dk = Hm 8t(0, ... ,0) = x*. 
k-;+oo k-.oo ""U • 

# ., " 
Hence, if the di~turbance.sequence w is replaced by '(0, ... ,0,' .. ) in (2.3) then ~ k -t x* .. 

~ 

as k -t'OO for ail initial èondition distributions. To simpIify the statements of the results 

that foHov.,. and their corresponding proofs, we shaH henceforth assume thakx*~= O. Thjs ~, . . 
does not le ad fa any loss of generality since we may always .replace the Markov chain 

• by {~k', - x* : k {. 2Z+} when x· 1= o. For example, the controlled random parameter 

AR(p) system to be examined in Chapt-er V sati~fies condition GA wij.en 0'; < 1, and 
~ , 

the linear system (1.44) under hnear control satisfies condition GA if and- only it is 

stable in probability. 

For a system of the form (2.3) satisfying condition ~ suppose' that i~ 

support of the distribution J.Lw of Wo contains the origin. In this case t enters every 

n~ighborhood or' the origiIt with positive probability, and hehce the support of every 

invariant probability contains the origin. This is reminiscent of the definition of ir-

reducibility and m'ight suggest that stochastic systems satisfying tHese assumptions 

possess no more ihan one invariant probability. Howeve~, this is not the case as can be r ~ , 
seen by the following example: First consider the Markov chain ~ on (O,oo') )enerated-
.' . 

by the recursion 

(2.37) 

where w is i.i.d. with p,wequivalent to Lebesg'ue measure or (0,00), E[llog(wQ)ll < 00, 

and 1> p > O. 
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~ 

, The system (2.3?) is stable in probability bec~use /log ( ya moment on , 

(0, 00 ), and . ' 1 . 

Hence, 
. : 

lim supEx[llog(Wk)./J :;"Eli log(Wk)Il < 00, 
k-+oo ' 1 - P 

and tbis shows, that q; is (uniformly) ,stable in pr,obability. Furtherqlore, the first ortler 

generaliied con~rollability matrix for .(2.37) is full rank for every' x E. (0,00) which shows 

that q; is locally stochastically controllable.' Since Ox = (0,00) for every x ~ (0,00), 
r , 

th~ is a' unique invariant probability 7r. which is equivalent t,? Lebesgue measure OI} 

(0,00). 

We now use W to defme a system, of the form (2.3) which is stable- in prob-, 

ability and satisfies· c~ndition GA yet PQssess~s three invariant prol:>abilities. Let. be 

generated by the recursion • r 

(2.38) 

}Vhere w anq p have the pr9pert.ies given below equation (2.37) and sign( . ): R -- R,is 

defined by 

f
I if t > 0; 

sigp(t) = -1 if t < 0; 
. 0 if t ::: O. 

'Jfh~m (2.38) i~ of the form (2.~) 'with .X = IR. The system (2.38) is 'stable in probability 

and satisfies condition GA. 

if 11; denotes the invariant probability for (2.37), then (2.38) possesses the 

invanant probabilities 7r+, 7r_, and 60 where 7r+ ::= 7r, 7r_{(a,b)} ~ 7r{(-b,-a)} for 
. .. . 
(~, b} • c k~' 0), and 60 is the 1>oint mass at the origin. We see in' the following 

proposition that the reason • can possess more than one invariant probability is that 
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. [ , 

pT (0, .) = bo{ . } °for ~1I T. where P 45 the Markov transition function for ., and hence 
- l ' . . - . . 

(2.38) is not locally stochastically controllable. , . -' ,.. 

Proposition 2.3.2. Suppose that the Markov chain. is of the form (2.3) where: (1) (2.;)) 

is locally stochastièally controllable and satisfies condition GA; (ii) 0 f Supp J.Lw = Ow, 
, . 

Then there is at most one invariant probability and there are no non-trivial cydical 

. sets. 

Hence by Corollary 2.2.4, if (2.3) satisfies the conditions of Proposition 2.3.2 
. 

and is stable in probability then the state process • is positive Harris recurrent and 
, .. 

aperiodic. Before proving this proposition we must establish the following lernrna: 

Lemma 2.3:1. S'uppose ~ • is generated by the system (2.3) satisfying conditions 

A1-A3"and GA, and that 0 f sUPP J.Lw. Then for each x f X, and every open set U C X 

containing the origin, 

Proof. 
, 

sup pk'(x, U-) > o. 
k~O 

t 

Fix x i X, and let U satisfy the hypotheses of thE! lemma. By condition GA we may 

choose k f E+ so largè that 

s:to, ... ,0) f U, 

and by continuity there exists a 6 > 0 stÏc~ ~hat 

for ail (z}y'" ,Zk) E {B5 (O)}k where B6(O) is the open rectangle of wi~t~ 6 centered 'at 
. -

the origin. It follows th~t ' 

pk(X,U) > E[lllwlll<c5" .lllwkll<ôl 

= (JLw{BS(O)})k > 0" _ r 

• , 
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and this proves the lemma. 
o 

We may now present the proof of Proposition 2.3~2. 

• 
.J 

Proof. 

It follows from Lernma 2.3.1.that there can be only one invariant probability becàuse ,if . . 
~ # 1 • 

'Jr 1 and 'Jr2 are ergodic invariant probabilities then there are disjoint open sets 0 1 and 

0 2 for which 

J "" 1 Leb 
7r '" OJ J.L ',' J' = 1, 2, (2.39) . 

and 

(2.40) 0 

By invariance·pT(O,(51) = pT(O,02) = 1. Furthermore, since pT(O,.) ~ J.lLeb and 

0 1 n 0 2 == 4>, this implies that pT{01. 0 1 U 0 2 ) == 2. this ~ontradiction shows that there 

is at most one invariant probability. 

We now show that there are no cyclical sets. Suppose that an invariant 

probability 7r exists for (2.3) and that Dp 1 :::; i ~. À, is a cytle with period ;\. Letting Q 

denoteothe' Markov t:ran~ition function p>' we may show that. the system corresponding 

to Q is locally stochastic~lly controllable, and that for each z, >'1 L't7r is an invariant 

probability for Q. But the system corresponding to Q satisfies the conditions of tbis 

proposition and hence 'Q has. at most orie invariant probability. This shows that >. = l, 
1 

completing the proof. 
o 
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Let. us now turn to the problern of fin ding general conditions under which a 

system satisfying condition GA is irreducible. A gréat de~l of work in this direction has 

been carried out on the ~~dom walk • on IR wh~ 

' .. (2.41) 

. 
w is Li.d. with Wk ....., J.1,w for k f ll+, ànd 4?o is independent of w (~ee [Nummelin, 

1984].)' If for example, /-Lw = !'(b_ 1 + ad then • cannot be irreducible because for ,~ach 

deterministi-c initial condition ~o f IR, 'the distribution of 4»k is supported on Zl + 4»0 , . 
for aH k f Zl+. We say that the probability J.1,UJ is spread out if for sorne open s~t 

o ç IR, Lebesgue measure on 0 is absolutely, continuous with respect to /-Lw; that is. 

10 Jl. Leb -< J:lw. This condition is equivalent to the condition that Jl.w is non-singular with 

respect to LEbesgue measure. It is shown in [Numrnelin, 1984] that if J.1,oo is spread o~t 

then"(2.41) is irreducible~ and if in addJtion f xJ.1,w(dx) =.0 then it is Harris recurrent. 

In [Athreya and Pantula, 1986J the spread out ~ondition (among"other assurnptions) is 
.. 

used to show that an ARMA st6chastic process is strongly rnixing. 

/ 
1 

Motivated hy these results, we cali the Markov system (2.3) spriad out if for 

sorne T f ll+ and. aIl x ~ X the probability pT (x, .) is spread out . .observe that this is 

a' much weaker condition than local stochastic controllability because wE!'-6nly require . " 
pT(X, .) to be non-singular with respect to Lebesgue measuré. 

We have the following sufficient condition for (2.3) to be spread o,ut: 

Proposition. 2.3.3. Suppose that the function F defined ill (2.3) is Cl, and that the 

generalized controllability matrix CT satisfi,es the rB.l!k c~nditi?n (2.4). Then f:?3) is 0 

spread out if Jl.w is spread out. 

l' ' 
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Proof. 

The proof is omitted sinee it is identical ta the proof of Proposition 2.2.1. 
o 

, 
'In the rer.nainder of this, chapter ,the, 'assumption that J.Lw is equivalent to 

Lebesgue measure on' an open set is ~nnecessaTY. Furthermore, we will restrict our 

attention to Markovian systems of the form (2.3) satisfying condition GA where F 

is Cl, and whose generalized controllability matrix CT is full rank. Hence, replacing 
ID 

assumption A4 by 

A4' There exists an ope,n set Ow C JaP such that the distribution J.1.w of Wb 

k E 7Z+, satisfies low -< /-Lw ~ and 0 f. Supp /-Lw, 

we see by Pro1?osition 2.3.3 that such systems are spread out. 
'~ 

# 

The following result is extremely useful in practice: . , 

'. t Proposition 2.3.4. Suppose that the Markov chain l, js of the for~ (2.3) where F is Cl, 

and that assumptions Al~A3 and A4' are satisfied. Then. is irreducible and aperiodic 

un der the assumptions: 

.. ,. . 
fi) The syst;m (2.3) satisfies condition GA; 

! . ., 

(ii) T~.e g~neraJjzed contro1Tàbility matrix (2.4) satisfies the conditions of Propo-

'sition 2.2.1. \ 
.' 1 

" 

For a point x f 1R m'and ê > 0, we let BE (x) de~ote the open rectangle 

. f). , ' 
BE (x) = {y f. m. m : IXl - Yi 1 < ë for 1 ~ i :5 m} . 

• 
. / 
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Proof. \ 
To prove the pr6positiol'l we wj}} construct an open set 00 containing the origÎll and a 

- () 1 

measure cp on B (X) such that for ail x i X and A' l B (X), 

(2.42) ; 

That is, 00 is a srnall set, and cp is a small measure. It will.follow from Lemma 2.3.1 

that cp is an irredudbility' measure .. 

Let Pw denote the Radon-Nikodym derivative' of Pw, and p: IRTp ~ 1R+ the 
~ 

density defined for (Zl,' .. ,ZT) f iR Tp by 

~ince J1.w is spread out we rnay find Ao f 1R Tp, op > 0, and an open rectangle B6p (>..0) c 

R Tp such that 

a.e. [pLeb 1 (2.43) 

1 

Using the rank condition on the derivative of F we may assume without loss of generality 
1 --...~' 

that for sorné integers {il,'" ,in}, 

(2~44) 

For ~y ~o l X, ~ l B(X), 
. 

pT (~o, A) 2 Op 1 1 sT (.\)eA dA, 
Bôp (Ào)'· ~o 

(2.45) 

and' the term on the right may be written 
4' 

(2.46) 

,1 
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where ., 

and 

The main, task in this proof is to estîmate the term in brackets in (2.46). 

Lét x € X x ffi.Tp-n and y t Rn,'dênoie the generic variables 

A 
x = (4)>O,Àb''' ,Àt1 - 1, Àt } +1"'" Àtn -l, À1n+1,··· ,ÀTp} 

A 
Y = (Atl ,··· ,Atn~ 

and let Xo ( X x 1R Tp-n and Yo ( 1R n denot~ the fixed variables 
~ 

Define the functîon G(·,·): {X x ffiTp-n} x ffin ~ Rn by 

" 
so that by,(2.44), 

det [~Gl f: O. (2.47) 
Y

o 
(xO,YO) 

Conslder the function G'IC: {X x niTp- n } )( Rn -+ {X x m.Tp-.n} X Rn given by 

1 - . . 
. 

G*(x,y) ~ (G(:,y) }'. 

By (2.47) and the inverse f~nction theorem there exist open sets 0, li x V C {X x 
~ 

_1R.1'p-n} x ]Rn, -and a Cl fu~ction H* : 0 ----+ U x 1J ~uch that (XO,YO) EUX V, 
r ~ 

o = {(G(;,y)) : x E U,y E V}; and 

H*(G*~:r,Y)) = (~,y) 

t 
68 



.' 

•• 

• 
• 7 • 

23 Irreducible' Stochastlc System;: 

for a1l (x, y) f li x V. Using the function H"" we rnay define a Cl function h: 0 ~ V for . , . . ' 

which 

h(x, G(x, y)) ~ y " -"Tor ail ($, y) f li x ~,. 

. . . ~ 

and we may assume that with zo = G(XO;yo) 
{. 

[ah]' !det a ! > o. 
• Z (xo,zo) 

'\ 

Hence by' reducing the size of li x V we rnay a,ssurne that for sorne Dn > 0, 
l' • 

!det .[!h] 1 > Dn 
~ Z (x,z) 

for aIl (x,z) f O. 

We may now estimate the terrn in brackets ln equation (2.4&): 

Observe that the set 

CQntains (xo, zn) and. is open. 80 we" may find a DO :> 0 su~h that 60 < Dp' and for aIl 

(x,z) f {X x 1RTp- n } x Rn, 

./ ô9 

, . 

1 

. . 
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~ 

Hence by equations (2.45), (2.46) and (2.48) '. 

, , 

and so, letting. 0: ~ 2<50, we have 

pT(~O,A) ? OpOndTP-nlB60(O)(~0)JlLeb{B6o(ZO) nA}., (2.49) 
... 

~ • <;, 

and 00 = B60(O~ we see from (2.49) that equation (2.42) is satisffed: and .the proof . 

is almost complete. To show that 4> is an irreducibility measure let A E 8 (X) satisfy 

4>{A} > 0, and' let y f X. By Lemma 2.3.1 there is a k E 7l+ such that F!k(y,Oo) > 0 

and by (2.49), pT(x, A) 2: tp{A} > 0 f-or every a; E 00' Combining these fttcts we have 

This shows that cp is an irreducibility measure, and hence • is irreducible: 
" / 

, In iact, pk(x, Oo} ; 0 for aU k suffi~iently large by a simple modification of 
• e 

the pr~of of.J.emma 2.3.1, and we conclu de t~at if tp{A} > 0 then pN(x,A) > 0 for 
1 

, . 
~ll N sufficiently large. This eliminates the possibility of n<in-trivial cyclical sets and . ." 

, -
hence • if; aperiodic. 

o.. 
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Remarks 

/ 

- It is"easy to see that the rank condition on (2.~) is much more than is needed. 

The conclusions of Proposition 2.3.4 remain valid if CT(O,ÀO) is full rank for 
, 

sorne T >' 0 where the probability J1.~ ~ /-Lw ••• /-Lw on {lH.PtT satisfies 
\, . 

1 Leb T 
B8 (>'o)/-L -<: J.Lw 

for sorne 6 > O . 

. 
- Since writing this section we have discovered a simil~r- yet less general result 

o 

in the dissertation [Chan, 1986]. 

. . 
2.4 Applications to Linear System Theory / ",' , 

Consider the ARMÂX system -

/' 
Yk + AIYk-l + ... + An~Yk-nl = 13duk-d + ... +- Bn2 Uk:""n2 

, , , 

(2.50) 

where k, d ~ 1, the processes y, u, and w evolve on 1R, w is an Li.d. 'processes with 
./ ' 

distribution /-LU; satisfying assum""ptio~ A4 and initial conditions indep~~nt of w are 

given. 
1 

,- ,Suppose that a controllaw U is given of the form ' . 

.. 

wher~ : n(n4+1) '-+ 1R is'C1., The closed loop system is of form 

• 1 

, 
~, 

(2.51) 
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for sorne m f. ll+, where <? : 1Rm 
-t IR is Cl" 

We now embed the closed loop' system (2.51) in a Markovian system ~hich 

is of the gene!al form introduced in (2.3): 

4>1c+l = 

Yk 

Yk-m+l 
. wk+l 

. ' , 

G(Yk-il'" IYk-~) + Wk'+ .:'. + Cn3 Wk- n3 

Yk-l. 

Yk-m+i\ 
o 

wk 

o' 
0 

+ 
0 

wk+l 
0 

0 

(2.52) 

valid fç>T k >,0' and 4>0 f X ~ "m.n given (n = m + nft-'I). This Markov chain is.of the 

[orm' 

-(2.53) 

" 

where, F is Cl ~d, 'sinee we 'have already assumed that J.Lw satisfies A4, this process 

has the properties requjred in SectioJl 2. It would be very desirâble to prove that 

(2.53) is loca~ly stochas~ically controllable. Necessary and sufficient conditions for local 

stochastie controllabi!ity hav,e not been established as yet, but we can apply Proposition 

2.2.1 to provide sufficient conditiôns. In establishing these sufficient conditions we have 

assuined that m ~ n3. This simplÜies' the discus,sion and the generaJ case may be proved 

using the same techniques' as those used below, , ~ 

, \ 
If we let G: ~ (gG) Il:S 1.' :S m, k ~ ll+, ~hen the matrices Ak and Bk 

Yt ~k Of , ' • 

1 ~ 1 ~ 
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used in P~oposition 2.2'.1 are given by .' 

ck C~_l Ck Cl 
li , 

1 m 1 Cn3 ,0 
1 0 0, 0 
0 0 0 

, !t--k ;; 
1 (j 0 B:::: 0 

0 0 ... 0 1~ ) 

0 1 0 0 0 0 
• 1 • 

\ 0 0 1 0 ~ ,1 

, . 
where the m T 1 th row of Ak consi~ts 'of zeros, and the m + 1 th entry of Bk is 1. Hence .. ~ 

when m ~ n3 the generalized controllability matrix CT becoI'nes 

T-I 'T-l ' T-I :'~ ~ 
4 T-l 0 1 al °2 a3 ., aT-l 

0 0 1 T-I 
°1 

T-l' ,°2 T-I . 
a3 

T-l 
°T-2 . .' .' . . . Jo 

CT= 0 0 1 T-l a T - I ~ aT,-1 T::"'l (2.54) 
o· •• al 2, . 3 °T-m 

1 0 0 0 0 0 0 .,. .. . , 
0 1 0 0 0 0 0 0 ~ 

.-

ere the al -1 are deflned by . 
w \i:" t 

, 
\' , 

06'-1 :::: 1 
, 

~f-1 :::: Gf-1 + Cl 
-,. . ... 

. af-l:::: Gf-1(Gf~2.+ C1)+ ~r-2\+ C2·. 

1. . (2.55) 

~ , 

Letting ak(z) denote thè formaI power' series 2:~o o:~;n i,t follows from (2.55) that 

ak(z) may be computed inductiveIy: 

{ 
0 for k:::: Oj 

ok(z) = (Gk(z) _ 1)~k-1(z) + C(z) for k ~ 1, 
, 
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2 4 ApplicatIOns 10 Lmear System The06' 

Rence.a ~ufficient conditIon for local stochastic controllability in this case is ~ 
1 - - , , of 

\that for sorne T ,f Zl+. an? each 4>0 = x f X ,the matrix below is fuU rank: ~ _,~ 
\ ' / 

\\ ' ~ [a~ a
m

+1, a
m

+2 a
m

+3 a~+T ']. 
(2.56) 

\ / al a2 aJ a4 a1+ T . 
\ >' ,aO al a2 a3 aT. 

\ , 
As an iIlustrati6n suppose G js linear so that . , 

'-' 

(~.57) 

where the 'cl' 1 :5 i :5 m, do not depend oh .: Equation (2.57) May' be written in the 
~ 

~ 
more co;p.pact form 

G(z)a(z) ~ C(z) 
-

where G(z)~~ 1+G1z+ ... + GmzPl. ~eJ~sume without loss of'generality t~at Gm ;t: 0 

$0 that G(z) is an m th order polynomial. 
/, . ( 

If th~ 'matrix (2.56).is not 'full rank for any T ( ll+, then there exist poly­

nomials d(z). and D(~) 'whose ordérs do not 'exceed ~ - 1 and m r:Spectively such 
.~ 

,that 
, 

d(z)a(z) = D(z), (2.58) 
/ 

which 1 is possible if and only if Gand G hav~ cdmmon'" factors. It follows that the 

system (2.53) i~ locally stochas~ically co~trollable whenever the, polynomials Gand C 

are co-prime. ' 
1 1 

~ 

o' 

" 

,f 
>tJ' , 

, 
, J 

t ~ , • • 

l ' 

. " 
't. 

ID • 
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2 4 ApplicatIOlls to Linear Syst,em Theorv 

'fo illustraté what can go wrong with loeal'stochastic eontrollabilitv. consider . /-., 

the ARMAX system (2.50) with ns =1= 0 unde~e mean square optimal control law 
1 

, B(z)u(z) = [A(z) - C(~)l y(z), 0 

and define' 

. . . T 

_ 4>k+l = (Ykl···,Yk- n l,Uk-d, .. ·,Uk-n2,Wb""Wk-n3) . 

,.' 
• Suppose that the z~ros of the polynomiàls B and C lie' outsi?e the unit dise' in C. It is 

easily shown that the closed lobp system' is stable in probability in t~is case and that 

for aIl initial conditions ~o. 
1 

lim Yh - Wk = 0 a.s. [Pipo] 
k-+oo ; 

< ... • 

(2.59) 

JBy (2.59) we have, Yo = Wo a.~. [P/.lool for thè (unique) invari~nt probability 

'Ir, and henee 'Ir ,is supported on a hyperplane in 1R n. Consequ~ntly', this system is 

not loeally stochastically eontrollable because the support of 'Ir is not equivale:lt to 

an open set. Similarly, the stoehastic gradient ~lgorithm of JGoodwin, Ramadge,. and 

Càines, 1981] does not give rise to a locally stochastically controll'able· system because -.-
the variable' Tk converges to ~ero almost surely. 

• 
However, one very active researeh are a in stoehastic contrpl theory today is 

the adaptive control of time varyirw systems (see (Meyn" Caines, 1987], [C~en, Caines, 

1986].) It is in this area that the ideas introduced in this chapter will be very useful. 

For example, the Markovian system of [Meyn, Caines, 1987) is 10cally stoehastically 

controllable, and this fact was crucial in establishing many of the results in thaï p~per, 

Furthermore, the ARMAX system (2.50) controlled by a forgetting factor type algo-
, , 

rithm gives rise to a locally stochaStically controllable Markovian .system under mild 
.. 

restrictions on (2.50). 
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Chapter 3 STRUCTURAL ROBUSTNESS 
" .. 'ro,. 

- . 

3.1 Objectives 

" ' 

In this chapter we examine the robustness properties of stochastic systems whièh are 
l , 

• i . 
Markovianizable under feeclback; we assume that a Markov state process •• evolving on 

, 

a Borel subset X c IR M exists, and that for sorne Borel function 'li :'X -+ ]Rm, the ..1 

output' process y has- the representation 
• -t < ... 

(3.1) 
. , 

For stochastic systems of the form (3.1) we will be concerned with finding conditions 

under which invariant probabilities on _the state process vary continuously under per­

turbations of the state process •. As 'we shaH see, this is an important question in' 
," 

stQchastic system theory. In particular, if this is the case then the value foo of ergodic 
, . 

averagés of the form 
) N 

lim 2:'~ f(Yk) = foo .' a:s. IPxl f 
N-+oo N & 

k=l 

also vary continuously for a large class of functions f. 

t 

\ .. 

. 

(3.2) 



, 

3 ] ObJecttve~ 

• 
To illustrate the basic ideas. -consider the co~trblled system (1.44) where ...--..... 

the control tl-k = -k~b k f m, and Ik - al ~,1. Then the invariant probability of 

the closed loop system possesses the density Pk which is compared to the disturbance 

density Pw in figure 3.1. This example suggests a number of questions. In particular, it 

is easy to verify thatlas k appro,aches. a, thetcorresponding de~sity Pk approaches Pw, 

and figure 3.1 iIlustr~tes this facto It woul? pe very inter~sting to establish a similar 

result for nO:{llinear perturbations of the optimal control, i.e. if g(x) ~ ax does it 

follow that the resulting invariant probabiljty Pu - Pw? A related question is this: 

Under what con,ditions does the controlled invariant density Pu vary continuously under 
< 

a perturbation of the density Pw? TJ1ese questions are of fundamental importance in 
/ 'r,' _ , _ r 

stochastic system theory because we can never model a plant, or the statistics of a 

disturban~e process perfectly. 

Figure 3.1 

\ 'St 
" -

Pk: the invariant density 
Pw: the density of I-'w 

. A deterministic version of this problem has been carefully examined in lMees 
, 

and Çhua, 1979]'. In this work a dynamical system on rn.n'of the form 
,-' 

Xf = !(x, e) 

'. 
1 

\ 

o 

, . 
(3.3) 
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, , 

is studied for value~ of the paramtter ç (. 1R. close to ço. At ç = ço it is assumed that . ; 

there is a stable critical point xo" and it is shown under very general conditions that ' 

in this' case there exist periodic orbits near Xo when € is ne~ ço, and tpat these orbits 1 

, converge to the point Xo as ç. -1' eo. It is shown that if a variable called the curvature 
f' 

c0I!~tant is· positive then each of these periodic orbits will be locally asymptQt.ically 

stable. This is a special case of th'e problem uhder study in this chapter because the 
, , 

system described in 3.3 is a Markov process~. Xo is a critical point if and only if the 
.' 

probaJ:>ility {jxo i& inrariant, and if r. is a closed curve in ]Rn, then it 1is a periadic orbit 
'. 

if apd only if the probabilit: Tt ~m (1R n, B (1R. n)) given by T ~ C Il! t) 112 is invariant ~ 

where C > 0 is a normalizing constant, and ds is thf> increment of arc lengfh OR r.. 

With this example in .mind, consider the ê-parameterized system of the form 
\ 

(3.1) where th.e Markov c~ain .s is generated by the recursion: 

• !}) 

(3.4) 

and the output TOadOut map W is fixed. Tho function F: mM! lRP 1-, Dl M i. continuous, 

arid e' is an RP-~ued i.i.d .. stochostie pTOceSS with €Y.l - 11-' fOT k '<~+, < ~ [0,11. 

The probabilities {J.t'~' : ê l [D, 1]} form a curvç in Jv1!, and t~ make the ê-parameteriz'ation 
" , 

t 
in (13.4) c~ntinuous we assume that this curve is continuops in the topoIogy of weak 

~oIfvergence in .M. / 
1 

1 

Suppose that at sOIl)e êO. (. 1R the Markov chain <peo ,has a unique invariant 
.' \ l '-. 

proba~ility 1r~O. Cari ~e 't~en say trjt the Mark?vian system (3.4) hq.s an in.v~riant 

t 

. " / 
l ,~ 

1 ~ 

x(to), x(til f f. ith ta < t'I it rnay be venfied that T{x(t) : to ~ t ~ td = (tl - to)/T-, 
where T is the ount of tune requrr.ed for X to complete one orbit. That is, the T -measure 
of the set of po' ts between xo and xI on r.. 15 a constant times the léngth of tune It takes 

to reach xl' st ting at xo , 
1 f;" l ' " 
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• 

1 

probability 1fê for éclose to êO in this ca.:'e? And if so, will these invariant probabilities 
, 

approach 1f&0 as é ~ êO? In the results that follo~we show that this is indeed the 
• 1 • 

,. case under certain conditions. Because of the extreme flexibility in the choice of the 
, 

representat~n (3.1) we Will find that these results have wide applicability to a variety 

of robustness issues i~ stochastic control and system theory such as: 

,t 

- Finding the effect of a perturbation of the parameters, or the distribution 

of the disturbance process on the asymptotic properties of the output of a 

nonlinear stochastic system operati~g under feedback; 
- 1 

E~tablishing convergence results for the underlying distributions of the out-

put process of such systems; 

. - . Estimati~g the performance criteria J~ 'and L~ of the perturbed systems 

for values of ê close to éO. 
i 

.. 
In section 3 we give a detailed example to show how these results may be applied to 

1 

the stability analysis of stochastic time varying systems. In section 4 we discuss sorne 
. / 

open problems that could pos~ibly be solved using these merhods, and present a genera,l 

result which will De applied in Chapter IV·. 

;1.2 Approximation of Stochastic ·Systems 
.' 

We begin our discussion on the approximation of Markovianizable stocha$tic systems 

by presenting a notion of convergence for stochastic processes on XZ+, and Markov 

transition operators on- -(X, 8 (X)). Let {P& : 0 :S /!..:S 1} be a farilily of pro~abilities on -.. .. 
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~ ~ . • 
(XZ

.; B (Xz.)). Then when XZ~ is endowed with the product topo'logy 
\ . -

1968]) it follows that pE w~y pO as ê _ 0 if and only if 

(see iBillings!ey:, 

.. 
Hm pe: {Ao x '" x AN x X x X x ... } = pO {Ao ~ '" 'x AN x X x X x .. ·} (3.5) 
e:--+O 

for every N € Zl+, and every finite rectangle (Ao x ... x AN X X x X x ... ) € B (Xz .. ) 
, 1) _ _ ! c;) 

whose boundary hru; fd;easure zero. . 0 • 

•. . We s~t the ~arJ..,v transition operators {~e : 0 < oÔ ~ l} ;"nverge to 

, the Markov transItion operator To and write TE -;t To as g - 0, if for every ~ € X and 
- 1 

.' Hm Tel (x) = Toi (x) . 
e ....... O 

Vnder very general conditions it will follow that 

for every x € X. 

P
· e: ,weakly p' 0 
x --+ x as. g '-+ 0 

, . 

Unfqrtunately, the e;'istence of the limit in (3.6,) tells us little about the 

relationship between the aSymptotic behavior,of the MarkS}v ch~in 'corresponding to Te, ., " " , 

and the asymptotic behavior of the Jimiting Markov chain generated by To. Ta~e for 
.. " ' -. 

example" the deterministic Markov chain .e: on X ~ -1-1, IJ given by 

\ . 
(3.7) 

" 
The Markoy transition operator Te: generating .e is de~~ f~r 1. € ,B, x € X, and 

o ~ ê ~ 1 by 

Tel (x) = 1((1 - ë)X). (3.8) 

, 1t is easily verified that for every 1 € C, Tel -+ ToI in the uniform;{orm as ê - 0, 
.-

and we coliclude that (3:6) holds for this example. The Markovian system,,(3.~) is of 

80 
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-
o ~ ê::; 1 by 

N 

J f d'If X,e: * Hm NI L T~f (x), (3.9) 
N-+oo 

k=l . , 
x f X the invariant protability 'If X,e: = 60 whew ê > 0, 'but and it follows that for aU 

the invariànt wobability ~ x,o of the lirniting system is 6x . So, even with thiS'textrernely 
l'J 

, strong form of coiwergence holding for {Té' : 0 ~ ê ~ 1}, and thè up.iform stability of 

the Markov chains {le: : ° :::; ê ~ 1} we still ~annot infer that the invariant probabilit ies 

{'!" X,e: : 0 < ê ~ 1}. converge to 1r x,O as ê -) O. 

In order to avoid such pathologies we will begin our robustness analysis af 

Markovian!zable stochastic systems by considering problems in which 'the adjoint Uo ?f 

To p,0ssesses at most Olie invariant 'urobability. Throt.>ghout this chapter {Te : O~~ ê ::; 
" ~ ~ 

I} will dentote a set of Markov tran,sition operators, {Ue : 0 ~ ê ~ I} their respective 

adjoints, and {?re: : 0 ~ ê::; 1:}" a set of probabilities such thllt 1re is invariant under Ue: for 

each ê € fO,l]. Fi,nally, we let Cc denote the. set of continuous real-valued functions cin X 

which vanis~outside of som~ compact set, and a family ofr~ar-valued functions {f a}a:€A 

on X is said 'to be equieontmuous on,eompaeta if for aIl "( ( Cc, the family {1'fa:}QEA is 
........ ~ i 

, - ? 

equicontinuo~s. We list ?ere sorne of ~he ass,umptions th.at w~ will oc~asioI1'ally b~ u1ing 

later in thfs chapter: 
1 _ • 

; 

RO 00 possesses at most one invariant probabilitYj 
/ ,,'" -

RI 'The set of probabilities {1re: : 0:::; ê ~ 1} is tightj 

R2 ' For eath i , c, :he collectiori ~ functions {Td : 0 ~ • ~ l} ~ eqUicoJtinu-

ous on compacta. 'V,,_, , 1 
.... 1 l f' ,~~,~ 1 1 

l ' 

" 
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3,2 ApprOXImatIon of Stochastlc Systemf 

Whenever the probêbilities {ILe : 0 :s; é :S 1} sati~fy 

it follows that 

weakly 
,ILe --. J.to 

weakly 
Velle --. UalLO 

as. ~ -+ 0, 

as ë -+ O. 

- \ 

( 'Î ~ 
We remark that

v 
COflditions R2 and 'Te --t To as ê -+ O. are equiv~lent to the condition 

that the functions {Tê ! : ê > o} c~nverge un'iformly on compact sets to' the fu~ction 

To! for every f f Cc. 

;. The first,result below concêrns perturbations of th~ disturbance distribution tt 
" 

/1-w. Suppose that the Markov chain~ '{.e : 0 -::; ê :S 1}, have the form 

(3.10) 

'where F: X x RP --t X is Borel measu.!'able, and for each ê f [0, 1], wê ~ {wk : k f 7l+} 

is inde~endent and identically distributed with wf: '" Jl~ fcr each k l ~+, and /~ [0, 1 J .. cr" , 

Then the Markov transition operators Te, g- f. [0, l'], are detined for il E B by 

, (3.11)-

, \ 

Proposition 3.2.1. For the M-arkov transition operators Te, ê € [0,1h defined in (3.11) 
o 

suppose that Onflof the following two conditions liolds: 

~ 

(i) {Jl~: ê > O} converges in total variation norm to J.t~ as ê --+ O. 

( .. ,") T'h f '. F' . ' d e weakly 0 -~ e u,nctlOn 15, contmuous an IL ---t Jlw as ê -4 O. 

1 

Then Te -'-+ To and condition, R2 holds. .. ''':> 

" 

• 
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Proof. 

To. prove the propo~ition we will show that if either (t) or (ii) is satisfied then for each 

g E Cc, Teg -t Tog uniformly on compact sets. Hence, result (i) follows by using the . 

estimate 

where /llLlltv is the total variation norm of the finite signed measure IJ., from which it 

follows that Teg converges uniformly to Tog . .. 
Suppose now that (ii) holds. Let,6 > 0, and Cl eX be an ,rbitrary compact 

set. Choose C2 C IRP so that IL~{aC;} = 0 and 1J.~{C2l ~ 1- 6 for ail 0 ~ ë ~ L This . 
is possible because the proba~lities {IJ.~ : ê > o} are convergent and hence tight. The 

'V function F is uniformiy continuo~s on Cl x Cz ~and benee letting ~x(,) ~ F(x," .) for 

x € Cl ,the farnily of functions {ex': x { Cl} is equicontinuous on C2: 

\ 

l -

Let 9 { Cc. Then because 9 is uniformly continuous, the family of functions 
\'. 

,{g(€x) : x.. € CIl is also eq~ico~tinuoJon 02' Since 1J.~{aC2} == 0 ît fol'ows from 

assumption (ii) of the proposition and Theorem 2.1 of [Billingsley, 1968] that , 

Renee Theorem. 1.1.1 (iv) applies to give 
.' 

as ê -t O. 

, 

. . ... 

lim sup 1 f g(çx(.\))IJ.~(d.\) - f g(€x('\))JL~(d'\)1 = 0 (3.1~) 
e-+O xfCI lC2 ,lcz" 

.. It nQw follows easily that Tëg converges to Tog uniformly on Cl as"ë -t 0: • , c 

By the hypotheses made on C2 and the definition of Te we have 
l , 

sup ITëg (x) - Tog (x)1 == sup 1 J g(€x('\ÙJL~(d.\) - J g(çx().))J.L~(d.\)1 
.téel ~ X!CI 

,/7 ~ 2611g1l0:, + sup 1 r g(çx().))IJ.~(d.\) - f g(€x('\))JL~(d'\)1 
" uCI lC2 lC2' 

,1 
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Hence by equation (3.12), 
/ 

" 

lim sup sup iT~g (x) -, T~g (x)l' ~ 2c5l1glloo 
e-+O ,zEel • 

, . , 

" and sinee c5. is an arbitrary. constant Te;g converges uniformly ta Tog on Cl and this 

completes the proof. 
o 

- .. . . 
The following lemma is adapted from Theo,rem 6 of Chapter 6, section 4 of 

. ,\ 

[Kushner, 1984]: 

. . 
Lemma 3.2.1. SUPRose that assumptions RI and R3 hold, ànd that Ue?Te- = ?Té for each' 

ë > O. Then, 

'wea'kly l 
"rs'--+ 0 as c -+ ,0, 

where Jo c .M is the set ~f probiibilities which are 'invariant .under Uo . 
. , 

Proof .. 

(3.13) 

Let' T be a Hmit point of {?T ~ ~ fi' < C SI}. Then for sorne sequence {Ct :, i f. Z+}, 

eonverging to zero, 

as '--!' 00. 

A 1 · " . R fi'd h U weakly UT' S' U pp ymg assurnptlon 3 we n t at E 1r~ ~ 0 as ~ -+ 00. Ince e-,1re; = 1re 
, t t Z & Z. 

for all i E ll+ we concludet that 

UoT = T, . , 

and this prove; the lemm~.~~ , 
o 

\ ' 

, . .. 

, 84 



, 

/' 

l' 

c 

3' 2 Approximation of StOChastlC System" 

ln the following result we give a sufficient, corldition to -ensure the conver-
1 

) 

gence of the invariant probabilities corresponding to a convergent sequence of Markov . . 

transition operators. This result will be very use'ful in Chapter N where we investi~ate 

the robustness and asymptotic behavior of linear systems operating under nonlinear 

feedback. 

J 
\, 

B,'roposition 3.2.2. Suppose that Te -+ To as ê ---+ 0, where the Markov transition op er-
r ' 
) . 

~tor To has the Feller propérty, arfd that conditions RO, RI and R2 hold. Then, 
-, 

weakly 
'Ir If: ---+ 71'0 

where ?ro is invariant und~r Uo. 

Obseiv.e that w"e do not requiTE~ that the Markov transition operator Te be 

Feller for ê > O. 

Proof. 
, , 

By Lemma 3.2.1 and RO li is enough to show th'at {Te~O 5 ê ~ 1} satisfie~ condit,on 
'" 

wealdy . f:J. J . 
R3. Let fe --+ It. as ê -+ 0, and fix f f Cc. T~en, lettmg (v, f) , f dv, . 

" 

~inèe Te ~ To as ê ---+ 0 and i con~ition R2 is satisfie~ . the first suriun~ c~nverges to 

. zero as ë -+ O. Hence, because Toi € C, . ( 

which shows that Uelte va~ly ~OJ.Lo as ~ O. Since UOIt~ ~ probability it follows 

that UeJ.Le w~y UOlto. Henèe condition R3 is satisfie~, an'd this completes the proof. 
! 0 

.f 1 

./ 
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We remark that if assumption R2 does not hold then the conclusioJls of 
-

Proposition 3.2.2 may not be vaIid. Take for example, the Markov chain dé evolving on 

R defined by 
j 

where 10 == 0, and the continuous function le is defined fur ê > 0 by 

le(t) -.1 1 -- ê 

. 
iftf[0,1-2êjj 
if t = 1 - êj 

, {O 
affine <?n [1.- 2ê, 1 - ê] and,on [1 - ê, 1]. 

The graph of le for ê > 0 is shown in figure 3.2.1. 

1 

Figure 3.2 Draph of IF.: 

, " 

(3.14) 

'\ r 

The ·collection of Markov transition functions {TE: : ° ::; ê ::; 1/2} satisfy ail 
(i 

of the conditions of Proposition 3.2.2 except for condition R2. FlJ.rthermore, for each 
, , ' ~ J 

; ê > 0, 61- e ,is an invariant prGbabHity for de, and does not cenverge to the invariant 

probabili,ty for dO as ê -4 O. 

/ 

/ 
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32 ApproXlmatlOlI of StoChastK ~y"tPIll-" 

The assumption RO is too strong in many applications. To iIlustrate the 

',difficulty involved in relaxing this assurription we will assume in the next few paragraphs 
, .. 

that the following condition is satisfied: . 

R4 Each of the Markov transition operators in the. collection {Te: 0 $ g'::; I} has 

the Feller property, and for each x l X and-k l<>ll+ the set {U~6x : 0 ~ g' $ I} 

is a conti~uous ~urve in .M. J '- ~.' -

, , 
Observe that {U~6x : 0 $ g ~ I} is a continuous curve jn .M'if T: -+ T~o as g ~ êO for 

0, • . 
, , . ~, .. 

each êO ( [~, 1]. - 1: 
, , 

Suppose that .e ïs stable in prob ab ilit y for each 0 $ g < 1 and lét 'Tru: 
! ' , 

deno~e the i~varîant prob ab ility, defined as in (3.9). Our goal is to ~nd general sufficier.t 

conditions to ensure that 

.', weakly /\' 
,' 7fx,e ~ }JIf,o 'as 

~_/ 
e;'-+ 0 (3.15) 

. 
for every x f X. , 

" 

J 

Fix x f X, and for N f ~+ let "avN U: 10, Il -+ M 'denot~ the c-ontinuou~ curve 
~~ '1 '\ 

defined for g f [0, 1] by 

(3.16) 

, 
The functions {avN U : N f ~+} are continuous) whenever condition R4 holds, and 'for 

, , 
~ 

each q $ ~ ~ 1, 

as N -+ 00. (3.17) 

, 1 

Hepce (3.15) holds if and only if the function avooU: [0,1] -+ .M defined for e; f [0,1] by 
, ' 

avoo U (e;) = 'lf X,ë is co~tinuous at O. This shows that finding conditions to ensure that 

, the' limit in (~.15) holds' is equivalent to the soI~ing th~ following problem: 
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" 1 ~ ApprnXIIllall()1I "r !:'tA'ich,j"t1c ""<lelll-

1 

Given a sequence of continuous functions {rhk : k o( 7l-} mapping ,0.1 mto 

\ .-:J 
a metric space Y, under what conditions does the existence of the pointwise , . 

1imit 
$ 

, 

imply that hoo il; continuous at zero? 
• 

Althodgh this approach is illuminating, it.d~ not yield any p;ûfound results. 
, c.. { ..... f ____ . '" 

Another approach, to this problern is to apply _ sorne tif the idea:; used in the proof of 

Proposition 1.3.1.' In ISapperstone, "1981] th~'· exjgt~nJ=e)of the limit 
. , 

1 • -
1 N 1 - L Uk c weakly 

Ux --+ 7rx 
N 

.k=1 

as N ------+ 00 .' 

- . ~ 

is éstablished 'under the appiopriate conditions by first showing tltat 
/ . ~ 

N 
_1 "Uk C

x 
w--+eakly 1 J\T • L- 0 as - j~ ---4 00, 

N k=l" " . ~ ~ 

where 1 is the set of probabilities whic~ are .in~arian.t under u.' The pro~f is cofupleteç 
," 

• 
\ 

Lemma 3.2.2. Let rox c .M denote the closed convex hull of the set of probabilities 
. • ~ ~., ~ r 

/' N . 

l, • {N ~ 1 L Ukhx : N ( 7z+ } (3.18) 
• k=O ' . , , 

where U is the adjoint of the Féller A1arkov transition operator T, and 'assume that the 

.set of probabilities in (3:18) is tight. Then cox n,1 consists of-exactly pne pr.ob,ability 

o 
, . 

'., 
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The f ollowmg result 

32 ApprOXlmatlOIl of StO(ha;:tlC Sv~tem­

follows directly ~ Lemma 3.2.2. Let eox,o denote the closed 

convex hull of the set of probabilities (3.18) with U replaced by Uo. 
'} 

• 
Proposition 3.2.3. Suppose that the Markov transition operators T~, ~ f fO, 1), have the 

Feller property and satisEy condition R2. Suppose that for some x f X the corresponding 

invariant probabilities {7f x,e : ° 'S é :'S 1} saUsEy condition RI, and that Te -+ To as 
:1 

é -+ O. Then, 

weakly 
7r x,e ----. 7f x,o as ~-+O 

jf and only if 

weakly _ 
7r X,e ~ cOx,o as é -+ O. 

Proof. 
\ 

The only i,f part is trivial sinee 7f x 0 f cox o. To establish the other direction" we use , , 

the Feller Ptoperty, assumptions RI and R2, and the technique used in the pro.of of 

Proposition 3.2.2 to show that 

weakly 1 
7rx ,e --+ 0 

where 10 c .M is the set of probabilities which are invariant under Uo. Hence, applying 

J~ Lemma 3.2.2 together with the assumptions of the proposition, 

weakly _ 
7rXe -- loneox o = 7rx O , " 

as é -+ 0, 
.. 

and this ~ompletes the proof. 
o 

89 

, .... 



-,. 

3:1 A Random Parameter Model 

. 
11: k h h f Il' d'" ffi' h - weaklv vve remar t at t e 0 owmg con Itlon IS su Clent to ensure t at 1f'x.~ -' 1 

coxO as ê -+ 0: for every f ( Cc, , 

. lim inf{lffd1f'X'~--N1 tTâ/(x)l} =0. 
J'E ...... O N>O + 1 

- k=O' 
( 

This concludes our presentation of t,he general robustness theory for stochas­

tic systems. We now show how the results of this 'Section may be appIied to the stability 
\ 

analysis of a random parameter stochastic system operating under feedback, and in 

Chapt~r IV we wIll consider another application. 
ij ", 

3.3 A Random Parameter Modé} 

Consider the ARMAX system model: 

1 

(3.19) 

which we will write in th.e form 

(3.20) (i) 

where, 
'-- --- -

O·T ~ (-ab'" ,-an} ,bZ"" ,bn2 ,q, ... ,cn3 ), (ii) 

/ 

We assume that the processes y and u are 1R-valued, w is an R-valued i.i.d. processes 

with wk+l '" /.Lw for k f. Zl+, 'and initial conditions independent of w are assigned 
.QI 
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'3 '3 A Random Paramfter .\1orlt>1 

at k = O. under these assumptions i.p is a controlled Markov chain with state space 
. ~ 

=x ~ ]Rn1 +n2+n3- 1, and hence 13.20) defines a stochastic state space system as defined 

in Chapter J. 

1 

We also make the following technical assumptions. The polynomials a(.), 

b( . ), and c( . ) are defined by 

sysl The zeros of the polynomials c( . ) and h( .) fall outside the jlnit circJe in C; 

sys2 The polynomials b( . ) and a( . ) - c( .) are co-prime, b1, bn2 , an1 f: 0, and for 

definiteness we assume that a( .) t. c( . ); 

• 
sys3 For sorne Po > 2 the probability J.Lw satisfies '" 

, J 1 t IPO J.Lw(dt) < 00, 

• 
and hence, O'~ ~ J.t 2 J.Lw (dt) < 00. 

sys4 The probability J.Lw satisfies condition A4 of Chapter II, and a f Ôw . 

/ 

Under. these assumptions the s.m.s. and mean square optimal feedo,k con-

trol is given by solving the recursion "\ 

zb(z)u(z) = (a(z) - cJz))y(z). (3.21 ) 

With the control law so defined, ~he closed loop system is Markovianizable; y, u and 

w are functions of the Feller Markov chain i.p defined in equation (3.20) (Ii). It is easy 

to show that corresponding to the Markov ch~in cp, there exists a .UIuque invariant 
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-
probabihty P1T'IP on the sequence space (XZ

_, B (XZ
_)) under which y = w a.s. Pr,y,. 

Furthermore r for any initial condition !Po = x l X we have 

(3.22) (i) 

and 
N 

~. 1 ~ 2 2 
Loo = !lm N L Yk + pUk 

N->oo 
k=l 

a.s. [Px], (ii) 

(3.23) , 

What can we say about the limit III (3.22) if the model (3.1) does not de-

scribe the true system exactly? For example", suppose that the parameters are in fact a 
'\-

stochastic process (Jé ~ {(Jk : kn ~+ t,'for which IIOk - 0* 112 is small in a sorne statistical 

sense for all k ( .ll+. We will show under very general conditions that the limits in 

, (3.22) still exist ,in this case, and that the asymptotic and finite-time behavior of the 

time varying syst~ is close to that of the time-invariant sys_tem. In fact, un der the 

appropriate conditions w~ may show that thevalues of the criterion functions J~ and 

L~ of the perturbed system will be close to the crit.erion functions of the time invariant 

system. These results hold even for parameter processes with unbounded sample paths. 

. . 
We henceforth suppose that the parameter process ne ~ {Ok : k l ~+} is 

time varying and independent of the disturbance process w, where 0 ~ ê ~ l, and thus 

(3.20) becomes 

1 
( 

• 

.. 

(3.24) 
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, 
Observe that we take' the para!])eter b1 to be t1me Invariant. This 1S not necessary but 

is done to simplify the example. If the control law (3.21) is applied to this system and 

the parameter sequence Oé is v·iewed as the inpu t, then (3.24) is a (nonhnear) stochastic 

state space. system as defined in Chapter I. Let P ( .; ', ... , " .) denote the N -step 

controlled Markov transition function for (3.24). Then for aIl A f B(X), . \ 

(3.25) 

The N -step controfled Markov transition function may be computed by not-

ing that for each N f ~T' the random variable <PN has the form 

(3.26) 

where the function S~: XN x ]RN -+ X is continuous (it is in f<ict affine in w, and 'Po . , 1 

polynomial in O.) Hênce, for each A l B (X) and (Oô, ... , ON -1) f X N , 

The following lemma will be useful later in this section: 

Lemma 3.3.1. Suppose that the system (3.24) is under the control (3.21), and that 

assumption sys2 is satis/ied. Then there exists NI ( ~T such that for every <PÔ f X, and 

.a.e .. [j.tLeb] (OO, ... ,fJNI - 1) (XNl thematrix 

is full rank. 

e N ~ 
ê -

'Po 

, 

·(3.27) 

\ 
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Proof. 

Since 5:0 is linear in w, the matrix (3.27) does not depend on w. Furthermore. smce 

for each x E X, x T C~ is polynomial ln fJ, and a multi-variate polynomial is either zero 
'Po 

everywhere or non-zero almost everywhere (see !Meyn, Caines, 1985-]) we conclude"that 

for each N f 7L ...... either 

or 

rank Cl\~ < nI + n2 + n3 - 1 
'Po ' • 

rank C'~ ,,;, nI + n2 ...L. rt3 - 1 
'Po 

for aIl 

-N-} 
Hence, it is enough to show that there exists one sequence (Jo 

which makes è~ full rank. We take B~ -} = {B, ... ,B} where 
'Po 

~ and the polynomial l(z) 1 - R}z - ... - ln} zn} is chosen 50 that the zeros of the 

polynomial 

!:J. Q(- ) :;:: l( .) + c( . ) - a( . ) 
\ 

\ 

lie ~de the ,unit circle in C, and deg Q ( . ) ~ deg a( . ). 

To prove the lemma we will show that the linear Markovian system with 

t t - T !:J. (- - • - - ) d fi d b saeprocesscp = Yb ... ,Yk-n}+buk-}.· .. ,uk-n2+}.wb ... ,wk-n3+} ene Y 

with control (3.211 is locally stochastically controllable. 
1> 

" 

Observe that the system description, (3.28) is equivalent to 

Q(z)y(z) == w(z), 

1 
( 

(3.28) 

(3.29) 
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3,{ A Random Parame-ter Mode-I 

-and hence by the assumptions made on Q. the system (3.28) is stable ln probability. 
" , 

Therefore, a umque invariant probability 1f ~n --8,(X) exists for the Markov -

chain <p defined in equation (328). Consider the strictly stationary process <P on XZ for 

which <Pk has distribution 7f for eaeh k f.Jl. In this case, 

1 
y(z) = Q(z) w(z) (3.30) 

, 
and 

_ a(z) - c(z) 
u(z) = zb(,,;)Q(z) w(z). (3.31 ) 

1f the system (3.28) is not locally stochastically controllable then for sorne 

X l X, x 1= 0, 

for every k l Il. 

-
T- 0 x C{)k = 

Rewriting (3.32) in the form 

a.s. [Prr] (3.32) 

- . R(z)y(y) = zS(z)u(z) + T(z)w(z), -Ji (3.33) 

it follows that deg R( .) ::; deg ç( . ) - 1, deg S ( . ) ::; deg b.( .) - 1, and we will ~w show 

that this violate~ the minimality condition in assumption 8ys2. li (3.33) does holds then 

by equations (3.30) and (3.31), 
!, 

R(z) () zS(z)(a(z) - ~(z)) () = T( ) () (3.34) 
Q(z) W Z + zb(z)Q(z) W z z W z • 

" whieh implies that the polynomIal b( . ) di~es S(· )(a( . )-c( . )). Since we have assumed 
~- .. 

that b( .) and a( .) - c ( .) are relatively prime and deg S ( .) < deg b( • ), it follows that 

S = o. So, equation (3.34) becomes, 

~~:~ w(z) = T(z)w(z) . 

Since deg R( .) < deg a( .) ::; deg Q{ . ), it follows that R(') and T( .) are both zero. 

Renee there is no non-zero x lX satisfying (3.32) and this proves the lemma. 
o 
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3'3 A Random Paramt'ter ~1(,rlt'1 

To complete the system description (3.24) we now propose a model for the 
1 

parameter process O~. "Suppose that ()e is generated by the stable Méi:l'kovian system 

\ 
(3.35) 

1\ 

where G: X x 1R --? X is continuous,. v é ~ {Vk+ 1 : k l ~+} is an 1R M -valued i.i.d. processes 
\. 

with distribution J.L~, the imtial condition og is independent of vé
, and w and vê are .. 

independen t for aIl E l [0, 1]. }\le also assume: 
--... 

parI The probabilities {J.l~ : El [0, Il} s<\1isfy 
'" ,~>, 

ë weakly 0 Â ~ 
J.L v ~ J.l v = uo as E --? O. 

.' 

pari Condition AS is satisfied with x· = ()*. Renee, by assumption parI wh.en 

ê = 0, 

lim ()kO = 0*. 
-k-+oo fi ' 

;f,:" 

par3 For ail ê > Othe Markovian system generating Oé is locally stochastically 

controllable, ~nd furthermore the probability 

is equivalent to Lebesgue measure on an open set Ox ê C X for every x l X 
'. 

where 0 ( Ox E' , 

\ 
par4 The c-parameterized family of systems described in equation (3.35) is uni­

formly (in ë) stable in probability. That is, for every initial condition x f X, 

and every 6 > 0 there exists a compact set CcX such that 

96 

\ 

'i. 



o 

, - t-, 

3'~ A Random Parameter \iode! 

for every é E !O.l;. 

. 
An example of a Markovian system satisfying these conditions is the AR(I) model . 

where the rriatrix A is asymptotically stàble; and for each é (,.(O,I! the distribution of 

vk..is Gaussian with zero mean and vari~nce é
2I. 

Observe that by conditions par2 - ~ar4 and Proposition 2.3.2 it follows that 

for every é > 0, (Jê is an aperiodic Harris recurrent Markov chain with unique invariant 

probability 7r~. 

If ~he feedback control (3.21) is appIied then for fixed é ( (0,11, the dbsed 

loop system becomes 

. \ 

0%+1 = G(Ok,vk+d 

IPk+l = S~k(Ok,Wk+d 

, and the joint process'.ë ~ ({I~) is a Feller Markov chain on X2 . 
• <p • 

(3.36) 

By assumptions sysl and par2 the Markovian system (3.36) satisfies condi-
~ 

tion AS of Chapter II for ail é ( (0,1]. In 'fact, if the disturbance process (:,) is set to 

zero in (3.36) then 

lim ~k = (0*) 
k;-+oo \ a 

for every initial condition' tg 'f X2. 

1 ........ " 

Furthertnore, applying Lemma 3.,3.1 together with assumption par3 we may show ~~ Îs 
> • 

locally stochastically controllable. The only imp'ortant property that we cannôt establis-h 

for .ê is stability, and to do this ~equires further assumptions; suppose that for sorne 

. P f R+ s;uch th~t Po > p >- 2, th,e closed loop system is uniformly (in ê) V stable: 
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sys6 For some constant Ky' > 0 and ail x ( X 2, C f 10, 1. 

Hm supExl!Yk lPj < Ky. 
k-+oo . 

, 

In t~is case it follows from sysl and sys3 that for some constants Kv., Kw > 0, 

Hm sup Exl/uk/P] < Ku, 
k-oo 

lim SUR Ex[lwk/P] <, Kw, 
k-+oo 

(3.37) 

(3.38) 

(3.39) 

for aIl x f X2, and ,0 ::; é S 1. Moreover, by assurnption par4 there exists a moment f 

on X such that for sorne Ko > 0, 

lim sup Ex[f(Ok)] < KO. (3.40) 
k-+oo 

" for ev~y é f [0, 1], x f X2. Hen~e; the closed loop s~stem 

stableftn probability for each 0 ::; c S 1. 

(3.24) IS (uniformly in é) 

The following result shows that under general conditions a small stable per-

turbation of a linear stochastic system operating un der feedback gives rise to a srnaIJ 

>. ------"'-

perturbation of the infinite horizon cost. 

, 

Proposition 3.3.1. Suppose that the Markovian system (3.24) satisfiesconditlOns sysl 

- sys6 and parI - par4. Then for every ê f [0,1] and x € X the corresponding criterion 

functions J~ and L~ may be coII1puted as follows: 
~ 

Furtherinore, 

}' Jt: JO 2 2 
lIIl 00 = 00 = Uw + pu"" 

t:-+O 

( -

(3.41) 

(3.42) 
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Proof. -

Smce (3 24) is locally stochastically controllable for 0 < ê "S J, and satisfies condition AS 

it follows that .ê is an aperiodic Harns recurrent Markov chain with unique invariant 

probability 1r ê Hence by Corollary L'5.l, for every initial condition 4>0 = x ( X 2, 

and this is (3.42). 

By (3.37) - (3.40) there exists a constant K4> > 0 such that for every 0 < 

ê ~ 1, 

\ 
Since g(~, y) ~ l;xll~ + f (y) is a moment on X 2 it follows that the family of probabilities 

{1r é : 0 i;' é ~ 1} is tight. and so c~nd~ions RO and RI are satisfied. Finally, by 

Proposition 3.2 1 and parI, conditIOn R2 is satisfied and the Markov transition operators 
~~ -

a 
1 , . ' 

( 
), 

{Té} corresponding to the E-parametenzed system (3 3~ converge as é --+ 0 

. Furthermore, Slflce te IS apenodlc, It follows that for every initial condition 

x { X 2 , the resulting traject?ry {J.lk ~ U: br} converges weakly to 1ré as k -+ (Xl. 

By (337) and (338) It may be shoVvn that the' function y2( ) - pu2(.) IS uniformly 

integrable with respect to the probabilities {J.lk . k (. .ll+}. Applymg Theorem 1.1.2 we 

see that 

(3.4~ 

for ail ê > 0, and in the case E = 0 equation (3.43) still holds with 

because in this case the parameter oZ converges to 0* as k -+ 00. 
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To finish the proof of the PropositIOn we are left to show that 

I
I Jê 0 - 2 2 
lm 00 = J oo = 0w + pOU· €-o 

(3.44) 

This follows from Proposition 3.2.2: We have already established conditions RO - R2 

for This example and Te ---* To as é ....... o. Renee, 

weakly 
7r € ----> 7r 0 as é --+ o. 

, 

, Using (3.37) and (3.38) once more It may be shown that the functions y2( . ) + pu2,( 

are uniformly integrable with respect to the probabilities 7r €, é ( [0,1]. By Theorem 

1.1.2 it follows that (3.44) holds, and thls completes the proof. 
o 

3.4 Future Applications 

The example presented in the 1frevious section suggests a number of applications The 
... 

main poir.t of that example was to 1>how that many of the asymptotic properties of a 

~arkovian system vary contmuously under perturbations of the structure of the system. 

It also illustrates how a :V1arkovJan system which is not locally stochastlcally cOTJ.trollable 

may be approxlmated by systems whlch do have this property Hence, one possible 

- 0 
approach to the stabihty analysis of general MarkovIan systems is to find a system 

model which IS locally stochastlcally controllabl~\ and which approximates the system 
1 

subJect to analysis, and then use the resulLs of Chapter II and this chapter to study th;-

behavior of the approximate system model. 

A simple way to construct a locally stochastically controllable appr.oxlmate 

s'ystem is to in je ct an l.i.d. "dither" seq~ence d€ into the system. For example, if the -

control law (3.21) is replaced by 

zb(z) = (a(z) - c(z))y(z) + d~(z) 

( 
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34 Future Application-

l 

where d ô lS a Gaussian l.l.d stOChastlC proce;ss Wlt;' zero mean and variance E2• then 

the resultmg closed loop system will be locally stochastically controllable under general 
'-

conditIOns. This techniqtte has already been applied in pM:ameter estimatIOn algorîthms 

to force a condition known as persIstent excltat\on to hold .. 
For example, suppose that • is a Feller Markov chain with Markov transition 

operator T whlch IS stable in probabihty and possesses exactly one invariant probablhty 

1r. By Theorem 1.3.1 for every mitial conditIOn distribution J.Lo, the resulting traJectory 

{J.lk ~ Uk lkO . k ( lZ-I-} satisfies 

N 
1 L weakly 

- Il k ----t 1r 
N 

as N --t 00. - (3.45) 

k=l 
~ 

If the deterministic o-algebra L,D of 1r is trivial then it seems plausible that (3.45) could 

be strengthened to simple convergence: , 

U k we'akly 
110 ----t 1r (ll, k --t 00. (3.46) 

. " 

One approa~h to establishing (346) would be to find a parameterized family 

{Te: 0 ::; ~ ::; 1} of Markov transition operators such that RI and R2 hold and Te --t T 

as ~ --t O. If the Markov transition operators are chosen to be positive Harris recurrent 

with unique invariant probability 1ré then it follows that for every initial condition 

distribu tion J.lo, 

U k weakly 
e 110 ----t 1r é as k --t 00 (3.4 7) 

Under certain conditions the existence of this limit for ail ê > 0 will imply that (3.46) 
\ 

holds as weil. \ 
\ 

As an i1lu~tration suppose that the Markov chain. is generated by a Markov 
\ 

'system of the fonn (2.3) with state space X = Rn, and suppose that the following 

conditions are satisfied: 
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(1) F(O,O) = 0;­
( , 

- ----------------------c~.----------

3.4 • Future Apph(atlOl1~ 

(2) For sorne .À > 0 the function F satisfies 

sup sup 
ztRP x,ydR n 

X1=Y 

IiF(x, z) -. F(y, zruz .À 

lix - yl12 '<. 

-
Since we have made no assumptions on the distribution of Wb k f. iZ+, we 

cannot apply any of the results of C1iâpter II to this example. The Markov chain. is . 
". not Harris in general since for examp'le, we rnay hâve w == 0 almost surely 

~ 

However, it may De shown that • satisfies condition AS, and that it is stable 
~ , 

in probability and Feller Hence by Proposition 1.3.1, for every initial condition x ( X 

there exists an invariant probability 7r x .defin~d for f ( C by 

N 
. l" k / '.J~oo N L, T f (~) = f d7rx. , 

k=l • 

(3.48) 

This re.sult may be improved considerably by' ~p.roximaùlon rnethods described 

above. The following result will be used in Chapter IV. 

P.roposition 3.4.1. The Markov chain • pos~esses exactly one invariant probability 7r, 

and for: every initial condition distribution ?-Lü (.,M and f ( C, 

(3.49) 

Proof. 
1 

C{onsider the pert urbed system 

(3.50) 
o 

where d~ is an Rn-valued Gaussian i.i.d. stochastic ptocess with zero mean and ~ariance 
, 

ë 21, and is independent of w. For each ~ >·0 the Markov 5yst~m (3.50) satisfies condition 
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GA, is stable in probability, locally stochastiéally controllable, and hence by Proposition 
t 

2.3.2 it is aperiodic and positive Harris recurrent. 

We will now show that .é is uniformly close to t in a probabilistic, sense for 
-

1 C ~. O. For any initial condition <I>o = ~6 = x l X, 

il4>k+1 - <I>k+f!l2 = IIF(~k,Wk+{) - F(<Pk,wk+d + dk+1 112 

::; À;'~k - <I>kl!2 + IIdk+ 1 1l 2 

by assumption 2 Hence for each 6 > O. 
00 

hm sup sup sup Px{ll<I>k+ 1 - <I>k~ 1 :,2 > cS} ::; lim P {L ,\k lid% 112 > {y } = O. (3.51) 
é->O hZl-"; uX ê-+O k=O 

This implies that for every x i X and f i Cc' 

(3.52) 

'In partlcular. 
. N 

o = lim Hm suP/ ~ L (Ex[f(<I>kW~ Ex!f(~k)]) 1 
ê-+O N -00 k= 1 

= Hm 1 / f d1r é - J f d?T xi, 
é-+O 

where 1rê is the invariant probability for té, and 1rx is defined in equa~on (3.48). lt 

follows that 

weakly 
1rE; ---t ?Tx as Ir _ 0, and 

D.. 
1r = '!r x = 1ry for ail x,y (X. 

Furthermore, from this and equation (3.52) we have for each x i X and f {. C, 
A. 

Hm sup IEx[f(~k}]- / f d1r1 ~ lim sup lim sup (:Ex[f(~k)]- Ex[f(<I>k)]1 
k-+oo &-+0 k->oo 

+ IExlf(<I>k}] - J f d'!r€1 

+ 1 f f d1r - J J d1r t: 1) 

=0 

which proves the proposition. 
o 
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34 Future Appl~callOn< _ 

ln the next chapter we mvestigate a very important application in what is 

now classical control theory; the robustness of linear stochâstic systems operating under 

nonlinear feedback. 

-', 

1 

v 

1 

< 
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NONLINEAR CONTROL 

Chapter 4 and 

SECTOR CONDITIONS 

1 

ln ihis chapter we investigate an important c1ass of stochastic systems which satisfy 

condition GA of Chapter II. Consider the stochastic state space system 

(4.1 )(i) 

(ii) 

where the processes y and u evolve on IR, 'x evolves on Rn, the matrices'c and b are 

n x 1, and A is an n X n matrix. The disturbance process w ~ {(€k+l) : k f. 7Z+} is 
Çk+l 

i.i.d. and independent of (ua, xo). 

Suppose that .a nonlinear feedback control law is given of the form 

for ail k l lZ+, ( 4.2) 

where the function cp is continuous. Then the resulting cl~ed'loop system 

"'\ (4.3)(i) 

(ii) 

\ 



• 

41St a bllJt\ 

is of the general form ~2.3) introduced in Chapter II. In the next two sections we will 

use the results presented in Chapters 1 - II ta establish a variety of results including the 

convergence of the underlying distribution of the input-state-output process, and the 
, 

convergence of the mean square cast J N for aU initial conditions. In section 3 we will 

apply the results of Chapter III ta show under extremely general assumptions that the 

value Joo of the lirnit of the mean square cost varies continuously under perturbations 

of the feedback control law cp. 

4.1 Stability 

In this section we will establish generaJ-stability resu}ts for the cJosed loop system (4.3). 

Ta deter~ill€· whether or not the system (4.3) satisfies condition GA of Chapter II we 
1 

must investigate the asymptotic behavior of the sequence d generated by the recursion 

(4.4 ) 

The cJosed loop system (4.3) satisfies condition GA if and only if the sequence d con-

verges to zero for every initial condition do l ]Rn, and we will proceed by showing that 

the deterministic systelI!. (4.4) is globally asymptotically stable. A }rober of sulliciept 

conditIOns are available to ensure that the system (4.4) is globally asymptotically stable. 

The conditions we present here are sufficient to ensure the asymptotic stability of (4:4), 

as weIl as the V stability of (4.3). Observe that by (4.3), the closed loop system is 

Markovianizable where the Markov state process t ~ {y X) = {(?'k+1) : k f ~+} evolving 
Yk 

on X ~ ]Rn+l has the Feller property. 

For a function 1: ]Rnl -+ R n2 we define the gain of l, gh) flO, 00], by 

( ) 
A Ih(x)1I2 

g 1 ;::= sup _II Il . 
xdRnl x 2 

(4.5) 
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1 

If "Y is linear. ~o that it is realized by an nl x n1 matrix A then 

g( Î) == greatest singular value of A 

== J max e-v~lue (AT A). 

4 1 Stahlht~ 

We say that the control '{J defined' in equation (4.2) lies in the sector (a, r) (see ! Saf onov , 

1980]) if for aH, x l 1R, 

Bence if the control '{J lies in the sector (a, T) then it has the form 

'{J(X) = QX ---- l(x) 

where the gam of the function e is Jess than T. Sector conditions such as this one 
" 

have previously been used to establish the stabihty of deterministic continuous time 

systems operating under feedback (see [Zames, 1966] and IPopov, 1973].) Proposition 
~ 

4.1.1 below generalizes these results to this stochastic control pr~Jem. We list here two 

assumptions that we will be referring to throughout this chapter: 

\ 

Del For sorne p ~ 1, E[llwQ 11~1 < 00; 

ne2 The control law 'P lies in the sector (a, r) and 

~ ~ g(A - Qbc T
) + Tg(b)g(c) < 1. 

Proposition 4.1.1. For the linear stochastio sy!'tem (4.1) with controJ,f4.2) suppose that 

assumptions nd and ne2 hold. Then the controlled system'satisfies condition GA, and . 
is stable in probability and V -stable. 
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Proof. \ 
Letting l(x) = !p(X) - o:x for x l IR, we may use (4.3) and assumptions nd and ne2 to 

, , 

estimate t~e norm of xk+l as follows: 

i 

Ilxk+ll1z:S JI(A - abc T)Xkl/2 + Il bl1 2ll(c
T 

xk + çk+d/ 

+ a/lbIl 2 Jçk+ll + I/GÇk+1112 
o 

:S g(A - abcT )I/xkIl2 + r/lbIl 2 1(cT 
Xk + çk+d/ 

+ ailbll 2 iÇk+l' + liGÇk+l~/2 

(4.6) 

for sorne C > O. Renee, replacing wk+l by 0 in equation (4.6) shows that dk -4 0 as 

k ---t 00, which establishes that (4.3) satisfies condition GA. 

It follows from (4.6) and the triangle inequality that for every initial condition 

4>0 = X f X, 

lim sup (Exl/lxk+ll1~]) l/P.:s ,\ Hm sup (Exlllxk II~]) l/p 
k-+oo k-.oo 

+ c (E[lIwo:/~])l/P 
, (E[lI wo/n) l/p 

<C 2 <00 
- 1 - ,\ 

Since ail norms on Rn are equivalent, this bound implies that there exists a cOnstant 

Cx :> 0 such that 

lim sup Exlllxk 11~1 < CX. 
k-+oo 

(4.7) 

Furthermore, we have for ail k f ll+, 

Combining (4.7) and (4.8) we may find a constant K> 0 such that 

lim supEx[llxkll~ + IYklPj :S K 
k-+oo 
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for every <1>0 = x f X. We remark that the constant K does not depend on the specifie 

structure- of the feedback law 'P, but only on the parameters A, b, c, r, a, and Erllwo lit:. 
J 

This shows that (4.3) is V stable, and since Il . ll~ is a moment on R1'1-r1 the 

state process • is stable in probability. 
o 

4.2 Stochastic Controllability 

We contin~e our investigation of the system (4.3) by establishing necessary and sufficient 

conditions for the Markov state' process • ~ G) to be locally stochastically controllable 

Jt is easily verified tha~ in fact x is also a Markov process, and we will proceed by 

establishing necessary and 'sufficient conditions .for the generalized èontrollability matrix 

Ct of the system (4.3) (i) generating x to be full rank. To do this we will occasionally 

need the following additional hypotheses: 

Dc3 The control 'P is Cl; 

Dc4 The pair (A, G) is controllable; 

ne5 If", '" 10", for sorne lpen Olét 0", C RP, and 0, Ô",. 

When condition nc3 ho)ds ·the Markov process x is of the' form Xk+ 1 ::... 

F(Xb wk+d where F is Cl, and hence we may use (4.3) (i) to compute CT by finding 

the derivatives of the function F: 

CT = [Ar-l'" AÎBôIAr_l'" AiBil'" "'IAT-tBT-2IBT-d (4.9) 
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~ cf:E. ' where. letting lXk = dt (Yk), 

and 

for aH (4.10) 

The following Jemma greatly simplifies the computation of the rank of the 

matrix Cf. For an n x m matrix H Jet CoKer(H) denote t~~ n-dimensionaJ vector 

space 

CoKer(H) ~ {x f ]Rn : x - H = o} . 

Lemma 4.2.1. The generaJjzed controllability ma"rix Cr satisfies 

(4.11) 

Proof. 

We will proceed by showing inductively that for k ~ 0, ... T ~ 1 and x f Rn, 

x T [AT-l ... AT-kBT~k-d-" ·fAr-lBr-2IBr-l] = 0 

if and only if x -;- [Ak\GiO:T_k_lb1! ... iA\G:OT-2bl\lG\oT-1bl] = O. (4.12) 

Fof k :r: 0 equation (4.12) becomes 

and this is obvious. Suppose now that (4.12) has been established for k = n - 1 ~ O. 

To establish the implication (==:::;..) for k = n observe that if x f Rn satisfies 
) 

(4.13) 
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then by the induction hypothesi~, 

, -
x

T [An-l[G1oT_nbj ... !AIGloT-2bll[GloT-~blJ =0. 

Furthermore, byequations (4.13) and ~4.14) it follows that 
J 

= x T (A - 0T _lbe T HA - 0T-2be T) ... (A - OT~nbc T)[GI - 0T-l-nbj 

= x T An[GI - OT-l-n6]. 

This and (4.14) establishes the implication (==}) in (4.12) when k = n. 

To establish the reverse implication suppose that x l Rn satisfies 

TAt G' bl 0 x l ,OT-l-t J = , for aIl 0::; z ::; n, 

s~ that by the induction hypothesis 

To. complete the proo"of the lemma we are left to show that 
~ . 

/ 

and this follows from equations (4.10) and (4.15): 

(4.14) 

(4.15) 

(4.1~ 

'x T A~_l ... Ar-n+lBr-n = x T (A - QT-t be T)(A-_ 0T-2bc T) ... (A - OT-~bc T)\GI ~ OT-l-nb] 

= x T ATI[GI- ~T-l-nbl = O. 

o 
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Using Lemma 4.2.1 we may now give the following sufficien~ condItion for 

the generalized controllability matrix CT for (4.3) to, be full rank. 

. -
Proposition 4.2.1. If èonditions nc3 and pc4 hold then the generaljzed cantrollability 

matrix Cn for (4.3) is full rank. 

"' , 

Proof. 

_ The generali~ed controllability matrix Cn is of the form 

( 4.17) 

where # dènotes a variable. which does not éoncern us. Hence by Lemma 4.2.1, the 

rank of Cn is greate; or equal to the iank of the matrix 

[
An-le: ... iAGIGIO]. 
o ...... 0 1 

Since (A, G) is controllable, the rank of this matrix is n T 1 and this completes the 

·proof. 

\ 
'0 

,We will now consider the complete observations case where ç == O. In this 

c~e the system equations become 
1) • 

.\ 

Xk~l = AXk + bUk + GÇk+l' 

(4.18) 

where th~ distribution 'J.L€ of ço satisfies condition A4. When the control (4.2) is applied 

the closed, ~oop system is , 

. T 
Yk = C xb k f ~+. 
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As hefore, this system is Markovianizab!e but in this simpler case ~e r;nay take the 

Markov state process • = x. 

Letting Ak = A - akbc T, and Bk ,= G for k (. ~+, the generalized controlla­

bility matrix for the closed loop system bec ornes 

CT = [AT-l'" AIBoIAT-l'" A2 Bll······ !AT- 1BT-2IBT-l] 

= [(A L QT-1bc T) ... (A - Q1bc T)CI" ·!(A - QT-1bc T)GiC] 
, 

In the co,mplete observations case the hypothesis that (A, C) is controJlabJe 

is -not enough to ens~re that the rnatrix ~T is full rank for sorne T. For a counter 

example, take tp = -Id., and A = bc T. Then the state process x hai the form 

and the generalized controllability matrix for this system is full rani< if and only if C is 

full rank. 

On- the other hand, if G is full r~nk and tp is continuous then x is locally 
't 

stochastically controllable. 

,-

Let us now return to the stability amilysis of (4.3) with conditions nrl - neS 
, . 

in force.oSin'Ce the 'Markov state process • is stable in probaqility, locally stochastically , 

controllable, and satisfies condition GA'we conclude from Proposition 2.3.1 that • is an 

aperiodic, Harris recurrent Markov chain With unique invariant probabilitY,1r. Hence, 
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the performance criterion Loo defined In Chap'ter 1 may be computed (with a possibl) 

infinite value) using the invariant" probability 7r: 

N ' 

Loo ~ lim sup ~ L YZ + pUk 
N -+00 k=l e 

N ' 
. =, Hm NI L Y~ + pu % 

N-+oo 
. k=l .. 

= J y2 + pu2 d7r 

We summarize these facts in the following proposition: 

Proposition 4.2.2. Suppose that the closed loop syste!!1 satisfies conditions nel - ncS, 

Then the state process • is Harris recurrent and aperiodic. Furthermore, the s,m.s. 
1 

performance criterJon Loo is a.s. constant and independent of initial conditions. 
.0 

We have the following corollary to Proposition 4.2.2: 

Corollary 4.2.2. Suppose th'at the closed loop system satisfies the conditions nël - nc5 
\ 

and that the constant p used in condition nel stnctly greater than 2. Then the closed 

loop system is s.m.s. stable, mean square stable, and the performance criterion J 00 is 

independent of inititial conditions and satisfies 

" 

J oo ~ lim sup Ex[Y~ + pu%l 
k-+oo 
; 2 2 

= hm EX[Yk + pUkl 
k-+oo 

= J y2 + pu2 d7r 

:s Koo ~ ((1 + p(r + a)) J y2 d7r 

<00 

. ' 

where the constant Koo depends only on r, a, A, b, c, and E[liwoll~l. 

\ 
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4.3 Struct liraI Rohust Ile,,: .. 
Proof. 

Since • i~ Harris recurrent, for every initial condition 4>0 = x l X, 

0. weakly 
Ji-k ---t 1l' as k ---t 00, (4.20) 

" 

where Ji-k is the distribution of 4> k. Furthermore, by Proposition 4.1.1 there exists a 

" constant Kp > 0 such that for every initial condition ~o = x l X, 

lim sup Ex[1 Yk!P + pl Uk IPj = lim sup J lylP -+- plulP dP,k 
k-+oo k-+oo \ 

::; K" (4.21) 

From equation (4.21) it follows that the functioTl y2(.) + pu2( .) is uniformly 
, 

integrable with respect to the probabilities {J.Lk : k ( ll+}. Applying Theorem 1.1.2 

shows that 

Joo ~ lim sup Ex [Y~ + puil 
k-+oo 

;:= lim' Ex[Y~ + puil 
k-oo 

= J y2 + pu 2 d1l' , 

and the last term is less then ((1 + p(r + 0:)) J y2 d7r by the sector condition on 'P. 
o 

, ' 

4.3 Structural Robustness 

1 

The example introduc.ed in this chaptel' is ideal for ilIustrating the results of Chapter Ill. 

Sector' conditions of the type described in Section 1 ~ere or'iginally devised to establish 

the s\ability of a linear system for an entire class of feedback control laws. We will now 

extend these results to-show that if the' control laws 

o ::; € ::; 1, (4.22) 
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al! lie in the fixed sector (0:: r).' then under ve~ general conditions (includlIlg, the 

convergence of cp~ to 'PO as ~ -. 0) we may conclu de' that the invà.riant probability 1re: 

corresponding to the control law <Pe converges to 1r0 as ê -+ O. Furthermore, we witl 
- - - 1 

show that the performance criterion J~ defined in the previous section also converges: 

lim J~ = J~. 
e-+Q , -

~ re~ark tha:t wr do not knov.: of any way of establishing these results, or the results 

• presented in Section 4.2 without the use of the metJlOds introduced !n this thesis. 

,Proposition 4.3.1. For the linear stochastic system (4.1) with control (4.22) suppose .. 
that for each 0 ::; f: ::; .1, condltions nel - mS hold, and that the constant p used in 

condition nel is strictly greater than 2. Suppose further that, for e~ery N l. 7L+, 

, 

lim sup [<Pe(x) - <po{x) 1 = O. 
e-+Q Ixl$N 

weakly 
That is, <Pë converges to <Po uniformlyon compact sets. Then 1re - 1rO, and J~ -+ 

JO as E -+ 0 oc 

'ri 
Proof. 

\ 

By the conditions of the propositioQ it is easily verified that the Markov transition 

functions {Te' :-0 ::; é ::; l} satisfy conditions RO - R2 and that TE -+ To as é --t O. 

Hence 1re -. 1rO, and by' Proposition 4.1.1 (and the remàrks made in ifs proof) there is 

a constant K > 0 such that 

J yP + puP d1r e < K for al! 0::; ê ::; 1. 
o 

Hence the·function y2 + pu2 is uniformly cÏntegrable with respect to the invariant prob-
\ 

, 
abilities {1re: 0 ~ ê ~ 1}, and aJ')plying Theorem 1.1.2 we find that , -
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We now turn to the problem of removing the smoot~ness condi\Îon on .,; and 

the noise controllabiiity condition on the c10sed loop system (4.3). Altho\lgh our resultll 
-

• are not complete as yet. we have a partial solution to this problem and tiU' mt>lhods 

used to establish these partial resuJts are interesting on their own, It is Iikely that these 

methods will in useful in proyiding further extensions to the results of this chapter. 

Using the following strengthening of condItion nc2. w,e will procet>d by showing that th(' 

c.losed loop systêm (4.3) satisfies the conditions of Proposition :l·J.l 

- nc2' The control law p lie~ satisfies :;>(0) - O. and for some 0:, r ( R + , 

and' 

Ilbi:z 'i c 112 sup 
<'.tt IR n 

.. It 

Ll l 
À=g(A-obc )-t-rg(b)g(r)·- 1. 

Proposition 4.3.2. Suppose that conditions ne 1 and nl'2' ho/d for the .'1arko\! ... , ait' 

process t described by equatlOn (il?) Then thert· eXI~t~ a uTllqut' il/variall' probdbilit.\ 

1T. and for every initial condition 4>0 -- l ( X. and f'V('ry f ( C "'1' JUH't' 

lim ET f(4)d: Jf d7r 
k 'OC 

Ob~erve that since w(' make no n~!->trictions on th .. distrihution of th(' di!!-

turbance process. Proposition 4.:i.2 hQJ.cb for tht> complt>te observat_ionH rase by " .. uing 
~ ( ~ 

ç == O. -

~17 

\ 
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Proof. 

We will show that the Markov chain x defined in (4.3)(i) satisfies the conditions of 

Proposition 3.4.1. Condition 1 is obvious and using nc:2' we will now show that condition 

2 holds: For x i= y, 

IIA(x - y) - b(cp(c T x + r) - 'P(c T y + r))112 ( b T) 

Il 1 
:f g A - Q C 

X - Y 12 ' ' 

('. +libI1
2

!l(c
T
x+r)-l(cTy +r)! 

\ Ilx - Yll2 

:::; g(A _ o:b/') + rlTbl1
2

11c T (x - y)112 
IIx - yl12 

:::; À. (4.24) 

Hence ail of the conditions of Proposition 3.4.1 are satisfied and we conclu de 

that there exists a unique invariant probability cv for the Markov chain x and that for 

every initial condition Xo ( 1R n, and every continuous and bounded function g: IR n --+ nt 

- '\ 
Since Yk = cT xk + Çk+l it follows that for every f f. C and ~o = x f. X, 

J - where 7r f..M Îs defined for f (C by J f(x,Y)IJr(dx,dy) ~ 

and this completes the proof. 

.' 
o 
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Chapter 5 APPLICATIONS TO ADAPTIVE CONTROL 

To illustrate th~ results in stochastic adaptive control obtainable from the tht'ory of 

Markov chams described in Chapt ers 1 - III we \\'111 present here a dt'tailed analysis of 

a c1ass of random parameter AR(p) stochasttc systems undt'r ~()pt Imal fOnt roI. W(' WIll 

find that under reasonable conditions, the c10sed loop systf'Tn ('quation!l gIV(' rist' tn il 

Markov chain • ~'hich has ail of the desirable propertlf's d{,~cTlb('d in ('hapt('r~ 1 and II. 

In partlcular, when these conditions are satisfied thp state pTOCf'~)o, • )o,ati)o,fi(·~ conditlo/l . . 
GA, is stable in probability and locally stochastically controllabl(·. Th{'M' fd.(ls wiILh(· 

used to give a complete d~cription of the asymplotlf properlli(·s of t hl' output pro( ('!\!\ 
• 

of the closed loop system. 

" Consider the followmg AR(l) (-;.,. stale sPa.<'l') random pararnfller mo'tJel') 

(il) 
0'1 .- 1. k ( 8. .. (5.2) 

",here the disturbance process (~) is Gaussran a~d satisfies 

(5.3) 

n. le .» 1. . (5.4) 

/ 
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o The time varymg parameter process ° is not observed directly but is partlally 

observed through the input and output processes u and y. We assume that for k ~ 1 

the input process satisfies uk (: ' k , where fk ~ a{Yb'" ,yd. 

Equations (5.1) and (5.2) defin~ a controlled Markov transition function P 

with state space 1R2 where for 0, U, y (R and A (: B(R2), 

where el and WI are defined above. With the map w:R2 .......... .RI defined by wU) ~ y, 

the pair (P, w) is a stochastic state space system as defined in Chapter ( 

Our goal is to find a control law which (s.m.s) stabilises this system and 

minimizes the expected s.m.s. criterion function defined in Section 7 of Chapter 1. Since 

this model is in (linear) state space form with state 0, and because of the assumptions 

" \ made on (w, el, the conditional expectation E[Ok 1 fk-ll ;s computable using the Kalman 

filter (see IMayne, 1963]) whenever the initial condition (uo,Yo,Od for (5.1), (52) is 

Gaussian. We may use the resulting algorithm to compute the "çertainty equivalence" 

adaptive rn'inimurn variance c~ntrol ~k = Yk+l - Ôk+IYb k f ll+. For simplicity we 

henceforth assume ~hat the reference)ignal y' =' o. Then for an arbitrary initial 

condition 4>0 = (VJ,OI,YO)T this control may be computed recursively via the equations 

- Â ..... 
and letting Ok = Ok - Ob the closed loop system bec ornes 

V - 2 2 2 V (V 2 2 )-1 k+l - U e + Cl! U w k kYk-l + U w , 

k 2: 1, 

k 2: 1. 

(5.5 ) 

(5.6) 

(5.7) 

(5.8) 
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We note that 0k-+-1 = 0k-+-! - Eillk+I i JIr ! and Vk+ 1 

distributed N(O, Vt} and Yo and VI are constant. 

As one would expect, by the recursive nature of the feedbaà control law th .. 

- c\osed loop system is Markovianizable. ln fact, the triple 

• = {~k}k:o ~ { (~::: )}OO 
Yk k=O 

, 

is a Feller Markov process with state space X ~ R + ;. R 2• We will use t'hese f ac tB' and 

Proposition 5.1.1 below to establish asymptotic properties of the criterion functions 

described in Chapter l. 

5.1 Stochastic Controllability 

We are fortunate enough to have the following extremely useful result: 

Proposition 5.1.1. The system described by equations (5.6) - (5.8) is loclllly storhasti-

cally controllable. 

Proof. 

By Proposition 2.2.1. of Chapter Il it is enough to show that for sorne T the contr<tlla-

bility matrix for this system is full rank for almost ('\'t'ry fol('quence 

(5.9) 

We will show that this is the case for T ::: 2. To construct the second order controllability 

matrix we use the notation of Chapter II: Let F:X;. R2 ... X, (r,z) .. F(l',;-), den ott" \ 

the Coo function defined by 

J~l 

\ 
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With .x ~ (V2.82,yd and z ~ (e2,w2), the partial derivatives of Fare given b) 

\ [0 , aF _ - l, 
[az Lx,.) - 0, 

0, 

[
aFl [#, 
ax t(x,z) = #, #, 
. #, #, 

where we use # to replace a function of 

to the present discussion. 

Renee C2, the second order cont'rollability matrix, has the form 

[

0, 
e2 = #, 

#, 

-202
0

2 V 2y w 2 1 0, 
(V2 yr+O'a)2 ' 

#, 1, 
#, J 0, 

;] 
which is full rank whenever YI = Biyo -f wl is non-zero. This shows that for each 

(:i) l R+ x R', the matrix C, is fun rank for a.e. ["L'b[ ( (::) , (;,) ) l R' x R' 

and so by Proposition 2.2.1 the closed loop system is locally stochastically controllable. 

, 
o 

We now show that the Markov state process • satisfies condition GA. In 
• 

Section 2 below we will find that for 0; < 1 it is stable in probability\. and hence 

positive Harris recurrent and aperiodic. 

To see that • satisfies condition GA, observe that for any k f ~+ and x f X, 

the asymptotic behavior of the state readout map S:( . ) evaluated at 0 may be analyzed 

t 
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..... . .l 
the noise in equations (5.6) - (5.8). Hence. with (î\"'1,8k+l'Yk) , 1 J 

-- ..... 
This impl es that IOk+-ll < alOkl' from which·it follows that for every Xl X. 

1 
1 
1 

5.2 Sitability 

In this section we prov.e that • is stable in probability and hence positive Harris rerurrent 

when (/f < 1. By Theorem 1.3.1 of Chapter l, an invar1b.nt probability will exist if 

EJ,to !I~k 11
2 = EJ,to (Vf+l + O~+ 1 + Y~) is uniformly bounded for s,orne init ial distribution 

11-0' In the proposition below we establish the boundedness of this quantity whenever .. 
CT; < 1, and the initial distribution is chosen to ensure that the equations a~ove art> 

J 

truly generating EJ,to[8k 1Jk-ll. An example of such an initial difltribution is that whert" 

( VI, 0 l , Yo) '" 60 , 

Proposition 5.2.2. For the system described by equations (.5.6) - (.5.8) w;th initial dis-
, 

tribution ho (i.e .. the unit probability mass at zero) 

lim sup E60 [1I~k l!2] < 00 for (1; < 1 
k-.oo 

= 00 for (1; 2: 1. 
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Proof. 

-' 
f 

li Cl; ~ 1 then Vk ~ 1 for all k > O. Recall that Vk = E"o[6~ 11k- 1] 50 

E"o [y~ 1 1k-l] = VkY~-l + G~ 
2 2 

~ Yk-l + °W' 

52 Stablht) 

(5.10) 

2 ~ ) 
Suppose that Ge < 1. Then Vk ::; ~ {or aIl k > 0 and it follows that 

~ l-a 

and 

To establish the proposition it is enough to show that 

Hm sup E"o [y~] < 00. 
k-+oo 

Fix 0; < p < 1. It is easy to show that 
\ 

Vk+î < p if and only if yl-l > Q, (5.11) 

. a 2 2 1 
where Q = O'w(-=~ - v,::). From (5.10) we see that 

P-(J'e k 

(5.12) 

So" sinee 
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5.2 St abl1it~ 

we may compute the following estimate of E/lO.yt+l) by smoothing and thé inE'quality 

in (5.12): 

2 ' 

E6orY~+11 ~ pE6o[y~1;- 1 :to2E6o[yll yl-l ~ QJ-t- 0; 
~ pE6o[y~1 + u~ [ 0:

2 

2 ( u; 2) 2 + u; 2 + 1] 
P - u e 1 - Q L l ,- 0: 

which establishes that Hm SUh-+oo EbolYfl < 00. 

o 

Applying Theorem 1 3.1 to the ,case where 0 <. 0; < 1 we see thcre is an 

invariant probability 7r WhlCh is unique since • is locally stochastically controllable and 

satisfies condition GA. Furthermore, it is easily verified that 

and that P{. enters O} = 1. Hence by Proposition 2.2.4, • is stable in probability. 
\ 

Applying Corollary 2.2.4 and Proposition 2.3.2 it follows.that • is aperiodic and positjv(> 

Harris reeurrent 

Before applying the r~su)ts of Theorem 104.5 to this examp)p we will estabIish 

a 'few properties of the unique invariant probability 1r. First, bcrause 1T :::: lOI-LLth, 

{ 2 / 2 2 } 1r 0e " VI < Ut 1(1 - 0') - 1. , (5.13) 

Furthermore, by Proposition Q.2.2 ilnd the fact that ,1)'N Uk6 weakly N ,-,k-l 0 7t, we find 

that 

lU 
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- \ ~ -

ln Proposition 52.3 below this result is improved, giving upper and lower bounds on 

E7I' !Y~: First we must prove the following lernma: 

Lemma 5.2.1. For the stationary Markov process on Zl described by equations (5.6) -

(5.8) with distributj~n Pl!" (P,!!" can be extend~d from B (Xz+) to 8 (XI) sinee 7r is invariant), 

we have ( 
a.s. \P7l'J, and 

Ip 1 a.s. 1 71'1, 

where JI. ~ <7{Yt : -00 < l ::; k}: 

• 1 

Proof. 

Suppose tPo has di~tributi<p1 bo so that 

N 
1 L weakly 

- J.L k ------> 1[' 
N 

k=l 
, r 

From (5.6) and (5.7) we have , 

as N --+ 00. 

- [ 2 2 2 -1]-0k+l = a 1- VkYk-l(VkYk-1 + <7w ) Ok 

1 
So for ail p ~ 1, 

- aVkWkYk-l (VkY~_1 + <7~)-1 + fk' 

\. 

(5.t~) 

(5.15) 

(.5.16) 

whe1e c > 0 depends o_nly on p. u;, and <7~. Henee using an argument si~lar to the 

one used to show that E7I' [YO 1 < oc we may show tha;t 
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52 Stablhn 

By Theorem 1.5.2 of Chapter l, 

00 

-

where P1t is the density of 1r. Hence for a.a. IIlLeb ] (V},Yo) f. [0;, (1~i2)l x :nt 
-4 

f • 

( E [sup ~ t Ok i 4>0 = (r:) 1 P7T (Vb 01, yo)dOt < 00. 

. lIR N k=l YO 

(5.17) 

Choose (Vb YO) (. [a; 1 (1~~2) 1 x :nt such that (5.17) holds and 

- 2 2-2 
- 2!1 2 V1 0 wYo 2 
VI < P = Q (- -2 2) + Of' 

V1Yo + U w 

(5.18) 

This is possible because (5.18) de fines anon-empty open subset of [o;,o;/{l- 0:
2)] >:- IR 

(non-empty because it contains (0; + f:, !io) for !io f:= 0 "and ES sufRciently smal!.) Observe 

that P7T(i\,ol,!iO) is a Gaussian density with variance p2 which by (5.18) is greater than 

VI' It follows that for ,sorne constant K > 0 and ail 81• ( :nt 

Define fJ.o to be the distribution on X given by fJ.o = 6Y06ç1 N(O, VIl. That 

is, ul!der fJ.o, Yo == !io, VI == V{, and 81 ..... N(O, VI); the Gaussian distribution with mean 

zero and variance VI' By (5.17) 
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5.2 St ablhty 

and furthermore, for aIl M ( ~+ and aIl Borel! ; 1RM 
-+ R~ 

(5.20) 

and 

+. (5.21) 

By the corollary to Theorem 1.5.1 we h~ve • 

. N a 

J~oo~ "f:,7ik!(Yk-l,'" ,Yk-M) = E7r [OM-t1!(YM-'''',Yd] 
. k=l 

a.s. [PJlO]' 

Taking expectations of both sides of this eqtiation apd using (5.19), (5.20), and the 

dominated convergence theorem gives 
-

E7r [OM+1!(YM"",Yd] = EJlO r~~oo~ f)kf(Yk-" ... ,Yk-Ml] 
-k=l 

N ' 

= )~oo~ L Ello [Ok!(Yk-l,'" ,Yk--'f)] 
k=l 

, = 0 

which establishes part (i) of the lemma. Part (ii) is proved using the same argument. 
o 

Proposition 5.2.3. W!? have the following upper and lower bounds on the variance of Yo 
.. .. J • ,. 

un der the probability 7r:' 

(5.22) 

and we remark that we know of no way to obtain these inequalities without the use of 1 

these methods. 

", 
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5.3 SUml1l.lr\' 

Proof. 

Taking expectations in (5.7) and (5.8) under the probability P1!' and using Lemma 5.2.1 

we obtain 

ElI' [Y5] = Elr [V1Y5] + u! 
o'~Ei [Y5] = Elr [VIY5J - o:2u!E?r IVI]· 

.ence, ). 

(1 =- u;)E1!' [YB] ~ u~ + a2u!~1!' ]VI]' 

1 

which, together with (5.13), proves 'Proposition 5.2.3 .. 
t 

5.3 Summary 

(5.23) 

(5.24) 

o 

We 'now establish a nEmber of asymptotic properties of the controlled system (5.6) -.. 
(5.8). First suppose that 0; < 1. By Theorems 1.4.5 and 1.5.1-of Chapter 1 for every 

initial dis~ribution J.to f .M, o 

, ~ 1 
. {2 2} 1 21 hm PJ.LO {!Ykl > ê} = 11" Yo > ê ~ "2 EJ.LO Yo ; 

k--oo E 
(5.25) 

and_ 
,N 

l,IV" 2 . E [2] 
N~oo N L- Yk == 11' Yo 

Ic=I 

(5.26) 

Furthermore, by Theorem 1.4.5, 

/ , 

for a.a. X"E 0 IJlLe~1 " (5.27) 
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5 3 S~mmar\' 
o 

\ ~ 

We stress that these resuslts hold even though the estimation aJgorithm (56)-

-' (5.8) is not necessarily generating 'Conditional· expectations with these initial condI­

tions. The computer simulation below is taken fr~m [Aloneftis, 1987]. It illustrates the 

asymptotic properties of the controlled system. In this simulation- u; = i, u~ = 3, and 

consequently 6.75 $ E7r [Y51 :S 7. >. 

1 

1 

, 

\ 

'. 

9 ' 

-- -. 
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Figu;e 5.1 Experimental rE'sults for the example 

Q = 1/2, 0; = 1/2, and o~ -;:: 3. 

Ylc 
,0 

.0 

-\0 

, 
output: Yk 

(a) 

o 

-1. 

parameter: Ok 

(b) 

1 0 

__ - ____ ------ 1. 

S.,.ffi.S. output and disturbanée: 
N 1 ,v 

1 \ 2 ~ 2 
l} .v L- Y/e 2) N L wk 

k=l Ie=l 
(c) 

input: uk 

(d) 

parameter estimate: êlc 

(e) 

\ 
Samplç mean èorrelation- funrtlQn 

"1000 

i~o L ,YIcYJc-1': T ::: 0.,' ... 9 
1e-.lOO 

(f) 

ut 

" ~ 
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5 3 Sumlllar~ 

" Note that it is not known how toobtain (5.21) - (5.27) by stochastic LyapunO\ 

methods even in the constant unknown parameter te. . 
Finally, we may apply the results of Chapter III to""this -example. Observe 

that we have shown that for each (a, O'~ , 0';) T f (-},}) X 1R+ X R+ there is an invariant 

probability 1T' ~ 1T'(a,O'~,O';). For any compact subset Cc (-l'f) X 1R+)( R+ the 

corresponding invariant probabilities {1T'(o:,O'~,O';) : (o:,O'~';a;) t: a} possess UIliformly' 

bounded second moments, and henee are tight. Applying Proposition 3.2.3 it follows 

that the map 1T': (-1, 1) x 1R.+ )< 1R.->- -t ..M taking (a,O'~,o}) -------t 1T'(a,O'~,O'}) is cQntinu­

ous. This is an interesting result, but not very useful: ldealy we would like to establish 

the robustness of • wlth respect to perturbations of the distribution 0 the processes 

w,--and e, or under stable perturbations of the Markov 

solution to this problem eludes us at the present. 

We conclude by observing that a simi1ar but more restricted result is obtain-

.. able in the AR(p),p > l, case. 

.. 
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DEPARTMENT OF ELECTRICAL ENGINEERING' 

Course ,'304-688A VLSI TESTING September 1987 
\ 

Instructor: Professor J. Rajski (398-7123) 

The course covers various important aspects of the crucial area of VLSI testing. As 
it can be seen from the enclosed contents, it will span a wide range of topics in both the 
practical and theoretical framework. In addition, a hands-on use of testing equipment , 
will ensure that the concepts learned in the course are e;xercised in practical ter ms as 
weil. 

The main emphasis of the course is to orient designers of VLSI c!Iips and boards 
to think about testing probleIljS in parallel with the design process. With the growing 
complexity of VLSI systems, their testing is becoming even more complex and almost 
impossible in many cases. Thus, the course will consider structured design-for-testability 

1 

as a necessary requirement for designing complex systems. Th~ emerging concept of 
built-in self-test (BIST) will also be considered in detail. 

The lectures )"/ill be held on Wednesdays at 2-3p.m. III room 284 (MacDonald 
Engineering Building). 

The first organizational meeting is on September 9. 
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TENTATIVE LECTURE SCHEDULE 

. . 
1. Introduction 

- aims and objectives of testing, 
- cost of testing and diagnosis, 
- economics' of testing (yield and defect level) , 
- physical failures and fault rpodels, ' ' 
- transistor-Ievel, gate-level and functional-Ievel fault models. 

2. Component testing 
- automatic test equipment, 
- characterization testing, 
- dc and ac,.parametric testing. 

3. Test generation for combinational circuits 
- the stuck-at fault model, ., 
- the sensitized path, 
- algorithmic methods (d-algorithm, podem, fan), 
- complexity of test generation. 

4. Fault simulation 
- testdetect, 
- parallel fault si.mulation, 
- deductive fault simul~tion, 
- concurrent fault simulation, 
- critical path tracing, 
- region analysis. 

5. Automatic test pattern generation ) 
- manual, random vs. algorithmic test pattern generation (Hitest), 
- heuristic met.hods and artificial intelligence, 
- fault dictionaries, fault dropping, 
- test pattern languages. 

6. Test generation for switch-Ievel 
- stuck-open and stuck-on faults, 
- CMOS complex gates, 
- networks of complex gates, 
- transition fault testing. 
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7. Test generation for PLA 's 
- test generat~oJl for two level circuits (complexity), 
- cross-point fauft model and redundancy, 
- generation of input vectors, 
- pruning algorithm. 

8. Memory testing 
- memory faults, 
- memory patterns. 

9. Microprocessor testing 
- structural, functional and behavioral testing, 
- functional level favlt models, 

~ 

- testing bus oriented architectures, 
- testing ftow of control. 

10 Structured design for testability - random logic 
- ad hoc rnethods, 
- scan path techniques 

Il. Design for testa bility - regular structures 
- easily testable networks, 
- function-independent testing, 
- easily testable PLA 's. 

12. Problems with structured DFT :'âiid BIST 
\ - test application time and cost, 

- embedded modules. 

13. Built-in-self-test (BIST) 
- hardware for stimuli generation, random patterns, 
- data compression ~echniques; signature anaJysis, 
- BIST for random logic and regular structures. 

f~ ___ ~ 

14. BIST at chip level and board level 
- boundary scan. 
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Laboratory Experiments and Projects: 

The VLSI Design Lâb has the following Hewlett Packard Te$ting Equipment to run 
various experirnents for this course: 

HP 8180A Data Generator 
HP 8182 Data Analyzer 
HP 4145A Serniconductor Pararneter Analyzer 

In addition, a Wentworth Prober is also available. 

Each group of two students will perform only two experiments. The first one is 
designed to farniliarize the students with the equipment and sorne basic concepts in 
testing. The second will be a part of a project that will require other software tools to 
generate test vectors, analyze fault coverage, and perform postprocessing

o 

of test results. 
The following projects will be offered: 

a) CMOS testing, 
b) PLA testing, 
c) Memory testing, 
d! Testing of randorn logic, 
e) Testing of a multiplier, 
f) Testing of a scannab}e circuit, 
g) Diagnosis of scannable circuit,. 

, 

The final evalu~tion will be based on assignrnents (4070), the final report(30%), 
and the demonstrati'(;n of the experiment (30%). ~' 
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