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Abstract i J ' 3

v

The asymptotic properties of discrete time stochastic systems operatinme—

-

'der feedback is addressed. It is assumed that a Markov chain & evolving on Eucli an

space exists, and that the input and output processes appear as ftmctions of . The

L

main objectives of the thesis are () to extend various asymptotic properties of' Markov

chains to hold for arbitrary initial distributions; and (%)ﬂo develop a robustness theory

r

" for Markovian systems.

[ i

-

1Y

A conditidp ‘called local stochastic controllability, a generalization of the con-

a

cept of controllability from linear “system theory, is introduced and Sis shofn to be .

sufficient to ensure that the first, objective is met. The second objective is explored by
introducing a notion of convergence for stochastic systems and investigating the behav-

s .
ior of the invariant probabilities correspénding to a convergent sequence of stochastic

v [

\ These general results are applied to two previously unsolved problems:, The
T . -
asymptotic behavior of linear state space systems operating under nonlinear feedback,
and the stability and asymptotic behavior of a class of random parameter AR(p) stochas-

tic systems under optimal control. -
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+ Nous étudions les propriétés asymptotiques de systémes stochastiques & temps
i .

Y

discret soumis a une contre-réaction: Nous supposerons que les processus d’entrée et de

sortie sont fonction d’une chaine de Markov ®°a vajTé%gr dans un espace Euclidien. Les =~ -
.principaux objectifs de cette thése sont: (1) de généraliser diverses propriétés asymI;to-
tiques des chaines de Markov & des df’stribu,tions‘ initiales arbitraires; (2:) de développer

une théorie de la robustesse pour les systémes Markoviens. .

- . N
. v
’ k)

* v

Nous introduirons la condition de commandabilité stochastique locale, qui = -,

. généralise le concept de commandabilité pour les systémes linéaires, et nous montrerons

- [y

‘qu’elle est suffisamrte pour assurer que notre premier objectif est atteint. Le second ob-

* +
jectif sera examiné grace a I'introduction d’urie notion de convergence pour les systémes

3

'stochastiques, et ’étude du comportement des mesures de probabilités invariantes cor-

respondant a des suites convergentes de systémes stochastiques. .

Ces résultats généraux sont_appliqués a deux problémes jusqu’ici non résolus:

"

Le comportement asymptotique des systémes linéaires a états soumis i une contre-

réaction .non linéaire, ainsi que la stabilité et le\comportement asymptotique d’une
BeY )
classe de systémes stochastiques A.R."d’ordre p a parametres aléatoires soumis a une |
‘ /
*

commande optimale.

x
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Chapter 1 T PRELIMINARIES

\ - . \»
. L

N

/
. -y
P
- 2 . -

k7]

A}
s,

In Part.I of this chapter we present a brief summary of some basic fdcts from probability
' $

theory. and Markov chains, and in Part II we give a short review of some ideas from

stochastic system theory. This chapter is.intentiona\ly biased to illustrate the close

2 . - ’ . )
connection between stochastic systems and the theory of\arkov chains.

#
’

¥ : . PR

’ PART 1 P - VAR Y
MARKOV CHAINS - R S
. % i

M'arl‘;ov Ichain's have been called.“a basic model for many types of statistical and control
problems” (Kushner, 1971] and have already played a large role {n stochastic system
theory. In this thesis we will find that a Markov state processes may often be generated
from an input-output stochastic system once a time invariant feedback con‘trol law has

been assigned. This Markovianization will, in many cases, allow the asymptotic analysis

of the distribufions, and the sample path averages of the input and output procésses. In
, .

this section we will give a review of some of the key results from the theory of Markov  _

chains evolving on Euclidean space and bring together many of the important ergodic

properties of these processes. This theory forms the foundation of the rest of this work.

¢

°

)




- 11 Weak and Vague Convergence

=

5 ®

1.1 Weak and Vague:Convergence ‘ .

- 7 - |
The theory of the weak convergerice of probability measures on metric spaces has been
investigated in detail in [Parthasarathy, 1967, and !Billingsley, 1968|. In [Kushner, 19é4]
and [Eﬂthier and Kurtz, 1986/ this theory ”has been extended and applied to form a useful

and J.interes'ting theory for the approximation of continuous time stochastic systems. In

this section we present. the results on weak and vague convergence of measures which

sub-probabilities see [Chung, 1974}, and [Loéve, 1977].

T Let X be an open subset of RM. By measure we will alway$- mean a positive

o-finite measure on X. A probability (sub-probabilsty) is a measyure whose total mass is

'3

1 {less than or equal to@l) The set of all bounded Borel measurable functions on X

forms a Banach space B whre

-~ -

17 lloo 2 sup |f ()] - :
%‘ zeX .

Letting C denote the set of continuous f ¢ B, and M. the set of probability measures
T : . X
on B(X), it is easy to see that M C C*, the dual of C, and hence M together with the

relative topology of C* on M is a topological space (as a notational convenience, and

to emphasize the duality between M and C-we will often write (u, f) for [ f dp.) In

2

g
will be needed later in the thesis. For further information on vague convergence of

N

this topology a sequence {v}}72 , converges to v if and only if (v, f) — (u, f) for every

feC. Asubset A C M isopen if and oﬁly if for each v € A and every sequence {vidie,

converging weakly to v, there exists an N ¢ Z4 such that {l/k}ziw C A. M together

with this,topology is metrizable. In fact, if the norm || - || is defined by .
[ A 00 -
el = ) Hee, £3) -
. ] .
.8 2
: ‘ .
o ) )



y 11 Weak and Vague Convergence

/4

" where pis a finite signed measure and {f;}$<; < Cis auitably defined set of functions
(see |Parthasarathy, 1967]), then the topology on M generated by this norm is equivalent ‘ /
to the topology of weak convergence. The set of probabilities A C M is precompact if  -!

am} only if it is tight, where we say a set of probabilities {vy}acq C M is tight if for
4 ' ‘ ?
every ¢ > 0 there exists a compact set C C X for which '

- 3

. va{C}>1—c¢ for every o e A. ‘ -k G
b A v ) )

The following is taken from [Billingsley, 1968) and |Parthasarathy, 1967).
\ R o

. :
Theorem 1.1.1. The following are equivalent for a sequence-{vy}5>, C M -

. weakly
() {wedizy — v

(1) for all open sets O C X, lilgn infy, {O} >v {0}
e o

(iii) for-all closed sets C C X, lim sup v {C} < v {C} )

¥ k—o00 , : .
(wv) for every equicontinuous family of functions C C C, ~ .
lim sup (v —v,f)] =0. : :
k“"\m fec - , A D

" Let Co C C denote the set of continuous functions on X which converge to
zero on the “boundary” of X. That is, f ¢ Co if for some (and hence any) sequence

. ) £
Ci : ke Zy} of compact sets which satisfy
k

o0
Ck CCy1,  and |JCp =X,

k=0 . .
} . .
we hlve ) -
~ L% . . »
/ lim sup |f(z)]| =0.
k=00 zeCt -~ -
k , .
/- . . 3
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A sequence of sub—probab:]abtles {uk} =1 is said to converge vaguely to a sub-probability

. ! o
v if for abllf_eC0 . : . B ) £
. v bm (vg. f) = (v, f),
k—oo
,@ rd
¢ and in this case we will write — N
vy vaguely v as k — o0

Y »

Obviously weak convergence implies vagué convergence. On the other hand,

. g cre, kl - X
it is easy to verify that a sequence of probabilities {Vk}/?;l VY Vif and only if

A

vaguely .
{vel2, v, and {Vk}k | is txg}rt -
s % We say the function f¢X — IR is untformly integrable with respect to the
probabilities {vy : k¢ Zy} if /4
' ~
o lim sup sup / |fldyy=0. -~
N —o0 keZZ {IfI>N} - , a '
This condition is satisfied if . ' )
sup /|f[1+5duk <M ;
, ke‘Z+
for some 6, M > 0. We conclude this section with the following sufficient condition to.
N ) .
. kl . .
ensure the convergence of moments.on X when vy wfa—ty v. This result is taken from

) ) - <
Theorem 5.4 of [Billingsley, 1968]. :

Theorem 1.1.2. Suppose the function [ X —=Ris contimy/us, uniformly integrable with I‘

weakly

respect to the probabilities {v} : k ¢ Z1 }, and v, v as k — oo. Then, :

Jim /fduk—/fdu -

11 .Weak and Vague Convergence

A
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9 . 12 Markov Transition Functions

The fundamental object which. makes the definition of a Markov chdin possible and fa-
> ' -

cilitates it’s analysis is the Markov transition function.

1.2  Markov Transition,Functiohs SN L s

v o

Here we givg the standard definition of a Markov transition function as in [Doob, 1953],
‘ - a

and then'we will use it to define’ linear operators T and U, defined on B and M ;gspec-

P
~

tively. The key property of U which is investigated in [Saperstone, 1981] is that if a
technical condition known as the Feller property holds, then the pair«(M,U) is a semi-

dynamical system' Besides it’s intuitiv/ appeal, this property of Feller chains enables us
/ bl
to exploit many important results from the theory of semidynamical systems. In par-

\

ticular, important notions from tlis field such as positive limit, sets, stationary points,

periodic orbits and stability have new significance in the context of Markov chains\g

stochastic system theory. ° . f

A Markov transition function is a mapping P:X x B{3§—~-10;1] such-tha

\ T
foreach zeX, , ~ e
"P(z,) e M (1.1)
and for each A e B(X), . : . SO
. ~ P(S4)eB. - ' () S
- R . ) . \
'A Markov transition function together with -an initial distribution po gener- ‘
ates a Markov chain & = 9,12 on (X2, B(X%), Py,) where X% is the set of sequences
. ' ; o T s * “
-7 ’ {505 8150k - 5 8ks-.) 18 € XY .
’ ) - . ' 5
Vs - s
! -



. With the stochastic process & so defined it follows that the distribution of each ® is

1 " ’

12 Markov Transition Functions

-~ " I . -
and B(X?*') is the smallest o-algebra on Xz* contalmng the sets
‘e . - . -
€ - & L 4 o . . )
\ {on---xAkxX_k--- A, eBX)keZi}. L

¥

Uk g (denoted &5 ~ U¥ygp), and that & satisfies the Markov property: .

/ L
P{®; ¢ A|®y,..., B5_1} = P{®k € A&y}~

S0 =P(®k_1A)  as Pyl for AeB(X), (13) 1 .
) |

where P{®, c Aldg,...,P;_ 1} E ld)neA IO{Q’Oa ‘I’k 1}

© B
< [

\ -
A Markov transition operator T:B — B is defined for f ¢ B by

- [Pedre). - ()

7

It's adjoint U: M — M is defined for peM and A € B(X) by

m(A) - /u(dx)P(x,A). U (15).

4
Note that the domaln and ra}nge of U say “be &tended to include all o-finite measures . !

on, B(X) and SImllarly, the domain and range of T may be extended to 1nclude all

a,

positive B(X)-measurable functions. We have

4

' -(WJ) = (4, Tf) st §

v

_ for any signed measure p and Borel function' f which makes one of the expressions mean-

ingful. Obserye that for an initial distribution g, and a function f € L}(X, B(X), po)

i

the lcast squares estimate of f(®y k) given {®,..., Py} is
b ]

Brenefl=Tr @), . ()
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1.3 Feller Processes and Invariant Probabilities

o

and the mean square error is o . a
» - 12 - . ° | 2 ——
B|f(@nae) - Elf(@n )01 = B|flon.x) - T (an)]

,

As an example, consider the stochastic ‘process generated by the recursion

AW

&, = F(®p_y,wp), ke, ’ : R

where F:X x RP *— X is Borel. measurable. Supx;ose i:;hat; ¢, and the disturbance
N o .

process w are mutually independent Borel random variables on the probability space
. ot -

2, 7,Pgp,.), and that w is an independent and identically distributed (i.i.d. ) process.
%o 'y :

Then t?e stochastic process ® generated by (1.7) is a Markov chain with Markov tran-

- + 17 . o
sition operator : . ’
) i Tf (:r) = /f (F(z,w)) uw(d_w) ’ -,
'where uy, is the distribution of wy. : . .

-y

~ ’ . 3
Y

1.3 ‘Feller Processes and Invariant Probabilities |
& ) —_ ‘ . l‘ ’q )

¢ The majc;rity of important results concerning the asymptotic behavic{r of M:arlgov chains

e

require the existence of an invariant measure. By this we mean a (positive o-finite)
- ‘\ » * -
measure & with the property that . v . e

L Ur = . P (1.8)

-If 7 is a probability and if ®¢ has distribution = then &} ~ = for all k > 0, and in fact

® is a stationary stochastic process in this case. The first result below gives necessary -

e

and sufficient conditions for the existence of an invariant probability.

* ) s - - .
A ‘ \’) A
Ld ' - - -
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13 Feller Processes and Invariant Probabilities

'

5 A function f:X — R- is called a moment if there exists a sequence of

compact sets, K, C X, K, T X s.t.

» - . .
li inf =
. nl.'moo (zgll{ﬁ ! (I)) %

~

p

where we adept the convention that the infimum of a function over the empty‘ set is

infinity. If X is closed and unbounded it is evident that f(z) = ||z||P is a moment for
any p > 0. Furthermore, if X is compact then our convention implies that f is still a

moment because we may.set Kn'= X forall k ¢ Z..

A Markov transition function P is Said to haye the Feller property if

[ Paona S

is a continuous function of y € X for every h ¢ C. Hence, ‘P has the Feller property

b P

if and only if T:C — C where T is the Markov transition operator corresponding to

P. It 'follows that the map U: M — M is continuous, and in particidar z — Uéb; is a
. o . R .

continuous mapping from X to M. As an example, the Markov chain generated by the

recursion in (1.7) has the Feller property if the function F(-,z) is continuous f;)r,a.e :

-

—

Theorem 1.3.1. (Benes, 1967 and Saperstone, 1981) Suppose that the Markov transition

‘function P satisfies the Feller property. Then an invariant measure 7 exists if and only

if a moment [ exists such that for some initial distribution puq either

3
w

sup Eyglf (2))< oo, ;o)
k N . . . -
€ + \Q&f R
or . - ' - — .
' .. 1 N
sup —. Eun[f(®1)] < o0. . 1.10
2 2 Frol (80) | (110

T

¢ F t;rthermore, if one of these conditions holds we have for all g ¢C



g

i ¢

{ ) L4 A rd
9(®k)] = Exlg]. (1.11)

Proof. .

'fhe proof of the existence of an invariant probability is str:«;ight;v forward: If (1.9) or

(1.10) holds, then the collection of probabilities N - .
: T A -
' k. . . .
- i {_N—q—-—‘l_l;)U [J«O.thf z+} J . o (1.12)
y k= - ’

. - A
is tight, and hence is a precompact subset of M. By the Feller property;~eny weak limit

point must be an invariant probability.

’ ¢

To establish (1.11) it is sufficient to show that thére is at most one invariant

2

probability in’ the closed convex hull of the probabilities in (1.123. For a proof of this

fact the reader is referred to [Saperstone, 1981]. . o
1 . ° K D

Observe that equation (1.11), is e;;uivalenf to the statement that-

e

1 N ki
weakly
R 2 2L

. td * @
where for k¢ Z., uké Ukuo = the disthution of &;. —

[esninin R

_ If X is a closed subset of R™, and for some initial distribution there e&sts a
]

— . I

+2 such that either i

4 <

N

1 "
) lim sup— & |12 < 42 . " (113
| sy 3oy o am
or B -
* lim E (@2 ] :
JM?NZLuMﬁI (112)
\ 9



,L'/

K / ) '
’

. 13 Feller Processes and Invariant Probabibties

t

then by Theorem 1.3.1 an invariant probability exists. In fact if (1.13) is satisfied then

for ev‘elry L>0" >

o

P

. N - N
‘ 1 . _ _}- _
. N’kz_:li{umzsﬂ} - Ng_:l (1 1{||4’k1l2>L2}>

by (ool

1

_ Y 2
' N Pl L |
. Taking expectations and applying Fatou’s lemma gives
N
-
. N .
1 ’ . . ]. 3 llékuz
lim inf ~ P{(D 2<L2}> lim inf — ¥ {11 :
%n_'lgo N Z_: ®x]1° < = E} I{Ini—»:o N z—: 12 '
- b 2 1
f . 'y . 2 1 — %_2_. (9 )
. \ . \ 1 N \\A\/
Hence, denoting the distribution of ®; by s, the probabilities {N Zﬁ__l pk} are )
: N=1

tight. This is equivalent to the existence of a moment satisfying (1.10) and hence an

\

invariant probability exists.

4 7

!

-

’

We conclude this section with a new characterization of systems which pos-

L - 1

sess invariant probabilities. . -
J . f

-

»

°

t

~

\

Theorem 1.3.2. Suppose that an invariant probability does not exist for U. Then for

any [ ¢ C,

-

] N
+ lim [I T! f l = 0.
Nl——ooo N+ I:Z 00
e ‘ 1=0 ¢

That is, Nl-f'-_i Eﬁ__o T/ f — 0 uniformly as k — oo. -

.

~

(1.15)

Conversely, if an invariant probability = does exist then by Theorem 1.3.1

the limit in (1.15) is non-zero for any f ¢ C, for which [ fdr # 0.

10



13 Feller Processes and Invariant Probahilities

>

PR
Proof. , N , .

Fix f € Co, and 6 > 0. Define the open sets {Ay : ke Z} by
t 1 N
= —— J : ’
AN {ch.N+l§:()Tf>6}. , (116)
)=

- t

If (1.15) does not hold then there exists 6 > 0 and a subsequence {N, : 1 ¢ Z+} of Z..
with Ay # ¢ for alt 2. Let {u, : 7 € Z} C M be probabijlities for which ul{ANl} =1,

and define
) é N Z UJ Ky

The set of sub-probabilities is sequentially compact with respest to vague convergence.

vaguel .
ey Ao for some subse-

(see |Chung, 1974).) Let-A, be any vague limit point: An,
quence {n ve Z+} of Z+. The sub-probability Ao, # 0 because by the deﬁmtlon of

vague convergence and the deﬁnltxon of An,

/fd,\oozhm mf—Z/fd UJu, - -

T - N
’ 1 z ) '
= lim i —N'Tf|d '
ll{i;lf/ N, Zl [ dn, -
*_ ’ 7= -
) ‘ > 6lim inf #z}AN } =6>0. (1.17)
) ’ 1— 00 )

We will now show that Ay is invariant. Letting g € Co satisfy ¢ > 0, and

n € Co satisfy 0 < n(z) < 1 for all z € X, we have

/gd/\oo = lim gd/\nz

1—00
n,
= lim Z/TJg du,
1— 00 nz -1
g N |
. = lim / T/ +1gd .
1—00 an ]z—:l g p"i .

11
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.« 1.4 Irreducible Markov Chains ~

N
t 1 ?
> lim — Y / T/ (nTg) du, s

. 5 v 1—00 ]\/'nz ]:]
. ~ . vy, = lim (n(x)/P(x,dy)g(y))kn,(dx)
1=—+00 -
- . ~ = /(n(:z)/P(z,dy)g(y)))\oo(dx). (L18) .
- - . » . - - 5 4 1) :
'Lgtting the function 7 1 1 it follows that ) . ' v
o ) /
_ /gd)\oc > /gd(Uz\po) y
of 'Y 3
and this implies that for all A% B(X) o . L
‘ ’
Aoo {4} > Ul {A}. )
. -
This is only possible if ] ° P ~
Xoo {A} = Udo {4}, . o o

and hence A is an invariant sub-probability. Since we have assumed that no invariant

‘proﬂsbility exists it follows that Ao = D, yvhich contradicts \(1.17). So, Ay = ¢ for

»

sufficiently large N _and‘ this completes the proof. ! .
]
{

-

1.4 + Irreducible Mdrkov Chains - ;
In this section we present some results from the theory of irreducible Markov chains.

Most of this material comes from |[Nummelin, 1984]. Irreducible Markov, chains exhibit .

many of the properties of Markov chains evolving on a finite set. In particular, in the

first part of this section it is shown that there exists a (unique) cycle of disjoint Borel

" sets {X, : 1 <1 <, A} for which lxl is taken to lxz_l (mod ) by the Markov transition

operator T.

12



T ' 14 Irreducible Markov Chains

-

14.1 Periodic Behavior in Markov Chains

We say a set A € B(X) is attainable from z ¢ X, and write z — A if for some k ¢ Z-.,

Pk(z,A) > 0. It is called absorbing if P(z,A)"= 1 for all z ¢ A,"and X is called

J
o The potential kernel G is defined for z ¢ X and Ae B(X) by

indecomposable if it does not cqntair) two disjoint absé;bing sets.

3

G(z, A) = S Pk(z,4).
2 -

- ,

A -

For a set A € B(X) the set Ao ¢ B(X) is defined as the set of points in X from which 4

* is not attainable. Hence,

A ={z ¢ X:G(z,A) =0}’. '

The set A, is either absorbing or empty, so if A is absorbing and X is indecomposible

0 [
¥

then A, must be empty.

e

) Let,o be a measure. The Markov chain ® is said to be irreducible if z — A
for. every A ¢ B(X) for which ©{A} > 0. We say that the measure u is absolutely
continuous With respect to the measure %for A &B(X),\ v{A}=0 = p{A} =0; 4

and v are said to be equivalent (denoted p ~ v) if u < v, and v < pu. Suppose that m

-

is a measurg which satisfies , -
ey z

Um<m (1.19)

Such a measure always exists since if # ¢ M then

“

oo
m = Z 2_(k'+1)Uku .
k=0

is such a measure. Furthermore, any invariant measure trivially satisfies equation (1.19).

If mis an'lj‘rreducibility measure for @ satisfying (1.19) then m is called a mazimal

irreducibility measure. It is a remarkable fact that in this case m is indeed maximal in

13

t
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the sense that if  is anv other irreducibility measure then ¢ < m. and in particular, if

m and n are maximal irreducibility measures then n ~ m (see [Nummelin, 1984].)
. g

The following lemma shows that it is possible to restrict the Markov chain
’ ’

® to a set of full m~measure when m is a maximal irreducibility measure.

Lemma 1.4.1. Let m be a maximal ipreducibility measure. Then:

=3

(¢) If A is-an absorbing set then m{A°} = 0; .

(it) fF ¢ B(X) and m{F} = 0 then there exists an absorbing set A C F. e

v
/

2
AR

Assume now that ® is irr_edu‘gible. We will show that for some A ¢ Z4 the

state space X may be written as a disjoint union

/

. A—1 )
. % X= { U Xk‘} U N
g k=0
where N is a set of m-measure zero, and the sets {X; :0< i< A-1} form a eycle:

-

That is, . , i
&; P(z,X;) =1 forze X];lL > (mod A).
Observe that if {X, : 0 < ¢ < A< 1} is a cycle then their union is an absorbing set. A

positive Borel function s and non-zero finite positive measure v are called small if for

some N ¢ Z,, and all z ¢ X, and A ¢ B(X)

< PNz 4) > s(m)w{a). (1.20)

~

Surprisingly, for irreducible.chains there always exist small fuictions and measures:

-~

Theorem 1.4.1. Suppose ® is irreducible. Then there exists a small function s, and a

small measure v for which [ sdv > 0.
0

14

”
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\ It turns out that a small function s vanishes on all but one set X, of a cycle:

The proof of the following lemma follows directly from the definitions.
4 I3

Lemma 1.4.2. If{X, :0<i< A—1} isacycle and s is a small function then for some1

s(z) =0  forallz eX,;» andallj #: (mod }).
\ - - ° .
y B ( . ‘— ! D

+ -

-
s We now present the existence, theorem for cycles. Let A be the greatest
common divisor of the set - - ' p

‘Ié{mz 1: P™(-, :) > Bms(-)v{-} for some By, > 0}.

' L]

The set I is closed uﬁder addition and hence contains all sufficiently large multiples of

3

A (see |Orey, 1971}.)

Theorem 1.4.2. Suppose that ® is irreducible. with maximal irreduciblity measure m.

LetXfZ+,s and v be as above. Then: ~ , .
¥ ) s » '

2

i
. f

(1) Thereis a A-cycle {X, : 0 <1 < A~-1}.

-

(u) If {X' 0<:1< /\'- 1} is another cycle then X' divides A, and any X! is the

union a.e. mj of sets from the collection {X,:06<i<A-1}

Proof. \
For j =0,°. .. ,A’—‘l set - . “

~k’ A .

X, =4z { Z/Pk’\ I(z,dy) s(y) >0} (1.21)
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It 1s easy to show that by irreducibility

hd .

Z/ (z,dy)s(y) = /G(z,dy)s(y) >0  everywhere, (1.22)

v ‘ -

and he;1ce U,A:_Ol }~(_L = X. Furthermore, by irredycibility and-the definition of ) a simplé

argument (see [Nummelin, 1984]) shows that these sets are m — a.e. disjoint:

~ . N

m{X, ﬁi(]} =0 for ¢ # 7 (mod )).

By Lemma 1.4.1 there is an absorbing set F' with m{F°} = 0 such that the sets X‘Z =
X; N F are disjoint. By (1.21) if P(z,X,) > O then z must belong to X,_; (mod A), and

hence {Xz :0< ¢ < A—1}is acycle: The tiniqueness assertion (i2) follows easily.

1.4.1 Récurrence and Convergence Of The Underlying Distributions

e

In this section we present two standard recurrence condigons for Markov chains, and a

variety of limit theorems for recurrent Markov chains. s

(]

Suppose that the Markov Chain @® is irreducible with maximal irreducible

>

measure m. It is called:

(1) recurrent if .
- , 4
>0 forall zelX; ’

m{A} > 0= P {® ¢ A 1'0'}{:1 for a.a. z € A |m).

(i) Harris recurrent if

9 . - -

m{A} >0 =P {®PreA 10} =1 forall zeX,

-where {®; € A 1.0} = V-1 U2y {®r € A}.

7’
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“

We call 3 Markov chain ¢-recurrent if for every A e B(X). L]

{

p{A} > 0= P, {®, ¢ A forsomekeZ;}=1. (1.23) -
It follows from Proposition 3.12 of INummelin, 1984] that ® is p-recurrent if and only

’

if it is Harris recurrfnt. ) ' .o

w

We see’ in t}?egfollowing theorem that there is not a great deal of difference

- J
between recurrent and Harris Tecurrent Markov chains:
N il

Theorem 1.4.3. Suppose that @ is 're‘c;t;irent Then there exists an absorbing set H ¢

B(X) such that the restriction of ® to H is Harris.

i
-
P
. [ R ' !

0

- It turns out that for Harris recurrent Markov chains the existence of an

invariant measure is guaranteed:

Theorem 1.4.4. Suppose that ®'is Harris recurrent. Then there exists a positive o-finite
“~ . .

<&
invariant measure m. Ifn is any other o-finite invariant measure then n = cm for some

ceR.”

<

We summarize here some extremely important limit theorems for Harris re-

current Markov chains. The Markov chain @ is called @periodic if A = 1 where A is the

’

integer defined above Proposition 1.4.2, otherwise it is called periodic.

-
! ¢

Theorem 1.4.5. Suppose that ® is an aperiodic Harris recurrent Markov chain with
invariant measuré m. Let p and v be any twé initidl distributions, and let fsg €

'y

LY(X,B(X),m) be such that [ fdm = [gdm. Then:

lim sup [Ufu{B}-U*»{B}| =0, | .
- k—oo BeB(X) B ‘ L/

* Jim / IT* f — T*g|dm = 0,




-

! s 1.5 . Sample Path Properties of Markov Chains
! and -
. P
| ‘ fdm
. ’ }klim TEf = [ Jdm fora.c. m| z ¢ X.
~— 00 .

m{X}

i 2 L ‘ D

13
] -

We have the followiné corolla,fy in case ® possesses an invariant probability:

g

)

Corollaky.1.4.5, If ® possesses an invariant probability = then under the 'c'ondi_tioqs of

/

Theorem 1.4.5/ we have

- lim sup |P.{®; e ﬁ — n{B}| =0,

Lo k—oo BeB{X) o
S o g B
lim / |Ez|f(®r)] — Ffdfr]'lr(d:r) =0,
k—oo i ‘ . ~
8 ‘ ; . -
‘ . and . ) -7 o /

- 1

St

- T ‘ klingoE_—c[f((I’k)]‘=/fd7r fora.a.h[w]-z eﬁ’

)’., , "

For a probability pg € M the sequence {u; = Ukuo cke Zy}is calle\d the

trajectory starting at ug. Call a trajectory v a {vi, k ¢ Z+} a periodic orbst if there

exists A ¢ Z4 such that

Vs é Uty = v, foreach k¢ Zy. a - (1.24)

‘3

The smallest A > 1 for which (1.24) holds will be called the period of v.

4

!

If ® is positive Harris recurrent (that is, ® is Harris recurrent and its invariant

o

measure is finite), and if ® is periodic with period A > 1 then Proposition 1.4.2 ifnplies

" that non-trivial periodic orbits always exist. The quollary' to Proposition 1.4.5 implies

[+

. that for a positive Harris recurrent Markov chain every trajectory converges to a periodi'c-

orbit in total variation norm.

7

&
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Y

1.5 Sample Path Properties of Markov Chains

In this section we describe_ the sample path properties of Markov chains whigh possess

¥

. ' .
invariant probabilities. As remarked before, if 7 is an invariant measure then the Markov . -
. ® . g

2

chain ® evolving on X® generated by 7 is strictly stationary. Let £; C B(X®) denote

the o-algebra of invariant sets of the statlonary stochastic process ®. For the special .
: ” d

¢ . ’ . -
:  case of a stationary Markov process every A ¢ Xy is of the form

A = {" " XAXAXAXr- } ' (1.25) ? 'sJ
for some A ¢ B(X) where A has the invariance ;nloperty ' ’
4 P(z,A) =14(z), aelr]. - — (126

. - The Set of all A e B(X) satisfying (1.26) is a sub o-algebra of B(X) and any such ;1 will

—

also be called r-invariant. Similarly, let Poo C B(X?) denote the negative tail o-algebra
e’ ’
of the stationary stochastic process ®. That is,
A D
, Po= (o {  ®k1,8}.

: . ' k<0 ‘ )
Let £p C Py denote the o-algebra

£p 20 {8} N Poo.

9
O - -

“Everyaset A'¢ £p is of the form

. A' = ‘]‘QOGA/ -

* . foraset Ae B(X), and since 4 ¢ Py it follows by the Markov property™that there exists

- . Il

a sequence of sets {4y : k € Z4} such that,

-

o

k(s A) — T (2 .
Pz, A) =T 14(z) =14, (x) ‘a.s. [n]. - (r.27)

Al .
= 1lgpes € Poo.‘ Hence we shall not

Pl

.|+ Conversely, if 4 € B(X)- Jsateisﬁes (1.27) then A

!
distinguish between the sets A and A and we will use £p to denote the sub-o-algebra

of sets, A € B(X) which satisfy (1.27).  ° .- - .
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p R !
‘The ergodic theorem for stationary processes applies: .

_For z;ny Ye LI(XZ",B(Xz'j,Pw)a'

-

‘, ,vlgnmNZy B, By 13- )3 Ealyiz) as. Pel. - 028)
Hence, ‘
ﬁ o
A= Pe{ Jim 3 Y@@k, ) = BV c
P k=1 - . o

/ d:z:)PI{ N Zy(d)k,@k 1hoo0) = En[yle}}, (]29) ‘

and it follows that

N - - . -
1 . .
1= Px{ lim NZ (94, P 1,+) = EelY 1)) (1.30)

for a.a. z € X |r]. This proves: p

_ Theorem 1.5.1. |Doob, 1953] Let Y ¢ L}(X%, B(X?),Py). Then

. 1 e ' ’__\ . ‘ T
, , v im Y Y(@prbpogy-) = Ex[YI51(®0, 910+ 1) . (1.31)

k=1 . .
almost surely for a.e: () initial condition &y — r ¢ X, or almost surely when'®; has
-q ¢ 4

initial distributions pg which is absolutely continuous with respect to .

2
-~

R

L

_ Harris recurrence to the existence of the limi&(l..’il) for all initial condition distributions.
o e . -

R Althdugﬁ this is a simple result, it appears to be new. - .

*

D .

We have the following Corollary to Proposition 1.5.1 which relates positive '

1
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Corollary 1.5.1. ® is positive Harris recurrent if and onlv if there exists a unique in-

variant probability m, and for eyery function. Y satisfying the conditions of Proposition
1.5.1 : .

N 1 -N P '

a ’,}‘_’,nmﬁ;y(q’k’q’k‘—l"‘ -) = Ex|Y] as. [Pup] (1.32)

for every initial distribution pg € M.

‘Proof. - & :

If @ is positive Harris recurrent with invariant probability = then by Proposition 1.5.1

thefe exists. a set G ¢ B(X) of full «m-measure such that (1.32) holds whenever thé

distribution of @ is supported on G. Since @ is positive Harris recurrent and 7{G} =

1 > 0, for an arbitrary initial condition distribution ug € M, P”O{Q enters G} =1, and

<t follows by a standard argument (see the proof of Theorem 6.2 of Chapter V of [Doob,

1953]) that (1.32) holds for arbitrary initial distributions ug. .

@

(]

Conversely, if (1.32) holds for every initial condition distribution then in

particular for every z e X and A ¢ B(X), ~ )
~ k3 .\\ 1 N ) M K

-

o

Hence if 7{A} >0 then P, {® enters A "1.0.} = 1. This shows that ® is positive

Harris recurrent and the corollary is proved. .

. ° O
: o

: - . : "
We state here the following theorem of Wiener which will be useful later in
the thesis. The function log¥: R+ — R is defined by log*(z) = max (0, log (z)).

'< - , =
«

o

21
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-

" Theorem 1.5.2. (‘Wiener. 1939) Let Y ¢ LP(XZ',\B(XZ’).PW) for some p > 1, or more

generally suppose that 2 ’

/ Yl log™ 1| dPy < oo,
X2 : ‘

Then, ' -
g N .
_ 1 ‘ 4 s
sup{ 77 22 Y(@kr Bpoee) e LT(X™ B(X*).Pr)
. . k=0 ;
~ * 0
*
v ' \)
| | -
| v
PART II o - , ]
SYSTEM THEORY . A ‘".« ; . ".,, -

In its most general formulation, a (discrete time input-putput) stochastic system is a
1 - - - v

-~

causal random mapping p:U — Y where U and Y are dets of discrete time stochastic

processes on a brobabﬂity space (1. 7,P) taking values |n Euclidean space. U is called

the set of output proccsses, and Y is called the set of input processes. By causal we

mean that if ke Z+, u,vel and u, = vy for n < k then (pu)y = (gov),, for all n < k¢
A precise definition is difficult, but for an interesting dfscussion on stochastic systems

@

Wreader is referred to [Caines, 1987}. oo 'l

22
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16 Stochastic State, Space Systems

An example which we will often be referring to is the ARMAX system model
»

of the form

<

. ' k e L .
S yk+Ag )yk——1+---+A£11)yk—nl

- . k -_ k N .
B T B,

. ’ . . . k . k .
: , . -}-wk+(l{v)wk_1+ ---+Cr(13)wk~n3

a ‘ ' ~ ' d>1,k>1 (1.33)

- . Where the processes y and w.are Rp—véluefl, u is R™-valued, and initial conditions are
- assigned at k = 0. The process u = {u;}2  is such that uy is 75 measurable where
Fi a o{yo,---,yx}. Furthermore, the parameter proc'ess (A,B,C) is independexit of
- the disturbance process w. It is readily seenthat these equations generate a random
mapping from input processes u to output processés y. However, if a non-random

mapping is desired then the input space must be enlarged. In this case the new input

.

process v takes on the form :

o

v

{(A(O),B(o),C(o)),uo,wo,x} for k = 0;
- ‘ Vg =

{(A(k) ,Blk), ck)), uy, wk} otherwise.

It is not api)éaling to be forced to consider the parameters and disturbances as inputs

. _ . ] .
and this is thé main reason for defining stochastic systems as random mappings.

1.6 Stochastic State Space Systems .

In this section we introduce aYefinition of a stochastic state space system by generalizing

thé'notion of a countable stafe controlled Markov chain as described in [Kushner, 1971].

A’ stochastic state-space system is just an input-output system of a special form. A state

o

A

( . process x is assumed to evolve along with the input process u, and the output process

L)

23



1.6 Stochastic State Space Systems

v

y. The state process summarizes the past behavior of the input and state processes in

the sense that yy 4 is md?endent of IO ! and uév”] given observations on ry and

N*k Already we see a close connection between Markov chains and stochastic state

space systems. . . "

o

e

We introduce here a formal definition of a state space system, but first we

make the following‘generalization of a Markov transition function: Let Y, X, and U

.

denote Borel subsets of R™1, R"2, and R"3 respectively. A controlled Markov transition

function is @ mapping P:X > U x B(X) — [0,1] such that for each u ¢ U,

P(-;u, ). is a Markov transition fungtion, © . (1.34)

and for each-A ¢ B(X),

P(-;-,4) ¢ B(X) & B(U) : © (1.35) -

A o .
where for two g-algebras ¥ and G on Xy, and_Xj respectively, we let ¥ ® G denote the

]

smallédt o-algebra on X; x Xj containing the sets A ¥ Bfor A¢ ¥ and B¢ §.

— L2

Let ¥ be a Borel function on X » U, and P be a controlled Markov transition

function. We call the pair (P,¥) a (time invariant) stochastic state space system. The

transition function P is used to define probabilistically the dynamics of thgmap u -- » x,

- and the read out map V takes (z;.u}) to yx without memory or dynamics.

: A ?

. -
.

[q To define the input-state-output process (u,x.y) we need a procedure for

«

determining the input u, given past observations on x and y. There are many situa-

tions where one wishes to use feedback which is not only a function of the state, but

also of vanables which are mdependent of the system. For example, when /2 or ¥ .

" contains unknown parameters a “dither signal” is added to the contmLf:)r the purpose

¢ ~

of identification in some ‘estimation schemes (see [Caines and Lafortune, 1984 ), or to

) .
24
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16 Stochastic State Space Systems

[

‘ P énsure.“nmse controllability™ (see Chapters Il and III ) In order to incorporate this
‘ Y into our model we assume that there is_a probability space (Q,7,P), and a sequence
of feedbatk laws {fyn, : n ¢ Z,}'such that each f, € B(X") ® #:,Two special cases are
when fn(zg,...,Zn,w} = gnfw), which is a typical feedback law if the only goa} is to
identify unknown parameters, and fn{zo,...,Zn,w) = gn(z0,-..,Zn), Which is typical
in optimal control. F“inally, to “start up the system”, we need a probability uo’on B(X)

‘ which will serve as an initial condition distribution for z;. . T

. ' ’,
To summarize, we have defined the foliowing objects: . i
: ‘(P, ¥) a stat& space system;
1o 2 an initial condition distribution;
{fnineZ+} T asetof feedback cdntrol laws;
(Q,7,P) a probability space. -

— 4 »

° ~

Using these we now construct the input-state-output process on the probability space

(Qx, Fx: Pug) where \
02X %0, ad HE2B(XY)®7

The stochastic processes of interest will be defined by specifying the probat;ility Py, on-

Fx. For a set of the form_Ag x B € B(X) ®  we define
- . A
, - Pug {w € B, z0 € Ao} = P{B}uo{4o}-
. For k> 1, a sequence of sets {A, : A, ¢ B(X), 0<: < k} and B as above we define-

' Uk-1 :fk—l(zk—lv"'sxOv“f)

and the probability Py, {z) € Ag,...,Zo € Ag,w € B} is defined by

L
B sy | P (du) o (d20) P (zo; fol 0, ), dzy)
A weB JzgeAg xk—le“‘)ﬂl
‘ ’ | . ”'P(fk—l;fk—l(xk—la"'azoy/(‘))’Ak)

-

25




1.6 Stochastic State Space Svstems

These equamons deﬁne a consistent set of finite dimensional dlstrlbuuons on

Fx, and hence define a probablhtv Py, on ¥ (see [Doob, 1953].) Finally, we may define

<

) . - Yk = V(zk,u) forall ke Z+.
\ ] N

Observe that if the feedback laws {f. : k ¢ Z.} are independent of k, and
depend only on the present state so that u, = f(z;), k € Z4, then the state process x

becomes a Markov process with Markov transition function Q given by

Q(z, A) = P(z; f(z), A) for z ¢ X and 4 € B(X).

3

This definition of a state space system is general enougﬁ to model almost

_any tifne invariant stochastic system in which the disturbance processes are assumed to

be i.iMd.* As an example, consider the linear State space system

S = v

) -

Ik\+1 = A-'Ek"f‘ BUk + ka+l’ ’ l (1-36)0)

it

v = Crp+ Dug + Hopyy,  kelZy, (ii)

[

o

) - [ 13 . (] - @
where A,B,C,D,G, and H are real matrices, and the joint process (}) is i.iid.. Letting
i) L

Xk a (;l]g) we have .

S X1 = F( X, v, Wiy y)

for some continuous function F', and hence letting

.

P(XJ!"A) é//l{F(X,u,u,w)(A} v(dv)p(dw), ' (1.37)

-

'

\

* The time varying case may be modeled in an analogous way using a sequence (P k« Z,)
of controlled Markov transition functions, and defining Pp_ y (23 iug. 1+ ) to be the

.o

distribution oi;;zk given z,_q and u_y.

’

’



17 Stability and Optimal Control

~ where v and u are the distributions of vj,. and wy respectively for kb ¢ Z_., it is easy

" to verify that P is a controlled Markov transition function which is equivalent to the

. <
system description (1.36). Similarly, the ARMAX system (1.33) may be modeled using

b4
a controlled Markov transition function with state process

ot

T A .
Tp1 = (yk—lv' “alk-ng s Uk-19" " s Uk—ng s W15 vwk——n3)’ k> 1.

- 1

-

4

of stochastic state space systems operating under feedback.

-~

P

1.7 Stability and Optimal Conirol

-

A number of stability criteria are available for stochastic state space systems operating

I

under feedback of the- general form described above. Below we summarize a few rea-
sonable choices. In this thesis we will be concerned exclusively with the infinite horizon

control problem. Hence, the stability criteria presented below evaluate the long run

— Al

performance of the closed loop system.” 7

(7) We say a control law is mean square stabilizing if for each initial condition

z € X, and for some bound 42 > O the familiar performance criterion Jj

’ satisfies . .
. . A 2 ¢ 2
n oo = lim sup J £ lim sup Ex [ el + okl
k—00 k—o0
¢ . . <A (1.38)

(#7) A natural sample path analogue of the above is the following: A control law

is called sample mean square (srns) stabtlizing if the sample path criterjon

K

27

¢

We now show how the results of Part I may be applied to the stability‘;analysis
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s a . 3 . . e ~
Ly satisfies for each initial condition z ¢ X, !

Lo = lim sup Ly ' .
< N__‘w (R ]
A 1 N &y . ; .
= limsup = > luel? + plluel e LHX*, B(X*),Pz). (1.39)
T k=1

)

"That is, Ez|Loo] < o0.

We will also say that a feedback law is -LP-stabilizing for p > 1 if (1.38) holds with 2

&

IRd

replaced by p. ’ ;.

All of the stochastic systems treated in this thesis will assumed to be Marko-
vianizable under feedback. That is, for some .Markov chain ® evolving on a state space
X c RM and continuous functions uw:X — U, and y:X — Y the output processes u

and y have the form ' _ ,

e ¥’

up = u(®y), and  y; = y(®y), keZ,, - (1.40)

U
and in this case ® will be called the Markov state process. For example, if ’(P,.\ll) is

a state space system, and the control uj is chosen to be a continuous function of the’

L]

‘present state; u; = u(z;) forall k € Z., then the closed loop systern is Markovianizable

with Markov state process X. ¥

In many cases, the mean square or s.ms. stability of a Markovianizable
stochastic system depends on the stability of the Markov state process ®. Here we

introduce two useful stability criteria for Markov chains:

i

(1#7) A Markov chain ® is called stable i1n probability if for each initial condition

¢y = ¢ X and € > 0, there exists a compact set ¢ « X such that ,

°

lim sup P, {®; ¢ C°} < & : (1.41)

k=00

.
a = ° . 26

Ty

]
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)

(iv) The M‘%}‘L{kov chain ® is called stable in probability on average if for each initial
condition ®¢p € X and € > 0, there exists a compact set E’ C X such that

lim sup — Z P {®, ¢ C} <e. - (1.42)

N—»oo

These ‘four stability criteria are cfosely related for a Markovianizable system
with Mar‘kov state process ®. In particular, (112) Vimplies (1v), and in many instances,
(z'), and.(z'z') each imply (iv): In Chapter II we will find that i‘f ® satisfies ;1 condition
known as local|stochastic controllability then (iit) and (+v) are equivalent.

LY

Here we state a necessary and sufficient condition for the last form of stability.

-~
5

Proposition 1.7.1. The Markov chain ® is stable in probabilitv on average if and only if

for each deterministic initial condition ®y = z ¢ X there exists an invariant probability

7wz such that for all f ¢ C,
N
 m Z / Pradnfl) = [ 1) meld . (143)

* of, ‘equivalently, PR

o3
t

Yy
&
1l
—

Proof. ' y

This follows from Theorem 1.3.1 because the Markov process- ® has the Feller property

and (1.42) is equivalent to the existence of a moment. .
- N . D
>, N
- )
<4

: \
. -
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In the following example we show how the ergodic theory of Markov chains
described in Part I above may be applied to the optimal control of stochastic state space
systems, and exhibit the close connection between the four stability criteria presented

above.

. . i -

Consider the stochastic state space system defined by the recursion

+ v <
.

Tpel = QT + U + Wiy, keZ, 2 (1.44)

w'here the output process'y = x. We assume that —1 < a < 1, the initial condition
zqo is independent of w, w is an i.i.d. stochastic proCegs on lli, and for all k ¢ Z+,
wj, ~ Uy where uy, is the uniform distribution on [-1,1). Hence uy, possess the dénsity
Pw(z) a 1/21[_1’1](1). The control uy will be a continuous function of zk:"_and }ﬂlence‘

Fand

each feedback law in this clas'sogenerates a F’eller Markov chain x.
- i 4

£

9

Our objective is to minimize the sample mean square criterion function

N
e, .a, 1
- Lo = lim sup N Z y,% + pu.%. ‘ (1.45)
N—»oo\ k=]
When p = 6 the unique solution to this problem is to set up° = —ax, and in this

case the Markov chain x becomes armr i.i.d. stochastic process (for £ > 1) gvith invariant

probability uy,.

However, if p # 0, or because of saturation considerations or imperfect knowl-

o '

edge of the parameter &, the Teedback control might be chosen to be ‘of the form

up = g(zx) where g is continpbus. Suppose now that the resulting Markov chain x

is stable in probability. Then Proposition 1.7.1 implies that for each r € X there exists

an invariant probability 7z such that ‘
‘ l N d.g‘ ~ .
' - m 5 2Bl - [ 14, (146)
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’ . .
. ‘ }
for every f ¢ C. Hence for any continuous positive function f:X — IR, we have for

v

every m > (, .

hrn mf—ZEz[f (z ] > hm mf——ZEz[f/\m:ck)]

- 7

/f/\mdﬂz, / i -

and by'thie monotone convergence theorem this-implies that

. - hrn mf — ZEz[f (zg)] > /fdﬂ’z, (1.47)

St S

which in particular implies that the mean square st;fblhty criterion Joo may be bounded
» \ \
from below using- the invariant probability 7.

. . . J

Furthermore, it may be verified that by the assumptions made on ., and

~

-

e

sipce the control law u is continuous, the Markov state process x generated by the

system (1.44) is locally stochastically controllable (see Chapter II.) By Proposition 2.2.4

/

of Chapter II, for each z ¢ X the limit o . L
o

D Lo = hm I_V- Zyk+puk ' ' ~

exists, and in fact the expectation of Ly, may be computed using the invariant proba-

bility m;:

Ea(Loo] /(t - pult)?) e (do). . (148)

v Hence the control g is s.m.s. stabilizing if and ‘pnly if (1.48) is finite for every z € X,

This example illustrates how feefack laws may be evaluated by an analysis -

of the inv_azia?lrfé)robabilities that tﬁey generate. For example, if p = 0 and the optimal
feedback law u; = —az; which makes z; ~ py for k > 1 is not availa\ble, then a

' reasongble alternative is to attempt to find an admissible control which makes the

‘ r;asulti\ng invariant probability 7; close to uy forf all z € X.
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Let us now restrict our attention to linear control laws of the form u, = —kuy,.

‘We will find that the stability criterion functions Jloo and Lo take on a simple form in
- N 1

this special case. If 6 2 |a — k; << 1 then the closed loop system is stable in probability,

o

and using the results to be presented in Chapters II and-lll we may show that in this *
case X is an aperiodic, positive Harris recurrent Markov chain. This example is studied
in [Athreya and Pantula, 1986] where it is shown that the Markov process X is also

unifotmly mixing.

PN
v <

4

Hence, there exists a unique invariant probability 7 such that for every mmal

distribution-uq for zgp, the resulting tra_]eciory {ug : k'e Z.} of probabilities governing

-

—” . . .
the state process converge to 7 in total variation norm:

[y

- ) P

.o : lim  sup |Puo{z; ¢ B} —n{B}| =0, . .
. koo Bes(x) :

and for every z ¢ X the costs Joo and Loo may be computed using the invapfant proba-

——

bility 7; .
\ ‘ ' Joo = Loo = /(t2 + gu(t)z) n{dt). (1.49)

> We will now compute’Loo for each k . |0,a] to find the optimal control law

v & , - .
“in this class. It is easily verified that with

oo

. o€ Z(a-— k)" wy,

* n=0

e

the distribution of the random variable £ is the invariant probability 7. Hence by (1.49),

for each k¢ [0, a) the s.m.s. criterion function becomes !

- ok? \
P . J Lo = E.£%(1 + pk?) = o2 [ “:apkk))z] . (1.50)

s

where o2 = E[wg] The optimal linear control law k* may therefore be computed

by setting the derivative of Lo with respect to k equal to zero, and solving a cubic

’

t
4

polyr_iomial equation.

B ) 32 .
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! s . } ,
DQ . ‘ : ' :.!
For general continuous control laws we do not have an explicit description of
" 9 . LY © 3 " - ) '-;
\ [ &
. . 71 Y . . 4
the invariant probability 7;, and inthis general case computing the-s.m.s. cost Lo for

'S
!

a given control may not be possible. However in many cases useful bounds are{ available

» s
o

as is .llustrated in the examples studied in Chapters IV and V. : . .

.
- t

N - ' .
* - - B
- .
. ( . - &

&/\1. 1.8 -Stochastic Adap~tive Control ° o .

¢ 1A

-
¥ - ~

? -

Over the past, ten years there hz-/;s been ex{ensiye study of the stochastic‘adhptiive control
- of ARMAX 'systems of thesform (1.33) wheére the parameter process takes on different

forms -in different papers. In [Goodwin, Ramadge and Caines, 1981], |{Goodwin, Sin,
) ’ . 1985}, and [Kumar, Praly, 1985] the parameters AF(z), B¥)(z) and ¢ ¥ (2) are not time

. v

dependent, while in [Chen, Caines, 1985 these parameters are the sum of a bounded

-
’ -

martingale difference process and an unknown constant value. In each of these papers

the objective is to $.m.s. stabilize the system, and minimize the s.m.s. performance
. . -~ .

. d ¢

’ * eriterion Loo. ~

4 o -
« [

¢ o P . .
. .As an example, consider the control algorithm in {GoodwinJ Ramadgg and

.

Caines, /198;1]; this treats the system model given in’ equation (1.33) with all of the
" parameters taken to be’constant. Further, for simplicity, we take the delay d = 1,

.

: = all procesrses4 to be scalar, and the reference signal y* to ‘be zero. Then sthe regulation

‘ algorithm of (Goodwin, Ramadge, Caines; 1981) is given by * ,

28 ’ ] . . |

. ' ' b _ 1 -1 .
- : O =Bk_1+ 7 Pr-1Yk
- . L ’ "

' ' e llel?’ ) L

-

&

€ ‘,' 33.
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¥o,is given as initial condition, and u; is computed by setting .

—s

:

oTB=0. - .c .
! ‘ ! : " s ®
; Observe that with & ¢ Ry x R"17"2)*"3 defined as
- . A _] h
< R . , ( 7',;. SR
. . .gf,c * -
, ]
- T w’; (1.51)
o 1 ¢ . :
RS \ wk-n3+l )
® is of the fdrm ’ . : N
. - « T e
. : iy = S(Py, wi) v

-

where S is a Borel rheasurable function on R » IRSZ("I tng)tny (because it is continuous

H " . s

/@!ﬂare) and hence the closéd loop system is Markovianizable. |
'i .

i
I 4 “ L

In each of the papers cited above a method based on Neveu's version of

e

the martingale convergence Theorem (se;z Neveu, 1975]) is applied to establish the
s.m.s. stability of (1.33) under the appropriate hypotheses. A Fi-adapted stochastic
r'd N -

Lyapunov funetion Vy is introduced which has the super martingale property

e

EVia T ¢ Vi o = Bt ke Zy, i

L3

7

v

3
-

whgre the random variables a; and ; are functionals of the sequence v and are almost

surely positive, and zg° oy < 0o. It follows that Vj —+ Vi 0.5, as k ~+ oo, and that

) 28" 43; < 0. ) \ °
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Using these facts it is shown in {Goodwin, Ramadge. Caines. 1981. and
[Goodwin, Sin, 1982 that the systemi is s.m.s. stable,"and that for some C > 0 and

L4

L 4
all initial conditions Py=zeX, . *
t # . ‘
1 X, |
b , Lm:limsup—]\—rZyz+pu%<C, ‘
and ;
1 & )
lim — y,% =02
N—ooco N k=1

-

)

where o2, = Ew?!.

Un%i_l recently, the super-martingale technique has beén the principle tool

available for the stability analysis of adaptive control laws. It is limited because the job
of finding a suitable super-martingale becg,éj,mes e;ctreme]y difficult if the dynamics of-the

process 8 .= {f,,n > 1} becomé¢ more comp-licated than, for instance, those treated in
g .

(Chen, Caines, 1985].

¥

’

In the remainder of this thesis we inyestigate:a new approach to the stability

analysis of stochastic systems based upon the ergodic theory of Markov chains.

b,
«
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Chapter 2 NOISE CONTROLLABILITY
ﬁ o,
2.1 Introduction - - ]

Recently, there has beensconsiderable interest in appl}}ing the ergodic theory of Markev

k) . . . ;
‘ chains to the analysis of stochastic control systems (see for example [Meyn, Caines,

Kushner, 1971).) In Chz;i)ter I we showed that if a Markov

« «  21987], [Kumar, 1983}, and

»

state may be constructed for the controlled output process then subject to technical con-
ditions which include stabilityrof the Markovian state process one may deduce (amongst
other facts) (i) the existence of an invariant probability = for the process and (i1) the

convergénce almost surely of the sample averages of a function of the state process (and

-

of its expectation) to its conditional expectation || with respect to a sub-o-field of

s

invariant sets £;. One of the drawbacks to this approach is-that many of the desired
ergoditity properties hold only when the initial condition lies in a set of full measure

with_respect to the invariant probability . The goal of generalizing these resilts to

L

arbitrary initia) conditions is one of the major objectives of this thesis.

One solution to this problem is to search for an irreducibi]ity—ﬂ%&sure for the

]

state pfocess ® and apply the theory of irreducible Markov chairis (see’|Revuz, 1975]

A

. \%;d [Nummelin, 1984).) The major drawbacks to this approach are that finding an

L]

.
' t
— \ N
L.
. , .
A B L
. M > b
L )
a - o




2.1 Introduction

irreducibility measure can be a formis"lab]e task, to obtain useful results a proof that
the Markov chain satisfies a recurrence condition is needed and furthermore, stochastic
! sys’tems do not possess irreducible’Markov state pro'cesses in general. The approach
° which we introduce in this chapter is based on the cvtl)ncept of controllability from linear
system theory. The task of finding an irreducibility ‘measure and ~verifying a recurrence

condition will be replaced by a computation of the rank of a controllability matrix, and

a proof that the Markov state process is stable in probability on average.

To motivate the discussion and definitions that follow, consider the Gaussian

-

Markov process ® génerated by the recursion . A

Opy1 = A®; + Bwgy, (2.1)

where A and B are respectiv.éiy nxn and n X p matrices, w = {wy : k > 1} is an
*..ii.d. Gaussian stochastic process on R” with wk' ~ N(0,I) for all k, and the determin-

istic initial condition ®g ¢ R"™ is given. o
¥

Suppose that the eigenvalues of A fall strictly within the unit circle_in C.
Then i'nany of the asyn}ptotic:properties of (2.1) are determined by its unique invariant
probability 7. The probability = is Gaussian with zero mean and covariance matrix F'

-

where F is the unique solution to the Lyapunov equation .

F = AFAT + BBT.

If the pair (A, B) is controllable then an analysis of the asymptotic properties
of ®is straight forward. It miay be verified that in this case the matrix F is positive

definite and it follows that @ is a positive Harris recurrent Markov- chain. Hence for

‘ 1

? t
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’

example, if f is any positive Borel function on R". then for eyerx\mitial condition

“

&y =z R".
‘ . M . .
. ]gi‘inw-ﬁ;f(wk) =/jd1r as. P (22)0)
¢ and- by a simple coyputation, P )
lim Eslf ()] =/fd7r. : (i)
k—o0 : .

Hence if (2.1) describes a stochastic system o;;crating under feedback. and-f is a loss

function on the state process ®, then by (2.2) the infinite horizon performance is deter-

[

mined by the invarian't,p}obability . )

Y

On the other hand if (A,B) is not controllable then & is not Harris in general,

_and this and other technicalities preyent (2.2) from holding for such a general class off

functions. Because the covariance matrix F is not full rank in this case, the invariant
probability 7 is supported on a hyperplane L < R™ whose dimension is strictly less

than n. Hence (2.2) may not hold unless f is continuous on L. To establish (2.2) even
. ‘ /

for continuous functions requires extensive exploitation of the linear structure of (2.1).

Our objective in this chapter is to generalize the notion of controllability to analyse

nonlinear stochastic systems operating under feedback.

¢
*

In Section 2-the co}lcept of local stochastic controllability is introduced. It

)
-

is shown that for locally stochastically controllable systems the concepts of stafiility in
probability, and stability in probability on average are equivalent, and that such systems
exhibit very regular asymptotic behavior. For ex'ample, aver;;ges of functions of the
state process converge for every initial condition for loc_ally stochastically controllable
syste;m whi;h are stable in probability. For locally stochastically controllable )ystems

it is shown that if the closed loop system generating ® is stable in probability, then for

38
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.22 Locally Stochastically Controllable Systen{:

every initial distribution pg ¢ M, the resulting trajectory -{u; : k e' Z:} converges in
total variation norm to a convex combination of periodic orbits. Furthétmore, if the
syétem is stable in probability and there is exactly one invariant probability 7, then the
Markov chain @® is positive Harris recurrent. Hence, the probabilities {u ke Z.}
«gover.ning the state process either converge ’t'o,m', or to a periodic orbit consisting of

9 . X
weighted averages of restrictions of the invariant probability to cyclical sets.

2.2 Locally Stochastically Controllable Systems

In this chapter we consider input-output sto astic systems possessing Markovian real-

’

izations of the form / .
) \

? Pryr = F(Rpywpyy), keZ., (2.3)

where for all k, ®; ¢ X = an open subset of k", wy e RP,and F : X xR? - X is

continuous.

E ° »
To complete the description of the state process ® we assume that the initial

condition $y and the disturbance process w satisfy . -

. " Al (®g,w) are Borel random varjables on the probability space 0,7 Py )i
A2 ®pis \ind-ependent of w;

1

A3 w is an independent and identically distributed (i.i.d) process;

z

and we will occasionally assume:
‘ - 3

- A4 There exists an open set 0y C IR? such that the distribution u,, of wy, k e

Z.,, is equivalent to Lebesgue measure on Oy. (We say two measures g and

!
E
;
f
1
|
|
)
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v are equivalent if for all N ¢ B(X), p{N} =0 <= v{N} = 0 and this shall

~

be written p ~ v.) N ,

Assumption A4 is satisfied when the distribution of wy possesses a continuous density.

Markovian systems of this form will be obtained from’stovchastic state space systems of

’

- the form introduced in Chapter 1 by the choice df time invariant feedback control laws.

-

For example, the Markov state process ® aeﬁneg in equation (1.51) is of this general

form. In order to obtain the ergodic properties of interest for (2.3) it will, of course, be

®.
necessary to verify that each particular feedback law generates a system satisfying the

—

appropriate hypotheses.

L

The state readout map S¥ : R¥P — X of the system (2.3) is defifled induc-

»

tively for k ¢ Z+ and z = (21,...,zk)T ¢ RP* by

Sl.c = F(Sic_l(zl, ,zk_l),zk), k >1, .

. ~
> SS = . -
The state readout map is so named because forall k > 1, &, = S,’f(wl, ... ywy) when
$o = z. . ‘
£ | T

t

We now introduce a notion of stochastic controllability:

- P
Definition. The system (2.2) is called locally stochastically cantrollable if there exists

T € Z4 such that for each initial condition z ¢ X there exists an open set Oy ¢ RF for,

LY

which the distribution of the random variable &1 = ST (wy,...,wy) is equivalent to

Lebesgue measure on O;.

o

40
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One consequence of this definition may be roughly des¢ribed as follows: If
(2.3) is locally stochastically controllable, and if starting at a point z € X it is possible to

A
reach a péint y ¢ X at some time k > T, then at time k all points in some neighborhood

of y are reachable from z. The terminology may also be motivated by the fact that

if F:X xRP — X is linear then the notions of local stochastic controllability, and

controllability in the usual sense are equivalent.

1}

i

°

Figure 2.1 below illustrates the evolution of the underlying distributions gov-

erning a locally stochastically controllable state process ®.

Figure 2.1 Local Stachastic Controllability

L

Here we give a sufficient condition for local stochastic controllability. For

y € X and a sequence {2; : zg € RP, k € Z} let {A}, Bg, k ¢ Z. } denote the matrices

oF A [6F

5
a.’l? - (S!,/c,zk-f-l)

AL = "and Bp = —-*—.
- k an k azjl(sg,lz,c+l)

41



”‘j

) . " 22 Locally Stochastically Controllable Svystem-

Propositilon 2.2.1. The system (2.3) is Ioc.ally stochastically controllable If F ; X > R —
X is a continuously differentiable (Cl()\ function, and for all initial conditions r ¢ X there

exists some T > 1 such that the generalized controllability matriz

° A *
Cr =Cr(z,21,...,27) = [Ar_1-+- A1BolAT_1 - AgBy]--- -+~ |AT-1Br.2|Br -1
o (2.4)
is full rank for all sequences (21,...,21) € OF \ Z where Z ¢ RPT has zero Lebesgue

measure.

”

We remark that if F is of the form

3

F(z,z) = Az + Bz
then the generalized controllability matrix becomes the familiar controllability’ matrix

[AT"IB;AT"ZBE--- MBlB] .

o

Note that all quantities in the-matrix’ (2.4) are deterministic.

A}

Proof. . ' "

To prove Proposition 2.2.1 we will need the following lemma: r han

Lemma 2.2.1. Let U; € R™ and V; C R" be opé?) and suppose ‘G:U] x V% - R",
G

, (.3:, y) — z,is C1, and that the mfatrix Em is full rank at some (xg,yp) ¢ Uy x V;. Then

there exists an open set U x V C@l x ¥y containing (zg,yo) and an open set O C R"
such that for any strictly positive Borel function p:U x V — (0,00) the measure v

defined for A ¢ B(R") by

V{A}z-/&/;)l.c(z,y)(ﬁp(z,y) dzdy “ _ (2.5)

is equivalent to Lebesgue measure on O. s

42
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. 2.2 Locally Stochastically Controllable Systems

Proof.
i ‘ ; Consider the function G™:U; x V; — R™ x R" defined for (z,y) € U; x V; by
‘ . %
- A T
. : e (o7 ,):
| ) . ‘ LI y) G(x, y)
. _ Under the conditions of Lemma 2.2.1 the function G* is C! and its derivative is full

; »
rank at (zp,yg). By the implicit func\tion theorem there exist open sets W C R™ x R",

By

Ux YV Cly xV; with (zg,y9) € U x,V and a C! function H* W — U x V such that

w-{(ul )):ze/l[,yﬂ}} and  HY(G"(5,)) = (2.)

o
’ 4 >

for (z,y) e U x V. Applying a projection to the function H* we rﬁay find a C! function

H:W — 7V for which

. "H(z,G(z,y)) = H(G*(z,y)) =y ° ~
for (z,y) el x V. ) . '
‘ We now construct a density for the measure v by a change of variables and
Fubini’s Theorem: ﬂ .

. . .o OH
V{A} = /u { /G oy Lect) P& (2:2) det 22 dz} “w
. : oH
= / . 1,04y {/ o 1{(z,2)ewy plz, H(z, 2)) Ide’,—a-;ldx} dz
Let pj: R™ — R be the density defined for z ¢ R™ by

. ) . A
. - = z,z)dz
. n? /]Rm g(z,2)
. \
where ¢(z,z) = 1{(z,2)ew) p(z, H(z,z2)) ]det%L Observe that {(z,2) : ¢(z,2) > 0} =

W and hence:defining the open set 0 C R" by . K
0 é {z:q(z,2) >0 forsome zel}={G(z,y):zel, yeV}

. - it gasily follows that {z : p;(2) > 0} = 0. Hence v is equivalent to Lebesgue measure

on the open set 0 and this-completes the proof.

.
.
.
\ -
‘ eor '
- AR
rd




22  Locally Stochastically Controllable Svstem-

We now prove Préposition 2.2.1. For aset A ¢ B(X). and a measure u we let
1 4u denote the measure defined for B ¢ B(X) by
(14p){B} = u{AN B}.

/
Fix a point y ¢ X. By Lemma 2.2.1 we can co’yer Ow'%x +++ x Ow\ Z by a countable union

of open rectangles ,

« - + B 14

B2 B x.x By, i¢Zy,

wh;zre for each i ¢ Z . the distribution v, defined by

v {A} = ‘/Bil. /B’T IS!’T(,\I.__,\TM pw(dAy) ’ﬂw"fd'\T)

#

’

Yo .
is' equivalent to Lebesgue measure on an open set O, C X. Set Oy a U2g Oy- Then -~
/
o0V, Is-equivalent to Lebesgue measure on Oy. Furthermore, since /
. w '. N
Zu,{-}. > PT(yq ), * and PT(y, ) >, forall 1¢2Z4,
. 1=0 \

3

it follows that PT(y, ) = Y%, v, Hence, PT(y, ) » louuw’ and this proves the

s

proposition.

( 0
: i : ) o
2.2.1 Invariant Probabilities )

We now investigate the invariant probabilities of locally stochastically controllable sys-
tems. In the lemma below we establish an important property of the invariant prob-
abilities of such systems which will be used to establish Propositions 2.2.2 and 2.2.3

below. \

Lemma 2.2.2. If(2.3) is locally stochastically controllable then for any invariant measure

7 there exists arr open set W such that

o Dyp™
that is, m is equivalent to Lebesgue measure on the open set W.

¢
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22 Locally Stochastically Controllable Systeins

Proof. - ) -~
Let S denote the support of the invariant measure T (this is often denoted su.pprﬂ).
That is, y € S if for every open set U C X containing y, 7{U} > 0. To prove the lemma

we first show that Oy C S for every y € S where Oy is the open set used in the definition

of local stochastic contréllability.

Let y € S, 2 ¢ Oy, and let U C- X be any open set containing z. By the
Feller property PT(-,U) is lower semi-continuous (see [Billingsley, 1968]), and by the
definition of Oy, PT(y,u) > 0.’ Hence, PT(z,U) > 0 for all z in an open .set O+
containing y. But since y € S, 7{O+} > 0, and these.facts imply that #{U} > 0. Since

U is an arbitrary open’set containing z, we must have z ¢ S, and since 2 is an arbitrary

element of Oy this shows that Oy C S. . .

-

Let W 2 Uzes Oz We };av:e just shown that W C S and on the other hand,

because ' ) :

) =/S7r{d;c}PT(a:, )y

—_— " * :

¢ we must also have S C W and this shows that S = W. .

. g * $
o We will now show that # ~ 1y ule®. To do this we need the following fact: _

. " .
Supposé G is a dense subset of W. Then with Wg = Uzec Oz ‘
h [
ub W\ W} = 0. (2.6)

To establish this fact observe that if (2.6) does not hold then the open set Wy =3 \ Wg
) ) - -

is non-empty (this follows because the boundary of an open set has Lebesgue measure

v

zero.) Since W is open, we may use the Feller property to show that PT(-,WO) is

positive on an open subset of W, but this contradicts the hypothesis that G is dense in

w.

2N
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“1 / _
We may now complete the proof of the lemma.
» / -

'

Leb

First of all, since 7 = 1g7, and m# < p“® we have . .

‘ - m < Lgubet = 1yuled, ‘ (27)

where the equality in (2.7) follows from the fact that the 'boundary of an open set in

€

X has Lebesgue measure zero. To show that 7 lwu and complete the proof of

E

Lemma 2.2.2 we will now show that 1ypule® < 72Eét 4 C X be a Borel set for which

- n{A} = 0 Then since w Sand o ) |

@ £

!

/w n(dz)P“T(z,A) = W{:A} =:0’ ) _ - v

there exists 'a dense subset G C W, with PT (z,A) = 0 for r ¢ -'G, and hence by local

stochastic controllability,

u‘Leb{Oz N A} =0, forzeG. ° (2.8)

Using (2.8) and the ifact that W\ [J,.g Oz has Lebesgue measure zero, it follows that

-

uLeb{w N A} =0, and this proves the lemma.
) s ) 0

One very important fact established in the proof of Lemma 2.2.2 is that if &
is locally stochastically controllable and 7 is an invariant measu;e which is equivalent
to Lebesgue measure on the open set W, then O C W for every z ¢ W. This 1mphes
that P¥(z,-) <= for every z ¢ W and k > T. Furthermore, we may prove that W is
absorbing, and hence the Markov chain @ may be restricted to W. This follows from

o~ !

the Feller property: Let f ¢ C be any'continuous function which vanishes on W. Then,

:/fd7r=//w(dy)P(y,dz)f(x), , I ‘
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’

which shows that [ P(y,dz)f(z) =0 for a.e. [uLeb] y € W, and by continugty it follows

that [ P(y,dz)f(z) =0 for every ye¢ W. This’shows that P(y,W) =1 for e‘very yeW,
< ‘ : C Y
and hence ® may be restricted to W. ' : :

-

-

Let 7T C M dentote the set of all invariant probabilities. I and M are

a

obviously conVex sets. Usmg the termmology of [Rosenblatt 1967] we call an 1nvar1ant°

2

prob&blllty 7 € I ergodic if

;

“ | lgvnooN ZT’C /fd7r a.e. [7r}

+

for evér‘y [ e LI(X,B(X_),TF). Thls is equivalent to the condition that the invariant
o-algebra cortesponding to 7 is trivial. In fRosenblatt,c 1967] it is shown that the set of

p A} I's
_ergodic probabilities is precisely the set of extreme points of the convex set J: That is,

if 7 € I is~ergodic and

©

m = Arl 4 (1 - A)r?

12

for A € (0,1, and 71,72 ¢ T then A =1 or A = 0, and conversely, if 7 € I is.an. extreme

£y

point in I then it is ergodic.

~

Ed

13

In Proposition 2.2.2 below we show that when (2.3) is locally stochastically

controllable there exists an at.most countable collection {n% : k ¢ Z+} C I of ergodic

*

probabilities for (2.3). Furthermore, the set.of ergodic probabilities in I .(the extreme

I4

points) actually generate I, just as the set of extreme points in a compact convex subset

1Y -~

C C IR" generate the set C.(see the Krein Milman Theorem in.|Dunford, Schwarz,
- - "q—\v .

1957).) Using Lemma 2.2.2 we now prove this important result. .

s
£ ’
\

Propositi(‘m 2.2.2. Suppose that (2.3) is locally stochastically controllable. Then there

ex1sts an at most countable {possibly empty) coIIectlon of ergodtc probabxhtzes {m*:iie

4

Z+} and open sets {O* : 1 ¢ Z+} such that:



\ ce * -
' . . "
° 'Ii - B ’ - . rz

°
@
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* : L @)= 10‘ dz,. forve Z., . . ° '
3 | o
' o o ~\ - (¢7),Any finite invariant. measure ™ has the form 7 = Y g7t for a summable
' séquence {ql i€ &+} - ]R+ . ] : . )
o : - .
Hence, letting .- ' .
- Akm B . l
A ’ 0L |Jo, . (2.9)
- < ) = 7
{  every finite invariant measure is weaker than Lebesgue measure on 0.
- \ ' [ < N * . . , ¢
. R j Proof. . R 5

~>
/ The proof is similar to the proof of Theorem D of Chgpter A% of [Fogael, 1969]. We first -

- 2

" show thadhe« invariant sigma ﬁeld of any invariant probability is atomic. If this is not

the case then there exists an invariant probability 7 which 'is equivalent to Lebesgue

o

s T2 . -
measure on an open set U and contains no atoms.

Fix B C X open with compact closure such that U N B # ¢. Since 7 has no

& . @&
atoms we may construct a decreasing sequence of invariant sets {Ay : k € Z+} such that

é

AprNB # ¢and 0 <7{A.} <2 % forall keZ. By local stochastic controllability we -

may assume that for each k, A; is open. Let .
4 ’ . ’ “ . — '
- ’ 3 Te m A B, ) .
" ) k=1 ' ,

such a point exists by compactness, and since A, is invariant we may show that 0; C A;
for each k ¢ Z,. However, ;50 Ay C U has m-measure zero and hence Lebesgue -

measure zero. We conclude that O; = ¢ which is impossible. -

. This implies that every invariant probability is a weighted average of ergodic

. & ° s
/ invariant probabilities supported on disjoint open sets. Since there can bé~go more than
‘ : a countable gumbei' of disjoint open subsets in X .the prdposition’is proved.
’
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2.2.2 Asymptotic Behavior

We now present some important properties of the ergodic invariant  probabilities {7®

i€ Zy}. Foreach i ¢ Zy the sta.tlonary Markov process ® with initial d1str1butlon nt
is ergodic. Hence by Proposition 1.5.1, if ug < #* then for eveq\A e B(X),

- 1 X
lim J—V-kz: ld’k‘A = m{A} a.s. [Pyl
=1

N—too

’ ~
and so whenever pg < 7* and m*{A} > 0,

N \f ‘ -
R Pug{®eA 10} =1 . (2.10)-

.. For any = e 0' we have shown that PT(z, -) < n* and # using (2.10),

-,

s P{®eA" 10} =1.

This and the remarks below the proof of Lemma 2.2.2 proves:
. A ~

Lemma 2.2.3. If (2.3) is locally stochastically controllable then for any i ¢ Z. the

Markov process ® may be restricted to 0*, and the restricted process is positive Harris

recurrent.
0

L%
Phe following useful result describes_the asymptotic behavior of averages of

functions of ® which vanish on the open set O defined in (2.9), and will_be used to

establish Proposition 2.2.3 below.

»
.

Lemma 2.2.4. Let f ¢ C, and suppose f =0 on 0. T_‘hen&

> v, - e

N—-voo

That is, N———Z OT f—0 um[ormlyasN — 0.

e
~_
o
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i
i f"
Proof. .

o

Fix f# Q&atisfying ‘the conditions of the Proposition, and é > 0. Define the open sets

(AN :NeZi} by, 3 ' T _
* : . N
1,
[ N — . r )
AN—{zeX.———N+1 E Tf(x)>6}, (2.12)

«

=0

and observe that since 0 is absorbing, Ay C O° for each k. If (2.11) does not hold then

there exists 6 > 0 amnd a subsequence {N, :1 ¢ Z;} of Z. with AN, # ¢ for all 1. Let
B ') LA
{#, : 1€ Zy} C M be probabilities for which ul{ANl} =1, ant#define
) N, s *.
ya
A.l = —N— Z U][l.l.
1 7=1

3 - -

vaguely

As in the proof of Theorem 1.3.2‘we may find a sub-probability Ao for which An, —

Aoo for somie subsequence {n, :t ¢ Z,} of Z,. The sub-probability Aoc # 0 because

-

_ N
- /fd)\oo > lim inf —l—uijfd(U’u,)' -
1=1 .

i—oo N,

1200

. "N

1 1
g = lim inf (FZTU) du, .
Y. 1]:] .

> 6 lim infu,{AN} =6>0. . (2.13)
N ) ) ! ’

By the same argument used in the proof of Proposition 1.3.2, it may be shown that Ay
is an invariant sub-probability. We have Aoo{O} =0 since by Theorem 2.1 of [Billingsly,

a,

1969 4
Ao{0} < lim inf ), {O}
. k—o0

-

»

and z\k{O}uL'= 0 for all k ¢ Z. Furthermore, Aoo{0} = 0 since we have already shown
that T{O°} = 0 for any finite invariant mea;u;e T. It follows that A = O which

contradicts (2.13). So Ay = ¢ for sufficiently large N, and this completes the proof.



e 2.2 Locally Stochastically Controllable Svstems

If (2.3) is locally stochastically controllable, and 7% is one of the nvariant

probabilities introdiced above, then because @ restricted t’o Ok is positive Harris re-

current it may be decomposed uniqu“er as an average of probabilities {d, : 1 < < A};

A
1
ak= 3 Y d,. , ; (2.14)
1=1 ’

4

where d, and d; are mutually singular (denoted d, 1 d,) for i # j. The probabilities

{d, :1< i< A} satisfy ‘ <

] : - ‘ . N

Ud; =dyq, 1<i<A—1, ‘“and Udy =d;. ° (2.15)

Hence the trajectory starting at d; is a periodic orbit. Because the probability d, is

invariant under U” for each i, it follows by Lemma 2.2.3 that the probability d, is
equivalent to Lebesgue measure on an open set D* ¢ X. Hence OF may be written as

the disjoint union * : L.

The following Prop:)sition demons:rates how the underlying distributions of

locally stochastically controllable systems exhibit asymptotically periodic behavior.

Propesition 2.2.3. If (2.3) is locally stochastically controllablesthen for each initial con-

dition z ¢ X, the resulting tgajectory {Lk A Uk6, 1 ke ZZ,} may.be written

o o]
Bk = ng + z a, uy ) . (2.16)
1=0 .
where {n; : k € Z,} is a sequence of sub-probabilities -for which
1 N ] L
) v
. N Z ne 25Y0  as N — oo, , (217
k=1 :

and for each i € Z, the sequence of sub-probabilities'{p} : k ¢ Z+} converges in total

variation norm to a periodic orbit: That is, there exists a periodic orbit {’yk rkeZy}
}

such that .

. lim ( sup |pup{A4} — {4} ] =o0. (2.18)

k=00 \ AeB(X) ‘

Q

51
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some k e Z+}.

2.2 Locally Stochastically Controllable Systems

l;roof .

In the remarks after the.proof of Lemma 2.2.2 we showed that for each ¢ ¢ Z., the open

set O has the invariance property

P(z: 0') =1 foreach ze0*.

’

« This implies that a, 4 limy_,o, P¥(z,0*) exists and is in fact equal to Pz {® ¢ O for

©

»

The proof of Proposition 2.2.3 will be .cdmpleted in two steps. Stép 1: We
show that for each’i ¢ Z, the sequence of sub-probabilities {u} 4 (l/a,)lmu;C 1 ko

Z .} converges to a periodic orbit whenever a, # 0.

For each 1 < k < )\, the set D¥ defined below equation (2.15) has the

invariance property
£

PA(x,Dk) =1 forevery zeD¥.

So, defining 8, € IR+ by ,Hk-é limnﬂoo Pz, DF) we have.a, = ch\zl B If we let

1&

) —Zﬂkdh and ’rk—U Yo ‘ (2.19)
% =

then, since (2.15) is satisfied and ~; ¢ M for each k ¢ Z, ~ a {% : k e>Z+} is a
. « ;

periodic orbit.

By Corollary 1.4.5,

k{_'*“éo;;f’ IlpgﬂkA{B} ﬂ, {B} =o.

It follows that

1
lim sup |—L, uer{B} - 9%{B} =0

k—oo0 BcB(X) @, - 7
and further that for each j ¢ Z+ : ) . -
; :
. lim sup |— loz I‘k,\+j{B} Y {B}| =
k-0 B.B(X)

1
v

Hence {p}c tk e Z.} converges in total variation norm to the periodic orbit 4.
LA X , (

52
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Step 2: We ar_gkft to show that with 0 = |2, 0*. and n 4 locp,k,\ .

o //

1 N vaguel {

uely .

Nan ==’ 0. / (2.20)
k=1

Using the same methods used in the proof of Theorem 1.3.2 we miy show that any

vague limit point ne of the probabilities { Ek— ne : N > 1} must be invariant.

v

Since nee {0} = 0, and every invariant sub-probability vanishes on O°¢ it follows that

v

&

noo = 0, and this completes the proof of Proposition 2.2.3.
0.

Observe that by Proposition 2.2.3, if (2.3) is locally stochastically 'controlla.ble

then for each z ¢ X . .
I
Z KLk vaguely Ty : (2.21)

v

where o= Z o,, and for a > 0 the mvarlant probability 7 is defined by
~ ' == Z a7, ~ (2.22)

If @ = 0 then (2.21) still holds with 7; = 0. ) \

The statement of Propo‘sition' 2.2.3 takes on a simpler form when (2.3) is
stable in probability. As already shown, by tthce of 0, Pk(.’l:, 0°¢) is decreasing
it k for every z € X, and hence for each fixed a:'it’s limit as k — oo exists. If (2.3)
is sta.Ble in probability, or just stable in probability on average then we will éhow in
Proposition 2.2.4 that limk_,;x, P¥(z, 0°¢) =0, and hence limy_, nk{X} = 0. In other
words, {ny : k € Z;} converges to zero in total variation norm if & is stable in proba-
bility. We will see that this implies that the law of large numbers holds for evefy 'miiial

condition distribution for locally stochastically controllable systems which are stable in

4

probability.

The following lemma illustrates the sample path properties of locally stochas-

\

tically controllable systems.

o
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Lemma 2.2.5. Suppose that (2.3) is locally stochastically controllable. Let the invariant

%robability m; and T ¢ Z4 be as above, and recall that

0;60. q
) 1=0

H

Then for any z ¢ X, and f ¢ L*(X*, B(X®),Px,) there exists a function
foo € L}(X%, B(X*),Py) such that )
1 & o
?z_{}.vlgnw—ﬁ; f(®k Pestre) = fool®0,01,..)} 2 0z (2.23)
" where oy ¢ [0, 1] is defined 'by
. A [&¢] . !
o 2P {J {8 ¢0}} = lim PHz,0). ~ (2.24)
"‘ . Pt k—o0 )
In fact,~ / .
(e o
': fwzlr<wZI{¢T’0k}Eﬂ_:[f(?o,q)l;...)] (2.25)
, 6= /
where 7 is the first entrance time into the set O: /
T=min{k e Zy : Oy e O} Q
Proof. ]
By the corollary to Theorem 1.5.1, for each n ¢ Z., and f ¢ Ll (X*, B(X*),P,n), )
] ) , .
1 &
Puo{ fim, § - /(O Besrr) = Exnl (001, )} =
v . (

N
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for any initial condition distribution pg for which pg{0O"™} = 1. From.this it follows that

. ’ for any.z ¢ X,

-
- 1
»

E, [P{ lin ——Zf (B, Bprps...) = foo(<1>0,<1>1;...)1q>,}1,<°°]

—-»oo

f"‘l” T+N : ]
= Ez [P{Nll_f_’noo—“k;lf (I’k,‘I)k+1,, ) = fOO(q’O,d’ls ) I ‘I’r}lr<oo’]

N
= E, [P¢,{]J£nw%£f(¢k,q>k+13...) - foo(cpo,cpl,..,)}1,<oo]

.= Pr{r < 00} = a;.

Hence,

N oL
{ hm Z Qk,¢k+1,...) = foo(@o,@l,ﬁ..)} > O,

and this establishes Lemma 2.2.5.

In Proposition 2.2.4 jtielo_yv local stochastic controllability is usedfo establish

o

the equivalence of the two forms of stability for Markov chains introduced in Chapter I,
and Theoremn 1.5.1-is géneralized to hold for arbitrary initial conditions. These results

hold even in the case where ® possesses more than one invariant probability and hence
| . .
is not Harris recurrent or’1 even irreducible.

Proposition 2.2.4. If (2.3) is locally stochastically controllable then the following are

equivalent:

(1) (2.3) is stable in probability
'\ @ o\ ‘ -

(¢) (2.3) is stable in probability on average
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*

" (i11) ap =P {®, €O forsomekeZ.}=1forallzeX.

; s -
)

Hence if any of the above hold ‘then by Lemma 2.2.5,

a N 00

N . ’
) 1
lim —ﬁ;f(ék,d)kﬂ,...):foo((bo,(bl,...) a.s. |Py] (2;.26)»

for any f e L}(X%,B(X?"),Pr,) where fo is defined in equation {2.25}, and 7 is defined

in equation (2.22).

Proof.
X ' ) .

We will proceed by establishing that (i) is equivalent to (i7), and that (:7) is equivalent

to (212).
'
9

(1) = (u7). For z ¢ X we'must show that Pz{r <'oco} = 1. Since (s2)-and Proposi-

. L 1 N kl ' . c -
tion 1.7.1 imply that N E,Icvzl Pk(z, ‘) vy 7wz where m; Is an irivariant probability,

“

" Theorem 1.1.1 (i7) applies to give

N
N
l}‘rln_'lcr,lof N kZle {0, 0} >7{0} =1. L (2:27)

) “
This implies that ® enters 0 at some time k ¢ Z+ a.s. [Pz] since for any 1 € Z+

P,;{G {0, 0}} > P (@, ¢ 0}
k=0

Consequently, . ' .

&

&0
Pz{ U {® e 0}} >supP {®, e 0} '~
k=0 :20 ,
' =1 (2.28)
by (2.27), and this establishes (1it).

(4
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(21) = (). Let € > 0. If (2.3)‘ is stable in probability on average then we have already

o

seen in equation (2.28) that

- Pz{d)k € 0. for some k¢ Z+} = 1. (2.29) 1
Hence,
. = 00 ' 0
. Bi = Za,u}c:# ng,e where Za‘ =1, .
- o 1=0 1=0 )
vaguely e ‘
and ny 0 as k — 0o. Choose M ¢ Z. so large that "M o, > 1-¢, and choose
a‘} compact set C C X such that . L |
, %{C}>1-¢, fox‘OSiéM,an_dlS/kz/\i. i
—- t\ L 4
Then,
M
llm 1nf uk{C} > hm 1ana“uk{C'} + n{C}
) 1=]
. M ' )
ot - > Z—:az H}cin’ﬁc{c} . 2
. > (1-¢)2 w . (2.30)
Hence (2.3)"is stable in probability.
: It is obvious that (z) = (4t), so we are left to show that (411) = (¢7).
If (i7i) holds then by Lemma 2.2.5 for every z ¢ X, and every f ¢ C
) /
Jim ﬁ Z /(@) = foo @s. [P] | (2.31)

. Taking expectations of both sides of (2.31), and using the dominated convergence the-

orem and (2.25) shows that as N — oo, \
‘ 1 N ,: weakly - |
5 kz: U6, Z a7t . ' (2.32)
=1 a=0

It follows from this and Proposition 1.7.1 that (2.3) is stable in probability on average,
and this establishes the proposition.’
¢ _ o
i 57
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Irreducible Stochastic Svstems

' Proposition 2.2.4 together with Corollary 1.5.1 makes the following connec-

tion between stability in probability and positive Harris recurrence for a locally stochas-

tically controllable Markovian ‘system:
!

! j

Corollary 2.2.4. Suppose that (2.3) is locally stochastically controllable. Then & is

7

.positive Harris recurrent if and only if it is stable in probability and possesses exactly

one invariant probability.

-2.3 ?rreducible.St,ochastic Syste

ms

In this section we will continue our investigation of stochastic systems of-the form (2.3).

Our goal is to find sufficient conditions to ensure that the'Markov state processes for such

systems are itreducible and more generally, to find conditions which ensure that there

is at most one invariant probability. This is an importarii question in stochastic system

theory because it is a necessary condition for the Markov state _process to be Harris

recurrent which, as we saw in Chapter I, facilitates the computation of the pefformance
o &

criteria Joo and Loo introduced in that chapter. Moreover, if certain technical conditions

are met, then the values of these performance criteria do not depend on the initial

L4

conditions of the system.

2.3;1 Recurrence and Stability

We saw in the previous section that when a Markov state process is locally stochastically

yl

[4

i

controllable, stability and Harris recurrence are strongly related. In fact, if thﬁ state

process ® is locally stochastically controllable and irreducible then. Harris recurrence

and stability in probability are equivalent concepts. It would be very useful if this

remained true without the stochastic controllability  assumption. However, this is not

wr

58
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the case as can be seen from the {ollowing simple example: Let X = IR, and consider

the Markov transition function P defined by

P(z,{1/22}) = 27
‘ P(z,{0}) =1-27#, :
’ T}}e corresponding Markov chain @ has the Feller property, is stable jn prob-
ability, and is irreducible with maximal irredu‘cibilit.y measure §). However, ® is not

Harris recurrent since for any z ¢ X, £ #0,

12

)
7
0

0 ) P:c{q;k #0 for all k} = 9~ l&lg=|z/2l9-z/4] . _,
| = 2%l 5 g,
L] &?‘ ‘ *
4 . . v?‘ ‘. ’ , ‘
1 . The following result ‘relates the notions of stability and positive recurrence:

Proposition 2.3.1. If ® is irreducible and possesses an invariant probability then it is

o

positive recurrent. - ’ .

- . v o
[ y '

Proof. - : L ;

- s s, »
———— s -

First weshow that if @ is frreducible with irreducibility measure @, and 7 is an invariant

probability then ' . L ‘

& s "
‘ po<m : (2.33)
‘ ' : st ’ ’ ~a \/u
If o{A} > O then G(.’L’,Aj > 0 everywhere. Hence, there exists an N ¢ Z4 such that

1
v ZkN___l Pk(,:z:,A) > 0 on a set of positive 7 measure: It follows that,

0 luN dz) P*(z, A) = n{A -
0y X [ @t = ala, 3

A
’
@
P ' . . v

-
L .
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and hence (2.33) holds. It follows that there exists only one invariant probability since

(2.33) cannot hold for twg mutually singular invariant probabilities.

t
S

2 To complete the proof we will now show that whenever n{A4} > 0,

b

P;{® enters Ai0.}>0 for every z € X. (2.34)

I

]

By Theorem 1.5.1 and since 7 is ergodic, for each A ¢ B(Xi for which m{A} > 0 there

exists a set F ¢ B(X) of full # measure such that

-

P;{® ‘entersy A0} =1 “forallzeF. B (2.35)

By (2.33) it follows that o{F} = p{X} > 0. Hence by ifreducibility we have for all
» . : '

zeX, . '
- ‘ ' - P{® .enters F} >0, : g/\

and by a standard argument (2.34K/follows.

]

"
From (2.34) and (2.33) it follows that # is 3 maximal irreducibility measure,
4 .

%

and by (2.34) and (2.35) the Markov chain @ is qurrent, > .
1] . D

I RS

ﬁo N "
" Hence by Proposition 2.3.1, iff @ is irreducible and stable in probability on

.average then it is positive recurrent. We now turn to the preblem of finding general

conditions under which a Markov chain’ of\the form (2.3) is irreducible.

2.3.2  Irreducibility
. £
J

ol L

' i
In most cases, stochastic systems of the form (2.3) which are stable in probability
» 4 ]

_exhibit the following related property: Given a system of the form (2.3) we will call the

-

deterministic system -

‘ J
dk+1 = F(dk,O), . ke Z.F b B (236)

w\.
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with initial condition dy € X the freely evolving system. -We say the system (2.3) satisfies
condition GA if some z* ¢ X is globally attracting for ‘the freely evolving system.'That

is, for each initial condition dy ¢ X,

-

k—o0

Condition GA ~ lim dy = hm Sdo( +,0) = z*.

2 . . :
Hence, if the disturbance sequence w is replaced by {0, ---,0,- - -) in (2.3) then ®; — z*

as k — 00 for all initial tondition distributions. To simplify the statements of the results’
g

‘tha’c follow and their correspondmg proofs, we shall henceforth assume thagz = 0. This

does not lead fo any loss of generallty since we may always replace the Markov chain
® by {&, — z* : k ¢ Z,} when z* # 0. For example, the controlled random parameter
AR(p) system to be examined in Chapter V satisfies condition GA when o? < 1, and

LY
the linear system (1.44) under linear control satisfies condition GA if and only it is

stable in probability.

’ L T
For a system of the form (2.3) satisfying condition (i& suppose 'that 't};f
4

su;ip<-)rt of the distribution py of wg contains the origin. In this case @ enters every
n;eighborhood of the origir? with positive probability, and hehce the support of eve;‘y
invariant probability contains the origin. This is rerx;iniscent of the definition of ir-
reducibility and might suggest that stochastic systems satisfying these assumptions
possess no more than one invariant probability..Howe\}?', this is 4not the case as can be -

seen by the following example: First consider the Markov chain ® on (0, oc) }enerated

by the recursion

Wiy = Vowy (2.37)

where w is i.i.d. with Kw equivalent to Lebesgue measure or (0, 00), E[] log(wp)|] < oo,

and 1>p>0.

"61
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4 . s

The system (2.37) is stable in probability because |log( -)pja moment on

(O,’oo), and . . . , ‘ |
© . Eafllog(¥s1)l] < pEc|1og(¥i)l) + El log () .
Hence, = , ’ . / .
. o < Elllog(wy)] - :
lll"cll—.tp Ez“ log(\Ile),IJ S'?’——TT— < 00, s

and this sho;vs\ that @ is (uniformly) stable in probability. Furthgrmore, the first o¥der
generalized controllability matri){ffc;r‘(2.37) is full rank ‘for every' z € (0,00) which shows .
that ® is locally stochastically controllable.” Since Op = (0,00) for every z € (0, 00),
therd is a' unique invariant probability = whic;h is equivalent to Lebesgu;a measure ol

(0,00).

I

b We now use ¥ to define a system of the form (2.3) which is stable in prob-,
ability and satisfies condition GA yet possesses three invariant probabilities. Let & be

generated by the recursion ©- _

. Py = sign(Py)|PpPwy - (2.38)

where w and p have the properties given below equation (2.37) and sign(-):R - R is

“

defined by ‘ ¢ : .
: . ' 1 if t > 0;
. sign(t) = {—1 if t < 0
- M 0 fif t = 0- 3

Then (2.38) is of the form (2.3) with X = R. The system (2.38) is stable in probability

and satisfies condition GA.

+

{

If m denotes the invariant prol;ability for (2.37), then (2.38) possesses the

invariant probabilities 74, 7—, and 6g where 74 = =, 7_{(a,0)} = w{(-b,—a)} for

-

(a,b) C 1{90,0), and 6p is the Jpoint mass at the'origin. We see in' the following

proposition that the reason ® can possess more than one invariant probability is that

- : X , 62
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I

PT(0, ) = bo{ - } for all T where P is the Markov transition function for @, and hence

(2.38) is not locally stochastically controllable.

) '/"

Proposition 2.3.2. Suppose that the Markov chain ® is of the form (2.3) where: (1) (2.8)
is locally stochastically controllable and satisfies condition GA; (27) 0 € supp py = Ou.

Then there is at most one invariant probability and there are no non-trivial cyclical

" sets.

~ ;
Hence by Corollary 2.2.4, if (2.3) satisfies the conditions of Propaosition 2.3.2 I
and is stable in probability then the state process ® is positive Harris recurrent and

o L
aperiodic. Before proving this proposition we must establish the following lemma:

Lemma 2.3.1. S~uppose @ ® is generated by the system (2.3) satisfying conditions
Al-A3,and GA, and that O € supp puw. Then for each .’1: ¢ X, and every open set U C X
containing the origin,

sup P¥(z,U) > 0.

k>0
Proof. ‘
Fix z ¢ X, and let U sa:tisfy the hypotheses of the lemma. By condition GA we may

choose k € Z+ so large that
sko,---,0) e u,

and by continuity there exists a § > 0 sﬁchl that .

~

S:{tc(zls"'vzk) € us N.

for all (21, ++,2;) € {Bs(0)}* where B;(0) is the open rectangle of widtl’l 4 centered ‘at

the origin. It follows that o '
| PH(z,Uu) > E[Lyy <5+ Ljuy <]

= (ku{Bs(O)})* >0, -
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-

and this proves the lemma,

'

-

We may now present the proof of Proposition 2.3.2.

. J . :
Proof. \
It follows from Lemma 2.3.1 that there can be only one invariant probability because if

n! and 72 are ergodic invariant probabilities then there are disjoint open sets 0! and
8 n

0?2 for which , ' - ,
| 7!~ lojuLe?, | i=1, 2, (2.39)
and '
0e0ln o2 (2.40).

By invariance PT(0,0!) = PT(0,0%) = 1. Furthermore, since PT(0, ) < ph® and

01N 02 = ¢, this implies that PT(O%O1 uo?) =2. “This ®ontradiction shows that there

<

is at most one invariant probability.

We now show that there are no cyclical sets. Suppose that an invariant
probability = exists for (2.3) and that D,, 1 <1< ),isa cy‘cle with period A. Letting Q

denote the Markov transition function P* we may show that- the system corresponding

o

to @ is locally stochastically controllable, and that for each 2, A1 pt 7 is an invariant
probability for Q. But the system corresponding to @ satisfies the conditions of this

proposition and hence'@ has, at most one invariant probability. This shows 'thatq)\ =1,

. v

completing the proof. . - -
O

g o



- e

23 Irreduaible Stochastic Systems

., Let us now turn to the problem of finding general conditions under which a

system satisfying condition GA is irreducible. A great deal of work in this direction has

been carried out on the r/a'ndom walk ® on R wheu;\ . ’ .

N

Opr1 =P +wiyy, T (2.41)

w is i.i.d. with wp ~ py for k € Z,, and <I>(; is indepéndent of w (see [Nummelin,
1984).) If for example, py = 3(6_; + 6;) then ® cannot be irreducible because for each
determin'istic initial c?pdition ®; ¢ R, the distribution of ®; is supported on Z + &,
for all k ¢ Z,.. We say that the probability uy is spread out if for some open set
0 C R, Lebesgue measure on O is absolute]y(éontinuous with respect to py; that is.
10 ,uLeb < pyw. This condition is equivalent to the condition that u, is non-singular with
respect to Lebesgue measure. It is shown in [Nummelin, 1984] that if po is spread out
then (2.41) is irreducible, and if in addition [ :z:u-w(dz) = 0 then it is Harris recurrent.
In [Athrey'a and Pantula, 1986] the spread out condition (among “other assumptions) is

used to show that an ARMA stdchastic process is strongly mixing.

e

Motivated by these results, we call the Markov system (2.3) spread out if for
some T € Z. and.all z ¢ X the probability PT(:c, -} is spread out. Observe that this is
a‘much weaker condition than local stochastic controllability because weubnlyﬂrequire

PT(z, -) to be non-sirfgular with respect to Lebesgue measure.

We have the following sufficient condition for (2.3) to be spread out:

Proposition. 2.3.3. Suppose that the function F defined in (2.3) is C!, and that the
generalized controllability matrix Cr satisfies the raqk‘condition (2.4). Then (2.3) is -

spréad out if py is spread out.
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Proof. h¢

The proof is omitted since it is identical to the proof of Proposition 2.2.1.
0

‘In the remainder of this, chapter ‘thes’assumption that uy is equivalent to

Lebesgue measure on an open set is unnecessary. Furthermore, we will restrict our
attention to Markovian systems of the form (2.3) satisfying condition GA where F

is C1, and whose generalized controllability matrix C is full rank. Hence, replacing
(]

assumption A4 by

A4’ There exists an open set Oy C RP such that the distribution uy of wy,

ke Z., satisfies 1p,, < pw, and 0 € supp uy, \

¢

we see by Proposition 2.3.3 that such systems are spread out. |,

’

The follg;vsfing result is extremely useful in practice: “

Proposition 2.3.4. Suppose that the Markov chain &.is of the form (2.3) where F is C1,
and that assumptions A1-A3 and A4’ are satisfied. Then ® is irreducible and aperiodic

under the assumptions: .

(z) The system (2.3) satisfies condition GA;

2

(ii)- The generalized controllability matrix (2.4) satisfies the conditions of Propo-

‘sition 2.2.1.

i
4

For a point z ¢ R™ and ¢ > 0, we let B.(z) denote the open rectangle
Be(z) é{ye]l{m:|1,;yi|<sfor1 fisrﬁ}. :
*

/

66
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oof.. T
Proof \ -
To prove the proposition we will construct an open set Op containing the origin and a
measure ¢ on B(X) such that for all ¢ X and A'e B(X),‘ -
PT(z,4) > 1o, (z)p{A}. (2.42)

That is, Oy is a small set, and ¢ is a small measure. It will follow from Lemma 2.3.1

that ¢ is an irreducibility’ measure.

2

Let p,, denote the Radon-Nikodym derivative of uy, and p: RTP - R the

density defined for (z,...,21) ¢ RTP by N
) ¢

_ . *
Plz1s.. . 27) = pul21) -~ pilzT).

Since py, is spread out we may find Mg € RTP, 6p > 0, and an open rectangle B5p()\0) C
RT? such that . - ,

p>bplp 00 @ [ufet] ‘ (2.43)

Using the rank condition on the derivative of F we may assume without loss of generality

that for some integers {i1,...in},

-

det |- £

T
-asg”Im 958
), o

] 7“9 0. - (22’44)
A0 _ .

For any ® ¢ X, A€ B(X), ’ '

9

PT@o,A) 26, [ Lgp o b (2.45)
and the term on the rigﬁt may be written
$
6,,/ {/ 1oy, d), . .dA-'}dA'  (2.46)
0 0 Sx (Med U1 70 n
By, () Bg, (A0 A0 ) B, )e\ .
| o
/4
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where

-t o

(’\17 . A11---1v’\21-1-l!'- . a'\zn-kl’Atn-H"" v)‘Tp)’

l|l>

by

and

A 0
A,O‘:(’\?"" 11—1’)‘11+1’ . ”\ —-1”\zn+1’ Ag') 4

The main. task in this proof is to estimate the term in brackets in (2.46).

Lét z € X x RYP~" and y ¢ R" dénofe the generic variables

4

Ja
r = (QO”\I""’A‘Ll—l”\’tl‘f‘l"‘")‘ln“‘l’A‘tn‘f-l"" ’ATP)

y - 11a . znl L

-

and let zg ¢ X x RTP~" and yg ¢ R™ denote the fixed variables

A 0 0 0 0 0 0
Ig = (0’)‘ . ’)‘11——1’A11+1’ ’\zn—l”\zn+1’ )‘Tp)
Ty S (,\0 LA ).

Define the function G(-,): {X x RTP~"} x R” — R" by o

rd

AN
G(z,y) 2 S§ (A1, Tp);

., . ~
so that by (2.44), . - ‘
det [6G} # 0. : (2.47)
% J (zp,u0) ’
Consider the function G*: {X x RTP~"} x R® — {X x RTP~"} x R" given by
- - ' * A Z
S @02 (o))

By (2.47) and the inverse function theorem there exist open sets O, U x ¥ C {X x
=

—RTrP"} x R™, and a C! function H* : 0 — U x ¥ such that (zg,y0) € U x V,

o

I 4
0= {(G(:,y)) rzel,yeV}, and

H *('G*(;z,y)) = (#.9) o . \

4

68
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¢

for all (z,y) e U x V. Using the function H™ we may define a ¢! function h: 0 — V for

which
h(z,G(z,y)) =y Tor all (z,y) el x V.

and we may assume that with zy & G(zo, yo) .

|det [ah]

Hence by reducing the size of Z/l x V we may assume that for some é, >0, .

’det{ hJ
dz (z,z)

>0
(zo:20)

> bn

for all (z,2) € O.

L}

" We may now estimate the term in brackets in equation (2.46):

-

1.7, Ay e d) =/ )
Jog 00 a0 M b = fy Lot

ZIU(x)/ | 1 ziy)ed QY
' VnB;, (vo) Cla)ed

" Ton
S
ule) G(z,YBg, (vo)) R (z,2)

> 5n1u( )/ C d,ade (248)
G(z,Y0Bs, (o) .. ,

Y

1,.4 dz

Obsérve that the set

{(G(“’ v mﬂBBop(yo)) ) e u} < {x X RTVP'"’} < R™

contains (zg, 2p) a.nd is open. So we may find a 6y > 0 such that b < 6,, and for all

(z,2) € {X x RTP~"} x R",

15 (20,7) (%:2) < 1y(z}1G(z,vrB; p(yo))(Z)- SR




e

2.3 Irreducible Stpchastic Systems .
-

a
-

Hence by equations (2.45), (2.46) and (2.48)

PT(®y,4) > 6 / Ay - dhy, } &N

. 1 4
Bap(k'o) {-L&p(A?l, ..,,\?n) SQO(I\)GA

1 !
..>. 6P5ﬂ- ,/-B6p(,\'0) {/ :1z€ng(z0)ﬂA dz}lBé(?(zo)(’\ )dA

> 5p5n1350(o)(‘I’o)uLeb{Bso(Zo) n A} 5. () d'
- 0

and so, letting a 2 28p, we have
PT(®q, A) > 6,6paTP ™1 (®0) L {Bj, (20) N A} (2.49)
’ = Yp¥n 360(0) 0 ) . .

a

Letting .
A -
#{} = bpbna” PTul By (20) N -},

» i . R N
and Op a By, (0) we see from (2.49) that equation (2.42) is satisfied, and the proof,

_ is almost complete. To show that ¢ is an irreducibility measure let A ¢ B(X) satisfy

#{A} > 0, and’let y ¢ X. By Lemma 2.3.1 there is a k ¢ Z; such that I_”é(y, Oo) >0

and by (2.49), PT(z,A) > p{A} > 0 for every z ¢ Oy. Combining these facts we have

-4

PT.”‘(y,A)“Z/; Pk(y,d2)PT(z,4) > 0.
’ o .

This shows that ¢ is an irreducibility measure, and hence & is irreducible,

/s

" In fact, Pk(:c, Oo) ; 0 for all k sufficiently large by a simple modification of

the proof of- Lemma 2.3.1, and we conclude that if p{A} > 0 then PN(z,A) > 0 for

_ all N sufficiently large. This eliminates the possibility of nén-trivigl cyclical sets and

oty

hence ® is aperiodic.
. 0.
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Remarks

\

s

- It is*easy to see that the rank condition on (2.4) is much more than is needed.

The conclusions of Proposition 2.3.4 remain valid if C7(0,\g) is full rank for

)

some T >"0 where the probability uZ; a Hw - py ON {]RP}‘T satisfies
Leb T
1B, (ag)t™" < B

for some 6 > 0. ) [ .

’
“ -

- Since writing this section we have discovered a similar yet less general result

in the dissertation [Chan, 1986].

~

2.4 Applications to Linear System Theory / =

Consider the ARMAX system - ' ‘

_ 70
e+ Ate-1 + - F AngUp—n, = Byug_g+ ... + Bryug_p,

+wp +Ciwp_q1 +... + C',[3wk__n3 (2.50)

-

where k, d > 1, the processes y, u, and w evolve on R, w is an i.i.d. -processes with
.S !

distribution 47 satisfying assumption A4 and initial conditions independent of w are
- ‘ M -

given.

,:S—l’lpp(;se that a control law u is given of the form ‘ ,' .
up = u(yk""’y"""‘i)’d. ke‘z'.;., .
where'~z\z :R(4t) L R i‘s'VCI.- The closed loop system is of fc;rnx‘ | .
‘ ) Yp = G(yk_l yeus ,yk_rf;) +wg +- ’C'.ﬂswk—;z3: (2.51)

71
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for some m € Z, where G: R™ — R is cl.
\,h-f -
We now embed the closed loop system (2.51) in a Markovian system which

is of the general form introduced in (2.3):

-

' Yk [ G(Yk—1+++ s Ykm) + W+ -5 + CrgWi—ng ] i 0 7
: Yk—1 . 0
. 3 Ye—m+1 Yk—m+1\ , ‘ 0 .
Qk"‘l - i wk+1 0 . . . ) + wk+1
; Wi v o ) . 0
o g M .~ v/ 6
L Wkongrr ] LBkt : L, (2.52)

valid for k >.0'and &g ¢ X 2 jn given (n =m + nﬁ 1). This Markov chain is.of the

f ’

form ‘ ' . : )

Dyt = F(®y) + Bugyy

RN
(2.53)
where F' is cl ;a,ﬁd, ‘sinc_:e wehave already assumed that u, satisfies A4, this process
has the pr6pertie§ required in Section 2. It would be very desi’r:«ible to prove that
(2.53) is locally stochastically controllable. Necessary and sufficient conditions for local
stochastic controllabi!ity have not been established as yét, but we can apply Proposition
2.2.1 to provide sufficient conditions. In establishiné these sufficient conditions we have
assumed that m > ng. This simpli'ﬁé's"the discussion and the general case may be proved
using the same techniques'as those used below.

if we let Gf 4 (QQ) ,ﬂ 1<t<m,kelZ,, then the matrices Ag and By

ayz (pk ] 3

4

)

[
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-
o

used in Proposition 2.2.1 are given by

- ok k k .
Gl tee Gm_l Gm 1 Cl Cn3 [..O
1 O e 0. 0, .
0o . 0 .- e Q B
: 1 0 e 0 0
A= 0 N T 0 B= 1.
. 0 1 0 ;- O 0
N ) : o 1 0 0

2

where the m + 1*} row of Ap c6nsi§ts of zeros, and thé m + 1th entry of By is 1. Hence ‘

%

when m > n3 the generalized controllability matrix C7 becornes

[0 1 a{—l al™l oI T RN a%"_'i ]
T-1 T-1- T-1 - T-1
0 0 1 a3 a a; el Op_g
Cr=|; " ) - 71 T.LL T-1 | T-1 2.54
T 0 0 PN PN 1 al azb ) as- PN aT_m ( )
10 0 0 0 0 .- 0
[ 0 1 0 0 0 -0 0 0 s

ere the a{‘l are defined by
. T-1_ . ° ’
ao - 1 N ;

3

aT_l = G{—l + Cy
B I i i R N

. . (2.55)

-

Letting o®(z) denote the formal power series bty ok 2" it follows from (2.55) that *
. A

3

o*(z) may be computed inductively:

L k()_ 0 ( for k = 0;
Y= (GF(2) - 1)k 1(2) + C(2) for k> 1,

where G¥(2) 214 G’{‘z T +.GE 2m mdgtg)-é 14+ C1z+... + Cpg2™,

-
¢
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Hence a sufficient condition for local stochastic controllability in this case is

} - i . '
yhat for some T ¢ Z. anfi each ®; = r ¢ X the matrix below is full rank: N}
. . & - /,
' \ m  Om41 Om4+2 Omy3 0 Oy T
- i - , (2.56)
oo ! P - - MR - SR - 7R LI - WE ,
| > . Log ag a . az - ar
| 5 |
v As an illustration suppose G\is linear so that .
1 ‘ : b )
oy = Grap_y +...+Gmak_,;,+Ck, ' kelZ,, (2.57)

where the G,,1 < ¢ < m, do not depend on ®. Equation (2.57) may be written in the

]

*
more compact form

~

S G(z)a(z) *= C(2)

where G(z)a—é: 1+ Gz +...+ GmZ™. We assume without loss of éenerality that Gy # 0

so that G(z) is an m*? order polynomial. )

e
u . , o l\

If the matrix (2.56).is net full rank for any T ¢ Z,, then there exist poly-
nomials d(z)-and D(z) whose orders do not exceed m — 1 and m respectively such
g , _ ,

‘that . ’
| Cd@afx) =D(), (2.58)

which  is possible if and only if C and G have common’ factors. It follows that the

.

system (2.53) is loca;ily stochastically controllable whenever the polynomials G and C

are co-prime. ’ ;
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To illustraté what can go wrong with local stochastic controllability, consider

the ARMAX system (2.50) with n3 # O underphe mean square optimal control law
/

o

B(z) i{z) = Az) - (Z)J () o T

| and ‘ define * -

¢

. - T
®k+1 = (ylca"'iylc—-nlvuk—d""’uk—nziwk"" ’wk—-n3> .

Pl

Suppose that the zeros of the polynomials B and C lie outside the unit discin €. It is

easily shown that the closed 106p system is stable in probability in this case and that

- m y;,—wp =0 a.s. [P ' (2.59)
koo PV

] . / & .

for all initial conlditions bp.

-

By (2.59) we have, y(; =wy a.5. [Puy| for the {unique) invariant probability
7, and hence 7 js supported on a hyperplane in R". Consequéntly: this system is
not locally stochastically controllable because the support of = is }not equivaleat to
an open set. Similarly, the stochastic gradient \algorithm of |Goodwin, Ramadge,. and

Caines, 1981] does not give rise to a locally stochastically controllable- system because

the variable rj converges to zero almost surely.

- -

-

,  However, one very active research area in stochastic contrgl theory today is

the adaptive control of time varying systems (see [Meyn, Caines, 1987|, [Chen, Caines,
1986].) It is in this area that the ideas introduced in this chapter will be very useful.
For example, the Markovian system of [Meyn, Caines, 1987] is locally stochastically

" controllable, and this fact was crucial in establishing many of the results in that paper.

[}

Furthermore, the ARMAX system (2.50) controlled by a forgetting factor type algo-

’ »

rithm gives rise to a locally stochastically controllable Markovian system under mild

restrictions on (2.50). N - .

{ - - .
- - 9
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Chapter 3

.
[}

3.1 Ohbjectives
In this chapter we examine the robustness properties of stochastic systemns which are
. L .
Markovianizable under feedback; we assume that a Markov state process & .evolving on
a Borel subset X ¢ RM exists, and that for some Borel function ¥ :'X — R™, the

output process y has the representation
- ‘ - L 3

1
1

ue = ¥(®y), ke Zi. @Y -

\ i AN

A Y

For stochastic systems of the form (3.1) we will be concerned with finding conditions

under which invariant probabilities on the state process vary continuously under per-

-

turbations of the state process ®. As ‘we shall see, this is an important question in

stachastic system fheory. In particular, if this is the case then the value foo of ergodic

2 a

averages of the form .

s N ~
SR, N ‘ ¢ 7 ‘2 9)
~.~  Jim =) = . a.s. [P. 3.2
‘ am Zf(yk) foo {Pz] | (3.2)
. k=1 _ .
also vary continuously for a large class of functions f. -~
. ‘,»a“ ) ‘
s &,
N t +
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*

‘ " To illustrate the basic ideas, consider the controlled system (1.44) where
the c;ntrol u, = —k®;, k ¢ R, and tk — «| € 1. Then the invariant probabi.lity of
the closed loop system possesses the density p, which is compared to the disturbance
density p,, in figure 3.1. This example suggests a number of quest}ons. In particular, it
is easy to verify that}as k approaches a, t};e*corresponding deg\lsity Pk approaches pyw,
and figure 3.1 illust;’@tes this fact. It woulfl ‘be very interesting to establish a similar
result for nonlinear perturbations of the optimal control, ie. if g(z) = az does it
follow that the resulting invariant probability py = py,? A related question is this:
Under what con,ditioﬁ§ does ‘the controlled invariant Wdensity pu vary continuously under
a perturbation of the density py? -Tchese 'quest‘i'fons are of fundamental importance in

stochastic system theory Because we can never model a plant, or the statistics of a
. ’\l . gsf » ‘

disturbance process perfectly. ' T -

1

-1 0 1
§ »
! py: the invariant density
Figure 3.1 pw: the density of uy

' *

- A deterministic version of this problem has been carefully examined in [Mees
[

s

and Chua, 1979}‘. In this work a dynamical system on R" of the form
/J N

. o A = f(x,¢) (33)

77
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is studied for values, of the paramgter £ € R close to €o. At € = £ it is assumed that

5
there is a stable critical point zg, and it is shown under very general conditions that

in this case there exist periodic orbits near zy when £ is near &0, and that these orbits

‘converge to the point zg as £&-— £p. It is shown that if a variable called the curvature

coxgétant is- positive then each of these perioJic orbits will be locally asymptatically
stable. This is a special case of the Problem under study in thi§ chapter because the
system described in 3.3 is a Markov process, zy is a critical point if and only if the
probab‘ility bz, isinvariant, and if £ is a chlosed curve in R™, then' it’is a periodic orl;it
if and only if the probablhty Tt on (R", B(R")) given by T = C]lf( IE is invariant

where C >0 isa normahzmg constant, and ds is the increment of arc length on L.

i

With this example in mind, consider the e-parameterized system of the form

) !
(3.1) where the Markov chain ®° is generated by the recursion:

o

i, = F(Qi,{i_ﬁ‘f; foree[0,1), k € Z+, (3.4)

and the output readout map ¥ is fixed. The function F: RM /< RP L ]RM is contlnuous,

and £° is an IRP-valued i.i.d. stochastic process with £, '~ u® for k e~Z+, €€ [0 1]

The probabilities {u€ : £ ¢ 0, 1]} form a curve in M/ and t8 make the e-parameterlzatxon

n (3.4) continuous we assume tha.t this curve is contihuous in the topoIogy of weak

. /
copvergence in M. , /

~

. Suppose that at some ey € R the Markov chain ®°0 has a unique invariant
) ;. / ' -

probability #°0. Can we then say th it the Markovian system (3.4) has an invariant
) _— / :

’

s,
/ ’R
t The invariant probability T o/r thlé example has an elegant interpretation For two points
P
z(tg), z(t1) € £ with tg < t’l it may be verified that T{z(t) : tg <t < t1} = (t1 — to)/T
where T is the aniount of time required for X to complete one orbit. That is, the T-measure
of the set of points between z and 2 on L 1s a constant times the length of time 1t takes

to reach zj, stdrting at xg
i He

! 0
! 5 ¢ ' N
: ’ 78
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L4

. ' ‘ ,
probability 7° for € close to €g in this case? And if so, will these invariant probabilities

i

approach 70 as ¢ — g? In the results that followgwe show that this is indeed the

li N
* case under certain conditions. Because of the extreme flexibility in the choice of the

‘

[
representatkgn (3.1) we will find that these results have wide applicability to a variety

©

of robustness issues in stochastic control and system theory such as:

; / .
- Finding the effect of a perturbation of the parameters, or the distribution
of the disturbance process on the asymptotic properties of the output of a

nonlinear stochastic sysfem operating under feedback;
-
- Establishing convergence results for the underlying distributions of the out-

put process of such systems; . ' .

i o

) .--Estimating the performance criteria J oo and LS, of the perturbed systems '

for values of ¢ close to . . e
/

. « . ]
In section 3 we give a detailed example to show how these results may be applied to

the stability analysis of stochastic time varying systems. In section 4 we discuss some
i 4 S /-

open problems that could possibly be solved using these methods, and present a general

o

result which will be applied in Chapter ‘IV-.
3.2 Approximation of Stochastic Systems

. We begin our discussion on the approximation of Markovianizable stochastic systems

-

by presenting a notion of convergence for stochastic processes on X%, and Markov

transition operators on (X, B(X)). Let {P®:0 < &< 1} be a family of probabilities on

A
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N ~ , .- e

(X% B(X*)). Then when X% is endowed with the product topology (see Billingsley..
! T :

1068]) it follows that P* "= PO as ¢ — 0 if and only if +

L ]

lin%)PE{on---xAN XxXxXx-}=P{4gx-x Ay x X xXx--} (3.3)
E—

for every N € Z., and every finite rectangle (49 x -+ x Ay x X x X x ---) € B(X*)

€

° -
N
whose boundary has Tmeasure zero.

rs

v We say that the Markev transition operators {Te 0<ecx 1} converge to

, the Markov transmon operator T and write T — Tgas € — 0, if for every zeXand

1

fEC, : ' ’ t
lim T/ (z) = Tof (). -

Under very general conditions it will follow that .

PE weakly | P2 as. e—0 - ; (36)

for every z ¢ X.

’ e

Unfortunately, the existence of the limit in (3.6) tells us little about the
relationship between the a:éymptotic behavior-of the Markgv chain ‘corresponding to TE,*

and the asymptotic behavior of the limiting Markov chain genérajced by Tg. Take for

v

example, the deterministic Markov chain ®° on X é-[——l, 1] given by

' »

fa=(L-€)® keZy, 0<e<l. (37

&

The Markoy transition operator T. generating ®° is deﬁned} for f.¢. B, z € X, and

0<e<1by _
. : © Tef () = f((1 - #)z). (3.8)

It is easily verified that for every f ¢ C, Tof — Tq/f in the uniform Horm as ¢ — 0,

and we cohclude that (3.6) holds for this example. The Markovian system(3.7) is of

80
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32 Approxnmatgqn of Stochastic Svstems

the form (2.3) studjed in Chapter Il,mg for each(e: € 0,1} it is stable in probability.

The invariant probabilities {7z . : 0 < ¢ < 1} for (3.7) are defined f ¢ C, z ¢ X, and

TS (2), (3.9)

»

i )

and it follows that for all z ¢ X the invariant pré‘gabilityl 7ize = Og whenr e > 0, but )

the invariant probability 7, ¢ of the limiting system is IS,. So, even with this’iextremely
R ) .

_ strong form of convergence holding for {T: : 0 < ¢ < 1}, and the uniform stability of
the Markov chains {®°:0 < e < 1} we still cannot infer that the invariant probabilities

.

{7z, :0 < e < 1} converge to ;0 as € — 0. ' ' .

rd

In order to avoid such pathologies we will begin our robustness analysis of
Markovianizable stochastic systems by considering problems in which the adjoint Uy of
To possesses at most ofie invariant ‘probability. Th;oughout this chapter {T¢ : 0<e <
1} vyill dentote a set of Ma;.rkov transition operators, ,{Us :0<e<1} tileir respective
adjoints, and {7, : 0 < e < l}aset .(;f prob-abilities such that 7. is invariant under U, for
each ¢ ¢ [0, 1]. Finally, we let C, denote the set of continuous real-valued functions on X
" which vanish?outside of some compact set, and a family offre_al'-valued functions { fotaeca

on’ X is said 'tq be equicontmuous:onvc‘ompacta if for all v ¢ C, the family {7fa}qea is

7
equicontinuous. We list here some of the assumptions that we will occasiontally be us{ing

» Y

, ' later in this chapter: ‘ : B ( 1
l . - age ‘
, R0 Do possesses at most one invariant probability;
R1 ' The set of probabilities {m : 0 < € < 1} is tight;
R2 - For each f ¢ C. the collection of functions {T¢f : 0 < ¢ < 1} is equicontinu-
’ . - ous on compacta. o e
K : T - AT |
. N P 81
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J}R?) Whenever the probabilities {u: :0 < ¢ < 1} satiéfy ‘

)
weakly '
( .uE _-—)y ”‘0 aso £ — 0’

it follows that

. k
Uepe weaky Ugup as e—0.

-

. ? . . o

We remark that conditions R2 and T. — T as € — 0. are equivalent to the conditior
. ' i) - ' . ‘ -

that the functions {T¢f : € > 0} converge uniformly on compact sets to the function

\
]

Tof for every fke C.. :

The first. result below concérns perturbations of the disturbance distribution ,,

pw. Suppose that the Markov chains {®° :0°< e <1}, have the form

M .

' v

o § = F(®;_; wi) (3.10)

where F : X xRP —'+ X is Borel measurable, and for each ¢ ¢ [0, 1], w® 2 ws ke Y/
- k

is independent and identically distributed with wi ~ ug; for each k ¢ Z, and e 0,1].. N

Then the Markov transition operators Te, € ¢ [0,1], are defined for g ¢ B by

° Tl = [ dPEAG@). (G

3
N

. % :
Proposition 3.2.1. For the Markov transition operators Te, € € [0,1}; defined in (3.11)

suppose that on?‘of the following two conditions holds:
R

(1) {uS, : € > O} converges in total variation norm to u, ase — 0.

. p . . kI -
(¥1) The function F is continuous and u® i Bl ase = 0.
~ . ’ 1
‘ / . '
Then T, — Tq and condition' R2 holds. ' .

[
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Proof. .

-

To. prove the proposition we will show that if either (1) or (i) is satisfied then for each

g € Cc, Tcg — Tog uniformly on compact sets. Hence, result (z) follows by using the -

estimate , .

b (T~ Te)glloo < Nglloo s — B0l

where ||uf|;y is the total variation norm of the finite signed measure u, from which it

!

, follows that T.g converges uniformly to Tog.

-

Subpose now that (2z) holds. Let 6 > 0, and bl C X be an %rﬁitrary compact
set. Choose Cy C RP so that uw{an} =0 and pus,{C2} > 1-6 forall 0 <e< 1. This
is possible because the probablhtles {u, : € > 0} are convergent and hence tight. The
function F is uniformly continuous on Cj x C’z"and hence letting &(-) Ap (z, -) for
T e C1 the family of functions { 5;': z € €1} is equicontinuous on Cy, L,
Let g € C.. Then i)ecause g is uniformly continuous, t;}.w family of functions'
g (ﬁx) : 7€ Cy} is also equicontinuous J/on Cy. Since p%{8C2} = 0 it follows from
assumptlon (n) of the proposmon and Theorem 2.1 of |Billingsley, 1968] that

weakly <A

ﬂtev'lCQ - //'w]'CZ .as £—0.

Tt

Hence Theorem;l.l.l (1v) applies to give

!

lim sup | / COTAE / o(E: (V)i (X)) = 0 (3.12)

0 zeCy v

It now follows easily that T.g converges to Tog uniformly on Cj as'e — 0:

L

By the hypotheses made on Cy and the definition of T, we have

0
s Teo(e) = Toa I—Is:xpll [ (62 ()1, (43) - [ stetnu @
\ 72 Elolioot sup | [ glexus(@) - [ (el (an)
:reCl 02 CZ ,
83 /)/
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@ !

"

Hence by equation (3.1‘2)‘,

— —— ' \

_ lim sup sup [T.g(z) —_ng (z)| < 26iglloo
e—0 -zeCy .

v

. and since 6. is an a’m'bitrarylconstant T;g'coﬁverges uniformly to Tgg on Cy and this

®

cbmpletes the proof. )
D

-«

The following lemma is adapted from \Theo.rém 6 of Chapter 6, section 4 of
. ] ’\
[Kushner, 1984]: : -

L 2

Lemma 3.2.1. Suppose that a.s:sumpt'ions R1 and R3 hold, and that Ucne = 7 for each

i

€ > 0. Then, . ‘ _— o .

Te weakly Ip as e-—0, .+ (3.13)

s

L}

where I C M is the set of probabilities which are invariant under Up.

4 "y
h)

Proof. .

Let' T be a limit point of {7 : @ < & < 1}. Then for some sequence {e, : ¢ € Z},

converging to zero, . v
' weakl .
Te, —-—+¥ i as 1t —o00. -

. C, \ ki . .
Applying'assumption R3 we find that U;z Tre, weary UpT as © — 0o. Since ng. Mg, = Te,

N
T

a

for all © ¢ Z+ we conclude that

UoT = T,

and this proveg the lemma.”’ '
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In the following result we give a su/fﬁcient\ cordition to -ensure the conver-

e

)
gence of the invariant probabilities corresponding to a convergent sequence of Markov
transition operators. This result will be very useful in Chapter IV where we investigate

the robustness and asymptotic behavior of linear systems operating under nonlinear

feedback. i . \

Proposition 3.2.2. Suppose that T — Tg as € — 0, where the Markov transition oper-

_ é\tor To has the Feller property, and that conditions RO, R1 and R2 hold. Then,

’ weak]
Te sy mo as ¢—0

»

* where mq is invariant under Up.

Observe that we do not require that the Markov transition operator T¢ be

Feller for € > 0. ) P

Proof.

By Lemma 3.2.1 a,nd RO jt is enough to show that {Tew0 < e < 1} satisfies condition

R3. Let pe weakly uase——»O and fix f € C.. Then letting (v, f) = ffdu

v ) ‘ \\ .
(Ue#mf) = </-LE, (TE - TO)f) + <”E,T0f>'

.
! ~ 4

/

Since T — Tg as € — 0 and condition R2 is satisfied the first summand converges to

- Zero as € — 0. Hence, because To f € C,
eli_fﬂ)wsus,f) = {po,Tof) = (Uopo, f)

which shows that Ugpu, vaguely Upug as E’KO Since Uoﬂ%ﬁ a probability it follows

akl
that Ucpue — ey Upig. Hence condmon R3 is satisfied, and this completes the proof.
0

-

85
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We remark that if assumption R2 does not hold then the conclusiops of L

[

Proposition 3.2.2 may not be valid. Take for example, the Markov chain d° ev<;lving on

R defined by '

di+1 =ofeldr), . ke¢eZy, 0<e<1/2 (3.14)

where fp = 0, and the continuous function f, is defined for € > 0 by

3
7

[0, if t €[0,1 — 2¢];
Je) =S 1—¢ ift=1~¢
affine on [1 — 2¢,1~ €] and,on [1 —¢,1].

The graph of f. for € > 0 is shown in figure 3.2.1.

¢

<
b e

Figure 3.2 Graph of fe . L

I( - 7
N v

The “collection of Markov transition functions {Te : 0 < & < 1/2} satisfy all
of the conditions of Proposition 3.2.2 except for condition R2. Furthermore, for each

B . . . ., : /
'€ > 0, 61— is an invariant proebability for d°, and does not converge to the invariant

probability for d° as ¢ — 0.

4 s M {
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The assumption RO is too strong in many applications. To illustrate the

difficulty invelved in relaxing this assumption we will assume in the next few paragraphs

that the following ¢ondition is satisfied:

t

" R4 Eachof the Ma.rkov transition operators in the collectlon {Te:0<e< 1} has
the Feller property, and for each z ¢ X and - ¢-Z. the set {Uk6z 0<e< 1}

& / ¢ . ) ]
is a continuou$ curve in M. \ .

i
i

Observe that {Ufé,:0<e <1} isa continuousacurve in M'if T¢ - TL‘O as € — g for

each €9 ¢ [0, 1].
. ) : y
Suppose that ®° is stable in probability for each 0 < ¢ < 1 and lét n7 .

denote the invariant probability defined as in (3.9). Our goal is to find general sufficiert

conditions to ensure that

: ki '
’ g, 5 wi»y 0 'as €—0 § (3.15)
for every z ¢ X . , . - ‘

¢

*

Fix ¢ X, and for N € Z4 let avyU: [0,1] — M'denoté the continuous curve
defined for € € [0,1] by -

avNU(E 2 ZUkéx (3.16)

The functions {avyU : N € Z, } are continuous’ whenever condition R4 holds, and for

&
each Q< e <1,

‘weakl
> anyU(e) "= m;e  as N — oo. | ~ (317)

B . { M
Hence (3.15) holds if and only if the function aveoU:[0,1] — M defined for € € [0, 1] by
avooU(€) = #fr ¢ is continuous at 0. This shows that finding conditions to ensure that

“the' limit in (3.15) holds is equivalent to the solving the following problem:

87
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% Given a sequence of continuous functions {; : k ¢ Z_-} mapping 0.1 nto
¢ . \‘ - . . .——D
a metric space Y, under what conditions does the existence of the pointwise
% . o ' @
limit . ‘ " ,
kY \ !
L, ; khm hg = hoo ’ N
¢ N .} N — 00 '
] * L]

imply that hoo i§ continuous at zero?

Ed

i 4

Althodgh this approac}l is illuminating, it dees not yi;eld any pI:(')found results.

/

* Another approach to this problem is to a.pply some bf the ideas used in the proof of

Proposmon 1.3.1. In [Sapperstone, 1981] the ex;stEnce) of the limit

f | . .

4 VLo 1 weakly ', ) ~
NZUkéSz — Ty as 7V—>oo

s é'sta.‘blilshed ‘under the appropriate conditions by Jirst showing that .

&
“ , Lo

N
1 . ' -
- ——ZUkﬁzweakly] as- N oo, = - . ;

; ‘ . ‘e v kzl .' N . R :' - - -
. "o -
i . o o

" where I is the set of probabilities which, are invariant under U. The proof is coinpleted

by establishing the following lemma: ~ . -
- " . h \ .
Lemma 3.2.2. Let ¢6; C M denote the closed convex hull of the set of probabilities
{ ” (3 - . [ 4
‘ K . ;- N .
. ' k
' : .18
| o A ivesa) 51)

s )
where U is the adjoint of the Feller Markov transition operator T, and assume that the

set of probabilities in (3.18) is tight. Then €6z NI consists of exactly one probability -
.. .

A . . 7r_'r,- - ~4

L
el + i D
o R
M .
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The following result follows directly from Lemma 3.2.2. Let €6, denote the closed

convex hull of the set of probabilities (3.18) with U replaced by Uy.
)

Proposition 3.2.3. Suppose that the Markov transition operators T, € € |0, 1}, have the
Feller property and satisfy condition R2. Suppose that for some z ¢ X the corresponding

invariant probabilities {nz;¢ : 0 < ¢ < 1} satisfy condition R1, and that T, — Ty as
K|

€ — 0. Then,
weakly '
Tze — Tz as €—0
if and only if
- weakly __
Tze — €Oz as ¢ — 0.

) - -

e ey s - . NP’
The only if part is trivial since 7, € €0;. To establish the other direction we use

Proof.

the Feller pgoperty, assumptions R1 and R2, and the technique used in the proof of

Proposition 3.2.2 to show that

k1
Ve Y I -

Tre as ¢€¢—0

where Iy C M is the set of probabilities which are invariant under Uj. Hence, applying

v

Lemma 3.2.2 together with the assumptions of the proposition,

weakl
Tre i IpN oz =mzp as €— 0,

7

and this completes the proof.
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v ] - weakly

We remark that the following condition is sufficient to ensure that 7; . — ,

€oyp as € — 0: For every f ¢ C,

N
L. 1 k
- Jim il !/fd”“'NH,;)TO”I)I =0.
{

This concludes our presentation of the general robustness theory for stochas-
tic systems. We now show how the results of this section may be applied to the stability
\

analysis of a random parameter stochastic system operating under feedback, and in

Chapter IV we will consider another application.
' B

L4

3.3 A Random Parameter Model i -

Consider the ARMAX system model:

Ye Y 01Y—1 +... + Any1Yk—ny

=bjup_y+...+ anuk_n2 . /

twp toqwp_; +...+ c;,3wk_n3 l ke Z+, (319)

which we will write in the form

U1 = 0" ok +brug + wpy : (3-20)(i)
o
where, -
0'7 2 (—ay,...,—@n by e obag,Crsees yong)s (i)
| of & (Uks- - s Ukomy+ 1 %k—11+ 1 Ykmng+1s W+ o+ s Whong+1)- \ (iii)

We assume that the processes y and u are R-valued, w is an R-valued i.i.d. procesées

with wg,; ~ uw for k € Zy, and initial conditions independent of w are assigned
X :

- 90




~ 1
. 33 A Random Parameter Model,

at k = 0. Under these assumptions ¢ is a controlled Markov chain with state space
A o, W - )
=X S R™M 2131 4nd hence’(3.20) defines a stochastic state space system as defined

in Chapter L N

We also make the following technical assumptions. The polynomiéls a(-),

b(-),and c(-) are defined by

a(z) 2 V+ayzre- +ap 2", 2b(2) 4 blz+---+bn2z"2, c(z) 2 1+c1£“+---+cn32”3.

sys1 The zeros of the polynomials ¢(-) and §(-) fall outside the unit circle in C;

sys2 The polynomials b(-) and a(:) — ¢(-) are co-prime, b, bn,, an, # 0, and for

definiteness we assume that a(-) # ¢(-);
sys3 For some py > 2 the probability u, ;atisﬁes v
‘ /mPO pw(dt) < oo,
2 8 2
and hence, 02, = [ 1%y (dt) < co.
sys4 The probability uy, satisfies condition A4 of Chapter II, and 0 € Oy.

Under these assumptions the s.m.s. and mean square optimal feedﬁﬁcon-

trol is given by solving the recursion

-~

zb(z)u(2) = (a(2) - ¢(2))y(2). (3.21)

With the control law so defined, the closed loop system is Markovianizable; y, u and
w are functions of the Feller Markov chain ¢ defined in equation (3.20) (1). It is easy

to show that corresponding to the Markov chain @, there exists a unique invariant
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‘

probal;ihty P,o on the sequence space (X*,B(X*')) under whichy = w as. P

Furthermore, for any initial condition g = £ ¢ X we have

-

A

Joo klixgo Ezly? + puli = 02 + po?, A (3.22) (i)

and

N
. AN 1 2 2
Lo = lim — + pu

* N-»ooNI;yk pu

= o2 + po? a.s. [Pz}, ' (ii)

A
where o2 = Elw?], and

°

1 27 10y w0y 2
28,2 afe”) —e(e™) 2 4y, (3.23)"

b(e“‘)) . -

What can we say about the limit in (3.22) if the model (3.1) does not de-

scribe the tx\‘ue system exactly? For example, suppose that the parametérs a:r;a in fact a
stochastic process 6° = {0f : kre Z, }, for which ||6f — 0|5 is small in a some statistical
sense for all k ¢ Z,. We will show under very general conditions that the limits in
* (3.22) still exist in this case, and that the asympt'otic and finite-time behavior of the
time varying systegmn is close to that of the time-invariant system. In fact, under the
appropriate conditions we may show that the"values of the criterion functions J& and
Lg, of the perturbed system will be close to the criterion functions of the time invariant

system. These results hold even for parameter processes with unbounded sample paths.

u

We henceforth suppose that the parameter process 6° 8165 ke Z.,}is
k p

time varying and independent of the disturbance process w, where 0 < £ < 1, and thus

(3.20) becomes .

L C YE4 = 057 of + buf + Weyyo (3.24)
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Observe that we take the parameter by to be time mvariant. This 1s not necessary but
is done to simplify the example. If the control law (3.21) is applied to this system and
the parameter sequence 6° is viewed as the input, then (3.24) is a (nonlinear) stochastic

state space system as defined in Chapter I. Let P(-;-,..., -, ) denote the N-step

controlled Markov transition function for (3.24). Then for all A ¢ B(X),
1

a

t
Plply € Al0§, 06| 051} = P(pg; (65) 1, A). (3.25)

The N-step controlled Markov transition function may be computed by not-

ing that for each N ¢ Z_, the random variable ¢ has the form

(p?v = Sé%(ag,...,giv_l,w]m.,w]v) (3.26)
where the function SSJOVE:XN x RY — X is continuous (it is in fact afﬁne\ in w, and
O ¢ !
polynomial in 6.) Hénce, for each A ¢ B(X) and (85,...,0% _) ¢ XN,
: P(pg; 0€N—1,A:/ 1 " dwy)... dwy). -
0

- )

The following lemma will be useful later irr this section:

Lemma 3.3.1. Suppose that the system (3.24) is under the control (3.21), and that
assumption sys2 is satisfied. Then there exists Ny ¢ ZZ.. such that for every pj ¢ X, and

’ -a.e.. [uLeb] (65, - ,O‘jvl_l) ¢ XV1 the matrix

R asgg asgg .
ch 2 0...|]=—=0 (3.27
506 3w1 [ Iale ( )

is full rank.



3.3 A Random Parameter Model,

[

Proof.

Since Sge is linear in w, the matrix (3.27) does not depend on w. Furthermore. since
0

foreach ze¢X, z' Cgs is polynomial in 4, and a multi-variate polynomial is either zero

everywhere or non-zero almost everywhere (see |Meyn, Caines, 1985]) we conclude that

for each N ¢ Z. either

7/

- 13
v k -
rank C£5 <nl+n2+n3—1 for all ﬂév—leXN,
0. -

or

rank CS‘;VE =nl+n2+n3—1 for a.e [ulet] 0(1)V"~'l e XV, ]
0

Hence, it is enough to show that there exists one sequence E(J)V -1 {60,...,§w_1}

which makes C"jpvs full rank. We take 5(];/—1 ={8,...,8} where
0

8" 2(0),... by b2s . 1By, 1,0,...,0),
and the polynomial ¢(z) 2,1~ €12 ~ -+ — €p 2" is chosen so that the zeros of the
polynomial
A
| Q) 2 ) +e(-) - al) .
\

lie c{ftg\?de the unit circle in €, and deg Q(-) > dega(-).

To prove the lemma we will show that the linear Markovian system with

—T A _ — . _ _ :
state process B 2 (T, ,Tyon+1:Th—1+- -+ Tknp1-Wh- - 1 W—ng1) defined by

T :
Uk+1 =0 P + 018 + wiyy (3.28)

with control (3.21) is locaily stoczla.stical]y controllable.

-

Observe that the system description (3.28) is equivalent to

QE)3(z) = w(z), (3.29)
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1

‘and hence by the assumptions made on Q. the system (3.28) is stable in probability.

w

Therefore, a unique invariant probability 7 6h\§(X) exists for the Markov
chain p defined in equation (3 28). Consider the strictly statﬁonary process ¢ on X* for

which @, has distribution 7 for each k ¢ Z. In this case,

7(2) = gyl " (3:30)
and
u(z) = az—t(—)z:):Q—c((z—z)lw(z). o (3.31)
T 'the system (3.28) is not locally stochastically controllable then for some
zeX, z#0, -
- = B —0 s [P7) (3.32)
for every k ¢ Z. ' -

ot

Rewriting (3.32) in the form

- R(2)7(y) = 28(2)T(z) + T(2)w(2), \L (3.33)
it follows that deg R(-) < dega(-) — 1, deg S(-) < degh(-) — 1, and we will row show
that this violates the minimality condition in assumption sys2. If (3.33) does holds then

by equations (3.30) and (3.31),

R(z) oy + 25002 = <Z) )y pyuge) . (3.34)

Q(2) zb(2)Q(2) ,

-~ which implies that the polynomial b( - ) divi¥es S(-)(a(-)=c(-)). Since we have assumed

that b(-) and a{-) — ¢(+) are relatively prime and deg S(-) < degb(-), it follows that

S = 0. So, equation (3.34) becomes,
R(2)
Q(2)
Since deg R(-) < dega(-) < degQ(-), it follows that R(-) and T(-) are both zero.

w(z) = T(2)w(z). Q

Hence there is no non-zero z € X satisfying (3.32) and this proves the lemma.
‘ D
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33 A Random Parameter Madel

To complete the system description (3.24) we now propose a model for the

parameter process #¢. Suppose that 6° is generated by the stable Markovian system

1

_ 60 = G650, ) (3.35)

i\

where G: X xR — X is contixtpous,vs = {vi,,:keZi}isan RM valued iid. processes
with distribution ug, the imitial condition 8§ is independent of v¢, and w and v¢ are s

independent for all € ¢ [0,1]. We also assume: >
‘ —~

parl The probabilities {u§ : € € [0,1]} sapisfy

c weakly o A
By — Wy =6

-

par2 Condition AS is satisfied with £* = 6*. Hence, by assumption parl when

e =0,
. (] *
lim 6, =6". .

k—oco ©
N

AN

par3 For all € > 0 the Markovian system generating 6 is locally stochastically

A

controllable, and furthermore the probability ‘ !

»

] o p{6; 5' 105 = 2}

is equivalent to Lebesgue measure on an open set Oz C X for every z ¢ X

where 0 ¢ OI,C. : P
par4 The e-parameterized family of systems described in equation (3.35) is uni-
.+ formly (in €) stable in probability. That is, for every initial condition z ¢ X,

“and every § > 0 there exists a compact set C C X such that

‘ supP{07 e ClO = 23< 6
sup P{6f ¢ C°I }
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. for every € € 10. 1.

An example of a Markovian system satisfving these conditions is the AR(1) model

S = A - 0) ¢ e, 4O

-

where the matrix A is asymptotically stable, and for each e €.{0,1] the distribution of

N viqis Gaussian with zero mean and variance e*1.

¢

Observe that by conditions par2 - par4 and Proposition 2.3.2 it follows that
- for every; e > 0, 6° is an aperiodic Harrig recurrent Markov chain with unique invariant
probability 7rg. . .
<
If the feedback control (3.21) is applied then for fixed € ¢ [0,1], the ckosed

loop System becomes
'\/ A2 @ .

g v - Orr1 = GO, viyy)

.

¢i+l = Séz(ﬂi,wkﬂ) keZ+, (3.36) -

and the joint process ®° = (f:s) is a Feller Markov chain on X2.

» «

By assumptions sysl and par2 the Markovian system (3.36) satisfies condi-
- - E
tion AS of Chapter II for all € € {0,1]. Infact, if the disturbance process (:v) is set to

zero in (3.36) then

0* .
' lim ®f = (0) for every initial condition’ ®f € X2,

k—o0

. . ; L
Furthermore, applying Lemma 3,3.1 together with assumption par3 we may show ®° is
locally stochastically controllable. The only important property that we canndt establish
for ®° is stability, and to do this requires further assumptions; suppose that for some

'p e Ry such that pg > p > 2, the closed loop system is uniformly (in &) L stable:
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sysé For some constant K, > 0 and all z ¢ X% ee€l0,1,

<

lim sup E{lyf Pl < K. T (3.37)

k—o0

In this case it follows from sysl and sys3 that for some constants K, Ky > 0,

- . -r
~

—_ lim sup Ez{[u}[P] < Ky, : (3.38)
-— 00 .
- lim sup Ez{lwg P] < Ky, (3.39)
k—oo

for all z ¢ X2, and 0 < € < 1. Moreover, by assumption pard there exists a moment f
»

on X such that for some Ky > 0,

lim sup Ez|f(0;)] < Ky —  (3.40)

k—o00

1«

. .
for ev§y £¢€l0,1], z € XZ%. Hence; the closed loop system (3.24) is (uniformly in €)
stable!in probability for each 0 < e < 1.

The following result shows that under general conditions a small stable per-

turbation of a linear stochastic system operating under feedback gives rise to a small
. TN
perturbation of the infinite horizon cost.

Proposition 3.3.1. Suppose that the Markovian system (3.24) satisfies conditions sysl
- sys6 and parl - pard. Then for every € € [0,1] and z ¢ X the corresponding criterion

functions J&, and L%, may be computed as follows:
o0 [s o]

A v

J& £ lim Edlyf® + puf’| = / y*(A) + pu® () me(dN), (3-41)
A 1 &

L5 2 bm =Y uipuf?= / v2(A) + pul(A) e (dA). (3.42)
k=1

Furtherimmore,

i lincl)Jgongozaa+p03.
£ —

98



~

3 .
2y
‘ - 34 A Random Parameter Model

Proof. —
Since (3 24) is locally stochastically controllable for 0 < € < 1, and satisfies condition AS
it follows that ®° is an aperiodic Harris recurrent Markov chain with unique invariant

probability 7 Hence by Corollary 1.5.1, for every initial condition ®¢ = r € X2,

N
1 2 g2 2 2
AN kZ_lyi Tyt = /y (A) + pu”(A) me(dA), ;

and this is (3.42).

By (3.37) - (3.40) there exists a constant Kg > 0 such that for every 0 <
e<1, -

” , \ Em—”'@(ﬁ“% + f(08)] < Kg. A

Since g(z,y) a ]ix[]% + f(y) is a moment on X2 it follows that the family of probabilities
{me : O S e < 1} is tight. and so candf@ions RO and R1 are satisfied. Finally, by
Proposition 3.2 1 and parl, condition R2 is satisfied and the Markov transition operators

\ -~
{T:} corresponding to the e-parameterized system (3 38). converge as € — 0

‘Furthermore, since ®° 1s aperiodic, 1t follows that for every initial condition
z ¢ X%, the resulting trajectory {uj 2 Uiféz} converges weakly to 7. as k — co.
By (337) and (3 38) it may be shown that the function y?( ) - pu®(-) 1s uniformly
integrable with respect to the probabilities {u) . k ¢ Z4}. ApplymAg Theorem 1.1.2 we
see that

Jim By + pui?] = [420) + gud () (@) (3.43

for all ¢ > 0, and in the case ¢ = 0 equation (3.43) still holds with

/yz(/\) + put(A) mo(dX) = o2 + po?

7

because in this case the parameter 60 converges to 8* as k — o0.
k g
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To finish the proof of the Proposition we are left to show that
h/r% JE = JO =02 + pol. (3.44)
E—
This follows from Proposition 3.2.2: We have already established conditions R0 - R2 ‘

for this example and T, — Ty as € — 0. Hence, | .

w:e_akly
Te — W as € — 0. &

»

- Using (3.3'7) and (3.38) once more 1t may be shown that the functions y?(-) + pu®( )
are uniformly integrable with respect to the probabilities 7, € € [0,1]. By Theorem
1.1.2 it follows that (3.44) holds, and this completes the proof. -

O

3.4 Future Applications

The example presented in the frevious section suggests a number of applications The
main poirt of that example was to shaow that many“ of the asymptotic properties of a
Markovian system vary continuously under perturbations of the structure of the system.
Tt also illustrates how a Markovian system which is not locally stochastically controllable
may be approximated by systemns which do have this property Hence, one possible
approach to the stability analysis of general Markovian systems is to find a systefn
model which s locally stochastically controllablle‘ and which approximates the system

subject to analysis, and then use the resulis of Chapter Il and this chapter to study the

behavior of the approximate system model.

A simple way to construct a locally stochastically controllable approximate

system is to inject an 1i.d. “dither” seq?uence d? into the system. For example, if the —

control law (3.21) is replaced by
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Fad

= . 1 )
where d° 1s a Gaussian 1.1.d stochastic process with zero mean and variance e-. then

the resulting closed loop system will be locally stochastically controllable under general

conditions. This technigte has already been applied in pa_tameter estimation algorithms

5

to force a conditiop known as persistent ezcitation to hold
For example, suppose that ® is a Feller Markov chain with Markov transition
operator T which 1s stable in probability and possesses exactly one invariant probabihity

m. By Theorem 1.3.1 for every mitial condition distribution yq, the resulting trajectory

{mp 4 Ukpg . k € Z+) satisfies
1 ad k]
wea
N Z#k —'7  a N oo - (3.45)
k=1

If the deterministic o-algebra Xp of 7 is trivial then it seems plausible that (3.45) could

be strengthened to simple convergence:

\

akl ~
Ukpy " o as k — oo. (3.46)

One approach to establishing (3 46) would be to find a parairrieterized family
{Te : 0 < € < 1} of Markov transition operators such that R1 and R2 hold and T, — T
as € — 0. If the Markov transition operators are chosen to be positive Harris recurrent
with unique invariant probability 7. then it follows that for every initial condition
distribution g, -

kl
- Ufuo Y e as k — oo (3.47)

Under certain conditions the existence of this limit for all € > 0 will imply that (3.46)
\

holds as well. |

|

As an illustration suppose that the Markov chain ® is generated by a Markov

‘system of the form (2.3) with state space X = R", and suppose that the following

_conditions are satisfied:
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. | (1) F(0,0) =0;- , /

(2) For some ) > 0 the function F satisfies

iF(z.2) = Fw2llia |

: ' sup sup ; .
? L zeRP z,yeR™ iz — yii2
- . . . I?’:y " S »

3

Since we have made no assumptions on the distribution of wy, k € Z,, we

cannot apply any of the results of CRapter II to this example. The Markov chain @ is

not Harris in general since for example, we may have w = 0 almost surely

>
However, it may be shown that ® satisfies condition AS, and that it is stable

in probability and Feller Hence by Proposition 1.3.1, for every initial condition z ¢ X

there exists an invariant probability 7z defined for f ¢ C by

N =00

1.
, lim ﬁkz_:lcrkf(;)f/fdnx_ B (3.48)

»

This result may be improved considerably by the approximation methods described
above. The following result will be used in Chapter IV. . .

4 A e
Proposition 3.4.1. The Markov chain ® possesses exactly one invariant probability =,

and for every initial condition distribution ug ¢ M and f ¢ C,

lim E,“olf(q)lc)] ::/fdn. . (3.49)
k—o0 . i
© L ) / . «

Proof. ‘ ) ‘ ’

7

1

‘ Consider the perturbed system

. | N
o PG + d L e50)

o
S

where d° is an R™-valued Gaussian i.i.d. stochastic process with zero mean and variance

. . '

€21, and is independent of w. For each € >.0 the Markov system (3.50) satisfies condition

3
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o

1 GA. is stable in probability, locally stochastically controllable. and hence by Proposition
k! t

2.3.2 it is aperiodic and positive Harris recurrent.

We will now show that ®° is uniformly close to ® in a probabilistic sense for

k te 3 0. For any initial condition &) = @3 = z € X,

PN
»

”Qiq-l - q’k+f“2 = f‘F(@i,wk+1') - F»(kawk—%l) + di+1 ”2

SA®L ~ Ol + ldi L2

AN
by assumption 2 Hence for each 6 > O.

oo}
lim sup sup sup Pr{||®},; — ®4_;:2 > 6} < lim P{ZAkl‘ 2o > 6} =0. (3.51)
e—0 kez* zeX e—0 k=0

This implies that for every £ ¢ X and f ¢ C,.

{ . :
lim sup |Ez'f(®%)] — Ez[f(®)]l = 0. (3-52)
E—+0 kéZ+
‘In particular,
. - N
— 13 H - ol £ [ f
0 = lim lirn sup| - };(Emf(d’k)] Ez&f(%)])l o

| = lim }/fdﬂe —/fdvrzi,
e—~0
where 7. is the invariant probability for ®°, and 7, is defined in eq_uak}on (3.48). It
follows that
weakly

A
Te — Tz as € —0, and m#=nz=m, forall z,yeX.

Furthermore, from this and equation (3.52) we have for each z ¢ X and f ¢ C,

. ~
liin sup {Ez(f (®4)] - [ fdr| < lim sup li;cn sup (IEz[f(‘I’i)] - Ez[f(®)]]
_ + Ealf ()] - [ fane]
) w1 ran- [ san)
=0
’ < " ’
1 *e which proves the proposition. _
- ’ O
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34 Furure Apphcations
In the next chapter we investigate a very important application in what is
now classical control theory; the robustness of linear stochastic systems operating under

nonlinear feedback. ' -



NONLINEAR CONTROL
Chapter 4 i ‘ and
_ SECTOR CONDITIONS

In this chapter we investigate an important class of stochastic systems which satisfy

condition GA of Chapter II. Consider the stochastic state space system

Tpe1 = Az + bug + Gy, (4.1) (i)

Y, = CTIk - §k+1v k¢ Z+, (ll)
!

where the processes y and u evolve on R, x evolves on R", the matrices-c and b are

4
n x 1, and A is an n X n matrix. The disturbance process w 2 {(;::“*11) ckeZi}is
+

e

i.i.d. and independent of (ug, zg)-

Suppose that a nonlinear feedback control law is given of the form

e

. v = —©(Yk)s forall ke Z4, | (4.2)

4

where the function ¢ is continuous. Then the resulting closed loop system

N
Ty = Az —bp(c ' Tk + ¢pr1) + Gékits

T .
Ye=¢ Tp + Cks1s keZ,, ' (ii)
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is of the general form (2.3) introduced in Chapter II. In the next two sections we will
use the results presented in Chapters |- Il to establish a variety of results including the
convergence of the underlying distribution of the input-state-output process, and the
convergence of the mean square cost Jy for all initial conditions. In section 3 we will
apply the results of Chapter IIl to show under extremely general assumptions that the
value Joo of the limit of the mean square cost varies continuously under perturbations

of the feedback control law .

4.1 Stability

In this section we will establish general stability results for the closed loop system (4.3).
To determine whether or not the system (4.3) satisfies condition GA of Chapter II we

must investigate the asymptotic behavior of the sequence d generated by the recursion

dp,q = Ad — bo(c' dy). (4.4)

The closed loop system (4.3) satisfies condition GA if and only if the sequence d con-
verges to zero for every initial condition dg ¢ R", and we will proceed hy showing that

the deterministic system (4.4) is globally asymptotically stable. A é.u'nber of sufficient
conditions are available to ensure that the system (4.4) is globally asymptotically stable.

The conditions we present here are sufficient to ensure the asymptotic stability of (4:4),

LY

as well as the L stability of (4.3). Observe that by (4.3), the closed loop system is

Markovianizable where the Markov state process & 2 ) = {("/;w;l) :k € Z+} evolving

on X 2 R™*1 has the Feller property.

~

For a function y: IR™ — R"2 we define the gain of v, g(v) € [0,00], by

gv) 2 sup ______l["i(x)ﬂz. (4.5)
«Rm el
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41 Stabibny
If ~ is linear, so that it is realized by an n, x ny matrix A then
g(y) = greatest singular value of A
= \ﬁna.x e-value (AT A). .

We say that the control y defined in equation (4.2) lies in the sector (a,r) (see [Safonov,

1980]) if for all, z ¢ R,

lp(z) — az| < rjz).

t

Hence if the control ¢ lies in the sector (a,r) then it has the form
= p(x) = oz ~ {(z)

where the gain of the function ¢ is less than r. Sector conditions such as this one
have previously been used to establish the stability of deterministic continuous time
systems operating under feedback (see [Zarn.es, 1966] and |Popov, 1973].) Proposition
4.1.1 below generalizes these results to this stochastic cox‘itrol pr\Plem. We list here two

assumptions that we will be referring to throughout this chapter:

{

ncl For some p > 1, E[Hwo[ig] < 00;

nc2 The control law ¢ lies in the sector (a,r) and . .

r

28 g(A — abe') + rg(b)g(c) < 1.

Proposition 4.1.1. For the linear stochastic system (4.1) with control (4.2) suppose that

assumptions ncl and nc2 hold. Then the controlled system-satisfies condition GA, and

\

is stable in probability and LF-stable.
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Proof.

\/\

Letting {(z) = p(z) — az for z ¢ R, we may use (4.3) and assumptions nel and ne2 to

estimate the norm of z;,; as follows:

Izks1llz < (A = ade™)aglly + [lbll2]€(c T 25 + Gha1)]
1 + afbll2isk+1] + [1GEkyall2
| < g(4 - abe )|z fl2 +_r115nzz(c%k + Sk41)]
+ allbllzigkr1! + 1G s 1dl2

< Ajzgle + Cliwgs iz (4.6)

for some C' > 0. Hence, replacing wy; by 0 in equation (4.6) shows that dj — 0 as

k — oc, which establishes that (4.3) satisfies condition GA.

-

It follows from (4.6) and the triangle inequality that for every initial condition

¢y =z X,

lim sup (Es[lzg41/3]) ' < Alim sup (Ez[llzkllp])l/p

k—o00 k—o0
+C (El|lwo|2]) /P

" o (Ellwol5)
- 1-2A

Since all norms on R™ are equivalent, this bound implies that there exists a constant
q

C: > 0 such that

lim sup Ez{||z;||5] < C:. (47)

k—co

Furthermore, we have for all k ¢ Z+,
1
(Exllve P < (g(e)Es [z lB) /7 + (Bxlllwger 5] Y7 (48)
Combining (4.7) and (4.8) we may find a constant K > 0 such that

lim sup Ez ||z} + |uxF] < K
—00
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9

for every &y = = € X. We remark that the constant K does not depend on the specific

structure of the feedback law ¢, but only on the parameters 4, b, ¢, r, @, and E[||wg Hff_..

4

This shows that (4.3) is L” stable, and since | - ||p is a moment on R"™! the

state process ® is stable in probability.
]

4.2 Stochastic Controllability

We continue our investigation of the system (4.3) by establishing necessary and sufficient
conditions for the Markov state)process o2 (;,‘) to be locally stochastically controllable
Jt is easily verified that in fact x is also a Markov process, and we will proceed by
establishing necessary and’sufficient conditions for the generalized controllability matrix
C% of the system (4.3) (i) generating x to be full rank. To do this we will occasionally

need the following additional hypotheses:

<

nc3 The control p is C1;
nc4 The pair (4, G) is controllable;

ned py = 1y, for somekpen sét Oy C RP?, and 0 € Oy.

When condition ne3 holds the Markov process x is of the form z,; =
F(z,wj1) where F is C!, and hence we may use (4.3) (i) to compute C% by finding

the derivatives of the function F':

Ct = [AF_y - ATBF|AT_ -~ ABf|--- - |AT_\BF _,|BF_,] (4.9)

\ , ~
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AY 2 [?—F—} = A - opbe |
T
(zpwhi)
and . /
BY a {%} ~ =|[G| — aib! forall keZ;. (4.10)
9z (2 vy 1)

The following lemma greatly simplifies the computation of the rank of the
matrix C%. For an n x m matrix H let CoKer(H) denote the n-dimensional vector
space

_ CoKer(H) 4 {:L'E R":z H 20}.

Lemma 4.2.1. The generalized controllability ma:rix C% satisfies
Fn T—l‘ [ 1 » |
CoKer(C7) = CoKer ([A [G]aob]l---'[A[G[aT_gb]'[GlaT-lb]}) (4.11)

&

Proof.

We will proceed by showing inductively that for k = 0,...T =1 and z ¢ R",

- o
o7 [AF_y -+ ARk BF |45 BE,|BF )] =0
if and only if T [Ak{GéaT_k_lb\l---iA[GiaT_zb]({GmT_lb}] =0. (4.12)
For" k = 0 equation (4.12) becomes

{
2" |Gla_1b) = 0 <= z'|Gl - ar-18] = 0,

and this is obvious. Suppose now that (4.12) has been established for k =n —1 > 0.

To establish the implication (=) for k = n observe that if £ ¢ R" satisfies
) )
' [Af_y o AF_nBF _nyl - |AF_ BF_o|BF_4] =0 (4.13)
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then by the induction hypothesis,

»,
P

27 [Aﬂ—lgc,aT-nb] ---!AIG|aT_2b]‘[GlaT_1b]] -0 (4.14)

\

Furthex}'more, by equations (4.13) and (4.14) it follows that

N :
0=1z [‘4%-1 Tt %‘-—nB%—rhlJl
. =z (A-ar_tbe )(A—-ar_gbe’)--- (A~ aTt\nbcT)[G| — ar_1-nb]

=z A"G| - ar_1_nb].

4

This and (4.14) establishes the implication (=) in (4.12) when k = n.

—

To establish the reverse implication suppose that z ¢ R" satisfies '~ -

' AYGlag_q_.b] = 0, forall 0<1<n, (4.15)

A}

so that by the induction hypothesis -
T
vz [AF_y AT BTl BT ) =0 (4.16)

To. complete the proofof the lemma e are left to show that

7 -

2T A%y AT Bf =0, -
and this follows from equations (4.10) and (4.15):

oy AR B, =1 (A-ar_jbc)(A— ar_gbe’ ). (A= ap_pbe")|G| = ap_1_nb

=1 A"[G| — ar_1_nb] = 0.

/

9
N

|
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Using Lemma 4.2.1 we may now give the following sufficient condition for

the generalized controllability matrix Cp for (4.3) to be full rank.

nProposition 4.2.1. If conditions ne3 and ncd hold then the generalized controllability

matrix Cy, for (4.3) is full rank.

Proof.

—The generalized controllability matrix Cy, is of the form

o = [ 4o ATBE ALy ASBE AL BB

] (4.17)

where # denotes a variable. which does not ¢oncern us. Hence by Lemma 4.2.1, the

rank of C,, is greate} or equal to the rank of the matrix

)

A"1G . AGIGl0
o - .- .. .01

Since (A, G) is controllable, the rank of this matrix is n + 1 and this completes the

‘proof. . . ‘ !

\ o

.We will now consider the complete observations case where ¢ = 0. In this

0

case the system equations become
? °
», - \

Ik'+1 = Az + buy + G£k+1’

s_yk = cTzk, keZ,, . , (4.18)

A . : .
where the distribution ke of &g satisfies condition A4. When the control (4.2) is applied

~

the closed loop system is , .

Ty = Az — bgp(cT:z:k) + G&,
' v =c zp, kelZ,. - (4.19)
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-

‘ ) As before, this system is Markovianizable but in this simpler case we may take the
Markov state process ® = x.
’ Letting A, = A — aybe’, and B, .= G for k ¢ Z, the generalizea controlla-
bility matrix for the closed loop system becomes
, Cr =|[Ar_1 " A1BolAr_1--+ AgBy-- - |AT_1Br_2|Br-1]
- T T T s
\ / = [(4 2 ap_1bcT) (4 = asbeT)GL - (A - ap_ybe )GIG]
N .

-

In the complete observations case the hypothesis that (A, G) is controllable

is not enough to ensure that the matrix Cr is full rank for some T. For a counter

example, take p = —1d., and A = bc' . Then the state process x has the form
Te+1 = Gwiyy, keZy,

and the generalized controllability matrix for this system is full rank if and only if G is

full rank. ‘ \

On-the other hand, if G is full rank and ¢ is continuous ther{ x is locally

t

stochastically controllable.

: -

Let us now return to the stability analysis of (4.3) with conditions ncl - ncb
in force. Since the Markov state process ® is stable in probability, locally stochastically
controllable, and satisfies condition GA we conclude from Proposition 2.3.1 that ® is an

aperiodic, Harris recurrent Markov chain with unique invariant probability . #. Hence,
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the performance criterion Ly defined in Chapter I may be computed (with a possibly

infinite value) using the invariant probability m:

N
A .. 1
(f’ Lcc,=llmsup—Zy1§+pu,2c
N"'(X) Nk_-‘l °

] , 1 N .
‘= lim — 2 4 pu?
. Nkz_:y'c .

S N—oo

:/y2+pu2d7r 2

We summarize these facts in the following proposition:

Proposition 4.2.2. Suppose that the closed loop system satisfies conditions ncl - ne5.
Then the state process ® is Harris recurrent and aperiodic. Furthermore, the s.m.s.
4 \

performance criterion Lo is a.s. constant and independent of initial conditions.
. e . 5D

Y
i -

We have the following corollary to Proposition 4.2.2:

Corollary 4.2.2. Suppose that the closed loop system satisfies the conditions ncl - nc5
4
and that the constant p used in condition ncl strictly greater than 2. Then the closed
’ loop system is s.m.s. stable, mean square stable, and the performance criterion J is

independent of inititial conditions and satisfies

Joo 2 fim sup Ez[yi + pui}

b k—o0 \
IR T 2 2
= lim Egly; + pug] -~
k—oo
= /y2+pu2d7r
o i * A 2
/ §K°o=((1+p(r+a))/y dr
< 00

where the constant Ko depends only on r, a, A, b, ¢, and E[|jwg |§].
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4;3 Structural Robustness

L .

Proof.

F

Since ® is Harris recurrent, for every initial condition ®g = z ¢ X,

o

. kl ‘
b Y as k — oo, ' (4.20)

—_— »

where pu is the distribution of ®;. Furthermore, by Proposition 4.1.1 there exists a

constant Kp > 0 such that for every initial condition &g = z ¢ X,M _

lim sup Ez[|yx /P + plug[P| = lim sup/ lylP + plul? duy

_ k—oo k—o0 .

' <K, (4.21)
From equation (4.21) it follows that the function y%(-)+ pu?(-) is uniformly
integrable with respect to the probabilities {u, : k ¢ Z+}. Applying Theorem 1.1.2

shows that

Joo 2 }im sup EI[y,zc + pui]

—00

|
= lim Ezly + pul)
k—o0 .
N /y2 + pu? dr, - -

and the last term is less then ((1 + p(r + a)) [ y? d7 by the sector condition on .
¥ - i — ’ D

-

4.3 Structural Robustness

-

B i
The example introduced in this chaptet is ideal for illustrating the results of Chapter III.

Sector conditions of the type described in Section 1 were originally devised to establish
the stability of a linear system for an entire class of feedback control laws. We will now

.
<

gxtend these results to-show that if the control laws

ne

up = -ot(vg), 0<e<1, T (4.22)

115



AY

43 Structural Robustness

all lie in the ﬁxed sector (a. r).'then under very\genera.l conditions (including, the
convergence of ¢, to po as € — 0) we rnay conclude that the mvarlam probability 7,
correspondln_g to the control law . converges to 7r0 as € — 0. Furthermore, we wil

show that the performance criterion J&, defined in the previous section also converges:

<

h 0
: lim JS, = Jg.
. ' e—0 -

W& remark that we do not know of any way of establishing these results, or the results

' presented in Section 4.2 without the use of the methods introduced in this thesis.

. Proposition 4.3.1. For the linear stochastic system (4.1) with control (4. 22) suppose
that for each 0 < € < 1, conditions ncl - ncd hold, and that the constant p used in

condition nel is strictly greater than 2. Suppose further tha& forevery N ¢ Z.,,

lim sup |pe(z) — po(z)| = 0

. ER

kly
That is, p. converges to o uniformly on compact sets. Then 7w, veeny T, and J&, —

\

ch aseg — 0

)
Proof. o

A%

By the conditions of the proposition it is easily verified that the Markov transition
functions {TE' 10 < ¢ < 1} satisfy conditions RO - K2 and that T, — Ty as € — O.

Hence 7, — mg, and by Proposition 4.1.1 (and the remarks made in its proof) there is

a constant K > 0 such that

/yp+pupd7re<K ferall 0<e<1.

o

Hence the-function y? + pu? is uniformly dntegrable with respect to the invariant prob-

abilities {7, : 0 < € < 1}, and applying Theorem 1.1.2 we find that
. J

‘ lim JS, = IO
6 ° e~0
. 4
, a 0
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. —

We now turn to the problem of removing the smoothness condition on - and
the noise controllability condition on the closed loop system (4.3). Although our results
are not complete as yet. we have a i)artial solution to this problem an(i the methods
used to establish these partial results are interesting on their own. It is likely that these
methods will in useful in providing further extensions to the results of this chapter.

Using the following strengthening of condition ne2, we will proceed by showing that the

closed loop system (4.3) satisfies the conditions of Proposition 3 4.1

- ne2’ The control law £ lies satisfies 2(0) - 0. and for some a, 7 ¢ R,,

- o{s) - elt) 4 alt s),
bipiely sup ULzl el s o

«t.R" 8 t -
v L

and’

= g(A - abe') + rg(b)g(c) - 1.

Proposition 4.3.2. Suppose that conditions ncl and nc2' hold for the Markov state

\
process ® described by equation (4\3) Then there exists a unique invariant probability

n, and for every initial condition &) -- r ¢ X, and everv f « C we have

- lim Ey £(9,), / dn (1.23)
k 00 ;

Observe that since we make no restrictions on the distribution of the dis-
turbance process. Px;oposition 4.3.2 hglds for the complete observations case by setting

¢=0. < ‘ ~

- \!l?



4 3 Structural Robustnes-

Proof.
We will show that the Markov chain x defined in (4.3)(i) satisfies the conditions of
Proposition 3.4.1. Condition 1 is obvious and using nc2’ we will now show that condition "

2 holds: For z # y,

lA(z - ¥) = blo(cz+7) — pleTy + 7))z _ g(A — abeT)
lz —yl2 ' -
\ L eleTz+r) —lcTy+r)]
1ol Iz~ 3l
< g4 — abe”) + bl L—W)”'"
<A (4.24)

— . /’
Hence all of the conditions of Proposition 3.4.1 are satisfied and we conclude
" that there exists a unique invariant probability w for the Markov chain x and that for

every initial condition zy ¢ R", and every continuous and bounded function g: R™ — R

lim E;lig(zy)! = / gdeo. .
k—o0

Since y; = cT.:r:k + ¢k+q 1t follows that for every f e C and 5=z e-X,
llm Ez[f (@) /fd7r
- where 7 ¢ M is defined for f ¢ C by [ f(z,y)n(dz, dy) 2
/]R"“ /X f(Az — bw(c+x‘+ M)+ Ghyelz+ Ar)w(dz)ug (dAr)ue(dAg)

and this completes the proof. - )
' ‘ - 0

'/
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Chapter 5 APPLICATIONS TO ADAPTIVE CONTROL

A}

To illustrate the results in stochastic adaptive c‘ontrol obtainable from the theory of
Markov chains described in Chapters 1 - 111 we will present here a detailed analysis of
a class of random parameter AR(p) stochastic systems under bptinal control. We will
find that under reasonable conditions, the closed loop system equations give rise to a
Markov chain ® which has all of the desirable properties described in Chapters 1 and 1.
In particular, when these conditions are satisfied the state process & satisfies conditjon
GA, is stable in pArobalzility and locally stochastically controllable. These fdrt;'w,ill\ho

used to give a complete description of the asymptotic properities of the output process

of the closed loop system.

<
Consider the following AR(1) (= state space) random parameter model

>

Vk+1 9k+1yk+ Uy » W, ’ ' (~-l)

Op.y =By - €.y, al -\ ke Z., (5.2)

where the disturbance process (5_) is Gaussian and satisfies

s o

2
en o; 0 . .
(o) lwwn)] (% gp)one mron (&4

<o



43 Structural Robustnes-
>

o The time varying parameter process § is not observed directly but is partially

observed through the input and output processes u and y. We assume that for k > 1

the input process satisfies u; € 7, where ¥ 4 o{y1,--- Ui}

Equations (5.1) and (5.2) define a controlled Markov transition function P

with state space R? where for §, u, y ¢ R and 4 ¢ B(]RZ),

. p((Y).wa)2pl(le@+a)ytutw))
T . 0 T of + €1 ’
where e; and w; are defined above. With the map ¥:R? — RR! defined by \Il(g) = v,

the pair (P, V) is a stochastic state space system as defined in Chapter I

Our goal is to find a control law which (s.m.s) stabilizes this system and
minimizes the expected s.m.s. criterion function defined in Section 7 of Chapter 1. Since
this model is in (linear) state space form with state 8, and because of the assumptions

. \\made on (w,e), the conditional expectation E[6) | x_] is computable using the Kalman
filter (see {Mayne, 1963]) whenever the initial condition (ug,yp,8;) for (5.1), (52) is
Gaussian. We may use the resulting algorithm to compute the “certainty equivalence”
adaptive minimum variance c;)ntrol ék = y,:H - akﬂyk, k ¢ Z,. For simplicity we

henceforth assume that the reference ignal y* = 0. Then for an arbitrary initial

condition &g = (Vl,al,yO)T this control may be computed recursively via the equations

" a 2 2yv—1
b1 = B — aViyrye—1 (Vivi_y + o) (5.5)

2 _
Vigr = 02 + 2ol ViVt  +02)7, k>,

- s

and letting Ek 2 O — Ek, the closed loop system becomes

~ ~ 2 _ - -
B = by — aViyrye— 1 (Vive_ +05) 71 + ¢ (5.6)

Ve = Opyip—y + wy (5.7)
Vg1 = of + azain(kai_l + o?”)_l, k>1. (5.8)
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51 Stachastic Controllability
We note that Or.y = Okey - Elfpyq | Froand Viyy = E.0i+] . i whenever 0 is

distributed N (0,V;) and yo and V; are constant. .

As one would expect, by the recursive nature of the feedback control law the

~ closed loop system is Markovianizable. In fact, the triple

1 e
A Yk+1
® = {Qk}l?;o = Oy
Yk k=0

is a Feller Markov process with state space X = R* > R2. We will use these factd and

Proposition 5.1.1 below to establish asymptotic properties of the criterion functions

described in Chapter 1.
5.1 Stochastic Controllability

We are fortunate enough to have the following extremely useful result:

Proposition 5.1.1. The system described by equations (5.6) - (5.8) is locally stochasti-

-

cally controllable.

" Proof.
By Proposition 2.2.1. of Chapter 1l it is enough to show that for some T the contrella-

bility matrix for this system is full rank for almost every sequence

{(:)1"),,_...(:;)}((Rz)(r). (59)

_ We will show that this is the case for T = 2. To construct the second order controllability
matrix we use the notation of Chapter II: Let F:X > R? + X, (z,2) - F(z,2), denote \

the C*° function defined by

V) . N ol + a’ ol Va(Vui + 0f) !
File ], (wi) = | a2 ~ aVayy(62yy + w2)(Vawf + 0l) 1 + ¢
n I 73 TR
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51 Stochasztic Controllabihny

With z 2 (Vg.az,yl) and 2 2 (e2,ws), the partial derivatives of F are given by

" [oF [ V \
~aV
I R =
oz (z,2) 2Y7 +oy
’ 0, 1
# 0 -2&20';2”V2y1
~ [?_E}A - ’ , (V2y1 +‘7w)2
oz (z,z) #, #3 #’ ’
' #, # #,
Vi ;
where we use # 1o replace a function of 6, , (u; ) which is irrelevant
1
Y21 1=1,2

to the present discussion.

Hence Cy, the second order controllability matrix, has the form

-—2a202v2y
0, ———arpfat, 0, 0

Cq = (szl +Uw)2
#, #, 1, #
#, #,.4 0 1

which is full rank whenever y; = 51y0 + wy is non-zero. This shows that for each
Vi
8; | ¢ RT xR?, the matrix C, is full rank for a.e. [uLeb] ((;1 ) , (;22 )) e RZxR?

1
Yo

and so by Proposition 2.2,1 the closed loop system is locally stochastically controllable.

-~

We now show that the Markov state process ® satisfies condition GA. In
Section 2 below we will find that for 03 < 1 it is stable in probability, and hence

positive Harris recurrent and aperiodic.

To see that @ satisfies condition GA, observe that for any k¢ Z and z ¢ X,

the asymptotic behavior of the state readout map SX( +) evaluated at 0 may be analyze(i
( -
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52 Siabilinn

. . . . - = Ay A
by ‘*turllmg off” the noise in equations (5.6) - (5.8). Hence, with (Vi |, 0k+1,0k) ~
3 [ ?

\

sko.... ?0),
f}kﬂ 03 + a2a,2ka(Vk'§ﬁ_1 + 0,2‘,)71
0prr | = | obi - aVk”k'ﬁE_l(Vk'!if_l +o3)7!
Yi 0 Yr-1

This implies that |5k+'1| < a|5k|, from which it follows that for every z ¢ X,

A ¥

c
1 —ocvi

0

lim Sko,...,0) =
k—oo

|
|
5.2 Stability

In this section we prove that @ is stable in probability and hence posit,ive Harris recurrent
when 03 < 1. By Theorem 1.3.1 of Chapter 1, an invariant probability will exist if
E,‘OHQkHZ = E,‘()(Vk2+1 + 5£+1 + y,zc) is uniformly bounded for some initial distribution
o. In the proposition below we establish the boundedness of this quantity whenever

-

o2 < 1, and the initial distribution is chosen to ensure that the equations above are

>

truly generating E,;[0;17c_,]. An example of such an initial distribution is that where
(‘/lsolvyO) ~ 50'

Proposition 5.2.2. For the system described by equations (5.6) - (5.8) with initial dis-

tribution &g (i.e. the unit probability mass at zero)

lizn sup E4 [thk]!z] < oo foro? <1
—+00

= oo foro? > 1.
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52 Stahility

Proof.

&

If 02 > 1 then V; > 1for all k > 0. Recall that V, = Es, [5,% | Fk—1) so

Eg, [y;% | 7k—1] = Viyi_, + 0%,
>yt +ol. (5.10)
Thus Eg, [yﬁ] > kol and

l{m supE &, 1?| = .
m sup Eg [19]

2 /
Suppose that 0 < 1. Then V; < l_qLi for all k > 0 and it follows that
“ —-a i

o?
1-a2

| Eg, [51%] - Ego [Vi] <

and
2 2

Biy [VE] < (1 f8a2) |

To establish the proposition it is enough to show that

lim sup Eg; [y,zc] < oo.

k—o0

Fix 0? < p < 1. It is easy to show that
Visi < pif and only if y2_, > Q, (5.11)
" where @ 2 42 (—a—z—g ~ o). From (5.10) we see that
Yool Yk

2 2, 2
EgolWic+1 | 7l = (1{vk+,<p} + Ly, 55) Vinsk + o
2
: <evk+ Ly, > Ver1bh + 00 v (8.12)
So, since

2
2 o ~ 2
Eg [I{Vk+12P}Vk+lyk] s (I__:ETIT)ESO [1{"’12:—150}!”‘] ,
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5.2 Stabality

" we may compute the following estimate of Ebo‘yzﬂ} by smoothing and thé inequality

in (5.12):

. 2 ‘ .
g 2
E&o[yl%-{r-l] < pEéo[ylzc] s 1 __eaz Eéo{yz l yl%—l < Q] T Oy : )
2

) 2 2 2
.2 2 a O, e
SPEbolyk]+aw {p—of (l*az)\c+l-~&2+l]

which establishes that lim supy .o Ebo|y£] < oo.

o«

s

0

Applying Theorem ! 3.1 to the case where 0 < af < 1 we see there is an
invariant probability 7 which is unique since @ is locally stochastically controllable and

satisfies condition GA. Furthermore, it is easily verified that

_ 2
where 0 2 (02, __‘f_uz_é) x R*
: 1-a

T~ IO#LC&

and that P{® enters O} = 1. Hence by Proposition 2.2.4, @ is stable in probability.
Applying Corollary 2.2.4 and Proposition 2.3.2 it follows-that ® is aperiodic and positjve

Harris recurrent . «

- Before applying the results of Theorem 1.4.5 to this exami)le we will establish

a few properties of the unique invariant probability 7. First, because r = lopl“",

x {of <V <o?/(1 - 02)} -1 © 0 (5.13)
1
Furthermore, by Proposition 3.2.2 and the fact that N zﬁ_{ U"&g weakly 7, we find
that
L
Exlyd] é/ y§Pr (dw)
- B(X3)
) _ 2 »
= lim Ex(n A yp]
“ 1 N
- ks : - 2 -
3 - Jim { Jim, 5 2B 0 .

N
_ L x— . -
< lim sup N 2 Ebogyi} < 00,

—
t
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) N
In Proposition 5 2.3 below this result is improved, giving upper and lower bounds on

Ewiygjﬁ First we must prove the following lemma:
Lemma 5.2.1. For the stationary Markov process on Z described by equations (5.6) -
(5.8) with distribution Pr (Px can be extended from B(X*) to B(X*) since = is invariant),

we have
(i) Ex[8; | F_,]=0  a.s. [Px], and

(ii) Ex[8} /%7 |1=Vi  as. [P, - .

where ¥ = o{y, : —oo <1 <k}

Proof.

Suppose ®; has distributign 6o so that

o’

From (5.6) and (5.7) we have

= - 2 2 2v-1173
Okt = a [1 - kak_l(vkyk_l + Uw) ] O

— aVpwpyk— 1 (Vivi_ | +02) 71 + €. (5.15)

So for all p > 1,]

&

s 1llp < @llBkllp + ¢ (5.16)

wheTe ¢ > 0 depends only on p. 02, and 02. Hence using an argument similar to the

one used to show that Ex[yy) < oo we may show that

Ex[|6]F] < oo.

&
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52 Stabiliny

By Thedrem 1.5.2 of Chapter I,

N v, -
1 ~, I A~ d lad

- =] El|sup< Y 021® = | 8 || Ppr(V1,61,90)dV1dh: dyo

Yo

2
where p, is the density of 7. Hence for a.a. [yL‘b] (Vi,v0) € [of,—ﬂy] x R

(i-a?) )
{.
1 N Vi ~ ~
[E|swp Y io0= | b || ool <o (317)
R | N N Yo

2.2
<t l o Tl 2 (5.18)
(Vlyg + Ug,) i -

This is possible because (5.18) defines a non-empty open subset of [03,062/(1 - o) xR
(non-empty because it contains (062 +¢,7p) for gy # 0'and s sufficiently small.) Observe
that p,r(Vl,Zl,go) is a Gaussian density with variance p? which by (5.18) is greater than

Vy. It follows that for some constant K > 0 and ail El'c R

1

vV 27TVI

(32 s
——L V< Kp(Vy,8;,50).
exp{ 2V1}‘ "p(V1,61,90)

Define ug to be the distribution on X given by pg = 63-,0691N (0,V4). That
is, under uo, yo = 9o, V1 = ‘_/1,, and 51 ~ N{0,V}); the Gaussian distribution with mean

zero and variance V;. By (5.17) i

X & Vi
. 732 72 -1 3 V. 8+ .iin)dO
Eup S}p N Z 0| <K R E Sup Z i | ®o= \ 6, pr(V1,01,90)db;
< o0, : (5.19)
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5.2 Stabihty

and furthermore, for all M ¢ Z, and all Borel f : R¥ - R,
L [0kf(yk—1," . ,yk—M)] =0 (5.20)

and

EpgWf(yk—x»“wyk-m}ﬁEuo{ka(yk—p“',yk—M)], keVZs. (5.21)

a

By the corollary to Theorem 1.5.1 we have .

-

,\}1_11100~ Z 0kf Yk—1."" " Yk-M) = Ex [0M+'1-_f(yM3""y1)] a.s. [Pyl

Taking expectations of both sides of this equation apd using (5.19), (5.20), and the

dominated convergence theorem gives - ¢

N
~ 1 ~
. E, 0M+1f(yM,---,y1)] =E lim —]\72;19 (Yk-1>"" " Yk—M)

-

N
= lim — Y Ey [5kf(yk—l"' ' ,yk—.w)]

a _—

which establishes part (i) of the lemma. Part (ii) is proved using the same argument.
: 0

Proposition 5.2.3. We have the following upper and lower bounds on the variance of yg

under the probability n¢ - .

% (1+ o202) < Exlyl] < i (1 "2"3) (5.22)
1-g2 7% %)=t 2V T I a2 '

and we remark that we know of no way to obtain these inequalities without the use of

these methods.
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Proof. : '

Summary

Taking expectations in (5.7) and (5.8) under the probability Pr and using Lemma 5.2.1

we obtain

Ex [yg] = Ex [Vlyg] + 0,2,,
2Er [yg] — Ex [Vlyg] — o202 Eqx V4.

Ad@shence, R B

(1 = og)E,r [yg] = 0,21, + azaaEﬂ V4] .

Y -~

/ v
which, together with (5.13), proves Proposition 5.2.3.
!

5.3 Summary

(5.23)

© (5.24)

~

We now establish a number of asymptotic properties of the controlled system (5.6) -

(5.8). First suppose that 62 < 1. By Theorems 1.4.5 and 1.5.1 of Chapter I for every

{

initial distribution ug ¢ M, °

14

&
. : 1
Jm Py {|ul > e} = r{yg >’} < EgEyo[ygl;

and. - '
.N
lim ST <Ex 1] s [Pug)
. N—oco N =1 ]
Furthermore, by Theorem 1.4.5,
klim E:|y}] = Eryd] for a.a. z€ O [ul?] "
—00

where O = [02,02/(1 - o®)] x RZ.

(5.25) - .

(5.26)

(5.27)
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~ 4
‘/ We stress that these resuslts hold even though the estimation algorithm (5 6)"

53 S&n1n1M\'

-+(5.8) is not necessarily generating conditionals expectations with these initial cond:i-

tions. The computer simulation below is taken from [Aloneftis, 1987]. 1t illustrates the

asymptotic properties of the controlled system. In this simulation o

\ " consequently 6.75 < Ew[yé]

<7
>.. | ) ‘

2_1 .2 _
e = 3,04 =3, and

130
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L

Figm:e 5.1 Experimental results for the example

a=1/2, 0 =1/2, and o,

output: ﬁk input: ug
i, (a) ' 7, (d)
2 :
Wb -
, n j "“" !llr ,nlu °5 ' WMW
pa.ramete; 6 parameter estimate: Ek
(b) | ()

| _
s,m.s. output and disturbance: Sampkz mean ¢orrelation function

N N
1 ) 1 .
! sz* 2 Nzwk v Z Velk-riT =0,....9
k=1 k=1 B ka'}oo
() : g M
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H - “

Note that it is not known how to obtain (5.25) - (5.27) by stochastic Lyapuno

methods even in the constant unknown parameter cgse.

Finally, we may apply the results of Chapter III to this example. Observe
that we have shown that for each (a,02,0%)7 € (~1,1) x R+ x R+ there is an invariant

probability = a m(a,02,0%). For any compact subset C C (—l,y{ ¥ R4+ x R4 the

i

2

2 .02): (a,02,0%) € @} possess uniformly

corresponding invariant probabilities {7 (a,0y,,0;
bounded second moments, and hence are tight. Applying Proposition 3.2.3 it follows
that the map 7:(~1,1) x R+ x R. — M taking (a,0%,02%) — 7(e,02,02) is continu-

ous. This is an interesting result, but not very useful: Idealy we would like to establish

the robustness of ® with respect to perturbations of the distribution oX the processes
w.and e, or under stable perturbations of the Markov transition operator

solution to this prcblem eludes us at the present.

We conclude by observing that a similar but more restricted result is obtain-

" able in the AR(p),p > 1, case.
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DEPARTMENT OF ELECTRICAL ENGINEERING

Course 304-688A VLSI TESTING September 1987

Instructor: Professor J. Rajski (398-7123)

h

The course covers various important aspects of the crucial area of VLSI testing. As
it can be seen from the enclosed contents, it will span a wide range of topics in both the
practical and theoretical framework. In addition, a hands-on use of testing equipment
will ensure that the concepts learned in the course are exercised in practical terms as

well.

The main emphasis of the course is to orient designers of VLSI chips and boards
to think about testing problergs in parallel with the design process. With the growing
complexity of VLSI systems, their testing is becoming even more complex and almost
impossible in many cases. Thus, the course will consider structured design-for-testability
as a necessary requirement for designing complex systems. The emerging concept of
built-in self-test (BIST) will also be considered in detail.

The lectures will be held on Wednesdays at 2-3p.m. in room 284 (MacDonald

!

Engineering Building).
The first organizational meeting is on September 9.
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TENTATIVE LECTURE SCHEDULE

. Introduction .

- aims and objectives of testing,

- cost of testing and diagnosis,

- economics of testing (yield and defect level),

- physical failures and fault models, /

- transistor-level, gate-level and functional-level fault models.

. Component testing

- automatic test equipment,

- characterization testing,

- dc and ac, parametric testing.

. Test generation for combinational circuits
- the stuck-at fault model, 0

- the sensitized path,

- algorithmic methods (d-algorithm, podem, fan),
- complexity of test generation.

. Fault simulation

- testdetect,

- parallel fault simulation,

- deductive fault simulation,

- concurrent fault simulation, X s
- critical path tracing, -

- region analysis.

. Automatic test pattern generation ‘ )
- manual, random vs. algorithmic test pattern generation (Hitest),
- heuristic methods and artificial intelligence,

- fault dictionaries, fault dropping,

- test pattern languages.

. Test generation for switch-level
- stuck-open and stuck-on faults,

- CMOS complex gates,

- networks of complex gates,

- transition fault testing.




7. Test generation for PLA’s
- test generation for two level circuits (complexity),
- cross-point fault model and redundancy,
- generation of input vectors,
- pruning algorithm.

8. Memory testing
- memory faults,
- memory patterns.

9. Microprocessor testing
- structural, functional and behavioral testing,
- functional level fault moodels, )
- testing bus oriented architectures,
- testing flow of control.

10 Structured design for testability - random logic
- ad hoc methods, .
- scan path techniques

11. Design for testability - regular structures
- easily testable networks,
- function-independent testing,
- easily testable PLA’s.

12. Problems with structured DFT, and BIST
‘- test application time and cost,
" - embedded modules.

13. Built-in-self-test (BIST)
- hardware for stimuli geheration, random patterns,
- data compression techniques; signature analysis,
- BIST for random logic and regular structures.

14. BIST at chip level and board level
- boundary scan.



Laboratory Experiments and Projects:

The VLSI Design Lab has the following Hewlett Packard Testing Equipment to run
various experiments for this course:
HP 8180A Data Generator

HP 8182 Data Analyzer
HP 4145A Semiconductor Parameter Analyzer

¢

In addition, a Wentworth Prober is also available. .

Each group of two students will perform only two experiments. The first one is
designed to familiarize the students with the equipment and some basic concepts in
testing. The second will be a part of a project that will require other software tools to
generate test vectors, analyze fault coverage, and perform postprocessing of test results.

The following projects will be offered:
a) CMOS testing,
b) PLA testing,
¢) Memory testing,
d) Testing of random logic,
ej Testing of a multiplier,
f) Testing of a scannable circuit,
g) Diagnosis of scannable circuit,.

The final evalugtion will be based on assignments (40%), the final report (30%),
and the demonstration of the experiment (30%). ,,
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